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0. INTRODUCTION

The last thirty years has seen the incorporation of mathematical
methods within operations research. The earliest operations research
studies are attributed to the British Military in the early part of
World War II (Trefethen, 1954), The formal work in operatioms
research began in the United States in the early 1940's, also with

regard to military problems.
| Within the area of operations research today are mathematical
problems which contain factors that cannot be predicted with certainty,
such as economic demand factors. The mathematical problems with
random variables within operations research now are classified according
to the functiocn to be optimized and computational techniques to solve
the formulations, Problems dealing witlh a linear function which is
to be optimized over a constrained set of variabies are widely used
as economic models, The best known and most widely used procedure
for solving linear programming problems is called the simplex method,
develcped by George Dantzig in 1947 (Hadley, 1962), The simplex
method is an algebraic iterative procedurz which exactly solves any
linear programming problem in a finite number of steps, or gives an
indication of zn unbounded solution.

- With further development of mathematical methods in operations
research various computational techniques were devised. Dynamic
programming is an approach to optimization which can be more generally
employed than a technique such as the simplex method which applies
only to linear objective functions. Dynamic programming is a term

which Bellman coined in the early 1950's for a recursive optimization



technique developed by Beliman and his associates at the RAND Corporation
(Hadley, 1964). The technique developed really refers to the types
of problems to which it can be applied. The application of dynamic
programming to Markovian processes is one area where considerable
work has been done (Howard, 1960). This use of dynamic programming
naturally concerns processes with random variables,

The purpose of this paper is to consider various optimization
problems which have random variates within their formulation and to

indicate some of the available solutions,



1. LINEAR PROGRAMMING

1.1 Problem Formulation

The general problém of linear programming, (LP), is to optimize a
linear function of variables constrained by linear relations (equalities
~ or inequalities). A distinction is made with regard to constraints.
Part or all of the variables are either nonnegative or nonpositive
and all other variables are completely arbitrary. Linear programs
are also divided into various types. Two general types are Integer
Programs where variables are defined over the integers, and those
programs which are defined over the reals., Of interest here will be
those (LP) programs where variables take on real values.

The following is an algebraic formulation of an (LP) problem
of the most general form: -

n
min (or max) z = I

=1 379

subject to (s.t.) the constraints:

n
(1) a,, x, >d_, i=1, ..., p

j£1 13 "3 =%
)

(i1) .. x, =d., i=ptl, 0oy m (1.1}
g 3

(ii1) xj >0, J=1, eess g

{iv} xj arbitrary, ©j =gqtl, ..., n,

where all cj, a,., and di have numerical values,

ij
The following notation will be used for (LP) problems (Simonnard,

1966) unless otherwise specified:



M={1, ..., m}: to be a set of constraint indices
N={1, ..., n}: to be a set of variable indices

M, CH

Nlc N

A

-~

(aij)’ where ieM, jeN: to be a coefficient matrix of

dimension m x n

?j : to be the jth column vector of é

a; * to be the ith row vector of é

f = (xj), jeN: to be a column vector of constants of n components
€= (cj), jeN: to be 2 row vectur of constants of n components

d = (di), ieM: to be a column vector of m components.

Then the general (LP) problem can be stated in matrix form as

min (max) z = ¢ X
(s.t.): a, f‘i di’ iaMl
ai X = di’ isM—Hl (1.2)
x-_l >0, jle

x, arbitrary, jEN—Nl .

Except for the dual problem the development of (LP) problems

is made under the constraint x, > 0 for every j, rather than under

h|
the constraints (iii) and (iv) in (1.1).

Therefore, the general (LP) problem becomes .



min (max} 2z = ¢ X
(s.t): Ax >4 (1.3)

X

jv
o
.

Now every inequality a, x 3_di. or a; x < di can respectively be

replaced by the relations:

s _ s :
5 2w = Ay F LS (.4
or
] g
Gy EF gy agal (1.5

The subtraction or addition of a supplementary non-negative
variable, denoted as a slack variable, is given a coefficient zero
in the function to be optimized, termed the objective function.
Also, the standard form of an (LP) problem generally preferred is
the minimization of the objective function, This minimization can
be obtained from the following relation should the (LP) problem

be stated as the maximum of objective functiom:
minimum £(x) = - maximum {- £(x)] {1.6)

where f£(x) is the linear function to be optimized. Thus, the standard

form for an (LP) problem becomes:

min 2 = ¢ X
- W

(s.t.): Ax=4d (1.7)
x>0

as presented by Erdelyi (1968).



Certain terminology is necessary for further development of the
(LP) problem, Any set of x which satisfies f % 9 is termed a
"solution" to the (LP) problem. Any solution which satisfies x > 0
is termed a "feasible solution'., Any feasible solution which
optimizes {minimizes in our standard form) z = cx is called an
"optimal feasible solution" (Hadley, 1962),

The system of equations A x = 9 is taken to be nonredundant,
that is, p(A) = m<n, Since wm<n we have at least two solutions.
(LP) problems in the cases where m = n and there is & unique solutiom,
or ﬁhere there is nc solution at all are of no interest,

A "basisg" ? of the standard (LP) problem is a set of m linearly
independent fj vectors, Therefore, § is a nonsingular submatrix of
é with p(?) = m, The m xj's associated with § are termed "basic
variables," denoted in matrix form as fB, an m x 1 column vector, The
remaining n-m xj's not associated with the basis are denoted as

; : R
' shown in matrix form as x , an (n~m)} x 1 column

"secondary variables,’
vector, If B is a basis of the standard (LP) problem and xR is

set to 0, then there exists a unique solution to

Bt e d (1.8)

] -~

namely, ' -
I et

The "basic solution" associated with B is

™
1

'

ta,

(1.9)

L
1]

O
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A basic solution is termed "degererate" if there are not m

B ]
components of x . From the basic solution,

3 -

techniques have been developed which make changes of bases until

strictly positive x

the condition for a feasible solution is satisfied, namely
¥ > 0, and then to finally have an optimal feasible sclution. These
methods depend upon an initial basic sclution.

(LP) problems are N-dimensional Euclidean geometry problems.
The n independent variables of the standard (LP) problem are a set

of n elements (xl, Xps s xn) which generate the n-dimensional

Euclidean space. The subspace generated by the set of all points

n .
(xl, »ouiny xn) which satisfy jzl aij xj - di’ i=1], ..., m<nis
the solution space. Development of techniques can then either
follow arguments based upon finite Euclidean geometry or follcow the

notion of linear algebra and matrix theory.

The fundamental thecrem of linear programming can now be stated.

Theorem 1,1: Given an (LP) prcoblem in standard form (1.7),
(1) 4if it has at least one finite feasible solutiom, it has-at
least one basic feasible solution,
(11) 4if it has at least one finite optimal feasible solution, it

has at least one optimal basic feasible solutiom.

The proof can be either from n-dimensional geometry which appeals
to the theory of convex polyhedra (Simonnard, 1966) or by using linear

algebra and matrix theory. The proof given here is the latter method.



Proof of Theorem 1.1, (Simonnard, 1966):

(i) Llet Ax = d be the linear system in standard form (1.7);

~

A is m x n, Consider an arbitrary finite feasible solution, and further
suppose the variables have been ordered such that those which have
positive values are the first k (k<n), and the last (n-k) are all of

zero value, Let Al be the matrix formed by the k first columns of 4,

i.e, Al containg all the positive valued varisbles,

A = (ag, 255 ooy )

Then the finite feasible solution can be written

k
j=z=1 Xj fj = (}l

Two and only two cases are possible:
Case 1: p(Al) = k,
This requires k<m for a solution. The column vectors 215 ceen B

are therefore linearly independent, Let A(m) =

A s coeg @ )

1 %2 ~Cn

1
~
4]

-
0]

be a nonsingular submatirx of A with rank m, There exists at least

(m)

one such matrix since p(A) = m, The m columns of A form a basis
of the m~dimensiocnal space R". The vector aj, j=1, «¢es, k can be

expressed as a linear function of the vectors 2 , 1 =1, ..., m,

-y
)
a = A. a ‘3 j =l. L ] k; A. #0-
= I 33
Therefore, a_ , 8 , easy @ s 8,, & s ssey; & also form
~%1 %2 “a(3-1) "0 %541 ~%m

a basis of R°. So 251 j # i' can be expressed as a linear function

of the new basis



3-1 3
a,y = Z Ao 3 + u, a, + Z Moo 3 5 3V =1, ..,k 3" £ 3
g 2] ij ~ul J - i=4+1 ij -ai

-
s

and one of the A!

Yy # 0, for a 5! and aj are linearly independent, 1f

A;'j' # 0 then a5 can replace a,  in the basis. So, another new

basis is formed for R.

Repeating the process will eventually replace the initial basis

of R , Biv 3y 0 eeey B, with the k vectors 29» 3ys sees B in the
1 2 m
new basis, i.e. (al, sesy 3, 8 s essy & ). The feasible solution

(k+1) ~%n
Kis sves Fpy Fpg = Q5 wsis x = 0 is a basic feasible solution. This

basic feasible solution is degenerate if k<m, If k=m the basic feasible

solution 1s nondegenerate,

Case 2: p(fl) < k.

When k>m this certainly is the case. The vectors 21y 89y crey 3

-

are then linearly dependent by

k
jzl Aj fj = 9, some Aj #0.

Suppose some A, > 0. Then choose r such that

3

P 3
-i-£=min [;-1] g Jells ssuakFs
r j,A.>0 Y]

3
k
Using E xj aj = d , the following relationship can be made:
=1 13-
k A k . x_ k
I(x-—lx)a=2xa-—r21a=d.
j=1 j AI’ r -j j=l j ~j )‘r jsl j '-j -~
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1, ..., k, which forms a new feasible

A
v o _ 3 :
So, let Xj xj lr X 3

solution of not more than (k-1) positive variables, since x; = 0,

If the vectors associated with these positive variaﬁles are still
1ineariy dependent, the operation is repeated, After at most p
operations where p < k - 1 since d # 0, the (k-p) vectors ass;ciated
with the positive variables are linearly independent. These (k-p)
linearly independent vectors revert us back to case 1. If (k-p) < m
then the basic feasible solution is degenerate, and if (k-p) = H the
basic feasible solution is nondegenerate, This completes the proof of

the part (i) Theorem 1,1,

(ii) Consider now an arbitrary but finite optimal feasible solution,

using the notation of the proof of part (i).

Case 1: p(él) = k. As shown in proof of Part (i) Case 1, the
feasible solution is 2 basic feasible solution regardless of being
degenerate or nondegenerate, Therefore, considering an arbitrary
optimal feasible solution under case 1 immediately gives the conclusion

that the optimal feasible solution is an optimal basic feasible solution.

Case 2: p(él) = £ < m<k. Then there exist at least one set of £
column vectors a, of él which are linearly independent, Let the
columm vectors a, be numbered such that the % linearly independent
vectors are the first columns of é ané therefore also of él'
The linear system of equations Ax = f can be reduced to a linear system

-~

containing Xpeh1? Fpa2? vo0r Xy equal to zero and considering
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Kpp1® Fgpnr o0 X 28 parameters, This linear system has a solution

in the variables Xis Xps eees Xy since the rank of the matrix
(al, Bpy eens al) of dimension m by % is 2. The solutions for x, of

dimension & by 1 in the reduced system can be written as

k-1

+ ) B,. X0 3=1, 2, ceey 2. (1.10)

X, = da
17 5

3

Note that uj is determined from the &-dimensional space where the

matrix (al, a R az) is nonsingular of order %; obtained frem the

2’

m by & matrix (al, 8oy =ens az) by setting a., = 0, i = 2+1, ..., m}

ij
j=1,2, ..., L. The reduced system Ax = d is a system of % equations

in £ unknowns., Therefore, x = A_l d and A © d is composed of elements
u‘j’ j = 1) ...,E.
The positive values of X5 i=1, 2, ..., k, in the optimal program

satisfy (1.10). By substituting (1.10) for Xs i=1,2, ...,2; and

zero for x,;, i = k+l, ..., n,in the objective function z = cx, or

i’
n
z= ] ec,x,, the relationship
21 J73
d
kil
z = q, + B, X
0 jo1 3 L+
is obtained as follows:
k

%
z = e, x, + c, X
jzl 373 gz 33

L k-2 k

) jzl oylag * BBy Rpeg) * j£2+1 3%
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2 kil k?l
= a, + c Bae Byrin } Gl Xpo.
0 j=1 h | i=1 ji i 121 i TR
2 k-2 k-2
<o+ 2 1 LT L oeprim
j=1 i=
kiz % kiz
=a, + c.B,.X + c X,
0 1=1 j=1 j i+ i=1 EHLTHL
kgﬂ %
=qa, + x { c.B,, +c_ ..)
0 121 L+ il jii 241
k-2
=a, + ilejx£+i # (1.11)

The objective function then takes on its optimal feasible solution when

the variables X, 4 assume the values for the optimal feasible soclution.

Examining (1,10), if the X, ., 2ssume a value 6x£+i’ new values of

x. result, The Gxi can always be chosen sufficiently small in order

h| +i

for the new x,.values to remain strictly positive since the initial

3

values of the X and of the xj are strictly positive. These new

values then are a new feasible solution along with the values
Xerl = Kpg = 0o T X, T 0. So, 8z from (1.11) has the sign of Bi or

of _Bi’ depending on 6x1+i being positive or negative. Since z is

optimal for 5x£+i =0, ¢+ = +1l, ..., k implies Bi =0, 1 =1, 2, ..0y k-2,
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the optimal feasible solution is z = Gy Thue, the new feasible |
solutibn is still an optimal feasible solution,

From the above argument the scheme is to decfease the variable
Xorq until it or one of the variables xj vanishes, which gives a new
optimal feasible solution with at most (k-1) non-zero variables. The
operations are then repeated until after p or less operations, the
(k-p) vectors associated with the (k-p) positive variables are linearly
independent so that the matrix formed by these vectors is of rank
(k-p). This will certainly occur for p < k-1 for d # 0. Thus, the
method reverts to Case 1 and an optimal feasible solution which is
degenerate if k-p < m, since again by hypothesis p(A) = m,

The proof of Theorem 1.1 being now complete solves from the
theoretical viewpcint the (LP) problem. The number. of bases and there-
fore the number of basic feasible solutions is finite, and from matrix
theory, it is known how to calculate these basic feasible solutioﬁs.

The maximal number of basic solutions is the number of square sub-
matrices‘of order k which can be extracted from él’ where fl is k by
n (suppressing the redundant (m-k) equations), and is given by (:}.

