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The current paper presents the experimental investigation of the heat transfer performance of highly enhanced 

surfaced tube bundles. The two bundles studied are high pressure and low pressure TBII tubes for R-134a and R-

123, respectively. The tube bundle is a staggered triangular arrangement with a tube pitch of (P/D 1.167). Twenty 

enhanced tubes were used in the bundle; the tube outer diameter and length are 19.05 mm (3/4 inch) and 1 m (39.36 

inch), respectively. Three input variables were studied: heat flux (5-60 kW/m²), mass flux (15-55 kg/m².s), and 

quality (10-70%). The test saturation temperature was 4.44 C for R-134a and 14.44 C for R-123. The local heat 

transfer performance of the bundle is reported. A local method employing the Enthalpy Based Heat Transfer 

technique was implemented in the data reduction. Both tube bundles showed a strong dependency on heat flux as 

expected. The R-134a bundle showed a performance lower than that of pool boiling. The R-123 bundle showed a 

secondary dependency on quality. The quality effect becomes pronounced at high qualities and high average bundle 

heat load. In latter case enhanced tubes performance drops quickly and reaches that of a smooth tube. 

Introduction 

The current paper presents a study of the heat transfer performance of enhanced tube bundles. This research 

project was funded by ASHRAE (RP-1316). The type of analysis used in this research is based on local 

measurements. Specifically, four instrumented tubes included in the bundle are used to determine local heat transfer 

coefficients.  The overall bundle was setup in a staggered arrangement of 20 tubes with a standard tube pitch (P/D 

1.167).  The application of this research is in design of flooded refrigerant evaporators, which have wide impact in 

the HVAC&R industry.  A typical application for the flooded evaporators is high capacity centrifugal chillers. 

A flooded evaporator is a shell and tube heat exchanger in which a fluid circulates inside the tube bundle and is 

cooled by a refrigerant circulating in the shell and over the tube bundle. Cooling takes place through boiling (phase 

change) of the refrigerant. In flooded evaporators, the refrigerant flows over the tube bundle from the bottom up; it 

enters the shell at a thermodynamic quality near 10%, due to the expansion device, and leaves at 100% quality 
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(saturated vapor). This application is usually called “shell boiling.” The tubes used in these bundles can be smooth 

or enhanced. 

The goal of the current study is to investigate the effect of heat flux, mass flux and quality on the heat transfer 

performance of flooded refrigerant evaporators that utilize highly enhanced tubes.  This includes both high and low 

pressure refrigerants R-134a and R-123 and tubes designed specifically for each refrigerant.   The primary outcome 

is the local heat transfer coefficient in the bundle.  The following sections describe the facility, the data analysis used 

and presents the results.   

The primary global variables for designing flooded refrigerant evaporators are heat duty, mass flux, tube 

arrangement, and tube pitch. Within the tube bundle, variables like heat flux and quality vary considerably. The test 

matrix was set up as a three dimensional matrix (5×6×4), where the number of points corresponds to the input 

variables as shown in Table 1.  

Table 1 Test matrix inputs 

Mass flux (kg/s.m²) 15 20 25 35 45 55 

Heat flux (kW/m²) 5 15 30 45 60  

Inlet Quality 0.10 0.35 0.55 0.70   

 

Background  

Boiling on a tube bundle has been in use for decades and has many applications: fire tube steam boilers, kettle 

re-boilers, waste heat boilers, and flooded refrigerant evaporators. The focus of this study is flooded refrigerant 

evaporators, which are widely used in centrifugal chillers, a high capacity cooling application. In flooded 

evaporators, refrigerant enters the tube bundle as a two phase mixture (at approximately 10% quality) due to the 

expansion device effect, and refrigerant typically leaves the bundle as saturated vapor. The possible heat transfer 

regimes of the flooded evaporator from bottom to top are as follows: convective heat transfer, sub-cooled boiling, 

nucleate boiling, sliding bubbles evaporation, and film boiling. In some cases, the top tubes may experience dry-out. 

