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Abstract

An ontology can be seen as an explicit description of the concepts and relationships

that exist in a domain. In this thesis, we address the problem of building an interests’

ontology and using the same to construct features for predicting both potential friendship

relations between users in the social network Live Journal, and users’ interests. Previous

work has shown that the accuracy of predicting friendship links in this network is very low

if simply interests common to two users are used as features and no network graph features

are considered. Thus, our goal is to organize users’ interests into an ontology (specifically,

a concept hierarchy) and to use the semantics captured by this ontology to improve the

performance of learning algorithms at the task of predicting if two users can be friends. To

achieve this goal, we have designed and implemented a hybrid clustering algorithm, which

combines hierarchical agglomerative and divisive clustering paradigms, and automatically

builds the interests’ ontology. We have explored the use of this ontology to construct interest-

based features and shown that the resulting features improve the performance of various

classifiers for predicting friendships in the Live Journal social network. We have also shown

that using the interests’ ontology, one can address the problem of predicting the interests of

Live Journal users, a task that in absence of the ontology is not feasible otherwise as there

is an overwhelming number of interests.
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Chapter 1

Introduction

An ontology is an explicit, formal specification of a shared conceptualization of a domain

of interest [Gruber, 1994], where “formal” implies that the ontology should be machine

readable and “shared” implies that it is accepted by a group or community [Buitelaar

et al., 2003]. In other words, an ontology is an explicit description (similar to the formal

specification of a program) of the concepts and relationships that exist in a domain [Gruber,

1993]. Ontologies can be seen as high-level “umbrella” structures, which can be inherited

and extended in order to organize data and knowledge [McGuinness, 2003]. They can also be

seen as metadata that are used to provide a better understanding of the data or to facilitate

data integration [Caragea et al., 2005; Doan and Halevy, 2005; Eckman, 2003; Levy, 2000;

Noy and Stuckenschmidt, 2005].

Ontology-based data management systems (which organize data based on the seman-

tic knowledge of a domain) find their applications in Web-based learning [Shridharan et al.,

2004], software development (e.g., consistency checking, support and validation testing) [Hap-

pel and Seedorf, 2006; McGuinness, 2003], flexible querying of heterogeneous data sources [Cal-

vanese et al., 2005], etc. In social networks, ontologies can provide a crisp semantic orga-

nization of the knowledge available in such networks. For example, users’ interests can be

grouped in a concept hierarchy that makes explicit the implicit relationships between various

interest concepts, thus helping in the process of data understanding and analysis.

In previous work, Hsu et al. [2006] have addressed the task of predicting if two users
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of the Live Journal social network can be friends or not. Live Journal is an online journal

service with an emphasis on user interaction [Fitzpatrick, 1999]. Among other things in

the Live Journal social network, users can specify their demographics, list their interests

and tag other users as their friends. Given the emphasis on user interaction, Live Journal

network can be represented by a graph structure, wherein nodes of the graph represent the

users of the journal service and edges represent friendship links. Thus, if user “A” tags user

“B” as a friend, then there exists an edge between corresponding nodes “A” and “B” in

the underlying graph. The task of predicting friendship between two users is the task of

predicting these friendship links.

Hsu et al. [2008] implemented a data acquisition tool known as “LJCrawler” to gather

user data from the Live Journal website “www.livejournal.com”. LJCrawler (version 3)

is a multi-threaded, parallel HTTP crawler that effectively gathers user information in a

breadth-first manner. Data acquisition began with Live Journal user “darthvader” who was

randomly selected. The crawler queried user data including, but not limited to, user age,

interests, friends, schools, communities, etc. and generated raw LJ crawl data. Furthermore,

this raw data was post processed to delineate the Live Journal graph, and extract a set of

graph-based and interest-based features [Hsu et al., 2006]. Hsu et al. [2008] have addressed

the task of predicting friendship links using these features. Their results suggest that features

constructed only from the common interests of two users are ineffective at predicting friend

relationships. While network graph features prove to give good results, several questions can

be still raised: Can we improve the performance of the algorithms that use graph features

by combining them with interest-based features? If we are interested in other prediction

problems, such as the prediction of the users’ interests themselves, how can we handle the

overwhelming number of interests? Furthermore please note that, a social network may be

incomplete e.g. If two users “A” and “B” are friends in real life, but they have not tagged

each other as friends in the social network, then links between nodes “A” and “B” will be

missing from the graph. As a consequence, the graph features derived from the graph will be

2



incomplete or simply unavailable. In such cases, can the task of predicting friendship links

be addressed? We hypothesize that organizing interests into an ontology and constructing

interest-based features using the ontology can help to successfully address some of these

questions.

To illustrate the importance of incorporating semantic information in the data used by

prediction algorithms, we consider a simple example. Suppose that a user A is interested in

“laptops” and a user B is interested in “desktops”. A naive learner will consider “laptops”

and “desktops” to be two different entities due to their lexical differences - a semantically

incorrect assumption. If an interest ontology was available, “laptops” and “desktops” would

probably be grouped together into a more abstract concept called “computers”, and thus,

the learner would be able to semantically link the more specific concepts “laptops” and

“desktops” and use this information in the prediction process.

It has been previously shown [Hotho et al., 2003; Zhang et al., 2005] that the use of

metadata (e.g., concept hierarchies) in addition to data, can improve the quality (accuracy

and interpretability) of the learned predictive models in several domains. In this thesis,

we investigate the use of ontology to improve the performance of learning algorithms at

predicting friendship links in a social network. We also explore the effectiveness of ontology

at the task of predicting interests of Live Journal users. To do this, we will construct an

ontology based on declared interests of users in the social network Live Journal.

The effectiveness of this work has been already demonstrated in preliminary studies

published in two conference papers. The first paper [Bahirwani et al., 2008], published in

the Proceedings of the 2nd ACM Social Network Mining and Analysis workshop (SNA-KDD

2008), has focused on organizing users’ interests in an ontology and using the semantics

captured by this ontology to improve the performance of learning algorithms at predicting

if two users can be friends. We have empirically shown that the ontology so produced

is very useful in predicting friendships in the absence of graph features. In addition, the

combination of graph-based features and interest-based features derived in presence of the

3



ontology is the most effective in addressing this problem.

The second paper [Aljandal et al., 2008] to which this thesis work has contributed, was

published in the Proceedings of the Artificial Neural Networks in Engineering conference

(ANNIE 2008), and has explored the effectiveness of interestingness measures derived for

the association rules based on common interests of users of the Live Journal social network,

at predicting friendship links in the same. The results indicate that classifiers show an

improvement in their prediction performance, when presented with association rule based

measures refined in the presence of the interests’ ontology, compared with their performance

using the same set of features in absence of the ontology, thus suggesting the effectiveness

of using the ontology at that task.

This thesis presents an extension of these preliminary studies and is organized as follows:

Chapter 2 presents background information for the problem addressed. Chapter 3 introduces

the details of the algorithm for ontology building. Chapter 4 describes the procedure used

to evaluate the ontology extracted from the data. Chapters 5 and 6 discuss the experiments

performed and the results obtained when predicting friend relationships and interests of

users using the ontology, respectively. A discussion of the related work can be found in

Chapter 7. We conclude and present several directions for future work in Chapters 8 and 9

respectively.
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Chapter 2

Background

An ontology can be seen as an explicit description of the concepts and relationships that

exist in a domain. The work presented in this thesis focuses on: (1) building ontologies

(or a concept hierarchies) of interests specified by the users of Live Journal social network;

and (2) using the derived ontologies to address prediction problems such as prediction of

friendship links underlying the network graph and prediction of interests of users of Live

Journal. Clustering algorithms help us find concepts in the data by providing mechanisms

for grouping similar entities together. Moreover, clustering algorithms such as hierarchical

clustering organize data entities in the form of hierarchy of concept-clusters providing the

ability to explore the derived concepts at various levels of abstraction. We will present a

general description on “Clustering Algorithms” in Section 2.1, followed by a description of

the shortcomings of some approaches considered for engineering the interest ontology in

Section 2.2.

2.1 Clustering Algorithms

Clustering is an unsupervised learning task that can be defined as the process of partitioning

data into groups of similar entities, where each group corresponds to a concept [Berkhin,

2002]. Clustering algorithms are highly dependent on the selection of a distance metric

that assigns a score to every pair of entities that may be grouped together. The distance

metric captures the extent of similarity (or dissimilarity) between candidate pairs. The
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distance between two clusters is usually computed as the average, maximum or minimum

distance among all distances between the possible pairs of entities contained in the two

clusters. Based on the same, clustering algorithms can be classified as average-linkage (or

group-average) clustering, single-linkage (or single-link) clustering and complete-linkage (or

complete-link) clustering algorithms respectively [Manning et al., 2008, Chapter 17].

In addition, clustering algorithms can also be classified based on partial or complete

membership of data entities within their corresponding clusters. In hard clustering algo-

rithms, each data instance is a full or complete member of one or more clusters. Partitional

clustering is a special case of hard clustering where each data instance is a full member

of only one cluster. Soft clustering algorithms, on the other hand, compute a distribution

of membership of a data instance over all clusters [Manning et al., 2008, Chapter 16]. An

example of soft assignment is that an instance “Chinese cars” may have a partial (or frac-

tional) membership of 0.5 in each of the two clusters “China” and ”Cars”, and a membership

of 0 in all other clusters. The same instance, in a hard assignment, will have a complete

membership of 1 in one or both the clusters “China” and “Cars”, and a membership of 0

in all other clusters. Furthermore, according to Manning et al. [2008, Chapter 16], clus-

tering algorithms can be divided into exhaustive and non-exhaustive clustering algorithms

depending upon the number of data instances assigned to one or more clusters. Exhaustive

clustering assigns each data entity to a cluster while non-exhaustive clustering may leave

some entities unclustered.

Also, depending upon the manner in which the clusters relate to each other; clustering

algorithms can be divided into flat clustering and hierarchical clustering algorithms [Manning

et al., 2008]. Flat clustering algorithms create flat sets of clusters without any explicit

structure that would relate the clusters with each other. Their counterpart, hierarchical

clustering algorithms build a tree of clusters by successively grouping the closest cluster

pairs, until no further grouping is possible. In the resulting tree (often called dendrogram),

each cluster node at an intermediate level is associated with a parent cluster, one or more
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child nodes and one or more sibling nodes. The hierarchical clustering approach allows

the exploration of the data at different levels of granularity. Thus, parent nodes represent

abstract notions of the detailed concepts that their children embody [Berkhin, 2002; Manning

et al., 2008].

Hierarchical clustering approaches are further categorized as agglomerative and divisive

according to their algorithmic structure and operation [Jain et al., 1999]. The agglomerative

approach starts by considering each instance as a distinct singleton cluster, and based on the

similarity criterion, successively merges clusters together until the termination conditions

are satisfied [Jain et al., 1999]. The divisive approach begins with a root cluster that

represents all data instances, and successively splits the clusters based on the cohesiveness

(or dissimilarity) of the instances constituting the cluster members, until the termination

conditions are met [Jain et al., 1999].

Fig. 2.1 delineates both forms of hierarchical clustering algorithms. The divisive algo-

rithm, as described above, begins by dividing the root cluster into two clusters “A” and

“B”. Cluster “A” further divides into clusters “C” and “D”, however, since the cohesiveness

measure of cluster “B” exceeds its threshold (for details, please refer to section 2.2), cluster

“B” is not further divided. The agglomerative algorithm begins with singleton clusters “A”,

“B” and “C”, and builds the hierarchy bottom-up as shown in fig. 2.1.

Figure 2.1: Divisive(top-down) vs. Agglomerative(bottom-up) Hierarchical Clustering
Paradigms
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We have designed and implemented a hybrid clustering algorithm, called Hierarchical

Agglomerative and Divisive (HAD) clustering, to automatically organize the users’ interests

into a concept hierarchy. It can be classified into the hard, exhaustive and hierarchical

clustering paradigms. Several other approaches were considered for this task. We will

briefly describe them and their limitations in the next section and later show how our HAD

algorithm overcomes these limitations in Chapter 3.

2.2 Clustering Algorithms Considered for Building an

Ontology and their Shortcomings

There has been a lot of undergoing research in learning implicit concepts and concept hierar-

chies from the data using clustering approaches. Kang et al. [2004] introduce a hierarchical

agglomerative clustering algorithm (Section 2.1) for construction of attribute value tax-

onomies from the data. An attribute value taxonomy (AVT) is a hierarchical grouping

of attribute values that reflects assumed or actual similarities among values in a domain

of interest [Kang et al., 2004, Section 1]. In their paper, Kang et al. describe a simple

algorithm AVT-Learner for automated construction of AVT from the data. AVT-Learner

recursively groups values of the attributes based on Jensen-Shannon divergence [Slonim and

Tishby, 1999] between class distributions associated with attribute values to construct a

taxonomy. Moreover, results [Kang et al., 2004] show that classifiers, e.g. Naive Bayes clas-

sifier, achieve comparable or higher classification accuracies than those obtained otherwise,

when using AVTs generated by AVT-Learner,

As opposed to bottom-up approach of Kang et al., Punera et al. [2006] present a genetic

top down algorithm (ATG) for a completely automated construction of a hierarchy of classes,

given a set of labeled data points. ATG computes similarity between set of class labels using

Jensen-Shannon divergence [Slonim and Tishby, 1999] and builds an n-ary hierarchy of

classes following the divisive clustering paradigm (Section 2.1). Furthermore, Punera et al.

[2006] not only quote that n-ary tree based taxonomies are more “natural” than binary tree
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based taxonomies, but their results also show that n-ary taxonomy aware classifiers yield

better classification accuracies as opposed to classifiers based on their binary counterparts.

In other related work, Kim and Chan [2003] address the problem of modeling users’

interests by classifying the web pages that a particular user visits. They introduce a top-

down divisive hierarchical clustering method (DHC) to recursively divide parent clusters into

child clusters until a termination criterion is met. This division is based on the similarity

of two interests in the parent cluster. The similarity of two interests is based on content

(i.e., words and/or phrases describing interests). For each pair of interests, a similarity

function [Kim and Chan, 2003, Section 4.2] is used to produce a score. If the score exceeds

a threshold, all similar interests are separated out from the parent in a child cluster. The

termination condition for the recursive partitioning is satisfied when no parent cluster can

be further divided because of lack of similarity among the interests it contains.

Godoy and Amandi [2005] describe a practical way to implement the method introduced

by Kim and Chan [2003]. Among the clustering approaches mentioned above and other simi-

lar approaches; the approach presented by Godoy and Amandi [2005], in particular, was very

attractive to our work as they present an unsupervised web document clustering algorithm

(WebDCC) that performs incremental concept learning, and organizes the concepts learned

into a hierarchy. The procedure begins with a root cluster, which represents “everything”.

Initially, instances are added one-by-one to this root cluster and with each addition, the

cluster is evaluated by an evaluation function [Godoy and Amandi, 2005, Section 2] for its

cohesiveness. The evaluation function assigns a numerical score to each cluster, that repre-

sents the extent of similarity among the entities constituting that cluster. Lower value of

the cohesiveness measure indicates that the cluster does not provide enough information to

define a concept which summarizes its constituting instances, e.g. the cluster only consists

of a few instances. Contrary to this, if the cohesiveness measure exceeds a given threshold,

then the constituting instances are separated into a new child cluster. Moreover, Godoy and

Amandi [2005, Section 2.4] empirically determine the value of this threshold to be 0.25.
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In addition, every cluster in WebDCC algorithm [Godoy and Amandi, 2005], except

for the root cluster, has a concept description associated with it. This concept description

is a set of terms that describe the instances in the corresponding cluster. The approach

proposed by Godoy and Amandi [2005] requires each instance “entering” into the clusters

below the root to be compared with the associated clusters’ concept descriptions. WebDCC

algorithm assigns a numerical score to this comparison as described in Section 2.2 [Godoy

and Amandi, 2005, Equation 2]. If the similarity measure between a new instance and a

concept description exceeds a given threshold, then the instance is added to the cluster asso-

ciated with that concept. However, if the similarity measure does not exceed the threshold,

then the instance is either compared against other peer concept descriptions, or added to

the parent cluster, if WebDCC fails to find any peer cluster to which the new instance can

be assigned. The results presented in section 2.2 of the paper [Godoy and Amandi, 2005]

suggest a value of 0.7 for this threshold. Thus, this idea of recursive partitioning extends

from root to leaves, and partitioning of a cluster takes place when a newly added instance

increases the cohesiveness of the cluster above a threshold [Godoy and Amandi, 2005].