So it is sufficient to compute the value of z corresponding to each
basic feasible solution in order to deduce the optimal feasible soiution.
The geometrical approach to solving (LP) problems is so quickly

limited by the dimensions of the problem that there is little to be
gained by presentation here. Presented without proof is an n-dimensional
analogue to Theorem 1.1, |

If the set of feasible programs is bounded, i.e, (a convex polyhedron
K), there exists at least one extremal point of K whose coordinates

constitute an optimal feasible solution, 7



1.2 Simplex Method., Returning to the maximal number of basic feasible

solutions for a system of m nonredundant equations in n unknowns where
all submatrices of order m are nomsingular, it was noted that the total
number of basic feasible solutions is (:). Since (LP) problems caa
have a large number of equations and many unknowns, the exhaustion of
all basic feasible solutions in order to find the optimal feasible
solution becomes prohibitive, For example, as cited in Simonnard (1966)
a problem of ten equations in twenty unknowns wculd require solution
of 250,000 systems of ten equations in ten unknowns in order to exhaust
all possible basic feasible solutions. For this reason the "Simplex
Method" was developed by G, B, Dantzig to explore directly the set of
basic feasible solutions. Further, the computational experience with
the simplex method shows that for the usual problems where n>m, the
optimal feasible solution is attained with considerably less calculation
than (z). Another aspect of the simplex method is that initially where
nothing is known about the compatibility or redundancy of the equations
the method determines the feasibility of the problem, and if feasible,
finds an initial basic feasible solution., The method also shows
the absence of a finite optimal feasible solution,

Before presentation of the simplex method certain notation will
be given, Consider a general (LP) problem. As previously given it
is always possibie to put the problem in standard form (1.7). The
initial conditions of p(é) = m<n which is necessary and sufficiént
for a consistent system with an infinite number of solutions can no
longer be assumed as a given condition when solving practical problems,
As will be shown it is always possible to avoid calculating the rank

of A and (A, d) by artifically creating an initial basic program,

14
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When considering a basis B of the standard (LP) problem, the
m column vectors of A constituting such a basis will keep the column-
index they originally had in A disregarding the order they are

arranged in B. The set of indices in the order of columms of B are

-~

given as I = {jl, T jm}. So,

B = (ajl, — ajm) = (as}, sel, IeN, N = {1, 2, ..., n}-.

The {n-m) other cclumns of A are denoted as R = (a,), jeJ = N-I.
The m basic variables associated with the columns as, form a column

vector with m elements zB = (xs), sel; the m associated elements of

c with the m basic variables are denoted as anm by 1 column vector

B
¢ = (cs), sel, the secondary variables constitute a column vector of

(a-m) elements xR = (x,), jeJ and the remaining (n-m) elements of ¢
~ ]

-~

form a row vector cR = (c.), jeJ.

b/

After rearranging the columns of A and the rows of x the system

-~

of linear equations can be written as

"R
X

B
B
o = 12, M)

xB B
Sctc:{B’ RJ[..R]= d' [.?R} i 0 »
i ~ x -

- -~

A particular value of z or of the vector x will be denoted as z or X,

-

respectively,

.3
1f {B, R]l}R]ﬂ d is written as BxB + RxR = d and pre-multiplied
-~ b ~x_ - o~ -~

-1 :
by B 7, the result is
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© =B LTd~BLRa (1.12)

A corresponding decomposition of the cbjective function gives

min z = cB xB + cR xR (1.13)

or substituting (1.12) into (1.13) gives

.

min z = cB(B-':L d B—lR xR) + cR xR

= cB B-l d - (cB B-]'R - cR) xR . (1.14)
For a basic solution, setting xR = 0 then
=814
z= cB' B—l da ,
and then (1,12) and (1.14) can be written as
% = §B - B—_l R (1.15)
z=3- (c BR - xR, (1.16) -
An equivalent expression of xB and z 1is
L. ] 7 (L
- - jed -
- B '
z=2z~- (c z xjyj - ): cjxj), (1.18)
- je3 I jeJ
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-1
where % R=Y = Eyl, Tos =ons yn_m] = (yij), ieI, jeld.

Cenoting

zj = cB gj, jed,

another expression for (1.18) becomes

z=1z - ( Z c y.X Z c
je3 ~ 4 37 jed
= E z (z - C )x (1.19)

T B M I

The fundamental theorems of the simplex method are now given.

Theorem 1.2: Given a basic feasible solution associated with a basis
B, if Zy = S 0 and Vi £ 0 for some keJ, then no finite optimal

feasible solution exists.

Proof: Since Vi & 0, it follows from (1,15) of which the starting
basis was xB = §B, another program is obtained by giving x 4 value
>0, Ek’ with the other secondary variables remaining zero. Therefore,
the value of x° must be altered to satisfy %'B = %B - Eka 3_%3, which

is no longer a basic solution since x # 0, The objective function

assumes a new value

¥ = = - =
z z (zk ck)xk
with the result that z+-« as §k++m.

Theorem 1.3: Given a basic feasible solution associated with a basis

B, if for kelJ, zk—ck?o, and if ysk>0 for at least one scI, then a new
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basic feasible sclution may be obtained ty substituting B' for B by

ezchanging a, for & h being defined by

-~

"

- e )
= = min { J s sel
& Yak >0 h’sk

ysk

and is @ new basic pregram giving z a new value E'_g z.

Proof: If the secondary variable X is given the value Ek and the
other secondary variables are zero, the new values of the basic variables

are

x, > 0, sel, keJ,

vz _ o
xs xs Ysk k

From the condition for determining Ek’ x

n? the variable which is to

leave the basis, it is readily seen that Eﬁ = 0 as follows:

-, - %
T

= -y —.—.—-=0'
*» " ™n hk Yhk
Therefore, the variable column vectors of A, acs scl and s # h, associated
with the variables {i;}, sel and s # h and the column vector a, associated
with Ek variable form a new basis B',

The preceding operations then give a new basic feasible solution in

which all variables not associated with B' are zero. The new value of

z is
z' =z - (z - ck)§k_§ z .,

Thecrem 1,4: Given a basic feasible solution associated with a basis

B, a necessary and sufficient condition for this basic feasible solution -
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to be optimal is that z'_j - cj < 0 for every jed,

This follows from (1.19) where z would be the optimal solution to the
objective function since any new value z would be greater than or at
the least equal to z.

When the basis is changed, zj - c, > 0 is usually satisfied for

h]

a subset of J, J Therefore, it is most helpful to chose k so as to

l.
maximize the absolute change in z. Since this change is

*h
w fa e ) e
k “x yhk
with
x x
;k = fﬂﬂ = min fﬁi& , (1.20)
Yhk s/y5k>0 Yk

the maximum (absolute value) of the change in z for keJl is desired,
In the use of the simplex algorithm a simplex criterion is employed:

k is chosen so that

- = max [z, - ¢,] . (1.21)
T % e 37

This does not produce the maximal variation but is simple and in

practice works well., Equation (1.21) is known as the entry criterion,
The simplex algorithm can now be stated:

(1) Determine an initial basic feasible solution xB. Let I be the

-~

index set of columns of A associated with xB, and J =N - I,

Compute B and Y =2 R = vy 3e3.

-~ -~

(2) Compute and test zj = ¢y jeJ, where z
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(i) if zj - cj

is optimal;

< 0 for every jeJ, the feasible solution

(i1) if 25 -

a finite minimal feasible solution does not exist;

>0, and if ¥4 < 0 for at least one jed,

(iii) if zg = > 0, and if vy 1_0, then choose k from the
entry criterion, (1.21), and determine h from the exit
criterion, (1.20),

(3) Let p be the column order of a, in the basis B.

Compute:
. Vel Tk2 Yup-1 1 Tkptl Vi
(1) % = e o =SSy ey ’}7 s ~ s-":"y_"'
-P Yk Txp e Tk Tip kp

(1) J

To = (o210 S0 vees 8p1s Voo Spugs er Sl

where e: - [O, O, se ey 0, 1, 0, son g 0}’ i.e., 1 is the

ith element in the vector.

(iii) (B')'1 = Jp p~1

(iv) = = (B") d
(v Y' = (B")

So the preceding formulae give the change of basis, the new basis, and
the new basic feasible solution., The primes can then be deleted and
the process repeated from (2).

The example to follow and the above development of the simplex

method come from Simonnard (1966) and Erdelyi (1968).



1.3. Example of the Simplex Method.

’x \|
1
minimize z = ¢x = [-3 3 1] X,

-

w
R—

X

34 11151
s.t.: Ax= |8 2 0O xz <d-=
~ 21 1|
3
*
el EA L
G

In standard form after introducing slack variables the (LP) problem

becomes:

G |
2
min z = cx = [-3 3100 0}|*3
= x,
X5
*6
(x,
)
[3 4-110 o] «| [0
s.t.: (82001073 =30
21100 1|x, 8
5
"6}

21
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A basic feasible solution with which to start is x' = [0 0 O 10 30 8],

100
The initial B is then [0 1 0| which is also B-l. Next, the calculation
- 001 - ’

g 34-1
of Y=B8B R gives Y={82 0 |. Then
- T T T 211
z=c¥=[000]Y=1(000] = (2, z, 2]
c =% < 1“2 3

since the coefficients of the secondary variables are zero in the
objective function. To apply the entry criterion each zj - cj is

determined:

z, —¢c, =0 = (=3) =3

z, - ¢c, =0~ (3) =-3
2, - c,=0- (-1) = 1,

which implies, by (1.21) since Yj.ﬁ 0 for each z, ~ e > 0, that x; enters

3

the basis. For the exit criterion, (1.20),

o

e o)
Yh1  s=(4,5,6) Vsl
ysl>0
5
Yk is Va1 from ¥1 < g since X enters the basis ?; so that
4 310 75 30 6
3 8

“?
£
[

“
L
=t

d
)]
-t



Therefore, El = 10/3 and X, leaves the basis, To calculate the new
column vector associated with xl in the basis the column order of

a, in ? is seen to be 1, so computing

. [_}___Z@,.Lyﬂ‘.
Vi Y11 Vi)

gives vi = [1/3 - 8/3 ~ 2/3]

The new value of Jl is

1/3 0 ©
-2/3 0 1
T _1 —l - = 2
So (B") " = J, B = Jl and the first iteration is complete, The second

iteration wbuld procéed in like manner and it becomes evident that some
kind of tableau would facilitate presentation of the iterations. The
simplex tableau for the example is given in Table 1,1 to illustrate as
representative of the structure of a tableau. The optimal basic feasible
solution is %' =.E£§-§-§ 0 0 0) and the minimum value of the abjective
function is z = - 58/5, It has been noted that the simplex algorithm
requires a knowledge of an initial basic feasible solution. Where there
is no knowledge concerming an initial basic feasible solution the

rank of the matriceé é and (%, E) should be found, which could

quite easily be lengthy. Methods by which an initial basic feasible

sclution can be found are known which avoid determining the rank of

the matrix. One method consists of artifically creating an initial
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TABLE 1.1

Simplex Tableau

cB xB -3 Bﬁl Yk x3/ysk “x %k
Starting Solution 0 X, 10 1 0 O 3 10/3 1

0| x5 | 30 0 1 0 8 30/8

0 [ x4 8 6 0 1 2 8/2
First Iteration -3 Xy 10/311/3 0 O -1/3 ——

0 Xg 10/3 |-8/3 1 O 8/3 10/8

0] x6 4/3 1-2/3 0 1 5/3 4/5 2
Second Iteration -3 X, 18/5 | 1/5 0 1/5

0 Xg 6/5 [~8/5 1 -8/5 <0

-1 | x5 | 4/5|-2/5 0 3/5 )

basic feasible solution. This method is known as "The Method of Penalties"
(Simonnard, 1966; Hadley, 1962) or the "-M technique" (Gue & Thomas,

1968). Another method is known as the "Two-Phase Method” (Simonnard,

1966; Hadley, 1962) where phase I determines if any feasible solutions
exist, and if so calculates a feasible solution. Phase II improves the
feasible solution obtained in the first phase to the optimal feasible
solution. The two-phase method was developed to overcome difficulties
inherent to the method of penalties which is round off error and |

accuracy of the optimal solution.
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The (LP) problem has been defined and the development of the
simplex algorithm has been presented as a method of solving the problem.
There are a number of further considerations of (LP) problems which
could be developed, but defining the problem so that later consideration
of % as a matrix confaining random variables aij is all that is necessary

here, Therefore, dynamic programming will now be developed.
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2, DYNAMIC PROGRAMMING

2.1, Technigque Formulation.

Dynamic programming (DP) refers to a computational method rather
than a particular form of a nonlinear programming procblem, The development
of (BP) will follow that of Newmhauser (1966). (DP) originatad as a
result of studying certain forms of sequential decision problems arising
from inventory theory. Developed by Bellman in the early 1950"s who
coined the name of the computation technique, dynamic programming reduces
a problem of n decisions to n problems of one decision each.

The following notation and terminology will be used:

(i) D= (dl d, sas dn): variables which are termed the inde-

2
pendent or decision variables;

(i) Y = (yl Yo ees yp): parameters which affect the objective
function but are uncontrollsble;

(iii) R: Dependent variables which are functions of the decision
variables and parameters, i.e. R = R(D,Y), and is termed
the return function,

(iv) 5: The region of feasibility or comstraint set generally

represented by

2;(D) }o, i=1, ..., o

|vula

As with the (LP?) problem, any D satisfying the constraints is a
feasible solution, Any optimal solution (D*) is defined as a feasible

solution yielding the greatest possible returm, i.e.
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R(Y) = R(D*, ¥) > R(D, Y), DeS
= max R(D, Y), DeS.
D ,

Basically, (DP) is a transformation from a sequential or multistage
decision process containing many interdependent variables which con-
verts the process into a series of single-stage problems with only a
few variables., The transformation is based on Bellman's "Principle
of Optimality” which Nemhauser (1966) states:

"an optimal set of decisions has the property that whatever the

first decision is, the remaining decisions must be optimal with

respect to the outcome which results from the first decision.”
Bellman's work is generally acknowledged as the foundation of dynamic
programming, From this general approach to (DP) a specific development
is now given.

Consider a system which can be described by a state vector Eo
and the system is to be changed so that it cén be described by a state
vector §H different from §o‘ So the transformation from §o to §H is
desired, or XN = TN (Xb). If there is known a transformation tN which
will change the state of the system XN~1 to X, then it can be rgpresented

a8 X = tN(xN-l)' The systems can be represented as flow diagram;.

XN = 'I‘N (Xo) can be represented as

Xo T, XN

> N > ' (2-1)

A (202)
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If the system is XN = tN(XN_l) then to solve the criginal problem
X, = TN(XO) a transformation is needed to change the system from
Xo to xN—l' If TN-l is such a transformation then the original

problem (2,1) can be represented as

Xo T XN*l tN XN

> | "N-1 >

>

So the equivalence is established by

Xy = Ty (5 = Ty(X),
It is'apparent that the decomposition of (2.1) may possibly continue
if appropriate transformations can be found. Thus, the final result
may be obtained by decomposing (2.1), a problem of N state variables
into N subproblems of one state variable each:

1o By = (%)

2o Xy = 1 Bye2)

- - L] - . - L] L] L] . - (2.3)

Bl Bopq = tn+l(xn>

N-nt+l., Xn = tn(xn—l)

“. Xl L tl(xo)c

The flow diagram for (2,3} is

X X X . X X
[s] t 1 4 %_n—l 5 tn s S tn+1 n+l % ‘XN-Z 5 tN—l 5 tN

v
‘..d




Note, however, that the multistage transformations started with the
final state Xq and proceeded to the initial state Xo through the
& 5

transformations t ., £y ;s «eer t This is known as "backward"

1
recursion, To avoid confusion there is a change of notation so that
- the transformation indices agree with the order of performing the

required transformation, This is done simply by renumbering the
transformations in reverse order, Thus XO becomes the final state and

XH become the initial state, The N subproblems then become

1- XU = tl(xl)
2. X tz(Xz)
(2.4)
R, X _, =t (Xn)
otl, X =t nJhl(xl_ﬁl)
Moo Xy = 5
with a corresponding flow diagram
X X X ( X X
xN) tNXN—l)) ol € 71 "o £ n—ljf%{}.)t °_,.