The types of tubes used in flooded refrigerant evaporators are smooth, integral fin, and enhanced. Recently, 

enhanced tubes have been the focus of many research projects because of their high efficiency. Furthermore, 

enhanced tube technology has been on the rise as machining techniques continue to advance, previously an obstacle 

to developing these tubes. 
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Among those who provided tube bundle reviews are Ribatski and Thome (2007), Webb (2005), Casciaro and 

Thome (2001) Part 1, Browne and Bansal (1999), Thome (1998), Thome (1996), Collier and Thome (1996), Thome 

(1990), Jensen and Hsu (1988). Three variables have the most significant effect on the heat transfer coefficient 

(often referred to as “bundle performance”): heat flux, quality, and mass flux. Those variables are also the center of 

the analysis of the current study. Notably, Fujita et al. (1986), Memory et al. (1992), and Memory et al. (1994) 

studied boiling over smooth and enhanced tube bundles in a pool of liquid. However, this is considered a different 

application than that in the current study, since it does not present the effect of mass velocity on convective boiling; 

in some cases, the calculation of quality is not possible. Therefore, the effect of quality cannot be assessed. 

The following authors reported varied enhanced tube bundle studies highlighting the effect of heat flux, quality, 

and mass flux. Chyu et al. (2009) studied boiling of ammonia/lubricant mixture on a horizontal enhanced tube 

bundle; the bundle effect was more significant at higher saturation temperatures. Also, saturation temperature had a 

more significant effect on the tube bundle performance than on the pool boiling performance.  Schafer et al. (2007) 

studied the effect of novel plasma-coated tubes on the bundle performance using R-134a as the working fluid; 

coated tubes showed a significant increase in bundle performance and single tube performances. At higher heat 

fluxes, bundle performance approached that of a single tube. Chien and Wu (2004) studied convective boiling of R-

123 and R-134a over smooth and low fin tube bundles. They reported that the heat transfer coefficient increased 

with the increase of quality for R-134a on smooth tube, while the mass flux had small effect on performance. Also, 

low fin tubes showed significant performance enhancement over smooth tubes.  

Robinson and Thome (2004) presented one of the most comprehensive studies on this topic, studying the local 

bundle heat transfer coefficient (comparable to the current study) for three types of tube bundles all with standard 

tube pitch (P/D 1.167). For smooth tube bundles, they reported that the local heat transfer coefficient did show a 

significant change with the change of mass flux. Next, for a constant mass flux over a range of quality, the heat 

transfer coefficient increased with the increase of heat flux. However, for constant heat flux and mass flux, the heat 

transfer coefficient did not show a significant effect with the change of quality. 

For the latter authors study of an integral fin (1024 fins/m (26 fins/inch)) tube bundle, the heat transfer 

coefficient did not show a significant change with the change of mass flux over a range of quality and constant heat 

flux while for constant mass flux and heat flux, the heat transfer coefficient did not show a significant change with 

the change of quality.  
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Also, for the enhanced tube portion of the study (Turbo BII tube), and for a range of quality and constant mass 

flux, the heat transfer coefficient did not show a significant change with mass flux. Again, for constant mass and 

heat fluxes, the heat transfer coefficient did not show a significant change with quality. Meanwhile, the bundle effect 

ranged from 0.8 to 1.6 for R-134a, and from 0.6 to 1.2 for R-410a and R-507a.  

Kim et al. (2002) presented a study of different types of enhanced tube bundles with R-134a and R-123 at 

different saturation temperatures. They conducted tests for smooth tube bundles as well and reported that the heat 

transfer coefficient for the enhanced tube bundles was dominated by heat flux with negligible dependency on mass 

flux or quality. The increase in saturation temperature enhanced the heat transfer coefficient. Finally, they reported 

that the convective effect for R-134a was higher than for R-123 for the enhanced tubes, but the smooth tube bundle 

showed the opposite. They explained that this interesting phenomenon is likely due to the bubble behavior 

(frequency and size). For the enhanced bundle the bubble size generated at the tube pores is the same for both 

refrigerants, so the convective effect is dominated by bubble frequency and is higher for R-134a than R-123 

regardless that the bubble size of R-123 is larger. For the smooth bundle and given the larger bubble size of R-123 

and that bubbles are generated at the tube surface, the convective effect is dominated by bubble size rather than 

frequency and will yield higher for R-123 than R-134a. 

Tatara and Payvar (2000) Parts I and II presented an experimental investigation of the effect of oil on boiling of 

R-123 and R-134a, respectively, on staggered pitch enhanced tube bundle and calculated the local heat transfer 

coefficient, they reported that the increase of oil concentration decreased tube performance. Moreover, Tatara and 

Payvar (1999) reported, without much emphasis on the physics of the trend, that the heat transfer coefficient 

increased with the increase of oil concentration when testing an integral fin (1024 fins/m (26 fins/inch)) tube bundle 

with R-123 and R-134a.  

