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Abstract 

Optical frequency combs produced by mode-locked fiber lasers are us eful tools for high 

precision frequency metrology and molecular spectroscopy in a robust and portable format. We 

have specifically investigated erbium doped fiber mode-locked lasers that use single-walled 

carbon nanotubes as a saturable absorber. We have, for the first time, developed and phase- 

stabilized a carbon nanotube fiber laser (CNFL) frequency comb. The carbon nanotube saturable 

absorber, which was fabricated using an optically driven deposition method, permits a high 

repetition frequency (>150 MHz) since an optical nonlinearity of fibers is not used for mode-

locking. The CNFL comb combined with a parabolic pulse erbium doped fiber amplifier (EDFA) 

has shown a compact, robust, and cost-effective supercontinuum source. The amplified pulse 

from the parabolic pulse EDFA was compressed with a hollow-core photonic bandgap fiber, 

which produced a wave-breaking-free pulse with an all-fiber set-up. The stabilized comb has 

demonstrated a fractional instability of 1.2 ×10
-11

 at 1 sec averaging time, the reference-limited 

instability. We have performed optical frequency metrology with the CNFL comb and have 

measured an optical frequency, P(13) which is a molecular overtone transition of C2H2. The 

measured frequency has shown a good agreement with the known value within an uncertainty of 

10 kHz. 

In order to extend the application of the CNFL comb such as multi-heterodyne dual comb 

spectroscopy, we have investigated the noise of the CNFL comb and particularly, the broad 

carrier envelope offset frequency (f0) linewidth of the CNFL comb. The primary noise source is 

shown to be white amplitude noise on the oscillator pump laser combined with the sensitivity of 

the mode-locked laser to pump power fluctuations. The control bandwidth of f0 was limited by 

the response dynamics of the CNFL comb. The significant reduction of comb noise has been 

observed by implementing a phase-lead compensation to extend control bandwidth of the comb 

and by reducing the pump relative intensity noise simultaneously. Therefore the f0 linewidth has 

been narrower from 850 kHz to 220 kHz. The integrated phase noise for the f0 lock is 1.6 radians 

from 100 Hz to 102 kHz. 
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Abstract 

Optical frequency combs produced by mode-locked fiber lasers are useful tools for high 

precision frequency metrology and molecular spectroscopy in a robust and portable format. We 

have specifically investigated erbium doped fiber mode-locked lasers that use single-walled 

carbon nanotubes as a saturable absorber. We have, for the first time, developed and phase- 

stabilized a carbon nanotube fiber laser (CNFL) frequency comb. The carbon nanotube saturable 

absorber, which was fabricated using an optically driven deposition method, permits a high 

repetition frequency (>150 MHz) since an optical nonlinearity of fibers is not used for mode-

locking. The CNFL comb combined with a parabolic pulse erbium doped fiber amplifier (EDFA) 

has shown a compact, robust, and cost-effective supercontinuum source. The amplified pulse 

from the parabolic pulse EDFA was compressed with a hollow-core photonic bandgap fiber, 

which produced a wave-breaking-free pulse with an all-fiber set-up. The stabilized comb has 

demonstrated a fractional instability of 1.2 ×10
-11

 at 1 sec averaging time, the reference-limited 

instability. We have performed optical frequency metrology with the CNFL comb and have 

measured an optical frequency, P(13) which is a molecular overtone transition of C2H2. The 

measured frequency has shown a good agreement with the known value within an uncertainty of 

10 kHz. 

In order to extend the application of the CNFL comb such as multi-heterodyne dual comb 

spectroscopy, we have investigated the noise of the CNFL comb and particularly, the broad 

carrier envelope offset frequency (f0) linewidth of the CNFL comb. The primary noise source is 

shown to be white amplitude noise on the oscillator pump laser combined with the sensitivity of 

the mode-locked laser to pump power fluctuations. The control bandwidth of f0 was limited by 

the response dynamics of the CNFL comb. The significant reduction of comb noise has been 

observed by implementing a phase-lead compensation to extend control bandwidth of the comb 

and by reducing the pump relative intensity noise simultaneously. Therefore the f0 linewidth has 

been narrower from 850 kHz to 220 kHz. The integrated phase noise for the f0 lock is 1.6 radians 

from 100 Hz to 102 kHz. 
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Chapter 1 - Introduction 

 1.1 Precision measurement and optical frequency metrology 

 

For more than a century, the precision spectroscopy of atoms and molecules has allowed 

physicists to study their structures and to discover and prove the laws of quantum mechanics. For 

instance, the value of the Rydberg constant and the 1S-Lamb shift [1-3] in the hydrogen atom 

have been able to be precisely measured. Furthermore, the precise measurement of time and 

frequency (i. e. optical frequency metrology [4, 5]) has been a critical tool to determine 

fundamental constants such as the fine structure constant and the ratio of Planck’s constant to 

electron mass (h/me), and to realize standards for time and frequency [6, 7]. The recent research 

has claimed that the temporal variation of the fine structure constant could be  

-17(-1.6 2.3) 10 / year± ×  [8, 9]. Since the value of the speed of light in vacuum was precisely 

defined to be 299,792,458 ms
-1

 in 1983 by the Conférence Générale des Poids et Measures 

(CGPM), the accuracy of a frequency measurement can also be exactly transferred to a length 

measurement by the dispersion relation. 

 1.1.1 Optical frequency metrology before optical frequency comb  

The advent of very narrow-linewidth and tunable lasers and techniques for Doppler-free 

spectroscopy in the early 1970s had a remarkable impact on precision spectroscopy. Physicists 

are able to trap atoms, molecules, or single ions and to observe extremely narrow optical 

resonances with resolutions ranging from 10
-13

 to 10
-15

 and therefore they predicted that the line 

center of such an optical resonance might be measured in accuracy of a few parts in 10
18

 [10, 11]. 

However, the physicist has been faced with the problem to measure the optical frequency 

precisely because most spectroscopic experiments have been relying on a measurement of optical 

wavelengths instead of frequencies. Therefore, it was difficult to avoid the distortion in the 

geometric wavefront, diffraction corrections, and imperfections of the optics, so that the 

accuracy measurement from wavelengths was limited to a few parts in 10
10

 with a laboratory-

sized wavelength interferometer [4]. In order to achieve the optical resonance frequency 

accurately, it is required to measure the frequency rather than its wavelength because frequency 
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(or time: time is derived from frequency by counting the oscillations) can be essentially 

measured with much more precision than any other physical quantity. The accuracy of 

measurable time was increased as shown in Figure 1.1. Obviously the more oscillations increase 

the clock accuracy and this is simply because a higher oscillation frequency divides time scale 

into smaller pieces. Since 1967, the definition of the second has currently been the duration of 

9,192,631,770 periods of the microwave radiation produced by the transition between two 

hyperfine levels of the ground state of the 
133

Cs atom. However, the highly precise measurement 

of frequencies was restricted to the microwave frequency (up to 100 GHz) domain because there 

is no electronic counter to measure such fast oscillations in the range of several hundreds of 

terahertz (1 THz = 10
12

 Hz). 

 

Figure 1.1 (a) Progress of clock accuracy before the optical clock Reproduced from Ref 

[149]. (b) Atom or ion based optical clock improved the systematic uncertainty than that of 

a Cs microwave atomic clock, whose measurement was realized with the stabilized optical 

frequency comb. Reproduced from Ref. [12]. 

The earlier method to address this issue was to make phase-coherent harmonic frequency 

chains [13, 14]. The schematic set-up realized at Physikalisch Technische Bundesanstalt (PTB) is 

depicted in Figure 1.2. The set-up was developed to measure the frequency of a CW laser 

stabilized to laser-cooled Ca (fCa ~ 456 THz). To measure the optical frequency, the Cs 

frequency standard at 9.2 GHz that is a microwave frequency was extended to the visible part of 

electromagnetic spectrum using the chain. The Cs clock defines the frequency at the lower end of 

the chain and then the higher harmonics are generated using nonlinear diode mixers, crystals, and 

other nonlinear devices. In addition, phase-locked loops (PLL) are required for each step. These 
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configurations made the harmonic frequency chain complicated and required substantial 

resources and effort to build and operate, and therefore only limited research laboratories 

afforded to do that measurement. Particularly, its complexity potentially increased measurement 

errors and the system was able to last only for minutes. Another problem of this method is that 

the harmonic chains are designed for measuring only one single optical frequency. Difference 

laboratories had to make different frequency chain set-ups and therefore this method was not 

universal to measure the optical frequencies until a new approach (the optical frequency comb) 

came into reach. The frequency measurement accuracy of the harmonic frequency chain by PTB 

was a few hundreds hertz out of an optical frequency about 400 THz and its fractional accuracy 

(∆fCa / fCa) in the range of 10
-13 

[5, 15]. 

 

Figure 1.2 A harmonic frequency chain. The chain was started from a Cs frequency 

standard and went to the 456 THz, Ca optical frequency standard at PTB. Reproduced 

form Ref. [15]. 
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 1.1.2 The advent of an octave spanning self-referenced frequency comb 

Advances in ultrafast optics and laser stabilization techniques have brought a new 

research tool for making precision frequency measurements called the frequency comb. The 

frequency comb is a set of equally spaced spectral lines produced by a femtosecond mode-locked 

laser (See details in Section 1.1.3). Since the fully stabilized self-referenced frequency comb was 

introduced to the research field in 2000 [16], it has revolutionized time and frequency 

measurements in precision spectroscopy and optical frequency metrology for the last decade with 

its superior stability and accuracy. The frequency comb has also been applied to many other 

scientific research areas as a reliable instrument [17-26]. 

Most important advantage of the frequency comb is a number of comb teeth acting like 

many CW laser sources over a broad bandwidth, possessing an extremely narrow linewidth, and 

those spectral lines are controllable by the well-established electronic feedback. Therefore, an 

optical frequency within the spectral gain bandwidth can be measured by beating the comb 

against the optical frequency we want to measure. As a result, they create a measurable radio 

frequency (RF) signal. The stabilized frequency comb provides a number of separable narrow 

linewidth optical frequencies in the broad spectral range and therefore the frequency comb is an 

ideal tool for measuring optical frequencies generated from atoms and molecules by 

transforming optical frequencies to detectable RF signals. We will explain the optical frequency 

measurement in detail in Section 1.1.4 and in Chapter 6. At the current stage, frequency combs 

cover many spectral ranges from the extreme ultraviolet (EUV) [27] to the mid-infrared [28] 

making them useful for many possible applications. At the same time, the frequency comb has 

also made a transition from a laboratory instrument to a field-usable and turn-key research device 

[128]. 

In summary, the invention of the stabilized frequency comb is due to the development of 

femtosecond mode-locked laser sources, elaborate laser stabilization techniques, and nonlinear 

and fiber optics research as illustrated in Figure 1.3. 
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Figure 1.3 Frequency comb research. The research in general includes development of a 

femtosecond mode-locked laser source, elaborate laser stabilization techniques, and 

nonlinear and fiber optics research. 

 1.1.2.1 Historical review of the frequency comb 

The initial conception of the frequency comb was developed in the 1970’s and the first 

comb has already been experimentally used by T. W. Hänsch and colleagues at Stanford 

University. They used the comb produced from a pulsed dye laser to do spectroscopy and 

discovered that its linewidth was extremely narrow for exciting the sodium 4d fine-structure [29]. 

However, the first fully stabilized frequency comb was introduced with the beginning of the 21
st
 

century. A common question raised, as address in the Nobel lecture of T. W. Hänsch, is “why did 

it take so long?” [127]. The answer comes with the maturity of ultrafast laser science, laser 

stabilization techniques, and the availability of highly nonlinear fibers needed for phase 

stabilization. The invention of Kerr lens mode-locking in 1990 made it possible to produce 

ultrashort pulses of sub-100 fs with the high pulse energy [30]. This allowed for the high peak 

intensity which facilitated nonlinear optics research. Those researches mutually reacted and 

brought significant improvements in both fields with the laser stabilized techniques that have 

been well established through the decades for optical frequency metrology.  

The first fully self-referenced stabilized frequency comb project was proposed by T. W. 

Hänsch in 1997. In the project he first tried to verify the interference of a white light source 

generated from CaF2 crystal using a Ti:Sapphire mode-locked laser in order to implement it to an 

octave spanning self-referenced frequency comb. Meanwhile, J. K. Ranka and colleagues 
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presented the micro-structured fiber generating an octave spanning spectral source at the post-

deadline session in Conference for Laser and Electro-Optics (CLEO) 1999 [31] and this offered 

the opportunity to develop the first fully self-referenced stabilized frequency comb using a 

Ti:Sapphire mode-locked laser to J. Hall and his colleagues at JILA in Boulder, Colorado. After 

this first demonstration of the frequency comb, there has been an explosion of research in this 

area to apply it to optical frequency metrology, precision spectroscopy, optical clock work, and 

more. The first fiber based self-referenced frequency comb using an Er
3+

 doped fiber mode-

locked laser was also demonstrated in 2003 by B. R. Washburn, N. R. Newbury and their team at 

the National Institute for Standards and Technology (NIST) in Boulder, Colorado [32]. The 

excellent contributions of the frequency comb to the fundamental sciences and applied fields 

were recognized and two contributors, T. W. Hänsch and J. Hall won one half of the Nobel Prize 

in 2005. The frequency comb has dramatically simplified the optical frequency measurement and 

we will discuss it in the following sections. 

 1.1.3 Properties of the optical frequency comb 

In order to understand how to use the optical frequency comb for optical frequency 

metrology, precision spectroscopy, and other possible applications, we should first grasp the 

properties of optical frequency comb. In this section, we will discuss the key to understanding 

the frequency comb and then explain how to measure the optical frequency using the frequency 

comb. In addition, we will briefly mention the current applications of the frequency comb in 

other fields in following sections. 

 1.1.3.1 Time and frequency domain description 

A mode locked laser produces a train of pulses whose repetition frequency is determined 

by the laser’s cavity length. Due to the difference between the group velocity (vg) and phase 

velocity (vp) of pulses in the cavity, in order words, the pulse envelope travels with the group 

velocity but the carrier travels with the phase velocity, therefore the phase slip is introduced to 

each pulse. Specifically, the phase shift per pulse (∆ϕ) will be ∆ϕ = (1/vg – 1/vp) ωcLcav, where 

Lcav is the round-trip length of the laser cavity and ωc is the carrier angular frequency. 
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Figure 1.4 A train of pulses generated from a mode locked laser. The periodicity of pulse is 

defined by laser cavity length. Tr is the cavity round trip time of a pulse. The pulse envelope 

propagates with the group velocity (vg) but the carrier frequency propagates with the phase 

velocity (vp). The pulse repetition time is determined by the length of cavity and a pulse has 

a phase slip between the envelope and the carrier frequency due to the difference between 

the phase and the group velocity in the cavity. 

In Figure 1.2, a pulse train is depicted from a mode-locked laser. The pulse is generally 

generated from a mode locked laser. The pulse round trip time (Tr) is defined by Tr = 2L n/c for a 

linear cavity or Tr = p n/c for a ring cavity, where L is a linear cavity length, p is a ring cavity 

length, n is the refractive index, and c is the speed of light. Mathematically, the train of pulses is 

described by the convolution of a pulse and infinite series of Dirac delta functions (known as 

Shah or comb function) in the time domain. Therefore the infinite pulses, E( )t% (the tilde was used 

to stand for the complex electric field) is represented using a convolution between the complex 

electric field of a single transform-limited pulse,  ( )A t%  and the comb function as shown below 

 

E( ) = ( ) ( / ) e ,im

r

m

t A t t m f
ϕδ

∞
− ∆

=−∞

⊗ −∑%%  m=integer                           (1.1) 

and 0( )

0( ) ( ) e ,ci t
A t A t

ω ϕ+=%                                                (1.2) 
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where 0 ( )A t is the envelope of a pulse in the time domain, ωc is the carrier angular frequency 

(ω = 2πν, where ν is the frequency), fr is the repetition frequency defined by 1/Tr, ϕ0 is the initial 

temporal phase, and ∆ϕ  is the phase slip introduced by difference between the phase and group 

velocity which is called the carrier envelope offset (CEO) phase. Every adjacent pulse has the 

phase increment by ∆ϕ  in the time domain. If we take the Fourier transform of the train of 

pulses, E( )t% ,in order to look at it in the frequency domain then, 

 

c 0( )

0FT{E( )} = FT{ ( )e ( / ) e }
i t im

r

m

t A t t m f
ω ϕ ϕδ

∞
+ − ∆

=−∞

⊗ −∑%
  

                              c 0( )

0FT{ ( )e }  FT{ ( / ) e }
i t im

r
A t t m f

ω ϕ ϕδ+ − ∆= × −     

 

0

0 0

-

E( ) e ( ) ( 2 ( ))
i

c r

m

A mf f
ϕω ω ω δ ω π

∞

= ∞

= − − +∑%                                       (1.3) 

 

where FT stands for the Fourier Transformation. By definition of the Fourier transform of a train 

of pulses, it becomes a series of regularly spaced frequencies. A0(ω-ωc) is the pulse envelope in 

the frequency domain. The f0 is called the CEO frequency defined by  

 

0 ,
2

r
f f

ϕ

π

∆
=                                                              (1.4) 

 

This set of regularly spaced frequencies is called the frequency comb. The n
th

 comb tooth is 

determined by the simple algebraic equation, νn = n fr + f0, where n is the mode number (integer) 

and the frequency comb is shifted by the CEO frequency. The optical frequency comb is 

depicted in Figure 1.3. As we can see here, the actual number of comb teeth is limited by the 

optical gain bandwidth of the mode locked laser and n is typically on the order of 10
5
-10

6
 for 

optical frequencies. 



9 

 

foooo f

frrrr
ννννnnnn = n = n = n = n frrrr + + + + foooo

f
rrrr
= 1/T= 1/T= 1/T= 1/T

rrrr

Repetition frequency

GainGainGainGain

Carrier envelope 

offset frequency

fo = (∆ϕ/2π)fr

 

Figure 1.5 Optical frequency comb. fr: repetition frequency, f0: carrier envelope offset 

frequency. The n
th

 comb tooth is determined by the simple algebraic equation ννννn=n fr + f0 

where n is the mode number. The available comb teeth are determined by the gain of the 

mode locked laser. 

Note that generally measurement instruments show the intensity or called the irradiance 

which is a time average of the square of the electric field per unit area. Therefore, the temporal 

intensity and phase of the pulse are by definition 

 

0

1
( ) E( )E( )  and ( ) arctan[Im{E( )}/ Re{E( )}]

2
I t c n t t t t tε ϕ∗≡ =% % % % ,                   (1.5) 

 

where * denotes the complex conjugate. Meanwhile the spectral intensity and phase of the pulse 

are given by 

 

0

1
( ) E( )E( )  and ( ) arctan[Im{E( )}/ Re{E( )}]

2
I c nω ε ω ω ϕ ω ω ω∗≡ =% % % % ,                 (1.6) 

 

respectively.  

 1.1.3.2 Coherence of the optical frequency comb 

The coherence of optical frequency comb was observed by measuring the cross 

correlation between the j
th

 pulse and the (j+2)
th

 pulse, which has shown an interference pattern. 

The relation between the relative phase (∆ϕ�) and the CEO frequency divided by the repetition 
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frequency is linear as shown in Figure1.6 (b). The phase between two pulses has shown the 

linear relationship as we expected in Eq. (1.3) 

 

Figure 1.6 Correlation results. (a) Typical cross correlation (solid line) between the j
th

 pulse 

and the (j+2)
th

 pulse along with a fit of the correlation envelope (dashed line). (b) Plot of the 

relative phase versus the offset frequency (normalized to the pulse repetition rate). 

Reproduced from Ref. [16]. 

 1.1.3.3 Linewidth of the optical frequency comb 

In theory, the lineshapes of the frequency comb teeth are delta functions corresponding to 

the constructive interference of infinite number of pulses. This can be readily proven using the 

Fourier transform theory in the previous sections. We introduce, however, a simple analogy to 

understand the linewidth of the comb. This gives much more intuitive picture about the comb 

linewidth. Table 1.1 shows the similarity between the grating equation and the frequency comb. 

The grating equation can be understood as a phase array produced by N regularly spaced holes 

which create a spatial distribution. Likewise the frequency comb is a frequency distribution 

generated by N equally spaced pulses in the time domain. 
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Table 1.1 Analogy between a grating equation and a train of pulses. 

As seen in Table 1.1, the linewidth is proportional to 1/Np, where Np is the number of pulses. 

Figure 1.7 shows the relationship between Np and the corresponding linewidth. One can clearly 

see that the linewidth becomes narrower when the  Np increases.  

In practice, the comb teeth have a finite linewidth originating from a variety of noise 

sources including quantum and technical noise. The noise causes the pulse-to-pulse timing jitter 

so that the pulse-to-pulse interval is not regular. The details for the linewidth and noise will be 

discussed in Chapter 5. The research has shown that the subhertz instrument limited linewidth is 

possible for a fiber comb [33] and this low noise of the comb is preserved even after 

experiencing the extreme nonlinearity of the supercontinuum generation [34]. 
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Figure 1.7 The linewidth of frequency comb with increasing the number of pulses (Np). 

More pulses make the comb teeth narrower and the linewidth is proportional to 1/Np. 
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 1.1.4 Optical frequency metrology with the optical frequency comb 

As we reviewed in Section 1.1.1, the precision optical frequency measurement was a very 

complex process before the self-referenced optical frequency comb was introduced. Contrary to 

the harmonic frequency chains, the optical frequency comb offers very easy, accurate, and 

reliable measurement with much less complexity over a wider frequency range. Once you know 

how straight forward this approach is, you will definitely thank the optical frequency comb. The 

frequency comb can be stabilized to either microwave frequency references or optical frequency 

references. The stabilized frequency comb generates a bunch of stabilized and regularly spaced 

CW lasers within a broad spectral range with intrinsically narrow linewidths and these act like a 

frequency ruler, so that any optical frequency within the comb bandwidth can be measured as a 

RF beatnote signal by heterodyne-beating the optical frequency against a tooth of the comb. 

Thereafter the optical frequency can be calculated from the RF beatnote and the comb’s mode 

number using a simple algebraic equation. The mode number can be directly found with a high 

resolution wave-meter or can be experimentally calculated from the Vernier method [35]. For 

both cases, the ambiguity in the number of comb modes is reduced by using the high repetition 

frequency comb. The other advantage of the high repetition frequency comb is that it allows 

more power per each comb tooth, and therefore the detection sensitivity is increased. 

Consequently, the high repetition frequency comb increases the resolving power for optical 

frequency measurements. The details will be explained in Chapter 6. The accuracy of the 

frequency measurement using a Ti:Sapphire laser frequency comb done by Th. Udem et al. was 

tens of hertz for the laser-cooled Hg
+
 and the fractional uncertainty was on the order of 10

-14
 

range [17]. 

 1.1.5 Applications of the frequency comb up to date 

The stabilized frequency comb is still being widely used in many fundamental and 

applied research areas such as optical frequency metrology, precision spectroscopy, optical clock 

work, [20, 36, 37] light detection and ranging (LIDAR), [38]  optical waveform synthesis, [39-

41] and astrophysical spectrograph [25, 42, 43]. The optical frequency comb also has significant 

impacts on the time domain applications such as timing synchronization, coherent control [44-

49], atto-second science, [50-52] and more. 
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 1.1.5.1 Direct frequency comb spectroscopy 

One of interesting and straightforward applications of the frequency comb is direct 

frequency comb spectroscopy (DFCS) because the optical frequency comb possesses a large 

number of stabilized comb teeth which have allowed for performing high precision and broad 

spectral bandwidth spectroscopy in parallel. Since the first experiment using DFCS to study 
87

Rb 

[53], the DFCS soon extended its application to molecular detections [22]. The use of DFCS has 

efficiently provided the simultaneous measurement of many transitions of several different 

molecules. The frequency comb was able to be efficiently coupled into the high finesse optical 

cavity due to its periodic pulse structure, and the DFCS combined with the optical cavity brought 

much more sensitive detection of atoms and molecules. The approach has found many potential 

applications in studying broadband molecular spectroscopy, atmospheric chemistry, pollution 

analysis, human breath analysis [54], and more with the rapid and sensitive detection over a 

broad spectral range. 

 1.1.5.2 Optical clock work 

With the significant development of laser spectroscopy in the 1980s, physicists were able 

to trap atoms or single ions, such as Rb, Ca, CH4, Hg
+
, I2, Sr

+
, Yb

+
, and In

+
 [55-59], and observe 

very narrow resonances. Measuring the optical frequency using the harmonic frequency chain, 

they seriously started to think about an optical atomic clock. However, before the optical 

frequency comb was introduced, the harmonic frequency chain never came into reach for 

continuous operation even for minutes, and eventually the optical frequency comb provided the 

physicists a means of building a reliable all-optical atomic clock. The frequency comb provided 

the missing gap between microwave frequency standards and optical frequency standards. 

For the optical clock work [20, 60], the frequency comb is stabilized to the optical 

frequency produced from laser-cooled atoms or single ions, and the accuracy and stability is 

transferred to the optical frequency comb. The research has shown that the performance of the 

optical atomic clock is limited not by the frequency comb but by technical difficulties during the 

photo-detection process [61]. As a result, the tracking fractional instability of the frequency 

comb, meaning how well the frequency comb follows the reference, was an order of 10
-16

 at 1 

sec averaging time (τ) [62] an even better at longer gate times [63] but the actual stability 

transferred from optical to microwave signals was at the 1 × 10
-14 τ -1 level at 1 sec averaging 
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time. Recently the instability of 5.2 × 10
-17

 at 1000 s averaging time was reported by T. 

Rosenband et al. in 2008 which is two orders of magnitude better than the current Cs microwave 

atomic frequency standard. A better definition of time is crucial not only for fundamental science 

but also for our daily life such as accurate GPS navigation and timing synchronization in the 

telecommunication system. 

 1.1.5.3 Astrophysical spectrograph 

Astronomers use the periodic Doppler frequency shift of a binary system [64, 65] to 

detect stars and planets. Until recent, the wavelength calibration of the measured periodic 

Doppler shift has been done typically with thorium-argon lamps or iodine absorption cells but 

the resolution of those spectrographs was not enough to detect an earth-like planet. The 

stabilized optical frequency comb filtered with a Fabry-Pérot cavity has been developed as the 

calibration source for higher resolution spectrographs. C. -H. Li et al. [25] have recently reported 

that the resolution of the spectrograph has been improved by an order of magnitude by optical 

frequency comb in the near infrared wavelength compared to the previous method. 

 

 1.2 Thesis problem statement 

 

Early frequency combs used for optical frequency metrology, precision spectroscopy, and 

applied research were based primarily on Ti:Sapphire laser comb because of the excellent 

properties of Ti:Sapphire crystal as a laser gain material, a low noise performance, the available 

high optical power, and the broad spectral bandwidth. However, it is still not only expensive and 

bulky but also requiring experiences and technical skills to operate it. Furthermore, Ti:Sapphire 

lasers do not cover the fiber-optic telecommunication wavelength region near 1550 nm (C-band). 

Over the most recent years, significant efforts and developments have been done to make the 

frequency comb a field-usable research instrument in the areas such as the calibration of 

frequencies in fiber-optic telecommunication and molecular spectroscopy. In that sense, the fiber 

laser comb has increased its attractiveness. The fiber laser frequency comb has already shown its 

stability and excellent performance comparable to the Ti:Sapphire laser comb [19] as shown in 

Figure 1.8 and the below the quantum-limit phase noise operation [33, 34]. 
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Although the Ti:Sapphire laser comb is still an excellent comb source, the fiber-based 

frequency comb has important advantages because it can be a compact and turn-key integrated 

device. This direction seems to be natural to widely use the frequency comb not only in precision 

metrology laboratories but also in research laboratories or industry requiring frequency 

measurement or calibration, and the Er
3+

 doped fiber laser frequency comb has already been 

commercialized since 2005 by Menlo system [128]. In addition to that, it provides environmental 

and thermal robustness and cost-effectiveness, and Er
3+

 doped fiber lasers are able to cover the 

bandwidth of Ti:Sapphire comb (at 790 nm) by frequency-doubling it. In particular, it has shown 

better long term stability and easier signal dissemination using the existing fiber-optic 

telecommunication channels than that of solid state lasers, making fiber laser combs more 

suitable for optical clock work. 
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Figure 1.8 Fractional instabilities of the beat notes between the comb and the stabilized 

lasers. Filled circles: acetylene measured with the turnkey fiber system; filled squares: 

acetylene measured with the Ti:Sapphire system; open circles: iodine measured with the 

turnkey fiber system; open squares, iodine measured with the Ti:Sapphire laser; Dotted 

line: fractional instability of the Hydrogen maser used as a frequency reference for all the 

measurements; dashed–dotted line: Fractional instability [129] between two iodine-

stabilized lasers of the same type. Reproduced from Ref. [19]. 
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Our research has been performed based on the objectives to realize a compact and turn-

key frequency comb with high repetition frequency (> 100MHz) in the near infrared wavelength 

range for optical frequency metrology both in fundamental academic research and in commercial 

industry research such as the calibration of frequencies in the fiber-optic telecommunication and 

navigation system. It will further be extended to precision molecular spectroscopy that is 

ongoing project in our laboratory.  

For the purpose, we investigated Er
3+

 doped fiber lasers using a single walled carbon 

nanotube saturable absorber named as the CNFL in this thesis. The use of single walled carbon 

nanotubes (SWCNT) as a saturable absorber allowed for the compact, simple, and cost-effective 

laser cavity design with the high repetition frequency [66, 67] compared to the previously 

existing Er
3+

 doped fiber lasers using fiber nonlinearity as a saturable absorber. Furthermore, the 

CNFL has shown the environmentally stable mode-locking and self-sustainability.  

Even though CNFL has a variety of advantages to make the compact and cost-effective 

frequency comb source, the noise and instability of the CNFL and its ability to serve as a reliable 

frequency comb source have not been verified before. Therefore we have scrutinized the 

properties of the CNFL frequency comb for precision near-IR frequency metrology and 

spectroscopy. In this thesis, we have investigated the noise of the CNFL frequency comb and 

have demonstrated the phase-stabilization of the CNFL frequency comb referenced by a 

microwave frequency standard and have reported its stability for the first time [68]. Furthermore 

we were able to measure an optical frequency of C2H2 molecular overtone transition, P(13), 

using our CNFL frequency comb within a uncertainty of 10 kHz [69]. 

 

 1.3 Importance of this thesis 

 

This is the first fully stabilized frequency comb to a microwave frequency reference 

based on a CNFL to our best knowledge. Therefore this thesis has a position as a guide for 

designing and understanding properties of a CNFL frequency comb. The important steps to 

generate the stabilized CNFL frequency comb were discussed, which included the noise and 

stability of the CNFL frequency comb and further noise reduction methods. In addition, an 

application of the CNFL frequency comb for optical frequency metrology in the conventional 
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band (C-band) was introduced, so that the thesis covers the CNFL frequency comb from its 

fabrication to the application. In general, the comb for optical frequency metrology is more 

useful if it has a high repetition frequency enhancing the resolving power between the comb 

teeth, and the comb that has a high repetition frequency with a high average power allows for 

greater power per comb tooth, which increases the detecting sensitivity of the comb. The CNFL 

frequency comb combined with a high power parabolic pulse erbium doped fiber amplifier 

successfully provided those keys. Moreover, it has shown cost-effectiveness, compactness in size, 

excellent mode-locking sustainability, power efficiency, and self-stating operation. Finally, the 

CNFL frequency comb can be stabilized for more than six hours without any active temperature 

control. These results allow for making a transition of the frequency comb into a field-usable 

turn-key research instrument for optical frequency metrology in near infrared and more 

applications. 