Our initial approach to building an interest ontology was based on the notion of similarity

introduced in [Kim and Chan, 2003] and the algorithm proposed in [Godoy and Amandi,

2005], but it presented several shortcomings in the social network domain. First, the two

papers [Godoy and Amandi, 2005; Kim and Chan, 2003] consider a bag of words (BoW)

approach to describe instances (web pages), and thus each instance is represented as a fixed

length array. In the social network context, users’ interests can be seen as instances, but

cannot be naturally represented by a fixed length (bag of words) array, as every user has a

relatively small number of interests compared to the total number of possible interests.

Second, the approach in [Godoy and Amandi, 2005] does not allow instances to belong

to several concepts. An instance is restricted to belong to only one of the learned concepts.

However, this restriction is not desirable for interest concepts, as interests like “notebooks”

can belong to more than one category, for example “school supplies” and “computers”.
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Third, if a cluster’s cohesiveness measure exceeds cohesiveness threshold to produce a

concept, but the concept description cannot be formed (because, maybe, all valid terms

have been used to describe its parents), then further expansion of the conceptual hierarchy

from this cluster will not be possible. This is because the associated concept description

will not have any terms, and hence the similarity measure between any new instance and

this concept description will be 0 [Godoy and Amandi, 2005, Equation 2].

Finally, WebDCC algorithm [Godoy and Amandi, 2005] tries to derive a concept descrip-

tion out of a cluster every time a new instance is added to it. If a concept is generated, new

instances will be added to a cluster below this concept only if they are similar to the concept

description. The similarity between the concept description and the new instance is eval-

uated as a dot product between two vectors representing them [Godoy and Amandi, 2005,

Equation 2]. With that said, if instances in a cluster contain long definitions (description of

an interest) i.e. definitions involving a lot of terms, the associated concept description will

contain a lot of terms and hence will favor instances with long definitions to pass through

it (the same can happen if small concept descriptions are compared with instances having

small definitions). This shortcoming can be addressed by considering other measures of

similarity such as cosine similarity [Manning et al., 2008, Section 6.3], however, based on

other considerations mentioned above, we decided not to use the approaches in [Kim and

Chan, 2003] and [Godoy and Amandi, 2005] to construct an ontology over the interests of

users in a social network.

Instead, we propose a hierarchical agglomerative and divisive clustering approach, which

overcomes these issues and produces a useful ontology of interests. We evaluate this on-

tology with respect to the improvement in the performance of algorithms for predicting

friend relationships among network users, when the algorithms are presented with features

computed based on the ontology.
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Chapter 3

Hierarchical Agglomerative and
Divisive Clustering

As the name of the algorithm suggests, Hierarchical Agglomerative and Divisive (HAD)

clustering algorithm is a hybrid between the hierarchical agglomerative and divisive cluster-

ing paradigms. The algorithm is designed to make the ontology extraction process as fast

as possible and at the same time to produce a sensible and useful ontology. Primarily, it

consists of three steps:

• In the first step, HAD fetches definitions of interests expressed by Live Journal users,

from various sources such as WordNet-Online, IMDB and Amazon. Every definition

of an interest forms an instance that will be included in the resulting ontology.

• The second step divides the instances into different clusters based on the sources from

where the definitions are fetched and other factors such as “genres” of books or movies

specified as interests.

• At the final step, HAD engineers the concept hierarchy in a bottom-up fashion to pro-

duce a tree whose root collectively represents all instances and whose nodes represent

concepts at various levels of abstraction.

We describe the above steps in detail in Sections 3.1, 3.2 and 3.3 respectively.

12



3.1 Obtaining Interest Definitions

Social network data consisting of 1000 users, their interests and declared friends, is obtained

from the Live Journal. Surprisingly, the 1000 users have nearly 22,000 unique interests, from

which we derived approximately 45,000 unique individuals or instances, as explained below.

Each of the 22,000 unique interests is read from a text file and queried against different

sources for potential definitions or descriptions. We seek information from WordNet-Online

for the meanings of valid words, Internet Movie Database (IMDB) for definitions of movies,

and Amazon.com for definitions of books via Amazon Associates Web Services (AWS). We

have chosen to retrieve specific definitions for movies and books, because many user interests

in our data are related to such concepts. Usually, an interest word can have more than one

meaning, generating more than one instance. Furthermore, instances of the same interest

word may belong to different parts of speech. At last, an interest may be a movie and/or

a book with a specific genre associated with it. The definitions retrieved from the different

sources capture such information associated with interests.

Figure 3.1 illustrates the process of obtaining interest definitions from the different

sources mentioned above. For obtaining definitions, each interest is queried to Wordnet-

Online, IMDB and AWS in no particular order. Definitions fetched from one or more of

these sources form instances which will be organized by the next steps of HAD algorithm

(see Sections 3.2 and 3.3) into a concept hierarchy.

As an example, we have three definitions for the interest “character”.The first definition

is obtained using WordNet-Online and results in the following instances for “character”:

character,n,reference|character|formal|describing|qualifications|...

character,n,grapheme|graphic|symbol|written|symbol|used|represent|...

character,n,genetics|functional|determined|gene|group|genes...

character,v,engrave|inscribe|characters...

Two more definitions are obtained from IMDB and AWS, by querying these sources for
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Figure 3.1: Process of obtaining interest definitions

“character” movies and books:

IMDB: character,reality tv,reality|film|fantasy|history|dream|rocky...

AWS: character,novel,butcher|covey|davenport|detective|dresden|files...

These definitions (also called as “individuals”) are provided as input to the clustering algo-

rithm and have the following format:

<interest>,<part of speech/genre>,<gloss>

where <gloss> is the set of words describing a particular interest. The gloss is extracted by

filtering the text describing the interest, so that stop-words such as articles and prepositions

are removed.
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The following example shows the definitions of the interest “harry potter”. Wortnet-

Online does not provide any definition for “harry potter”, however, IMDB and AWS do.

Wordnet Online: No definition found

IMDB:

harry potter,fantasy,adventure|chris|columbus|family|magic|hogwarts...

AWS:

harry potter,books,deathly|half-blood|harry|phoenix|potter|rowling...

As can be seen in Figure 3.1, for interests that are neither single words, nor movies/books

(i.e. those interests for which none of the sources provide definitions), an “alternate def-

inition” is formed. An alternate definition is the combination of definitions (fetched from

WordNet-Online) of individual words that form the phrase for which the sources considered

failed to provide definitions. For instance, the alternate definition for “aim pranks” is as

follows:

aim pranks,alternate,aim|purpose|intention|design|pranks|buffoonery|

clowning|prank|acting|like|clown|buffoon

Apart from the interests that have valid definitions obtained from a variety of sources,

users often specify interests that do not form valid interest words (e.g., “?????” or “:)”).

There are approximately 500 such “interests” and we do not included them in the list of

interests provided as input to the clustering algorithm. It is worth mentioning that for

interests that have multiple definitions, HAD will consider these definitions as independent

instances and will try to place them in relevant and possibly different clusters. This takes

care of the major shortcoming described in Section 2, mainly that an interest can only

belong to one cluster.
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3.2 HAD: Divisive Clustering Step

After definitions for interests are fetched, the next step is to divide the resulting instances

into four major clusters as shown in Figure 3.2. The first cluster consists of all the in-

stances that are described in terms of meaningful words from WordNet-Online. The second

cluster consists of movie definitions fetched from IMDB. The third cluster comprises of

book definitions and the fourth contains instances with alternate definitions. About 22,000

unique interests queried for definitions generate 17,753 valid word definitions, 4,189 movie

definitions, 18,168 book definitions and 1,986 alternate word definitions resulting in a total

of 42,096 individuals to be clustered. Given the large number of book instances and the

prior knowledge about genres, the “book” cluster is further divided into a set of sixteen

sub-clusters based on genres (Action, Fantasy, Drama, Children, etc). Similar to books,

movies can also be divided based on their genres. However, since there are only about 4,200

movie interests, compared to almost 18,000 book-interests, the “movie” cluster is not further

divided in this phase of the algorithm; the grouping based on genre will be performed by

the hierarchical agglomerative clustering.

Figure 3.2: HAD: Divisive Clustering step
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There are two advantages we gain by dividing the data into several clusters before apply-

ing the hierarchical agglomerative clustering algorithm. First, we can apply the algorithm

in parallel to these clusters, resulting in faster ontology construction. Second, the source

from which the definitions of an interest are obtained can inform us about other concepts

that this interest can be associated with. The prior cluster division makes it possible to

exploit this information.

3.3 HAD: Agglomerative Clustering Step

The hierarchical agglomerative clustering algorithm is independently applied to each of the

nineteen clusters obtained in the divisive phase of HAD. It works in a bottom-up fashion

and groups similar instances together in two ways as described in Sections 3.3.1 and 3.3.2,

to engineer two versions of the interests’ ontology.

Similarity between two instances (or equivalently, two singleton clusters) is defined as

the number of common terms describing the instances. We evaluate this similarity as the

dot product between vectors representing the instances. A binary representation where

the ith element in a vector is either set to 1 if the ith term of the vocabulary is present

in the definition of that instance, or is set to 0 otherwise, is used for each instance. As an

example, Figure 3.3 shows the similarities among interests “Wireless”, “Radio”, “Wi-Fi” and

“Networks”. Furthermore, the similarity between two non-singleton clusters is considered to

be the average similarity among pairs formed with elements from the two clusters (average

linkage). A cluster is “matched” with another cluster if the similarity between the two

clusters is maximum among all the possible pairs of clusters in the current set.

Following Sections 3.3.1 and 3.3.2 discuss two flavors of the hierarchical agglomerative

phase of the HAD algorithm.
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Figure 3.3: Computing similarity between interests

3.3.1 Agglomerative Step: version 1

This version of the agglomerative step takes as input the set of interest definitions (or

instances) in a particular cluster. Initially, each instance is considered to be a singleton

cluster and the set of all singleton clusters is called the “current” set. Agglomerative step

(version 1) is said to complete an iteration when it has processed all the clusters constituting

the “current” set as follows:

At each iteration, HAD considers every cluster present in the “current” set and aims to

find another cluster matching it. If a match is found between two clusters, the two clusters

are merged to form a new parent cluster, which will be added to the new “current” set to

be used in the next iteration of the algorithm. However, if a cluster does not match with

any other cluster i.e the similarity measure between this cluster and any other cluster in

the “current set” is 0, then the cluster is added to the new “current” set as it is. Figure 3.4

shows an example of the agglomerative step described in this section. Figure 3.3 depicts that

“Wireless” and “Wi-Fi” are have the maximum score of similarity metric among all possible

scores between “Wireless” and other interests considered. Thus, “Wireless” and “Wi-Fi”
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are grouped together. Similarly, “Networks” and “Radio” have a similarity measure of 2

(common terms being transmit and communication) and hence, are combined together. The

agglomerative step continues to work in a bottom-up fashion and is said to convergence (or

complete its job) in any of the following two cases: either the clusters in the current set do

not match to any of their peers or the new current set has only one element. The version of

the interests’ ontology derived as a result of this flavor of the agglomerative step is denoted

as “O1” in the rest of the thesis.

Figure 3.4: Agglomerative Clustering step: Version 1

3.3.2 Agglomerative Step: version 2

Similar to its counterpart (Section 3.3.1), this version of the agglomerative step takes as

input the set of interest definitions (or instances) in a particular cluster. Initially, each

instance is considered to be a singleton cluster and the set of all singleton clusters is called

the “current” set. Agglomerative step (version 2) is said to complete an iteration when it

has processed all the clusters constituting the “current” set as follows:

At each iteration, HAD considers every cluster present in the “current” set and aims to
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find another cluster matching it. If a match is found between two clusters, the two clusters

are merged to form a new parent cluster. Contrary to version 1 of agglomerative clustering

step (Section 3.3.1), the new parent is added to the “current” set and is considered for

further grouping in the current iteration of agglomerative clustering. However, if a cluster

does not match with any other cluster i.e the similarity measure between this cluster and

any other cluster in the “current set” is 0, then the cluster is added to the new “current”

set as it is. The rest of the agglomerative step executes in a similar fashion as agglomerative

step - version 1. In the following Chapters, we denote the version of the interests’ ontology

derived as a result of this flavor of the agglomerative step “O2”.

Figure 3.5: Agglomerative Clustering step: Version 2

Figure 3.5 shows the grouping of four interests “Truth”,“Certification”, Arguments” and

“Statement”. The similarity measure between the latter two is maximum i.e. 6 (common

terms being argument, fact, assertion, offered, evidence, true) among all possible scores be-

tween “Arguments” and other interests. Thus, “Arguments” and “Statement” are grouped

together. Furthermore, as soon as the resulting cluster is formed, it is added to the “current”

20



set and later gets grouped with the interest “Certification” because the similarity measure

between “Certification” and the newly formed cluster is maximum i.e. 4 among all possible

scores between “Certification” other clusters. The agglomerative step continues until the

algorithm converges to generate the ontology as shown in Figure 3.5.

Figure 3.6: Ontology of Interests

After termination of either versions of the agglomerative clustering phase of HAD, all of

the remaining clusters in the “current” set are combined to form one cluster which represents

the root of hierarchy of input instances and their groupings. Like mentioned above, we have

applied this algorithm to all nineteen clusters (obtained in the divisive phase of HAD),

using a multi-threaded execution paradigm. Nineteen hierarchies obtained from all the
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threads represent nineteen sub-ontologies of interests, one for each cluster resulting from

the divisive phase (Figure 3.2). Each of these nineteen sub-ontologies is replaced with their

corresponding clusters to generate the unified ontology of interests of users of Live Journal

social network as shown in Figure 3.6.
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Chapter 4

Evaluation of the Ontology through
Learning

A prediction problem (often referred to as supervised learning) is defined as the task of infer-

ring a function from a set of training examples [Mitchell, 1997]. The function to be learned

is called the target concept (denoted by c), and the set of items over which it is defined is

called the set of instances (denoted by X), i.e. c : X → {class1, class2, class3 ... classk},

where class1 to classk are k class labels associated with the set of instances X. For any

instance x εX, the value c(x) is called the class label for x [Mitchell, 1997]. In our work, c(x)

is a boolean valued function of the form c : X → {0, 1}. When learning a target concept,

the learner (or the classifier) is presented with a set of training examples, each consisting of

an instance x from X, along with its class value c(x). Instances for which c(x) = 1 are called

positive examples, or the members of the target function. Instances for which c(x) = 0 are

called negative examples or the nonmembers of the target concept. Given a set of training

examples, the task of the learner is to estimate (or learn) c so that the learner can predict

the class of a new instance (called the test instance) [Mitchell, 1997].

In addition, the performance of a learner is measured through the means of some per-

formance measures such as Precision, Recall, Accuracy, F-Measure etc [Mitchell, 1997]. In

our case, the performance of a learner is measured by the area under the Receiver Operating

Characteristic (ROC) curve [Fawcett, 2005], i.e. the curve depicting the tradeoff between
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the true positive rate vs. false positive rate (see Figure 4.1). The area under the ROC

curve, or AUC (shaded region in Figure 4.1), is reported on as scale from 0 to 1, 0 being the

minimum value and 1 being the maximum value. Thus, higher values of the AUC indicate

better performances of a classifier at a given prediction task, while lower values indicate

otherwise.