Gupta and Webb (1995a) conducted experiments for an integral fin (1024 fins/m (26 fins/inch)) tube bundle 

with P/D 1.25 for R-11 at two different saturation temperatures (4.4 and 26.7 °C). They studied the effect of 

convective boiling and pool boiling finding that convective boiling coefficients were twice as high as pool boiling 

coefficients. In Gupta and Webb (1995b), the authors used GEWA SE and Turbo B. Data showed convective 

behavior similar to that for pool boiling data and that the enhanced tubes’ convective effect was much less than that 

for integral fin tubes.  
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Danilova and Dyundin (1972) presented experimental work for boiling of R-12 and R-22 over smooth and 

finned tube bundles (registering different fin geometry). They reported that for the bigger fin spacing, the effect of 

the number of rows of tubes was considerable. Specifically for small fin spacing, the effect of convective boiling 

was more pronounced. 

Experimental apparatus  

The experimental facility was constructed to measure the evaporation heat transfer coefficient in a bundle.  The 

system is not a traditional vapor compression cycle. The system is driven with a positive displacement pump.  The 

tube bundle was set up in the test section, the main component of the test facility, which is located at the highest 

point of the test facility. The height of the test section was set to provide the required net positive suction head 

(NPSH) for the refrigerant pump, which was proven to be a design constraint for R-123, since it operates at low 

pressure. The refrigerant leaving the test section flows to the condenser, the refrigerant pump, and completes the 

circuit with the pre-boiler as shown in Figure 1. The test section is water heated; in which, water circulates 

throughout the test section and a secondary heat exchanger (the heat source to the test section). 

 
Figure 1 Schematic diagram of refrigerant circuit 
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Test section 

The test section is a rectangular pressure vessel, designed for high and low pressure refrigerants, that is 

essentially a rectangular-shape shell and tube heat exchanger; the refrigerant flows up through the tube bundle while 

water circulates in the tubes. The test section has four sight glasses, two on each side which provided a full view of 

the tube bundle covering the refrigerant inlet up to the top of the tube bundle. The tubes and steel endplates are 

sealed together by expanding the copper tubes, which is known as tube rolling. Plates placed inside the bundle are 

used for mounting half dummy tubes. The half dummy tubes create symmetry for the refrigerant flow around the 

tubes and simulate an actual evaporator, i.e. making one side a mirror image of the other.  

Refrigerant enters the tube bundle via 8 inlet ports, equally spaced along the length of the test section. The ports 

are aimed downward, opposite to the flow direction, to reduce the flow kinetic, thus making the vapor equally 

distributed. In addition, four dummy tubes having the same diameter and tube pitch as the active tubes are swaged in 

the endplates. Meanwhile, refrigerant exits the tube bundle through rollover rectangular openings on the sides of the 

test section. The total number of openings is six, three on each side. 

 

  
Figure 2 Test section cross sectional view 
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The water enters the test section at the top of the bundle and is divided into five channels (paths) parallel to each 

other, it is then sufficient to have the water measurements only on one of the five paths. This instrumented path was 

chosen to be the middle tube of the three-tube-set at each row, and was given the name “A.” The water 

measurements include temperature and pressure measurements. Temperature drop is measured for each of the four 

tubes of path “A,” while pressure drop is measured across the first and last tubes; that can also be used for 

determining the total pressure drop across the four tubes. Heat flux was adjusted in the other four paths to match that 

of “A.” 

Water instruments  

Total temperature drop in path “A” is determined by measuring the temperature drop in each of the four tubes. 

An insert tube made of stainless steel wrapped with thick helical cable is placed in the center of each enhanced tube. 

The insert tube carries seven thermistors, two for measuring the inlet and outlet water temperatures and five internal 

thermistors for determining the local parameters. Details about the insert tube are mentioned in the next subsection. 

The themistors were manufactured in the lab by encapsulating each thermistor in a set screw as shown in Error! 

Reference source not found.. The set screw was drilled so that the temperature element is near the tip of the device.  

Once manufactured, the thermistor probes were calibrated and checked before being affixed to the insert tube. All 

temperature instruments were calibrated using a constant temperature bath (made by Fluke model 7321) with an 

uncertainty of ±0.01 C and uniformity of ±0.005 C. the temperature bath was calibrated using NIST traceable 

thermometers with a resolution of 0.01C. The flow meters used were Coriolis type, which is known for its high 

accuracy. 