 

 1.4 Thesis outline 

 

The structure of the rest of this thesis is arranged to help the reader understand how to 

generate and apply a low noise phase-stabilized fiber laser frequency comb. In Chapter 2, 

femtosecond Er
3+

 doped mode-locked fiber lasers and saturable absorbers are discussed because 

they are sources of the frequency comb. The important properties of fibers, passive mode locking 

mechanisms using fiber nonlinearity, and the design strategies to make an Er
3+

 doped fiber 

mode-locked laser are discussed. In Chapter 3, the single walled carbon nanotube (SWCNT) 

saturable absorber is discussed to make a high repetition frequency mode-locked fiber Er
3+

 

doped CNFL. The physical mechanism and properties of SWCNT saturable absorber are 

discussed. Ultrashort pulse amplification using a dispersion managed EDFA is studied in 

Chapter 4. The pulse amplification is required to generate a supercontinuum spectrum with 

which to detect the carrier envelope offset frequency (f0) by the f to 2f self-referencing method. 

The details for detecting f0 are explained in Chapter 5. By detecting fr and f0, all degrees of 

freedom to control the frequency comb are obtained since the n
th

 comb tooth is defined by a 

simple algebraic equation, νn = n fr + f0. For the next steps, the stabilization of the comb, its noise, 

and possible noise reduction methods are also discussed in Chapter 5. The stabilization is 
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required for our use in optical frequency metrology. The optical frequency of an overtone 

vibration transition of C2H2 was measured using the CNFL frequency comb. The results are 

shown in Chapter 6. Finally, this thesis will be concluded with research summary and future 

work using the CNFL frequency combs such as multi-heterodyne dual comb spectroscopy and 

mid-IR comb. 
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Chapter 2 - Mode-locked Er
3+

 Doped Fiber Lasers 

 2.1 Introduction 

 

Mode-locked lasers [70] are a source of the frequency comb. They produce a train of 

periodic pulses in the time domain and its spectral content is the frequency comb in the 

frequency domain. Initially, many research on the frequency comb have been done with a group 

of crystal lasers such as the Ti:Sapphire laser and the Cr:Forsterite laser but the mode-locked 

fiber lasers quickly has caught up to them with advantages which are making them attractive. 

They provide an easy, portable, and turn-key operation with different emission wavelengths and 

these properties extend the potential of the frequency comb to the field-usable research 

instrument. 

In this thesis, we studied mode-locked Er
3+

 doped fiber lasers for making a stabilized 

frequency comb for optical frequency metrology in the near infrared (1550 nm). A variety of 

mode-locking mechanisms can be used to obtain a train of ultrashort pulses including fiber 

nonlinearities and semiconductor saturable absorbers such as a semiconductor saturable absorber 

mirror (SESAM) and single walled carbon nanotubes. In this chapter, we will discuss keys to 

building and understanding the femtosecond mode-locked fiber laser which will include 

important properties of fibers, saturable absorbers for the laser passive mode locking, and mode-

locked fiber laser design strategies in practical research. 

 2.2 Properties of optical fibers as building blocks for mode-locked fiber lasers 

 

Single mode optical fibers are fundamental building blocks for mode-locked fiber lasers 

and amplifiers. In this section, the important properties of optical fibers such as guiding 

mechanism, dispersion, and nonlinearity are considered to design the mode-locked fiber lasers 

and amplifiers.  
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 2.2.1 Light guiding in step index fibers 

Fibers are excellent waveguides and therefore the light can be propagated with very low 

loss in the fibers (0.2 dB/km). There are two main categories of the optical fiber waveguides that 

we have used in this thesis. Primarily we use the step index fiber which guides the light by total 

internal reflection (TIR). The higher reflective index in the core than that of cladding creates the 

TIR in the optical fiber. The loss of the fused silica step index fiber commonly used in the 

telecommunication area is only a 0.2 dB/km at 1550 nm. The other group used is the photonic 

crystal fiber (PCF) or photonic bandgap fiber (PBGF) which is using Bragg scattering based 

upon two dimensional periodic crystal structure. This group of fibers will be discussed in 

Chapter 4. Figure 2.1 illustrates the propagating mechanisms of the step index fiber using TIR. 

 

Cladding

Core
n1 = 1.5
n2 = 1.52

nclad = 1.5

ncore = 1.52

 

Figure 2.1 A step index fiber: the light is guided by the total internal reflection due to the 

higher reflective index of the core. 

 2.2.2 Waveguide modes in a step index fiber and single mode operation 

The fiber waveguide can support a number of transverse electric and magnetic field 

modes depending on the V number or called normalized frequency defined as 

 

2 2 1/ 22 2
( )

core clad

a a
V n n NA

π π

λ λ
= − = ,                                            (2.1) 

 

where a is the core radius and ncore and nclad are refractive indices for the core and the cladding 

respectively. The NA is the numerical aperture defined as NA = [(ncore)
2 

- (nclad)
2
]
1/2

. There are a 

number of waveguide modes depending on the V number and the larger V number corresponds to 

the more number of modes which increases with roughly V
2
/2.  

The modes in a step index fiber can have both electric field and magnetic field to the 

propagation direction (z-axis) simultaneously and therefore they are not transverse electric (TE) 
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or transverse magnetic (TM) modes but hybrid modes (HE or EH). However, the modes in the 

step index fiber we are interested in are linearly polarized (LP) modes and these waves have TE 

and TM field characteristics. These LP modes exist when the normalized index difference (∆) is 

much less than 1 (∆<< 1), where ∆ is defined as ∆= (ncore-nclad)/ncore. These types of step index 

fibers are called weakly guiding fibers. For all practical fibers used in our research, the 

difference between ncore and nclad is very small and therefore ∆ << 1 so that the existing modes 

can be confined to the LP modes. The numerical expression of LP modes is that 

 

( )LPE , , , ( , ) exp[ ( )]
lm lm

r z t E r i t zϕ ϕ ω β= − ,                                    (2.2) 

 

where Elm(r, ϕ) represents the propagation of a transverse electric field distribution along 

propagation axis z and βlm is the effective wavevector at the given Elm(r,ϕ) pattern. Because of 

the boundary conditions and cylindrical symmetry of fiber-waveguides, the modes can be 

characterized by two integers, l and m. The lowest LP mode we are interested in is the LP01 

(fundamental mode) described in Figure 2.2. 

E01

Core

Cladding

r

z

 

Figure 2.2 The electric field distribution of the fundament linearly polarized (LP01) mode. 

The electric filed on both edges is due to the evanescent coupling of the electric field 

between the core and cladding. Reproduced from Ref. [145]. 



22 

 

An interesting property of the step index fiber is the evanescent wave in the cladding 

regime as shown in Figure 2.2. This evanescent wave decays exponentially along the radius. The 

decay constant (α) can be derived from fiber parameters. 

 

( )
1/ 2

2

1/ 2
2 2 22 2

sin 1clad core
i core clad

clad

n n V
n n

n a

π π
α θ

λ λ

  
 = − ≈ − = 
   

                       (2.3) 

 

where θi is the incident beam angle to the fiber and when the beam is parallel to z direction, it is 

90
o
. When θi = 90

o
, α = V/a. Where V is the normalized frequency we defined earlier (Eq. 2.3). 

Therefore the actually electric field distribution in a step index fiber, called the mode field 

diameter (MFD), is larger than the fiber core size by 2a/V.  

In order to make a mode locked laser using fibers, the single mode operation is required 

because higher order modes not only create loss but also generate the additional inter-modal 

dispersion preventing the laser from mode-locking. The criterion for the single mode operation in 

the step index fiber is determined by the V number and more specifically Vcut-off = 2.405. For 

example, the Corning SMF-28e possessing a = 4.1 µm and NA = 0.12 has a cut-off wavelength at 

~1280 nm. Therefore at the wavelength below 1280 nm, the light could be guided in multi-

modes, which is not desirable both for making a mode-locked laser and for sending information 

through telecommunication channels. 

 2.2.4 Dispersion and nonlinearity of fibers 

Understanding of fiber dispersion and nonlinearity is important for designing mode-

locked fiber lasers and amplifiers. In this section, the origin of dispersion and nonlinearity 

produced by fibers and their effects on ultrashort pulses are discussed.  

 2.2.4.1 Group velocity dispersion 

A pulse propagating in fiber experiences significant dispersion due to the interaction with 

fibers and the refractive index of fused silica fibers (nsilica ~ 1.45 at 1550 nm) is larger than air 

(nair ~ 1.0). The speed of light in a medium is c/n, where c is the speed of light in vacuum and n is 

the refractive index of the medium. This is called the phase velocity and defined as vp = c/n. In 

reality, the pulse or wave packet propagates in fibers with the group velocity defined as 
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Particularly in vacuum, the group velocity is equal to the phase velocity. Because the refractive 

index has the wavelength dependence, the dispersion relation (ω = vk) is represented by 
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where k is the wave-vector. Therefore the group velocity in the medium is   
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where Ng is the group index, the ratio of the vacuum velocity of light to the group velocity in the 

medium, defined as Ng = n – λ (dn/dλ). The wavelength dependence of n(λ) in the medium can 

be determined by the Sellmeier equation which is defined as 
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The coefficients depend on the medium. The host medium of the fibers commonly used is fused 

silica. The n(λ) and its group velocity can be calculated based on the Sellmeier equation. The 

refractive index, n(λ), and the group index are shown below. The Sellmeier coefficients for the 

fused silica are B1=0.6961663, B2=0.4079426, B3=0.8974794, C1=0.00467914826, 

C2=0.135120631, and C3=9.79340025 [130]. 
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Figure 2.3 Refractive index, n(λλλλ) of fused silica glass in red and the group index Ng(λλλλ) in 

purple as a function of wavelength. 

Material group velocity dispersion 

The propagation constant, β in the medium is defined as β(ω) = n(ω) k0, where k0 is the 

propagation vector in vacuum.  Now we will discuss the dispersion of fibers. The β(ω) can be 

expanded by the Taylor series which is the sum of polynomials. Therefore,  
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as 1/vg. β2, called the second order dispersion or the group velocity dispersion (GVD), plays an 

important role in pulse broadening but as you see in the equation above, the higher order terms 

become significant as the spectral bandwidth increases. ωc is the carrier angular frequency. The β 

coefficients are rewritten with the refractive index. For example, β1 and β2 can be expressed as 
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Therefore dispersions can be computed from the Sellmeier equation. 

In Figure 2.4, the β2 curve (Red) has a zero dispersion wavelength (λ0) point at ~1370 nm 

(1.3 fs
-1

 in the angular frequency unit). At this point, the dispersion is minimized and therefore 

the pulse can propagate without a significant dispersion effect. From the zero dispersion 

wavelength point, the higher angular frequency (or lower wavelength) side has positive values 

and the lower angular frequency (or higher wavelength) side has negative values. Commonly the 

positive β2 is called the positive GVD and the negative β2 is called the negative GVD. For the 

positive GVD, the shorter wavelengths (λ<λ0) travel slower than the longer wavelength (λ>λ0) 

and for the negative GVD, the longer wavelengths travel slower than the shorter wavelengths. 

Generally, the fiber manufacturer provides the D(λ) values rather than β2 and it is related to β by 

the following equation, 
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For numerically calculation discussed in Chapter 4, the GVD in unit of β2 (fs
2
/nm) is used. 

Therefore the conversion has to be made.  

Waveguide dispersion 

Different types of dispersion from the material dispersion exist in the single mode step 

index fiber such as waveguide dispersion (Dw). The waveguide dispersion is quantified by the 

following equation, 
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where b is the normalized propagation constant defined as 
( / )
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β −
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−
 [131]. The effect of 

waveguide dispersion modifies the total dispersion (DT) and therefore the total dispersion is the 

sum of them. 
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DT = Dm + Dw .                                                        (2.11) 
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Figure 2.4 The group velocity dispersion (ββββ2) of the fused silica fiber. It has a zero 

dispersion wavelength at ~1370 nm in Green. The waveguide dispersion changes the total 

dispersion. The D and β β β β are related by Eq. (2.9) 

In practice, the waveguide dispersion is used to change the total dispersion. The fiber 

dispersion can be tuned by changing the geometry of the fiber structure. The total dispersion 

curves are shown in Figure 2.4 and the added waveguide dispersion shifts the total dispersion. 

Dispersion length 

We can define a useful quantity for dispersion during the pulse propagation in fibers, 

defined as  
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This is known as the dispersion length (LD), where T0 is the initial pulse width. The physical 

meaning of the dispersion length is that for a Gaussian pulse, the pulse becomes broadened by a 

factor of 2 when the pulse propagates by LD. This equation implies that the shorter initial pulse 

will be broadened quickly and when β2 is larger the pulse will be spread faster, which 

corresponds to the shorter dispersion length. The pulse broadening becomes significant after the 

value of LD. 
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 2.2.4.2 Fiber nonlinearities 

The origin of nonlinearity in fibers 

The dielectric media have nonlinear response for intense electro-magnetic fields. This 

nonlinear response stems from the anharmonic motion of bound electrons in the media under the 

strong applied field. Consequently, the total polarization, (r, ),P ω%  induced by electric dipoles is 

not linear in the intense field but includes higher order contributions so that it satisfies the 

general equation, 
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where ε0 is the permittivity in vacuum, χ(ω) is a tensor quantity of the electric susceptibility, : 

and M  denotes the tensor products respectively, { }, , 1, 2,3i j k ∈  and is a unit vector (i.e. x1=x, 

x2=y, x3=z). The total polarization term is separated into two parts in Eq (2.13), the first term 

known as the linear polarization related to the refractive index (n) we discussed at the previous 

section and the absorption of the medium. The term 
0

3
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∑ ∑  is responsible for the 

nonlinear effects such as second harmonic generation and sum frequency generation. Fibers 

normally show very low second order nonlinearity because the silica (SiO2) has an inversion-

symmetry and therefore the third order term, 
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∑ ∑  is the lowest order nonlinear 

effect for fibers. This term is called the four-wave mixing terms (or Kerr effect). From the third 

order term, n2 known as the nonlinear refractive index is derived and the n2 is related to the third 

order nonlinearity by this following equation. 
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where Re stands for the real part of one component of third order susceptibility tensor [132] and 

n2 is responsible for self-phase modulation (SPM) which will be discussed in next section. The 

third order nonlinearity can also trigger the Raman effect such as stimulated Raman scattering in 

optical fiber [71-73]. 

Nonlinear phase shift 

The χ(3) is responsible for the third order nonlinearity such as third order harmonic 

generation and four wave mixing. However, these nonlinear processes are not efficient in optical 

fibers without careful phase matching which is also true for all the higher order nonlinear 

processes. Hence, the majority of nonlinear effects in optical fibers are induced by nonlinear 

refraction related to the intensity dependence of the refractive index. The total refractive index 

including the nonlinear refractive index (n2) is written as 

 

2( , ) ( ) ,n I n n Iω ω= +                                                      (2.15) 

 

where I is the optical intensity defined as I=(ε/µ)
1/2

<E
2
> where <E

2
> is time average value of 

square of an electric field and µ  is the permeability. The intensity-dependent refractive index 

creates many interesting nonlinear effects such as self phase modulation (SPM) and cross phase 

modulation (XPM). The SPM is the completely degenerate four wave mixing and the process is 

automatically phase matched. The SPM generates the self-induced phase shift during the 

propagation of electric fields in optical fibers. The XPM induces another nonlinear phase shift 

between different wavelengths. These nonlinear processes play a role in the spectral broadening 

of ultrashort pulses and the SPM is especially responsible for optical soliton formation in 

anomalous dispersion fibers. The total phase shift induced by the sum of the linear refractive 

index and the nonlinear refractive index is 

 

( ) ( ) ( )0 2 0, , ,I n I k z n n I k zϕ ω ω ω= = +                                     (2.16) 

 

where z is the length of propagation and therefore the phase shift is accumulated with the fiber 

length.  
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 Nonlinear effects in fused-silica fibers 

The nonlinear refractive index, n2, in silica fibers is about 3 ×10
-20

 m
2
/W [133], which is 

quite smaller than other nonlinear dielectric media by at least two orders of magnitude. 

Nevertheless, the optical fiber shows nonlinear effects with fairly low optical power levels. 

There are two main reasons for that. One is the high optical intensity in optical fibers since the 

light is confined to a very small core size. For example, the Corning SMF-28e has a mode field 

diameter of ~10 µm at 1550 nm. The other is due to the extremely low loss of fibers at around 

1550 nm. For the pulse propagation in fibers, one typically introduces the fiber effective 

nonlinear coefficient γ, defined as 
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where ω0 is the carrier frequency and a is the mode field radius. For instance, the Corning SMF-

28e has γ =1.43 W
-1

km
-1

. 

Nonlinear length 

As we defined the dispersion length before, we can similarly define the nonlinear length. 

The nonlinear length is defined as 
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where P0 is the initial peak power. The physical meaning of the nonlinear length is the effective 

propagation distance over which the nonlinear phase shift becomes 1 radian. For now, we can 

define a useful parameter from the dispersion length and the nonlinear length which is the ratio 

between the two, defined as 
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When LD/LNL <<1, the GVD dominates the pulse propagation and when LD/LNL >>1, SPM 

dominates the pulse propagation. This is related to the formation of optical solitons in fibers. 

 2.2.4.3 Soliton pulse propagation in fibers 

An optical soliton is a special solution of the nonlinear Schrödinger equation (NLSE) 

which will be discussed in Chapter 4. The optical soliton can exist in an anomalous dispersion 

fiber. The soliton is formed in dispersion managed mode-locked fiber laser systems and also 

observed in fiber laser amplifier systems. The soliton has an interesting property in that the pulse 

shape does not change along the propagation length and it is useful to send information without 

distortions, so that it is an important concept in the telecommunication area. The balance 

between GVD and SPM is responsible for the formation of the optical soliton. In order words, 

when we consider the ratio, LD/LNL, to be close to one, both GVD and SPM equally contribute to 

the pulse evolution and this balance supports the optical soliton. Furthermore, higher order 

optical soliton solutions exist and LD/LNL is used to determine the soliton order by the following 

relation. 
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where the integer Ns is called the soliton order. When Ns = 1, it is called the fundamental soliton. 

The higher order solitons are more unstable due to stronger nonlinear effects. Generally one can 

introduce the frequency chirp or the instantaneous frequency to represent the effect of GVD and 

SPM. It is defined as 
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The frequency chirp (δω) is the time-derivative quantity of optical phase-shift. Figure 2.5 

shows the frequency chirp introduced by anomalous GVD and SPM which have opposite signs 

in the central pulse region. The balance between them produces a net frequency chirp of zero in 
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the central region. Therefore the pulse experiences net zero dispersion and has the same temporal 

shape through its propagation. 

 

-200 -100 0 100 200

1.21515

1.21520

1.21525

1.21530

1.21535

Delay HfsL

A
ng

ul
ar

fr
eq

ue
nc

y
H1
ê
fs
L

GVD

SPM

 

Figure 2.5 Frequency chirp introduced by anomalous GVD and SPM. The balance between 

anomalous GVD and SPM produces a net frequency chirp is zero of the central region and 

generates an optical soliton in the anomalous GVD fiber. 

There are other forms of solutions existing under different conditions such as a stretched 

soliton pulse [74], a dissipative soliton pulse [75], and a parabolic pulse (or similariton) [76] 

although they will not be discussed in this thesis. Those pulses have the capability to contain 

more pulse energy than the energy of optical soliton pulses limited by the soliton area theorem 

[77]. 

 

 2.3 Rare-earth ion doped gain fibers 

 

 2.3.1 Gain bandwith of rare-earth ion doped fibers 

The fibers doped with the rare-earth ions such as ytterbium, erbium, and thulium can be 

used to produce gain in a fiber waveguide. Depending on the doped gain ions and host media, the 

emission wavelength can also be tuned. The table below shows the emission wavelength with the 

different rare-earth ion doped fibers. 
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1.7-2.1 µm, 1.45-1.53 µmsilicate, phosphate, fluoride glassesThulium (Tm3+) 1.5-1.6 µm, 2.7 µmsilicate, phosphate, fluoride glassesErbium (Er3+) 2.1 µm, 2.9 µmsilicate, fluorozirconate glassesHolmium (Ho3+) 1.0-1.1 µmsilicate glassYtterbium(Yb3+) 1.03–1.1 µm, silicate and phosphate glassesNeodymium(Nd3+) Emission wavelengthEmission wavelengthEmission wavelengthEmission wavelengthHost glassesHost glassesHost glassesHost glassesRare earth IonRare earth IonRare earth IonRare earth Ion
1.7-2.1 µm, 1.45-1.53 µmsilicate, phosphate, fluoride glassesThulium (Tm3+) 1.5-1.6 µm, 2.7 µmsilicate, phosphate, fluoride glassesErbium (Er3+) 2.1 µm, 2.9 µmsilicate, fluorozirconate glassesHolmium (Ho3+) 1.0-1.1 µmsilicate glassYtterbium(Yb3+) 1.03–1.1 µm, silicate and phosphate glassesNeodymium(Nd3+) Emission wavelengthEmission wavelengthEmission wavelengthEmission wavelengthHost glassesHost glassesHost glassesHost glassesRare earth IonRare earth IonRare earth IonRare earth Ion

 

Table 2.1 Emission wavelength of the rare earth ion doped fibers 

The rare-earth ion doped fibers are very efficient gain media in the infrared wavelength 

regime. Especially, Erbium doped fibers is widely used in the fiber-optic telecommunication 

application because the loss in the fused silica single mode fiber is minimized at 1550 nm which 

is in the gain bandwidth of the Er
3+

 doped fibers. Ytterbium doped fibers are used in the high 

power fiber laser system due to excellent gain efficiency [78] and the thulium doped fibers are 

widely used to generate a mode-locked laser at wavelength of 2 µm. 

 2.3.2 Er
3+

 doped fiber 

The fiber doped with Erbium atoms is one of the important gain media in near infrared 

application and it is also used in fiber optical telecommunication systems. Due to the long 

relaxation time of the Erbium atoms (~ 1 ms), its lasing atomic structure is assumed to be a three 

level system. It has two strong absorption lines at 980 nm and at 1480 nm as shown in Figure 2.6 

(a) and both wavelengths are typically used to pump the Erbium atoms. The typical absorption 

and emission spectra are shown in Figure 2.6 (b). The Er
3+

 doped fiber has a broad gain 

bandwidth over 50 nm in the near infrared around 1550 nm. 
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Figure 2.6 The atomic structure of an Er
3+

atom. (a) The Er
3+

 laser is approximated as a 

three level laser system because of its long relaxation time. It has two main absorption lines 

at 980 nm and another at 1480 nm. (b) The absorption and emission spectra of a typical 

erbium doped fiber. Reproduced from Ref. [134]. 

 

 2.4 Mode-locked Er
3+

 doped fiber lasers 

 

In this section, we will discuss how to produce ultrashort laser pulses from fiber lasers 

using the method called mode-locking. The previous discussion about the dispersion and 

nonlinearity of fibers will be useful in understanding how to generate the shortest pulses from a 

mode-locked fiber laser. 

 2.4.1 Mode-locking 

In order to achieve short pulses from lasers, the coherent mode coupling is required 

(specifically, all modes are arrayed in phase) [135], which leads to the mode-locking in lasers. 

Mode-locking can be categorized generally into two groups which are active mode-locking using 

an electro-optic modulator or an acoustic modulator, and passive mode-locking using saturable 

absorbers. For both cases, they selectively pick up the high intensity input and create short pulses. 

The pulse being able to be produced from the active mode-locking is on the order of picosecond 
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because the response of the fast electronic switch (tswitch) corresponds to an order of GHz. (tswitch 

~ 1/fm) where fm is the modulation frequency measured in Hertz [135]. Therefore, for the 

femtosecond pulse generation, passive mode-locking is exclusively implemented because passive 

mode-locking uses the atomic response of a medium itself. Moreover, passive mode-locking 

shows the low noise operation and does not require complicated and expensive electronic 

components. The most well known passive mode-locking technique is Kerr lens mode-locking 

which uses the χ(3) nonlinearity, the third order atomic susceptibility (See Chapter 4) of a 

dielectric medium. Due to the fast nonlinear response of Kerr effect, the femtosecond pulse is 

readily achieved from that. For fiber lasers, the χ(3) nonlinearity is also commonly used to obtain 

the type of passive mode-locking, called the polarization additive pulse mode-locking (P-APM), 

which is governed by nonlinear polarization rotation [136]. The nonlinear amplifying loop mirror 

is also used for passive mode-locking [79]. We will briefly discuss the mode-locking 

mechanisms that we used in our experiment. 

 2.4.2 Passive mode-locking using self amplitude modulation 

Passive mode-locking is used to generate femtosecond pulses. In this section, we discuss 

the self amplitude modulation (SAM) which modulates the loss in the laser cavity. The SAM can 

be done with the χ(3)
 nonlinearity of optical fibers or semiconductor devices. Here we introduce 

two methods for the SAM using the fiber nonlinearity. 

 2.4.2.1 Modulation instability and generation of a pulse train in optical fibers  

A CW laser beam inside optical fibers experiences deviation from its optical waveform 

due to the interplay between the nonlinear effect and dispersion effect. This leads to modulation 

of the steady state and generates spectral sidebands. Therefore eventually the optical waveform is 

broken up into a train of pulses. This phenomenon is called the modulation instability [80-83] 

which is responsible for the formation of a pulse train in optical fiber laser systems. The 

theoretical frame work can be done with the power perturbation of a CW laser based on the 

nonlinear Schrödinger equation that will be discussed in Chapter 4. As a result of the 

perturbation, the maximum modulation gain (gmax) and its bandwidth (Ωmax) are derived as 
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max 02 ,g Pγ=      

 

The possible gain and gain bandwidth rely on nonlinearity (SPM). There is also a threshold 

power to initiate the modulation instability at the given effective nonlinearity. 

 2.4.2.2 Nonlinear amplifying loop mirror and the figure eight laser 

The first sub-picosecond mode-locked fiber laser was generated using the nonlinear 

amplifying loop mirror (NALM) in 1990 [84]. The NALM was employed in a figure eight fiber 

laser (F8L). It has two fiber rings with 50/50 beam splitter in the middle as illustrated in Figure 

2.7. The pump laser was coupled into the cavity using a wavelength division multiplexer (WDM: 

980/1550 nm), a device combining two different wavelengths.  The electric field in the left ring 

is split at the 50/50 splitter. The isolator allows unidirectional light propagation in the left ring. 

Afterwards one electric field propagates the right loop in a clockwise direction and the other 

propagates in the counterclockwise direction. Each electric field experiences a different amount 

of phase shift due to the fact that the gain fiber in the NALM is asymmetrically positioned. The 

amount of phase shift for each pulse can be written with 
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where φc and φcc are the nonlinear phase shift for the electric field in the clockwise and in the 

counter clockwise direction respectively, n2 is the nonlinear index of refraction, Is is the signal 

intensity, λs is the signal wavelength, and g is the gain coefficient. When the difference of their 

phase shift is π, they are constructively interfered and create a single short pulse, and therefore 

the laser is mode-locked. 
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Figure 2.7 Figure eight ring laser using a nonlinear amplifying loop mirror (NALM) 

saturable absorber [79]. PC: polarization controller, WDM: wavelength division 

multiplexer, OC: output coupler, and 50/50: beamsplitter (the ratio of 50 to 50). The 

electric field is split at 50/50 beam splitter in the middle. One propagates the loop in the 

clockwise direction and the other propagates in the counterclockwise direction. Those 

electric fields interfere in the NALM which is a Sagnac interferometer and mode-locked 

pulses are generated when the difference in the phase shift of two electric fields is 180
o
. 

Since the NALM uses the fast fiber nonlinear process, it can readily produce femtosecond 

pulses. However, the disadvantages of the F8L are that it requires relatively long fiber length 

because it has two rings for the laser cavity, which is not appropriate for the high repetition 

frequency mode locked laser source. In addition to that, the F8L has not shown a self starting 

property which will be discussed in Section 2.5.4. 

 2.4.2.3 Polarization additive pulse mode-locking 

The massive and intense research about the Polarization additive pulse mode-locking (P-

APM) was done by K. Tamura, E. P. Ippen, and H. A. Haus in the early 1990s at MIT [74, 85, 

86]. The P-APM is employing the χ(3) nonlinearity or Kerr nonlinearity of the dielectric medium. 

The mode-locking mechanism is visually illustrated in Figure 2.8. The lightwave is first linearly 

polarized and then elliptically polarized with a polarization controller. Because the light 

intensities between two principal axes are different, the lightwave experiences different amounts 

of nonlinear phase shift for each axis. Therefore the lightwave starts to rotate, known as the 

nonlinear polarization rotation, in the dielectric medium. Thereafter another polarization 

controller selects the lightwave polarized in a particular direction possessing high peak intensity. 
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The iteration of the process shapes the lightwave in the laser cavity and generates ultrashort 

pulses. 
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Figure 2.8 A fiber ring laser using Polarization Additive Pulse Mode-locking (P-APM). PC: 

Inline polarization controller, WDM: wavelength division multiplexer, and OC: Output 

coupler. 1111: the initial lightwave is linearly polarized. 2222: the PC1 elliptically polarizes the 

lightwave. 3333: the elliptically polarized lightwave in the different axes propagates through 

the dielectric medium (fiber) possessing Kerr nonlinearity. Due to the different intensities 

in the different axes, the light polarization is rotated, which is known as the nonlinear 

polarization rotation. 4444: the PC2 only allow for the lighwave polarized to particular 

direction which has the high peak intensity. Therefore the ultrashort pulse can be created. 

We made an all-fiber ring laser using the P-APM that can produce a mode-locked laser 

possessing the repetition frequency of 100 MHz. However, we had a difficulty to get mode-

locking and self-starting at the higher repetition frequency due to the relatively low intra-cavity 

energy. 

 

 2.5 Mode-locked Er
3+

 doped fiber laser cavity design strategies 

 

In this section, we discuss strategies to make mode-locked Er
3+

 doped fiber lasers. 

General strategies we showed here may be applied to any type of Er
3+

 doped mode-locked fiber 

lasers. However, the details, for example, to choose the pump power and the length of fiber, may 

differ with the mode-locking methods we discussed in Section 2.4. 
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 2.5.1 Gain and loss in the cavity 

 2.5.1.1 Small signal gain of an Er
3+

 doped fiber 

Lasing starts when the total small signal gain (SSG) is larger than the cavity loss. The 

gain for a laser oscillator can be quantified by measuring the small signal amplification at the 

given length of the gain fiber. The achievable SSG depends on the length of the fiber and the 

pump power as shown in Figure 2.9. The small signal gain (SSG) of Liekki Er110 has been 

measured. Figure 2.9 (a) shows that the measured SSG at different pump powers for a length of 

Liekki Er110 of 50 cm. The SSG is higher when the pump power is strong for the given length of 

Liekki Er110 and the SSG linearly increases when the pump power keeps increasing. The SSG 

measured at different length of Liekki Er110 at 250 mW pump power has been shown in Figure 

2.9 (b). The turning point at the length of Liekki Er110 of 80 cm is related to the pump depletion. 