The N state variable system has been replaced by an equivalent system

containing N one state problems,

Methods for finding the transformations

for the decomposition of the original system and conditions under which
the decomposition can be performed will be stated. Before these con-
siderations, however, a more general form of problems suited to dynamic

programming is presented,

If Equations (2.3) have more than one solution,



30

then all solutions are equally satisfactory. If a decision variable is

added to the system which contains more than one feasible solution then

a dependent variable measuring the effectiveness of a decision is also

added to the system, The problem then is one of choosing optimal

decisions which yield maximum returns.

A one stage representation of the system is as follows:

D

> ¢ > Y (2.5)

with the factors

(1)

(i1)

(iii)

(iv)

(v)

X:

Input state variable giving a description of the system
at the beginning of stage.

Output state variable giving description of system at
termination of stage,

Decision variable which is independent variable con~
trolling the operation of the box,

Stage return dependent variable measuring the effectiveness
of decisions and is a single-valued function r = r(X,D,Y).
Stage transformation - a single-valued transformation
expressing each element of the output state as a

function of the input state and decisions, that is,

Y = t(X,D). Since Y = t(X,D), Nemhauser (1966) writes

the stage return either as r = r(X,D,t(X,D)) or as

r = I(X,D) .

The one-stage optimization problem is to maximize the stage return

as a function of the input state, Denoting f{(X) as the optimal stage



return and D* = D(X) as the optimal decisions, then

f(X) = r(X,D(X)) = r(X,D¥%} = max r(X,D) > r(X,D).
D

Consider a system containing a set of stages joined in series
so that the output of one stage is input for the next stage.r The
system is termed a serial multistage system and is represented in a
flow diagram as

D D D D

lN n lj’l"‘l 1
X

Xy _\E]XN—l )? %Xn 5 n-1 _ -1 Xn—2 )‘} erl - > I{o >

LH . kn l;—l ¥1

when using the renumbering of transformation indices as in (2.4).

For the general stage n{n = 1, 2, ..., N) of the N-stage system,
the stage transformation is Xn—l = tn(Xn, Dn) and the corresponding
stage return is r = rn(Xn, Dn)' Certain relationships become
apparent from the structure of the serial multistage decision system,

From the transformations Xn depends only on the decisions made prior

to stage n, i.,e,, Dn+1' e g DN and XN. This can be written as
Xy = o1 Fope Dot = a1 Craa Fnige Piig)s Do)
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= ¢! = ¢

- tn+l(xn+2’ Dn+2’ Du+1) tn+1(tn+3(xn+3’ Dn+3)’ Dn+2’ Dh+1)

P | |

- tn+l(xn+3’ Dn+3’ Dn+2’ Dn+1)

= - [ ] - [ ] [ ] . [ ] O [ ] - L ] [ ] - [ ] - (206)

|
=ter Ko Dy eees Dpyy)

tn—l‘l(XN' DN’ LN ] Dn_+l) ]



where i becomes a different transformation over XN, DN’ soey Dn+1

from the initial t over X and D . Since the return function
ntl nt+l

nt+l
depends on Xn and Dn {2.6) gives the result that r depends on Xﬁ

and DN’ e g Dn’ i.e,

r, = r(Xn, Dn) = rn(XN, DN’ TR Dn)‘ | (2.7)

ve D ces i i fu i f ver
where r over XN’ N’ 5 Dn ig a different function from L ?
Xn and Dn'
The total return function Rn over all stages is a function of the

individual stage returmns, i.e.,

Ry(Xy» Xyo12 ooes %13 Dys Dy g5 wves D) =
Blrg (X D)y g Ry_poDyy)s o-vs 73 (%001

From the elimination of Xy_1? *e+» X; 88 in (2.8), (2.7) reduces to

RN(XN’DN,DN—I’ "'!DI) = g[rN (XN’DN)QI'N_I(XN)DN!DN_I) - S "rl(xﬁﬂnﬁs LR & ,Dl)]'

(2.8)
The N-stage initial optimization problem is to maximize the N-stage

return Rn over the variables D ’ DN which is to find an optimal

1° LR ]
return as a function of the initial state Xqe Let fN(Xﬁ) be the maximum
- X = k = . .
N-stage return, and Dn Dn(Xn), Xn tn(Xn) as the optimal decisions

and states, Then fN(xN) can be expressed as either

W £y = lry (e, DR) 1y 3 Ko PRDF )5 - 57 Rgo Do -+ 5 PP ]

= max A g[rN(XN’DN)’rN*l(xN’DR’DH—l)"'.’
DN’ ser .Dl

rl( 1’DN’..-’D1)1

(2.9)
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or
(ii) fN(x-N) = g[r (Y\’”-‘-) \1- 1 N 1! I‘*l—z)’ e 0y Il(X"i, D’f)]
T max AR LR e BT ETERIRILIACSTLIRS
Dyyeea,D
N 1
(2.10)
subject to, (s.t): xn-l = tn(Xn,Dn), n=1, 2, ..., N.

Note that (2.9) contains N decision variables and one state variable
while (2.10) contains N decision variables, N state variables, and
N constraints. It would seem that (2.9) would then be preferred since
optimization techniques decrease in efficiency as the number of
variables increase. However, (2.10) can under certain conditions be
transformed into N optimization problems, each containing one decision
variable and one state variable,

Consider the decomposition of the N-stage return function (2,10).
To achieve decomposition the function g must be such that the maxi-
mization with respect to DN—l’ ika g Dl can be moved inside the Nth

stage return, i,e.,

f (XN) = max gl[rN(KN D )! E’ax D gz(rN—l(XN-l,DN-l)’ "'lrl(xl’Dl))]'
N -1?°**71

Sufficient conditions for decomposition of the maximization of stage
returns as given by Mitten (1964) are as follows:
If the return function g satisfies the conditions of
(i) Separability

8Ly (s D) s Ty Ky oDyp) 20073 (X100

= 8y ey (RysDy) s 85 (g Ky 15Dy ) s e e s T (X201,
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where 81 and g, are real valued functions, and
(ii) Monotonicity
&1 is a monotonically nondecreasing function of &y for

every r,., then

(iii)} g can be decomposed as

g{rN (XN ’DN) ’IN_l(xN—l’DN-l) R srl(xl ’Dl)]
CO S

= nDzax gl[rN(XN,DN), ;’;ax ” g(rN—l(KN—l'DN—l)’ tasy
N N-l’ LN ] 1

The proof of decomposition for an N-stage system is identical to the
proof for a two-stage problem, Therefore, the following proof of
decomposition is for a two-stage problem. This proof follows the

development of Nemhauser (1966).

Proof: Let f (X ) = max g(rz(xz, DZ)’ rl(xl,Dl))
D,y

s.te: X; = tz(XZ’DZ)'

Substituting in for Xl gives fzfxz) DaxD g(rz(Xz,Dz), rl(XZ’D2’Dl))’
2,1
Let fi(Xz) = mgx [g(rz(XZ,Dz), m;x rl(XZ’DZ’Dl))]' The definition of
-2 1

a maximum gives fz(XZ)_z fi(Xz). Of interest is when equality holds.
A sufficient condition for equality is that g be a monotically non-
decreasing function of r, for every feasible value of oo From the

definition of monotonicity if

r,(%,,0,,D]) > r; (X DY), (fixed X )

92Dy5D07 200



g(rz(xstz)sr (XZ’D2’DI'L)} 2z g(rZ(XZ’DE)’rl(XZ’DZ’DI]I.))'

However, for each value of XZ’DZ

* =
rl(XZ’DZ’Dl m;x rl(XZ’DZ’Dl) z_rl(Xz,Dz,Dl).
iy .

Thus, from the monotonicity with X_, D, fixed,

2t 2

g(rZ(XZ’DZ)’rl(XZ’DZ'Df)) = mgx g(rz(xstz)s rl(XZ’DZ’DI))-
1

Therefore,

' =
fz(Xz) mgx g(rz(XZ,Dz), mgx rl(xz’DZ’Dl})

2 1
> max max g(rz(XZ,Dz),r (XZ’DZ’Dl) = f(Xz) . (2.11)
Dy Dy

The given inequality from the definition of maximum fé(Xz)li fz(xz)
with the derived inequality (2,11) gives the desired result, namely
fi(xz) = f2(x2)' So, if g is a monotonically nondecreasing

function of r, for every r

1 then the position of maximization with

2

respect to Dl can be changed with no possibility of missing the optimal

solution. |

The condition of separability is added to decompose N-stage
problems, It can be readily shown that problems with additive stage
returns are always decomposable,

Consider identifying total return functions not involving strictly
additive individual stagé returns and yet satisfying Mitten's condition.

Indicating the separability condition, the total return functions are

of the form:
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=ty Oyly) O oy oy Byog) O 7or 0 1) (%D

o

"

r (XsD) O Ry 5. (2.12)

The symbol "0" is taken as a composition operator with the purpose of
stipulating separability. If the total stage return function can

be written as (2.12) then it is possible to express

Ry = 8{mpery_gs00007p)
By = 8y (rys 85(zy_g50005my))e

Multiplication of stage returns readily gives the decomposition of
the return function as long as rn(Kn,Dn) only takes on non-negative

real values for all n, Consider the decomposition of

Ry = r3(x3,D3) + rZ(RZ,DZ) . rl(xl,Dl).

Readily

%

and thus

rz(XZ,DZ) . rl(Kl,Dl)

Ry = ry(Xy,D) +R

3 8

and is separable., Now let

R3 = r3(X3,D3) . rz(Xz,Dz) + rlaxl,Dl).
If

R, = r2(X2'D2) + rl(Xl,Dl)

then
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Ry # r3(X3,D5) * R,

and there is no backward solution for R, to obtain separability.

2
However, the problem can be separated from the forward direction by
letting

Ry = 13(X3,D3) + 1,(X;,D;)
then

R3 = R2 + rl(Xl,Dl).

To conclude examples of separability consider

R4 = r4 + r3r2 + rl .

There is no direction from which this total return function is

separable, Thus, it would not meet Mitten's conditions for decomposition,
Generally, if the composition operator has the property that
fy-q Ryop) = max (o1 ByapoPyp) © 00 0 7 (Xq5Dy) ]

Dy~q2eeesPy

Ty XyoDy) O g g Koy p) 2 Ty KgoDy) 0 Tog (g 0Py ) 0 vee O
r, (X;,0) 1.
for 2ll values of Ty and fN—l’ decomposition is possible., This condition is
slightly weaker than Mitten's conditions but does not seem to enlarge
the decomposable problem class,
The recursive equations for the general composition operater are

as follows:

Let



fN(XN) = max [EN(XN,DN) 0 «+¢ 0 rl(Xl,Dl)]
D '.'G’D
N 1

e o Xn—l = tn(Kn,Dn), n=1, ..., N,

If monotonicity is satisfied the maximization with respect to

Dy 1 ==+ Dl can be moved inside as

38

f (XN) - max [r (XN D ) 0 Eax ) (rN—l(xN—l’DN—l) 0 .00 0
‘N l’..l’ 1
Sttl' x_l=t (X ,Dn), n l’ [N Nl
Since
f1Fyoy? = max [ty 1 ge1oPyep) O ==+ 0 71 (X3,D)]
Dy qrmmwaly

a substitution can be made with the result

£ (xN) =max [r (XN DN) 0 fy 4 (XN 1)]

N

S.t.: xn_l L tn(xn.Du)’ n= 1’ sesny Ri

Let

Q (XsDy) = 1 (XoD) 0 £y 1 (£g(XeuD),

then determination of fN(XN) is a one stage optimization, i.e.,

£ (XN) = max (QN(XN D ))
N

Repeating the above argument on fﬂ—l(xﬂ—l)’ — f2(X2) the following

recursion equations are obtained:
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£ (B = mgx Q.0 )], n=1, ..., N
L
Q (X, D) = r (X, D), n=1 (2.13)

r (X,D)0f (c(X,D)), n=2, ..., N

Note that the previous derivation of the recursivé equations under ;he
operator + follows the same approach. Any operator satisfying the
conditions of Mitten will result in recursion equations of the form
(2.13).

It may be of some concern whether a distinction need be made
between forward and backward recursion; between the initial state
problem f(Xo) and the final state problem f(XN). For most multistage
decision problems these distinctions need not be made when the choice
between inputs and outputs is arbitrary from a mathematical standpoint,
In these problems the transformations are constructed so that outﬁut
rstates are functions of input states and decisions, Then the optimal
return is found as a function of the input state to stage N using back-
ward recursion, An example of multistage decision systems where
direction of analysis is not arbitrary is in non-serial systems, where

stages are not connected in series by state variables (Newmhauser, 1966).

2.2, Computationél Procedure.

The theoretical development of dynamic programming (DP) is now
conplete. The next steps are the formulation of a general system into
a multistage form and the determination of an efficient method for

solving the recursive equations, As with the (LP) problem there are
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different computing methods depending on the requirements of the problem.

Nowever, with (DP) there is no fundamental algorithm such as the simplex

method for (LP). Yet, a general scheme for the (DP) technique of sclving

classes of problems meeting conditions stated previously can be formulated.

The computéticnal aspects of (DP) concern the solution of the

following recursive equations from Nemhauser (1966):

fn(Xh) = m;x Qn(xn, Dn), n=1, ..., N

n
with
Qn(Xu, Dn) = rn(Xn’Dn)’ n=1
Qn(Xn, Dn) = rn(Xn,Dn) 0 fn—l)’ n=2, ..., N
for
Xn—l = tn{xn’Dn)' n=2, ..., N

Computation proceeds as

(i) n = 1: calculate rl(Xl,Dl). Since n = 1,
Ql(Xl’Dl} = rl(xlsnl) .

Equation (2.14) is used to find fl(Xl) and nl(xl).

X

(ii) n + 1l: calculate n+l’Dn+1

ntl

calculated from (2.16) by appropriately combining r

fn. ‘“Thus, the optimal return from the N-stage system

). Forn+ 1, Qn+1 is

(2.14)

(2.15)

(2.16)

(2.17)

fN(XN) is obtained, and Dn(Xn), {n=1, ..., N), the optimal

nth stage decision functions of the nth stage inputs,

The optimal inputs Xg, (n=1, ..., §-1) and the optimal decisions

D¥, (n=1, ,,., N) are determined as follows:
n
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. & ; ; § B}
(1i1) DN is obtained immediately from DR(XN}'

(iv) X} | is calculated from X¥ , = t (X%,D}).