Insert tube 

The water entering the test section flows within the test tube and over the insert tube (or in between the test tube 

and insert tube) as illustrated in Figure 3. The insert tube has two purposes: to increase the water velocity and thus 

the water heat transfer coefficient, and to support the seven thermistors. The higher the water heat transfer 

coefficient, the more accurate the measured heat transfer coefficient will be because of the better thermal resistance 

balance. This is tempered by the fact that Wilson Plot can be more difficult. Two of the seven thermistors, the 

outermost ones, are located outside the heated section and measure the inlet and outlet temperatures of the water.  

These two probes are axially located in the end-plates of the test section. The advantage of this location is to 
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decrease any inaccuracy of the temperature measurement due to ambient loss. The other five thermistors are evenly 

distributed along the insert tube. The probe tip was located at the center of the space between the test tube and the 

insert tube and secured in position by tapping a hole in the insert tube wall and threading the probe to the require 

depth. The insert tube is centered inside the 1.3 m (51.5 inch) long and 0.01905 m (0.75 inch) nominally wide test 

tube. Dimensions of the test tubes are provided in Table 2. The tubes are externally and internally enhanced for 

refrigerant and water, respectively. 

 
Figure 3 Cross sectional view of test tube and insert tube 

 

Table 2 Enhanced tubes dimensions 

 
Outside Dia. 

mm (inch) 

Nominal Wall 

mm (inch) 
Fin/inch 

Finished fin OD 

mm (inch) 

Inside Root Dia. 

mm (inch) 

Outside Root Dia. 

mm (inch) 

TBIIHP 19.05 (0.75) 0.635 (0.025) 48 18.69 (0.736) 0.559 (0.022) 17.32 (0.682) 

TBIILP 19.05 (0.75) 0.635 (0.025) 48 18.75 (0.738) 0.559 (0.022) 17.27 (0.680) 

 

Refrigerant instruments 

Temperature and pressure are measured at five levels (heights) in the shell: one at the bundle inlet and four 

located above the plane of the four instrumented tubes of path “A” as illustrated in Figure 2. Only pressure 

measurements were used in the analysis; temperature measurements were used only to check the agreement between 

the temperature and the corresponding saturation temperature determined from the pressure transducers’ 

measurement (± 0.2 C was considered acceptable). Temperature probes and pressure transducers are connected to 

the half dummy tubes installed on the test section’s inside plates. Each refrigerant has its own set of pressure 

transducers, high-range pressure transducers for R-134a and low-range pressure transducers for R-123 for increased 

accuracy. Refrigerant flow rate was measured using a Coriolis type flow meter. 
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Data reduction 

Tube bundle heat transfer performance is evaluated over a range of heat fluxes, mass fluxes, and other qualities. 

Particularly, the heat transfer coefficients reported in this study are local to one location in the bundle. The water 

temperature is measured at five locations in each of the four tubes of the instrumented water path.  This data is fit 

with a second degree polynomial as ( )T f z . A finite heat transfer analysis determines the local heat transfer 

coefficient. Heat is transferred from the water to the cylinder’s inner wall by convection, from the inner wall to its 

outer wall by conduction, and from the outer wall to the refrigerant by convection. 

Consequently, applying conservation of energy and the 1-D heat transfer equations on the finite control volume, 

assuming no fouling resistance, yields 

    , , ,

2

ln

c
w i hot wall in wall in wall out

o

i

k dz
h dA T T T T dQ

D

D


   

 
 
 

 (1) 

and 

    , , ,

2

ln

c
r o wall out cold wall in wall out

o

i

k dz
h dA T T T T dQ

D

D


   

 
 
 

 (2) 

where  

 i idA D dz , (3) 

and  

 o odA D dz . (4) 

Applying Newton’s law of cooling yields 

  o hot colddQ U dA T T   . (5) 

Defining the thermal resistance of the tube wall as 

 
1

ln
2

o
wall

c i

D
R

dzk D
 

  
 

. (6) 

Using Equations (1), (2), (5), and (6), yields the following thermal resistances model 

 
1 1 1 1

ln
2

o

o w i c i r o

D

UdA h dA dzk D h dA
 
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 

. (7) 