In fact, we can recognize the pump depletion point by looking at the green fluorescence from 

Liekki Er110. It becomes dimmer when pump power gets depleted. 
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Figure 2.9 The small signal gain (SSG) of Liekki Er110. (a) The SSG measured at different 

pump powers at the length of Er110 of 50 cm. The SSG is higher when the pump power is 

higher for a fixed length of Liekki Er110. (b) The SSG measured at different length of 

Er110 at 250 mW pump power. The turning point at the length of Liekki Er110 of 80 cm is 

related to the pump depletion. In fact, one can recognize the pump depletion point by 

looking at the green fluorescence from Liekki Er110. It becomes dimmer when pump 

power gets depleted. 
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 2.5.1.2 Cavity loss 

The possible cavity loss comes from insertion losses of fiber optic components (isolator, 

output coupler, WDM, piezo-electric fiber transducer), and fiber splicing. Practically, the loss 

was not a big issue to operate the laser because Er
3+

 doped fiber laser has relatively high SSG as 

shown in Figure 2.9. The cavity loss, however, is related to the stability of a mode-locked fiber 

laser because it modulates pulse energy in the cavity [34]. In addition, the low cavity loss is 

desirable to obtain a broader spectral bandwidth. Therefore it is good to minimize cavity loss by 

making a good splice and using the low loss fiber optic components. 

 2.5.2 Cavity loss and shift in the center wavelength 

The cavity loss results in a shift in the center wavelength of a mode-locked laser. This is 

because the pump power is increased to compensate the loss, which leads to the change in 

frequency-dependent gain producing gain filtering [87]. In Figure 2.11, the gain peak shifts to 

the shorter wavelength when the pump power increases. Consequently, the center wavelength is 

shifted to the shorter wavelength in Figure 2.10. 
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Figure 2.10 A mode-locked CNFL with different amount of cavity loss. By adding  fiber 

connector-typed attenuators in the cavity we purposely changed the cavity loss. The Liekki 

Er110 of 34 cm was used. The laser stayed in mode-locking until the intentionally added 

attenuation was -8 dB. The center wavelength was shifted to the shorter wavelength due to 

the gain filtering. The spectral bandwidth became narrower because of high cavity loss 

combined with a gain narrowing effect. 



40 

 

1500 1520 1540 1560 1580
0

2

4

6

8

10

12

14

16

18

20
 

 

S
ig

n
a

l 
G

a
in

 (
d

B
)

Wavelength (nm)

   60 mW

   90 mW

 125 mW

 150 mW

 180 mW

 210 mW

 240 mW

 

Figure 2.11 The frequency dependent gain. The gain was measured with a tunable 

wavelength laser (Santec). At different pump powers, the gain showed different profiles. 

The gain peak was shifted to shorter wavelengths. The fractional change in the gain profile 

was relatively small when Liekki Er110 was strongly pumped. 

There are interesting points here. First, the available gain increases by pumping EDF 

harder and harder at the given length of EDF. Secondly, the narrowing in the pulse bandwidth in 

Figure 2.10 is due to the higher cavity loss combined with a gain narrowing effect. After the 

pulse experiences the center wavelength shift in EDF, the pulse circulates the lossy cavity which 

attenuates the gain. Since the gain at both spectrum ends is relatively smaller than the gain at the 

peak (this is called gain narrowing and will be discussed in Chapter 4), the net gain can be 

negative there. Hence this results in the narrowing of spectral bandwidth. One more interesting 

point is that the fractional change in gain is small when the pump power becomes higher and 

higher (See Figure 2.11). This might give a better immunity for the possible pump power 

perturbation to the mode-locked laser. 

 2.5.3 Cavity dispersion and spectral bandwidth 

The cavity dispersion is another considered parameter for the cavity design. The control 

of dispersion is critical to obtain short and high energy pulses with the fiber nonlinearity from the 

mode-locked laser cavity. The soliton laser has a limitation in the obtainable spectral bandwidth 

and energy as explained by the soliton area theorem. To avoid this, the laser are usually mode-

locked at the stretched soliton regime [74]. This requires alternative dispersion signs and close to 
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zero net dispersion in the cavity. Therefore the pulse repeats stretching and compression in the 

cavity and increases its spectral bandwidth and energy. In practice, the choice of EDF affects the 

bandwidth because EDFs have different dispersions and gains. In order to demonstrate the 

contribution of dispersion to the spectral bandwidth, we used two types of EDFs. One is the 

Liekki Er110 and the other is OFS EDF80. The group velocity dispersion of Liekki Er110 was 

+1.13 × 10
-5

 fs
2
/nm and that of OFS EDF80 was +6.12 × 10

-5
 fs

2
/nm. (cf. Group velocity 

dispersion of the Corning SMF-28e is -2.28 × 10
-5

 fs
2
/nm). Here, we show a CNFL cavity design 

as an example of the dispersion control. For both cases, the length of Liekki Er110 used was 

about 60 cm. The bandwidth with Liekki Er110 was typically about 7-10 nm in our experiment 

at the repetition frequency (fr) of 73 MHz (total cavity length ~ 4.12 m). The bandwidth was able 

to be increased by a few nanometer by increasing the pump power but it led to the multi-pulsing 

or damage of single walled carbon nanotube connector (we will discuss this in Chapter 3). 

Practically, the spectral bandwidth for CNFL was limited by the available pump power and 

cavity dispersion. The total group delay of this mode-locked fiber laser, quantified by 

multiplication of group velocity dispersion and the length of fiber (β2 × L), was -0.0768 ps
2
. 

When we used OFS EDF80, the possible spectral bandwidth was ~25 nm at the fr of 73 MHz due 

to the better dispersion management in the cavity. The total group delay was -0.0330 ps
2
. The 

mode-locked fiber laser with Liekki Er110 showed a sech
2
 spectrum implying the nearly soliton 

mode-locking. The Kelly-side bands [88] were also observed on the spectrum. The Kelly-side 

bands originated from the periodic disturbance of soliton pulse in the laser resonator. This 

periodic disturbance comes from the discrete nature of dispersion and nonlinearity and loss in the 

cavity. The coupling between soliton and the temporally spreading waves by the periodic 

disturbance is responsible for the formation of the Kelly-side bands. The Kelly-side band is 

useful to calculate the cavity dispersion according to the following equation, 
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where D is the dispersion parameter, L is the length of laser cavity, N is the number representing 

the Kelly-side band peak from the center wavelength in order, c is the speed of light, λ0 is the 
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center wavelength, ∆λn is the distance from the center wavelength to the peak wavelength in nm, 

and τp is the pulse duration. The total β2 × L is calculated using the equation, 
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= −                                                            (2.25) 

Contrary to the mode-locked laser with Liekki EDF, the mode-locked fiber laser with OFS 

EDF80 has revealed the pulse close to stretched-soliton. The spectrum was fit to a Gaussian 

rather than sech
2
. As the total dispersion went down to zero, this laser was more unstable and the 

achievable spectral bandwidth also became narrower. The obtained spectra are shown in Figure 

2.12. Practically, the length of EDF is minimized in order to increase the repetition frequency for 

optical frequency metrology, which makes not only the reduction in obtainable optical gain but 

also the reduced positive dispersion and therefore the possible net cavity dispersion gets more 

negative. Overall, the spectral bandwidth becomes narrower. 
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Figure 2.12 Mode-locked spectra both at the same repetition frequency (fr = 73 MHz). (a) 

The mode-locked fiber laser spectrum with Liekki Er110 (ββββ2 = +1.13 × 10
-5

 fs
2
/nm). The 

spectrum showed a sech
2 

shape implying nearly soliton pulse mode-locking and the strong 

Kelly-sidebands were observed. The spectral bandwidth was ~7 nm and it was able to be 

increased by a few nanometer by increasing the pump power. The total cavity dispersion 

was -0.0768 ps
2
 for the laser. (b) The mode-locked fiber laser spectrum with OFS EDF80 

(ββββ2 = +6.12 × 10
-5

 fs
2
/nm). The obtained spectrum is close to a Gaussian shape meaning a 

stretched soliton pulse. Due to the better dispersion control, the achieved spectral 

bandwidth was ~25 nm. The total ββββ2 × L was -0.0330 ps
2
 for this laser. 
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 2.5.4 Self starting and reflection in the cavity 

All fiber laser cavities do not have shown the self-starting behavior which means that the 

laser can be mode-locked from a CW intensity fluctuation without a starting trigger. The F8L we 

built using the NALM as a saturable absorber did not show the self-starting. It required a 

physical knocking to start the mode-locking. The other lasers, such as a P-APM ring laser and 

CNFLs, have shown the self-starting. The self-starting can be explained with a unidirectional 

laser operation. Unlike a linear cavity, the ring cavity structure with an isolator significantly 

reduces reflections inside the cavity which causes a frequency pulling effect affecting the mode-

locking. 

Figure 2.13 shows that the effect of the atomic gain medium on the cavity modes. The 

gain induced phase shift, ϕm(ω) can be describe by ϕm(ω) = ∆βm(ω)Lm. Where ∆βm(ω) is the gain-

induced dispersion expressed by ∆βm(ω)=ω χ’(ω)/2c and Lm is the length of the gain medium. In 

the equation, the χ’(ω) is the real part of the atomic susceptibility, the c is the speed of light and 

ω is an angular frequency. The atomic susceptibility will be discussed in detail in Chapter 4. 

Therefore the total phase shift is the sum of the linear phase shift and the gain induced phase 

shift as illustrated in Figure 2.13. For the simplicity, the frequency pulling term for a Lorentzian 

atomic transition can be assumed and rewritten with a Lorentzian form of atomic gain coefficient, 

gm(ω) and then the equation for the ϕm(ω) is described by 
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where ωa is the resonant frequency. Hence the amount of the frequency pulling defined by the 

pulling amounts divided by the cavity mode spacing (δωq/∆ωcav) is approximately,  
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where ωq is the q
th

 comb tooth. Based on this equation the frequency pulling is related to the 

atomic gain, gm(ω). Reflections inside a cavity create more complicate and fluctuating structures 
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of the atomic gain and the amount of the frequency pulling varies, so that the cavity modes are 

jumping around which results in preventing a laser from efficient mode-coupling or mode 

locking with fast saturable absorbers. In practice, the self-staring is realized by employing a 

unidirectional fiber laser cavity design with an isolator. 

 

Linear dispersion

ωωωωa frequency

Regularly spaced comb teeth

Unevenly spaced comb teeth

due to the fluctuating χ’(ω)

χχχχ’(ω(ω(ω(ω) ) ) ) 

 

Figure 2.13 The frequency pulling effect caused by the atomic gain phase shift. χχχχ’(ωωωω): the 

real part of atomic susceptibility. The dispersion shaped by χχχχ’(ωωωω) is generated and the 

reflection creates more complicated and fluctuating χχχχ’(ωωωω) structures, so that total 

dispersion changes with time for each comb tooth. Therefore the comb teeth experience 

time-varing dispersion and the comb teeth are fluctuating, which results in preventing a 

laser with fast saturable absorbers from mode-locking. 

 

 2.6 Summary 

 

In this chapter, we reviewed the femtosecond Er
3+

 doped mode-locked fiber laser. We 

discussed properties of optical fibers and their origins which included the guiding mechanism of 

step index fiber, the group velocity dispersion (GVD) and the self phase modulation (SPM). The 

balance between GVD and SPM is responsible for the soliton pulse propagation in optical fibers. 

The Er
3+

 doped fiber is an excellent gain medium in the near infrared at the wavelength of 
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1550 nm which is not covered by Ti:Sapphire mode-locked lasers. Therefore we can take its 

advantage in optical frequency metrology at around 1550 nm. We discussed general strategies to 

make an Er
3+

 doped fiber laser. The gain (or loss), dispersion, and nonlinearity should be 

considered for the laser design and the spectral bandwidth and pulse duration are related to those 

parameters. We introduce passive mode-locking mechanisms. The modulation instability and 

saturable absorber generate an ultrashort pulse train in Er
3+

 doped fiber lasers. We have shown 

two artificial saturable absorbers using fiber Kerr nonlinearity and the disadvantage of those 

saturable absorbers is that they requires relatively long lengths of fibers for mode-locking. In our 

experiment using the fiber Kerr nonlinearity for mode-locking, it is difficult to get more than the 

repetition frequency of 100 MHz in all-fiber set-up. However, the high repetition frequency is 

desirable for optical frequency metrology.       

Passive mode-locking can be also achieved using semiconductor saturable absobers such 

as a semiconductor satuarble absorber mirror (SESAM), a semiconductor Bragg reflector (SBR), 

and single walled carbon nanotubes (SWCNT). Unlike NALM and P-APM, those are real 

saturable absorbers and use the excitonic absoption of the semiconductor material for saturable 

absorption.  The pioneering research has been done by Islam, Knox, and Keller [89-92]. The 

advantage of using the semiconductor saturable absorbers is that it is possible to tune the 

absorption wavelength and therefore they can be used for mode-locking laser of different 

wavelengths. In addition, they allow for making mode-locked lasers compact and allow for high 

repetition frequency. Especially we will focus the SWCNT saturable absorber [67, 93] in the 

next chapter. The SWCNT saturable absorber provides extremely compact, robust, and cost-

effective mode-locked fiber lasers in an all-fiber configuration and has been used to high 

repetition frequency comb for optical frequency metrology. 
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Chapter 3 - High Repetition Frequency Fiber Laser Frequency 

Comb Using Single Walled Carbon Nanotube Saturable Absorber 

 3.1 Introduction to high repetition frequency mode-locked fiber lasers 

 

We reviewed the mode-locking mechanisms and pulse formations in the fiber laser cavity 

in Chapter 2. For optical frequency metrology, higher repetition frequency (>100 MHz) is 

desirable in order to increase the resolving power among comb teeth. In addition, we wanted to 

make the laser a compact and all-fiber system for a cost-effective and turn-key operation. In this 

sense, the NALM mode-locking and P-APM were not the best choices.  

There are technical challenges to making a high repetition frequency mode-locked fiber 

laser using the self amplitude modulation using the fiber nonlinearity discussed in the previous 

chapter because they require relatively high intracavity energy and long fiber lengths to initiate 

mode-locking. However, in order to increase the pulse repetition frequency, the fiber cavity 

length becomes shorter and shorter with the length of gain fiber and therefore the stored pulse 

energy in the laser cavity decreases. Hence, one generally uses a saturable absorber such as 

semiconductor saturable absorber mirror (SESAM) in order to make a high repetition frequency 

mode-locked fiber laser. The Kärtner group at MIT has demonstrated the ~1 GHz repetition 

frequency Er
3+

 doped fiber laser using a saturable Bragg reflector (SBR) which is also a 

semiconductor quantum well device [94]. Even if these methods allow for the high repetition 

frequency fiber laser, there are some drawbacks. First of all, SESAM and SBR require 

sophisticated and expensive fabrication techniques. In order to reduce the recovery time of those 

semiconductor devices, the defects acting as recombination centers are created using the special 

low-temperature growth as well as ion implantation techniques. These make their fabrication 

process complicated and expensive. Secondly, it is not possible to integrate it into the fiber laser 

cavity in an all-fiber set-up. In most cases, a free-space linear cavity is used with SESAM and 

SBR. In our research, we employed the single walled carbon nanotubes (SWCNT) as a saturable 

absorber, which allows for a cost-effective and simple fabrication without losing the advantages 
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of semiconductor saturable absorber devices. In addition, the SWCNT saturable absorber can be 

readily integrated into the fiber laser ring cavity.  

We have intensely studied the frequency comb generated from Er
3+

 doped mode-locked 

fiber lasers employing the SWCNT saturable absorber. In this thesis, we named it as the carbon 

nanotube fiber laser (CNFL). The SWCNT was incorporated using an optically driven deposition 

method [95] into the laser cavity which allowed for an all-fiber laser configuration. In addition to 

that, the high repetition frequency comb was readily obtained and we took advantage for optical 

frequency metrology. 

 

 3.2 Semiconductor saturable absorbers 

 

Semiconductor saturable absorbers such as SESAM, SBR, and SWCNT have been 

widely used because of their readiness for passive mode-locking. For mode-locked fiber lasers, 

they have been implemented to reduce the cavity length so that the repetition frequency of a train 

of pulses has been increased. The physical interpretation of the semiconductor saturable 

absorbers is discussed here. 

 3.2.1 Principle of the semiconductor saturable absorber 

The interband transition is responsible for the saturable absorption behavior of the 

semiconductor devices. As illustrated in Figure 3.1, photons are absorbed by a semiconductor 

saturable absorber. The photon energy is then transferred to carriers (electrons in this discussion) 

and electrons are excited from the valence band to the conduction band. For low optical 

intensities, the population of excitation is small and therefore the states in the conduction band 

are not fully occupied, so that the absorption remains unsaturated. However, for high optical 

intensities, the electrons can be accumulated in the conduction band. As a result, the states in the 

valence band for the absorption transition are depleted while the states in the conduction band 

are occupied. Therefore the absorption is reduced.    

After saturation with an intense pulse, the absorption recovers partially by coherent 

carrier dynamics which may last between 10-50 fs at room temperature depending on excitation 

density, intraband thermal relaxation caused by electron-electron scattering, and phonon 
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emission through electron-lattice interactions which cool the electrons down to lattice 

temperature. After the thermalization and cooling process, the electrons move to the bottom of 

the CB and these processes occur within a relatively fast time-scale (< 1 ps). Then the electrons 

vanish either by being trapped in defect (or impurity) states whose time-scale is ~100 fs - 100 ps 

or by recombination on a nanosecond time-scale [137]. Therefore the carrier lifetime is 

dependent on the growth conditions and purity of the material. In order to reduce the carrier 

lifetime (or recovery time of a saturable absorber), the defects are created using special low-

temperature growth as well as ion-bombardment. The measurement of recovery time is carried 

out by measuring pump and probe response of a semiconductor saturable absorber. The recovery 

time of < 1 ps is possible for the semiconductor saturable absorber and therefore a femtosecond 

ultrashort pulse can be generated by using them. 

Conduction band
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absorptionDefect
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Figure 3.1 Dispersion relation of a semiconductor. Eg: energy gap. Photons are absorbed 

and electrons in the valence band are excited to the conduction band. For the high optical 

intensity pulses, the electrons are accumulated in the conduction band, so that the initial 

states for the absorbing transition are depleted while final states are occupied. After 

saturation with a short pulse, the absorption recovers partially by intra-band relaxation 

which includes electron-electron scattering and electron-lattice interactions. The process of 

the intra-band relaxation may last between 10-50 fs depending on excitation density at 

room temperature. Then the electrons vanish either by being trapped in defect (or 

impurity) states whose time-scale is ~100 fs - 100 ps or by recombination on a nanosecond 

time-scale [137]. 
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 3.3 Single walled carbon nanotube saturable absorber 

 

The single wall carbon nanotube (SWCNT) is a reliable saturable absorber for passive 

mode-locking. The SWCNT is a type of semiconductor saturable absorber and the physical 

mechanism discussed in Section 3.2 can be applied to the SWCNT absorber. In this section, we 

discuss properties of SWCNT saturable absorber and a deposition method of SWCNT into fiber 

laser cavity. 

 3.3.1 Properties of the single walled carbon nanotube saturable absorber 

The terminology for a satiable absorber is listed to help understand the following 

discussion. 

• Modulation depth: Maximum change in absorption. A large modulation depth leads to 

strong pulse shaping and self-starting. 

• Recovery time: The decaying time of the excitation after an exciting pulse. 

• Saturation fluence: The fluence (energy per unit area) measured when the initial value 

reduces to 1/e of its initial value. 

• Saturation energy: Saturation fluence times mode field area. 

The properties of SWCNT have been intensively investigated since it was synthesized in the 

early 1990s [93]. Studies of the electronic structures and optical properties have proven that the 

SWCNT was a promising optical saturable absorber [96]. The first demonstration of a mode-

locked fiber laser with a SWCNT came in 2004 by Sze. Y. Set et al. [67]. The SWCNT acts like 

a saturable absorber possessing an ultrafast recovery time which is less than 1 ps so that the 

femtosecond pulse is readily achieved.  

The SWCNTs are categorized by their chirality into semiconducting, semimetallic, 

metallic nanotubes. The chirality is defined by the chiral vector, Ch = ma1 + na2 on a two 

dimensional graphene sheet as shown in Figure 3.2. The saturable absorption property of 

SWCNTs originates from the excitonic absorption of semiconducting nanotubes, while metallic 

nanotubes are known to be responsible for the ultrafast recovery time acting like defects in 

SESAM for recombination centers. 
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Figure 3.2 A two dimensional graphene sheet. The chiral vector is defined by Ch = ma1 + 

na2. The sample of SWCNTs is composed of the semimetallc, semiconducting, and metallic 

nanotubes. Reproduced from Ref. [67]. 

Depending on the chiral vector, also called the roll-up vector, SWCNTs have different 

energy bandgap structures. Figure 3.3 shows the energy bandgaps for two different chiral vectors 

which are (m,n)=(12,5) and (m,n)=(17,0) respectively. The diameter of nanotubes depends also 

on the chiral vector and the change of the diameter has shown interesting optical property as 

shown in Figure 3.3. 

SWCNT(12,5): d=1.2 nm SWCNT(17,0): d=1.35 nm

 

Figure 3.3 Energy bandgap depending on the chiral vector. Two different chiral vectors 

(12,5) and (17,0) have different diameters and their energy bandgap structures are 

different, which implies different saturable absorption bandwidths. Reproduced from Ref. 

[67]. 
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By engineering the diameter of the SWCNT, different absorption bands can be obtained, 

which is useful for the laser application to tune the saturable absorption wavelength and its 

bandwidth. This property allows for achieving mode-locked lasers in different wavelength 

regimes. For example, the SWCNT saturable absorbers have been used in order to mode-lock 

fiber lasers at 1 µm, [97] 1.55 µm, and 1.9 µm [98]. 

 3.3.2 Absorption at different wavelengths 

We used the SWCNT made by Unidym Inc. possessing a mean diameter of 1 nm. As we 

mentioned earlier, the absorption property of SWCNT depends on the tube diameter. We 

measured the absorption of the SWCNT using a supercontinuum spectrum source, a broadband 

coherent source, which was stretched from 1.0 µm to 2.2 µm. The measured absorption from 

1200 nm to 1750 nm using an optical spectrum analyzer is shown in Figure 3.4 and it is 

compared to absorption spectra of SWCNTs possessing different tube diameters [67]. 
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Figure 3.4 Absorption of the SWCNT (Unidym Inc.) at different wavelengths. This is 

measured with a supercontinuum spectrum (more than an octave spanning coherent 

source) in the near infra-red and the result compared to the transmission of different 

SWCNTs possessing different tube diameters. The red line is the transmission spectrum for 

our SWCNT (Unidym Inc.) whose diameter (D) is 1.0 nm, Both the dashed blue line for the 

transmission of the SWCNT with D of 1.2 nm and the black line for the transmission of 

SWCNT with D of 1.35 nm are reproduced from Ref. [67]. 
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The SWCNT has shown a fairly uniform absorption at the wavelengths we are interested 

in from 1500 nm to 1600 nm. The maximum absorption peak was shown at ~1350 nm and this 

was the lower wavelength than those of larger diameter SWCNTs. The smaller diameter (D) 

corresponds to the larger energy bandgap leading to higher absorption energy corresponding to  

shorter wavelength. 

 3.3.3 Saturable absorption and modulation depth 

The saturable absorption of the SWCNT (Unidym Inc.) was measured by injecting a 

femtosecond pulse from an Er
3+

 doped mode-locked fiber laser to the SWCNT connector. The 

pulse intensity was changed by attenuating the average power of the source. The measured data 

was fit to an exponential decay function and the modulation depth was measured. The measured 

modulation depth was 27 % which was similar to the value reported by Sze. Y. Set et al. [22]. 

The larger modulation depth corresponds to strong pulse amplitude modulation. The SWCNT 

has ~ 13 % background absorption which increased the cavity loss. The saturable fluence of the 

SWCNT is a few tens of µJ/cm
2
 which is close to that of SESAM [67, 90], which implies that the 

SWCNT is very easily saturated in a standard single mode optical fiber at 1550 nm with the 

pulse energy of ~ pJ. Therefore, the mode-locking of CNFL has been achieved at lower pump 

power than that of our figure eight fiber laser and P-APM fiber ring laser. 
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Figure 3.5 Saturable absorption of the SWCNT (Unidym Inc.). The absorption decreases 

exponentially for the high peak intensity. It has the modulation depth of 27 % and  the 

background absorption of 13 %. 
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 3.3.4 Deposition methods of the SWCNT 

A variety of deposition methods have been tried to incorporate SWCNT into the fiber 

laser cavity. The first laser that used SWCNT saturable absorber was demonstrated with a spray 

coated mirror or quartz plate such as (a) [67] and (b) [91] in Figure 3.6. However, a much 

simpler method was introduced by J. W. Nicholson et al. which is called the optically driven 

deposition method [95]. The procedure is described in Section 3.3.6. The method is very simple 

and easy but it has a drawback which will be discussed in Section 3.3.7. Some other methods 

include the evanescent interaction with SWCNT. For instance, the tapered fiber (d) is used or a 

SWCNT doped polymer optical fiber is fabricated (e) for that purpose as shown in Figure 3.6. 

 

(a) Direct synthesis (film)

(b) Spin coating (Mirror)

(c) Direct deposition on a connetor

(e) CNT doped 

polymer optical 

fiber

(d) Taper fiber

 

Figure 3.6 A variety of SWCNT incorporating methods; (a) Direct synthesis on thin film, 

(b) Spin coating on a mirror, (c) Direct deposition on a fiber connector, (d) Fiber taper 

embedded in SWCNT-polymer composite, (e) Fabrication of a SWCNT doped polymer 

optical fiber. 

 3.3.5 Optically driven SWCNT deposition process 

The SWCNT has been incorporated into the fiber laser cavity using the optically driven 

deposition method providing an easy and simple incorporation of SWCNT. The SWCNTs are 

thermally attached to a fiber connector end-face by the absorbed heat from laser radiation. 

However, we were not able to control the deposition process such as thickness or uniformity of 

SWCNT deposition.  
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The set-up is depicted in Figure 3.7. First of all, the SWCNT solution was made with 

0.5 mg of SWCNT and 12 mL of ethanol and then the solution was well mixed for 30 minutes 

using an ultrasonicator. Then a connector end-face of a fiber patchcord is dipped into the solution 

with the optical radiation power of 10 mW at 1560 nm. After 30 seconds, it is pulled out of the 

solution and is dried for a minute. Thereafter the optical power is measured. These processes are 

repeated until the power loss is roughly 2 dB, which indicates enough SWCNT on the fiber 

connector end-face. The method is summarized below, 

1) Prepare single walled carbon nanotube (SWCNT) solution (0.5 mg of SWCNT and 12 mL 

of ethanol) and ultrasonicate it for 30 minutes. 

 

2) Dip the fiber connector end-face into the solution with radiation power of 10 mW at 1560 

nm for 30 seconds. 

 

3) Pull it out from the solution and wait 1 min. 

 

4) Measure the optical power. 

 

5) Repeat the step 2)-4) until the measured power loss is ~ 2 dB. 

 

Power 

meter

Laser 

@1560nm

10 mW

SWCNT
solution

 
Figure 3.7 Scheme for the optically driven SWCNT deposition method. A fiber connector is 

dipped into the SWCNT solution and the CW laser possessing 10 mW at 1560 nm is 

radiated through the fiber connector. After 30 seconds radiation, the fiber connector is put 

out and is dried for a minute. Then the optical power is measured to check a loss. This 

process is repeated until the loss becomes ~ 2 dB.  
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Note: this technique was published by J. W. Nicholson et al., “Optically driven deposition of 

single-walled carbon nanotube saturable absorbers on optical fiber end-faces,” Optics Express 15, 

9176–9183 (2007). 

 3.3.6 Damage of the SWCNT connector 

The saturable absorber connector has realized an easy and simple incorporation of 

SWCNT but the problem of this saturable absorber connector is the damage from heat deposition. 

The saturable absorber connector was damaged as the cavity power was increased as shown in 

Figure 3.8, which limited the possible laser output power and spectral bandwidth. The optical 

power at 1560 nm affected the thermal damage in the saturable absorber connector. This problem 

needs to be solved to scale up the laser power. So far, the output power from our CNFLs is 1-2 

mW using the optically driven SWCNT deposition method. 
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Figure 3.8 Typical Damage of fiber connector with SWCNT. (a) The transmission was 

measured as the power of a CW laser at 1560 nm was increased. The transmission of 

saturable absorber connector significantly decreased due to the heat damage at more than 

the power of 50 mW. (b) The damaged fiber connector end. The fiber (Dark gray circle) is 

125 µµµµm in diameter and the white spot is the damaged point. 
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 3.4 Summary 

 

The semiconductor saturable absorbers are desirable for the high repetition frequency 

mode-locked fibers. They can also be integrated into the laser cavity with simplicity. The 

mechanism behind the saturable absorption of the semiconductor saturable absorber is the 

excitonic absorption of the light and the recombination. The defect in semiconductor reduces the 

recovery time. The SWCNT is a type of semiconductor saturable absorbers and its bandgap 

energy can be tuned by changing the size of tube diameter. The metallic nanotubes act as a defect 

in SWCNT saturable absorbers.  

The CNFL has shown the high repetition frequency which was realized in an all-fiber 

manner using the optically driven deposition method. The CNFL has many benefits as a 

frequency comb source such as easy and simple cavity fabrication, compactness, cost-

effectiveness, and robustness. Nevertheless, the thermal damage should be avoided to make it 

more widely applicable mode-locked laser source to many research fields although the CNFL 

has shown a good performance in our research of optical frequency metrology. The output of 

CNFL is not high and therefore the output must be amplified for octave-spanning spectrum 

generation. The following discussion will be shown in next chapters. 
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Chapter 4 - Ultrashort Pulse Amplification and Compression for 

Supercontinuum Generation in Highly Nonlinear Fibers 

 4.1 Introduction to optical pulse amplification in gain fibers 

 

The power achieved from the Er
3+

 doped fiber oscillators is limited commonly to the 

range from a milliwatt (mW) to tens of mW due to the dispersion and nonlinearity of fibers. 

However, in order to detect the carrier envelope offset frequency using the f to 2f self-referencing 

method, high peak intensity is required to generate more than an octave spectral bandwidth 

called the supercontinuum. The short and high peak intensity pulse has a benefit because it 

requires shorter length of fiber to generate the supercontinuum and can produce the wider 

supercontinuum [44]. In this chapter, we discuss backgrounds for the optical pulse amplification 

in gain fibers, which includes the atomic gain formulas and its related effects, such as gain 

saturation and gain narrowing. We also deliberated dispersion and nonlinearity affecting the 

pulse propagation in an Er
3+

 doped fiber amplifier (EDFA) [99]. The management of gain, 

dispersion, and nonlinearity is the key to generate high power optical pulses. Since the ultrashort 

pulse generation is critical in order to generate high peak intensity pulses, the compression of 

optical pulses is also an important technique. Here, the dispersion compensation with a hollow 

core photonic crystal fiber is discussed, which allows not only for preventing an amplified pulse 

from pulse distortion during the pulse compression because of very small nonlinearity of the 

fiber but also for an all-fiber high power ultrashort pulse EDFA.  

The nonlinear Schrödinger equation (NLSE) derived from the Maxwell equations is 

discussed to theoretically understand the pulse evolution in fibers. By numerically solving the 

NLSE using the split step Fourier method, the pulse propagations in fibers are simulated.  

The supercontinuum generation is a strong nonlinear process involved with higher order 

dispersions and four wave mixing such as self phase modulation and Raman scattering. In our 

research, the supercontinuum spectra from 1.0 µm to 2.2 µm were generated with the highly 

nonlinear fiber made by OFS using the pulse from our EDFAs. 
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 4.1.1 Atomic resonant susceptibility 

The atomic resonant susceptibility in a linear medium is related to the dispersion and loss 

(or gain) of the medium and those factors are important for understanding the amplification 

process. The resonance behavior of laser atoms in the applied electric field is responsible for the 

atomic resonant susceptibility. 