Figure 4.1: Reverse Operating Characteristic (ROC) Curve

The main goal of our work is to improve the performance of learning algorithms at

the tasks of predicting friend relationships and interests of users in the Live Journal social

network. We define the two prediction problems addressed formally as follows:

1. Predicting friendship relationships among Live Journal users.

• Prediction task t: For a given pair of users, the task of a learner is to predict if

the two users are friends or not (c(x) ε {0, 1}).
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• Set of instances X: The set of instances consists of examples, each of which is

defined as < userA, userB > where userA and userB identify the two users. Each

instance < userA, userB > can be represented as a vector of the form

< i1, i2, ..., ik, g1, g2, ..., gl >

where i1 to ik are values for k interest-based features that capture the information

of common interests between user1 and user2, and g1 to gl are values for l graph-

based features with respect to the user-pair for which the instance is defined (see

Section 4.1).

• Class-label c(x): For each instance x, c(x) = 1 if user1 and user2 are friends, or

c(x) = 0 otherwise.

• Performance measure P : We use are under the ROC curve to measure the per-

formance of learning algorithm at this task

2. Predicting interests of Live Journal users.

• Prediction task t: A user can be interested in more than one interest. Given a set

of k interests, we learn k classifiers, one for each interest. The task of classifieri

(1 ≤ i ≤ k) is to predict if a given user is interested in interesti.

• Set of instances X: The set of instances consists of examples defined as < userA >

where userA identifies the user whose interests are to be predicted. Each instance

< userA > can be represented as a vector of the form

< nom1, nom2, ..., nomk, num1, num2, ..., numl >

where nom1 to nomk are values for k interest-based nominal features and num1

to numl are values for l interest-based numerical features. Both nominal and

numerical features summarize the information of common interests among the

friends of userA for which the instance is defined (see Section 4.1).
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• Class-label c(x): Given k interests, for each classifieri (1 ≤ i ≤ k), c(x) = 1 if

userA is interested in interesti, or c(x) = 0 otherwise.

• Performance measure P : We use the area under the ROC curve [Fawcett, 2005]

(see Figure 4.1) and the hamming distances (see Section 5.2 Equation 5.1) to

measure the performance of the learning algorithms at the task of predicting

interests.

We will formally evaluate the ontology through the results of prediction algorithms that use

interest-based features, constructed using the interest ontologies, alone or in combination

with graph-based features derived from the network graph underlying Live Journal. In what

follows, we provide a more detailed description of features that a briefly introduced above.

4.1 Types of Features

This section presents several types of features that can be derived from Live Journal data

and can be used to address the prediction problems at hand.

1. Interest-based features:

(a) Nominal features:

• Predicting friendships: User interests themselves can be indicative of user

friendships and could be used as interest-based nominal features. Intuitively,

if two users share a “rare” interest, then the two users can potentially be

friends. For the task of predicting friendships between a pair of users “A”

and “B”, interest-based nominal features consist of the interests of user “A”

followed by the interests of user “B”.

• Predicting interests: Interest-based nominal features corresponding to the

friends of a specific user can be used to predict interests of that user. For

instance, the fact that a significant number of friends of user “A” are in-

terested in “outdoor sports” can be indicative of the fact that user “A” is
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also interested in “outdoor sports”. Given a set of k interests, we address

the problem of predicting interests by considering k nominal features (one

for each interest). The value of the ith nominal feature (where 1 ≤ i ≤ k) is

equal to the number of friends of user “A” that are interested in “interesti”.

Given the large number (≈ 22, 000) of interests in our data, an instance con-

sists of overwhelming number of interest-based nominal features. With that said,

the classifiers may not perform well at predicting friendships or interests of users.

However, one can try to use user interests at higher levels of abstraction in the in-

terests’ ontology and expect an improvement in the performance of the classifiers

compared to their performance in the former case.

(b) Numerical features:

If two users have many interests in common, then it is possible that they are

friends, regardless of what exactly those interests are. Several interest-based

numerical features capturing this intuition can be derived and used to address

the prediction tasks at hand. Section 4.2 presents an overview of our related

work [Aljandal et al., 2008], where a variety of interest-based numerical features

are investigated.

• Predicting friendships: Given a pair of users “A” and “B”, the interests of

the two users and hence mutual interests between the pair, we address the

problem of predicting friendships by computing the numerical features as

described in 4.2.

• Predicting interests: Given a user “A” and a set “FA” of friends of “A”, we

compute (see Section 4.2) interest-based numerical features for every pair

{userA, userx} where userx ε FA. Each of the numerical features computed

is then averaged over the set “FA” and used for predicting interests of user

“A”.

2. Graph-based features:
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• Predicting friendships: The social network Live Journal is essentially a graph

with nodes representing the users and edges representing the friendships among

users. Similar to Hsu et al. [2006], we consider several graph-based features,

listed below, for predicting friendship links in the Live Journal social network.

For more detailed definitions of these features, please see [Hsu et al., 2006].

To predict whether user “B” is a friend of user “A” i.e. there is an edge A→B in

the social network graph, we consider the following graph-based features derived

from the graph:

(a) In-degree of “A” (InDeg(A)): The number of edges terminating at the node

corresponding to user “A” represent the popularity of user “A” and are

denoted as the in-degree of that user.

(b) In-degree of “B” (InDeg(B)): Similar to in-degree of user “A”, this is the

number of incoming edges to the node corresponding to user “B” in the

social network graph.

(c) Out-degree of “A” (OutDeg(A)): The number of friends of user “A” except

user “B” are denoted as the out-degree of user “A”. These are computed by

counting the number of outgoing edges (except the edge A→B) from the

node corresponding to user “A” in the social network graph.

(d) Out-degree of “B” (OutDeg(B)): Similar to out-degree of user “A”, this rep-

resents the number of existing friends of user “B” except user “A”.

(e) Forward deleted distance between “A” and “B” (FDD(A,B)): The minimum

alternative distance (i.e. not considering edge A→B if it exists) from the

node corresponding to user “A” to the node corresponding to user “B” in

the graph is denoted as the forward deleted distance between the two users.

(f) Backward distance from “B” to “A” (BD(A,B)): The minimum distance from

the node corresponding to user “B” to the node corresponding to user “A”

in the graph is denoted as the backward distance between the two users.
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Figure 4.2: Graph-based features

Figure 4.2 shows a sample social network graph consisting of seven users (A to

G) and the values for various graph-based features for the candidate user pair

{A, B}.

• Predicting interests: Pair-wise graph features proposed by Hsu et al. [2006] cannot

be directly applicable to predicting interests of users of Live Journal. Thus, we

incorporate the link information retrieved from Live Journal’s social network

graph by considering the friends of each user, when computing interest-based

features to address the task of prediction of interests of that user as described

above.

To evaluate the usefulness of the interests’ ontology in predicting friendships in Live Journal

we compare the performance of several learning algorithms at this task, when used with

interest-based features only, graph-based features only and a combination of the two sets

of features, both in the presence and absence of the ontologies. In addition, to evaluate

the usefulness of the interests’ ontology in predicting interests of users of the Live Journal

social network, we compare the performance of several learning algorithms at this task,

when used with interest-based nominal features only, interest-based numerical features only

and a combination of the two, both in the presence and absence of the ontologies.
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Figure 4.3: Different levels of abstraction in an ontology

When deriving interest-based features using the ontologies, interests of users are viewed

at different levels of abstraction (Figure 4.3) and experiments are conducted to reveal the

levels in the hierarchies that give the best performance (see Section 5).

4.2 Computing numerical interest based measures us-

ing Association Rules

Association rules are rules of the form A→B, where both A and B are subsets of an observed

item set L = {I1, I2, . . . , Ik}. In the field of association rule mining, a variety of measures

for estimating rule interestingness have been proposed. Geng and Hamilton [2006] review

38 probability-based objective interestingness measures for association rules and summaries,

classify them from several perspectives and compare their properties. In another survey, Tan

et al. [2002] discuss the properties of 21 objective interestingness measures and conclude
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that there is no “single” measure that is consistently better than others in all application

domains. Each measure captures different rule characteristics in a domain.

In the context of Live Journal, each interest has an item set whose elements are users

having that interest, and from each item set association rules of the form A→B (where A

and B are users) can be formed. Aljandal et al. [2008] look globally in all the item sets

and define eight objective measures of rule interestingness (listed below), from which eight

interest-based numerical features are constructed and used alone or in combination with

graph features to predict friends.

Suppose that numIntA denote the number of interests of user “A”, numIntB denote the

number of interests of user “B” and numIntAB denote their mutual interests. For the user

pair {A, B}, we define the following probabilities:

• Probability of user “A” having an interest i.e.

P (A) =
numIntA

totalnumberofinterests
(4.1)

• Probability of user “B” having an interest i.e.

P (B) =
numIntB

totalnumberofinterests
(4.2)

• Probability of users “A” and “B” having a common interest i.e.

P (AB) =
numIntAB

totalnumberofinterests
(4.3)

Based on Equations 4.1, 4.2, 4.3 and the Bayes’ Theorem, the following eight objective

measures of rule interestingness can be derived:

1. Support(A→ B) = P (AB)

2. Confidence(A→ B) = P (B|A)

3. Confidence(B → A) = P (A|B)
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4. Lift(A→ B) = P (B|A)
P (B)

5. Conviction(A→ B) = P (A)−P (⇁B)
P (A⇁B)

6. Match(A→ B) = P (AB)−P (A)∗P (B)
P (A)∗(1−P (A))

7. Accuracy(A→ B) = P (AB) + P (⇁ A ⇁ B)

8. Leverage(A→ B) = P (B|A)− P (A)P (B)

However, Aljandal et al. [2008] point out that one limitation of existing measures of rule

interestingness is that they do not account for the relative size of item sets to which each

candidate pair of associated subsets (A, B) belongs. In fact, there may be some hidden

associations related to candidates appearing in small groups. ”Giving some attention and

weight to these small groups may lead us to a different relationship perspective” [Aljandal

et al., 2008]. Some interests such as DNA replication (an example of “rare” interest) having

low membership (small item set size) often suggest a more significant association between

users listing them than between those who have interests such as Music or Games in common.

In their paper, Aljandal et al. derive a normalization factor that takes into account the

popularity of particular interests two users hold in common, with the most popular interests

(held by a significant proportion of users) being slightly less revealing than rarer interests.

For any given interest (say interesti), the normalization factor Ri is computed according to

the Equation 4.4:

Ri = q

√
logni

m (4.4)

where q and m are constants and ni is the number of users interested in interesti (size of

the item-set corresponding to that interest). Aljandal et al. [2008] empirically suggest the

values of q and m to be 2 and 5 respectively. In addition, they show that the normalization

factor can be incorporated into deriving eight measures of interestingness (listed above) by

computing the number of interests of a particular user and common interests of a pair of

users as follows:
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• Number of interests of user “A” i.e.

numIntA =
k∑

i=1

j (4.5)

where k=number of interests, and j = Ri if “A” is interested in interesti, or j = 0

otherwise.

• Number of interests of mutual interests between users “A” and “B” i.e.

numIntAB =
k∑

i=1

j (4.6)

where k=number of interests, and j = Ri if “A” and “B” both are interested in

interesti, or j = 0 otherwise.

The values of numIntA (similarly numIntB) and numIntB so derived are then used to

compute the probabilities from Equations 4.1, 4.2 and 4.3, and hence eight measures of in-

terestingness. Aljandal et al. [2008] empirically show that when presented with normalized

interestingness measures (as numerical features) for predicting friendship links in the Live

Journal social network, classifying algorithms show an improvement in performance with

respect to their performance at the same task when presented with unnormalized interest-

ingness measures. Hence, we use normalized versions of the eight association rule measures

mentioned above, along with the number of common interests, as features for the prediction

problems at hand.
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Chapter 5

Experimental Setup

This Chapter describes the details of our experiments conducted to evaluate the ontology

of interests as discussed in Chapter 4. We have conducted two sets of experiments designed

to investigate the performance of several classification algorithms at (a) predicting friend

relationships and (b) predicting interests of users of Live Journal, when presented with

different sets of features, including ontology based features.

In each experiment, we consider the following classifiers, whose implementations are

provided by the WEKA data mining software [Witten et al., 1999].

• J48 decision tree:

A decision tree classifier is represented in the form of a tree wherein non-leaf nodes

represent conditional tests performed on one or more attributes of the data instances

and leaf nodes represent the classification outcomes of the same. A decision tree

is learned by splitting the training data set into subsets based on an a conditional

test performed on an attribute value at each non-leaf node. This process is repeated

recursively on each derived subset, and training process is said to complete either when

further splitting of training data is not possible or all the examples in the derived subset

are associated with the same class label. J48 is a simple implementation of a decision

tree classifier [Mitchell, 1997].

• Support Vector Machines (SVM) with build logistic model option enabled:
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SVM views input instances as two sets of n-dimensional vectors. The first set consists

of positive examples while the second set comprises of the negative examples. Based on

the training examples presented to the classifier, it tries to construct an n-dimensional

hyperplane that separates the two sets. If more than one separating hyperplane can be

constructed, then SVM considers the hyperplane which maximizes the margin between

the two data sets [Mitchell, 1997].

• Random Forests:

A random forest classifier uses a collection of decision trees to classify data instances.

The predicted class label for each instance is same as the value of the class label

predicted by majority of the decision trees in the random forest collection [Mitchell,

1997].

• Logistic regression (Logistic):

Logistic regression classifier predicts the class of each data instance by computing the

probabilities assigning that instance with a positive and negative class labels. These

probabilities are computed by fitting the data instance to a logistic curve that is

derived in the training phase of the learning process [Mitchell, 1997].

• One-attribute-rule (OneR):

One attribute rule algorithm classifies data instances according to very simple asso-

ciation rules involving only one attribute in the condition part. OneR classifier aims

to find one attribute that can be used to predict the class labels of new instances by

making as few prediction errors as possible [Mitchell, 1997].

The rest of the Chapter presents the experimental design for the task of predicting

friendship links in Section 5.1 followed by the experimental design for the task of predicting

interests of users in Section 5.2.
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5.1 Predicting Friendship Links

We have conducted a set of thirteen experiments designed to investigate the performance of

several classifiers (listed above) at predicting friendship relationships when presented with

different sets of features. When used alone, interest-based features may not be very effective

at predicting friendships. However, one may expect the classifying algorithms to perform

better when presented with graph features. Our results support this intuition (Chapter 6).

In each experiment, the training and test data sets are independent and each consists

of 1000 user pairs. The training set contains approximately 50% friend pairs and 50%

non-friend pairs, while the test set contains user pairs selected randomly from the original

distribution (10%-15% friend pairs), under the assumption that two users are not friends

if there is no direct link between them in the network graph i.e. the the network graph is

“complete”. In addition, any overlap in terms of users, between the training and test data

sets, is removed to ensure the independence of the two sets.

We use both versions (“O1” and “O2”) of the ontology (see Sections 3.3.1 and 3.3.2) in

each experiment. Thus, we learn two classifiers for each experiment, one for each version of

the ontology. Every experiment is repeated ten times by taking ten random training and

test samples from the data. Results are reported as the average AUC and the associated

standard deviation over ten repetitions. In addition, we compare the contribution of one

version of the ontology vs. the other by performing paired t-tests for the two classifiers (to

find out which one is better). We also perform the paired t-tests to compare the performance

of the classifiers at the task of predicting friendships with ontology with the performance of

the classifiers at that task without ontology.

A paired t-test can be used as a procedure for comparing the performances of two learning

methods (or even two classifiers obtained with the same algorithm but with different data

sets) using a fixed data set (training and test) [Mitchell, 1997, Chapter 5]. A classifier is

trained according to each learning method on the training data and is tested on the test data

set. Multiple repetitions (in general 10) of training and test are conducted using different
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samples from the data to generate two sets of performance results, one for each classifier.

These two sets of results are compared using the paired t-test method to investigate if one

learning method is significantly better than the other.

As described in [Mitchell, 1997], within the context of paired t-tests, in order to compare

the two learning methods the following two hypotheses are considered:

• Null hypothesis or H0: On average, there is no difference between performances of the

classifiers obtained with the two learning methods.

• Alternate hypothesis or Ha: On average, the performances of the classifiers obtained

with the two learning methods are significantly different.

At a particular confidence level (95% in our case), a paired t-test value less than 0.05

indicates that the alternate hypothesis (Ha) holds true with a probability of (1 − 0.05).