Substituting Equations (3) and (4) yields 
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1 1 1o

wall
w i r

D
R

U h D h
   . (8) 

Solving for the heat transfer coefficient rh yields 

 

1
1 1 o

r wall
w i

D
h R

U h D


 

   
 

. (9) 

Local heat transfer coefficient 

Notably, Equation (9) is length independent. Therefore, all the variables of Equation (9) can be used in the local 

or average analysis (for example, lcoalU  or oU ). To determine the local heat transfer coefficient, Equation (9) is 

modified to 

 

1
1 1 o

local wall
local w i

D
h R

U h D


 

   
 

, (10) 

where localU  is the local overall heat transfer coefficient. Following the definition of Newton’s law of cooling yields 

 local
local

local

q
U

T T





. (11) 

Substituting in Equation (10) yields 

 

1
1local o

local wall
local w i

T T D
h R

q h D



      
. (12) 

As stated in Equation(12), the local heat transfer coefficient is determined at each local temperature measurement. 

Local heat flux 

The total heat transfer is determined according to the Enthalpy Based Heat Transfer Analysis (EBHT), which 

accounts for the effect of pressure change. For the current configuration, the water flow inside the tube experiences 

large pressure drop. In Equation (12), the local temperature localT and refrigerant temperature T are obtained by 

direct measurements while the local heat flux localq  is determined by the enthalpy change on the differential element 

as 

 dQ m di  . (13) 

Assuming incompressible fluid (valid for the current water operating conditions), the finite enthalpy di can be 

expressed as 
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 pdi C dT v dP    . (14) 

Substituting in Equation (13) and dividing by oD dz   yields 

 

local

p
o o

q

dQ m dT dP
C v

dzD D dz dz 


   
 





. (15) 

where dT dz  is determined from  

 2
1 2 3T C z C z C   . (16) 

The pressure drop term of Equation (15) can be determined by assuming a linear water pressure drop across the 

tube since the pressure can be determined at the inlet and outlet of each tube. Therefore, dP dz is reduced to

P L . Pressure drop and temperature slope are determined according to the tube length (1 m). The last necessary 

component in Equation (12) is the water heat transfer coefficient. 

Water heat transfer coefficient 

The water flows between the enhanced tube and the insert tube following the swirl shape of the insert tube as 

illustrated in Figure 3. For flow inside a tube, the heat transfer coefficient for no phase change can be determined 

using  

 D w
i

h

Nu k
h

D


 , (17) 

where all the water properties are evaluated at the average inlet and outlet temperatures. For this study the water side 

Reynolds number varied from 10,000 to 35,000. Since the flow is exclusively turbulent, the Nusselt number can be 

determined using Gnielinski’s correlation (1976) presented as  

 
  

   1/2 2/3

8 Re 1000 Pr

1 12.7 8 Pr 1
D

D

f
Nu

f




 
. (18) 

The entrance region can be ignored because of the presence of the swirls and the turbulent flow. The above 

correlation, also called the modified Petukhov’s correlation (1970), is widely applied in flow inside tubes; 

Gnielinski’s correlation works over a wide range of Reynolds numbers (3000 to 5×106) and Prandtl numbers (0.5 to 

2000) with accurate results, the friction factor is defined as 

    2
 0.79ln Re 1.64Df


  . (19) 
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The friction factor proposed by Gnielinski in Equation (19) is that of a smooth tube. Since the tubes used are 

internally enhanced and the pressure drop is measured over each tube, the friction factor can be calculated directly 

rather than depending on a model 

 
2

2h

c

DP
f

L V


   . (20) 

The internal enhancement of the tubes (micro-fins) and the insert tube’s swirls affect accuracy in measuring 

both the characteristic length and the hydraulic diameter of the above equation. Therefore, the Gnielinski correlation 

needs a correction factor multiplier, which is determined using the modified Wilson plot technique (Briggs and 

Young (1969)). Accordingly, the correction factor becomes the leading coefficient of the water heat transfer 

coefficient as 

 w i ih C h  . (21) 

The modified Wilson plot technique was done in a single tube test section as a part of the pool boiling study of this 

project. Details were published earlier in Gorgy and Eckels (2010) and Gorgy and Eckels (2012). The uncertainty in 

the water side heat transfer coefficient was dominated by the uncertainty in iC  which was found from the 95% 

confidence interval of the linear regression. 