 4.1.1.1 Electric linear susceptibility 

The steady-state response of a collection of atoms or electric dipole moments in a linear 

medium to the applied electric field is expressed as an electric susceptibility. The electric 

susceptibility therefore is the transfer function of the dielectric medium. The origin of electric 

susceptibility is the polarization of dipole moments produced by atoms. From the basic 

electromagnetic theory, the electric field in a dielectric medium is represented by the complex 

electric displacement, ,D% and by definition, 

 

0 .D E Pε= +% % %                                                               (4.1) 

 

The tilde was used to stand for the complex electric field and polarization. In the equation, E%  is 

the applied electric field, ε0 is the dielectric constant of the vacuum, and P% is the polarization of 

the dielectric medium. When the dielectric medium is linear and isotropic, the polarization P%  

and the electric field E% are related with the following equation. 

 

0( ) ( ) ( ),P Eω χ ω ε ω=% %%                                                        (4.2) 

 

so that the electric susceptibility of the medium represents the proportional factor of response of 

medium to the applied electric field and is defined by 

 

0

( )
( ) ,

( )

P

E

ω
χ ω

ε ω
≡

%
%

%
                                                            (4.3) 

 

then, the electric displacement, ,D% can be rewritten with the electric susceptibility and therefore 
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0[1 ] ,D E Eε χ ε= + =% % %% %                                                          (4.4) 

 

and whereε%  is the complex dielectric constant defined by 

 

0( ) [1 ( )].ε ω ε χ ω= +% %                                                           (4.5) 

 

 4.1.1.2 Atomic susceptibility 

The atomic susceptibility is a modified form of the electric susceptibility in the laser gain 

material. In practice, the resonant atoms are doped or imbedded into the host medium. Since the 

atoms of a host medium do not directly contribute to resonant transition for the laser action, we 

can rewrite the electric displacement in such a laser material as 

 

0 host at
D E P Pε= + +% % % % .                                                       (4.6) 

 

In the equation the contribution of the host medium is separated from that of the laser atoms. The 

response of the laser atoms has the weak and narrow bandwidth and therefore the laser atoms 

produce linear resonant polarization in the applied electric field. If we define 
host

P%  as 

 

0 0 and (1 ),
host host host host

P Eχ ε ε ε χ= = +% %% %                                       (4.7) 

 

then the electric displacement can be written as 

 

host at
D E Pε= +% % % .                                                        (4.8) 

 

In addition, let 0at at
P Eε χ≡% %%  and 0 host

ε ε≈ . Then the final electric displacement is expressed as  

 

[1 ] ,
host at host at

D E P Eε ε χ= + = +% % % %%                                             (4.9) 
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which has the same form as our previous definition of electric displacement in the dielectric 

medium (Eq. 4.4), and the atomic susceptibility is defined as 

 

( )
( ) .

( )

at
at

host

P

E

ω
χ ω

ε ω
≡

%
%

%
                                                       (4.10) 

 

 4.1.1.3 Resonance behavior of atoms and its susceptibility 

Atoms in the laser gain medium show resonant behavior in the applied electric field. 

When the laser medium is approximated to a collection of resonant oscillators, the susceptibility 

can be written as 

 

0 2 2

( ) 1
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( )

at
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host a a

P
C

E i

ω
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%
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,                                   (4.11) 

 

where C0 is a constant defined as 
2

e a a

iNe

m ω ε ω

−

∆
 which is related to the resonant behavior of the 

atomic systems. N is the number of electric dipoles, e is the charge of an electron, me is the mass 

of the electron, i=(-1)
1/2 

and ωa is the resonance frequency. The ∆ωa is very small compared to 

the resonant frequency and related to the dephasing time of oscillators. More details about this 

can be found in Ref. [138]. With the resonance approximation, the atomic susceptibility can be 

expressed as 
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1 1
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1 2 ( ) / 1
at

a a

iC iC
i i x

χ ω
ω ω ω
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%                                (4.12) 

 

where 2 a

a

x
ω ω

ω

−
∆ =

∆
. This type of equation is known as the complex Lorentzian lineshape and 

therefore the atomic susceptibility has the form of 
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x
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∆ 
≡ + = − + + ∆ + ∆ 
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where χ’(ω) and χ’’(ω) are the real and imaginary parts of the atomic susceptibility function. We 

will use this complex susceptibility function to understand dispersion and gain in optical fiber 

amplifiers. In Chapter 2, there was a brief discussion about the self-starting and the real part of 

atomic susceptibility was used to explain it. The χ’(ω) is related to the reactive, or phase-shift, or 

dispersive part of the atomic response and the χ’’(ω) is related to the resonant response such as 

the absorption or amplification of the atomic response.  

 4.1.2 Laser power amplification with an erbium doped fiber amplifier 

Since the average power generated from CNFL is in general small (an order of mW), the 

EDFA is used to amplify pulses. The purpose of pulse amplification is to generate a 

supercontinuum spectrum that is a coherent spectrum source possessing more than an octave in 

spectral bandwidth. Then we used the supercontinuum spectrum to detect the CEO frequency. 

The larger pulse amplification is required for the higher repetition frequency mode-locked laser 

to achieve the same pulse energy because total average power is split by the number of pulses. In 

general, more than 1 nJ pulse energy is required to generate enough supercontinuum spectrum 

with a highly nonlinear fiber (HNLF), which is specially designed to generate a supercontinuum 

spectrum from a 1550 nm pulse laser source [100]. The CNFL we used in our experiment has a 

167 MHz repetition frequency. In order to support the 1 nJ pulse, the 170 mW average power is 

demanded at the 167 MHz repetition frequency. Our CNFL has a 1 mW average power; 

therefore we needed at least 22 dB of integrated optical gain from the EDFA. In our experiment, 

we obtained the amplification of 26 dB with the EDFA using the parabolic pulse amplification. 

The optical wave-breaking [101] during the pulse amplification caused by the interplay between 

dispersive effects and nonlinear effects was not observed. 

 4.1.2.1 Laser power amplification in the single pass gain of Er
3+

 doped fiber 

By solving the Maxwell equations with the electric displacement in the laser medium and 

the paraxial approximation of light propagation, we can derive an equation for the light 

propagation. The paraxial approximation is valid for the fiber laser because the beam is tightly 
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confined in fibers and therefore the change in the transverse component of the electric field can 

be ignored. Hence the axial component of the complex electric field has the following form in 

the frequency domain. 

 

[ ]{ } [ ]{ }0 0 0( , ) ( ) exp ( ) ( ) ( ) exp ( ) ,
m m

A z A i z i g zω ω β ω β ω ϕ ω ω α= − + ∆ + × −%               (4.14)                

 

where A0(ω) is the pulse envelope in the frequency domain and ∆βm(ω) is the additional atomic 

dispersion produced by the atomic gain defined as  

 

( ) ( / 2) '( ),
m

β ω β χ ω∆ =                                                   (4.15) 

 

and g(ω) is the atomic gain or loss coefficient defined as 

 

( ) ( / 2) ''( ).
m

g ω β χ ω=                                                    (4.16) 

 

α0 is the loss from the medium and ϕ0(ω) is the initial spectral phase. In those definitions, the 

real and imaginary atomic susceptibility we discussed in the previous section were included. In 

practice, the atomic gain (or loss) function is not a single Lorentzian function (susceptibility 

function), but rather the sum of many Lorentzian functions because the erbium atoms have many 

resonance frequencies induced by the Stark shift [139] and therefore the actually gain and loss 

dynamics is a more complicated process. In addition, the electric field we used here only 

includes the dispersive effect of the medium and does not include the nonlinear effect. The 

nonlinear effect in the laser amplification will be discussed with introducing the nonlinear 

Schrödinger equation (NLSE) in later sections. Even if this is a simple approach for the laser 

power amplification, it explains many interesting phenomena in the laser amplification process. 

 Single pass laser gain formulas 

Fiber amplifiers, for example EDFAs, have a single pass laser gain process. Here the gain 

can be represented using complex notation. The complex gain in the laser gain fiber in the length 

of L is written as 
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Because we measure the intensity (I ~A
2
) in the experiment, the single pass intensity gain is the 

magnitude of the complex gain so that 

 

[ ]
2

0( ) ( ) exp 2 ( ) 2 .
m

G g g L Lω ω ω α≡ = −%                                        (4.18) 

 

Because the material loss α0 is generally much smaller than the optical gain, the equation is even 

more simplified as G(ω)=exp[2gm(ω)L]. By substituting Eq. (4.16),  

 

[ ]( ) exp ''( ) exp ''( )
L

G L
c

ω
ω βχ ω χ ω

 
= =   

.                                    (4.19) 

 

The gain shape is determined by the imaginary part of the susceptibility. Note that practically we 

measure G(ω) rather than χ’’(ω). 

 4.1.2.2 Gain narrowing 

If we assume that the χ’’(ω) has a simple Lorentzian shape, then Eq. (4.19) can be 

expressed as 
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                       (4.20) 

 

where χ0’’ is the midband value which is a constant and ωa is the resonant frequency. We then  

convert G(ω) into power gain in decibels (dB) and we will see that 
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Since the χ’’(ω) is in the exponent of the gain expression (Eq. 4.20), the gain falls off quickly 

from the resonance frequency. If we defined the full width half maximum (FWHM) or the 3 dB 

bandwidth (∆ω3dB) where the G(ω) is a half of maximum value, then the ∆ω3dB is represented as 

 

3

3

( ) 3
dB a

dB a
G

ω ω
ω

∆ = ∆
−

.                                                  (4.22) 

 

Therefore when the maximum peak gain at ωa increases, the gain bandwidth decreases. This is 

known as the gain narrowing. We have explained the gain narrowing with a single Lorentzian 

shape of χ’’(ω) but this is generally true for different gain shapes. Therefore when one designs 

the amplifier with the broad spectral bandwidth, the gain narrowing effect should be considered. 

 4.1.2.3 Atomic phase shift 

The amplifier adds not only the gain but also adds the phase shift induced by the χ’(ω) 

during the pulse propagation. This additional phase shift related to the χ’(ω) is given by the 

following equation when you assume a single Lorentzian form of the atomic susceptibility.  
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 4.1.2.4 Gain saturation 

In order to achieve efficient energy extraction, the pulse should be intense enough to 

saturate the population inversion during the propagation through the gain medium. However, this 

causes the reduction of gain in time. We will discuss the saturation intensity and saturation 

fluence of a pulse. Both are intrinsic properties of a gain medium and do not depend on pump 

intensity.  

 Saturation analysis of a CW laser 

In the amplification process, the available gain is saturated with a large input signal. For 

the CW laser amplification, the saturation intensity can be calculated with the formula defined as 
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,sat

eff

I
ω

στ
≡

h
                                                             (4.24) 

 

where σ is the transition cross section of the atoms representing the capacity to absorb power per 

unit area, τeff is the recovery time, and h  is the Planck constant. The saturation intensity is 

inversely proportional to the cross section and the recovery time. Hence the larger the cross 

section is, the smaller the saturation intensity is, and the longer the recovery time is, the smaller 

saturation intensity is. However, the saturation intensity we define here is valid for the 

amplification of CW laser sources with the given pump power and the temperature. In order to 

have a sense for the saturation intensity of Er
3+

 atoms in fibers, we are, for example, able to 

calculate the saturation intensity at 1550 nm. The cross section of Er
3+

 atoms in fibers has on the 

order of 10
-21

 cm
2
 at 1550 nm [102] and varies with the doping concentration and the 

temperature. The recovery time is on the order of milliseconds (ms). Then the saturation intensity 

(Isat) is about 10
4
-10

5 
W/cm

2
. The corresponding power with a core of the radius of 4 µm optical 

fiber (Area = 5.3 × 10
-7

 cm
2
) is 1 to 10 mW. Due to the strong confinement of pulses in fibers, 

the saturation power is quite small. In general, the available power from an amplifier is 

proportional to the saturation intensity, so that the fundamental limitation of the amplification 

exists for the small core Er
3+

 doped fiber laser amplifier with the given pump power. Therefore, 

for high power CW laser amplification, the large mode area fibers are commonly used. 

 Saturation analysis of a pulsed laser 

Since an ultrashort pulse has very broad spectral bandwidth, it is very difficult to 

analytically calculate the saturation intensity and saturation behavior during the pulse 

amplification. In the case of ultrashort pulse amplification, the frequency dependence of 

saturation intensity also needs to be considered. Especially for the EDFA, the pulse energy 

increases along the long interaction length with fibers, and therefore the dispersive effects and 

nonlinear effects are more complicatedly involved. Practically, when the pulse width concerned 

is long enough and the pulse propagation length in a gain medium is short enough, an 

approximate analysis can be used known as the Frantz-Nodvik analysis that is a homogenous 

saturation analysis [140]. This pulse amplification might be understood using this approximation 

even if the dispersive and nonlinear effects might be large and some situations might be different 
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in the relatively long length of EDF. For the pulse laser amplification, we can define a useful 

quantity known as the saturation energy per unit area, Usat (sometimes called the saturation 

fluence) for an atomic gain medium by 

 

.
sat

U
ω

σ
≡
h

                                                            (4.25) 

 

This quantity is obviously the analog to the saturation intensity described in Eq. (4.24) for the 

pulse input. For instance, the Er
3+

 atom has the saturation intensity of ~100 J/cm
2
. Therefore the 

saturation energy in a core radius of 4 µm EDF is about 50 µJ. For example, when a Gaussian 

pulse possessing the average power of 400 mW, the pulse repetition of 167 MHz, and the pulse 

duration of 7 ps has the pulse energy of 2.4 nJ. Note that the numbers we have shown here are 

practical values used in our EDFA, and therefore the EDFA we discuss in this chapter does not 

work at the saturation regime because the pulse energy we are dealing with is on the order of 1 

nJ. 

The gain saturation also affects the pulse shaping because the pulse leading edge 

saturates the gain medium, the trailing edge is not equivalently absorbed by the gain medium. 

The result is the pulse-shape distortion, which is the shift of the pulse peak to the pulse leading 

edge. In general, the gain in time, G(t) is related by  

 

[ ]( ) exp ( ) / ,out satG t U t U≈ −                                                (4.26) 

 

where Uout is the time varying output pulse energy per unit area. Therefore, when Uout is larger 

than Usat, the gain exponentially decreases with time. 

 4.1.2.5 Slope efficiency 

Previously, we discussed the gain saturation. The saturation fluence is an intrinsic 

quantity of a gain medium which is not changed. Therefore, in order to extract more energy from 

an amplifier one should increase a small signal gain which is explained by the extraction energy 

(Uextr) equation defined as below. 
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where G0 is the small signal gain (or unsaturated gain) and Gf is the final gain. G0 can be 

increased by pumping the gain medium harder. When the applied pump power is high enough, 

the extractable output intensity is linearly proportional to the applied pump power. The 

relationship is called the slope efficiency and therefore the slope efficiency is defined by the ratio 

between the output power and the applied pump power. For example, the parabolic pulse EDFA 

we made has shown the integrated gain of 26 dB (amplified from 1 mW to 430 mW) with the 

pump power of 1.15 W and its slope efficiency of 37 % as shown in Figure 4.1. Its output power 

was limited by the available pump power. The details of the parabolic pulse amplifier will be 

explained in following sections. 
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Figure 4.1 Slope efficiency of a parabolic pulse EDFA which has shown the slope efficiency 

of 37 %. The output power is linearly proportional to the applied pump power when the 

applied pump power is high enough. 

 

 



68 

 

 4.2 Ultrashort pulse Er
3+

 doped fiber amplifiers 

 

 4.2.1 Ultrashort pulse propagation in Er
3+

 doped fiber amplifiers 

When an ultrashort pulse propagates through fibers, nonlinear effects are much more 

critical in the laser amplification because the short pulse source has much higher peak intensity 

than that of a CW laser source. In Chapter 2, we have already discussed the origin of nonlinear 

effects. This is because of the nonlinear refractive index and its intensity-dependence. In this 

section, we will discuss how nonlinear effects affect the pulse propagation and interact with 

dispersive effects in an EDFA. In the earlier section, we only considered the linear effect of 

polarization (χ(1)
), which explained the gain (or loss) of a medium and the gain-induced phase 

shift. However, when a pulse source possessing high peak intensity is considered, the higher 

order susceptibilities play important roles in the pulse propagation. As we discussed before, the 

χ(3)
 is the lowest order nonlinear contribution and creates SPM and XPM during the pulse 

propagation in fibers. Those nonlinear effects generate new frequency components and nonlinear 

phase shift. The contribution of nonlinear effects, dispersive effects, and their interactions can be 

numerically explained by the nonlinear Schrödinger equation (NLSE) which we will explore 

here. 

 4.2.1.1 Nonlinear Schrödinger equation (NLSE) for undoped fibers 

The pulse propagation in fibers can be analytically solved with the NLSE. The NLSE can 

be derived from the Maxwell equation. (See Appendix C) For the simplest case of pulse 

propagations, we can just consider GVD and SPM. This is true if we consider the decent pulse 

energy and spectral bandwidth (see an example in Section 4.2.1.4) in a standard single mode 

optical fiber at 1550 nm, so that high order dispersions and high order nonlinearities can be 

ignored. In this case, the NLSE for a fiber without gain is  
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where A%  is the slowly varying complex pulse envelope, β1=1/vg, β2 is GVD, α is the loss, and γ 

is the effective nonlinearity defined in Chapter 2. Although this equation is used for standard 

optical fibers it can be modified (Eq. 4.34) to include gain and gain dispersion associated with a 

pumped EDF. Since the loss of the standard single mode fiber is only 0.2 dB/km at 1550 nm, the 

loss term can be ignored. Further simplification can be done by considering the reference frame 

moving with the pulse at the group velocity, vg (the so-called retarded frame). By making the 

transformation as  

 

1/ ,
g

T t z v t zβ= − ≡ −                                                    (4.29)   

 

Eq (4.28) becomes even simpler which is then, 
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 4.2.1.2 Split Step Fourier Method 

In order numerically to solve NLSE, we used the split step Fourier method (SSFM). This 

method is well explained in Ref. [132]. Here we briefly introduce its idea behind SSFM. The 

NLSE can be written in the operator form of 

  

ˆ ˆ( ) ,
A

D N A
z

∂
= +

∂

%
%                                                           (4.31)  

 

where D̂  is a dispersion operator that represents for dispersion and absorption (or gain) in a 

linear medium and N̂  is a nonlinear operator that is responsible for the nonlinear effects on the 

pulse propagation in optical fibers. Therefore the dispersion operator and the nonlinearity 

operator are given by 
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Generally, dispersion and nonlinearity are not independent but they are coupled when the pulse 

propagates in fibers. However, we can get an approximate solution by assuming the small 

enough propagation length so that we can apply dispersion operator and nonlinear operator 

independently. So the solution of Eq. (4.31) can be written as  

 

( )ˆ ˆ( , ) exp ( , ),A z h T h D N A z T + = +
 

% %                                       (4.33) 

 

where h is the step size. In order to understand this method, we schematically illustrated the 

SSFM in Figure 4.2. We apply the dispersion operator in the frequency domain and implement 

the nonlinearity operator in the time domain. These steps can numerically be done with the fast 

Fourier transformation. The total propagation length in fibers is split by small step sizes h 

(typical value we use is 0.5 mm) and dispersion and nonlinearity are separately calculated in 

each step. 

z=0=0=0=0

A(z=0,T)

Dispersion only

h

Nonlinearity only

A(z,T)

 

Figure 4.2 The schematic illustration of the SSFM for the numerical simulation with 

MATLAB. The total propagation length is split by small step sizes (h) and the dispersion 

and nonlinearity are separately computed in a small step size. Dispersion is calculated in 

the frequency domain and nonlinearity is computed in the time domain. The typical step 

size we use is 0.5 mm. Reproduced from Ref. [141] 

 4.2.1.3 The role of GVD and SPM during pulse propagation in optical fibers 

We study the role of GVD and SPM and their interaction during the pulse propagation by 

numerically solving the NLSE, Eq (4.30). Remember that this is true for the low pulse energy in 
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a standard single mode fiber. When the pulse energy increases or we use specially designed 

optical fibers, we should consider different types of nonlinearities and higher order dispersions. 

These will be discussed later. 

 Group Velocity Dispersion (GVD) only 

In this case, the effective nonlinearity (γ) is set to zero in Eq. (4.30) and GVD is 

responsible for the pulse broadening in the time domain. Since an ultrashort pulse has broad 

spectral components which propagate through fibers with different velocities, the final pulse 

becomes broad but the pulse spectrum is intact with GVD alone. Figure 4.3 shows the simulated 

result using the SSFM. The initial transform-limited sech
2
 pulse duration of 65 fs (FWHM) 

corresponding to spectral bandwidth of 40 nm (FWHM) is launched into the Corning SMF-28e 

length of 1 m. Due to GVD, the pulse becomes broad and the final pulse has the pulse duration 

of 690 fs at FWHM and achieves the parabolic temporal phase distortion. In addition, the chirp is 

defined by the time derivative of the temporal phase and therefore for example, the parabolic 

phase is linearly chirped.  
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Figure 4.3 A simulation result of pulse broadening in the Corning SMF-28e with GVD 

alone. The initial transform limited sech
2
 pulse duration of 65 fs (FWHM) corresponding to 

spectral bandwidth of 40 nm (FWHM) is launched into the fiber length of 1 m (a) 

Broadened pulse duration due to GVD. (b) Parabolic temporal phase due to negative GVD 

of the Corning SMF-28e. Note that the initial pulse has a constant phase. 
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 Self-Phase Modulation (SPM) only 

As we have seen in Chapter 2, the intensity dependent of the refractive index in optical 

fibers produces the nonlinear phase shift that is responsible for SPM. This leads to spectral 

broadening of optical pulses. In the form of frequency chirp we define in Chapter 2, we can see 

interesting features of SPM-induced nonlinear phase shift. δωNL is negative near the leading edge 

(red shift) and becomes � positive near the trailing edge (blue shift) of the optical pulse. In addition, 

it shows a linear and positive up-chirp over a central portion of the optical pulse. The spectral 

broadening and nonlinear phase shift introduced by SPM is simulated and illustrated in Figure 

4.4 where the effect of GVD was ignored. A transform-limited pulse possessing the peak power 

(P0) of 4.9 kW centered at 1560 nm was launched into the Corning SMF-28e length of 1m 

possessing the effective nonlinearity (γ) of 1.42 W
-1

km
-1

, which corresponds to the nonlinear 

length of 14 cm. The final pulse spectrum was significantly broadened and the nonlinear phase 

shift or positive frequency chirp was produced in the central spectral region. 

1200 1400 1600 1800 2000

0.0

0.5

1.0

1.5

 

 

S
p

e
c

tr
a
l 

In
te

n
s
it

y
 (

a
. 

u
.)

Wavelength (nm)

 Initial pulse spectrum

 Spectrum after SMF-28e of 1 m

1520 1540 1560 1580 1600
-1

0

1

2

 

 

S
p

e
c
tr

a
l 
p

h
a
s

e
 (

a
. 
u

.)

Wavelength (nm)

 Initial spectral phase

 Phase after SMF-28e of 1 m(a) (b)

 

Figure 4.4 (a) A simulation result of spectral broadening due to SPM only. (b) Its spectral 

phase which is positively linear chirped near the central region of the optical pulse. The 

input pulse has the peak power (P0) of 4.9 kW centered at 1560 nm. The Corning SMF-28e 

has the effective nonlinearity (γγγγ    ) of 1.42 W
-1

km
-1

. 

In summary, we took a look at the role of GVD and SPM independently in pulse 

propagation in the Corning SMF-28e by numerically simulating NLSE. GVD was responsible 

for the pulse broadening and SPM was in charge of creating new spectral components and 

frequency up-chirp in the central frequency region. The pulse propagation is more complicated 
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due to the interplay of dispersion and nonlinearity. One of the best examples for the case is a 

soliton pulse. The soliton pulse discussed in Chapter 2 can be formed in the negative dispersion 

fiber (β2 <0). This is because the positive nonlinearity-induced frequency chirp is compensated 

by the negative GVD-induced frequency chirp by the fiber. Therefore the net frequency chirp 

becomes zero so that the pulse can be propagated through the optical fiber without changing its 

temporal and spectral shape. 

 4.2.1.4 Ultrashort pulse propagation in a gain fiber 

In the previous section, we were dealing with the propagation of a low intense pulse in 

the single mode fused silica fiber and investigated the roles of GVD and SPM and briefly 

explained the soliton that is a form of NLSE’s solution originated from the interplay between 

GVD and SPM. Now we will move to more complicated situation where the pulse propagates in 

a gain fiber. In our parabolic pulse EDFA, the dispersive effects are quite large due to the 

relatively long propagation length. At the same time the pulse obtains a substantial gain so that 

pulse energy increases and therefore the nonlinear effects could also become stronger. In some 

cases of the high power pulse amplification, we need to consider possible higher order χ(3)
 

nonlinear effects in optical fibers causing asymmetry to the spectrum such as the stimulated 

Raman scattering (SRS) and the self steepening (SS) [103] into NLSE in order to investigate the 

pulse evolution. Moreover, dispersion and nonlinearity interacts each other in more sophisticate 

manner. 

Practically, there were some difficulties to explain experimental data of pulse evolution 

in EDF with numerical simulations because we were not able to effectively include the exact 

spectral gain shape and bandwidth, gain narrowing effect, signal re-absorption by EDF, the pump 

power depletion, and higher order dispersions. However, the simulation has shown good 

agreements with experimental data in the conditions of the decent pulse power amplification and 

the relatively short length of EDF. 

 NLSE for ultrashort pulse propagation in an Er
3+

 doped fiber 

Higher order nonlinearities were not considered in this simulation and this could be true 

when the pulse possessing decent pulse energy and spectral bandwidth is dealt, which is our case. 

The simulation starts with the NLSE, Eq. (4.30). Since we have a gain, we should take it account 

in the equation. Then, 
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where gm = gm(ω,T) is the gain coefficient. Since the saturation energy is much larger than the 

pulse energy we are considering, the time-dependence of gain coefficient is ignored. Then the 

dispersion and nonlinearity operator becomes 
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In practice, the gain is also dependent on the propagation distance but we practically can make 

the constant gain along the gain fiber by bi-directionally pumping it or use relatively short length 

of fiber. There is a useful tip to determine the length of EDF without pump depletion. We choose 

the fiber length at the given pump power using the green fluorescence which becomes dimmer 

along the fiber when the pump begins to be depleted. 

 Frequency dependent of gain coefficient 

As we discussed in the previous section, the gain profile is proportional to the atomic 

susceptibility. EDF has a broad gain bandwidth and it is not a simple Lorentzian profile rather 

than it can be represented by the sum of Lorentzian functions. In order to find the frequency 

dependence (or wavelength dependent) of EDF, we measured the optical gain at different 

wavelengths. A tunable CW laser (Santec) was used and its tunable wavelength range was from 

1510 nm to 1580 nm which covered most of Er
3+

 gain bandwidth. The measured wavelength-

dependent gain is shown in Figure 4.5. The gain bandwidth was ~55 nm at FWHM and the peak 

gain was obtained at 1560 nm. We normalized the gain profile with the peak gain value. This 

normalized gain profile is a reasonable approximation of the frequency-dependent gain profile. 

Therefore we imported this gain profile into our numerical simulations. 
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Figure 4.5 Wavelength-dependent gain of EDF (Liekki Er110). The gain is measured with a 

tunable CW laser. The gain bandwidth was ~55 nm at FWHM and the maximum gain was 

obtained at around 1560 nm. 

 A simulation of ultrashort pulse propagation in an EDFA 

The following approximations were made before this simulation. 

1) Gain is constant through the propagation distance in EDF and the frequency-dep

endent profile in Figure 4.5 is used in simulation. 

2) The higher order dispersions of EDF are small enough and the pulse spectral ban

dwidth is reasonable narrow to ignore those higher order dispersion effects. 

3) Pulse energy is much lower than gain saturation energy and the possible higher 

order nonlinearities only have a negligible effect. 

SMF-28e

42 cm

Flexcore

51 cm

Liekki

Er110

100 cm

SMF-28e

42 cm

∆∆∆∆λλλλ = 12 nm

Pave = 11 mW

Transform-limited 

Sech2 pulse

Fiber laser oscillator
 

Figure 4.6 The EDFA simulation set-up. The seed pulse (Sech
2
) has the average power 

(Pave) of 11 mW and the spectral bandwidth (∆∆∆∆λλλλ) of 12 nm. 
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A transform-limited sech
2
 pulse possessing the average power of 11 mW and the gain bandwidth 

of 12 nm (FWHM) centered at 1570 nm is launched into Liekki Er110 fiber length of 1 m. The 

repetition frequency is 57 MHz. There are a Corning SMF-28e length of 42 cm and a Corning 

flexcore length of 51 cm before Liekki Er110 and a Corning SMF-28e length of 57 cm after EDF 

for the pulse compression. This simulation was done by solving Eq. (4.34) with SSFM. The 

properties of fibers used in this simulation are summarized in Appendix H. The results are shown 

in Figure 4.7. 
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Figure 4.7 (a) Comparison between experimental spectrum and simulation spectra. One of 

them (Blue) included only GVD and SPM and showed a good agreement in its overall 

spectral bandwidth and particular features in spectrum. The other one considered higher 

order nonlinear effects but the spectrum has not noticeably changed. This was because the 

peak intensity was not high enough to make higher order nonlinear effects significant. (b) 

Comparison between experimental intensity autocorrelation (AC) and the simulated AC. 

They had the same pulse width (FWHM) and had pedestals due to nonlinear effects. 

The integrated gain was 8.34 dB in the experiment at the given pump power and we 

derived the gain coefficient (g) of 1.354 m
-1

 from that. The GVD of Liekki Er110 was calculated 

by cutting-back fiber method and it was +1.107 × 10
-5

 fs
2
/nm. The GVD of Corning SMF-28 is -

2.408 × 10
-5

 fs
2
/nm from the manufacturer and the GVD of Corning flexcore is -4.5 × 10

-6
 fs

2
/nm 

measured by JILA. The effective nonlinearity (γ) of EDF (Liekki Er110) was 3.66 W
-1

km
-1

 and 

the γ of the Corning SMF-28e was 1.43 W
-1

km
-1

. The spectrum and the intensity autocorrelation 

(AC) between the experiment and the simulation have shown good agreements. Total spectral 
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bandwidth and particular features were well matched even though higher order nonlinear effects 

such as stimulated Raman scattering, self-steepening were ignored because of its relatively low 

peak intensity as shown in Figure 4.7. The discrepancies between the experiment and the 

simulation may be caused by higher order dispersions, gain dispersion, and their interplays 

which are not included in the simulation, in addition to them, due to the possible inaccuracy in 

the frequency dependent gain and the gain distribution along the EDF. 

 4.2.2 Parabolic pulse amplification 

We studied an interesting pulse evolution dynamics called the parabolic pulse 

amplification in an EDFA. When a pulse propagates a positive dispersion fiber, the pulse 

experiences the optical wave-breaking due to the interplay between GVD and SPM [101, 104]. 

This phenomenon degrades the pulse by creating the oscillatory structure near pulse edges and 

the sidelobes in the spectrum as shown in Figure 4.8. 

 

Figure 4.8 Optical wave-breaking. The input spectrum was stretched and the sidelobes 

were created due to the interplay between GVD and SPM. Reproduced from Ref. [104]. 