Hence, we reject H0 in favor of Ha and conclude that the performance of one classifier

is statistically different than the performance of the other. However, if the outcome of

the paired t-test is greater than 0.05, then H0 cannot be rejected and based on the given

sets of performance results, we cannot conclude if one learning approach is better than the

other [Rice, 1998, Chapter 11].

In what follows, we describe the thirteen experiments performed to address the task of

predicting friendship links using the interests’ ontology:

1. Interest-based nominal features in absence of the ontology:

In our first experiment, we consider the original interests of users and aim to investigate

if they can be used to predict friendships. There are 22,000 interests, which give a

set of about 44,000 possible interest-instances (as some interests have more than on

descriptions). The input vector corresponding to each candidate pair comprises of

88,000 attributes (44,000 for each user in the pair) and the class “friendship”. Given

the large number of attributes, we do not expect the classifiers to perform well at

predicting friendships.
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2. Interest-based nominal features with the ontology:

In our second experiment, the interests are refined according to the more abstract

levels of the interests’ hierarchy. As in the first experiment, a list of interests for each

candidate user pair is presented to the prediction algorithms. Since the performance of

classifiers is evaluated for each modified version of the data (each level of abstraction),

this experiment also reveals the best level of abstraction in the interests’ ontology.

We perform this experiment with both versions of interests’ hierarchy to investigate if

features derived from one hierarchy are better predictors of friendships than features

derived from the other. In the following Chapters, the experiment performed with on-

tology “O1” will be denoted as “Experiment 2(a)”, and that performed with ontology

“O2” will be denoted as “Experiment 2(b)”.

3. Interest-based nominal features with sub-ontologies:

The divisive step of the HAD algorithm (Section 3.2) provides four sub-ontologies

namely books’ ontology, movies’ ontology, words’ ontology and phrases’ ontology, which

combine together (as shown in Figure 3.6) to generate the ontology of interests. In

the third experiment, we modify the original data by considering interests at differ-

ent levels of abstraction in these sub-ontologies and compute interest-based nominal

features from the modified data. In this experiment, we wish to find the “optimal”

levels of abstraction in sub-ontologies for which classifying algorithms perform best

when presented with interest-based nominal features. Specifically, when exploring

a sub-ontology, interest-based nominal features are refined by varying the levels of

abstraction in that sub-ontology while keeping levels of abstractions in other sub-

ontologies fixed. The performances of classifiers at the task of prediction of friendship

links, when presented with interest-based nominal features refined at different levels of

abstraction, reveal the “best level” of abstraction in the sub-ontology considered. In a

similar way, optimal levels of abstraction corresponding to each sub-ontology are ob-

tained. Finally, interests are modified considering optimal levels in each sub-ontology,
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and interest-based nominal features are obtained and are used to predict friendships

between Live Journal users. This experiment is also performed for both versions of

interests’ hierarchy to investigate the effectiveness of one when compared with the

other in predicting friendships among users. In the rest of the thesis, the experiment

performed with sub-ontologies in the ontology “O1” will be denoted as “Experiment

3(a)”, and that performed with sub-ontologies in the ontology “O2” will be denoted

as “Experiment 3(b)”.

4. Graph-based features:

Our fourth experiment addresses the friend prediction problem by exploiting graph-

based features. Hsu et al. [2006] have empirically shown that graph-based features are

very effective in predicting friendship links in social networks. We, thus, expect the

classifiers to perform well in this experiment.

5. Graph-based features and interest-based nominal features in absence of the ontology:

The fifth experiment considers interest-based nominal features combined with graph-

based features in absence of the ontology, and aims to explore possible improvements

in the performance of classifications algorithms when presented with both types of

features as compared to only one of the two types of features.

6. Graph-based features and interest-based nominal features with the ontology:

The sixth experiment considers interest-based nominal features combined (as used

in the second experiment) with graph-based features and aims to explore possible

improvements in the performance of classifications algorithms when presented with

both types of features as compared to only one of the two types of features in presence

of the ontology. Like in “Experiment 2”, results from this experiment also revel

the “best” levels of abstraction in the interests’ ontology, that should be used to

refine interests when addressing the prediction problem using graph-based features

and interest-based nominal features. The experiments performed using the ontology

39



“O1” and “O2” are denoted as “Experiment 6(a)” and Experiment “6(b)” respectively.

7. Graph-based features and interest-based nominal features with sub-ontologies:

Our seventh experiment proceeds in a similar manner as experiment six. However,

in this experiment we refine interests with respect to various levels of abstractions

in sub-ontologies as done in “Experiment 3”. We explore the sub-ontologies to find

the “best” levels of abstraction in the same, at which interest-based nominal features

should be refined to predict friendships in combination with graph-based features. In

the rest of the thesis, the experiment performed with sub-ontologies in the ontology

“O1” will be denoted as “Experiment 7(a)”, and that performed with sub-ontologies

in the ontology “O2” will be denoted as “Experiment 7(b)”.

8. Interest-based numerical features in absence of the ontology:

In our eight experiment, we use the interest-based numerical features proposed in [Al-

jandal et al., 2008]. These features are computed on the original data set without

considering the concept hierarchies of interests.

9. Interest-based numerical features with the ontology:

In the ninth experiment, we modify the original data by considering interests at dif-

ferent levels of abstraction in the interests’ hierarchy and compute the interest-based

numerical features from the modified data. The resulting features are then used to

predict friendships among users. Intuitively, these classifiers are expected to show an

improvement in performance, compared to the classifiers that use numerical features

computed from the original data. Since the performance of classifiers is evaluated

for each modified version of the data (each level of abstraction), this experiment also

reveals the best level of abstraction in the interests’ ontology. We denote this exper-

iment as “Experiment 9(a)” and “Experiment 9(b)” when performed with ontology

“O1” and “O2” respectively.

10. Interest-based numerical features with sub-ontologies:
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Similar to “Experiment 9”, this experiment addresses the task of predicting friendships

using interest-based numerical features. However, in this experiment, we refine the

interests by varying levels of abstraction in the sub-ontologies as done in “Experiment

3”. The results observed reveal the best level of abstraction in sub-ontologies of the

interests’ hierarchy. This experiment is denoted as “Experiment 10(a)” and Experi-

ment “10(b)” respectively when refining interest-based numerical features according

to the ontology versions “O1” and “O2”,

11. Graph-based features and interest-based numerical features in absence of the ontology:

The eleventh experiment considers graph-based and interest-based numerical features

derived without making use of the interests ontology. The classification algorithms

are expected to show an improvement over the previous results for they are exposed

to more information than the classifiers in those experiments.

12. Graph-based features and interest-based numerical features with the ontology:

Like “Experiment 11”, the twelfth experiment uses graph-based and interest-based

numerical features to predict friendships. However,interest-based numerical features

are derived using the ontology. And using this set of features, classification algorithms

are expected to show improvements in performance when compared to results from

previous experiment. The experiments performed using the ontology “O1” and “O2”

are denoted as “Experiment 12(a)” and Experiment “12(b)” respectively.

13. Graph-based features and interest-based numerical features with sub-ontologies:

This experiment is performed using the same set of features as “Experiment 12” except

that interest-based numerical features are refined using sub-ontologies of the interests’

hierarchy. The results from this experiment reveals the “best” levels of abstraction

in sub-ontologies, according to which interests should be modified when addressing

the prediction problem using a combination of interest-based numerical features and

graph-based features. In the Chapters to follow, we denote the experiment conducted
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using “O1” as “Experiment 13(a)” and that conducted using “O2” as “Experiment

13(b)”.

5.2 Predicting Interests

We have conducted a set of three experiments designed to investigate the performance of

several classifiers (listed in the beginning of this Chapter) at predicting interests of Live

Journal users when presented with different sets of features. When used alone, interest-

based nominal features may not be very effective at predicting interests. However, one

may expect the classifying algorithms to perform better when presented with interest-based

numerical features. Our results support this intuition (Chapter 6).

Given a set of k interests, we address the prediction problem at hand, by learning k

classifiers, one for each interest. The data set consists of k interest-based nominal attributes

(one for each interest) and/or 9 interest-based numerical attributes as described in Sec-

tion 4.1. For each user, the task of each classifier is to predict whether or not the user has

that interest for which the classifier is learned. For each of the k classifiers, we report the

AUC averaged over 10 repetitions of the experiments. In the given data set, which consists

of only 1000 users, we did not have enough positive examples (e.g. out of 1000 users, only

140 of them list “comedy books” as their interest) to experiment with separate training

and test data sets. Hence, to perform 10 repetitions of the experiments we have used the

“cross-validation” option in “Weka” data mining software.

The interests of each user can be represented as a vector of k boolean values< a1, a2, a3...ak >,

where ai = 1 if the user possess the ith interest, or ai = 0 otherwise. We call this vector as

the “actual” interest vector. Similarly, user’s predicted interests can also be represented as

a vector of k boolean values < p1, p2, p3...pk >, where pi = 1 if the ith classifier predicts that

the user possesses ith interest, or ai = 0 otherwise. We call this vector as the “predicted” in-

terest vector. Hamming distance between the “actual” and the “predicted” interest vectors
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is computed according to Equation 5.1.

hammingDistance(p, v) =
1

k
∗

k∑
i=1

j (5.1)

wherej = 1 if ai = pi, and j = 0 otherwise.

By computing the hamming distance averaged over the number of users (here 1000),

prediction performances of k classifiers are combined to report the overall performance of

the classifiers at the task of interest prediction.

Figure 5.1: Interests Considered for the Task of Prediction of Interests

The number of examples in the data (1000 users) is too small to learn any classifier

reasonably well, if original interests of the users (k ≈ 22, 000) are considered. In what

follows, we address the problem of predicting interests by considering two sets of interests

as shown in Figure 5.1. “Set 1” comprises of four interests namely Books, Movies, Words

and Phrases, and “Set 2” comprises of nineteen interests namely Movies, Words, Phrases

and sixteen genres into which Books are divided in the divisive clustering step of the HAD

algorithm as described in Section 3.2. Future work, will address this problem with a larger

data set (e.g. number of users ≥ 10, 000 and number of interests ≥ 19).
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The set of three experiments performed to address the task of predicting interests of

users are described as as follows:

1. Interest-based nominal features:

In our first experiment, we present the classifiers with interest-based nominal features

(as described in Section 4.1). To predict interests, we have 4 nominal features with

respect to “Set 1” and 19 with respect to “Set 2”. Interest-based nominal features are

not as effective at capturing information from the data, as their numerical counter-

parts. With that said, we do not expect classifiers to perform well in this experiment.

2. Interest-based numerical features:

In the second experiment, the input to the classifiers comprises of interest-based nu-

merical features (as described in Section 4.1), and we expect to see an improvement

in the performance of the classifiers when compared with their performances in the

previous experiment.

3. Interest-based nominal and numerical features:

In our third experiment, the input to the classifiers comprises of interest-based nominal

features combined with interest-based numerical features. When presenting with both

sets of features, we expect the classifiers to perform best when compared with their

performances from the previous experiments.

We perform these experiments for both sets of interests, and report the AUC values and

average hamming distances between “actual” and “predicted” interest vectors for each of

them. A point worth noting is that interests from “Set 1” and “Set 2” exist at levels of

abstraction 1 and 2 (see Figure 3.6). With respect to interests from the two sets, at levels 1

and 2, there is no distinction between two versions (“O1” and “O2”) of the ontology. Hence,

unlike experiments for predicting friendships, these experiments are not performed twice,

one for each version of the ontology.
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The results from both the prediction tasks are reported in Chapter 6 and conclusions

derived from them are discussed in Chapter 8.
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Chapter 6

Results

The main goal of the experiments described in Chapter 5 is to investigate the contribution

of the interest ontology to the performance of algorithms for predicting friendships links and

interests of Live Journal users. Indeed, the results indicate the usefulness of the ontology

constructed. This Chapter is organized in two Sections; Section 6.1 presents the results

corresponding the task of friendship prediction, and Section 6.2 shows the performances of

classifiers at the task of predicting interests of users.

6.1 Predicting Friendship Links

In this section, we discuss the results of various classifiers at the task of predicting friendships

between Live Journal users, with the aim to investigate the effectiveness of different types of

features at that task. In addition, we explore the usefulness of considering various levels in

individual sub-ontologies of the interests’ hierarchy when computing interest-based features.

We study the differences between the two versions versions of the interests’ ontology (see

Section 3.3) when using them to refine interest-based features and to predicting friendships.

We report the AUC values for classifiers at the task of predicting friendships between Live

Journal users, averaged over ten repetitions of the experiments. As described in Section 5.1,

we perform the paired t-tests to compare the performance of the classifiers at the task of

predicting friendships with ontology with the performance of the classifiers at that task

without ontology. We also perform paired t-tests to compare the contribution of one version
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of the ontology vs. the other at that task. In addition, paired t-tests are also performed to

compare the performance results of classifiers when presented with interest-based features

refined using the “best” overall levels in the interests’ ontology with their performance

results when presented with interest-based features refined using the “best” levels in the sub-

ontologies of the interests’ hierarchy. We report t-values for all the paired t-tests conducted.

A “t-value” less than 0.05 indicates the significance of the results at a 95% confidence level.

BOLD-FACED AUC values in the Tables in this Chapter highlight the performance results

of classifiers that are statistically significantly better than their respective baselines.

6.1.1 Interest-Based Nominal Features

This Section presents the performance results of classifiers at the task of predicting friendship

links when presented with interest-based nominal features (Table 6.1). Nominal features aim

at capturing the interest-based information in the data. However, the number of nominal

features in the training and test data sets, sometimes, becomes too large for the classifiers

to handle. E.g. for each user pair, 44, 000 user interests translate into 88, 000 interest-based

nominal features. We have performed these experiments on machines with approximately

32 gigabytes of memory. When presented with nominal features in the absence of ontology,

training and test sets become too large for Random Forest classifier to handle, and thus,

experiments cannot be performed with the same (Experiment 1, Table 6.1). However, when

refining nominal features in presence of the ontology, we are able to perform experiments

and derive performance results (Experiments 2(a), 2(b) and 3(a), Table 6.1), except for

Experiment 3(b) which is performed using interest-based nominal features with respect to

best levels in sub-ontologies of the interests’ hierarchy “O2”. With respect to Experiment

3(b), dashes (“-”) in Table 6.1 mean that the experiment did not finish within a time of 5

days on a machine with 32 gigabytes of memory.

We consider the AUC values from Experiment 1 (predicting friendships using interest-

based nominal features in the absence of interests’ hierarchy), as the baseline for comparing
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Table 6.1: AUC for different classifiers presented with interest-based nominal features

Exp# Ontology SVM Logistic J48 RandomForest OneR
1 0.65± 0.11 0.64±0.10 0.60±0.09 - 0.56±0.08

2(a) O1 0.74±0.13 0.68±0.10 0.70±0.12 0.77±0.12 0.53±0.06
2(b) O2 0.64±0.078 0.63±0.09 0.62±0.09 0.69±0.05 0.55± 0.06
3(a) Sub-O1 0.74±0.09 0.62 ±0.07 0.62±0.07 0.65±0.03 0.56±0.05
3(b) Sub-O2 - - - - -

Table 6.2: Paired t-tests

Exp# SVM Logistic J48 RandomForest OneR
1 vs. 2(a) 0.61 0.218 0.02 - 0.204
1 vs. 2(b) 0.379 0.467 0.271 - 0.443

2(a) vs. 2(b) 0.021 0.153 0.051 0.06 0.211
1 vs. 3(a) 0.028 0.224 0.02 - 0.457
1 vs. 3(b) - - - - -

3(a) vs. 3(b) - - - - -
2(a) vs. 3(a) 0.44 0.06 0.029 0.006 0.12
2(b) vs. 3(b) - - - - -

the performances of classifiers when presented with nominal features that are refined using

the interests’ hierarchy. BOLD-FACED AUC values highlight the performances of the

classifiers that are statistically significantly better than the baseline.