Local quality 

Similar to the local heat transfer coefficient, the local quality is determined at each temperature measurement 

location (thermistor) and at the minimum flow area between the tubes. The thermodynamic quality is determined by 

performing an energy balance between the refrigerant side and the water side as  

 ref fg localm x h q DL     . (22) 

The test section’s 1 m side is theoretically divided into four horizontal planes and five vertical sections, 

producing 20 control volumes. The test section then becomes a (4×5) matrix. Above each plane (row) lies a group of 

five tubes; the vertical sections (columns) divide the test section so that the thermistors are centered in each vertical 

section. Therefore, applying the energy balance on each control volume yields 

 
 
 ,

1, ,

5
5 5i j

i j i j

ref
fg local

x x

m L
x h q D

 

    


, (23) 

or 



13 
 

 ,

1, ,

5
i jlocal

i j i j
ref fg

q DL
x x

m h




 
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
. (24) 

Since the quality at the bundle bottom is constant at all five locations and equals the test section inlet quality, 

the quality at each row is determined from the bottom up. The subscript ,i j corresponds to (row,column); with the 

quality at row i  and the local heat flux 
,i jlocalq  , the quality at the next row 1i  is determined. The local quality 

(the quality at the minimum cross-sectional area) is calculated by adding the quality entering the instrumented tube 

to the quality rise due to the local heat flux at the tube centerline. The latter quality is determined by performing an 

energy balance around the instrumented tube which is in the center of three tubes (i.e. within each of the 20 control 

volumes). Thus, the energy balance can be expressed as 

 
 


,,

5

3 2 5
local i ji j

ref local
fg

x x

m q L
x h D



    


, (25) 

or 

 
, ,

2

3i j

local
local i j

ref fg

q DL
x x

m h

 
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
. (26) 

Mass flux 

The mass flux (also called mass velocity) is calculated based on the minimum area between tubes as  

 minG m A  , (27) 

where 

     2
min, / mP D TA P D D D L   . (28) 

Uncertainty analysis 

The uncertainty analysis is performed using the Kline-McClintock (1953) second order law. To determine the 

final uncertainty in the heat transfer coefficient first required defining the input variables uncertainty. The input 

variables can be the measured variables (temperature, pressure, and flow rate) or the calculated variables such as 

saturation temperatures, water heat transfer coefficient, and so forth. Table 3 presents the input uncertainties. The 

water properties were called in Excel from RefProp 8.0 without using curve fit equations. Therefore, the water 

properties uncertainty is considered negligible. 
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Table 3 Input Uncertainty 

uT (°C/°F) ±0.015/0.027 um  0.1% × Reading uwp,low-range
 

±0.5157l kPa/0.075 PSI

uTsat, R134a(°C/°F)
 

±0.022/0.0369 uwp,high-range  1.0342 kPa/0.15 PSI uhw 0.04·hw

uTsat, R123(°C/°F)
 

±0.03/0.054     

 

The local heat transfer coefficient is determined by applying propagation of error on Equation (29). The 

uncertainty in all the variables in this equation is given in Error! Reference source not found., except the local 

temperature localT and the temperature slope dT dz . The temperature slope uncertainty was determined using a 

Monte Carlo simulation which is explained at length in Gorgy and Eckels (2012). The uncertainty of the local 

temperature is the same as the temperature uncertainty. The analysis showed that the dominant source of uncertainty 

is the temperature uncertainty; therefore, data at low heat flux presents higher uncertainty than high heat flux data 

because of the low temperature difference.  

  

1

1

/
local sat o

local wall
w io p

T T D
h R

h Dm D C dT dz v P L


     
   

. (29) 

R-134a results 

Data points are sorted according to heat flux, mass flux and local quality. Those three variables are interrelated, 

which makes it difficult to determine the change in the heat transfer coefficient with respect to one variable 

independent of the other two (i.e. the other two held constant). Rather, the range of the other two variables is kept as 

narrow as possible. Next, the bundles’ heat transfer coefficient vs. heat flux plots often includes the single pool 

boiling curve for comparing the convective and pool boiling for each tube pitch. Ultimately, heat flux proves to be 

the most influential variable for enhanced tubes rather than mass flux or quality; therefore, the first and most 

indicative plot of the bundle performance is the heat transfer coefficient vs. heat flux. 