However, there is an interesting pulse evolution when a pulse propagates in the positive 

dispersion fiber with an optical gain, which is known as the parabolic pulse or similariton [105-

108]. In the negative dispersion gain fiber, the pulse is broken to many soliton pulses called the 

soliton fission due to the various effects such as higher order dispersions and nonlinear effects 

[109]. The parabolic pulse is an asymptotic solution of NLSE when the appropriate positive 

GVD, SPM and optical gain exist. In order to obtain parabolic pulse with EDFA in the 

experiment, there are important factors. First, the long enough propagation length for asymptotic 
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behavior and large accumulated positive dispersion are required. Therefore, we used about 10.5 

m of Er
3+

 doped fiber (EDF). Secondly, the control of optical gain and nonlinearity is crucial. In 

our experiment, the choice of EDF and the control of pump power affect those parameters. 

ββββ 2
> 0

ββββ 2
< 0

 

Figure 4.9 A self-similar evolution in normal dispersion amplifier. When dispersion is 

positive, the pulse can propagate in amplifier without breaking its pulse shape but when 

dispersion is negative, the pulse is broken due to the various effects such as higher order 

dispersions and nonlinear effects. Reproduced from Ref. [108]. 

 4.2.2.1 Properties of the parabolic pulse 

The parabolic pulse (or similariton) shows very interesting behaviors in its pulse shape 

and phase. There is a good review article, “Self-similarity in ultrafast nonlinear optics, Nature 

physics (2007)” given by John M. Dudley, Guy Millot and their team.  Here we briefly discuss 

important properties of the parabolic pulse to make a wave-breaking-free high power ultrashort 

pulse for our use. When Eq. (4.34) is considered, in asymptotic case ( ( )),pT T z≤  the parabolic 

pulse has the analytic amplitude form as 
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and its phase has a form of  
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where Tp(z) and A0 are the characteristic parabolic pulse width and amplitude respectively 

defined as 
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The equations came from Ref. [108]. The equations show that the temporal intensity (A
2
) 

and phase are parabolic functions. For our case A0 = 7.3 and Tp(z) = 100 ps at the given 

conditions where Uin ~ 10.0 pJ, γ ~ 4.0 W
-1

km
-1

, β2 ~ 2.0 × 10
-5

 fs
2
/nm, z = 10.5 m, and g = 2.0 

m
-1

. Hence, the actual pulse width (T) after EDF of 10.5 m was ~7 ps. Therefore we are in the 

asymptotic condition. 
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Figure 4.10 A parabolic pulse in the time domain. It has a parabolic pulse shape and a 

linear frequency chirp (or parabolic phase) in the core region. Reproduced from Ref. [108]. 

 4.2.2.2 Experiment  

The parabolic pulse was realized in our experiment. The set-up for the parabolic pulse 

generation is illustrated in Figure 4.11. A fiber ring laser (repetition frequency of 82 MHz) that 

has an average power of 1 mW (pulse energy: 12 pJ) and its spectral bandwidth of 20 nm 

(FWHM) was used as a seed for the parabolic pulse amplification. The pulse was then injected 

into about 10.5 m of Er
3+

 doped fibers (EDF) composed of 4.7 m of Liekki Er30 and 5.8 m of 

Nufern EDFL. An inline dual stage isolator was used to avoid the possible reflection from the 

interface between the fiber laser oscillator and the amplifier. Both EDFs are relatively low doped 

fibers and they have the positive dispersions (β2 >0). For example, the Er30 has the peak 

absorption of a 30 dB/m. The reason for employing the low doped EDFs is to avoid the pump 

power depletion and re-absorption possibly happened by the strong absorption of gain fibers, 

which is not desirable because the pump power should be fairly uniform through the entire 

length of EDF. When we were using the higher doped EDF such as Liekki Er110 possessing 

peak absorption of a 110 dB/m, the pumping power was rapidly depleted along the EDF and 

therefore the signal spectrum was significantly distorted at the end of the amplifier. The bi-

directional pumping was employed to make the fairly constant gain through the entire gain fiber 
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and the control of pump power was critical for pulse shaping. When the pumping power for 

EDFs was the forward pump power of 350 mW and the backward pump power of 800 mW with 

1480 nm diode lasers, a quasi-parabolic pulse was generated at the given length of the EDFs. 

WDMWDMWDMWDM
LD

WDMWDMWDMWDMEDF1 EDF2

PC

ββββ2222 > 0> 0> 0> 0

Pave = 1 mW

∆λ∆λ∆λ∆λFWHM = 20 nm

LD

1480 nm 1480 nm

Fiber Ring laser

ISO

 

Figure 4.11 A parabolic pulse Er
3+

 doped fiber amplifier. WDM: wavelength division 

multiplexer, ISO: optical isolator, PC: inline polarization controller, LD: laser diode. The 

fiber ring laser (repetition frequency of 82 MHz) possessing an average power of 1 mW and 

a spectral bandwidth (FWHM) of 20 nm was used as a seed. Total 10.5 m of low doped 

EDFs were used to obtain enough positive dispersion and to prevent pump power depletion 

along EDFs. Bidirectional pumping of 350 mW to the forward direction and 800 mW to the 

backward direction with 1480 nm diode lasers was applied to the amplifier system [142]. 

Figure 4.12 (a) shows the measured intensity autocorrelation (AC) after the EDFA and 

the AC was fit to a parabola. In the core region, the pulse looks like a parabola but the pulse 

carries exponentially decaying tails at both sides, which is because the second order AC 

( ( ) ( ) ( )AC I t I t dtτ τ
∞

−∞
= −∫ ) of  a parabolic pulse has higher order polynomials. For example, the 

second order AC integral of I(t)=1-x
2
 is 

3 525 5 1
1 ,

4 8 32
y y y− + −  where x=t/T and y=τ/T [110]. 

Furthermore, by looking at the spectrum, we will see more information. Figure 4.12 (b) shows 

the spectrum of the generated pulse in our experiment. The spectrum was asymmetric and this is 

because 1) Re-absorption by the long length of EDFs (EDF we used has a strong absorption 

around 1530 nm, See Figure 2.3), 2) the frequency-dependent gain, and 3) the gain narrowing 

effect. From Eq. (4.22) and integrated gain of 26 dB, the spectrum possibly becomes narrow 

approximately by 36 % of the full spectral gain bandwidth. Even if the EDFA works at the 

unsaturated regime, the re-absorption and the gain distribution could shape the pulse and affect 



82 

 

the parabolic pulse generation by creating tails on the pulse edges. Note also that we were not 

able to measure the amplified pulse right after the EDF because we used a wavelength division 

multiplex (WDM) possessing a SMF-28 for the backward pumping. The structures on top of 

spectrum in Figure 4.12 (b) might originate from GVD effect which modifies the spectrum with 

SPM. 
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Figure 4.12 The quasi-parabolic pulse spectrum generated from the parabolic pulse EDFA 

with EDF length of 10.5 m. (a) The measured autocorrelation. The pulse was substantially 

broadened (~ 7 ps). The significant oscillatory feature was not found at the pulse edges 

caused by the optical wave-breaking. Inset shows the log scale of the experimental AC. (b) 

The spectral bandwidth of ~40 nm at FWHM. The pulse was measured right before pulse 

compression. The spectrum did not show the pedestal structure showing the optical wave-

breaking. The experimental spectrum was fit to the parabola function. The spectrum was 

asymmetric possibly due to 1) Re-absorption by a long length of EDF, and 2) the frequency 

dependent gain, and 3) the gain narrowing effect. 

The generated spectrum did not show the significant side-lobes and the AC showed 

negligible oscillatory features at the pulse edges caused by the optical wave-breaking. 

 4.2.3 Dispersion compensation of ultrashort pulses 

The pulse compensation is an important technique for obtaining a high intensity peak 

pulse. Basically, the material that has an offset GVD sign can be used for the compression. 

Higher order dispersions sometimes need to be considered for the pulse possessing a broad 

spectral bandwidth during the ultrashort pulse compression. In this section, we will discuss two 
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different types of pulse compensation techniques which are the solitonic pulse compression using 

the Corning SMF-28e and the linear pulse compression using a hollow core photonic bandgap 

fiber (HC-PBGF (5-25)). 

 4.2.3.1 Solitonic pulse compression 

The chirped pulse from the EDFA can be compensated using the Corning SMF-28e in 

order to obtain high peak intensity. We have already shown this in the simulation in the section 

4.2.1.4. For the decent pulse energy and peak power, this method works fairly well. However, for 

the high power amplifier, Strong nonlinear effects degrade the ultrashort pulse quality (for 

example, a pedestal in the pulse decreases its pulse peak power) and sometimes the ultrashort 

pulse can be broken. Another interesting feature is the fluctuation in the compressed pulse 

duration and this is because the compressed pulse is not the fundamental soliton any more rather 

than the higher order solitons (Eq. 2.20). The higher order solitons are breathing in the pulse 

duration. This phenomenon is observed during the pulse compensation as shown in Figure 4.13. 
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Figure 4.13 Soliton pulse compression using a Corning SMF-28e. Since the compressed 

pulse is the higher soliton, the pulse duration is oscillating along the fiber. 

 4.2.3.2 Linear pulse compression 

The solitonic pulse compression with the Corning SMF-28e has degradation in the 

ultrashort pulse due to the nonlinear effect from the fiber and therefore it is not desirable for the 

high power pulse compression. The other method is the linear pulse compression which can 

avoid the pulse degradation from the nonlinear effect. The grating pair or prism pair is widely 
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used in a free space application but we, instead, used the HC-PBGF. Since the ultrashort pulse 

propagates through an air in the core of the HC-PBGF, the nonlinear effect is avoided.   

 4.2.3.3 Photonic crystal fiber 

This photonic crystal fiber [111-114] has the two dimensional periodic array of holes and 

its structure creates the Bragg scattering, which allows that only certain wavelengths or energy 

band can be propagated through the fiber. Especially, the PCF has the versatility in  propagating 

wavelengths by changing their geometrical structures, which makes the PCF more attractive for 

applications. 

~1.1

1.0

(a) (b)

 

Figure 4.14 (a) A photonic crystal fiber: The two dimensional periodic array of holes 

creates the Bragg scattering which allows for propagating only certain wavelength regimes 

or energy bands. (b) Hollow core photonic bandgap fiber (HC-PBGF) fabricated by 

University of Bath, UK. It has an air core and its core diameter is a 10 µµµµm. Because a pulse 

propagates in the air core, the nonlinear effect is very small, and therefore the HC-PBGF 

can be used as a linear pulse compressor. The GVD of the HC-PBGF (5-25) is -2.55 × 10
-5

 

fs
2
/nm at 1550 nm. 

 4.2.3.4 Ultrashort pulse dispersion compensation using HC-PBGF  

Due to the substantial amount of positive dispersion from the 10.5 m of EDFs in our 

parabolic pulse EDFA, the pulse after the EDFs was highly chirped and the AC duration of ~7 ps 

was measured. However, the high peak intensity is required to facilitate nonlinear effects for the 

supercontinuum generation and therefore the pulse has to be compressed. For the pulse 

compensation, it is required to have the offset GVD sign of a dispersion compensator such as 

grating pairs, chirped mirrors, prism pairs, or fibers. Since we wanted to make all-fiber amplifier, 
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we have used a fiber compensator. However, unlike other linear dispersion compensators, the 

standard single mode fiber has shown relatively high nonlinearities, so this can cause the 

breaking of a pulse when the pulse peak intensity is high enough. In other words, the 

accumulated nonlinear phase shift is large. This could be avoided when we used the HC-PBGF. 

The HC-PBGF (5-25) made by J. C. Knight group at University of Bath, UK has the GVD of -

2.55 × 10
-5

 fs
2
/nm at 1550 nm which is close to that of the Corning SMF-28e (-2.40 × 10

-5
 

fs
2
/nm) but it has very small nonlinearity because the pulse propagates through an air hole as 

shown in Figure 4.14. The spectrum before and after the HC-PBGF has not changed much and 

the compressed pulse using the HC-PBGF (5-25) of 2.9 m has ~130 fs (FWHM) as shown in 

Figure 4.15. The pulse peak power was 1.8 × 10
4
 W. The compressed pulse did not show the 

periodic oscillation during the pulse compression at different lengths of HC-PBGF (5-25), which 

is found in the nonlinear pulse compression (or solitonic pulse compression) of high order 

solitons. However, note that the compressed pulse has a weak pedestal due to nonlinear effects 

from the Corning SMF-28 of 1.2 m in WDM for the backward pumping. This pedestal could be 

suppressed by decreasing pulse energy, for example, by either decreasing pumping power or by 

reducing the length of SMF-28 in WDM [142]. 
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Figure 4.15 (a) The spectra before and after HC-PBGF (-5.25) length of 2.9 m. Due to the 

very low nonlinearity of HC-PBGF, the spectrum has not changed significantly. The final 

spectral bandwidth (40 nm FWHM) can support about 90 fs (FWHM) transform limited 

pulse. (b) Compressed pulse using a SMF-28 length of 1.2 m and HC-PBGF (5-25) length of 

2.9 m. The pulse duration was ~ 130 fs and had a pedestal due to the nonlinear effects from 

SMF-28 in WDM for the backward pumping. 



86 

 

 4.2.3.5 Third order dispersion in the pulse compression 

Another interesting part in this pulse compression using the HC-PBGF (5-25) was the 

third order dispersion (TOD) or β3. The spectral bandwidth of the parabolic pulse was ~40 nm at 

FWHM corresponding to the transform-limited (TL) pulse width of 90 fs but practically we 

could not achieve the TL pulse. Although we do not demonstrate it quantitatively, we think that 

this is due to relatively high TOD of HC-PBGF (5-25). The TOD can be calculated from D and 

the slope of D (Dslope) (See Appendix D). The equation is written as 

 

4

3 2 2

2
( ),

4
slope

D D
c

λ
β

π λ
= +                                                 (4.39) 

 

The HC-PBGF (5-25) has the quite large dispersion slope [57] compared to that of single mode 

fibers and therefore possibly creates the larger TOD. For example, the HC-PBGF (5-25) made by 

University of Bath and used for our pulse compensation has about two times larger TOD than 

that of the Corning SMF-28e at 1550 nm and its difference is increased when wavelengths is 

away from 1550 nm. 

 NOTE: Changing the seed source from a mode-locked fiber ring laser to a CNFL 

After we demonstrated the parabolic pulse amplification with a mode-locked fiber ring 

laser in Figure 4.11, we changed the seed source from the fiber ring laser to the CNFL (OFS). 

The CNFL has the repetition frequency of 167 MHz, the average power of 1 mW, and the 

spectral bandwidth of 11 nm. Although the spectral bandwidth was the half of the previous fiber 

ring laser, the amplified spectral bandwidth was 40 nm at FWHM. Thereafter the pulse was 

compressed again with HC-PBGF (5-25) and we achieved the pulse width of ~125 fs at FWHM.   

 

 4.3 Supercontinuum generation for a self-referenced CEO frequency 

detection 

 4.3.1 Background for the supercontinuum generation 

Supercontinuum is the coherent spectrum possessing more than an octave bandwidth. The 

origin of the supercontinuum is the strong degenerated four wave mixing, the fission of higher 
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order solitons, and th non-solitonic radiation [31, 115-117]. For Ti:Sapphire laser (center 

wavelength at 800 nm), micro-structured photonic crystal fibers are widely used, and for Er
3+

 

doped fiber laser (center wavelength at 1550 nm), highly nonlinear fibers (HNLF) are employed. 

In our experiment, the supercontinuum was generated with HNLF, a type of Ge-doped silica 

fiber, and its dispersion was modified by exposing the fiber to ultraviolet (UV) [27]. This fiber 

was manufactured by OFS and showed the nonlinear coefficient of 10.2 W
-1

km
-1

, which is ten 

times larger than that of the Corning SMF-28e. Its zero-dispersion-wavelength is near 1550 nm 

as shown in Figure 4.16 and therefore the nonlinear effects are optimized for the pulse centered 

near 1550 nm [100]. In addition, this OFS HNFL allows for the direct splicing to the EDFA with 

relatively low loss which is less than 1.5 dB and the best splicing is 0.2 dB, (See Appendix F) 

which made the process for our supercontinuum generation simple and robust. 
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Figure 4.16 GVDs of three types of OFS HNLFs. Each GVD was calculated from dispersion 

parameters (D) provided from the company (OFS). The calculation has shown that the zero 

dispersion wavelength of the OFS HNLF we used is near 1550 nm. 

 4.3.2 Experiment for the supercontinuum generation using a parabolic pulse 

In our parabolic pulse EDFA, we used HC-PBGF (5-25) for compensating dispersion to 

make an ultrashort pulse. Thereafter we tried to splice fiber from HC-PBGF (5-25) to OFS 

HNFL but the splicing loss is too high (>6 dB) to directly splice between two fibers. So we add a 
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short piece of Corning SMF-28e (~14 cm) as a bridge between HC-PBGF (5-25) and OFS HNLF 

in order to reduce the splicing loss. (The common loss between HC-PBGF (5-25) and Corning 

SMF-28e is 1.5 dB) Therefore the final average power before HNFL was 215 mW and its pulse 

duration was about 125 fs. The calculated peak intensity was 9.6 × 10
4 

W and the corresponding 

pulse energy was ~1.3 nJ. Two inline fiber polarization controllers are used to optimize the 

supercontinuum spectrum for the f to 2f interferometer because the supercontinuum spectrum 

was very sensitive to those polarizations. In addition, the spectral bandwidth of the seed pulse 

was also important factor to obtain the desirable supercontinuum spectrum and this was realized 

by controlling the polarization of the CNFL cavity. The supercontinuum was generated from 1.0 

µm to 2.2 µm with a 40 cm of OFS HNLF as shown in Figure 4.17. Thereafter Corning SMF-

28e was spliced to OFS HNLF in order to compensate the delay between f and 2f components we 

wanted to beat against each other. The 10 cm of Corning SMF-28e was added and the length of 

fiber was determined by calculating the temporal delay between two frequencies in OFS HNLF. 

Finally, an average power of 170 mW was injected to a collinear f to 2f interferometer to detect 

CEO frequency. 
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Figure 4.17 All-fiber supercontinuum generation. The supercontinuum was generated with 

the pulse from EDFA using the CNFL seed pulse. The supercontinuum spectrum was 

stretched from 1.0 µµµµm to 2.2 µµµµm. The OFS HNLF was spliced to the Corning SMF-28e 

using a fusion arc splicer (Ericson FSU995-FA). The Corning SMF-28e was used as a 

bridge fiber to reduce the splicing loss when the HC-PBGF (5- 25) is directly spliced to the 

OFS HNLF. All-fiber structure made the system simple and robust. 
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 4.4 Summary 

 

The ultrashort pulse from the Er
3+

 doped fiber laser oscillator has the small average 

power but the pulse amplification for high peak intensity pulses is demanded to generate the 

supercontinuum spectrum for detecting CEO frequency using the self-referenced f to 2f 

interferometric method. To understand the process of pulse amplification, the susceptibility and 

the related effects were explained and NLSE was introduced for simulating the ultrashort pulse 

propagation in an EDFA. The GVD and SPM were included to NLSE. We used both a solitonic 

EDFA and a parabolic pulse EDFA for the pulse amplification. The integrated power gain of 

parabolic pulse EDFA was 26 dB. The parabolic pulse is an asymptotic solution of NLSE in the 

positive dispersion gain fiber. The ideal parabolic pulse has only linear chirp and it is free from 

the optical wave-breaking. The highly chirped parabolic pulse after EDF was linearly 

compressed with the HC-PBGF (5-25) possessing very small nonlinearity. The compressed pulse 

has the pulse duration of 130 fs at FWHM and the peak power of 1.8 × 10
4
 W. The pulse was 

injected to the OFS HNLF and the octave spanning supercontinuum spectrum was generated 

from 1.0 µm to 2.2 µm. In the following chapter, we will start with discussing the CEO 

frequency detection using the supercontinuum spectrum. 
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Chapter 5 - CNFL Comb Phase-stabilization and Noise Reduction 

In order to phase stabilize a frequency comb, both the repetition frequency and the CEO 

frequency must be detected. The detection of the repetition frequency is simple and it can be 

detected using a fast photodetector from an output of the laser. However, the detection of the 

CEO frequency is cumbersome, and therefore more efforts are required. In our research, the self-

referenced detection for the CEO frequency is implemented. For the purpose, the 

supercontinuum spectrum, a more than octave spanning spectrum stretched from 1.0 µm to 2.2 

µm, was generated for detecting the CEO frequency in Chapter 4. In this chapter, we will discuss 

the detection of the CEO frequency and the design of an f to 2f collinear interferometer in the 

beginning. The low frequency part in supercontinuum spectrum is frequency-doubled using a 

nonlinear crystal. The control of the CEO frequency will be followed for the continuous 

discussion of its stabilization. 

The stability and noise of the CNFL comb is also explored in this chapter. The low noise 

operation is very important for optical frequency metrology, which improves reliability of 

frequency measurements. It is even more critical when the comb is applied to multi-heterodyne 

dual comb spectroscopy [23] and optical frequency synthesis. From the comb equation, νn = n fr 

+ f0, n is the large number that is on the order of 10
6
. Therefore a small change in the fr caused by 

noise can be very large in each mode.  

The quality of a frequency comb can be determined by how faithfully it is synchronized 

to the reference oscillator that can be either a microwave frequency standard or an optical 

frequency standard. For many applications, the linewidth and phase noise of the optical reference 

source have to be faithfully transferred to each comb tooth. Unfortunately, due to the noise in the 

frequency comb, the transfer and synchronization may not be perfect. Hence, the noise affects 

the linewidth and SNR of each comb tooth. The lineshape of comb teeth is an ideally delta 

function because the frequency comb is the interference of a train of infinite pulses but in 

practice the individual comb tooth has finite lienwidth because of all possible noise sources 

producing pulse timing-jitters. The timing-jitter degrades the inference and results in the finite 

linewidth. The other effect of noise is to add background noise, called the white phase noise, to 
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the frequency comb. The white phase noise degrades comb teeth’s visibility when they beat 

against other frequency sources. 

In this chapter, the comparison of the frequency comb produced by a CNFL to the comb 

produced by a figure eight laser (F8L) has been shown in order to explain noise of the CNFL 

comb compared to a previously exiting fiber laser comb. The noise in the laser oscillator mainly 

leads the broad linewidth of an individual comb tooth, and the comb linewidth was indirectly 

measured by looking at the CEO frequency beatnote in the RF domain.  

The possible frequency noise can be suppressed by electronic feedback controls. Since 

the comb has two degrees of freedom (νn = n fr + f0), the entire comb teeth can be stabilized by 

locking the repetition frequency and the CEO frequency. The quality of the comb lock can be 

quantified by measuring power spectral density (PSD) which also provides useful information 

about the existing noise sources in the comb. In order to extend the CNFL comb to the precision 

spectroscopy, we studied further reduction methods at the end of this chapter. The study has 

shown that white amplitude noise, produced from a pump laser diode combined with the laser’s 

sensitivity to that pump fluctuation, is a major source of noise. 

In this chapter, we will discuss three phase-stabilized Er
3+

 doped fiber laser frequency 

combs. We named them as F8L Comb, CNFL Comb 1, and CNFL Comb 2 respectively. The 

information for the three fiber combs are summarized in Table 5.1 and will be discussed through 

this chapter. 

YesNoYesActive temperature control

1 THz3 THz3 THzFixed points for the cavity length

215 THz512 THz150 THzFixed points for the pump power

16 kHz32 kHz5.3 kHzLaser roll-off frequency (ν3dB)
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23-25 dB28-30 dB30-33 dBSNR of CEO frequency
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Table 5.1 The summarized features of the three fiber combs. LD: Laser diode. 
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 5.1 Self referenced f to 2f CEO frequency detection 

 

In Chapter 4, we discussed the supercontinuum generation and the compensation of a 

delay between two colors. Now we change a topic into the detection of the CEO frequency (f0). 

The f to 2f self-referenced method was employed to detect f0. The schematic design of a collinear 

f to 2f interferometer is shown below. 

PD

vn = nnnnfrrrr ++++f0000 v2n = 2n2n2n2nfrrrr ++++f0000
2vn = 2(n= 2(n= 2(n= 2(nfrrrr ++++f0000))))

SHG

f
f0

frrrr
2vn  - v2n

I(
f)

PPLN
2060 nm 1030 nm

PPLN2060 nm 1030 nmFCFCFCFC FCFCFCFCλλλλ/2/2/2/2
f=15 mmf=15 mmf=15 mmf=15 mmf=8 mmf=8 mmf=8 mmf=8 mm f=15 mmf=15 mmf=15 mmf=15 mm f=11 mmf=11 mmf=11 mmf=11 mmΛΛΛΛ

(a)

(b)

 

Figure 5.1 The schematic design of f to 2f interferometer. FC: fiber connector, λλλλ/2: half 

waveplate, f: focal length, ΛΛΛΛ: poling period, and PPLN: periodic poled lithium niobate. (a) 

The supercontinuum spectrum is injected into an f to 2f interferometer. The low frequency 

component (2060 nm) is frequency-doubled by a PPLN and is beaten against the high 

frequency component (1030 nm). The beatnote frequency, 2ννννn - νννν2n = 2(nfr + f0) – 2nfr + f0, is 

the CEO frequency. The beatnote was detected using a fast photodetector (Newfocus 1811-

FC). (b) The half waveplate was used to match the input polarization to the polarization of 

electric dipoles in the PPLN. 
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The f0 is detected by beating the fundamental input (1030 nm) against the frequency-doubled 

output from 2060 nm. Mathematically, 

 

2νn - ν2n = 2(nfr + f0) – 2nfr + f0 = f0.                                                            (5.1)  

 

 5.1.1 Second harmonic generation with a periodically poled lithium niobate 

In order to double a frequency at 2.0 µm, we used a periodic poled lithium niobate 

(LiNbO3) crystal (PPLN) manufactured by Stratophase possessing multiple poling periods (Λ) 

from 29.5 to 32.5 µm increasing by 0.5 µm in a 10 mm long and a 10 mm wide. We used a 

quasi-phase-matching process using this PPLN and took some advantages from that. Generally, 

the fundamental input signal and the second harmonic signal oscillate, and exchange their 

energies through the propagation direction. When there is no phase matching between two 

signals in a crystal, the generated second harmonic photons mainly interfere destructively 

therefore its efficiency is low. However, when the fundamental input signal and the second 

harmonic signal have the constant phase relationship, the conversion efficiency can be 

maximized. In the tradition phase matching, the natural crystal birefringence is used to match the 

phase with the given crystal length so that the condition of n(ω)=n(2ω) is satisfied in the crystal. 

The drawbacks of this method include that the number of available materials and the range of 

wavelengths that can be phase matched in those materials are limited. However, the quasi-phase-

matching uses the combination of the periodicity of poles and the high effective nonlinearity of 

the crystal in a certain polarization. Instead of using the birefringence of crystals, the PPLN has 

periodically poled electric dipoles that change the direction of the diploes by 180
o
 in each poling 

period (Λ) so that it flips the sign of electric dipoles when the slope of conversion efficiency 

becomes negative. This process is called the quasi-phase-matching because the perfect phase-

matching is not required. 

 5.1.2 Focusing of a Gaussian beam 

The beam from a fiber diverges when it comes out of the fiber, so it should be collimated 

and be focused to the crystal to generate the SHG. Since the fundamental mode (LP01) in a single 
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mode fiber is close to a Gaussian shape, we used the Gaussian beam approximation for the beam 

focusing. The equation we can use is that  

 

2

0( ) 1 ,
R

z
w z w

z

 
= +  

 
                                                       (5.2) 

 

where w0 is the beam-waist at the origin and zR is the Rayleigh range defined as 
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Eq. (5.2) explains the beam-waist expanded along the propagation direction and we can 

use this equation for focusing the beam. Since we knew the focal length of a lens and the initial 

beam-waist after the collimation, ~2 mm, we could calculate w0 at the focal point. The chromatic 

aberration due to the broad spectral bandwidth was not considered but the equation gave a good 

approximation. In order to maximize the nonlinear interaction between the PPLN and the pulse, 

we changed the focal length and the beam-waist, and therefore we increased the effective 

nonlinear interaction length which is the Rayleigh range defined as Eq. (5.3). This means that 

when we focus the beam very tightly, we can increase the pulse intensity facilitating nonlinear 

effects but we loose the nonlinear interaction length through the crystal visa versa. So we 

compromised between the pulse intensity and the effective interaction length to maximize the 

efficiency of the nonlinear effect in the PPLN. The diameter of a lens can be chosen based on the 

π criterion (D =πw) for transmitting ~99 % power and reducing diffraction. 
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Figure 5.2 Gaussian beam focusing. D: Diameter of lens, f: focal length, w0: beam-waist at 

the focal point. The collimated beam is focused and the beam-waist is minimized at the 

focal point which is the center of the PPNL crystal. The diameter of the lens can be chosen 

based on ππππ    criterion (D = ππππw) for transmitting ~99 % power and reducing diffraction. 

The focal length of the lens we chose was 15 mm. This gave the beam-waist of 4.9 µm and the 

effective interaction length of 37 µm at λ = 2060 nm we wanted to generate the second harmonic 

output. 

 5.1.3 Second harmonic generation efficiency of the interferometer 

The power transmission efficiency for a CW laser was more than 60 % when the 

diverging beam was collimated and re-coupled into a single mode fiber. We inserted the focusing 

lenses, a half waveplate, and a PPLN in between a pair of collimating lenses to generate the 

second harmonic output with 2060 nm light from supercontinuum spectrum. The half waveplate 

was used to match the input polarization to the polarization of electric diploes in the PPLN. The 

SHG efficiency of the interferometer was about 10 % which includes the SHG conversion 

efficiency of the PPLN and the beam coupling efficiency with a single mode fiber after the SHG. 
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Figure 5.3 The SHG efficiency of our compact collinear f to 2f interferometer at 2060 nm. 

The power at 2060 nm was -21 dBm/nm in the supercontinuum spectrum before a f to 2f 

interferometer and the generated second harmonic signal had the power of -30 dBm/nm. 

The efficiency of the SHG in the interferometer was about 10 % which included the SHG 

conversion efficiency of the PPLN and the beam coupling efficiency with a single mode 

fiber after the SHG. 

 5.1.3.1 Poling period and temperature tuning 

Practically, we choose the SHG frequency to maximize the beatnote frequency which is 

the CEO frequency. In that purpose, the SHG frequency can be tuned by changing the poling 

period or the temperature of the PPLN crystal. We use the program, SNLO, to determine those 

parameters. Generally, the PPNL works at the temperature range from 100
o
C to 200

o
C in order 

to prevent the PPLN from the damage caused by the photorefractive effect. For the parabolic 

pulse amplifier output, we used the poling period of 32.0 µm and the crystal temperature of 

110
o
C. At the condition, the SHG at 1030 nm was maximized. 

 5.1.4 Detection of the CEO frequency 

The optical beatnote is filtered using an optical interference filter and is detected in a fast 

photodetector. The detected f0 is shown in Figure 5.4. Due to the sampling of an electronic 
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spectrum analyzer (Nyquist frequency at ~83.5 MHz), two RF beatnotes appear, one is at f0 and 

the other is at fr – f0 on the electronic spectrum analyzer. The signal to noise ratio (SNR) is about 

30 dB and the peak power was about -28 dBm with the resolution bandwidth (RBW) of 300 kHz. 
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Figure 5.4  The RF beatnote (f0) of the CNFL Comb 1. The Nyquist frequency at ~83.5 

MHz. Due to the sampling of an electric spectrum analyzer (ESA), the two RF beatnotes 

appear, one is at f0 and the other is at fr – f0 on the ESA. 