(v} DE ; is obtained from X ; and Dﬂ-l(xﬂ-l)'

(vi) Repeat (iv) and (v) until Df is estsblished and then the
optimal solution is obtained.
The method for optimizing any multistage decision system is then

complete., The characteristics distinguishing problems from one another

are

(i) the return functions rn(Xn,Dn) and transformations
cn(xn,ﬁh);
(i1) the interpretation of the operator "0" which specifies
how rn and fn~1 are combined to yield Qn;
(iii) the technique used to maximize Qn(Xn,Dn) to obtain
fn(xn) and Dn(Xn).'
As in (LP) problems the maximization and minimization of a fimetion

have the following relztionship:
min £(x) = - [max (-£(x))], (2.18)

since f(x) is a real valued function defined over the nonnegative values
of x, maximization and minimization can be interchanged through (2.18).

To illustrate the (DP) technique, consider an analytical problem

N=3
minimize } d
n=1

=]



To put the problem in.the form appropriate for the technique
minimize rl(xl,dlj + rz(xz,dz) *F r3_(x3,d3)
s.t.: X g = tn(xn,dn), o= 3, 2, 3,

The state variables are introduced and replace

3
I d >k
n=1
by x3_=_>_k
x2=x3-d3
x1=x2-d2
and X =x, - d

This is acceptable since adding all four equations gives

d1+d2+d3->-k—xo

and to be consistent with the requirements x = 0. This implies

d, = %y 2 0, which further gives 0 < n:I2 fx

1 2
The problem can now be restated as
3 2
minimize [ 4
=1 °

X, .= x3—d3, oidzixz
X3 2 k s 0 <dj<xg

Since

and finally 0 < d; < %,

42

(2.19)



. 2
rn(xn,dn) = dn

xq_l = tn(xn,dn) =x - dn’ n=1,2,3

the problem is in proper form for the use of the technique with

2 2
By =iy +d, +d]

2
2

Stating the problem in terms of the recursive equations of (DP):

2
fl(xl) = zi:x d1
171
I 2 _ :
fn(xn) = min [dn + fn_l(xn—dn)], n =2, 3, with Xq > k.
0<d <x

The solution procedure then begins:

~—
[

~
ju]
]

ot
L

calculating rl(xl, dl) gives d2 Since

1.
n=1, Ql(x " dl) = di. Finding dl(xl) = X gives
_ 2
. — 7. . 2
(ii) n+ 1 = 2: calculating rz(xz,dz) gives d2. Qz(xz,dz) is
found by expressing the optimal one-stage return as a
function of X, and dz.
. _ _ a 32
Since X =X, = dz, fl(xl) = (x2 dz) §
Q,¢x,, d,) becomes d2 + (x, - d )2
2372 72 2 2 20 *

Thus,

2

) = min [d2

Dﬁﬁzﬁxz

2
fz(x2 + (x2 ~ dz) 1.

Optimization of fz(xz) is done as follows:

43
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BQZ

3d2

- & - set
=24, -2 (x, d2> 0

implies the unique solution d2 = x2/2. It is readily secen that this

2
37Q
partial derivative of Q2 gives a minimum since 2 Xy > 0.
de d2 = 3
So, f. (x.) = X2/2 = (x, - d )2’2
L 2 3 3y =t
(iii) For n = 3 the procedure is the same and
2 (xs‘d3)2
£.(x,) = min d, + ————— .
373 0<d. <x 3 2
— 33
_ aQ
The optimization of f3(x3) is found as before by setting 3= = 0,
3

which yields dg = x3/3, and then f3(x3) = x§/3. Since x3 > k the

f3(x3) is clearly optimized by Xy = k, thus

2
f3(x3)_= k“/3, df = k/3;

3
) 2
x§ = x§ - dy = k - k/3, 4§ = x5/2 = (=-k/3)/2 = K/3,
and x{ - xg - dg = k/3 = di .

More difficult problems are solved in the same manner as this
simple example. This particular problem easily extends to N stages
or can be extended to different return functions, transformations, and
composition operators, For detailed presentation see Nemhauser (1966).
5till, it remains to be seen how much of an advantage there is to
(DP) compared to exhaustive search as would be done with Xh being integer
values, i.e., X = k, (k.= 1, cees kn)' Consider an optimization
problem with N stages, Kn and .In as values for the state and decision

variables respectively at stage n =1, ..., N. Since a feasible solution
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is specified by a particular value of the vector (xN, dN’ ceay dl),

N
It Jn feasible soiutions. To determine the return from

there are KN
n=1

each feasible solution requires the addition of N numbers (since for

this problem total return is the sum of all stage returns). Since the

N
numbers are added two at a time there will be (N-1) KN n Jn addirions,
n=1 i
N
Determination of a maximum from these will require Ky T Jn -1
n=1

comparisons
By comparison, (DP) requires addition for each combination of
N

{xn, dn) at stages two thrbugh N, or E Kan additions. For each
n=2

value of the state variable at all stages there are Ju-l comparisons.
At the last stage there are an additional Kn - 1 comparisons to determine

N

the maximum of fN(xN)' Therefore, a total of E

K(@d-1)+X -1
n=lnn n

comparisons, To make comparisons more obvious, let J = Km = Jn for all
m and n. Then the number of additions plus comparisons for direct search
is NJN+1 ~ 1 and for dynamic programming (2H~1)J2 - (N-1)J-1. For
example, if there are ten decision variable values and stage variable
values for a fifty stage problem, then direct search makes 5 x 1052
comparisons and additions while (DP) makes 9409, This is quite a
substantial savings. The example comes from Nemhauser (1966).
The preceeding developments of (LP) and (DP) give a general
acquaintance to these types of problems., Further, the objective of these
sections has been to supply background for the main consideration of
this report which is the introduction of random variables rather than

deterministic variables into the constrained optimization problems,

The procedure then becomes one of optimizing the expected value of the

ohiective function.
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3. STOCHASTIC PROGRAMMING

3.1 Problem Formulation.

Consider first the (DP) technique with random variables introduced
into the problem., The "randomness" of the variables can be categorized
into "decision making under risk", "decision making under uncertainty",’
and "adaptive decision making". Decision making under risk is where
the probability of occurrence for each return is  known. Decision
making under uncertainty is the case of complete ignorance concerning
the probabilities of the different pcssible returns. The intermediate case
is adaptive decision making where previous information from the process
generates estimates of probabilities shifting the problem from the area
of uncertainty to the area of risk, A basic assumption of the problem
is that there is one decision maker in contrast to '"game theory" which
contains more than one functionally distinct decision maker. "Decision
making under risk" is also known as "stochastic decision making". The
following development is from Nemhauser (1966).

Consider a (DP) problem and decision making under risk with a
single stage stochastic return function r(D,k) where D is the usual
decision variable and k is a discrete rendom variable. The probability
distribution of k is denoted as p(k). Then for a fixed set of D the
expected value of the return function 1is

(D) = ] p(k) r(D,k).
X j
Similarly, for a continuous random variable z for a stochastic return

function r(D,z), the expected value of the return function is given by

() =[p(z) r(D,2)dz,

with p(z) being the probability density function of z. Under this scheme
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a decision policy D* is a global maximum under risk if and only if
T(D*) > T(D) for all feasible D.

Maximization of the expected return function under risk has created
certain objections which led to the introduction of the concept called
"utility". Savage (1954) defines "utility" as a function that quantifies
the relation of preference among several courses of action. A simple
example offered by Daniel Bernoulli (cited in Stingler (1950)), who
was among the first to develop the idea of utility, states the objection
of maximizing the return functionm:

""Suppose a pauper happens to acquire a lottery ticket by which

he may with equal probability win either nothing or 20,000 ducats.

%ill he have to evaluate the ticket as 10,000 ducats; and would

he be acting foolishly, if he sold it for 9,000 ducats?"

Bernoulli claimed that a dollar which is worthless to a millionare

would be precious to a pauper. Therefore, the retﬁrns may be measured

in ducats, but the number of ducats is not equivalent to the utility

-0f ducats. So, the return function may contain factors other than the
return of the mumber of ducats. These objections de not concern the

use of the expected return, but rather the measurement of the return,

It will be assumed in the further development of stochastic programming
{SP) that the mezsure is correct, thereby equating "value" aad "utility"

¢f the return function. A development of optimization under risk using the
(DP) techniave for a multistage problem will now be considered.

The HN-stage stoéhastic (DP) system is similar to the N-stage deter-
ministic (DP} system, only at each stage there is an additiocnzl variable

containing the stochastic element which affects the stage transformation

and return function.
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At stage n =1, ..., N there is an input stage variable Xn’ a decision

variable Dn, and a random variable kn' which determine the return

rn = rn(Xn, Dn, kn)i (3-1)

The transformation becomes

X 1=t (X, D, k), n=1, ..., N,

Further, the ki' i=1, ..., N are independently distributed with
probability density function pi(ki)’ i=1, ..., N respectively, Also,
the total return function RN is the sum of the individual stage returms,

r_. That is,
n

N
Re(Xgs =eey Xp3 Dy wuny D5 dogy wney ky) = uzl r (X, D, k)
(3.2)

s.tet X, =t (X, D, k).

Note that (3.1) is dependent upon the random variables kN’ ceey kn+l

in addition to ku’ since Xn depends upon kN’ e kn+1. Recall that in
the deterministic case, ru(Xn, Dn) was dependent only on XN’ DN’ ivey Dn'
However, for the stochastic system Xn depends upon previously observed
random variables, kN’ Wy

as well as DN’ e Thus, even

Dn+l'

if a decision policy 1is given, the input for the nth stage is unknown

ki

until kN, oy K are realized,

okl
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The expected value of the total return function RN requires the
expectation over more than one random variable. Given a function.
(D, kys ey kg), where k;, ..., k are indepenéently distributed
random variables with probability density functions pl(kl), $E 3 pH(kH)

respectively, the expected value of r(D, L SEREERY kN) is

ol
D) =] - D40 p (D, kyy ooy k) (3.3)
Ky kn({“‘““l ] ’ b

The expected value of the total return function RN(XN;DN’""Dl;kﬁ""’kl}

is given by

?RN(KN;DN""’D].) =Z con ): ]I P, (k Lz r (Xn Dn kn)}
B ‘Hq

[g p,(k ﬂ[»EN(KN.DN,kN)] + een

n=1

J‘M

N
+§ eee } [q p,(k )][ (xl,nl,kl)] (3.4)

n=1

sete: X 5 =t (X ,D,k), n=1, .., N

Since the Nth stage return does not depend on kN-l' — kl'

ﬁN(XN;DN,...,Dl) =£N [pn(kn)rn(xn,Dn,kn) [I Py l(kN l)...j pl(k ))]

-1

+ Z {Pﬂ(%‘)‘.nz [Pz(kz)z [Pl(kl)rl(xl, l,k }]Ji-.].
]ﬁi kz kl

(3.5)
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s.Ea Xn_l = tn(xn’Dn,kn)’ n= l, reny N-

The intention is to maximize the expected N stage return over

DN’ seey Dy Let TN(XH) be the maximum expected return as a function
of XN' Then
fN(XN) = max ﬁN(Xﬁ;D ""’Dl) (3.6)
DN,I."D].

= max L Py (k) (XuDsky)
o UL mmeny

+ EN[PN(kN) éN [pﬂ~l(kN_l)rN—l(xN-l’DN—l’kH_l)]]+ ..

~1

kN kZ kl

Since PN(kN) is common to every term, factoring gives

) = ;‘Nax 5 [Z Py (ky) [rﬂ(XN’DN’kN)
-

kN

t 1 [pN—l(kN—l) rN-l(XN—l’DN-l’kN—-l}] oo
X

¥o) [pﬂ"l(kn"l)“'lzc pz(kz)é pl(kl)rl(xl,Dl,kl)}---]]](3.8)
-1 2 k. -

&:t.f X = tn{xn,Dn,kn), fE Yy wwag Me (3.9)

Using the procedure of the deterministic recursive equations, (3.6)

is replaced by



5l

F f ) = T R : ‘T LJ -
fN‘Xﬁ' me max RN(XN’DN’ ,Dl) (3.10)
¥ "N-1

Since the Nth stage return is not a function of DN—I""’DI’ it can

be removed from the inner maximization to give

L}

max max ﬁ(XN;DN"’.'Dl)

? (X
"
Dy Dy-1

e (éupﬂckN) {rﬂ (T Dene )

N

+ max [Z {pN-l(kN—l)rN—l(XN-l’DN—l’kN-l)J
Dy _1see+sDq ke 1

+-;.+ ) [pN_l(kN_l)...z [pZ(k2)£1[pl(k1);l(Xl’Dl’kl)]]'"]]]]'

kN-1 !
(3.11)
Now,
R R R
(o
S Lz [PN_l(kﬂ_l}rﬂ—l(XN-l’DH-l’kN-l)}+ s

Dy-1770°Dp Mg

+k§-1[pn-—1(kﬂ—-1) N '12:2 [Pz("‘z) El{pl(kl)rl(xl'nl’kl)]] N ]] )

So, the recursive equation is



&y = =y {IZCNPN(ICN) [rN(Xm*DN’kN) * En-l(tu(%’nﬂ’kﬂ))]]'

N

Inductively, for amy stage 1 < n < N, the fundamental stochastic

recursive equations ara

En(xn) = max [Z p (k) Q (X ,D ,k )] 1<n<N

n* n’n e e
DH

with

Qn(xn Dn,kn) = rn(xn,Dn,kn) + f (1:11(11Il Dn,k ), 2<n<N

and

Q; (X1,Dy5k) = 1y (X;,Dq5k).

52

The optimal decision policy resulting from multistage optimization

under the risk is itself stochastic with the exception of the first

optimal decision D*(XN). The remaining optimal decisions from the

recurgive analysis D_ (XN LAREER D (X ) camnot be expres=ed

deterministically in terms of XN until the values of the preceeding

random variables are known. So in substituing.D§{XN) into (3.9) the

optimal value of Xﬁ_l is known only probabilistically as

Xt g = by (gD ) = Ey(Kek).

Thus, the optimal value of DN—l will be known only probabilistically

also, since

Dy-1 f_1) = Dy ey (Kaly)) = Dy (Kol
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Therefore, this N stage stochastic optimization technique gives
incomplete results, since only the first optimal decision is found.
The remaining optimal decisicnscan be found one at a time as the
random variables take on values, Thus, the policy of assigning the
random variables their expected values in corder to obtain an optimal
decision policy seems appropriate. In a special case of quadratic
stage returns and linear transformations, Tou (1963) showed that in-
dependent random variables kn, n=1, ..., N could be replaced by
their expected values(En),

k= ) Pk )k, n=1, ..., N

k.
o]

Then Dg(Xn) could be cbtained from the deterministic problem

fn(Xn) = max Qn(Xn,Dn,kn), l<n<N

D
n

where

QX , D, En) =r (X, D, En) +f ,(t (X, D, En)), 2<mn<N

and

Ql(xl’Dl’kn) = rl(Xl’Dl’kl) .