Table 6.1 shows that, when friendships are predicted using the interest-based nominal

features refined using best overall levels in ontology “O1”, three out of five classifiers (SVM,

Logistic Regression and J48) show an improvement in the performance when compared

with the baseline (Experiments 1 and 2(a)). However, paired t-test values suggest that

performance improvement of only J48 classifier is statistically significant at 95% level of

confidence. Furthermore, when using ontology “O2”, only J48 shows an improvement in

the performance at that task compared with the baseline, but, this improvement too is not

statistically significant.

Table 6.1 also presents the AUC values for classifiers at the task of predicting friendships

using interest-based nominal features refined according to “best” levels in the sub-ontologies

of the interests’ hierarchy “O1”(Experiments 3(a)). We observe that, in this case only two
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out of five classifiers (SVM and OneR) show significant improvement, compared to the

baseline.

Moreover, comparing AUC values for Experiments 2(a) with 3(a) from Table 6.1, it be-

comes clear that three out of five classifiers (Logistic Regression, J48 and Random Forest)

perform better when presented with interest-based nominal features refined using “best”

overall levels in the interests’ ontology “O1”, than when presented with interest-based nom-

inal features refined using “best” levels in the sub-ontologies of the same. However, according

to paired t-test values, the significance of these observations is only demonstrated for J48

and Random Forest classifiers.

Paired t-test values for the pair of Experiments 2(a) vs. 2(b) are also presented in Ta-

ble 6.2 to investigate if one version of the ontology performs better at predicting friendships

(given interest-based nominal features only) than the other version. As observed from the

Table 6.2, t-test values for all classifiers except SVM are greater than 0.05 suggesting only

SVM performs better at the task of predicting friendships when presented with nominal

features refined in presence of the ontology “O1”, compared with its performance at that

task when presented with the same set of features refined in presence of the ontology “O2”.

For all other cases, we cannot conclude if nominal features refined in the presence of one

ontology are more effective at predicting friendships in Live Journal than the other.

Table 6.3: Best levels of abstraction in ontologies for predicting friendships using interest-
based nominal features

Ontology # of Levels Best Level
Ontology O1 18 6
Ontology O2 44 7

Books Ontology O1 16 12
Books Ontology O2 30 -
Movies Ontology O1 15 8
Movies Ontology O2 43 -
Words Ontology O1 17 9
Words Ontology O2 31 -

Phrases Ontology O1 14 7
Phrases Ontology O2 20 -
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Table 6.3 shows the best levels of abstraction (other than the root representing “every-

thing” and the leaves representing the original interests) in the overall interests’ ontology

and in the sub-ontologies, when addressing the prediction of friendships using interest-

based nominal features only. Results related to these experiments are shown in Chapter 10

(Appendix A). Please note that in the experimental results, when the ontology is used

to construct features and compare the performance of different classifiers, the ontology is

considered from the respective best levels of abstraction.

6.1.2 Graph-Based Features and Interest-Based Nominal Features

This Section presents the performance results of classifiers at the task of predicting friend-

ship links when presented with graph-based features and interest-based nominal features

(Table 6.4). As mentioned in Section 6.1.2, graph-based features alone are very effective at

predicting friends in the given social network (Experiment 4, Table 6.4). When presented

with both graph-based and interest-based nominal features, the classifiers are expected to

show improvements in their prediction performances. However, results from the Table 6.4

show otherwise. Only one out of five classifiers (OneR) shows the expected improvement

in the performance at that task when presented with a combination of graph-based fea-

tures and interest-based nominal features in the absence of ontology (Experiment 4 vs. 5,

Table 6.4).

Furthermore, as mentioned in Section 6.1.1, the number of nominal features in the train-

ing and test data sets, sometimes, becomes too large for the classifiers to handle. In this case

too, we have performed these experiments on machines with approximately 32 gigabytes of

memory. When presented with graph-based features and nominal features in the absence

of ontology, the number of features become too overwhelming for Random Forest classifier

to handle, and thus, experiments cannot be performed with the same (Experiment 5, Ta-

ble 6.4). However, when refining nominal features in presence of the ontology, we are able

to perform experiments and derive performance results (Experiments 6(a), 6(b) and 7(a),
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Table 6.4), except for Experiment 7(b) which is performed using graph-based features and

interest-based nominal features with respect to best levels in sub-ontologies of the interests’

hierarchy “O2”. With respect to Experiment 7(b), dashes (“-”) in Table 6.4 mean that the

experiment did not finish within a time of 5 days on a machine with 32 gigabytes of memory.

Table 6.4: AUC for different classifiers presented with graph-based features and interest-
based nominal features

Exp# Ontology SVM Logistic J48 RandomForest OneR
4 0.92±0.03 0.91±0.04 0.94±0.03 0.97±0.03 0.86±0.09
5 0.89±0.06 0.84±0.06 0.89±0.05 - 0.88±0.03

6(a) O1 0.91±0.05 0.76±0.07 0.91±0.05 0.82±0.08 0.88±0.04
6(b) O2 0.92± 0.03 0.75±0.05 0.91±0.05 0.86±0.07 0.88±0.07
7(a) Sub-O1 0.88±0.061 0.85±0.07 0.92±0.04 0.88±0.04 0.92±0.05
7(b) Sub-O2 - - - - -

Table 6.5: Paired t-tests

Exp# SVM Logistic J48 RandomForest OneR
5 vs. 6(a) 0.299 0.021 0.368 - 0.367
5 vs. 6(b) 0.08 0.001 0.44 - 0.362

6(a) vs. 6(b) 0.144 0.15 0.454 0.094 0.454
5 vs. 7(a) 0.316 0.451 0.368 - 0.027
5 vs. 7(b) - - - - -

7(a) vs. 7(b) - - - - -
6(a) vs. 7(a) 0.137 0.023 0.366 0.026 0.07
6(b) vs. 7(b) - - - - -

We consider the AUC values from Experiment 5, i.e. predicting friendships using graph-

based features and interest-based nominal features in the absence of interests’ hierarchy, as

the baseline for comparing the performances of classifiers when presented with the same set

of features refined using the interests’ hierarchy. BOLD-FACED AUC values highlight the

performances of the classifiers that are statistically significantly better than the baseline.

Table 6.4 shows that, when friendships are predicted using graph-based and interest-

based nominal features refined using best overall levels in ontology “O1” and “O2”, two out

of five classifiers (SVM and J48) show an improvement in the performance when compared

51



with the baseline (Experiments 5, 6(a) and 6(b)). However, paired t-test values suggest that

the performance improvements are not statistically significant at 95% level of confidence.

Table 6.4 also presents the AUC values for classifiers at the task of predicting friendships

using graph-based and interest-based nominal features refined according to “best” levels in

the sub-ontologies of the interests’ hierarchy “O1”(Experiments 7(a)). We observe that, in

this case only OneR classifier shows statistically significant improvement, compared to the

baseline.

Moreover, comparing AUC values for Experiments 6(a) with 7(a) from Table 6.4, it

becomes clear that four out of five classifiers (Logistic Regression, J48, Random Forest

and OneR) perform better when presented with graph-based and interest-based nominal

features refined using “best” levels in sub-ontologies of the interests’ ontology “O1”, than

when presented with the same set of features refined using “best” overall levels in the same

ontology. However, according to paired t-test values, the significance of these observations

is only demonstrated for Logistic Regression and Random Forest classifiers.

Paired t-test values for the pair of Experiments 6(a) vs. 6(b) are also presented in Ta-

ble 6.5 to investigate if one version of the ontology performs better at predicting friendships

(given graph-based and interest-based nominal features) than the other version. As ob-

served from the Table 6.5, t-test values for all classifiers are greater than 0.05 suggesting

that we cannot conclude if one ontology performs better than the other (Experiments 6(a)

and 6(b)).

Table 6.6 shows the best levels of abstraction (other than the root representing “every-

thing” and the leaves representing the original interests) in the overall interests’ ontology

and in the sub-ontologies, when addressing the prediction of friendships using graph-based

features and interest-based nominal features. Results related to these experiments are shown

in Chapter 11 (Appendix B). Please note that in the experimental results, when the ontol-

ogy is used to construct features and compare the performance of different classifiers, the

ontology is considered from the respective best levels of abstraction.
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Table 6.6: Best levels of abstraction in ontologies for predicting friendships using graph-
based features and interest-based nominal features

Ontology # of Levels Best Level
Ontology O1 18 7
Ontology O2 44 6

Books Ontology O1 16 13
Books Ontology O2 30 -
Movies Ontology O1 15 3
Movies Ontology O2 43 -
Words Ontology O1 17 3
Words Ontology O2 31 -

Phrases Ontology O1 14 5
Phrases Ontology O2 20 -

6.1.3 Interest-Based Numerical Features

In this Section, we present the performance results of classifiers at the task of predicting

friendship links when presented with interest-based numerical features (Table 6.7). Numer-

ical features aim at capturing the interest-based information in the data, and at the same

time ensure that the number of features in the training and test data sets is not too large

for the classifiers to handle. The results in Table 6.7 show an improvement in the per-

formance of classifiers, when interest-based numerical features are used as opposed to the

interests themselves (Experiments 1 vs. Experiment 8), thus suggesting that interest-based

numerical features are better at summarizing interest-based information than their nominal

counterparts.

Table 6.7: AUC for different classifiers presented with interest-based numerical features

Exp# Ontology SVM Logistic J48 RandomForest OneR
1
8 0.66±0.07 0.64±0.08 0.59±0.09 0.61±0.09 0.58±0.09

9(a) O1 0.74±0.08 0.73±0.10 0.68±0.08 0.66±0.09 0.67±0.07
9(b) O2 0.76±0.11 0.73±0.12 0.69±0.09 0.73±0.11 0.64±0.09
10(a) Sub-O1 0.61±0.21 0.62±0.19 0.60±0.17 0.60±0.14 0.59±0.09
10(b) Sub-O2 0.62±0.12 0.62±0.16 0.60±0.09 0.58±0.13 0.55±0.08

We consider the AUC values from Experiment 8 (predicting friendships using interest-
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Table 6.8: Paired t-tests

Exp# SVM Logistic J48 RandomForest OneR
8 vs. 9(a) 0.017 0.029 0.016 0.121 0.021
8 vs. 9(b) 0.024 0.04 0.015 0.008 0.008

9(a) vs. 9(b) 0.382 0.46 0.44 0.068 0.265
8 vs. 10(a) 0.257 0.406 0.451 0.426 0.466
8 vs. 10(b) 0.173 0.372 0.378 0.329 0.216

10(a) vs. 10(b) 0.447 0.483 0.465 0.423 0.193
9(a) vs. 10(a) 0.049 0.066 0.09 0.142 0.025
9(b) vs. 10(b) 0.009 0.05 0.03 0.008 0.017

based numerical features in the absence of interests’ hierarchy), as the baseline for comparing

the performances of classifiers when presented with numerical features that are refined using

the interests’ hierarchy. BOLD-FACED AUC values highlight the performances of the

classifiers that are statistically significantly better than the baseline.

Table 6.7 shows that, when friendships are predicted using the interest-based numerical

features refined using “best” overall levels in either versions of the ontology (O1 or O2),

all classifiers show an improvement in the performance when compared with the baseline

(Experiments 8, 9(a) and 9(b)). When using ontology “O1”, the performance improvements

of four out of five classifiers are significant at 95% level of confidence, and when using

ontology “O2”, the performance improvements of all the classifiers are significant at that

level.

Table 6.7 also presents the AUC values for classifiers at the task of predicting friend-

ships using interest-based numerical features refined according to “best” levels in the sub-

ontologies of the interests’ hierarchy (Experiments 10(a) and 10(b)). The values italicized

highlight the performances of the classifiers that show an improvement in comparison with

the baseline. However, these improvements are not significant statistically, at the confidence

level of 95%.

Moreover, comparing AUC values for Experiments 9(a) with 10(a) and that of 9(b) with

10(b) from Table 6.7, it becomes clear that all the classifiers perform better when presented

with interest-based numerical features refined using “best” overall levels in the interests’
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ontology, than when presented with interest-based numerical features refined using “best”

levels in the sub-ontologies of the interests’ hierarchy. Paired t-test values suggest that these

observations for interests’ ontology “O2” are statistically significant for all classifiers. How-

ever, for interests’ ontology “O1”, the significance of these observations is only demonstrated

for SVM and OneR classifiers.

Paired t-test values for pairs of Experiments 9(a) vs. 9(b), and 10(a) vs. 10(b) are

also presented in Table 6.8 to investigate if one version of the ontology performs better at

predicting friendships (given interest-based numerical features only) than the other version.

As observed from the Table 6.8, t-test values for all classifiers are greater than 0.05 suggesting

that we cannot conclude if one ontology performs better than the other, when interest-

based numerical features are modified with respect to “best” overall levels in the ontology

(Experiments 9(a) and 9(b)) or “best” levels in the sub-ontologies (Experiments 10(a) and

10(b)).

Table 6.9: Best levels of abstraction in ontologies for predicting friendships using interest-
based numerical features

Ontology # of Levels Best Level
Ontology O1 18 14
Ontology O2 44 28

Books Ontology O1 16 8
Books Ontology O2 30 23
Movies Ontology O1 15 8
Movies Ontology O2 43 31
Words Ontology O1 17 14
Words Ontology O2 31 13

Phrases Ontology O1 14 7
Phrases Ontology O2 20 3

Table 6.9 shows the best levels of abstraction (other than the root representing “every-

thing” and the leaves representing the original interests) in the overall interests’ ontology

and in the sub-ontologies, when addressing the prediction of friendships using interest-based

numerical features only. Results related to these experiments are shown in Chapter 12

(Appendix C). Please note that in the experimental results, when the ontology is used
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to construct features and compare the performance of different classifiers, the ontology is

considered from the respective best levels of abstraction.

6.1.4 Graph-Based Features and Interest-Based Numerical Fea-
tures

This section focuses on the performance results of classifiers at the task of predicting friend-

ship links when presented with graph-based features and interest-based numerical features.

The AUC values of the classifiers are shown in Table 6.10. As mentioned in Section 6.1.2,

graph-based features alone are very effective at predicting friends in the given social net-

work. When presented with both graph-based and interest-based numerical features, the

classifiers are expected to show improvements in their prediction performances. Table 6.10

indicates that three out of five classifiers (SVM, Logistic Regression and Random Forest

classifiers) show the expected improvement (Experiment 4 vs. Experiment 11). Thus, for

some classifiers, graph-based features combined with interest-based numerical features result

in better performance compared to graph-based features alone.

Table 6.10: AUC for different classifiers presented with graph-based features and interest-
based numerical features

Exp Ontology SVM Logistic J48 RandomForest OneR
4 0.92±0.03 0.91±0.04 0.94±0.03 0.97±0.03 0.86±0.09
11 0.92±0.03 0.91±0.04 0.94±0.02 0.98±0.01 0.86±0.09

12(a) O1 0.94±0.04 0.94±0.02 0.93±0.05 0.97±0.02 0.88±0.04
12(b) O2 0.95±0.03 0.94±0.03 0.94±0.03 0.98±0.01 0.91±0.04
13(a) Sub-O1 0.90±0.05 0.91±0.035 0.94±0.03 0.97±0.03 0.86±0.06
13(b) Sub-O2 0.93±0.04 0.92±0.04 0.93±0.05 0.98±0.01 0.91±0.08

We consider the AUC values from Experiment 11 i.e predicting friendships using graph-

based and interest-based numerical features in the absence of interests’ hierarchy, as the

baseline for comparing the performances of classifiers when presented with the same set of

features in the presence of interests’ hierarchy. BOLD-FACED AUC values highlight the

performances of the classifiers that are statistically significantly better than the baseline.
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Table 6.11: Paired t-tests

Experiments SVM Logistic J48 RandomForest OneR
11 vs. 12(a) 0.209 0.067 0.268 0.311 0.297
11 vs. 12(b) 0.035 0.082 0.466 0.401 0.039

12(a) vs. 12(b) 0.199 0.46 0.314 0.249 0.025
11 vs. 13(a) 0.148 0.325 0.359 0.346 0.444
11 vs. 13(b) 0.393 0.33 0.341 0.305 0.162

13(a) vs. 13(b) 0.128 0.169 0.278 0.237 0.099
12(a) vs. 13(a) 0.05 0.015 0.219 0.493 0.187
12(b) vs. 13(b) 0.105 0.153 0.33 0.402 0.288

Table 6.10 shows that, when friendships are predicted using the graph-based and interest-

based numerical features refined using “best” overall levels in either versions of the ontology

(O1 or O2), SVM, Logistic and OneR classifiers show an improvement in the performance

when compared with the baseline (Experiments 11, 12(a) and 12(b)). When using ontology

“O2”, SVM and OneR classifiers show significant improvements compared with the baseline.