 5.1.4.1 Noise in the supercontinuum generation and the SNR of CEO frequency 

During the supercontinuum generation process, white noise can be produced from shot 

noise and possibly Raman scattering [118]. The amount of noise is exponentially increased when 

the average power of an input pulse increases and therefore the shorter pulse is desirable in order 

to achieve a low noise supercontinuum generation because the shorter pulse can support high 

peak intensity at the less average power. Therefore the higher repetition frequency comb might 

have more white noise because more average power is required to produce the same peak 

intensity when other parameters are same. This supercontinuum noise increases background 

noise level and reduces possible SNR. Figure 5.5 shows that detected f0s. For both cases, the 

generated supercontinuum is broad enough to detect f0 but the input powers, the repetition 

frequencies, and the input pulse durations were different and they are summarized in Table 5.1. 

The CNFL Comb 1 has higher average power than that of the F8L Comb. Even if the peak RF 
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power of the CNFL Comb 1’s f0 was higher, the optical noise floor of the CNFL Comb 1 is 

higher than that of the F8L Comb by 10 dB. Interestingly enough, the linewidth of the CNFL 

Comb 1’s f0 is wider than that of the F8L Comb. We will discuss this in next sections. 

125 fs80 fsInput pulse duration

167 MHz57 MHzRepetition frequency

215 mW100 mWInput pulse power

CNFL Comb 1F8L Comb

125 fs80 fsInput pulse duration

167 MHz57 MHzRepetition frequency

215 mW100 mWInput pulse power

CNFL Comb 1F8L Comb

 

Table 5.2 Input pulse parameters for the two different pulsed lasers to generate 

supercontinuum spectra. 
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Figure 5.5 Detected CEO frequencies (f0). The background noise level of the CNFL Comb 

1’s f0 is higher than that of the F8L Comb’s f0 by 10 dB due to more supercontinuum noise. 

 

 5.2 Noise in the fiber comb 

 

A variety of noise sources exist in the comb and affect the comb performance. To operate 

the comb in the low noise condition, the noise sources should be well understood and suppressed. 
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In Figure 5.6, the possible noise sources are shown. These noise sources are generally 

categorized into two groups [34, 119]. One group is the intra-cavity noise sources which impact 

the mode-locked laser oscillator itself. The other group is the extra-cavity noise sources which 

perturb the comb after the pulse is generated from the oscillator. The intra-cavity noise sources 

contain environmental perturbations such as fiber length fluctuation, pump induced relative 

intensity noise (RIN), intra-cavity amplified spontaneous emission (ASE), and cavity loss. The 

extra-cavity noise sources include environmental perturbation such as path length fluctuation, 

ASE from fiber amplifier, shot noise, and supercontinuum noise. These noise sources are fairly 

well understood and have different effects on the comb. 

 

Figure 5.6 Schematic diagram of the fiber based optical frequency comb, which consists of 

fiber laser oscillator, EDFA, HNLF for supercontinuum generation, detection set-up of the 

repetition frequency and CEO frequency, and electronic feedback controls for locking the 

comb. The possible noise sources are shown in the diagram. Intra-cavity noise sources 

acting on the laser oscillator include environmental perturbations (temperature and 

mechanical vibrations), pump fluctuations, intra-cavity ASE and loss. Extra-cavity noise 

sources acting after the laser contain environmental perturbations, ASE from an EDFA, 

shot noise, and phase noise during the supercontinuum generation. Reproduced from Ref. 

[34]. 

The different noise sources have different impacts on the comb. The environmental noise 

sources such as mechanical and acoustic vibration and temperature fluctuation dominate the low 

Fourier frequency noise below 500 Hz. The pump fluctuations such as RIN are dominant in 

intermediate Fourier frequency which is the range from 0.5 kHz to 50 kHz. The quantum noise 
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sources such as ASE from 50 kHz to 500 kHz, shot noise and supercontinuum noise are 

responsible for the noise at even higher frequencies [34]. 

 

 5.3 Amplitude modulation and response of the CNFL frequency comb 

 

 5.3.1 Measurement of Er
3+

 doped fiber comb frequency response 

The Er
3+

 doped fiber comb has a characteristic laser frequency response for varying 

pump power due to the response of the gain medium [87]. The response has a roll-off frequency 

which acts like a low pass filter. The roll-off frequency is different for the different Er
3+

 doped 

fiber combs but typically has the value of 5 kHz to 15 kHz [87]. Therefore the contribution of 

high Fourier frequencies can be naturally suppressed in the Er
3+

 doped fiber laser comb. The roll-

off frequency can be measured by an amplitude modulation (AM) of pump power of a laser 

diode as shown in Figure 5.7. 
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Figure 5.7 Set-up for an amplitude modulation (AM) of the pump power of a LD. WDM: 

wavelength division multiplexer, PD: fast photodetector, LD: Laser diode. Fast Fourier 

transform (FFT) spectrum analyzer generates a periodically chirped sinusoidal wave (1 Hz 

~ 51.2 kHz) which is split into two ports. One works as a reference signal. The other goes to 

ILX box and modulates the current of the LD. The change in the magnitude and frequency 

of the sinusoidal wave modulates the power of the LD. The frequency response of an Er
3+

 

doped fiber laser comb has a roll-off for the periodically varying input signal. 
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The fast Fourier transform (FFT) spectrum analyzer generates a periodically chirped 

sinusoidal wave from 1 Hz to 51.2 kHz. The sinusoidal wave is split into two parts. One is used 

as a reference for the frequency response measurement. The other goes into the laser current 

modulator in order to modulate the pump power with a periodically chirped manner. The 

comparison of two signals shows a roll-off frequency response as shown in Figure 5.8. The roll-

off frequency (ν3dB) of the Er
3+

 doped fiber comb has shown a close relationship with the 

relaxation time of the Er
3+ 

gain medium [87] whose relaxation time is on the order of millisecond 

(ms). 
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Figure 5.8 The roll-off frequencies (νννν3dB) of two fiber combs; F8L Comb (red) and CNFL 

Comb 1 (blue). The CNFL Comb 1 shows the higher νννν3dB. The F8L Comb was rolled off at 

5.3 kHz but the CNFL Comb 1 was rolled off at 32 kHz. The higher roll-off frequency 

implies possibly more pump noise contribution to the comb dynamics. Reproduced from 

Ref. [68] 

The frequency responses of two Er
3+

 doped fiber laser combs were measured. The F8L 

Comb has ν3dB at 5.3 kHz and the CNFL Comb 1 shows v3dB at 32.0 kHz. It is not clearly known 

what determines the difference in ν3dB. However, the higher roll-off frequency implies that the 

laser is more susceptible to high frequency noise sources such as particularly the pump RIN laid 

on 0.5 kHz to 50 kHz. 
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 5.3.2 CEO frequency linewidth of the CNFL comb 

In the section 5.2, we explained that the linewidth of a comb is governed by intra-cavity 

noise sources. Particularly, the noise of a pump source laid on 0.5 kHz to 50 kHz is responsible 

for the relatively broad linewidth of fiber laser combs [34, 120, 121]. Since we do not have a 

very stable and narrow linewidth laser source, both f0 linewidths (a relative linewidth of two 

comb teeth) were measured when the combs were free-run in order to check the contribution of 

the pump RIN. The CNFL Comb 1 has the wider f0 linewidth as shown in Figure 5.9. The 

measured f0 linewidth of the CNFL Comb 1 was 650 kHz at FWHM and that of  the F8L comb 

was 200 kHz at full width half maximum (FWHM) with the Lorentzian fit respectively.    
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Figure 5.9 The free-running f0 linewidths of two different combs; F8L comb in red and 

CNFL Comb 1 in blue. The wider f0 linewidth was corresponding to the higher νννν3dB, and 

therefore the f0 of the CNFL Comb 1 has wider f0 linewidth and larger accumulatd phase 

noise. 

The relatively large ν3dB led to broad f0 linewidth as we predicted. The high Fourier 

frequency noise components appeared with the wings of measured f0 in the RF domain and 

therefore it was possible to achieve significant reduction in f0 linewidth when the high Fourier 

frequency noise such as pump RIN was suppressed in Ref. [120, 121]. The similar result was 

obtained in our experiment and the reduction of noise in the CNFL Comb 1 will be discussed in 

the following sections. 
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 5.4 Elastic tape model and the fixed point 

 

In the time domain, the noise is understood as sources of the pulse timing-jitter. On the 

other hand, it can be explained as the motion of the comb teeth in the frequency domain. The 

later gives more useful and intuitive picture about the noise sources because the measured 

Fourier frequency response provides an insight for possible noise sources. The comb teeth are 

defined by a simple algebraic equation, 

 

  νn = n fr + f0,                                                                                           (5.4)  

 

Therefore the comb dynamics is governed by only two degrees of freedom which are the 

repetition frequency (fr) and CEO offset frequency (f0). Two parameters have different effects on 

the comb motion. The fluctuation on fr induces a breathing-like motion about a single fixed point 

(we will discuss in this section), and the perturbation on f0 gives rise to a translational motion so 

that the whole comb teeth are shifted by the change of f0. In general, the comb dynamics will be 

a coupled motion of both degrees of freedom but the comb motion in practice can be a linear 

combination of the motions of fr and f0. 

One can think that the motion of frequency comb might be random but interestingly 

enough the motion of comb teeth has a pattern [49, 122] where the comb teeth are breathing like 

an accordion about a single fixed point. The fixed point will be different depending on noise 

sources and characterizes the specific noise on the comb. 

 5.4.1 Mathematical description of the fixed point 

The fixed point can be mathematically defined. First, we can consider a perturbation, δX, 

to a parameter (X) related to the fiber laser comb. The X can be a pump power or a cavity length 

but can be all possibly changeable parameters in the fiber laser comb such as cavity loss or 

dispersion. This perturbation will change the CEO frequency (f0) and the repetition frequency by 

an amount of 
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respectively and then small change in the n
th 

comb mode frequency, δνn, will be δνn = nδfr + δf0  

from Eq. (5.4). This change in the comb mode vanishes when  

 

0

X

fix= .
r

df
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= −n n                                                                (5.6) 

 

Therefore the fixed point frequency (or just fixed point) is  

 

X

fix 0 ,X

fix rf fν ≡ +n                                                            (5.7) 

 

where the theoretical value of f0 is defined as 
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                                                            (5.8) 

 

where νc is the carrier frequency, vg is the average group velocity and the vp is the average phase 

velocity of the cavity. For fiber lasers, this has the value of f0 ~1-3 THz that is not experimentally 

achievable. Practically we measured a harmonic frequency of theoretically achievable CEO 

frequency in the RF domain.  

Even if we can find fixed points of all possible noise sources, we will consider two 

parameters that are implemented in our frequency comb control. One parameter is the pump 

power. The fixed point for the pump power can be derived from Eq. (5.6) and Eq. (5.7) by 

replacing X with the pump power. The other parameter is the cavity length. The fixed point for 

the cavity length change can also be measured with the same manner. For the different 
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perturbation parameters, the fixed points are different and bring about different amounts of 

breathing of the comb modes. The fixed point is not necessarily to be within the comb spectrum 

but it can be out of the comb spectrum. For example, the CNFL Comb 1 made has fixed points 

for the pump power change at pump

fixν = 512 THz and for the cavity length change at length

fixν =3 THz 

respectively. The CNFL Comb 2 which has a variable repetition frequency comb made for multi-

heterodyne dual combs spectroscopy (See Chapter 7) has shown that pump

fixν = 215 THz and 

length

fixν = 1 THz respectively. In our combs, the two control parameters are independent or 

orthogonal because the fixed points for the pump power and the cavity length are well separated.  

The CEO frequency has shown a higher sensitivity to the pump fluctuation rather than the 

cavity length fluctuation. In fact, this is the reason we can use the changes in the pump power to 

control the CEO frequency. The magnitude of the breathing motion of each comb tooth varies 

with respect to the fixed point for the pump power. When the comb teeth are far from the fixed 

point, the magnitude of breathing becomes larger as shown in Figure 5.10. The magnitude can be 

typically quantified by power spectral density (PSD, See appendix E). Simply saying, the PSD 

shows the magnitude of spurious signals caused by noise in the Fourier frequency domain. 

 

Figure 5.10 (a) Breathing modes of the frequency comb about the fixed point induced by 

pump power fluctuations; the length of the double arrow indicates the magnitude of the 

frequency jitter. (b) Frequency noise level (solid line, left axis), and the linewidth (dashed 

line, right axis), versus optical frequency. The assuming fixed point is at 200 THz. 

Reproduced from Ref. [120]. 
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In general, the magnitude of breathing motion for the n
th

 mode of fiber combs is related 

to the equation written with the language of the PSD [120]. 

 

2 2
2

2

3

d Hz
( ) ( ) ,

d 1 ( / ) Hz

pr
n fix

dB

RINP f
S n n

P
ν

ν ν

    
= −     

+    
                                   (5.9) 

 

where P is the pump power, RINp is the relative intensity noise of a pump laser, and v3dB is the 

laser roll-off frequency we discussed in the earlier section. Note that the magnitude of the PSD, 

Sn(ν), increases with the second order polynomial from the fixed point and it is illustrated in 

Figure 5.10 (b). The Sn(ν) is also proportional to the RINp and the low ν3dB shows less noise. 

Furthermore, the noise would be low when the change in the repetition frequency is less sensitive 

to the pump power fluctuation. Therefore we can find solutions to reduce the noise in the comb 

mode by analyzing Eq. (5.9). First, the noise can be reduced by suppressing the RINp. The other 

method is to increase the feedback bandwidth for the pump power well beyond ν3dB. These two 

approaches will be discussed in Section 5.7 before we will show the results. Here, we will first 

talk about how to measure the fixed points in the experiment. 

 5.4.2 Fixed point measurement 

The experimental set-ups for the fixed point measurements are described in Figure 5.11. 

The fixed point is measured by modulating the control device such as a pump laser and a PZT 

(piezo-electric transducer) with the known modulation frequency (fmod) and the magnitude using 

a signal generator (DS345: Stanford Research Systems). We used a square waveform with the 

fmod of 0.5 or 1 Hz and applied the different amplitude of a modulating signal depending on the 

sensitivity of control devices as shown in Figure 5.6. For instance, the ILX laser diode current 

controller has the output current to the input voltage of 100 mA/V and the PZT voltage driver 

(Thorlab) has the output voltage to the input voltage of 15V/V. Both fr and f0 are then 

periodically modulated with the square wave and those signals can be counted using a frequency 

counter (Agilent 53132A). Thereafter the dfr/dX and df0/dX (X: pump power or cavity length) 

can be found and the fixed points are computed using Eq. (5.6) and (5.7). The variation in f0 was 

much sensitive to the change of the pump power and it had an order of MHz unlike fr whose 

change was on the order of Hz. The change of a few mW in the pump power was enough to see 
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the huge drift and modulation on f0. This is because the change in the n
th

 mode in optical 

frequencies is multiplied by an order of ~10
6
. The Lucent 980 nm (Maximum power of 180 mW) 

laser diode for the CNFL Comb 1 has the ratio of the applied current to the output power, 

0.546 mW/mA and the FITEL 980 nm (Maximum power of 300 mW) laser diode for the CNFL 

Comb 2 has the ratio of 0.588 mW/mA respectively. 
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Figure 5.11 (a) Experimental set-up for the fixed point measurement for changes in the 

pump power and cavity length. A square wave (fmod=0.5 Hz) is used to modulate both 

control devices and the amplitude is adjusted depending on the sensitivity of control 

devices. (b) The counted signals for the pump power modulation. The fixed point can be 

calculated from the modulated signals. 
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 5.5 Feedback electronics and servo controls 

 

Once both fr and f0 are detected, the frequency comb can be stabilized using electronic 

feedback controls (PI controls). The feedback loops are illustrated in Figure 5.12.  
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Figure 5.12 Phase-locking electronics for both fr and f0. The repetition frequency is 

detected using a fast photodetector from the oscillator output. The control of fr was done by 

controlling the fiber length using a PZT fiber stretch (General photonics) in the cavity. The 

f0 was detected using a self-referenced f to 2f interferometer. The stabilization of f0 was 

obtained using the pump power control of the laser oscillator.  

The detection of fr is fairly simply and a fast photo-detector is used to detect the fr signal 

from an output of the laser oscillator and the control of fr was achieved by controlling the cavity 

length using a PZT fiber stretcher in the cavity. Changes in the cavity length (or fiber length) are 

a quite slow process mostly dominated by temperature. The fused silica fiber has an effective 

coefficient of thermal expansion of ~10
-5

/
o
K. Therefore, a good thermal isolation of the laser 

cavity and the cavity length control with a mechanical feedback provide a tight lock. The CNFL 

Comb 1 in a Styrofoam box has shown the temperature change of 0.3 
o
K for an overnight 

monitoring which corresponded to the change in the fiber length of 1.7 µm and therefore the 

dynamic range of our PZT fiber stretcher (General Photonics), at 3 µm, was enough to control 

the variation. On the other hand, the detection of f0 is not straight forward like the detection of fr. 

The f to 2f self-referenced interferometer is generally used to detect f0 and we discussed it earlier 

in Chapter 4. The lock of f0 was obtained by controlling the pump power for the laser oscillator. 
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The feedback loop for the lock is illustrated in Figure 5.13. All RF frequency devices were 

disciplined by a GPS
*
-steered Rb clock (Precision test systems, model: GPS10Rb) which 

guaranteed the short and long term stabilities in our frequency measurement. 

* Note: The GPS shows the fractional instability of 7 × 10
-13

 at 1000 s averaging time.  However, 

the stabilization becomes much more difficult as the accuracy increases. Therefore the short term 

instability must be improved. 

 5.5.1 CEO frequency lock electronics 

The f0 locking electronics is composed of a phase detector and a servo box (LB1005) 

with reference oscillators. The servo box includes a gain filter and an integrator and therefore the 

control voltage is generated from the servo box. This control voltage is fed into the laser 

oscillator and changes the CEO frequency. The CEO frequency is mixed with a 1 GHz local 

oscillator and divided down with a frequency divider. After the frequency divider, the mixed f0 

signal changes into a digital signal. The digitized signal is compared to fref which is the frequency 

we stabilize the CEO frequency to. We will discuss this feedback loop in detail in following 

sections. 
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Figure 5.13 The Scheme of f0 locking electronics. The phase detector compares the 

frequency (or phase), fcomp which is (fLO+ f0)/ndiv with the reference frequency (fref). The 

difference in frequency or phase is converted into voltage signal and it goes into a servo box 

(LB1005). The servo-box consists of a filter and an integrator and produces the control 

voltage for the ILX laser diode controller. The change in the control voltage shifts the CEO 

frequency. 
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 5.5.1.1 Phase detector response (Kp) 

A phase detector converts the difference between a reference frequency (or phase) and a 

CEO frequency into a voltage signal whose magnitude is proportional to their difference. The 

response of the phase detector can be measured by using two frequency generators. By changing 

the relative phase between two inputs into the phase detector, the voltage output can be measured 

as shown in Figure 5.14. The phase detector has shown the response of phase to voltage (Kp) of 

0.596 V/rad. The measurement of the response is required to calculate the integrated phase noise 

of the f0 lock. 
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Figure 5.14 Phase detector response (Kp). In order to measure Kp, two inputs possessing a 

relative phase difference are fed into the phase detector. The difference in the phase of two 

inputs is converted into a voltage signal, which shows a linear relationship. 

 5.5.1.2 Servo box transfer function (KF) 

The servo box is the critical part for the feedback control. We used a commercially 

available servo box (LB1005: Precision photonics). Its transfer function is shown in Figure 5.15 

(a). 
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Figure 5.15 (a) Servo box (LB1005: Precision photonics) transfer function from the 

operation manual. (b) The experimentally measured transfer function of the servo box for 

the different P-I corner values when LF gain (g) = 60 dB and Gain (K) = 4 (-10 dB). 

The available bandwidth of this box is a 10 MHz. The frequency range of integral gain 

and proportional gain can be chosen by changing P-I corner (fPI) knob. The available 

proportional gain can be tuned by a Gain (K) knob. It linearly increases the gain from 2-8 

corresponding to -30 dB to 30 dB by 10 dB. The low frequency gain below the fPI is adjusted by 

changing a LF gain (g) knob. The measured transfer function is described in Figure 5.15 (b) 

which has shown a good agreement with the value given in the specification of LB1005. The 
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measurement of the transfer function of LB1005 was performed to check the change in the 

transfer function before and after the modification of the P-I corner. The modification of the P-I 

corner is required when the laser response is included in our feedback system. A phase-lead 

compensation circuit can externally change the servo transfer function. This will be dealt in 

Section 5.7. 

 5.5.1.3 Laser oscillator response and frequency divider 

The response of the laser oscillator was actually measured when we discussed the fixed 

point measurement. The characteristic response was measured by df0/dP. The control voltage 

from the servo box changes the current fed into the laser diode and then the current changes 

output power of the laser diode. Consequently, the f0 is changed by the output power. For the 

CNFL Comb 1, df0/dP was 4.7 × 10
7
 Hz/mW and for the CNFL Comb 2, df0/dP was 2.18 × 10

6
 

Hz/mW.  

Before the f0 is compared to a reference oscillator (fref), the f0 is mixed with a 1 GHz from 

a local oscillator and a frequency divider is used for the frequency down-conversion. This trick 

reduces phase noise of the mixed signal by a factor of ndiv (the ratio of the frequency divider). 

Therefore, this should be considered when one calculates the integrated phase noise of the f0 lock. 

Remember the phase noise is divided down by a factor of ndiv. 

 

 5.6 Phase noise of the CNFL comb lock 

 

The CNFL Comb 1 was phase-locked using two feedback controls. As we mentioned 

earlier, we used a pump power control for the f0 stabilization and a cavity length control for the fr 

stabilization respectively. Figure 5.16 shows the PSDs of both f0 lock and fr lock when the CNFL 

Comb 1 was fully stabilized. The PSD was recorded from error signals of both servo boxes. The 

fr lock was much tighter than the f0 lock. The integrated phase noise for the fr lock was less than 

0.03 radians. The spikes in the fr PSD were the harmonics of a 60 Hz. The integrated phase noise 

for the f0 lock was ~0.32 radians in the Fourier frequency range from 100 Hz to 102 kHz. Even 

though the lower phase noise was well suppressed through the feedback control, the noise on the 

range from 1 kHz to the roll-off frequency remains. The roll-off frequency in the PSD was 
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corresponding to the characteristic laser response frequency of the Er
3+

 doped fiber laser comb. 

Therefore the feedback bandwidth using the pump power control is limited by the laser response. 

However, the feedback bandwidth can be artificially extended using a phase-lead compensation 

circuit which will discuss in Section 5.7. 
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Figure 5.16 The power spectral density (PSD) of the phase-locked fr and f0 of the CNFL 

Comb 1. The integrated phase noises of each lock were calculated. The integrated phase 

noise of the f0 error signal was 0.32 radians and that of the fr error signal was 0.03 radians 

in the Fourier frequency range from 100 Hz to 102 kHz. Reproduced from Ref. [68]. 

 

 5.7 Stability of the CNFL comb 

 

 5.7.1 Allan deviation 

How can we quantify changes of a frequency with time in order to measure the stability 

of the frequency source? First we can think the standard deviation (SD) but the SD cannot 

explain these changes correctly because it always gives deviation information from a mean value. 

Therefore one must use a difference stability measurer known as the Allan Deviation (AD) [129]. 

The equations for both the SD and the AD are shown below, 
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The SD shows the frequency change from the mean value but the AD represents point to point 

fluctuation of the frequency source. For calculating the stability of a frequency comb, we used 

the AD in this thesis. 

 5.7.2 Fractional stability of the frequency combs 

The stabilities of two different frequency combs, F8L Comb and CNFL Comb 1, were 

calculated using the AD. Both combs have shown instabilities below the reference (a Rb clock 

disciplined by GPS) limit, which is possible if we extend the fr stability in the RF domain to the fr 

stability in the optical frequency domain. However, it may not be true because the motion of the 

comb teeth is more complicatedly related to noise in the optical frequency regime. The finer 

measurement can be performed by beating the comb against an external optical frequency source, 

which will be discussed in Chapter 6. 
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Figure 5.17 Comb fractional instabilities. Both combs have shown the instabilities less than 

the reference limit. 
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 5.8 Further noise reduction methods 

 

The CNFL Comb 2 was built with a variable repetition (±500 kHz) frequency for multi-

heterodyne dual comb spectroscopy [23]. Ultimately, we want to perform the multi-heterodyne 

spectroscopy using the two low noise CNFL Combs (The CNFL Comb 1 has the fixed repetition 

frequency). In order to reduce noise of the CNFL Comb 2, we applied two methods. The scheme 

for the experiment is described in Figure 5.18. One is the phase-lead compensation. The other 

method is the reduction of pump RIN by operating a laser diode at high power and then we 

implemented an attenuator to maintain the same power in the laser cavity. The narrow linewidths 

are critical for multi-heterodyne dual comb spectroscopy. (See Chapter 7) 

980 nm
LD

Attenuator

EDFA f-2f

Feedback 
electronics 

HNFL
PD

PZTCNT 
connector

EDF

10%

WDM, ISO

FC

PLC

980 nm
LD

Attenuator

EDFA f-2f

Feedback 
electronics 

HNFL
PD

PZTCNT 
connector

EDF

10%

WDM, ISO

FC

PLC

 

Figure 5.18 Experimental set-up for reducing noise of the CNFL Comb 2. The attenuator 

and phase-lead compensation (PLC) circuits are equipped. CNT: Carbon nanotube, PZT: 

piezo-electric transducer, FC: Fiber collimator, EDF: Er
3+

 doped fiber, WDM: Wavelength 

division multiplexer, ISO: Isolator, EDFA: Er
3+

 doped fiber amplifier, HNFL: Highly 

nonlinear fiber, PD: Photodetector, and LD: Laser diode. 

 5.8.1 Phase-lead compensation 

For the Er
3+

 doped fiber laser, the f0 control bandwidth is limited by the laser response 

(less than 30 kHz for our cases) even though our servo box (LB1005) has a 10 MHz control 

bandwidth. Therefore we need a method to circumvent this limitation. We implemented a 
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compensation circuit to extend the control bandwidth called the phase-lead compensation (PLC). 

The PLC circuit creates a pole in the response function. The design of the circuit is shown in 

Figure 5.19. It is simply a voltage divider with a capacity connected in parallel. The ratio of 

capacitance and voltage divider can be changed depending on the laser response and the servo 

box. Generally, Large capacitance (C) or big resistance (R1) causes the large RC time constant, 

so that the pole created by the compensation circuit is laid on the low Fourier frequency. The 

capacitance (330 pF) and the resistance (50 kΏ) were carefully chosen for the CNFL Comb 2 

which has the laser roll-off frequency at 16 kHz. 

RRRR1111=50 =50 =50 =50 kΩΩΩΩ RRRR2222=1 =1 =1 =1 kΩΩΩΩ VVVVoutoutoutoutVVVVinininin
C=330 C=330 C=330 C=330 pFpFpFpF

 

Figure 5.19 The phase-lead compensation circuit design. The values of a resistance and a 

capacitance shown in this diagram are typically used for the circuit. The variable resistance 

is used for R1 to change the RC time constant. 

The transfer function for this circuit can be derived in the Laplace domain and the 

equation is written as the form of 

 

1

2 1 2

1
( ) .

1
( )

PLC
H i

R

R i CR R

ω

ω

=

+
+

                                            (5.12) 

 

The amplitude response and the phase response can be derived from Eq. (5.12). Figure 5.20 (a) 

shows the response of the phase-lead compensation circuit. The large capacitance, C (or large 

resistance, R1) corresponds to the slow R1C time constant so that the curves shift to the lower 

Fourier frequency. The voltage divider ratio was chosen to optimize the output voltage after the 

phase-lead compensation circuit since the output voltage goes into the ILX current controller 
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possessing the current to voltage response of a 100 mA/V. The laser can be out of lock when the 

applied voltage to the ILX current controller is too high. Typically, the voltage applied to the 

current controller is less than 0.1 V. 
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Figure 5.20 (a) A typical transfer function of the phase-lead compensation circuit generated 

from Eq. (5.12). Both graphs can be shifted by changing the R1C time constant. (b) The 

measured transfer functions when the PLC circuit was added to the servo box (LB1005). 

Due to the PLC circuit, both phase and magnitude were shifted up. The gain with PLC 

cicuit was reduced because the voltage divider was included in the PLC circuit. 

Figure 5.20 (b) shows the changes in transfer functions with the PLC circuit. The 

resulting frequency response was the sum of the servo box (LB1005) and the PLC circuit.  

The laser response creates a roll-off (red-dash in Figure 5.21) in the whole feedback 

system. This roll-off makes the corresponding 90
o
 phase shift which degrades stability of the 

feedback. The added PLC circuit (blue dash) in the feedback loop creates magnitude and phase 

response as shown in Figure 5.21. The phase response shows that the phase margin (the phase 

difference between the phase at gain 1 and -180
o
) is increased by adding the PLC circuit. The 

phase margin increases to more than 90
o
 which guarantees better stability in the feedback system. 
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Figure 5.21 The laser response creates a pole (red) with -20 dB/decade at the characteristic 

roll-off frequency. The phase-lead compensator adds a pole (blue) at the roll-off frequency 

depending on the time constant. The overall phase response is the sum of the two, which 

increases the phase-margin to more than 90
o
 and therefore the laser lock is more stable. 

 5.8.2 Pump power attenuation 

References [120, 121] pointed out that a major noise source contributing to the linewidth 

of comb teeth is the white amplitude noise (or RIN) of the pump laser diode. The combination of 

RIN and sensitivity of comb modes to pump fluctuation produces the broad linewidth. Therefore, 

the reduction of RIN is required to minimize the linewidth. In order to reduce RIN of pump laser 

diode, we implemented a fiber-optic attenuator after the pump laser diode output, so that we 

were able to increase the pump power without changing the power in the laser cavity. When the 

applied current to laser diode was increased from 180 mA to 620 mA, the noise on f0 was 

reduced by ~5 dB after 1 kHz of Fourier frequencies as shown in Figure 5.22. 
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Figure 5.22 PSDs of the CEO frequency of the CNFL Comb 2. The reduction in phase noise 

is observed above 1 kHz Fourier frequencies by ~ 5 dB, when the current applied to laser 

diode is increased from 180 mA to 620 mA. 

 5.8.3 Linewidth of CEO frequency with noise reduction methods 

The linewidth of a tooth of the CNFL comb is indirectly measured by measuring its CEO 

frequency because the linewidth of CEO frequency is a beatnote of two comb teeth which 

represents the relative linewidth between the teeth, and therefore the linewidth of CEO frequency 

shows the upper bound of the linewidth of the comb tooth. We employed the two noise reduction 

methods discussed in the previous sections for the CNFL Comb 2. The free-running f0 of the 

CNFL Comb 2 had the linewidth of 850 kHz which was not changed with the feedback control 

indicating that the noise in high Fourier frequencies was not well eliminated. The lock just 

helped to fix the peak of f0. In order to reduce the f0 linewidth, we added the PLC circuit and the 

laser roll-off frequency was 16 kHz for the CNFL Comb 2. By adjusting the capacitance and 

resistance in the PLC circuit, the reduction of the f0 linewidth was observed. The f0 linewidth 

became narrow from 850 kHz to 595 kHz. Dramatic reduction of the f0 linewidth was achieved 

when the comb was locked with both the pump attenuation and the PLC circuit simultaneously. 