Testing was performed at a saturation temperature of 4.44 C using an enhanced TBIIHP tube. Data were 

collected according to the proposed test matrix based on a total of 55 runs. Each run produces 20 data points of local 

heat transfer coefficients, local heat fluxes, and local qualities, thus, 1100 total data points. Figure 4 presents all 

1100 points. It is clear from this figure that at low and high heat fluxes, the effect of quality and mass flux is 

secondary. Also, between heat fluxes of 20 and 40 kW/m², the heat transfer coefficient can vary by up to 10000 
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W/m².°C indicating that quality and mass flux effect are also important variables. Since heat flux is important in all 

three regions we consider it the dominant variable. The data is compared to that of the single tube pool boiling of the 

TBIIHP tube (see Gorgy and Eckels (2010) for details). At low heat flux range (minimum heat flux up to 20 

kW/m²), all points show enhanced performance, which can be interpreted as the effect of early pores activation due 

to flow boiling. As heat flux increases, the bundle performance becomes significantly lower than does the single 

tube performance.  

 
Figure 4 R-134a P/D 1.167 all data 

 

The data presented were sorted by quality as shown in Figure 5. Data points of a quality at 10% and 20% show 

enhanced performance relative to the pool boiling at low heat flux, which increases with the increase in quality. 

Some points of the 55-60% quality range show twice the performance of the single tube in pool boiling, while all the 

points above the 20 kW/m² mark show a much lower performance than does the single tube. This performance 

deterioration reaches 50% at the 55-60% quality points range. Also, at higher heat fluxes, the higher the quality, the 

lower the performance. Next, all the points above 10 kW/m² show a decreasing trend with the increase of heat flux. 
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Finally, at 60 kW/m² and above, the heat transfer coefficient does not show a significant change with the increase in 

heat flux.    

 

Figure 5 R-134a P/D 1.167 all data sorted by quality 

Mass flux and heat flux effects 

The mass flux effect can be studied by plotting the heat transfer coefficient vs. heat flux for narrow ranges of 

quality. Figure 6 present the heat transfer coefficient trend for different mass fluxes and for 70-85% quality (low-

quality plots follow the same pattern); taking into account the heat transfer coefficient uncertainty, hardly any 

change occurs in the heat transfer coefficient with mass flux at the same heat flux. Therefore, the mass flux does not 

significantly affect performance. On the other hand, the heat flux effect is dominant.  
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Figure 6 R-134a P/D 1.167 effect of heat flux 70-85% quality 

Quality effect 

For the effect of quality on the bundle performance, the heat transfer coefficient was plotted against quality for 

each mass flux point of the test matrix over a narrow range of heat flux points. In Figure 7, the heat transfer 

coefficient shows an increasing trend with the increase in quality for the 4-5 and 10 kW/m². For higher heat fluxes, 

the heat transfer coefficient slightly decreases with the increase in quality. The fact that the heat transfer coefficient 

vs. quality trends are similar at all mass flux points reinforces the conclusion that the effect of mass flux is 

insignificant. 
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Figure 7 R-134a P/D 1.167 effect of quality at 45 kg/m².s 

 

R-123 results 

Most of the testing for R-123 was performed at a saturation temperature of 14.44 C. Originally, the desired 

saturation temperature was 4.44 C as is the case for R-134a tests, but the current test facility’s configuration has a 

limited range of high heat fluxes and mass fluxes at 4.44 C for R-123 (since the specific volume of R-123 vapor at 

4.44 C is 1.5 times at 14.44 C); moreover, data taken at 4.44 C were limited to low heat flux and mass flux. No 

significant difference between the two saturation temperatures was noticed,  which is also clear in Figure 9. The 

enhanced tube used with R-123 is the TBIILP. Data were collected according to the proposed test matrix based on a 

total of 23 runs. Data are also compared to that of the single tube pool boiling of the TBIILP tube as shown in Figure 

8. At low heat flux range (minimum heat flux up to 30 kW/m²), all points show enhanced performance due to 

convective boiling. Moreover, as heat flux increases, bundle performance becomes lower than that of the single tube 

performance, with some points experiencing a sharp decline. 
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Figure 8 R-123 P/D 1.167 all data 

 

Figure 9 R-123 P/D 1.167 saturation temperature comparison 
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The data presented on the previous page were sorted by quality as shown in Figure 10. At low heat flux, all 

qualities show enhanced performance compared to that of the single tube, while at 50% quality and beyond, 

performance declines and deteriorates; meanwhile, all the points above 30 kW/m² show a decreasing trend with 

increase in heat flux. The points for 50-80% quality at the bottom of the curve show performance similar to that of a 

smooth tube (see also Figure 8); their heat transfer coefficient is much lower than that of other points that share the 

same heat flux and quality. For more details on smooth tube performance, refer to Gorgy and Eckels (2010). 