However, the paired t-test values suggest that performance improvements in the classifiers

when using “O1” are not significant at 95% confidence level. Thus, we cannot conclude if

the performance of the classifiers when using “O1”, is better than the baseline.

Table 6.10 also presents the AUC values for classifiers at the task of predicting friendships

using graph-based and interest-based numerical features refined according to “best” levels in

the sub-ontologies of the interests’ hierarchy (Experiments 13(a) and 13(b)). The italicized

values highlight the performances of the classifiers that show an improvement in comparison

with the baseline. However, these improvements are not statistically significant, at the

confidence level of 95%.

Moreover, comparing AUC values for Experiments 12(a) with 13(a) and that of 12(b)

with 13(b) from Table 6.10, it becomes clear that all classifiers, except Random Forest,

perform better when presented with graph-based and interest-based numerical features re-

fined using “best” overall levels in the interests’ ontology, than when presented with graph-

based features and interest-based numerical features refined using “best” levels in the sub-

ontologies of the interests’ hierarchy. Random Forest classifier performs equally well in both
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cases. Table 6.11 shows that, for second version (O2) of the interests’ ontology, significance

of these observations cannot be demonstrated ((t > 0.05, Experiment 12(b) vs. 13(b)).

However, for the first version (O1), t < 0.05 for “SVM” and Logistic Regression classi-

fiers indicating that, the observations made above are statistically significant for these two

classifiers at a 95% confidence level (Experiment 12(a) vs. 13(a)).

Paired t-test values for pairs of Experiments 12(a) vs. 12(b), and 13(a) vs. 13(b) are

also presented in Table 6.11 to investigate if one version of the ontology performs better

at predicting friendships (given graph-based features and interest-based numerical features)

than the other version. As observed from the Table 6.11, t-test values for all classifiers are

greater than 0.05 suggesting that we cannot conclude if one ontology performs better than

the other when interest-based numerical features are modified with respect to “best” overall

levels (Experiments 12(a) and 12(b)) or “best” levels in the sub-ontologies (Experiments

13(a) and 13(b)) of the interests’ hierarchy.

Table 6.12: Best Levels of abstraction in ontologies for predicting friendships using graph-
based features and interest-based numerical features

Ontology # of Levels Best Level
Ontology O1 18 7
Ontology O2 44 37

Books Ontology O1 16 13
Books Ontology O2 30 8
Movies Ontology O1 15 13
Movies Ontology O2 43 39
Words Ontology O1 17 5
Words Ontology O2 31 12

Phrases Ontology O1 14 11
Phrases Ontology O2 20 18

Table 6.12 shows best levels of abstraction (other than the root representing “everything”

and the leaves representing the original interests) in the overall interests’ ontology and in

the sub-ontologies, when addressing the prediction of friendships using graph-based features

and interest-based numerical features. Results related to these experiments are shown in

Chapter 13 (Appendix D). Please note that in the experimental results, when the ontology is
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used to construct features and compare the performance of different classifiers, the ontology

is considered from the respective best levels of abstraction.

6.2 Predicting Interests

As mentioned in Section 5.2, the task of predicting interests of users of the Live Journal

social network is addressed using two sets of interests. “Set 1” comprises of four interests

while “Set 2” constitutes of nineteen interests (see Figure 5.1). This section presents the

performance results of the classifying algorithms at predicting interests from these two sets.

For each experiment, we report the hamming distances (see Section 5.2) averaged over

the number of users (1000) to present accuracy of the classifiers at the task of predicting

interests. In addition, the AUC values for the classifiers for predicting each individual

interest are reported in Chapter 14 (Appendix E).

Table 6.13: Average hamming distance for different classifiers when predicting interests
from “Set 1”

Exp# Nominal Numerical SVM Logistic J48 RandomForest OneR
1 * 0.792 0.793 0.793 1 0.789
2 * 0.991 0.989 0.99 0.989 0.988
3 * * 0.991 0.989 0.99 0.989 0.988

Table 6.13 shows average hamming distances for classifiers at the task of predicting in-

terests from “Set 1”. As we can observe, for all of the classifiers except Random Forest,

interest-based nominal features (Experiment 1) are not effective at predicting interests (ham-

ming distance ≈ 0.79). However, Random Forest classifier performs perfectly at that task.

Random Forest classifier consists of many decision trees. For each instance, it predicts the

class that is the mode of classes predicted by individual trees given that instance [Mitchell,

1997]. In Experiment 1, our data set consists of four interest-based nominal attributes (one

for each interest). Since our classifiers are subjected to the task of predicting four interests,

our conjecture is that some of the individual trees constituting the Random Forest classifier

may have observed “overfitting” to generate perfect results .
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Hamming distances from “Experiment 2” (Table 6.13) show that all classifiers perform

well (hamming distance ≈ 0.99) when presented with interest-based numerical features.

Furthermore, the performance of these classifiers does not improve when presented with

a combination of interest-based nominal and numerical features. From results shown in

Table 6.13, we can conclude that interest-based numerical features alone are are effective

at summarizing interest information to predict interests from “Set 1”. However, given that

every user has some interest from “Set 1”, our training data is very unbalanced towards the

positive examples, and thus, “almost” perfect results in “Experiment 2” and “Experiment

3” are not surprising.

Table 6.14: Average hamming distance for different classifiers when predicting interests
from “Set 2”

Exp# Nominal Numerical SVM Logistic J48 RandomForest OneR
1 * 0.69 0.69 0.688 0.68 0.68
2 * 0.867 0.871 0.858 0.842 0.851
3 * * 0.869 0.87 0.854 0.853 0.851

Table 6.14 shows average hamming distances for classifiers at the task of predicting

interests from “Set 2”. Results from “Experiment 1” show that interest-based nominal

features are not effective at predicting interests (hamming distance for each classifier ≈

0.69). When presented with interest-based numerical features, all classifiers show about 25%

improvement in their prediction performance. Furthermore, the performance of two out of

five classifiers (SVM and Random Forest) improves when presented with a combination of

interest-based nominal and numerical features (Experiment 3, Table 6.14). However, when

presented with the same combination, J48 classifier shows a slight decline in its performance

compared to its performance when presented with numerical features alone.

Table 6.15 shows the best classifier (BOLD-FACED values) for predicting interests

from “Set 2”, given a particular set of features. As we can observe, Logistic Regression

classifier performs the best in all cases. Future work may consider using the same when

predicting interests for larger data sets.
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Table 6.15: Best classifier for predicting interests from “Set 2”

Exp# Nominal Numerical SVM Logistic J48 RandomForest OneR
1 * 0.69 0.69 0.688 0.68 0.68
2 * 0.867 0.871 0.858 0.842 0.851
3 * * 0.869 0.87 0.854 0.853 0.851

Table 6.16: Best set of features for predicting interests from “Set 2”

Exp# Nominal Numerical SVM Logistic J48 RandomForest OneR
1 * 0.69 0.69 0.688 0.68 0.68
2 * 0.867 0.871 0.858 0.842 0.851
3 * * 0.869 0.87 0.854 0.853 0.851

Table 6.16 shows the set of features (BOLD-FACED values) for predicting interests

from “Set 2”, given a particular classifier. Two out of five classifiers (SVM and Random

Forest) perform best when presented with the combination of interest-based numerical and

nominal features. OneR classifier performs equally well when presented with numerical fea-

tures alone and when presented with both numerical and nominal features. While the other

two classifiers (Logistic and OneR) perform best when presented with interest-based numer-

ical features alone. Results from Table 6.16 suggest that, both interest-based numerical and

a combination of interest-based numerical and nominal features are effective at predicting

interests from “Set 2”. Depending on the choice of classifying algorithm used, one may

prefer the former set of features over the latter or vice versa.
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Chapter 7

Related Work and Discussion

This Chapter provides a short review of the areas of research related to the work presented

in the paper. Section 7.1 presents the progress in the field of semantic information extraction

in social networks using simple clustering-based approaches. Section 7.2 describes recent

advancements in the field of social network analysis.

7.1 Information Extraction in Social Networks

“The success and popularity of social network systems have generated many interesting and

challenging problems to the research community” [Li et al., 2008]. Li et al. [Li et al., 2008]

have addressed the problem of discovering social interests shared by a group of users of the

social network system “del.icio.us”. Their approach is based on the key observation that

“human users tend to use descriptive tags to bookmark or annotate the web-based content

they are interested in”. A system called “Internet Social Interest Discovery” (ISID) that

clusters user-generated tags, bookmarked URLs and users who annotated the URLs with

these tags is described in [Li et al., 2008] and used to predict user interests. The results show

that ISID successfully discovers interests of nearly 90% users. Similar to the ISID system

presented by Li et al., our approach uses clustering techniques to group user interests to-

gether. In Live Journal, interests are analogous to bookmarked URLs in “del.icio.us” and are

explicitly specified by the users. Furthermore, “user-tags” in “del.icio.us” are analogous to

descriptions of interests extracted by HAD from various sources, in our approach. However,
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HAD does not cluster users and their interests together, and uses the semantic information

captured in the ontology to address the problem of predicting friend relationships.

In other related work, Mori et al. [Mori et al., 2006] have investigated the use of semantic

information extracted from web documents to discover relationships in social networks.

Specifically, given entity pairs in a political social network (e.g., George W. Bush - United

States, Junichiro Koizumi - Japan), the goal is to extract labels for describing the relations of

the respective entity pairs (i.e., to discover relevant terms that relate a politician to a location

in this example). Their approach first builds a context model for each entity pair, based on

the web based contents that describe the participating entities. The algorithm, then, clusters

entity pairs according to the similarities among the corresponding context models and finally

completes by selecting representative labels to describe relations from each cluster. With

reference to our approach, entity-pairs are analogous to interests whose descriptions (context

models) can be extracted from the information available on the web. Moreover, interests are

clustered based on their descriptions to capture the underlying semantics. Unlike Mori et

al., however, we use the resulting clusters (ontology) to predict only one kind of relationship

in Live Journal, i.e. “Friendships”.

7.2 Social Network Analysis

“Social network discovery” refers to the general task that comprises of specific subtasks

of analysis (prediction) and visualization (exploration) of social networks. This section

provides information on the current research and accomplished work related to analyzing

and visualizing social networks.

Broadly speaking, analyzing a social network is a challenging problem in itself. In

addition, it largely depends on the quality of data given to address the challenge. A common

approach to improving data quality is “Entity Resolution” [Bilgic et al., 2006]. Bilgic et

al. [Bilgic et al., 2006] have developed an interactive tool “D-Dupe”, which provides a stable

visual layout for optimized entity resolution and allows users to combine entity resolution
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algorithms including data mining algorithms for entity resolution and task-specific network

visualization. As the paper describes, the entity resolution process can be seen as an iterative

process: as pairs of nodes are resolved, additional duplicates may be revealed; therefore,

resolution decisions are often chained together. D-Dupe users resolve ambiguities either by

merging nodes or by marking them distinct. In addition they can apply sequences of actions

to produce a high quality entity resolution result [Bilgic et al., 2006].

In terms of social network analysis, two commonly addressed, but independently stud-

ied problems are: object classification (labeling the nodes of a graph) and link prediction

(predicting the links in a graph). Object classification is performed assuming a complete

set of known links. Coffman and Marcus [Coffman and Marcus, 2003] have addressed the

task of object classification by characterizing actors in a simulated dataset as terrorists or

non-terrorists by applying statistical classifiers to their social network analysis (SNA) metric

values. As the case study describes, the simulated datasets modeled the social interactions

that occur within Leninist cell organizations as well as in more typical social structures.

Furthermore, the authors achieve an accuracy of 86% in a three-class classification problem

(cell leader, cell member, or non-terrorist) and an accuracy of 96% in a two-class classifica-

tion problem (terrorist or non-terrorist). On the other hand, problems such as link-based

classification, identifying the link type, predicting the link strength and cardinality, that

come under the umbrella of link prediction are addressed assuming a fully observed set of

node attributes [Getoor, 2003]. Hsu et al. [Hsu et al., 2007] have addressed the problems

of predicting, classifying, and annotating friendship relations in a social network, based on

the network structure and user profile data. In their approach, all the node attributes are

available from the blog service Live Journal. They address a set of link prediction tasks

such as predicting existing links and estimating inter-pair distance and achieve an accuracy

of about 98%.

In most real world domains, however, attributes and links are often missing or incorrect.

Object classification is not provided with all the links relevant to correct classification and

64



link prediction is not provided with all the labels needed for accurate link prediction [Bilgic

et al., 2007]. Bilgic [Bilgic et al., 2007] have developed an approach that addresses these two

problems by interleaving object classification and link prediction in a “simple yet general”

collective classification algorithm. In their approach they provide the object prediction

task with information about the available node and its links. Once a prediction about a

node or its particular attribute is made, it is used to address the prediction problem for

related links and in general for other links in the network as well. The results show that the

algorithm performs well (nearly 90% accuracy) when compared to “flat” prediction approach

(addressing each problem independently) [Bilgic et al., 2007].

The second subtask of social network discovery i.e. visual mining of the underlying

network has also received much attention in the recent research on social networks. Singh et

al. [Singh et al., 2007] have developed a tool “Invenio” which makes use of a wide range of

interactive visualization features included in “Prefuse” [pre, 2007] the open source tool kit for

graph visualization, graph mining algorithm support from JUNG and construction of views

from both database and graph-based operations. With “Invenio” they aim to explore the

multi-modal multi relational social networks. As they describe, “modal” refers to number

of node-sets in N and “relational” refers to the number of relationship types in N, where

N is an extended multi-modal multi-relational network. Besides the features provided by

“prefuse” [pre, 2007], “Invenio” provides newly developed features such as attribute guided

subgraph generation, graph mining and visual application analysis.
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Chapter 8

Conclusion

Live Journal is an online journal service with an emphasis on user interaction [Fitzpatrick,

1999]. Among other things in the Live Journal social network, users can list their interests

and tag other users as their friends. Given the emphasis on user interaction, Live Journal

network can be represented by a graph structure, wherein nodes of the graph represent the

users of the journal service and edges represent friendship links. The tasks of predicting

friendships between users and interests of Live Journal users come under the umbrella of

Social Network Analysis.

In social networks, these prediction problems can be addressed by using a variety of

features, e.g. interest-based features and graph-based features. Hsu et al. [2007] have ad-

dressed the task of predicting friendship links using these features. Their results suggest

that features constructed only from the common interests of two users are ineffective at pre-

dicting friend relationships. While network graph features prove to give good results, several

questions can be still raised: Can we improve the performance of the algorithms that use

graph features by combining them with interest-based features? If we are interested in other

prediction problems, such as the prediction of the users’ interests themselves, how can we

handle the overwhelming number of interests? In this thesis, we have addressed the problem

of building an interests’ ontology and predicting potential friendship relations between users

in the social network Live Journal, using features constructed based on the interests’ ontol-

ogy. Our goal has been to organize users’ interests in an ontology (specifically, a concept
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hierarchy) and to use the semantics captured by this ontology to improve the performance

of learning algorithms at predicting if two users can be friends. In addition, we have also

addressed the problem of predicting interests of users using the features constructed from

the interests’ ontology.

The HAD algorithm, proposed in this thesis, constructs a concept hierarchy of interests

of users, making it possible for classification algorithms to use semantic information in the

form of an ontology. The algorithm is implemented by combining hierarchical agglomerative

and divisive clustering approaches to overcome the shortcomings of other related approaches.

Two flavors of the agglomerative phase resulting in two versions of the interests’ ontology

are explored. Furthermore, the algorithm implementation is general and can be used to

construct similar ontologies in other domains.