However, it should be noted that in a general stochastic problem replacing
the random variables by their expected values may lead to erroneous
results,

Tﬁe composition operator "0O" was used before in the general scheme
of combining stage returns to derive the basic recursive equatiom for

deterministic multistage optimization problems. This general operator



is not possible for stochastic optimization as becomes evident in
letting "0" be the product of stage returns. The recursive équations
still apply for maximizing the product of stage returns, but do not
apply to maximizing the minimum individual stage returns., This comes
about from

R,(X,,X;iD,,D,) = E l}_;l Pylky)p (ky) + min (ry(X,5,D,,k,) 51, (X, ,D;,k4))
2

s.tu: X = t,(X,,D,,k;)

instead of what is required from the recursive equations

ﬁz = (X,,X;3D,,D;) = ¥ pz(kz)[min[rz(XZ,Dz,kz),Xpl(kl)rl(xl,nl,kl)]].
k2 ky

Thus, decomposition is not possible for multiplication of stage returns

for the stochastic optimization problem.

The development of (DP) under risk by Nemhauser (1966) comsiders
the random variables to be identically distributed with known discrete
probability density functions, If the random variables are continuous
identically distributed independent random variables, what modificaticns
would be necessary to the development under the discrete random variable
case? First, the total return function from N stages would continue to
be as before, i.e., (3.2). The expected return would be given by

N
;(D) = f sen I [ I ¢n(kn)]r(D, kl, caey kN) de de—l ses dkl,
kl kN n=1

where ¢n(kn) is the probability density function of k and the integrals
are assumed to exist. By replacing the sums over k,, 1 =1, ..., N by

integrals over k,, 1=1, ..., N, the whole development from the discrete

i’
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case extends to the final result

f (X)) = max f ¢, (k) ¢ (X ,D ,kJdk , 1<n<N

D k
nn

where
¢n(xn,nn,kn) = rn(xn,nn,kn) + fn-—l(ta(xn’nn’kn)’ 2<n<N

and

¢1(X1sD19k1) = rl(xl'Dl,kl) .

If the random variables are continucusly distributed a recursive
relationship can be developed, assuming the existence of the integral,
but other computational methods must be used to eithér find the optimum
or obtain a satisfactory discrete approximation.

Now that the formulation of (DP) under risk has been introduced
it is of importance to further amplify the different classes of problems
that can be considered in the (DP) framework.

Consider first the reason for even having the (DP) technique at
all, The ordinary calculus methods of maximizing functions are dependent
upon the continuous variation of the independent variazbles and at best
give relative maxima or minima over a closed interval and does not
consider the boundary points. Where constraints on the continuous function
are concerned-the-Lagrange multiplier method will account for these
problems., Since many of the problems considered will be over closed
intervals of the independent variables and a global maximu; is desired
the methods of calculus may be unsatisfactory., Further if the function
considered is discrete generally‘new tools of optimization are needed.

Finally, problems of interest are many times of high dimensionality



ﬁhich causes difficultiesrin calculus from having to evaluate all
combinations of feasible values of the independent variables to find
the solution to optimizing the objective functian.

Dynamic programming chbtains the global optimum, Any constraints
to (DP) simplify the search process and limits the number of possibilities
at each stage, thereby reducing the computations. Dynamic programming
formulations usually lead tc equations which cannot generally be soclved-
analytically but which are well suited to numerical solution using a
digital computer (Jacobs, 1967). The procedure for reducing multistage
decision problems to equations that may be solved numerically is
fundamental to (DP).

Multistage decision problems constitute an area where (DP) is used
quite extensively. It is possible to consider multistage decision
processes where the number of stages essentially is infinite., These
problems are known as infinite stage Sysfems and can arise in two
fundamentally different ways:

(i) by simply letting N»= which can be represented by the model

max z rn(Xn,Dn)

Erk (3.12)

S.t,: Xn—l = tn(Xn,Dn), n=1, 2, ...,

which is called an "infinite planning horizon (Gue & Thomas, 1968),
-{ii) assuming the stages to correspond to time periods, the
horizon is finite, but the time periods are infinitesimally
small, Thus, the time between successive decisions is

negligible compared with the horizon. In the limit,
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therefore, the decisions are made continuously, and for
any finite horizoan there are an infingte number of decisiomns.

Regarding the model (3,12), it is meaningful if for all feasible
combinations of the decisions the total return function is boundeé from
above. An example from Bellman & Dreyfus (1962) of a specific (DP)
approach to a problem under risk lends insight to the infinite stage
system,

Consider a tramsport plane dispatching to an overseas base with a
cargo consisting of replacement parts for airplanes. Suppose there are
N types of replacement parts, and associated with each is a cost incurred
if the part is needed at the base, but not available. ‘Let the demand
for each part be Poisson distributed with known A. The weight capacity
W and available space 5 of the cargo vehicle become constraints of the
problem. The problem is to determine the number of items of each type
to be dispatched so as to minimize the expected cost due to shortages
at the base,

The follewing notation will be used for the problem:

(i) w,: to be the weight of each item of the ith type,

i
(ii) s;+ to be the volume of each item of the ith type,
(iii} et the cost peritem for not fulfilling the demand,
(iv) Ai: the mean value of the Poisson distribution

representing the demand for items of the ith type.
Let Xy be the number of items of the ith type which are loaded
and p(z) be the probahility-of a demand for z items of the ith type,
Then the expected cost for items of the ith type due to unfulfilled

demand will be

8

C.
i

If ©~1

(z—xi) p(z). Since demand is distributed Poisson with mean 1,
xi+1

Z



denoted by p(z,ki) for the ith item, the total expected cost, EN’

becomes

N ©
EN = z i [ E (z—xi) p(z,}i)]. Therefore, the prcblem

1=1 " la=x ol

is to minimize EN overall xi

i=1

The (DPP) formulation of the problem follows:

Define fk(w',s') as cost associated with an optimal decision
policy of items of the first k types, with a cargo - vehicle restriction
of w' and space limitation s', 0 < w' < w and 0 < s' < s, The basic

recurrent relation is then

fk(w',s') = min {k z (z-xk) p(z,}, ) + fk_l(w' = x_kwk, si_xksk))
*x =X

s.t. 0 < X =2 min {(5;-;:] i [2;—:]} , where

[x ] denotes the greatest integer < x.
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The soluticn to this example is obtained by considering feasible

combinations in integer programming and can be found in Bellman &

Dreyfus (1962),

The problems which make use of (DP} have essentially been discrete

relationships such as step functions.

A model of a continuous multistage

process where the horizom is finite but the time periods are

infintestimally small, analogous to the discrete multistage process

N
max E r (x ,D)
Dn n=1 LI

n
ln )
°
b
il

is

ty

max J F(t,x,U)dt
u(t) ty

dt

S.t. & . g(t,x,0), tl.i t

X, = x(tl) =k,

tn(xn’nn)’

1, eney N



ec

The determination of a fupction which optimizes an integral is a problem
in the calculus of variations. Dynamic programming and the calculus

of variations have a close relationship, The formal relationship is
that a dynamic programming approach can be used to derive the necessary
conditions for an optimum; and in addition, dlscrete recursive
optimization can be used to find approximate numerical solutions to
computationally difficult variational problems.

The computational technique of (DP) has no general algorithm of
problem solution as does the (LP) approach with the simplex method.
Further, the purpose of this report is to present the general formulatiom
of the technique of (DP) and the introduction of random variates into the
multistage decision process, From a review of the literaturé there
has been little work on the general introduction of random variates
into the (DP) scheme., Many specific problems with many different
conditions have been considered., Yet a general development of
stochastic programming with emphasis on the role of the random variable

seems to be lacking.

3.2 Dynamic Programming and Markov Processes

One area where considerable development has been done with emphasis
on the role of the random variates in the (DP) technique using Markov
processes as a system ﬁodel is given in a monograph by Howard (1960).
Markovian decision processes are considered an important class of-
stochastic optimization problems. Markov processes are defined as a
collection of random variables {x(t), teT}, where the random variables

are defined over the index set T, and if, for any set of n points
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b B

of x(tn), for given values of x(tl}, i x(tn_l), depends only on

< sne < tn, tiaT, i=1, ..., n, the conditional distribution

x(tn_l). The classification of Markov processes depends upon the

index set being continuous or discrete, and the nature of the state
space of the process. The set of possible values of a stochastic
process is the state space and is usually taken to be either discrete

or continuous. If the state space contains a finite or countably
infinite number of wvalues it is called discrete and the stochastic
process is called a a Markov chain. If the index set is the nonnegative
integers the Markov chain is a discrete parameter Markov chain

(Parzen, 1962). The development of (DP) and Markov processes considers
initially the discrete Markov chain as a systems model.

A Markov process is described by a transition- probability functioen,
P(x,to;E,t) or P(E,tlx,to), which represents the conditional probability
that the state of the system will at time t belong to the set E, given
that at time to<t the system is in state x, The Markov process is
defined to have stationary transition probabilities if P(x,to;E,t)
depends only on t and t, only through the difference (t—to) (Parzen,
1962), Staticnarity in the transition probabilities is also incorporated
in the initial consideration of (DP) and Markov processes, Therefore,
the system model is a finite stochastic process in which the state of
the system at any stage depends only on the state of the system at the
previous stage and on a known probability transition matrix. Denoting
the states at stagenby i, 1 =1, .c.y, My n =1, ..., N, the probability
of going from state i at stage n to state j at stage n-1 is given by Pij'
The set of transition prcbabilities can be represented in matrix form

as
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le s s PMj L] Pm

called the probability transition matrix, The properties of the
transition matrix are 0 < pij'i 1 and Z pij = 1, The probability of
being in state i at stage n-1, denotedey Hn-l(j) is found by multi-
plying the probability of being in state i at stage n (Hn(i)) by the
transition probability Pij and summing over all states at stage

n, i,e.

M
121 pij n(i)! J=1, «oe, M (3.13)
n=1l, ..., N.

The solution of (3.13) gives the state prﬁbabilities after n stages

as a function of the initial state, and the limitipg state probabilites
(steady state probabilities) if they exist as n increases without
bound, The functional relationship on the initial state and steady
state probabilities is made more obvious in vector form. Define a

row vector of state probabilities Fn with components ﬂn(i), then

En—l = En g n =N, N-1,.,,,1, Since by recursion HN-l = HN f

HN-Z = II P=0_P =====~ I E ? HN P In general the

N-{n-1)

form would be nn—l = HN-P s 0 =N, ou,, 1 which is not as simple

in form as the forward recursion,
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Suppose that an n—stéte Markov process has a return rij associated
with transitions from state i to state j. Howard (1960) calls
? = (rij)’ i=1, ess M3 j=1, ..., M, the "reward" matrix which
corresponds to the transition matrix P, The total expected return
from an n-stage Markov process starting in state i, recursively is 2
the expected value of the return from stage n plus the expected (n-1)

stage return from the resulting state, summed over all states, For a

cne-stage process

R (i) = z P., T..»
1 §=1 ij "ij
or in matrix form by denoting p(i) as a row vector of P, r(i) as a

row vector of R, then

R, = ﬁl(i) = p(r' (1), 4 =1, ceec, ¥ gives diagonal
i=1,...,M elements of EE'.

For an n-stage process

M
R (1) = jgl Pisirgy ¥ R (D) m=2, o0, W

is the total expected return, A matrix form for the recursive

expression can be found as follows:

iy =
Rn(._; 3£1 Pij x::i._j * ng pij R'n,—l{j) -
=p(1) (@) +pW) R, ‘ (3.14)

where ?n—l = (En_l(j)), =1, coey Ma
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]

q(@) +p() R, 1=1, .o, M5 n=2, ..., No (3.15)

L

R

- (3+PR

PR' ., n =2, ., N (3.16)

The quantity q; can be interpreted as the reward to be expeéted
in the next transition out of state i. It is not necessary to specify
both a P matrix and an R matrix in order to determine the expected
return from the system., All that is required is a P matrix and a q
column vector with components q . When large problems are to be
solved the data storage is reduced considerably by a q column vector
rather than the R matrix., Also, the index of n varies in Howard (1960)
and Nemhauser (1966). Nemhauser assumes that go is arbitrarily zero,
and can therefore set the index set for m as {2, ..., N}. On the other
hand Howard (1960) sets the lower boundary of n as 1 and ?b' the
boundary expected return when the system ceases operation may represent
an expected return from selling the system after N-stages have been
ccmpleted,

To incorporate decision making into the system a set of tramsition
matrices and return matrices are possiblé at each stage, and to
optimize the system a decision as to what P and R to use at each stage
must be made, A decision varisble dn =%k, k=1, ..., K denotes
a choice of the kth transition matrix and ith return matrix at the
nth stage. Specitfically, if the state of the system is i, dn = k means
#hat the ith row of the kth P and the ith row of the kth R give the

relevant transition probabilities and returns at stage n. In general

the assumption that the same set of P and R matrices are available

-~ -~
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for each stage or that P and R are chosen in pairs rather than
seperately need not be made., Only for simplicity are these assumptions
made here. The transition prebability is denoted by pij(du) and the

associated return by rij(dn)' The expected return from n stages,

starting in state 1, is

R, (1,d)) = £ JHCHES

1j(dl) = E(i,d )u_r‘(i,dl)

and
ﬁn(i’dn"”’dl) = z Plj(dn) [r (dn) + in_l(j,dngnon,dl)],n=2,-no,H|

or

R (1,d ,...,d)) = q(i3d ) + p(1) E;_l(‘ d seeesd))],i=l, .0, M0=2, 000N,
or

R = R! =

gn(dn,oil,dl) g_(dn) + f(dn) Bn_l( dn’n-o,dl)’ n 25I“’N .

The expected return matrix ﬁn(dn,...,dz) is a column vector with each
component being ih(i’an""’dl)'

Following the development of multistage stochastic optimization
models presented previously, the following notation of Nemhauser (1966)
will be used:

(i) Mar&ovian return matrix T, (d ) = rn(xn Dn kn)

(ii) Markovian transition matrix pij(dn) = tn{xn,Dn,kn), where in
the Markovian model
(i') The state variable x 1is represented by i, the
state of the Markovian system at the nth stage,

(ii') The decision variable D is represented by d =k,



k= i, se+3 K, and represents the choice of
particular transition and retura matrices, and
{(iii') The random variable kn is completely hidden in the

new notation., It is a chance factor vhich
defermines the output state j, given the input
state and decision. The distribution of the
random variable for the ith input state is
given by the ith row of the transition matrix.

To maximize the expected return from N stages as a function of

the initial state, let

Fo(1) =

M
m zl INCHICINCOIS WHCR SRR
dq,..., | 3=

Following the usual recursive scheme,

f.(i) = max Z 1 (4,) r,,(d;)
1 d l,olo,K J"' j E ij x
and
f (i) = max Z Py @) @) +F (D], 0 =2, N
B d_=1,.00,K 3=1 BT ate el
M
Since Py (d ) T, (dn) is the ith element of q(d_ ) and has previously
j=1 N

been denoted q(i;dn), the recursive relation becomes

£ = q(i;dl), 1=1, vuu, M
d =1, ...,K

and
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M w
f (i) = max [q(i;d ) + Z‘ p..(d) ¥ J (j}] s, 1 =1, ...,M,
dn=1s--°sK n 121 ij" m" "mn-1

r

n=1, Il!'N

or
f (i) = max ) {q(i;dﬂ) 4 f(i;dﬂ) ?];-'l] i= l, qol,M’
dn=l,...,K
a=1, .,.,N
where En—l is a row vector with elements fn_l(j), i=1 ...,M

This method for solution of a sequential process may be called
the value-iteration process (Howard, 1960) because the fn(i)
(Nemhauser, 1966) or vi(n) (Howard, 1960) are "values" which are
determined iteratively. This method has important limitations., Not
many processes operate with the specter of termination so imminent.