The f0 linewidth was reduced down to 218 kHz by a factor of four from the initial value. The 

results are shown in Figure 5.23 
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Figure 5.23 The linewidth of the CNFL Comb 2. Lock without the phase-lead compensation 

and pump attenuation (black); Lock with the phase-lead compensation (Red); Lock with 

the phase lead-compensation and pump attenuation (Green). Both noise reduction methods 

were applied to the CNFL Comb 2, the f0 linewidth was narrowed down from 850 kHz to 

218 kHz by a factor of four. 

The PSDs of the f0 error signals for individual locks were recorded and they showed a 

good agreement with the f0 linewidths. The less PSD was obtained when the f0 linewidth was 

narrower. The PSD has also shown the shift of a servo bump when the PLC circuit was applied. 

The servo bump is corresponding to the characteristic resonance of a feedback loop. The servo 

bump was shifted from 30 kHz to 60 kHz. Further shift of the servo bump was not possible. We 

think that the servo bump at 60 kHz might be due to the resonance of ILX current modulator. 

Consequently, the PLC circuit enhanced the f0 lock at higher Fourier frequency components as 

shown in Figure 5.24. The PSD was minimized when the f0 linewidth was narrowest. The servo 

bump was still at 60 kHz but it was suppressed to achieve the best locking performance. The 

PSD showed noise reduction at the entire Fourier frequencies. In order to check the performance 

of our f0 lock, we compared our result to a stabilized NIST Comb although they had a different 

type of mode-locked mechanisms [121]. For the comparison, the value of phase noise was 

changed into the value of frequency noise with the relationship of Sν(ν) = ν2
Sφ(ν), where Sν(ν) 

stands for frequency noise and Sφ(ν) represents phase noise respectively. 
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Figure 5.24 (a) f0 PSD (Sφφφφ(νννν)) of the CNFL Comb 2. Lock without the noise reduction 

methods (Black). Lock with the PLC circuit (Red). The servo bump was shifted from 30 

kHz to 60 kHz which provided tighter lock at high Fourier frequencies. Both PLC and 

pump attenuation were applied (Green). The f0 PSD was minimized and the integrated 

phase noise of the CNFL Comb 2 was 1.6 radians from 100 Hz to 102 kHz. (b) For 

comparison, the f0 PSD (Sνννν(νννν)) of a NIST Comb was plotted (Blue). The integrated phase 

noise of the NIST Comb was 0.99 radians up to 500 kHz. 

The integrated phase noise has been 1.6 radians for the f0 lock of our CNFL Comb 2 and 

that of the NIST comb has shown 0.99 radians. The coherent peak was observed for the NIST 

Comb when the comb was locked but not for our CNFL Comb 2. We guess that this is because 

of the difference in reference sources. Their comb was phase-locked to a stable CW laser 

reference but our CNFL Comb 2 was phase-locked to a RF reference. Some other reasons such 

as loss and scattering at the SWCNT connector and the relatively large v3dB might create more 

noise and degrade the coherence. However, if the lock is tight enough, the ultimate limit may be 

our RF reference source. 

 

 5.9 Summary 

 

We have shown the detection of a CEO frequency for controlling the frequency comb. 

Since the n
th

 mode of the frequency comb is defined by νn = n fr + f0, the detection and the 
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control of fr and f0 can fully stabilize the frequency comb. The noise sources of the frequency 

comb were discussed. The pump-induced amplitude noise combined with the laser’s sensitivity 

to the pump power fluctuation was a major noise source of the CNFL comb. The sensitivity was 

proportionally increased according to the laser roll-off response, and the higher roll-off 

frequency of the frequency comb corresponds to high sensitivity to the power fluctuation. The 

investigation of both one of the major noise sources of the CNFL comb and  transfer functions of 

phase-lock systems led us to the two noise reduction methods. The reduction of pump relative 

intensity noise reduced the noise spectrum in the laser roll-off frequency and the implementation 

of the phase-lead compensation circuit allowed the servo control bandwidth increased. The 

substantial noise reduction was observed by applying the two methods and therefore the f0 

linewidth, the relative linewidth of two comb teeth, was decreased by a factor of four. 

In next chapter, we will introduce instability measurements of the CNFL combs and an 

optical frequency measurement as an application of the fully stabilized CNFL comb. 

 

Note: this research in Chapter 5 has been published in Ref. [68] and submitted to the Conference 

on Lasers and Electro Optics (CLEO) 2011. 
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Chapter 6 - Results of Instability of the CNFL Frequency Comb and 

Absolute Frequency Measurement 

 6.1 Introduction 

 

We will discuss the instability of our CNFL combs and an absolute optical frequency 

measurement using the stabilized CNFL comb to a microwave frequency standard, a Rb clock 

disciplined by GPS. The instability was measured by beating the CNFL comb against a CW laser 

stabilized to a molecular overtone transition, P(13) of C2H2. The absolute frequency of P(13) was 

calculated. This absolute frequency measurement was mainly done by Kevin Knabe and 

Chenchen Wang and the result was published in Ref. [69]. 

 6.1.1 Optical frequency comb as a frequency ruler 

As we discussed in Chapter 1, the optical frequency comb has revolutionized optical 

frequency metrology and has realized an optical frequency measurement over a broad spectral 

bandwidth with simplicity. The frequency comb filled the missing gap between microwave 

frequencies and optical frequencies in optical frequency metrology. The frequency comb can be 

stabilized to either a microwave frequency standard such as a Rb oscillator, a Cs oscillator, and a 

Hydrogen maser or an optical frequency standard such as a CW laser stabilized to the resonance 

of trapped atoms or single ions. Once the frequency comb is stabilized to those references, the 

stability and accuracy of the reference is faithfully transferred to the optical frequency comb. 

Then all comb teeth of the frequency comb are fixed in the frequency domain with known values 

and they serve as a frequency ruler to measure optical frequencies.  

The scheme for the optical frequency measurement is illustrated in Figure 6.1. An 

optical frequency (fx) is beaten against the frequency comb tooth in the stabilized frequency 

comb satisfying the comb equation given by νn = n fr + f0 and then a heterodyne RF beatnote 

signal (fbeat) is created. The fbeat is therefore written as 

 

beat n x r 0 xf f f f fν= − = ± −n                                                  (6.1) 
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According to Eq (6.1), the fx can be calculated and the result is expressed as x r 0 beatf f f f= ± −n . 

The values of fr, f0, fbeat and n in the equation are experimentally accessible, and therefore the 

optical frequency can be computed. In practice, the nearest mode number (n) can either be 

directly measured using a high resolution wave-meter for a high repetition frequency comb (> 

100 MHz) or be derived from the Vernier method used in Ref. [123]. 

foooo f

frrrr
ννννnnnn = n = n = n = n frrrr + + + + foooo

frrrr = 1/T= 1/T= 1/T= 1/Trrrr
Repetition frequency

GainGainGainGain fopt
RF beatnotefrequency combfrequency combfrequency combfrequency comb

 

Figure 6.1 The scheme for an optical frequency measurement with a stabilized optical 

frequency comb. The optical frequency beats against the frequency comb and they create a 

RF beatnote. The optical frequency comb plays a vital role to connect between an optical 

frequency and a RF signal. 

 

 6.2 The stability of the CNFL comb and an absolute frequency measurement  

 

We demonstrated a phase-stabilized CNFL frequency comb for the first time. The 

stability of the comb has been measured by beating it against a CW laser stabilized to a 

molecular overtone transition of C2H2. The instability of the CNFL comb was limited by our RF 

reference source. With the stabilized CNFL frequency comb, we have measured an optical 

frequency which is discussed in this section.  

 6.2.1 Stability and accuracy of a frequency source 

Before we measured an optical frequency, we first have demonstrated the instability of 

the CNFL frequency comb. We start with the definition of stability and accuracy of a frequency 

source. What is required to be the best source for time and frequency reference? The Figure 6.2 
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shows four situations of the frequency change with time. The first one has a good stability 

meaning it has regular time interval but does not have accuracy meaning that the time interval is 

not correct to the frequency standard (fo). The desirable situation is the fourth. It shows both  

good stability and high accuracy simultaneously. The Allan deviation, point to point fluctuation 

we discussed in Chapter 5, is used to measure the frequency instability. 

 

Figure 6.2 Stability and accuracy of time and frequency sources. [143] 

 6.2.2 Stability of the CNFL comb in the optical frequency region 

In Chapter 5, we have shown the instabilities of the two different frequency combs. For 

the case, we extended our comb instabilities to the optical frequency regime, so that the 

fractional instabilities were better than our RF reference source. Practically, the motion of the 

comb modes may be more complicated in optical frequency regime due to the variety of noise 

sources of the comb and the multiplication factor, n, in the comb equation may degrade the 

stability. In this section, we directly carried out the measurement of comb instability in the 

optical frequency region. In order to do that, an external optical reference source was used. 

Hence the stability of the CNFL Comb 1 was measured by beating the comb against a stabilized 

CW laser to C2H2 molecular overtone transition at ~1532 nm. In this way, we were capable of 

measuring instabilities of both the CNFL Comb 1 and the optical frequency reference 

simultaneously. 

  The stabilized optical frequency we used for the stability measurement was generated by 

saturated absorption spectroscopy (SAS) [69]. The scheme for SAS is depicted in Figure 6.3. 

C2H2 molecules were trapped in a Kagome photonic crystal fiber. The pump and probe technique 

was implemented to detect a sub-Doppler feature and then the frequency modulation was applied 

in order to achieve a control signal which was the derivative of the sub-Doppler feature. 



126 

 

Fiber 

laser
EDFA

Free space

AOM

Probe

Pump

PBS

Chamber

(C2H2)

Photo

detector

4.1 m HC-PCF

F. Couny, et., al., 

Opt. Lett. 31, 

1537 (2006)

Kagome

P(13) νννν1 + νννν3

~1532.8 nm

2

λλλλ

4

λλλλ
~70 µm

Fiber

 

Figure 6.3 A CW laser stabilized to a C2H2 molecular overtone transition. The acetylene 

was loaded into a Kagome photonic crystal fiber. The pump and probe technique was used 

to detect a saturated absorption signal and frequency modulation was implemented to 

stabilize the CW laser to the absorption signal [24]. 

 6.2.3 Beating the comb against the CW laser 

The stabilized CNFL Comb 1 possessing the repetition frequency of ~167 MHz was 

beaten against a stabilized CW laser. The experimental set-up is illustrated in Figure 6.4. The 

supercontinuum spectrum of the CNFL Comb 1 was filtered with a reflecting fiber Bragg grating 

(FBG) centered at 1532 nm and its spectral bandwidth of 30 GHz. Then the frequency comb was 

coupled with a portion of a CW laser and a RF beatnote was detected using a fast photodetector. 

The RF beatnote (fbeat) between the comb and the CW laser was filtered using a microwave 

bandpass filter and amplified in order to count it. The fractional instability was calculated and the 

result was shown in Figure 6.5. The calculated fractional instability (∆fbeat/1532 nm) in the 

optical frequency region was 1.2 × 10
-11

 at 1 sec averaging time and the instability was limited by 

our reference source, a Rb clock disciplined by GPS. At the short averaging times, the instability 

has been limited by the reference source of the frequency comb but the instability was dominated 

by the CW laser at the longer gate time. Therefore, the frequency comb has shown faithful 

transferability of the RF reference source. 
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Figure 6.4 Experimental set-up for beating CNFL comb against a CW laser stabilized to 

C2H2 overtone molecular transition using SAS. FBG: fiber Bragg grating, BPF: band pass 

filter, PD: Photodetector. 

 6.2.4 Beyond the reference limit 

We have seen that the stability of CNFL Comb 1 was limited by the RF reference source 

we have used. In order to see the instability beyond the RF reference limit, we have performed a 

additional measurement. For the experiment, a stabilized Cr:Forsterite frequency comb was 

added to the previous set-up in Figure 6.4 [124] and the new experimental set-up was shown in 

Figure 6.5. 
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Figure 6.5 Experimental set-up for the measurement. Both stabilized combs (CNFL 

Comb  1 and Cr:Forsterite Comb) are filtered and beaten against a CW laser stabilized to 

a C2H2 overtone transition. Two beatnotes are simultaneously counted. 
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Both stabilized frequency combs were filtered and beaten against a common CW laser 

stabilized to C2H2 overtone transition at the same time. The RF beatnotes were detected for both 

and were counted simultaneously. The two measured beatnotes were subtracted from each other, 

so that the stability of the reference was effectively eliminated from the result. The fractional 

instability was calculated at the optical frequency, 1532 nm and it was below the reference limit 

as shown in Figure 6.6 which represented the instability upper bound of one of the combs. The 

result shows that the ultimate limit of our comb stability is set by the reference but not by the 

comb itself. 
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Figure 6.6 Fractional instabilities of the CNFL Comb 1, the Cr:Forsterite Comb, and the 

difference between their RF beatnotes against the C2H2 stabilized CW laser. The stability 

of both combs was limited by the same RF reference source. The reference source was 

effectively removed by looking at the difference between the two RF beatnotes and its 

fractional instability was below the reference limit. This sets the instability upper bound of 

one of the combs. Reproduced from Ref. [125] 

 6.2.5 Result for the absolute frequency measurement of P(13) 

An molecular overtone transition of C2H2, P(13), was measured using the CNFL Comb 1 

[24]. Due to the limited tuning range of the repetition frequency, the measurement of the mode 
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number discussed by Long-Sheng Ma et al. in Ref. [123] was not implemented to calculate the 

absolute frequency. The method is also discussed in the K. Knabe’s thesis and paper [69]. 

Instead, we used a priori knowledge of the frequency we measured which was obtained from our 

previous absolute frequency measurement with the Cr:Forsterite frequency comb using the 

method in Ref. [123]. In other words, one just knows the approximated absolute frequency in 

advance but not the exact number. Then one measures and finds out the nearest mode number of 

the comb by beating against the absolute frequency and calculates the absolute frequency using 

the experimentally obtained mode number. When the measured value is close to the 

approximated absolute frequency value, one changes the repetition frequency and repeats the 

previous steps. Since the repetition frequency was changed, the nearest mode number also 

changed. Then one calculates the absolute frequency with the new mode number to see if there is 

consistency between previously calculated absolute frequency values. These steps are repeated 

and the values are then averaged. The measured mean value has shown a good agreement with 

other group’s measurement within the error bar and the error in accuracy was below 10 kHz. 

In order to increase the tuning range of the repetition frequency of the CNFL frequency 

comb, we are planning to add the high dynamic range PZT micrometer in the laser cavity. 

Therefore, an absolute frequency will be measured by the method used in Ref. [123] without 

knowing a priori information about the frequency we want to measure. 

 

 6.3 Summary 

 

The stabilized CNFL frequency comb has shown the RF reference-limited instability and 

the fractional instability was 1.2 × 10
-11

 at 1 sec averaging time. The proof of upper bound of the 

CNFL frequency comb instability has been done by subtracting two RF beatnote signals 

produced by beating two different frequency combs against a common CW laser stabilized to a 

molecular overtone transition of C2H2, P(13) respectively. The direct beating between the two 

different frequency combs was not measured due to the difficulty in a temporal overlap between 

the pulses from two different mode-locked laser oscillators. The fr of the Cr:Forsterite frequency 

comb was 113 MHz and that of the CNFL Comb 1 was 167 MHz respectively. The direct 

beating of the two frequency combs has been realized using two CNFL frequency combs 
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possessing the same repetition frequency and the result will be discussed in the next chapter. The 

measurement has shown that the instability of the CNFL combs is not limited by our RF 

reference. We will also show the measured relative linewidth between the two CNFL Combs at 

1555 nm.  

The optical frequency, P(13), has been measured with the stabilized CNFL Comb 1 and 

the value has shown a good agreement with previously known data and the error in accuracy has 

been within 10 kHz. 
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Chapter 7 - Conclusions and Future Work 

 7.1 Principle Research Contributions 

 

This research has been focused on making the Er
3+

 doped fiber laser frequency comb 

more compact, robust, and cost-effective without losing stability and accuracy of the previously 

existing fiber frequency combs. We ultimately aimed at8 making the frequency comb be a field-

usable turn-key device. We report the first phase-stabilized Er
3+

 doped fiber laser frequency 

comb employing a single walled carbon nanotube as a saturable absorber to achieve a passive 

mode-locking, which allows for a simple, easy, and cost-effective fabrication of the femtosecond 

fiber laser cavity. The substantial reduction of the cavity length is realized because of the 

SWCNT saturable absorber and therefore an all-fiber high repetition frequency (>150 MHz) 

mode-locking was demonstrated. The high repetition frequency is desirable for our use in optical 

frequency metrology because it allows for enhancing the resolving power between the comb 

teeth. We also demonstrated the high power Er
3+

 doped fiber amplifier (EDFA) producing a 430 

mW average power and ~120 fs pulse duration at the repetition frequency of 167 MHz using a 

parabolic pulse amplification. The output power was limited by the available pump power. These 

results are comparable to the recent Er
3+

 doped mode-locked fiber amplifier products at 1560 nm. 

Especially by using a hollow core photonic bandgap fiber (HC-PBGF) to linearly compress the 

dispersion after the Er
3+

 doped fiber (EDF), we produced the pedestal-free short pulse with the 

high pulse energy owing to the very small nonlinearity of the HC-PBGF. From the assist of the 

EDFA we generated a high power supercontinuum source from a carbon nanotube fiber laser 

(CNFL) oscillator which includes the greater power per comb tooth or being equally true for the 

increased measurement sensitivity of the comb. 

The phase-stabilized CNFL Comb 1 has shown the accumulated phase noise of 

0.32 radians from 100 Hz to 102 kHz for the f0 phase-lock. The further investigation of the comb 

instability was done by beating the comb against a CW laser stabilized to an overtone transition 

of C2H2 molecules. The measured fractional instability was 1.2 × 10
-11

 at 1 s averaging time and 

the result was limited by our reference source, a Rb clock steered by GPS. The laser was able to 

be phase-stabilized for more than 6 hours without any active temperature control.  
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The absolute frequency of an overtone transition of C2H2 molecules was measured with 

the phase-stabilized CNFL comb within 10 kHz uncertainty and it has shown a good agreement 

with the previous measurements done by other groups. These are remarkable results showing that 

the CNFL comb can be a truly field-usable and turn-key research instrument. 

In order to extend the application of the CNFL comb to the multiheterodyne dual comb 

spectroscopy, we have also investigated the noise of the CNLF comb. The major noise source 

was the relative intensity noise (RIN) of the oscillator pump laser diode and the control 

bandwidth of CEO frequency (f0) was limited by the laser response frequency (ν3dB). In order to 

reduce the noise in the CNFL comb, we have implemented a phase-lead compensation circuit 

and a pump power attenuation method. The combination of those approaches has allowed the 

substantial reduction of noise in the CNFL comb, so that the f0 linewidth has been narrower from 

850 kHz to 220 kHz by a factor of four. The residual noise may be our RF reference or some 

other noise sources in the CNFL such as loss and scattering at the SWCNT connector and should 

be further investigated. In summary, the principle contributions have been made through this 

research, 

 

• The high repetition frequency (> 150MHz) erbium doped fiber laser frequency comb       

using a single walled carbon nanotube saturable absorber has been obtained. 

 

• A parabolic pulse amplifier possessing the output average power of 430 mW has been    

made and has been used for the supercontinuum generation using a highly nonlinear fiber. 

 

• All-fiber linear pulse compression has been done with HC-PBGF. It has shown the low   

pedestal pulse due to the very low nonlinear effect of HC-PBGF 

 

• The first fully phase-stabilized erbium doped carbon nanotube fiber laser frequency comb

has been realized. 

- The comb has been stabilized for more than 6 hours without active temperature controls. 

- The comb has the fractional instability of 1.2 × 10
-12

 at 1 s averaging time which is the 

reference-limited stability. 
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• An optical frequency of C2H2 overtone transition, P(13), has been measured using the      

phase-stabilized CNFL comb and the measurement uncertainty was within 10 kHz           

accuracy. 

 

• We have shown that the main noise source of the CNFL comb was the relative intensity  

noise (RIN) of the pump laser diode. The further noise reduction of CNFL comb has bee 

achieved both by implementing the phase-lead compensation and by reducing the RIN of 

pump laser diode simultaneously. Therefore, the linewidth of CEO frequency has been     

reduced from 850 kHz to 220 kHz. 

 

 7.2 Future work and direction 

 

 7.2.1 Scaling up the average power of a high repetition frequency CNFL 

Although the CNFL comb has shown excellent performances for optical frequency 

metrology in near infrared there is a drawback which should be overcome for the CNFL comb to 

be more wildly applicable. For instance, we are making a set-up for the multi-heterodyne dual 

comb spectroscopy in our laboratory. For the experiment, a higher average power is desirable 

because the comb should effectively interact with target gases. The detail for the multi-

heterodyne dual comb spectroscopy will be discussed in Section 7.3. Since the high repetition 

frequency mode-locked fiber laser has a short cavity length, the stored energy in the cavity is 

small. Therefore in order to increase the average output power, the gain fiber should be strongly 

pumped. However this posed a problem that was the damage of the SWCNT at the fiber 

connector end-face due to the heat deposition. Our research has shown that the SWCNT 

deposited at fiber connector end-face was destroyed over 50 mW average power at 1550 nm in 

the laser cavity. This significantly limited the obtainable output power. The second problem was 

the relatively slow recovery time (~1 ps) and low saturable fluence of the SWCNT saturable 

absorber which caused the CNFL to be multiple pulsing as the pump power increased. So far, the 

highest average power for the CNFL possessing over the repetition frequency of 150 MHz by 

using the optically driven direct SWCNT deposition method was about 1 mW before the multiple 
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pulsing arises. In order to overcome and achieve an order of magnitude higher average power we 

are trying a different deposition method and are using the evanescent interaction between the 

pulse and the SWCNTs in HC-PBGF. We are anticipating that this method allows for avoiding 

heat damage and alleviating the multiple pulsing. However when the HC-PBGF was 

incorporated into the fiber laser cavity, it has shown the Fresnel reflection (4 %) between the 

fiber interfaces due to the difference in refractive indices. This prevented the laser from the 

mode-locking. Therefore we are moving to a direction to use polymer composite to eliminate the 

Fresnel reflection. We have had a challenge with this direction but it would be possible in the 

near future. 

 7.2.2 Multi-heterodyne dual comb spectroscopy 

More applications of the CNFL combs could be found in precision spectroscopy. One 

approach is the cavity ring down spectroscopy using a frequency comb and it has shown an 

excellent performance in detecting atoms and molecules with rapid and high sensitivity [22]. For 

the case, the frequency comb was coupled into an optical cavity which improved the interaction 

and measurement sensitivity to detect target gases at once. The other approach is the multi-

heterodyne dual comb spectroscopy [23]. Two phase-stabilized combs possessing a very small 

difference in the repetition frequency (∆fr) are used for the spectroscopy. A RF comb is produced 

when two combs are optically filtered and beaten against each other as shown in Figure 7.1. The 

RF comb has the repetition frequency of ∆fr and the ∆fr is typically a few kHz. Therefore, the 

linewidth of comb modes are important to distinguish the RF comb modes so that the resolution 

of spectroscopy can be improved. 

 

 



135 

 

fr

fr + ∆ fr

∆ fr

RF comb

Comb 1

Comb 2
 

Figure 7.1 Schematic diagram of multi-heterodyne dual comb spectroscopy. The combs 

have a small difference in the repetition frequency by ∆∆∆∆fr. When the two combs are filtered 

and beaten, a RF comb possessing the repetition frequency of ∆∆∆∆fr is generated. 

In order to perform dual comb spectroscopy, we measured the relative linewidth of the 

comb teeth before we heterodyne-beat against the two stabilized CNFL combs possessing the 

repetition frequency of ~167 MHz each other. The CNFL Comb 2 has a free-space in the laser 

cavity and therefore the repetition frequency can be tuned by several hundreds of kHz. For the 

experiment, we made the repetition frequencies of both combs same and a common RF local 

synthesizer referenced by Rb clock disciplined by GPS was used for locking both frs but the f0s 

were locked with different local synthesizers at different RFs. The experimental set-up is 

illustrated in Figure 7.2. 
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Figure 7.2 Experimental set-up for beating two stabilized CNFL combs. Both combs have 

the same repetition frequency of ~167 MHz. A common synthesizer referenced by Rb clock 

disciplined by GPS was used for locking both frs. The CNFL Comb 2 has a free-space in the 

laser cavity to tune the repetition frequency by several hundreds of kHz. Two pulses from 

different laser oscillators were temporally overlapped using DCF (Delay compensation 

fibers: Coring SMF-28e) and a free-space delay stage. The overlapped pulses were filtered 

by a FBG centered at 1555 nm with 50 GHz spectral bandwidth. The beatnote (fbeat) 

between two CNFL combs were detected. 

The two combs were beaten directly. The temporal delay between two pulses from the different 

laser oscillators was compensated using the Corning SMF-28e and a fine tune was achieved with 

a free space delay stage for one of paths. The delay between two pulses was monitored by a fast 

oscilloscope (1 GHz) and we checked the relative pulse arrival time from two different 

oscillators. The peak in the oscilloscope was maximized when two pulses were overlapped. Then 

the overlapped pulses were filtered by a reflected fiber Bragg grating centered at 1555 nm with 

the spectral bandwidth of 50 GHz. The RF beatnote between two CNFL combs (fbeat) was shown 

in Figure 7.3.  
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Figure 7.3 (a) Beatnote (fbeat) between two CNFL combs with the SNR of 25 dB. (b) The 

linewidth of fbeat. The f0 linewiths of both combs are also plotted. The linewidth of fbeat is 

dominated by the linewidth of the worse f0 linewidth between the two frequency combs. 

The beatnote frequency was just difference in f0s of both combs. The result can be 

mathematically described by the frequency comb mode equation. 

 

1 1 1 1

2 2 2 2

n r o

n r o

f f

f f

ν

ν

= ±

= ±

n

n
                                                          (7.1) 

 

where fr1 and fr2 are the repetition frequency of the CNFL Comb 1 and the CNFL Comb 2 

respectively and f01 and f02 are the CEO frequencies of the CNFL Comb 1 and the CNFL Comb 2 

respectively. Therefore,  fbeat between the two combs is written as 

 

1 1 2 2 1 2beat r r o o
f f f f f= − ± mn n .                                              (7.2) 

 

Since fr1= fr2, therefore 1 2beat o o
f f f= ± m .The relative linewidth of the two CNFL frequency 

combs at 1550 nm was 1.6 MHz that corresponded to the worse f0 linewidth between the two 

frequency combs. 

The fbeat was counted with both CEO frequencies at 1 s averaging time. The fluctuation in 

fbeat (∆fbeat) was larger than the fluctuations in both f0s (∆f01 and ∆f01 respectively) as shown in 
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Figure 7.4. This means that the repetition frequencies for both CNFL Combs are not fully 

synchronized. From Eq. (7.2), the ∆fbeat is defined as 

 

1 1 2 2 1 2.
beat r r o o

f f f f f∆ = ∆ − ∆ ± ∆ ∆mn n                                          (7.3) 

 

For the same mode numbers (n1 = n2 = n), Eq. (7.3) becomes 

 

1 2 1 2( ) .
beat r r o o

f f f f f∆ = ∆ − ∆ ± ∆ ∆mn                                           (7.4) 

 

As we see in Figure 7.4, the ∆fbeat was not dominated either ∆f01 or ∆f02. Therefore, we can 

conclude that the ∆fbeat was governed by n (∆fr1-∆fr2) term and n ~ 1.15012 × 10
6
, which means 

that 1 2r r
f f∆ ≠ ∆ and therefore the two combs are not fully synchronized to the common RF 

reference for frs. 
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Figure 7.4 Counted fbeat, f01, and f02 at 1 s averaging time. The fluctuation of fbeat (∆∆∆∆fbeat) was 

dominated by n (∆∆∆∆fr1-∆∆∆∆fr2) term but not by either f01 or f02, which means that the two CNFL 

Combs were not fully synchronized to the common reference for fr s. 

We calculated the fractional instability of fbeat which has shown 1.0 × 10
-13

 τ -1/2
, where 

τ is the averaging time. The result is shown in Figure 7.5. Since the reference source from both 
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combs was effectively removed, the fraction instability was able to be below the reference limit 

as we predicted in Section 6.2.4. However, this result shows that coherence between two combs 

is imperfect and may indicate the noise of frequency combs or technical noise for this 

measurement such as path length fluctuation. 
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Figure 7.5 Fractional instability of fbeat which has shown 1.0 × 10
-13

 τ τ τ τ −−−−1/2
. 

So far, we are focusing on the reduction of noise in both CNFL combs to achieve narrow 

relative linewidth between comb teeth. When we understand the noise of CNFL frequency comb 

and realize the further noise reduction, beating two CNFL combs and producing a RF comb will 

be the following step for the multi-heterodyne dual comb spectroscopy. 

 7.2.3 Mid-IR frequency comb 

The other important application of frequency comb can be found in precision 

spectroscopy in the mid-IR regime which is the wavelength of 3-12 µm or even higher. Many 

rovibrational absorptions of interesting atoms and molecules exist in that range, for example, as 

shown in Figure 7.6. Therefore, it is very desirable to have a comb at the wavelength. Many 

efforts are still going to achieve the mid-IR comb. So far, the mid-IR comb has been achieved 

using parametric processes such as a difference frequency generation [126] or an optical 

parametric oscillator [28]. However, both methods increase the complexity and cost of the 
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system. Another approach is to use a CNFL comb centered at 2 µm and then one can apply the 

same approach that we have discussed in this thesis to make a stabilized mid-IR comb. The 

biggest issue is to find correct nonlinear crystals for the second harmonic generation and to 

fabricate the periodic pole structure and anti-reflection coating for the crystal. 