We have performed experiments to explore the effectiveness of interest-based numerical

and nominal features at predicting friendships when used in presence of the ontology. Our

results show that interest-based numerical features perform better at capturing interest-

information (and hence predicting friendships) than their nominal counterparts. Our inves-

tigation also shows that both versions of the ontology are very useful in predicting friend-

ships using interest-based numerical features refined with respect to “best” overall levels in

the ontologies. However, experiments which investigate the effectiveness of interest-based

numerical features, refined with respect to “best” levels in sub-ontologies of the interests’

hierarchy, do not show consistent improvements when predicting friendships.

Graph-based features are very effective at predicting friendships in the Live Journal

social network [Hsu et al., 2007]. Results from our experiments show that performance

of classifiers does not improve when using the combination of graph-based features and

interest-based nominal features in the presence of ontology, compared to their performance at

that task when presented with graph-based features alone. Furthermore, our investigations

show that the combination of graph-based and interest-based numerical features derived

in the presence of the ontology are effective at this problem in some cases. Specifically,
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two out of five classifiers (SVM and OneR) show statistically significant improvements in

the performance of predicting friendships when presented with graph-based features and

interest-based numerical features refined with respect to the “best” overall level in second

version (O2) of the interests’ ontology. In addition, classifiers using graph-based features and

interest-based numerical features refined with respect to “best” levels in the sub-ontologies

do not show an improvement in their prediction performance compared to the classifiers

using graph-based features combined with interest-based numerical features refined with

respect to “best” overall levels in the interests’ ontology. In addition, for all sets of features,

results from our experiments (specially paired t-tests) suggest that between the ontologies

“O1” and “O2”, neither one is better at predicting friendships than the other.

For the task of predicting interests of users, the number of examples in the available

data (1000 users) is too small to learn any classifier reasonably well, if original interests

of the users (≈ 22, 000) are considered. In this thesis, we have addressed the problem by

considering two sets of interests. “Set 1” comprises of four interests namely Books, Movies,

Words and Phrases, and “Set 2” comprises of nineteen interests namely Movies, Words,

Phrases and sixteen genres into which Books are divided in the divisive clustering step of

the HAD algorithm.

Results from our experiments show that while interest-based nominal features are not

as effective at predicting interests, interest-based numerical features and a combination of

the two are very effective at that task. All classifiers perform “almost” perfect at predicting

interests from “Set 1” when presented the two latter sets of features. However, given that

every user has some interest from “Set 1”, our training data is very unbalanced towards the

positive examples, and thus, “almost” perfect results are not surprising. With that said, it

is the performance results of classifiers at the task of predicting interests from “Set 2”, that

show the effectiveness of numerical features and the combination of numerical and nominal

features at that task. Our investigations reveal that all classifiers show an improvement

of at least 25% when predicting interests using numerical features compared to predicting
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interests using nominal features alone. Two out of five classifiers (SVM and Random Forest)

further show slight improvements at that task when presented with a combination of the

two features. Thus, depending on the choice of the classification algorithm used, one may

prefer the numerical features over combination of both numerical and nominal features for

predicting interests, or vice versa.

This work has contributed to significant advances to the state of the art in Social Network

Mining by organizing (without any human interaction) the interests of users into an interests’

ontology, so that semantic knowledge can be incorporated into interest-based features, thus

improving the performance of classifiers trained to predict friendships and interests of users

in social networks.
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Chapter 9

Future Work

This chapter showcases several related problems that we would like to address in future

work. They are briefly described in what follows:

• Predicting friendship links in incomplete social networks:

As we mentioned in Chapter 5, our experiments are based on the assumption that

Live Journal social network is “complete”, i.e. if there is no link between nodes “A”

and “B” in the social network graph then, Live Journal users “A” and “B” are not

friends in real life as well. However, a social network may be incomplete, meaning that

if two users “A” and “B” are friends in real life, but they have not tagged each other

as friends in Live Journal, then links between nodes “A” and “B” will be missing from

the graph. And thus, the graph features so derived will be incomplete. An extension

to our work may address the problem of predicting friendship links in such incomplete

social networks possibly via considering approaches such as time-series learning. In

time-series learning, data from Live Journal is collected over a series time-points and

graph-based features are refined to capture the length of time for which a friendship

exists. In addition, interest-based features can also be refined to incorporate the length

of time for which a user is interested in an interest etc. And thus, by using the features

so derived, friendships in incomplete social network can be estimated as a function of

time.
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• Including user-defined ontologies in Ontology Engineering:

Similar to the Live Journal social network, other social networks such as “Flickr”,“Facebook”

or “del.icio.us” can be considered. Specifically, these social networks allow users to tag

their interests, resulting in small “user defined” ontologies [Syed et al., 2008]. One idea

for future work is to build the ontology of interests on top of these user-defined ontolo-

gies. Moreover, like the ontology of interests, ontologies of schools and communities

can be derived from Live Journal and included in the ontology of interests.

• Incorporating information from Wikipedia and Google:

In future, our work can be extended to use Wikipedia’s topic ontology to engineer

concept hierarchy of interests [Syed et al., 2008]. Wikipedia is a freely available on-

line encyclopedia developed by a community of users. The documents or articles in

Wikipedia represent a consensus view of the users on the topics the articles describe,

and are linked to other articles which describe related concepts [Syed et al., 2008].

Wikipedia’s articles and the underlying article link graph form a topic ontology that

is developed and maintained by the Wikipedia community [Syed et al., 2008]. Topics

in the topic ontology can be seen as interests and thus, articles describing these topics

as interest descriptions. In addition, interests can be queried to search engines, e.g.

Google and MSN Live Search, and the results so retrieved can also be considered as

articles describing the interests [Gupta and Oates, 2007]. Given a set of articles, in-

terests can be compared with one another using techniques such as Latent Semantic

Analysis [Deerwester et al., 1990] to guide the grouping of related interests into clusters

(representing concepts), and hence into a concept hierarchy. Furthermore, our interest

ontology only represents “is-a” relationships between concepts in a hierarchical man-

ner. With that said, articles describing more than one interest and Wikipedia’s article

link graph may also be used to derive other relationships such as “a-kind-of”,“has-

a”,“hyponym-of”, “subsumes”, “subtype-of” etc, to enrich our ontology to represent

more than one relationship.
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• Using other similarity measures:

In Section 3.3, we mention that similarity between two interests (and hence, two

interest-clusters) is computed as the dot product between vectors representing these

interests according to a boolean representation. Future work will look at developing

a controlled term vocabulary based on all interest definitions, and hence representing

interests as weighted vectors of terms in the vocabulary [Manning et al., 2008, Chap-

ters 2,6]. Similarities between two interests (and hence, two interest-clusters) will

then be computed as the dot product or cosine between two vectors representing the

interests, as described in the implementation of Vector Space Model for information

retrieval [Manning et al., 2008, Chapter 6]. Furthermore, semantics in the controlled

vocabulary of terms may also be elevated, using Latent Semantic Indexing, to com-

bine terms and give improved measures of similarity between two interests[Deerwester

et al., 1990; Manning et al., 2008, Chapter 18].

• Refining interest-based measures using a variable-depth cut through the ontologies:

Chapter 5 delineates the use of interest ontologies in refining numerical interest-based

measures. Specifically, interests are viewed at various levels of abstraction in the

ontologies and numerical interest-based measures are computed as described in Sec-

tion 4.2. Instead of refining interest-based measures using fixed levels of abstraction

in the ontologies, the notion of refining the same using a variable depth cut through

the ontologies can be considered in future. Following the idea presented by Zhang

et al. [2005, Section 3.1], the ontologies can be greedily explored by beginning the re-

finement of interest-based measures using the most abstract cut through the concept

hierarchy. At each cluster node in the hierarchy, a selection can be made to further

refine interest-based measures by a) considering interests constituting this node or b)

considering its child clusters, with the aim to optimize the performance of classifiers

in predicting friendship links in Live Journal social network. Following this approach,

one could refine interest-based measures using a global cut [Zhang et al., 2005] through
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the ontologies such that the performance of classifiers in predicting friendships is max-

imized.

• Combining the two versions of ontology of interests:

Section 3.3 presents two versions of hierarchical agglomerative step of the HAD algo-

rithm (Chapter 3), which generate two versions of the ontology of interests. Future

work extending this thesis, can also address the problem of combining these two ver-

sions and investigating the effect of the same in performance of classifying algorithms

at predicting friendship links and/or interests of users of Live Journal.
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Chapter 10

Appendix A

In this Chapter, we report the AUC values for “Support Vector Machine” classifier (SVM) at

the task of predicting friendships among Live Journal users, when presented with interest-

based nominal features in presence of the interests’ ontology. The AUC values are averaged

over ten repetitions of each experiment. We also report the standard deviation associated

with the average AUC values in each case. Interest-based features are refined by varying

the levels of abstraction in the ontology and the sub-ontologies, and for each experiment,

the “best” levels of abstraction (i.e. the level of abstraction for which SVM performs the

best) are highlighted using BOLD-FACED font. The choice of the classifier (SVM) comes

from the fact that, preliminary experiments of our work [Bahirwani et al., 2008] suggest that

SVM is the best classifier for predicting friendships in Live Journal using interest-based

features alone, or a combination of graph features and interest-based features in the presence

of interests’ ontology.

The Tables 10.1 and 10.2 show the performance of SVM classifiers at predicting friend-

ships when presented with interest-based nominal features refined using “best” overall levels

in the interests’ ontologies “O1” and “O2” respectively. In addition, Tables 10.3 to 10.6 show

the performance of SVM at that task when presented with same set of features refined using

“best” levels in sub-ontologies of the interests’ hierarchy “O1”.
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Table 10.1: AUC for SVM presented with interest-based nominal features refined using
ontology “O1”

Level# AUC Level# AUC
1 0.70±0.16 9 0.70±0.10
2 0.63±0.10 10 0.64±0.12
3 0.70±0.09 11 0.62±0.09
4 0.70±0.09 12 0.64±0.09
5 0.67±0.11 13 0.63±0.16
6 0.75±0.13 14 0.68±0.12
7 0.69±0.17 15 0.69±0.08
8 0.67±0.15 16 0.65±0.11

Table 10.2: AUC for SVM presented with interest-based nominal features refined using
ontology “O2”

Level# AUC Level# AUC
1 0.66±0.13 22 0.69±0.11
2 0.67±0.13 23 0.64±0.09
3 0.68±0.10 24 0.67±0.11
4 0.64±0.09 25 0.71±0.13
5 0.71±0.12 26 0.59±0.08
6 0.70±0.12 27 0.62±0.10
7 0.74±0.11 28 0.65±0.13
8 0.70±0.16 29 0.60±0.13
9 0.72±0.08 30 0.61±0.14
10 0.66±0.15 31 0.64±0.12
11 0.68±0.13 32 0.61±0.17
12 0.64±0.08 33 0.69±0.06
13 0.62±0.08 34 0.73±0.09
14 0.72±0.12 35 0.58±0.11
15 0.63±0.10 36 0.63±0.08
16 0.64±0.06 37 0.67±0.15
17 0.64±0.10 38 0.63±0.09
18 0.66±0.13 39 0.60±0.10
19 0.64±0.10 40 0.68±0.13
20 0.70±0.09 41 0.68±0.11
21 0.68±0.10 42 0.64±0.09
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Table 10.3: AUC for SVM presented with interest-based nominal features refined using
books ontology “O1”

Level# AUC Level# AUC
1 0.68±0.10 8 0.76±0.08
2 0.64±0.11 9 0.73±0.10
3 0.69±0.10 10 0.63±0.10
4 0.69±0.08 11 0.67±0.09
5 0.67±0.12 12 0.76±0.08
6 0.63±0.09 13 0.70±0.14
7 0.65±0.10 14 0.66±0.16

Table 10.4: AUC for SVM presented with interest-based nominal features refined using
movies ontology “O1”

Level# AUC Level# AUC
1 0.65±0.17 8 0.76±0.08
2 0.67±0.12 9 0.62±0.09
3 0.70±0.10 10 0.68±0.08
4 0.63±0.11 11 0.65±0.10
5 0.69±0.07 12 0.67±0.10
6 0.63±0.12 13 0.65±0.08
7 0.62±0.14

Table 10.5: AUC for SVM presented with interest-based nominal features refined using
words ontology “O1”

Level# AUC Level# AUC
1 0.66±0.13 9 0.76±0.08
2 0.60±0.11 10 0.63±0.09
3 0.65±0.14 11 0.66±0.11
4 0.62±0.12 12 0.64±0.09
5 0.71±0.09 13 0.60±0.19
6 0.60±0.12 14 0.62±0.13
7 0.69± 0.11 15 0.65±0.07
8 0.67±0.06
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Table 10.6: AUC for SVM presented with interest-based nominal features refined using
phrases ontology “O1”

Level# AUC Level# AUC
1 0.69±0.10 7 0.76±0.08
2 0.68±0.11 8 0.74±0.08
3 0.73±0.09 9 0.64±0.06
4 0.70±0.12 10 0.64±0.10
5 0.74±0.07 11 0.65±0.15
6 0.71±0.09 12 0.68±0.10
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Appendix B

In this Chapter, we report the AUC values for “Support Vector Machine” classifier (SVM)

at the task of predicting friendships among Live Journal users, when presented with a

combination of graph-based features and interest-based nominal features in presence of the

interests’ ontology. The AUC values are averaged over ten repetitions of each experiment.

We also report the standard deviation associated with the average AUC values in each case.

Interest-based features are refined by varying the levels of abstraction in the ontology and

the sub-ontologies, and for each experiment, the “best” levels of abstraction (i.e. the level

of abstraction for which SVM performs the best) are highlighted using BOLD-FACED

font. The choice of the classifier (SVM) comes from the fact that, preliminary experiments

of our work [Bahirwani et al., 2008] suggest that SVM is the best classifier for predicting

friendships in Live Journal using interest-based features alone, or a combination of graph

features and interest-based features in the presence of interests’ ontology.