For the most part, systems operate on an indefinite basis with no

clearly defined end point (upper bound on n)(Howard, 1960). Further,

it does not seem efficient to have to iterate fn(i) forn=1, 2, 3, ...,
until such a sufficiently large n so that termination is very remote,

A method of analyzing processes of indefinite iteratiocn would be more
gsatisfactory. This implies the development of some Markov processes
possessing long run or steady state distributions into the (DP) scheme.
Even if the long~duration process is solved by value iteration, the
convergence on the best alternative in each state is asymptotic and

difficult to measure analytically,
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Consider a system which has an indefinite number of stages where
a Markov chain is used as a model., Again, decisicn making arises when
a choice is made between various transition and return matrices.

Following Howard, now consider the system with an infinite number
of stages. A Markov chain with an infinites number of transitions
serves as a model for this case. Further, the model is to be a
completely ergodic Markov chain, which means that the limiting state
probability distribution is independent of starting conditioms.

For completely ergodic Markov processes, a quantity (i) is defined
as the probability that the system occupies the ith state after a
large number of moves regardless of the initial state, Recall that
the probability of being in state j at stage n-1, denoted by Hn_l(j),

is given by the simultaneous linear difference equations,

M
a1l = 121 Pyfads 3 =1, v, M

il

Suppose there are N stages, so the vector HN denotes the starting

state; then under special conditions on the transition matrix P
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lin T, (4) = 1)

n,N-eo

exists independently of the starting state II Markov chains with

N
this property are called completely ergodic and are quite common
in practice. The special condition on the transition matrix P to
have a completely ergodic Markov chain is the following:

A necessary aﬁd sufficient condition for complete ergodicity
is that some power of P, i,e, P" where n is any integer, contain only
positive elements., So, if P contains only positive elements, the
Markov chain is completely ergodic,

If the limit of the state probability equations is taken with

respect to mn, the equations become
M
ni) =

There are M linear, homogeneous equations in M unknowns., The system
of equations has M-1 linearly independent equations. Thus, M-1
M
of the equations with the condition that z H(j) = 1 determines the
i=1
steady state probabilities.
To proceed recursively, returns are introduced into the infinite
stage Markov process, Let the return from a transition from state

i to j be rij‘ For a completely ergodic Markov process, the expected

return per stage in terms of steady state transitions is

D3
g = r,. p;, (1), (3.17)
1=1 g5 M

or



70

M
g= [ M) a, (3.18)
i=1

where 4 is defined by (2.14) and {(3.15). The reasoning for the
equations is the following:
(i) The probability of being in state i in the steady state
(long run distribution) is NI(i).
(ii) Thus, the steady state probability of a transition from
state i to state j is pij n¢i),
(iii) and the expected return from a transition from state i to

state j, in a steady state, is r n{x).

ij Pij
(iv) Thus summing over i and j gives (3.17). This reasoning is a
result of asymptotic behavior of a z-transform of the
Markov process.
Therefore, the expected return from a single transition is found
by multiplying the immediate expected return from a state (qi) by the
steady state probability of being in that state (N1{1i)) and then summing
over all states,
Since g is in terms of steady state prcbabilities it is independent
of the starting state, However, the total expected return is not
independent of the starting state, The total expected return for a

system in state i with n transitions remaining, denoted by vn(i), is

given by

vi(d) =

I
£

and (3.20)

M -
v (1) = q4 + jgl Pis v, i=1, oo, M



Since the expected return from a single transition is g for

large n, vn(i) is a linear function of n with slope g; i.e.

v{(i) =ng+v, 1=1, ..., Y,
n i
or in matrix form

v(n) = ng + v,

Note that for the completely ergodic Markov process all states have
the same gain. The intercept Vi depends only on the starting state.

Also,
Vn(i) - vn(j) =7 ~ ¥y

so that vy vj is a measure of the relative advantage or disadvantage
of starting in state i rather than j.

The above development of the recursive equations (Nemhauser, 1966)
state the end results of applying a z-transformation to the Markov
process and noting the asymptotic behavior of the process in terms of
the generating function, (the z-transformation) (Howard, 1960).

Using the approximation for vn(i) for large n in the defining

equations for vn(i) gives

71

M
ng + Vo= gy + j£l pij [{(n~-1) g + vj]
or
M
Vit j£1 Pgg vy T B BT L e i @.21)

There are M simultaneous linear equations in M+l unknowns

(Vis +es.Vys 8). The value of g can be determined independently of
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(3,21) by (3.17), and (3.18). The equations reduce to having M unknowns,
but still camnot be solved for absolute values of Ve The M unknowns
have only M-1 linearly independent equations. By fixing a Vi S3Y

Vy = 0, the remaining vi's will be determined relative to Vi thereby
differing from the actual values of v, by a constant.

The end result of an infinite-stage decision process ig to
maximize the expected return per stage, denoted by g(d). As developed
previously, d = k, k=1, .,,, K, implies the transition probabilities
and return from state i are pij {(d = k) and rij(d = k), The subscript
n has been omitted from d for a steady state policy that maximizes g,
independent of the stage. When the g's are equal, the object is to
maximize the vi's, the total expected return,

Consider the maximization of the gain. One way in which that g(d)
can be maximized is to compute g for all decision policies. However, with
M states and K feasible decisions from each state, there are KM
policies, a rather large number for relatively small values of M and
K, A considerably more efficient way to find the policy which maximizes
g(d) is to use an approximation in policy space to solve an infinite-stage
recursion equation,

Let f be the optimal expected return per stage as the number of

stages becomes infinitely large, i.e.

Note T is independent of the starting state and
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T = max g(d),
d=1,...,K
where
M
g(d) = qi(d) + jzl pij(d) vj(d) - vi(d) i

The approximation in policy space begins by guessing a policy d0
and calculating the corresponding expected return g, and the relative
values V., This procedure is called the "value determination operation"
(Howard, 1960). Then to determine a better policy should one exist,

the maximum of g is found using the current values of Vs i.e. v

io?
by solving
]
max [q,(d) + po(d)(v, -v,)], 1=1, «..., M. (3.22)
d=1,...,K i j=1 ij jo io

Equation (3.22) is called the "policy improvement routine" (Howard, 1960).
A constant added to the vy will not affect the maximization but will be
only a test-gquantity component independent of d = K.

The value of d which maximizes g is used as a next guess for an
optimal policy (dl). Then using d1 the value determination operation

is performed to determine corresponding values of g1 and v In general,

i1’
g, > 8, and if g1 = 85s then g = £, and d1 is an optimal policy,
Otherwise, the policy improvement routine is again performed using viI
to determine a new decision policy. The value determination operation
together with the policy improvement routine is called the “policy
iteration method" (Howard, 1960).

It has been proven that the policy iteration method yields monotone

convergence to the optimal g, i.e. By > By_1® OF when there is no



improvement and gM = gM—l’ the optimal zverage expecied retura and
the optimal decision policy have been fournd.

An illustration of the policy iteration method concludes the
discussion of infinite stage systems, There ére two alternative

decision and return matrices: Thesz are

/2 1/2) 0 6
D o) TR
for d =1
and
1 0 2 4
27 Lz win e I (R .
for d = 2.

The steady state sclution for this problem is that the optimal decision
if the system is in state two is d = 1, and if the system is in state
ona the optimal decision is d = 2, and also g = 2,

To verify the steady gtate sﬁlution with the policy iteration
method, let the beginning solution be d0 = 1 for both states. The

relevant probabilities and returns are then P, and Rl. The value of

1

g5 would be found as follows:

M
T(§) = }

P .H(i), j=1, ocn,M
=1 1

0l D~z
=
~
L
r
(]
-
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M(1l) = 1/2 n(l) + 3/4 1(2)

m(2) = 1/2 (1) + 1/4 [(2)
M(1) + 1(2) = 1

Taking one of the first two equations and the third and solving simul~

taneously, the solution is found to be II(1) = 3/5 and 1(2) = 2/5, Now

j=1

q = 1/2 (0) + 1/2 (6) = 3

q, = 3/4 (-3) +1/4 (8) = - 1/4
M

8o = ) qy n({i) = 3 (3/5) - 1/4 (2/5) = 17/10. Recalling from Equatiom
i=1

(3.21) that M - 1 of the equations are independent, a v, is arbitrarily

i

0., Then v can be found as

fixed, say v 10

20

vy=3+ 1/2 vyt 1/2 v, = 8

<
Il

-1i/4 + 3/4 v+ 1/4 v, - 8

or g+ 1/2 vy 3
} which has solution g = 17/10 and vy = 13/5.
- 1/4

g - 3/4 v,

This completes the first value determination operation, and now the

policy improvement routine should be performed. For state one,

g(1) = 3 + 1/2 (13/5) - 13/5 = 17/10
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g(2) = 2+ 1 (13/5) - 13/5 =2,  Thus

For stéte two,
g(1) =-1/4 + 3/4 (13/5) = 17/10

0+ l/2l(l3/5) = 13/10

I

g(2)
30 dl = 1,
Turning again to the value determination operation, and using

dl’ the relevant probabilities and returns are

1 0 2 4
P = R = .
~ 3/4 1/4 - -3 8
Setting v,; = 0, the equations from (3.21) become
Vipn= 2tV T8
and 0 =-1/4+ 3/4 Vi1 < Bqe

S0 g, = 2 and v,, = 3., Using vy = 3 and Vo1 = 0 in the policy im-

11

provement routine yields for state one,

g(l) = 3+ 1/2 (3) - 3 =3/2
and g{2) =2+ 1(3) -3 =2
S0 d2 = 2-

For stage two,

g(l) = - 1/4+ 3/4 (3) =2
and g(2) = 0+ 1/2 (3) = 3/2
S0 d2 =1,

The last two iterations produced the same decisions, consequently
the optimal decision from state one is d = 2 and from stage two, 4 = 1,
with g = 2, Thus, the conjecture that the solution determined is

steady state is verified,
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3.3, Stochastic Linear Programming

Consider now the- introduction of random variables into the linear
programming model, Assume initially that the probability distributioms
of any random variables introduced into the problem are completely known.
This would be called linear programming under "risk", (Nemhauser, 1966;
Madansky, 1963). The following development is from Madansky (1963).

Let the standard (LP) problem be given by

min z = ¢'x (3.22)
s.t. >b (3.23)
x>0 (3.24)

where b is mxl, x and ¢ are n

- vectors, and A is mxn., matrix.

1 1

The introduction of risk into the problem can occur in either the
coefficients of the objective function, i,e.c; or in the constraints -
either the right-hand side b, or the matrix A, or both,

First let the stochastic element be in the objective fumction (3.22),
In this problem, the optimal vector f lies in the convex polyhedrom
defined by the inequalities (3,23) and (3.24), and the problem is just
one of trying to find a vector in this polyhedron which minimizes an
appropriate objective function for the risky situation. The appropriate
objective function is obtained asrfOIIOWS: Consider the utility of
each possible value of the objective function, that is, the utility of
c¢'x for each possible ¢, Then take the expected value of the utility

- m

of ¢'x over the distribution of the random vector ¢ as the objective

- ~
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function to be minimized (Madansky, 1963). If the utility function

is 1inear in the objective functior, then the problem reduces to one
of looking at the inner product of the expected value of ¢ with X, and
this now becomes a non-stochastic linear progrsmming preblem. Buf
whatever the nature of the urility function, the problem has been
converted to one which is nonstochastic.

A problem of quite different nature arises when risk is introduced .
into either the matrix A or the right~hand side b. In this sifuation
difficulty stems from how to carry over the notion of feasibility,
inherent in linear programming, to a ''linear program' whose matrix
and right-hand side are random variables, Various formulations in
this area have been directed at different ways of resolving the dif-~
- ficulty. The simplest answer is embodied in the "fat" formulation
given by Madansky, 1963) and characterized by the following reasoning:
The decision maker has to decide on some vector x of activities before

he can observe values of A and b, After he has made his choice, he is

confronted with some particular A and b and can see whether or mot x

has satisfied the comnstraints. The difficulty is that his pre-chosen
x may not be feasible for the observed A and E. What the "fat" formu-
lation prescribes is that one restrict oneself to the convex set of
those x which are feasible, no matter what values of A and E will
subsequently be observed. Thus, the intersection for all A and b

of the polyhedra given by the constraints Ax 3-E, x > 0 is the feasible

~ -

region, and the problem is to find the x in this set

S = {x|x>0,Ax>b}, the "permanently feasible" set, such that z = c¢'x
Ab T T Rt

is minimum,
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To characterize an optimal solution for the "fat" formulation
does not preéent any difficulty, If x belongs to S, and is optimal
for any particular programming problem, Equations (3.22), (3.23),
and (3.24) for some possible value of f and of E, then x is also optimal
for the "fat" formulation, A difficulty with this formulation is that
it may not lead to a decision because the permanently feasible set é
may be empty. Madansky (1963) points out that problems where tha
probability distribution of either A or E is defined over the entire
real line are likely to have S as the null set, Thus the "fat" formu-
lation would not be of any help even in formulating the problem to be
solved. A variant of the "fat" formulation which may not preserve
feasibility requires that being feasible be only 100 P % sure. Then
the set of nonnegative x's are considered such that the probability
that éf E_E is P and min z = ¢'x for x in this set.

A more realistic statement of the problem is the "slack”
formulation also considered by Madansky (1963), It involves converting
the problem to a two-stage problem, which can be roughly described as
follows: The decision maker is supposed to choose a nonnegative x,
then observe a value of the random matrix é and the random vector b,
and finally compare éx with b. The vector x may or may not be feasible,

But feasible or not the decision maker is allowed to make another

Ax and b, based

e o

decision y to compensate for any discrepancies between
on the original decision x and the later observed A and b, but at a

penalty cost. An example of this formulation is the linear inventory

problem (Madansky, 1963)., Here x is the amount of inventory which
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must be on hand, b is the randem variable of demand; to be observed
later A is a nonrandom matrix of relevant technology coefficients, and
y is the second-staga_decision, embodying two kinds of activities,

‘If the demand exceeds the inventory, the goods must be bought on the
open market and at a penalty cost to meet the excess demand over supply.
If the inventory exceeds the demand, the excess must be scrapped as a
penalty, reflecting the loss for not having made a better choice of x.
This formulation is more realistic than the "fat" formulation in that

it keeps the decision maker in business after he has made a choice of

x and the random variables have been observed. The constraints for the

two-stage problem are given by Ax + By = b, Note that "slack" variables

have been introduced into the n, — vector y so that the inequality

2

constraints %{ 3_? are equalities, Typically, the mxn, matrix P is
going to be a matrix of zeros and plus or minus ones (Madansky, 1963).
Also required is the nonnegativity of x and ye

The‘objective function for this two stage problem is constructed
as follows: Llet f be the nonrandom penalty cost vector for the second-

stage decision vector y. For given A, b, and x the best second-stage

decision is found, that is, the y which is optimal for

By =b - Ax

|v
o

y (3.25)

min z, = £ly »

Now, assuming that the utility of the objective function is linear,

the appropriate objective for the two-stage problem is



ex4+ E pin Y% . (3.26)

~ o

y

-~

It is also assumed that for every possible x and (A, b) there exists a

y which will compensate for any discrepancy between Ax and b, given that

~

the decision x has been made and a particular (4, b) has been observed,

This "slack" formulation reduces to the ''fat" formulation in case any

component of f is infinite, that is, in case it costs so much for

-~

certain types of discrepancies and therefore the decision in the first
stage is considered as permanently feasible.