 

Figure 10 R-123 P/D 1.167 all data sorted by quality 

Mass flux and heat flux effects 

In Figure 11 (50-60% quality), and taking into account the heat transfer coefficient uncertainty, hardly any 

change in the heat transfer coefficient registers for mass flux at the same heat flux. However, some points show that 

mass flux has an effect on the heat transfer coefficient, for as the mass flux increases, the heat transfer coefficient 

drops quickly. These trends (including the trends presented in Figure 10) show that the heat transfer coefficient is 

dependent on heat flux, average bundle heat flux, and flow pattern. The dependency on flow pattern can be 

interpreted from the high quality points which show that for the same heat flux, two different values for the heat 

transfer coefficient exist. Those local points are located at the top of the bundle, suggesting that this effect is due to 
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flow pattern (spray flow). This phenomenon occurs at high wall superheat  wall satT T  and high bundle-average 

heat flux, so as the bundle average heat flux increases, the top of the tube bundle (at the water inlet) experiences tube 

enhancement dry-out at which point the water temperature difference becomes small; hence the low local heat flux 

of those points. This phenomenon was also reported in Arshad and Thome (1983). This causes the enhanced tube 

performance to revert to that of a smooth tube.   

 
Figure 11 R-123 P/D 1.167 effect of heat flux at 50-60% quality 

Quality effect 

The following plot (Figure 12) presents the heat transfer coefficient vs. quality for one mass flux point of the 

test matrix over a narrow range of heat flux points in which the heat transfer coefficient experiences a sharp decrease 

at 50% quality and higher. Therefore, the heat transfer coefficient shows a strong dependency on quality at high 

mass fluxes. It also demonstrates that the heat transfer coefficient shows a slight increase with quality up to 50%, 

then sharply declines at higher qualities.  
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Figure 12 R-123 P/D 1.167 effect of quality at 45 kg/m².s 

Conclusions  

This paper presented the experimental local heat transfer coefficient results from testing shell side boiling of R-

134a and R-123 over an enhanced tube bundle using TBIIHP and TBIILP tubes, respectively, with a standard tube 

pitch (P/D 1.167). The analysis used is local to one location in the bundle. Measurements were determined at the 

minimum flow area between the tubes. This investigation reported accurate boiling curves along with a clear 

presentation for the effect of heat flux, mass flux, and quality on the bundle performance. The results of each tube 

bundle showed that the dominant parameter in the bundle performance is heat flux. For the R-134a bundle, the heat 

transfer coefficient increases with the increase in quality at low heat flux.  

While both bundles presented a rapid increase of performance at low heat flux, in comparison to pool boiling, 

the R-134a bundle showed a significantly lower performance than pool boiling. Evidently, the peak of the pool 

boiling curve exists in bundle boiling as well, but is shifted to the left; i.e. the curve peaks at a lower heat flux for 

convective boiling. 

For the R-123 bundle, the effect of quality is apparent only at certain flow rates and high qualities. The flow 

pattern effect is noticeable for the points with two different values for the heat transfer coefficient for the same heat 
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flux, mass flux, and quality. Remarkably, the R-123 bundle experiences a drop in performance at high qualities to 

that of a smooth tube which is at high qualities.  
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Nomenclature 

A  Area P  Pressure  

C  Constant  P D  Pitch to diameter ratio 

iC  Internal correction factor Pr  Prandtl number 

pC  Specific heat at constant pressure q  Heat flux 

D  Diameter Q  Total heat transfer  

hD  Hydraulic diameter   Density 

f  Friction factor Re  Reynolds number 

G  Mass flux wallR  Wall thermal resistance  

h  Heat transfer coefficient  wallR  o walldA R  

fgh  Specific heat of vaporization   T  Temperature  

i  Enthalpy  satT  Saturation temperature   

k  Thermal conductivity  T   Fluid temperature  

ck  Copper thermal conductivity  U  Overall heat transfer coefficient  

L  Length  u  Uncertainty   

cL  Characteristic length v  Specific volume  

m  Mass flow rate x  Quality  

Nu  Nusselt number   
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