 

Figure 7.6 Rovibrational absorptions of molecules in the mid-IR regime. Reproduced from 

Ref [148] 
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Appendix A – Notations  

a  Fiber core radius 

( )A t%   Complex electric field of a transform-limited pulse 

0 ( )A t   Pulse envelope with the slowly varying envelope approximation 

c  Speed of light 

C  Capacitance 

D  Dispersion parameter 

Dslope  Dispersion slope 

D%   Complex electric displacement 

D̂   Dispersion operator 

e  Charge of an electron 

E( )t%   Complex electric field of the train of pulses in the time domain 

E( )ω%   Complex electric field of the train of pulses in the frequency domain  

f  Focal length 

fbeat   RF beatnote between two CNFL combs 

fr  Pulse repetition frequency 

f0  Carrier envelope frequency 

gm(ω)  Atomic gain coefficient 

GdB(ω)  Power gain in decibels (dB) 

G0  Small signal gain 

h  Small step size in SSFM 

h   Planck constant 

i  Imaginary number ( 1i = − ) 

Isat  Saturation intensity 

k0  Propagation constant in vacuum 

LD  Dispersion length 

LNL  Nonlinear length 

me  Mass of an electron 



152 

 

n  Index of refraction 

n2  Nonlinear index of refraction 

ncore  Index of refraction of a core 

nclad  Index of refraction of a cladding 

n  Mode number 

Ng  Group index 

Ns  Soliton order 

N̂   Nonlinear operator 

(r, )P ω%  Total polarization in the intense electric filed 

P0  Initial peak power 

R  Resistance 

Sv(f)  Frequency power spectral density 

Sφ(f)  Phase power spectral density 

Tr  Cavity round trip time 

T0  Initial temporal pulse duration 

Usat  Saturation energy 

vg  Group velocity 

vp  Phase velocity 

V  V number 

( )w z   Beam waist 

w0  Beam waist at the focal point 

zR  Rayleigh range 

 

α  Decaying constant 

α0  Material loss 

β  Propagation constant in a medium 

β2  Second order dispersion (Group velocity dispersion) 

β3  Third order dispersion 

∆βm(ω)  Atomic gain disperison 

( )
at

χ ω%   Atomic susceptibility 



153 

 

χ’(ω)  Real part of atomic susceptibility 

χ’’(ω)  Imaginary part of atomic susceptibility 

χ(3)  Third order susceptibility 

δω  Frequency chirp 

∆  Normalized index difference 

0ε   Electric permittivity in vacuum 

∆ϕ  Phase slip between pulses 

Λ  Poling period 

λ  Wavelength 

λc  Center wavelength (or carrier wavelength) 

λ0  Zero dispersion wavelength 

µ  Magnetic permeability in a medium 

σ   Transition cross section 

ν  Frequency 

νn  n
th

 comb tooth 

X

fixν   Fixed point frequency related to a variable, X 

ν3dB  Laser 3 dB roll-off frequency 

γ  Effective nonlinearity 

τ  Averaging time in second 

τeff   Effective recovery time 

ωc  Carrier angular frequency 

ωa  Atomic resonant angular frequency 

a
ω∆   Width of resonant angular frequency 

3dB
ω∆   Full width half maximum of the gain narrowing bandwidth 
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Appendix B - Abbreviations  

AC  Intensity attocorrelation 

AM  Amplitude modulation 

ASE  Amplified spontaneous emission 

dB  Decibel 

BPF  Band pass filter 

CEO  Carrier envelope offset 

CNFL  Carbon nanotube fiber laser 

CW  Continuous wavelength 

DCF  Dispersion compensation fiber 

EDF  Erbium doped fiber 

EDFA  Erbium doped fiber amplifier 

ESA  Electric spectrum analyzer 

FBG  Fiber Bragg grating 

FFT  Fast Fourier transformation 

FWHM Full width half maximum 

F8L  Figure eight laser 

GPS  Global positioning system 

GVD  Group velocity dispersion 

HNFL  Highly nonlinear fiber 

IR  Infrared 

LD  Laser diode 

LP  Linearly polarized 

MFD  Mode field diameter 

NA  Numerical aperture 

NALM  Nonlinear amplifying loop mirror 

NLSE  Nonlinear Schrödinger equation 

NPR  Nonlinear polarization rotation 

P-APM Polarization additive pulse mode-locking 

PBGF  Photonic bandgap fiber 
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PCF  Photonic crystal fiber 

PD  Photodetector 

PLC  Phase-lead compensation 

PLL  Phase lock loop 

PPLN  Periodically poled lithium niobate 

PSD  Power spectral density 

PZT  Piezo-electric transducer 

RF  Radio frequency 

RBW  Resolution bandwidth 

RIN  Relative intensity noise 

RINp   Relative intensity noise of a pump laser 

SAS  Saturated absorption spectroscopy 

SBR  Semiconductor Bragg reflector 

SESAM Semiconductor saturable absorber mirror 

SHG  Second harmonic generation 

SMF  Single mode fiber 

SNR  Signal to noise ratio 

SPM  Self phase modulation 

SRS  stimulated Raman scattering 

SS  Self steepening 

SSFM  Split step Fourier method 

SSG  Small signal gain 

SWCNT Single walled carbon nanotube 

TIR  Total internal reflection 

TL  Transform-limited 

TOD  Third order dispersion 

WDM  Wavelength division multiplexer 

XPM  Cross phase modulation 

 



156 

 

 

Appendix C - Derivation of the Nonlinear Schrödinger Equation 

The nonlinear Schrödinger equation (NLSE) can be derived from the Maxwell’s equation. 

Here we are assuming the paraxial pulse propagation of the fundamental linearly polarized (LP) 

mode in a fiber, so that the transverse component of the electric field is ignored. Another 

assumption is that the dispersion and nonlinearity is small enough and therefore the contribution 

of the high order dispersion terms and the high order nonlinearity terms are insignificant. Hence 

the group velocity dispersion (GVD) and self phase modulation (SPM) are only considered in 

this derivation. One can see Ref. [147] for more detailed discussion about NLSE. 

A complex electric field ( , )A z t% is defined as 

 

( )c 0( )

0( , ) ( , ) e ,ci t z
A z t A z t

ω β ω ϕ− +
=%                                            (A.1.1) 

 

where 0 ( , )A z t  is the pulse envelope of the complex electric field and ϕ0 is the initial 

temporal phase of the pulse. Here we set ϕ0 = 0. The tilde was used to stand for the complex 

electric field. z is the propagation axis and ωc is the carrier angular frequency. The Fourier 

transformation of Eq. (A.1.1) 

 

( , ) ( , ) e ,i t
A z A z t dt

ωω
∞

−

−∞
= ∫% %                                                (A.1.2) 

 

where E(z,ω) is the electric field in the frequency domain. Therefore Eq. (A.1.2) becomes 

 

( )'( )' '

0( , ) ( , ) e e cc
i zi t

A z A z t dt
β ωω ωω

∞ −− −

−∞
= ∫%                                   (A.1.3) 

 

For a small increment (dz) in propagation length, the electric field in the frequency 

domain is that 
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Take the inverse Fourier transform and look at the electric field in the time domain then, 
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Carrier term                               Envelope term 

 

Let us use the slow varying envelope approximation, then we just consider the envelope term and 

the complex envelope ( ),A z dz t+%  is defined as 
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where ∆β = β(ω)−β(ωc) and ∆ω = ω−ωc. Further simplification can be done by letting z = z’+dz, 

then Eq. (A.1.6) is rewritten as  
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Now one can take a derivative of Eq (A.1.7) with respect to z, then 

 

( ) ( ), ,A z t i A z t
z

β
∂

= − ∆
∂

% %                                                    (A.1.8) 

 

Suppose that both dispersion and Kerr effect are weak, then β  is written as 
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where γ is the effective nonlinear coefficient and I is the intensity defined as
2

A . Then Eq. 

(A.1.8) becomes 
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where i
t

ω
∂

= ∆
∂

 and 
2

2

2
t

ω
∂

= −∆
∂

. Therefore, the nonlinear Schrödinger equation is derived. 
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Appendix D - Derivation of the Third Order Dispersion  

Typically fiber manufacturers provide D(λ) and Dslope (dD/dλ) but we use β2 (GVD) and 

β3 (TOD) for numerical simulations. Therefore the dispersion parameter should be changed into 

the forms of β2 and β3. Especially the consideration of TOD is required for pulse compensation 

using the hollow core photonic bandgap fiber (HC-PBGF) because HC-PBGF has the relatively 

large TOD and affects the shape of the compressed pulse. Here we will show the derivation of 

the TOD (β3). From Eq. (2.8), the dispersion parameter (D) is  
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2 2

1 2
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Take a derivative Eq. (2.8) with respect to λ. Then Dslope is derived as 
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So Dslope at λ0 is that 

 

2 2

2 33 4

4 4
.

c
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c c
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Therefore, β3 is derived from Eq. (B.1.2) as 
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Appendix E - Power Spectral Density and Quantification of Noise 

For many stabilization experiments, one desires to have a pure single frequency source. 

However, even for a very good synthesizer, noise exists. The noise of frequency source can be 

quantified by the power spectral density (PSD). The PSD shows the power of noise sources per 

unit Hertz. Therefore the integration of PSD provides total power produced by noise. 

Mathematically, the PSD can be represented by 

 

2
/ 2

2

/ 2

1
( ) lim ( ) ,

T
i vt

Tt
S V t e dt

T

πν
−→∞

= ∫                                     (C. 1) 

 

which is the time average of the Fourier transform of an arbitrary signal. V(t) denotes the signal 

we want to measure and it is defined as 

 

[ ] [ ]0 0( ) ( ) sin 2 ( ) ,V t V t t tε πν φ= + +                                        (C. 2) 

 

where V0 = nominal peak output voltage 

ε(t) = amplitude deviation 

v0 = nominal frequency  

φ(t) = phase deviation 

and the frequency and the phase have the relationship written as 

 

0

1 ( )
( ) .

2

d t
t

dt

φ
ν ν

π
= +                                                       (C. 3) 

 

The PSD can experimentally be measured with a fast Fourier transform (FFT) spectrum 

analyzer. In the case of the stabilization of our frequency comb, both fr and f0 should be 

stabilized to the local oscillators (or called the frequency synthesizer). The difference between f0 

(or fr) and a local oscillator is created due to either noise in the comb or noise in the local 
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oscillator. The PSD shows possible noise sources in the Fourier frequency domain. The unit of 

the PSD of frequency noise is Hz
2
/Hz which represents the frequency noise per unit Hz. The 

square in the unit is related to the power signal (P) we measure (P=V
2
/R, where R: Resistance).  
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Appendix F - Arc Fusion Splicer Program Parameter for HNFL 

The Ti:Sapphire laser uses a photonic crystal fiber (PCF). In practice, the pulse is coupled 

into the PCF in the free space. This method has problems that the beam pointing undergoes 

fluctuation by technical noise and degrades the reliability for the supercontinuum (SC) 

generation. Contrary to that for Er
3+

 doped fiber lasers, the SC can be generated by directly 

splicing a SMF-28e to the highly nonlinear fiber (HNFL) using a commercial arc fusion splicer 

(Ericsson FSU-995FA).  The loss is typically less than 1.5 dB but 0.2 dB loss is possible using 

the recipe here. This makes the SC generation stable and reliable and allows very simple 

experimental set-up. 

 

The low loss splicing between HNFL and SMF-28e 

Prefuse time: 0.2 sec 

Prefuse curr: 10.0 mA 

Gap: 50.0 µm 

Overlap: 12.0 µm 

Fusion time 1: 0.3 sec 

Fusion curr 1: 10.5 mA 

Fusion time 2: 30.0 sec 

Fusion curr 2: 14.0 mA 

Fusion time 2: 0.0 sec 

Fusion time 3: 0.0 mA 

Data sheet of highly nonlinear fiber (OFS) 

External ID     Unit     7160467001 

Dispersion @ 1550 nm        ps/(nm-km)                      4.94 

Dispersion slope @ 1550 nm       ps/(nm
2
-km)                     0.022 

Attenuation @ 1550 nm            dB/km                       0.94 

Cut-off wavelength    nm                      1220 

Effective area               µm
2   

                    12.2 

Effective nonlinearity (γ)          (W-km)
-1

                                  10.9 
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Appendix G - MATLAB Codes for Pulse Propagation in Er
3+

 Doped 

Fiber Amplifiers 

The “F8L_EDFA_thesis.m” code is used to simulate the pulse propagation in the EDFA 

in Sec. 4.1.3.4. The normalized gain shape is imported from the experimentally measured data. 

The gain shape can also be created by the code, “absorption_emission_creator.m”. This code 

generates a gain function which is the sum of multiple Lorentzians since the erbium doped fiber 

gain medium has multiple resonance frequencies. The “ssfm_et_gain_spm_Er110_F8L
*
.m” is 

used to solve the ultashort pulse propagation in the EDFA using the split step Fourier method. 

The possible pulse gain is experimentally measured and the gain coefficient (g(ω)) can be 

calculated from the equation, g(ω)=lnG(ω)/2L, where G(ω) is the measured gain (ratio of input 

power and out power) and L is the length of EDF in the amplifier. 

 

F8L_EDFA_thesis.m 

 

% Split-Step Fourier Method: Modeling of Er
3+

 doped fiber laser amplifier system 

% version 3.0, by JKL 10/20/2010 

% Program solves the NLSE for the pulse propagation through an EDFA. 

<Four sections>  

% 1) Pre-chirp SMF28 

% 2) Pre-chirp Flexcore 1060 

% 3) EDF (Er110-Liekki) 

% 4) Post-chirp SMF28 

 

% Unit of time : fs 

% Unit of wavelength/length : nm 

% Unit of power : W 

% Unit of energy : fJ 

 

clear all; 

close all; 
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% Define general parameters 

c=300;                           % c=300 nm/fs 

l0=1569;                         % Center wavelength 1569 nm 

w0=(2*pi*c)/l0;                  % Center frequency 

% Define array parameters and time/freq. arrays 

num=2^12;                                     % # points in fft array: 2^12 

range=40000;                          % time range/window in fs, 40000 

dt=range/num;                         % temporal increment 

dw=2*pi/range;                        % spectral increment 

time=((1:num)-(num/2))*dt;           % time array 

freq=((1:num)-(num/2))*dw;           % frequency array 

wave=2*pi*c./(freq+w0);              % wavelength array 

dl=2*pi*c*dw/w0^2;                    % wavelength increment 

% DEFINE FIBER PARAMETERS 

 

% Fiber #1: SMF28 

n2=(3*10^-20)*10^18;   % n2 for fused-silica 

r0_smf28=10400/2;   % mode field radius in nm, physical diameter of 10400 nm 

aeff_smf28=pi*r0_smf28^2;  % effective core area, 84.95 um^2 

g_smf28=n2*w0/(c*aeff_smf28);  % effective nonlinearity in unit of 1/(W nm), 1.43 1/(W km)                                     

D_smf28=corning_smf28(l0)*10^-9; % dispersion parameter in fs/nm-nm, 17.3493 ps/km-nm 

dDdl=0.092;    % disperion slope parameter in fs/nm^2-nm 

b2_smf28=-(l0.^2/(2.*pi.*c)).*D_smf28; % beta2 (fs^2/nm), -22.113 ps^2/km 

b3_smf28=0*1.38e-4;   % beta3 (fs^3/nm) 1.38e-4 fs^3/nm 

a0=0*4.600*10^-14;   % 0.2 dB/km 

disop_smf28=dop(freq,b2_smf28,b3_smf28,0,0,0,0,a0); % compute dispersion operator 

 

% Fiber #2: Er110-Liekki 

r0_EDF=6500/2;    % mode field radius in nm, mfd 6500 nm for Liekke Er110 

aeff_EDF=pi*r0_EDF^2;  % core area 

g_EDF=n2*w0/(c*aeff_EDF);  % effective nonlinearity in unit of 1/(W nm) 

[b2_EDF,b3_EDF,b4_EDF,b5_EDF,b6_EDF,b7_EDF]=Liekke_EDF_bcoeff(w0);   % beta2 (fs^2/nm) 

b3_EDF=0*5.6907e-5;                                  % beta3 (fs^3/nm) 5.6907e-5 fs^3/nm 

a0=0*4.600*10^-14;                                      % 0.2 dB/km 

disop_EDF=dop(freq,b2_EDF,b3_EDF,0,0,0,0,a0);                 % compute dispersion operator 
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% EDF GAIN PARAMETERS 

% importgain=1: Import normalized wavelength dependent gain 

 

importgain=1;                                                  % import EDF gain spectrum 

if importgain==1, 

fn='C:\Documents and Settings\jinkang lim\My Documents\_Laboratory Items\2_MATLAB 

CODES\ssfm_code\EDF_dispersion\wavelength_dep_gain3.dat'; 

        data=dlmread(fn,',');   % read rows and columns 

        absfreq_data=data(:,2)';   % choose second columns 

        freq_data=absfreq_data-w0;             % Center frequency of gain function was subtracted 

        gain_data=data(:,3)'; 

        f_gain=interp1(freq_data,gain_data,freq,'linear',0); % interpolate spectrum data 

        malpha_Er110=(log(15)*(1/(2*1.00))*10^-9).*f_gain; % G(w)=exp[2g(w)L] => g(w)=lnG(w)/2L                                   

d_beta=0;     % gain induced dispersion 

    else 

        [N1,N2,Amp_ab1,Amp_ab2,Amp_ab3,Amp_ab4,Amp_em1,Amp_em2,Amp_em3,Amp_em4,... 

wa_ab1,wa_ab2,wa_ab3,wa_ab4,dwa_ab1,dwa_ab2,dwa_ab3,dwa_ab4,...   

wa_em1,wa_em2,wa_em3,wa_em4,dwa_em1,dwa_em2,dwa_em3,dwa_em4,p,q,d_beta,malpha]=abs

orption_emission_creator
*
(freq,w0,c);  % Create a gain using mulitple lorentzians 

end 

 

% Fiber #3: Flexcore 1060 

r0_flex=6200/2;   % mode field radius in nm, MFD=6.2 for Corning HI1060 

aeff_flex=pi*r0_flex^2;  % core area 

g_flex=n2*w0/(c*aeff_flex); % effective nonlinearity in unit of 1/(W nm) 

b2_flex=-4.5*10^-6;  % beta2 (fs^2/nm), -4.5 ps^2/km from JILA, -7 ps^2/km from Tamura 

% b2_flex=-7*10^-6; 

a0=0*4.600*10^-14;                       % 0.2 dB/km 

disop_flex=dop(freq,b2_flex,b3_flex,0,0,0,0,a0);  % compute dispersion operator 

 

% Parameters for Raman Response Function 

t1=12.2;                              % Raman response time 1 

t2=32.0;                              % Raman response time 2 

Ram=hR_t(time,t1,t2);                 % Import Raman response, same for all fibers 
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-------------------------------------------------------------------------------------------------------------------------------------------- 

% GENERATE INPUT ELECTRIC FIELD 

% First determine Dto of pulse with spectral width of Dlo 

% Assume a transform-limited pulse  

% OR, use imported spectrum and assume a transform-limited pulse 

% Signal Pulse Parameters 

T=(1/(56.57*10^6))*10^15;            % 1/Repetition rate (56.57 MHz) 

phi2=0;                                 % Pulse phase distortion, 0 

phi3=0;                                 % Pulse phase distortion, 0 

Paveo=0.011;                            % Initial average Power, 10 mW 

 

generate_spectrum=0; 

if generate_spectrum==1,                   % generate sech^2 spectrum with possible chirp 

    Dlo=12.2;                               % Pulse spectral FWHM 14.2 in nm 

    [Eto,Ito,pto,Ewo,Iwo,pwo]=sech_et_chirped(time,freq,Dlo,l0,1,0,0); 

    Dto=fwhm(time,Ito);   

    P_TL=(Paveo*(T/Dto))/1.134;            % transform-limited peak power from average power 

    [Eto,Ito,pto,Ewo,Iwo,pwo]=sech_et_chirped(time,freq,Dlo,l0,P_TL,phi2,phi3);                           

    Ilo=(2.*pi.*c./wave.^2).*Iwo;          % resize bin from frequency to wavelength 

    Po=max(Ito);                            % Initial power   

    Eno=sum(Eto.*conj(Eto)).*dt; 

else                                   

fn='C:\Documents and Settings\jinkang lim\My Documents\_Laboratory Items\2_MATLAB 

CODES\ssfm_code\input_fields\F8L_spec_123107.dat'; % import spectrum 

    data=dlmread(fn,',');                    

    absfreq_data=data(:,2)';                 

    freq_data=absfreq_data-w0;            

    Iw_data=data(:,3)';                   

    Iwo=interp1(freq_data,Iw_data,freq,'linear',0);    % interpolate spectrum 

     

    % create field with correct peak power 

    Eto=fftshift(ifft(fftshift(sqrt(Iwo))));         

    Dto=fwhm(time,Eto.*conj(Eto)); 

    Po=(Paveo*(T/Dto))/1.134; 

    Eto=sqrt(Po).*(Eto./max(Eto));    % time domain with correct peak power 

    [Ito,pto,Iwo,pwo,Ilo]=intensity_n_phase(freq,wave,Eto,w0); 

    Po=max(Ito);     
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    Eno=sum(Eto.*conj(Eto)).*dt; 

end 

 

-------------------------------------------------------------------------------------------------------------------------------------------- 

% MAIN SSFM PROGRAM 

-------------------------------------------------------------------------------------------------------------------------------------------- 

disp(sprintf('SSFM simulation of pulse propagation thru the amplifer')) 

disp(sprintf('Initial Peak Power = %0.5g W, Initial Average Power= %0.5g W, Pin/Psat : %0.5g',Po,Paveo)) 

 

tot_cputime=0; 

Dtall=[]; 

Pall=[]; 

% try to do 2000 steps per meter, h=500000 nm or h=5e-4 m or h=0.5 mm 

h=10^9/2000; 

 

% Section 1: pre-chirp smf28, length 0.42 m 

len1=1*0.42*10^9;    % pre-chirp fiber length of smf28 

numsteps1=len1/h;    % determine # of steps 

disp(sprintf('Section 1: Pre-chirp smf28, length %0.5g m, stepsize %0.5g m',len1/10^9,h/10^9)) 

[At,Dtall,Pall,cputime]=ssfm_et_spm(time,Eto,disop_smf28,w0,g_smf28,Ram,dt,h,numsteps1,freq,Dtall,Pall);  

tot_cputime=tot_cputime+cputime; 

 

% Section 2: prechirp flexcore 1060, length 0.51 m                                

len2=1*0.51*10^9;    % pre-chirp fiber length of flexcore 1060 

numsteps2=len2/h;    % determine # of steps 

disp(sprintf('Section 2: Pre-chirp flexcore, length %0.5g m, stepsize %0.5g m',len2/10^9,h/10^9)) 

[At,Aw,Dtall,Pall,cputime]=ssfm_et_spm_pre_JK(time,At,disop_flex,w0,g_flex,Ram,dt,dw,h,numsteps2,freq,

Dtall,Pall); 

tot_cputime=tot_cputime+cputime; 

 

% Section 3: EDF, length 1.0 m 

len3=1*1.0*10^9;    % Er110 length 

numsteps3=len3/h;    % determine # of steps 

disp(sprintf('Section 3: EDF, length %0.5g m, stepsize %0.5g m',len3/10^9,h/10^9)) 

[At,Dtall,Pall,cputime]=ssfm_et_gain_spm_Er110_F8L
*
(time,At,Aw,disop_EDF,w0,g_EDF,dt,dw,h,numsteps3

,freq,Ram,d_beta,malpha_Er110,Po,Dtall,Pall); 

tot_cputime=tot_cputime+cputime; 
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% Section 4 : postchirp flexcore 1060 

len4=0*0.49*10^9;    % post-chirp fiber length of flexcore 1060 

numsteps4=len4/h;    % determine # of steps 

disp(sprintf('  Section 4: Post-chirp flexcore, length %0.5g m, stepsize %0.5g m',len4/10^9,h/10^9)) 

[At,Dtall,Pall,cputime]=ssfm_et_spm_post_JK(time,At,disop_flex,w0,g_flex,Ram,dt,h,numsteps4,freq,Dtall,P

all); 

tot_cputime=tot_cputime+cputime; 

 

% Section 5: post-chirp smf28, 0.57 m 

len5=1*0.57*10^9;    % post-chirp fiber length of smf28 

numsteps5=len5/h;    % determine # of steps 

disp(sprintf('Section 5: Post-chirp smf28, length %0.5g m, stepsize %0.5g m',len5/10^9,h/10^9)) 

[At,Dtall,Pall,cputime]=ssfm_et_spm_post_JK(time,At,disop_smf28,w0,g_smf28,Ram,dt,h,numsteps5,freq,Dt

all,Pall); 

tot_cputime=tot_cputime+cputime; 

 

% Section 6: post-chirp PBG, length 0 m 

len6=0*0.125*10^9;    % post-chirp fiber length of PBG 

numsteps6=len6/h;    % determine # of steps 

disp(sprintf('Section 6: Post-chirp PBG fiber, length %0.5g m, stepsize %0.5g m',len6/10^9,h/10^9)) 

[At,Dtall,Pall,cputime]=ssfm_et_spm_post_JK(time,At,disop_PBG,w0,g_PBG,Ram,dt,h,numsteps6,freq,Dtall,

Pall); 

tot_cputime=tot_cputime+cputime; 

 

% Final Length 

totlen=(len1+len2+len3+len4+len5+len6)./10^9; % total fiber length in meters 

 

z=(([1:length(Dtall)]).*(5*h./10^9));  % need 5h since Dt is taken every fifth step 

zrt=z./totlen; 

 

% Final Fields 

[It,pt,Iw,pw,Il]=intensity_n_phase(freq,wave,At,w0); 

P=max(It);     % final peak power 

ACIto=autocorr(Ito);    % initial intensity autocorrelation 

ACIt=autocorr(It);    % final intensity autocorrelation 

Dt=fwhm(time,It);    % final pulse width 

Pave=P*(sum(It./max(It).*dt))/T;   % final average power 
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-------------------------------------------------------------------------------------------------------------------------------------------- 

% RESULTS: 

-------------------------------------------------------------------------------------------------------------------------------------------- 

% Peak Power Results 

disp(sprintf(' ')) 

disp(sprintf('Initial Peak Power: %0.5g W',Po)) 

disp(sprintf('Final Peak Power: %0.5g W',P)) 

disp(sprintf('Peak Power Gain: %0.5g ',10.*log10(P/Po))) 

% Peak Power Results 

disp(sprintf(' ')) 

disp(sprintf('Initial Average Power: %0.5g W',Paveo)) 

disp(sprintf('Final Average Power: %0.5g W',Pave)) 

 

% Energy results 

Eno=sum(Ito).*dt; % initial energy, Here sum*dt means integral of area 

Enf=sum(It).*dt;  % final energy 

disp(sprintf(' ')) 

disp(sprintf('Initial Energy: %0.5g fJ',Eno)) 

disp(sprintf('Final Energy: %0.5g fJ',Enf)) 

disp(sprintf('Energy Gain: %0.5g ',10.*log10(Enf/Eno))) % 10*log10(Enf/Eno) -> convert energy 

gain into log scale 

% AC resutls 

disp(sprintf(' ')) 

disp(sprintf('Initial AC FWHM: %0.5g fs',fwhm(time,ACIto)))  % Initial AC trace widths 

disp(sprintf('Final AC FWHM: %0.5g fs',fwhm(time,ACIt)))  % Final AC trace widths 

disp(sprintf(' ')) 

 

% Plot temporal and spectral changes 

plotresults=1; 

if plotresults==1, 

    figure(1); 

    plot(time,Ito) 

    axis([-500,500,0,1.5*max(Ito)]) 

    xlabel('Time (fs)','FontSize',17,'FontName','times'); 

    ylabel('Initial Temporal Intensity','FontSize',17,'FontName','times'); 

    figure(2) 

    plot(wave,Ilo) 
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    axis([1500,1600,0,1.5*max(Ilo)]) 

    xlabel('Wavelength (nm)','FontSize',17,'FontName','times'); 

    ylabel('Initial Spectral Intensity','FontSize',17,'FontName','times'); 

    figure(3) 

    plotyy(time,It,time,pt) 

    xlabel('Time (fs)','FontSize',17,'FontName','times'); 

    ylabel('Final Temporal Intensity','FontSize',17,'FontName','times'); 

    figure(4) 

plot(wave,Il) 

axis([1400,1700,0,max(Il)]) 

  xlabel('Wavelength (nm)','FontSize',17,'FontName','times'); 

  ylabel('Final Spectral Intensity','FontSize',17,'FontName','times'); 

    figure(5) 

    plot(time,Ito./max(Ito),time,It./max(It)) 

    axis([-1000,1000,0,1.5*1]) 

    xlabel('Time (fs)','FontSize',17,'FontName','times'); 

    ylabel('Final Normalized Temporal Intensity','FontSize',17,'FontName','times'); 

    figure(6) 

    plot(wave,Ilo./max(Ilo),wave,Il./max(Il)) 

    axis([1400,1800,0,1.1]) 

    xlabel('Wavelength (nm)','FontSize',17,'FontName','times'); 

    ylabel('Final Normalized Spectral Intensity','FontSize',17,'FontName','times'); 

    figure(7) 

    plot(time,ACIto,time,ACIt); 

    axis([-2000,2000,0,1.5*1]) 

    xlabel('Time (fs)','FontSize',17,'FontName','times'); 

    ylabel('Final Normalized Intensity Autocorrelation','FontSize',17,'FontName','times'); 

    figure(8) 

    plot(wave,10.*log10(Ilo/max(Ilo)),wave,10.*log10(Il/max(Il))); 

    axis([1400,1800,-50,5]) 

    xlabel('Wavelength (nm)','FontSize',17,'FontName','times'); 

    ylabel('Spectral Intensity (dB)','FontSize',17,'FontName','times'); 

    figure(9) 

    [AX,H1,H2]=plotyy(z,Dtall,z,10.*log10(Pall./Po)); 

    line(ones(1,501).*len1.*10^-9,[0:500],'Color','r','LineWidth',2) 

    line(ones(1,501).*(len1+len2).*10^-9,[0:500],'Color','r','LineWidth',2) 

    line(ones(1,501).*(len1+len2+len3).*10^-9,[0:500],'Color','r','LineWidth',2) 
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    line(ones(1,501).*(len1+len2+len3+len4).*10^-9,[0:500],'Color','r','LineWidth',2) 

    line(ones(1,501).*(len1+len2+len3+len4+len5).*10^-9,[0:500],'Color','r','LineWidth',2) 

    xlabel('Propagation Distance (m)'); 

    set(get(AX(1),'Ylabel'),'String','Temporal FWHM (fs)') 

    set(get(AX(2),'Ylabel'),'String','Peak Power Gain (dB)') 

end 

 

 

ssfm_et_gain_spm_Er110_F8L
*
.m 

 

Version 1.0, Oct/09/2010 JKL 

Generic main program that implements the Split-Step Fourier Method (SSFM) 

The nonlinearity only includes SPM, incorporate gain per step 

 

% units of time: fs 

% units of wavelength/length: nm 

% units of power : W 

 

function[At,Dtall,Pall,cputime]=ssfm_et_gain_spm_Er110_F8L(time,At,Aw,dop,w0,g,dt,dw,h,numsteps,freq,

Ram,d_beta,malpha_Er110,Po,Dtall,Pall) 

 

% Input: 

% Eto is the initial complex electric field E(t) 

% dop is the dispersion operator, which includes the fiber dispersion 

% h is the step-size in nm 

% w0 is the center angular frequency in 1/fs 

% g is the effective nonlinearity in 1/(W nm) 

% numstep is the # of steps 

% Output: 

% At temporal electric field 

% Dtall, Pall, Pulse duration and peak power per step 

 

tic; 
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-------------------------------------------------------------------------------------------------------------------------------------------- 

% main program loop 

-------------------------------------------------------------------------------------------------------------------------------------------- 

% non-gain-saturated regime. 

for s=1:numsteps,   

            At=exp(h.*nop_spm_gain(At,w0,g,dt,Ram)).*At;  

            Aw=fftshift(fft(fftshift(At))); 

            Aw=exp(h.*dop).*Aw; 

            Aw=exp(h.*malpha_Er110).*Aw; 

            Aw=exp(h.*i.*d_beta).*Aw;  % Assume d_beta=0 

            At=fftshift(ifft(fftshift(Aw)));         

                      

      if mod(s,5)==0, 

        It=At.*conj(At); 

        Dti=fwhm(time,It); 

        Dtall=[Dtall,Dti]; 

        Ppi=sum(At.*conj(At)).*dt;        % output pulse energy instead of power 

        Pall=[Pall,Ppi]; 

        Iw=Aw.*conj(Aw); 

        figure(1) 

        plot(freq,Iw) 

        axis([-0.1,0.1,0,max(Iw)+1])            

title('GAIN fiber section');   

end 

 

cputime=toc; 

 

Note: Gray-shadowed codes can be found in Ref. [146] and gray-letter codes are not used for 

simulations. 
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Appendix H – Dispersion and Nonlinearity Values of Optical Fibers 

Used in This Thesis 

We have evaluated the dispersion values and effective nonlinearity values at 1550 nm for 

fibers in our laboratory.  It is very important to know those values in order to design mode-

locked laser oscillators, fiber amplifiers, and pulse compression. The fibers are sorted by three 

groups such that gain fibers, step index fibers, and photonic bandgap fibers 

(PBGF).
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All dispersion values and effective nonlinearity values are evaluated at 1550 nm
 

 