To find a solution of the "slack" formulation, the problem where b

-
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is random is easier to solve than the case where A is random. (Madansky,

1963). One approach to a solution where b is the random vector is to

search for a "certainty equivalent", that is, a nonrandom vector which
replaces the random vector b so that the solution of the resulting
nonrandom problem will also be the solution to the two-stage problem.
As could be expected the expected value of b is not always a certainty
equivalent, but tﬁere are some situations where it would be, One
circumstance where the expected value of b would be a certainty

equivalent is as follows:

Let C(b, f) = f'f + min f'y

y e
and if C(§’§> has the form C(E, f) = él(f} + %2(9} + §3(§)E then re-
placing b by its expected value and solving that nonstochastic problem
will yield the solution to the two-stage problem (Madansky, 1960).

An example of such a function C(b, xX) is a quadratic in both x and b,

In general, when the components of the vector b are each independent

~



and have uniform distributions over scme finite range, then the
function EC(b, x) which is essential in the minimization is under
fairly wide circumstances going to be of this quadratic nature (Beale,
1961) and the expected value solution will be the solution of this
problem,

Ancother formulation of the stochastic (LP) problem is as a
"chance-constrained" program., Each of the constraining equations of
the original problem, (3.22), (3.23) and (3.24), are specified with
regard to the probability with which each is to be achieved, Subject
to these probabilistic constraints the minimization of the objective
function is performed, There is similarity here with the "fat"
formulation except that the probabilities of each possible infeasibility
are explicitly stated,

The difference hetween the chance-constrained.formulation and the
"slack" formulation is that in the latter the specific plans of the
decision maker for each possible iﬁfeasibility are explicitly spelled
cut, as are the explicit costs for all possible infeasibilities, where as
in the former these explicit costs of the various types of infeasibility
are reflected in the probabilities associated with each constraint.
Considar the violation cf a particular constraint to be costly. In
the"slack" formulation one would have to think hard about what the
actual costs of the specific plan under infeasibility would be. However;
in the chance-constrained formulation a high probability of satisfying
the constraint could be assigned if violation of the constraint weculd

be very costiy.

Aside from searching for certainty equivalents and reducing the

stochastic problem to a nonrandom problem, algorithms for minimizing
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E C{b, x) have been developed (Dantzig, Madansky, 1961). Part of the
two-stage problem is the second-stage problem, the problem that the
decision maker has once he has made the initial decision x and observed

~

the random vector b. The form of the problem is Equation (3.25).

For a given b and x there is an optimal set of dual variables, I (b, x).
One way of characterizing the solution of the two-stage problem is in
terms of the expected optimal value of the dual variables of the
second-stage problem,
Specifically, the following three results led to a particular
algorithm (Dantzig, Madansky, 1961):
(i) Suppose x is the optimal first-stage decision, i.e., it

minimizes E C(b, x) and satisfied the constraints, and let

xl be feasible, Then

[e' - ET'O®, xDAIx < [e' - ET'(G, x)] x, 1ee,

given any other feasible vector x the optimum x for the

1’

two-stage problem provides a smaller value than does X

for the linear form [c¢' - E I'(b, x)Alx. By generating
linear forms based upon a particular choice of ] and
evaluating the expected optimum for the second-stage

problem given %, and then determining where there exists

1
a vector which makes the above linear form smaller than
when evaluated at % is the way to proceed with the problem,

(ii) E c(b, x) is convex in x, Stated otherwise, the "slack"
formulation of the problem is in reality a recasting of the

problem as a convex programming problem, Although E C(b, x)

is convex it is not necessarily differentiable everywhere
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in the interiorrof the region of definition eof X, S0
Lagrangian methods or calculus methods camnot be used to
find solutions, However, the supperts of this convex
function can be constructed in terms of the expected optimal
prices for the second-stage problen,
(iii) The plane given by [E' - E ﬁ'(?,fl)éjf + E §'(?,31)E
-is a support to EC(E’f) at x = x,. That is, the term

¢' - E II'"(b, xl}A behaves as a gradient of this convex

~ -~

function at x This gives a combination of two results:

1
one a result about the convexity of EC(b, x ) and a
characterization of the support planes, and the other a
necessary condition for optimality of x. These results
uged in conjunction have been the foundation for algorithms
for minimizing.the convex function (Dantzig, Madansky, 1961).

Other efforts have been in determining optimizing algorithms for
the case where b takes on only a finite number of pessible values,

Here, the problem can be written out in full as the following large

(LP) problem:

Ax + By, =b
, .
A% By, - 5
_ (3.27)
Ax + By

o~ ~

e

T ' ' e ' =
Sm o Py T ppliy t et Y

where the p's are the probabilities of the various b's. In this format

the solution is not just for the optimal x, but for the whole set of
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optimal plans Yi» +ovs Yy where as in the formulation as a convex
programming problem of interest is only the optimum first-stage
decision., A method of computer solution by a dvwal problem formulation

has been developed (Dantzig, Wolfe, 1961),

3.4 Reliability in Linear Programming. With the general approach to

stochastic (LP) problem formulations given above and the development
of the conditions whereby algorithms could be used to solve the problem
a more detailed development of the stochastic aspects of the programming
problem will now be given. Certainly the most available principle
to lead to an optimal policy is to optimize the expected value of the
‘objective function. In the development of the preceeding formulaticns
by Madansky (3.22 - 3.24) the expectation was with regard to the objective
function (3.22) and with "chance constrained" probiems, (3.23 - 3.24),
However, it seems that few theories discuss "reliability" of the
obtained optimal policy as is usually seen in mathematical statistics
( Kataoka, 1962), Discussions of reliability are encountered in
another approach to stochastic (LP) problems which does not consider
directly problems of decision making under risk, Rather, of interest
are questions of the form: What is the distribution — or at least
what are the expected value and variance — of the objective function
if the value of the random A and b are realized, and then solve the -
nonrandom (determinlstic) problem, (Tintner, 1955; Madansky, 1963;
Kataoka, 1962),

In order to define a criterion of reliability of a policy, the
distribution function of the value of the objective function must be

known, which usually means "cost". Once the distribution function is



determined, a natural definition of the reliability criterion is as

follows: For a given a (0 < a < 1) obtain a limit n such that

Pr{cost of the ypolicy < n) =a
The term n is called "a percent confidence limit of cost" of the policy.
This means that when that policy is used, and letting o = .95, the
cost will be under n with a confidence of 95%.
Let two decision policies be defined as follows:
(1) minimum expectation policy: ;
(ii) deterministic minimum policy: X

A

The minimum expectation policy x is determined by solving

min E f(x, s) where s is a vector of random variables and
x s -~ -

f(f' s) is a cost function. The deterministic minimum policy x is
obtained by solving min £(x, s), where s is the vector of the expected
X - -
values of the random ;ariables. Theg to be considered are relatiomn-
ships between ;: and X, and the derivation of inequalities which are useful
for estimating ;.
As a first step, assume that
(i) data of demand in m time periods are given, and that linear
regression analysis can be applied to the data, and
(ii) the sample size m is large enough for a Student's t distri-
bution to be well approximated by a normal distribution.
Then, the distribution of demand is taken as a normal

distribution, These assumptions will be of use in a

production horizon proﬁlem to be developed now.
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Certain definitions and assumpticns are neéessary for presentatiom
of the problem,
(A) Definitions and Assumptions:
s: vector of randem variables which can be production
cecefficients of demand
s: Es
S: set of all pessible values of s
x: vector of controllable variables (deterministic
amounts of production)
X: set of feasible x's
f(x,8): objective function which can be cost, profit, etc.
Assumption (1): Let f(x,s) be a cost function and convex in s. The

relisbility criterion is

Pr(f(x,s) <n) = a, where
n is the a confidence limit of cost.
Assumption (2){ The set of feasible x's is not dependent on S. In other
words, the conditions which x's should fulfill do not contain the
random variable s.
In addition, several different kinds of policies are defined:
min E f(x,s) = E f(;,s): minimum value of expectation
xeX seS

where

~
% is the minimum expectation policy (M.E.P.)

E min f(x,s): expectation of minimum value
seS =xeX .



min f(x,s) = f(x,s): deterministic minimum value
xeX

where
X is the deterministic minimum policy (D.M.P.).

Madansky (1960) shows that

min £(x,s) < f(x,s).

X
Therefore E min f(x,s) < E f(x,s)
s X s
and E min f(x,s) < min E £(x,s)
.8 X X

Since f(x,s) is a convex function in s, we can apply Jensen's

inequality (Feller, 1966) to obtain

min f(x,s) < E min £(x,s),
X S X

Also, for x as a (M.E.P.),

min E f(x,s) = E £(x,s8) < E £(x,s).
X 8 s 8

Then, from Equations (3.28) (3.29) and (3,30) the following
inequalities hold:
f(x,s) < min E f(x,s8) < E £(x,s).
X s

Thus, the following statements can be made:
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(3.28)

(3.29)

(3.30)

(¥.31)

(i) Equation (3.28) shows that the minimum value of expectation

is not smaller than the expectation of minimum value.

(ii) 1If £(x,s) is a convex function of s the minimum value of

expectation exists between a lower bound of the deterministic
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minimum value and the upper bound of the expectation of
the cost of deterministic minimization policy. These
inequalities give a simple method for evaluating X by

the following relationship;

E f(x,s) - £(X,s) < E f(x,s) - f(x,s)

E £(x,s) - £(%,5) . E£(X,8) - £(%,8)

= = = S (3.31)
f(x,s) f(x,s)

and

then

E £(x,8) - £(%,8) < E £(x,s) - £(X,5)
E f(x,s) - £(x,s)

(3.32)

The left-hand side of Equation (3.32) is the relative error of f(x,s),
which is limited by the right hand side of (3.32). If the right
hand side is small when compared to unity, the D.M.P., x, would be a

A

good approximation for x.

3.5, Example of Reliability with Demand as Random Varisble,

As an application of the theoretical development of reliability
thus far, consider a production horizon problem in the case where
démand in each period is a random variable. The model is one of
simple commodity ﬁroduction over n periods with no time lag between
production and selling., The most important problem in the production
horizon problem is how to predict amounts of demand in the future,
Depending on the property and quantity of the concerned commodity,

there would be a variety of methods for forcasting. Adopted here is

the most popular one: linear regression as presented by Kataoka (1962).
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(k)

Let the amounts of demand, s’ ™, be given at time t,, (k=1,...,m).
Further, the amount of demand at time t, S is a random variable

which is normally distributed with mean value Bl + th and variance 02,

or in other words

s, = B + Byt + e, | (3.33)

where € is a normal random variable with E ¢ = 0, and E ez =1, with

Bl’ BZ’ and gzas unknownparameters. Lef further definitions be:

- 1 k

s=1 7 otF) (3.34)
as the sample mean of demand,

- 1 iy
i-1 7 o (3.39)

as the mean time,

~

B, as the least squares estimate of Bl’

1
B, as the least squares estimate of 8,,
9 38 the least squares estimate of 02.

Then the prediction of demand by linear regression from the method

of least squares is as follows:

D YL S T

B =
2 e, - 52

(3.36)

]

B. =3 -8 T : (3.37)
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-~ m -~ -~
R R RO T N AR L (3.38)
-1

The least squares estimate of s at T is

= + T .
%1 81 B2
Further, define
Z =8_-8
T T T

then the variance of z_ is given by

o
2ft , (= D)7 )

D} ¢ o "

var z_ =0
T

which can be found in Fryer (1966).

I1f the random variable T is defined as

.2 i/2
ZT/m+l+ (t - t_). >
Ty -0
z{fvar zT
o - 75 T, (3.39)
na?/@-2)o? [Z(s(k) - B8; - B, tk)z]
then the distribution of the random variable T is the Student's

t-distribution with (@—-2) degrees of freedom,
Since it is kuown that for a sufficiently large m, the distribution

function of a random wvsriable

1/2
u=T——-£-'--

-2
is well approximated by the normal distribution with E(u) = O, E(uz) =1,

the density function of s will be approximated by
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(s =m_)
1 T T
f(s) = ———— exp {- _,,___,___{} (3.40)
/21 9 o2

where

mT = 81 + BZT (3.41)

and

- - -2
Gf - {E(S(k) -8, - B, tk)Z}{mﬂ P o t_)- 2} / Guet)

from Kataoka (1962),

Definition (3,41) gives an interesting fact that the variance of
the expscted amount of demand is a monotone increasing function of the
prediction time interval if EZ > 0. The normal distribution function

(3.40) will now be used as the demand function at a time period, FPutting

T=+t 4+ 1t , then m, and 02 are defined as
m o i si

-~

my = B, + Bz(tm + i'ro)

and

m R . (t +it_ -t
gt " ( ] -z -, tk)z}{ﬂ"iJ' — ;}
=1 T Hre = 1)

where s is the time interval of one period, and i =1, 2, 3, ... .

3,5.1 Minimum Expectation Policy

Let the following definitions be made:

n: total number of periods
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1 20
V2l o

¢(s;m;02) =

s;r a random demand for the commcdity during the ith period

Uz : E(si -m,)
i

$(s.;m ,62 ): density function of the amount
i> i’'s

i
of demand during ith period and denoted also as
$(sy)
)
S s, =8
i jei h| i
Hi: E Si-

An assumption that the amount of demand, S1s Sps sesy 5, aTE independent

is also made. Then

i i
ci=E(Si—Mi)2=E(Z(S —m))2= ) 02 *

j=1 33 =1 5y

To develcp the cost function further definitions need be made:

%x.: amount of the commodity produced during the ith period and

T
is a controllable wvariable.

c;t capacity of production where

_<_ (o ) (3342)

0<x i

i
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YoF initial inventory which is constant

¥it inventory at the end of ith period

%
X.3
145

xj + Vo *
Then the cost function consists of two parts, the production cost and
the inventory-penalty cost, Let the notation for the cost function

be:

pi(xi): production cost of %,

linear production cost: pi(xi) = a, X

a, » 0,lﬁ>0

convex production cost: pi(xi) =a; x; + bi xi, 1

concave production cost: a, log (1 + x.).
a i

The inventory-penalty cost contains two parts:

an inventory cost of ith period for y, > 0

i

a penalty cost of th period for y; < 0.

Now, suppose this portion of the complete cost function is given by
ay for y > 0

G(Y) ={ ]
-by fory < 0

where a, b > 0, then the cost of the ith period fi is
fi = pi(xi) + G(yi) (3.43)

and the following relationships hold:
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3 =%~ %
vy, =X, -5
< % 2 (3.44)
Yo =% " Sn
and
%X = Xl = W o 0
Xy TR K20 (3.45)
xn=Xn—-Xn_130
Inserting (3.44) and (3.45) into (3.43) gives
fi = fi(Xi, Ki—l’ Si) = pi(Xi ~ Ki_l) + G(Xi - Si) (3.46)
and the total cost becomes
n
E(x,8) = § £X 1, S (X =y). (3.47)
i=1
Kataoko (1962) shows that the expectation of the inventory-penalty
cost, G, is
i
o » 2
Qi(}[i) = {m (;i(xi - 31) ¢(si,Mi,oi} D Si.’ (3.48)
and the expectation of the total cost is
n
E f(x,s) = i£1 (o (%y - X, ) +Q; (X (3.49)

Let further be defined the quantities:
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£y X) = p (%) ~y)) + (X))
fz(xl,Xz) = pz(X2 - Xl) + QZ(Xz) (3.50)
fn(xn—l’xn) = P(%, - Xn—l) AL *

Then, the problem of interest will be

min {fl(yo,xl) + f2(X1=Xz) + een + fn(xn_l,xn)}
s.t.: Equations (3,42) and (3.45)

This is a dynamic programming problem which can be solved
by successive minimization. Computational procedures are given by
Kataocka (1962), For a deterministic solutiom Gi(Xi - Mi) is substituted

for Qi(xi) in (3.50).

3.5.2., Computational Procedures for the Minimum Expectation Policy.

The procedure to follow is an outline of a more detailed de-
velopment by Kataoka (1962).

To begin the following definitions are made:
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Fn—l(xn—l) = min fn(xn—l’xn)

xn—l-i Xn E-Cn

¥ £ ﬁ-l A |
n—Z(Xn—2) wia {fn—l(xn—Z’ s —l) * Fn-l(xn—l)}
Xn-z R Cn—l
0 i‘xh-Z = Yo
e s s 2 8 s 8 s s e % 8 s s s s s s s e s e s s (3.51)

F (X)) = min {fz(xl’xz) + FZ(XZ)}

X, <X <¢C

0 <X 24

min E £(x,s) = min {fl(yo, Xl) + Fl(xl)}

2

Simultaneously, the optimal policy at each step as a function

of the preceeding variable can be found:

(3.52)
X, = xz(xl)

Xl = constant

and from the last step of (3.51), the optimal Xl can be obtained as
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A~

+ X, = = stant,
Yo ¥ %y Xl constan

Then, by solving (3.52) by backward recursion for X5 XZ’ o Kn,

~

the optimal policy Xis Xpy eensy X will be obtained and is given as

HEE I

xz = Xz - Xl

- P &« = & * @ (3.53)
xn = Xn - Xn—l'

Then the approximate distribution function of f£(x,s) and the
reliability criterion can be found, The results as given by Kataoka

(1962) are as follows: Let
: I, - Q)
_ E(x,s) - Ef(x,s) _ -t

Hd
¢ O

where Ef(x,s) is given by (3.49) and

= E[f(x,s) ~ Ef(x,s)]2 ‘

G2
f

Then the distribution function of x

2
g - F(-xD)
P(X<x) = ¥(x) = y_(x) + —— e (3.54)
3T
where x2
P (x) = jx 1.2 dx (3.55)
» - /21
and

gi = B[E(x,8) ~ BElz,8)]°

The reliability criterion, o limit n, will be obtained as follows:
For each given value of a, let x(a) be such that y{x(a)) =%, Then

P(X < x(a)) = a implies
f(x,s) - Ef(x,s)

) < x(a)) = &
Og — /

P((
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where
n
- R &)
n = _Z p(x) + Q7 + 0 x(a),
i=1
in which
o =JEc = oY
i
and
= ]
Gi = G(Xi - Si).

The derivation of the reliability criterion depends upon fitting a
distribution function to f{(x,s) by the method of moments.

Therefore, a reliability criterion for the optimal policy has
been developed, incorporating considerable statistical theory ia the
method, The following example illustrates the complexity of éomputation
encountered even for simple linear production costs and normally distributed

demands.

3.5.3 Application of Kataoka Method of Reliability

Assuming that production has been continuing over a sufficient
interval of time such that the least squares estimates for the distributiom
parameters of the random variable of demand have been found then the
problem needs certain definitions before minimization of the expected value
of the cost functien can be found,

Definitioms:
n: total number of periods of prediction of random demand: 3 Days.

8 (s,m,0%) = N(s;50,25)
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84t random demand during ith day
m, ¢ E(si) = 50 -
2 2
Og * E(Si - mi) = 25
i
2 2 . . ;
¢(s.3m, 0" ) = ¢(s,m,c”): density function of the amount of demand
S B § 84 1 2
2 2 1 - '5—0'(5-50)
during ith day is N(50,25), i.e. ¢(s;im;,0_ ) = ¢(s,m,07) = —e
i V501
i
5 Z s,: demand over first i days
i ; 3
j=1
Mi: ESi: expected demand over first i days
i i
E(S;) = E( ) sg) = ) E(sg) = 1(50)
j=1 j=1
Asgumption: The amounts of demand §158,s84 are independent,
X3 Amount of production during ith day
cd capacity of production during ith day: 60, i,e., constant
capacity over days.
0<% < 60 over each day
¥t initial inventory of 15 items
i
" C, = E c. + y_ = 1i(60) + 15 is capacity for first i days
i i o
i=1
Yit inventory at the end of the ith day.
i
X, = ) xi +y,: total production over first i days and the initial
J=

inventory,
Production Cost: Assume a linear production cost on each day

pi(xi) = a+ bxi = 75 + 1xi

Inventory penalty cost:
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2y for y >0
} (3.56)

G(y) = {
-3y for y <0

Then the cost of the ith day is

fi =75+ 1xi + G(yi).

The relations (3.44) and (3.45) are then made., Insertion of these relationms

into (3.43) gives

£, =75 + 1(%; - y,) + G(X; - 8))
f2 =75 + 1(x2 - xl) + G(x2 - 52)
f3 = 75 + 1(x3 - Xz) + c(x3 - 53).

Now Equation (3.48) needs to be found. For this production problem

example (3.48) is given as
2
$(S43Mqs0q) = N(S3;150,75)

¢(SZ;H2,s§) = N(8,3100,50)

2

Then

X @
i . _ . ;
(X)) =2 / (X, = S;) ¢(5,31.50,1.25) dS, - 3 I ¢(8;31-50,1.25)ds, .

-0 Ki

The expectation of total cost is given by (3.49) as
3
Ef(x,s) = 3.75 -y, + X, + E Q; (X,).
i=1
Equation (3.50) is defined as

El(YO’Xl) = 75 + (Xl = YO) + Ql(}(l)

L]

75 + (x2 - xl) + Qz(xz)

£,(X,%)) = 75+ (X5 - X,) + Q;(x5)
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Therefore, the problem of interest is to minimize
X X X X

subject to the constraints (3,42) and (3.45), Equations (3.51) are

defined and (3.52) becomes the method of finding the cptimal policy of each
step as a function éf the preceeding variable. The solutions of (3.52) are
found by differentiation with respect to a limit of an integral as found
in Buck(1956). To get %3 = XB(XZ)

FZ(XZ) = min f3(X2,X3) = min {75 + (X3 - XZ) + Q3(X3)}

x2§X3_<_C3=60.3+15=195
0_§_X2_<_C2=60-2+15=135

] 3 - _8_
Tﬁ; £4(X,,%q) = E‘; (75 + (X5 - X)) + Qu(Xg)] = 1+ o, Q4(X,)

Set to zero

1 2
X, _ .1 2 X - === (8,-150)
1 % _,2__.[§%w.[13 7 o Teeglan as, - 3 Sy e 150 ™3 del}
15001 \**3 ~ o
1 2 1 2
© - == (8,~150) o - ~==(5,~150)
__3 {E;_' X, [ e 150 *°3 dsy-f sye 150 "3 653]}_
Y150 \°°3 X X
3 3
S, - 150
Latting y = ~=——— _ £hén -
/75
X,-150
3 2 = 2
0 =1+ > [ s e / 4 - / e | /2 iy
V2T —> Y/ Xy-150
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X,-150 x5-150
0=1+ 2% (——) -~ 3[1 - ¢(—)]
/75 V75
X,~150
Sty %
/75
§3 = 150 - 8.66(.254) = 147.8
3%E (X ,%.) X, ~150
, _
_*qg_fg_ﬁia = E%— [_ 2 + 5 @(“EL“““"J] :_D &
by 3 Y75

Therefore, X3 is minimum of FZ(XZ)' Since

X. <« X, < 195
0 <X, = 135

X3 is feasible,

For Fl(Kl) the value of X2 is found as

Fl(xl) = min {75 + (Xz—Xl) + QZ(XZJ + 75 + (147.8 ~ X2} + Q3(147.B)}

d 3 3
5 (B} = L+ (X,) = 1=+ Q,(X,).
3X, 3X, 2 X, 2772

Setting to zero gives

szlﬂﬂ X2—100 A
0 = 2¢( ) - 3[1 - @( )] from previous argument for X3.
/50 V50 '
Therefore,
X.,-100

@(2 ) = .6
/50
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Kz = 100 + 7.07 (,254) = 101,8 and checking the constraints for X2 sheows

X2 is feasible.

So

F (X)) = 75 + (101.8 - X)) + Q,(101.8) + 75 + (147.8 - 101.8) + Q,(147.9),

Then the

Ef(x,s) = 75 + (xl-yo) + Ql(Xl) + 75 - (101.8 - xl) +

Q2(101.8) + 75 + (147.8 - 101.8) + Q3(l47.8)

and the
BX = BX = =3 + 5@( ) .
1 1 /25

Setting Lo zero glves

X,~50
o( ) = .6
V25
X,~50
2~ .
el -l

-~

Xl =50 + 1,27 = 51,27

and checking the constraints for Xl shows Xl feasible.

Therefore, the optimal policy for minimizing the expectation of the cost

function is



Jo = 13

x; =% ~y, =5L27 - 152 36

x, = X, = ¥ = 101.8 - 51 1 102 - 51 = 51

xy = Xy - X, = 147.8 - 101.8 I 148 - 102 = 46.

Now to obtain an upper bound on the cost function its distribution must
be found. Kataoka (1962) uses the method of moments to fit a distributiecm

to the cost function f(x,s). The first three central moments need be obtained:

3 3
f(x,8) = ) p,(X, -X, )+ ] G(X, -8,
: 421 i*i i-1 121 i i
3 3
Ef(x,8) = § P, (X, - X )+ ] Q%)

i=1 i=1

i

: 3
E(f(x,s) - Ef(x,s))2 = E[zci(xi_si) - Z Qi(Xi)]z
i=1

var (£(x,s))

2
» Where

(2) (1)

I

E(Je, - Jo,1% = Qep? - (Jop? = 1? -

for the production example

(2)

I

2 2 2
T E(G)" = E[J6] + 2 ] Zcicjl = JEG] + 2 ) ] E(G,G)

i<j i<j 3

2
zQi-+ 2 gcg Qin_

)

From (3.54) ‘I.'{'d can be written as

@ _ 3f ™ 2 - )
T = i§£{4 f (X.1 - Si) ¢(Si;io50,i-25) dsi + 9 £ (xi—si) ¢(Si;i-50,i.25)dsi
= o | .

X, w
+ 2{2 L [2 [ b (x,-8,)6(5,31-50,1.25)ds, - 3 [ (X;-5,) #(s,31:50,1.25)ds,)

i<j X

X : .

3 _ 3,50 4 - . s B

(2 {@ (X;~8,) #(S;3350,5.25)ds, - 3 i (X,-5,) (5,33 50,3.25)dsj)]}
3
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and

(1)2 - 2 % o ,
Q = (_Z Q) {izl [2 {m (X;-5.) $(S31.50,1-25)dS,

. 2
~ 3 ! (Xi—Si) ¢(Si;1-50,i-25)dsi]} "
%

The third central moment of f(x,s) needs to be found as

e = El£(x,) - BE(x,9)]° = E(Je, - Jo,1°

- 2o = 3¢Jo) Jep? + 3 ey - (Jap

3 3
2 (3 3@ 5 (M7 )
3
where
(3) ¥ 3 2
>/ = E(}G,)” = E(}G] + 3] }G,G, + 6 G.G,G,)
Jop” = moy + 3] Jayc) + 6 11 T 6,5
3 2
= JEG, + 3] ] EG,G; + 6 EG,G,
Z i §<§ 13 §<§<£ L JGk
= § (8 fxi(x $.)34(S, 31.50,1+25)dS, - 27 fm (X.-8.)>4(S, 31.50,1.25)dS ]
B T M 61543120, 1e i A A L 1
4 ,
X, m
4 3{%(% [(2 {m (X;-5,) ¢(8;31-50,1-25)dS, - 3 £ (X,~S;) ¢(S,;1-50,1.25)dS,)
1
(4 ij (x.-5,)2 ¢(5,31-50,j+25)ds, - 9 jm (X,-5,)% $(5,31+50,3-25)dS )3}
. Ty Wy 177 Ty g 3

]

3 X &
+-6{ 1 2/t (X,~8,) (5;31+50,1:25)ds; ~ 3 f (Xi-Si)¢(Si;i-50,i.25)dsil}.
1=1  ~= X.

i
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In order then to find n such that Pr (f(x,s) <n) = a, (3.54) is used. Then

Pr(X < X(a)) = «a

dmplies

Pr(f(x,s) < Ef(x,s} + g X(a)) = «

implies
.3 3
Pr(f(x,s) < E By (BpX, ) # Z Q(X,) + 0, X(a)) = a,
i=1 i=1
where
3 %
L OP(R-K, 1) =3.75~y +X,= 388
i=1
then

n = 388 + Q{l) + o X(a)

where (3.54) gives distribution from which the wvalue X(a) is found,
Thus, the complexity of T(Z} and T(a) in finding the first three
moments to fit a probability distribution to f(x,s) introduces great complexity

of computaticn even for a simple linear production cost function.



108

4, SUMMARY

The report has been concerned with the formulation of problems
in mathematical programming. Specifically, those mathematical
programs which have a linear objective function, those which are
decomposable where the dynamic programming technique is appropriate,
and the introduction of random variables into the above problems,

Linear programming was developed as a foundation for random
variables to be introduced into the objective function or the
constraints. Then a method of introducing reliability of the
minimized funection was developed with an outline of the cemputational
procedure,

Dynamic programming was also developed with the purpose of intro-
ducing random variables into the system. Then Markov processes were
presented within the dynamic programming theory.

It is certainly realized that there are other approaches to solving
mathematical programming problems than those methods presented here.
Some of these methods are the continuous maximum principle, the discrete
maximum principle, the Lagrangian method, the Kuhn~Tucker method] some

of which are included in the calculus of variation,
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AZSTRACT

The report is concerned with the formulation of problems in
mathematical programming. Specifically, tbosé mathematical programs
which have a linear objective functioﬁ, those which are decomposable
where the dynamic programming technique is appropriate, and the intto-
duction of random variables into the problems, Linear programming
is developed as a foundation for random variables to be introduced
into the objective function or the constraints, Then a method of
introducing reliability of the minimized objective function is
developed, Dynamic programming is also developed with the purpose
of introducing random variables into the system. Then Markov processes

are presented within the dynamic programming theory.