The Tables 11.1 and 11.2 show the performance of SVM classifiers at predicting friend-

ships when presented with graph-based features and interest-based nominal features refined

using “best” overall levels in the interests’ ontologies “O1” and “O2” respectively. In addi-

tion, Tables 11.3 to 11.6 show the performance of SVM at that task when presented with

same set of features refined using “best” levels in sub-ontologies of the interests’ hierarchy

“O1”.
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Table 11.1: AUC for SVM presented with graph-based features and interest-based nominal
features refined using ontology “O1”

Level# AUC Level# AUC
1 0.92±0.05 9 0.90±0.06
2 0.89±0.05 10 0.89±0.05
3 0.90±0.05 11 0.88±0.04
4 0.89±0.07 12 0.90±0.05
5 0.89±0.07 13 0.86±0.11
6 0.90±0.07 14 0.89±0.07
7 0.91±0.05 15 0.87±0.08
8 0.85±0.15 16 0.89±0.06

Table 11.2: AUC for SVM presented with graph-based features and interest-based nominal
features refined using ontology “O2”

Level# AUC Level# AUC
1 0.86±0.10 22 0.88±0.07
2 0.85±0.08 23 0.82±0.04
3 0.87±0.06 24 0.86±0.06
4 0.89±0.06 25 0.87±0.08
5 0.92±0.05 26 0.82±0.09
6 0.92±0.03 27 0.84±0.06
7 0.91±0.07 28 0.81±0.08
8 0.92±0.05 29 0.81±0.12
9 0.92±0.05 30 0.88±0.06
10 0.87±0.08 31 0.86±0.07
11 0.90±0.07 32 0.87±0.10
12 0.87±0.07 33 0.88±0.05
13 0.89±0.05 34 0.89±0.05
14 0.91±0.05 35 0.87±0.08
15 0.87±0.08 36 0.82±0.07
16 0.86±0.04 37 0.89±0.10
17 0.88±0.06 38 0.85±0.09
18 0.83±0.11 39 0.80±0.08
19 0.83±0.09 40 0.87±0.04
20 0.89±0.06 41 0.89±0.07
21 0.84±0.07 42 0.84±0.05
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Table 11.3: AUC for SVM presented with graph-based features and interest-based nominal
features refined using books ontology “O1”

Level# AUC Level# AUC
1 0.91±0.04 8 0.90±0.05
2 0.90±0.04 9 0.88±0.07
3 0.89±0.05 10 0.83±0.12
4 0.89±0.09 11 0.90±0.06
5 0.87±0.05 12 0.89±0.05
6 0.89±0.04 13 0.91±0.05
7 0.86±0.06 14 0.90±0.06

Table 11.4: AUC for SVM presented with graph-based features and interest-based nominal
features refined using movies ontology “O1”

Level# AUC Level# AUC
1 0.88±0.07 8 0.90±0.05
2 0.85±0.07 9 0.90±0.03
3 0.91±0.03 10 0.89±0.04
4 0.84±0.06 11 0.86±0.08
5 0.88±0.04 12 0.88±0.09
6 0.87±0.05 13 0.89±0.05
7 0.88±0.06

Table 11.5: AUC for SVM presented with graph-based features and interest-based nominal
features refined using words ontology “O1”

Level# AUC Level# AUC
1 0.89±0.04 9 0.90±0.05
2 0.83±0.04 10 0.86±0.06
3 0.90±0.07 11 0.87±0.07
4 0.86±0.09 12 0.85±0.09
5 0.90±0.05 13 0.77±0.13
6 0.87±0.05 14 0.86±0.10
7 0.87±0.05 15 0.87±0.05
8 0.89±0.03
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Table 11.6: AUC for SVM presented with graph-based features and interest-based nominal
features refined using phrases ontology “O1”

Level# AUC Level# AUC
1 0.89±0.05 7 0.90±0.05
2 0.88±0.06 8 0.88±0.05
3 0.88±0.05 9 0.86±0.06
4 0.88±0.06 10 0.87±0.06
5 0.91±0.04 11 0.87±0.05
6 0.88±0.06 12 0.86±0.05
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Appendix C

In this Chapter, we report the AUC values for “Support Vector Machine” classifier (SVM) at

the task of predicting friendships among Live Journal users, when presented with interest-

based numerical features in presence of the interests’ ontology. The AUC values are averaged

over ten repetitions of each experiment. We also report the standard deviation associated

with the average AUC values in each case. Interest-based features are refined by varying

the levels of abstraction in the ontology and the sub-ontologies, and for each experiment,

the “best” levels of abstraction (i.e. the level of abstraction for which SVM performs the

best) are highlighted using BOLD-FACED font. The choice of the classifier (SVM) comes

from the fact that, preliminary experiments of our work [Bahirwani et al., 2008] suggest that

SVM is the best classifier for predicting friendships in Live Journal using interest-based

features alone, or a combination of graph features and interest-based features in the presence

of interests’ ontology.

The Tables 12.1 and 12.2 show the performance of SVM classifiers at predicting friend-

ships when presented with interest-based numerical features refined using “best” overall

levels in the interests’ ontologies “O1” and “O2” respectively. In addition, Tables 12.3

to 12.10 show the performance of SVM at that task when presented with same set of fea-

tures refined using “best” levels in sub-ontologies of the interests’ hierarchies “O1” and

“O2”.
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Table 12.1: AUC for SVM presented with interest-based numerical features refined using
ontology “O1”

Level# AUC Level# AUC
1 0.62±0.15 9 0.65±0.09
2 0.61±0.1 10 0.62±0.11
3 0.58±0.1 11 0.65±0.12
4 0.61±0.12 12 0.67±0.1
5 0.6±0.13 13 0.65±0.12
6 0.62±0.13 14 0.74±0.08
7 0.64±0.12 15 0.66±0.07
8 0.65±0.13 16 0.67±0.13

Table 12.2: AUC for SVM presented with interest-based numerical features refined using
ontology “O2”

Level# AUC Level# AUC
1 0.59±0.13 22 0.70±0.14
2 0.57±0.11 23 0.63±0.14
3 0.62±0.10 24 0.62±0.13
4 0.56±0.12 25 0.70±0.13
5 0.63±0.10 26 0.67±0.11
6 0.67±0.14 27 0.74±0.10
7 0.62±0.10 28 0.76±0.11
8 0.68±0.15 29 0.73±0.11
9 0.61±0.10 30 0.64±0.15
10 0.64±0.10 31 0.68±0.08
11 0.60±0.20 32 0.63±0.14
12 0.64±0.07 33 0.69±0.12
13 0.64±0.10 34 0.68±0.08
14 0.62±0.07 35 0.69±0.13
15 0.58±0.14 36 0.72±0.12
16 0.69±0.11 37 0.68±0.10
17 0.74±0.10 38 0.69±0.09
18 0.64±0.14 39 0.68±0.09
19 0.71±0.11 40 0.73±0.13
20 0.71±0.12 41 0.68±0.13
21 0.61±0.11 42 0.67±0.10
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Table 12.3: AUC for SVM presented with interest-based numerical features refined using
books ontology “O1”

Level# AUC Level# AUC
1 0.65±0.11 8 0.68±0.09
2 0.51±0.12 9 0.60±0.12
3 0.60±0.10 10 0.55±0.09
4 0.66±0.12 11 0.65±0.12
5 0.65±0.11 12 0.67±0.15
6 0.60±0.14 13 0.66±0.09
7 0.63±0.08 14 0.58±0.09

Table 12.4: AUC for SVM presented with interest-based numerical features refined using
books ontology “O2”

Level# AUC Level# AUC
1 0.64±0.18 15 0.70±0.10
2 0.64±0.10 16 0.72±0.06
3 0.59±0.14 17 0.66±0.09
4 0.57±0.09 18 0.70±0.11
5 0.65±0.12 19 0.61±0.08
6 0.63±0.17 20 0.66±0.08
7 0.63±0.11 21 0.62±0.12
8 0.69±0.13 22 0.68±0.09
9 0.58±0.11 23 0.78±0.07
10 0.59±0.11 24 0.64±0.12
11 0.64±0.16 25 0.68±0.11
12 0.66±0.14 26 0.66±0.12
13 0.58±0.10 27 0.66±0.12
14 0.64±0.10 28 0.66±0.13

Table 12.5: AUC for SVM presented with interest-based numerical features refined using
movies ontology “O1”

Level# AUC Level# AUC
1 0.65±0.14 8 0.68±0.09
2 0.62±0.12 9 0.62±0.11
3 0.64±0.12 10 0.65±0.10
4 0.59±0.10 11 0.62±0.16
5 0.60±0.10 12 0.61±0.06
6 0.65±0.08 13 0.62±0.08
7 0.64±0.06
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Table 12.6: AUC for SVM presented with interest-based numerical features refined using
movies ontology “O2”

Level# AUC Level# AUC
1 0.61±0.16 22 0.70±0.10
2 0.52±0.10 23 0.67±0.08
3 0.56±0.13 24 0.66±0.12
4 0.60±0.17 25 0.69±0.10
5 0.66±0.11 26 0.70±0.10
6 0.63±0.13 27 0.69±0.15
7 0.66±0.13 28 0.64±0.09
8 0.63±0.11 29 0.62±0.15
9 0.67±0.05 30 0.66±0.07
10 0.60±0.12 31 0.76±0.10
11 0.61±0.11 32 0.61±0.12
12 0.66±0.11 33 0.61±0.12
13 0.66±0.11 34 0.62±0.17
14 0.64±0.11 35 0.68±0.15
15 0.74±0.09 36 0.69±0.10
16 0.66±0.13 37 0.69±0.14
17 0.61±0.16 38 0.62±0.14
18 0.70±0.10 39 0.71±0.09
19 0.65±0.08 40 0.64±0.11
20 0.69±0.13 41 0.75±0.11
21 0.67±0.09

Table 12.7: AUC for SVM presented with interest-based numerical features refined using
words ontology “O1”

Level# AUC Level# AUC
1 0.59±0.19 9 0.68±0.09
2 0.60±0.07 10 0.58±0.10
3 0.61±0.11 11 0.58±0.17
4 0.63±0.16 12 0.58±0.11
5 0.65±0.12 13 0.63±0.12
6 0.63±0.11 14 0.69±0.09
7 0.65±0.08 15 0.64±0.10
8 0.66±0.08
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Table 12.8: AUC for SVM presented with interest-based numerical features refined using
words ontology “O2”

Level# AUC Level# AUC
1 0.60±0.14 16 0.70±0.10
2 0.57±0.15 17 0.73±0.13
3 0.56±0.21 18 0.66±0.13
4 0.53±0.10 19 0.69±0.14
5 0.61±0.09 20 0.64±0.09
6 0.56±0.13 21 0.72±0.10
7 0.62±0.10 22 0.69±0.12
8 0.64±0.09 23 0.73±0.12
9 0.62±0.10 24 0.70±0.09
10 0.66±0.12 25 0.71±0.08
11 0.64±0.12 26 0.70±0.14
12 0.55±0.21 27 0.68±0.12
13 0.75±0.09 28 0.70±0.08
14 0.62±0.13 29 0.70±0.07
15 0.65±0.10

Table 12.9: AUC for SVM presented with interest-based numerical features refined using
phrases ontology “O1”

Level# AUC Level# AUC
1 0.61±0.11 7 0.68±0.09
2 0.67±0.10 8 0.64±0.08
3 0.63±0.11 9 0.65±0.13
4 0.62±0.13 10 0.63±0.09
5 0.55±0.17 11 0.61±0.06
6 0.62±0.13 12 0.65±0.10
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Table 12.10: AUC for SVM presented with interest-based numerical features refined using
phrases ontology “O2”

Level# AUC Level# AUC
1 0.62±0.10 10 0.70±0.10
2 0.57±0.19 11 0.62±0.10
3 0.74±0.09 12 0.66±0.11
4 0.58±0.09 13 0.68±0.10
5 0.66±0.09 14 0.72±0.14
6 0.67±0.12 15 0.68±0.13
7 0.63±0.07 16 0.65±0.10
8 0.68±0.09 17 0.69±0.09
9 0.61±0.11 18 0.68±0.23
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Appendix D

In this Chapter, we report the AUC values for “Support Vector Machine” classifier (SVM)

at the task of predicting friendships among Live Journal users, when presented with a

combination of graph-based features and interest-based numerical features in presence of the

interests’ ontology. The AUC values are averaged over ten repetitions of each experiment.

We also report the standard deviation associated with the average AUC values in each case.

Interest-based features are refined by varying the levels of abstraction in the ontology and

the sub-ontologies, and for each experiment, the “best” levels of abstraction (i.e. the level

of abstraction for which SVM performs the best) are highlighted using BOLD-FACED

font. The choice of the classifier (SVM) comes from the fact that, preliminary experiments

of our work [Bahirwani et al., 2008] suggest that SVM is the best classifier for predicting

friendships in Live Journal using interest-based features alone, or a combination of graph

features and interest-based features in the presence of interests’ ontology.

The Tables 13.1 and 13.2 show the performance of SVM classifiers at predicting friend-

ships when presented with graph-based features and interest-based numerical features re-

fined using “best” overall levels in the interests’ ontologies “O1” and “O2” respectively.

In addition, Tables 13.3 to 13.10 show the performance of SVM at that task when pre-

sented with same set of features refined using “best” levels in sub-ontologies of the interests’

hierarchies “O1” and “O2”.
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Table 13.1: AUC for SVM presented with graph-based features and interest-based numerical
features refined using ontology “O1”

Level# AUC Level# AUC
1 0.92±0.04 9 0.91±0.06
2 0.88±0.09 10 0.90±0.05
3 0.89±0.04 11 0.92±0.02
4 0.89±0.06 12 0.93±0.03
5 0.91±0.04 13 0.92±0.04
6 0.93±0.03 14 0.93±0.04
7 0.94±0.04 15 0.91±0.05
8 0.89±0.11 16 0.92±0.05

Table 13.2: AUC for SVM presented with graph-based features and interest-based numerical
features refined using ontology “O2”

Level# AUC Level# AUC
1 0.88±0.10 22 0.93±0.06
2 0.90±0.05 23 0.89±0.05
3 0.90±0.06 24 0.92±0.05
4 0.91±0.06 25 0.93±0.04
5 0.95±0.04 26 0.92±0.04
6 0.93±0.04 27 0.92±0.03
7 0.93±0.07 28 0.93±0.04
8 0.93±0.06 29 0.93±0.04
9 0.94±0.03 30 0.93±0.03
10 0.90±0.07 31 0.93±0.03
11 0.92±0.06 32 0.94±0.06
12 0.90±0.05 33 0.90±0.05
13 0.93±0.05 34 0.93±0.03
14 0.94±0.04 35 0.94±0.04
15 0.92±0.04 36 0.93±0.04
16 0.93±0.03 37 0.95±0.03
17 0.94±0.03 38 0.92±0.06
18 0.90±0.06 39 0.90±0.04
19 0.90±0.05 40 0.92±0.03
20 0.93±0.04 41 0.93±0.04
21 0.92±0.01 42 0.90±0.04
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Table 13.3: AUC for SVM presented with graph-based features and interest-based numerical
features refined using books ontology “O1”

Level# AUC Level# AUC
1 0.93±0.04 8 0.92±0.04
2 0.91±0.04 9 0.89±0.07
3 0.92±0.04 10 0.84±0.07
4 0.94±0.04 11 0.93±0.03
5 0.89±0.07 12 0.89±0.08
6 0.91±0.04 13 0.96±0.02
7 0.90±0.04 14 0.93±0.04

Table 13.4: AUC for SVM presented with graph-based features and interest-based numerical
features refined using books ontology “O2”

Level# AUC Level# AUC
1 0.91±0.06 15 0.91±0.04
2 0.90±0.07 16 0.94±0.03
3 0.92±0.03 17 0.92±0.04
4 0.91±0.04 18 0.91±0.05
5 0.92±0.05 19 0.92±0.03
6 0.91±0.06 20 0.91±0.05
7 0.92±0.05 21 0.91±0.05
8 0.95±0.02 22 0.92±0.03
9 0.92±0.04 23 0.93±0.05
10 0.90±0.05 24 0.92±0.03
11 0.92±0.04 25 0.92±0.05
12 0.94±0.03 26 0.93±0.04
13 0.92±0.04 27 0.91±0.04
14 0.94±0.04 28 0.92±0.03

Table 13.5: AUC for SVM presented with graph-based features and interest-based numerical
features refined using movies ontology “O1”

Level# AUC Level# AUC
1 0.92±0.05 8 0.92±0.04
2 0.90±0.04 9 0.94±0.03
3 0.93±0.04 10 0.94±0.04
4 0.91±0.05 11 0.92±0.06
5 0.93±0.02 12 0.91±0.06
6 0.90±0.04 13 0.95±0.03
7 0.91±0.05
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Table 13.6: AUC for SVM presented with graph-based features and interest-based numerical
features refined using movies ontology “O2”

Level# AUC Level# AUC
1 0.94±0.02 22 0.91±0.04
2 0.93±0.02 23 0.92±0.06
3 0.91±0.06 24 0.91±0.05
4 0.92±0.04 25 0.91±0.04
5 0.94±0.05 26 0.95±0.03
6 0.91±0.05 27 0.92±0.03
7 0.91±0.05 28 0.92±0.04
8 0.91±0.10 29 0.91±0.04
9 0.91±0.06 30 0.90±0.07
10 0.88±0.06 31 0.94±0.04
11 0.94±0.03 32 0.94±0.03
12 0.93±0.05 33 0.92±0.04
13 0.91±0.04 34 0.90±0.03
14 0.89±0.06 35 0.93±0.04
15 0.92±0.04 36 0.89±0.09
16 0.93±0.04 37 0.93±0.03
17 0.89±0.06 38 0.91±0.04
18 0.92±0.04 39 0.96±0.02
19 0.91±0.07 40 0.91±0.04
20 0.93±0.04 41 0.94±0.03
21 0.90±0.03

Table 13.7: AUC for SVM presented with graph-based features and interest-based numerical
features refined using words ontology “O1”

Level# AUC Level# AUC
1 0.93±0.03 9 0.92±0.04
2 0.88±0.03 10 0.91±0.04
3 0.94±0.03 11 0.89±0.06
4 0.92±0.06 12 0.89±0.07
5 0.95±0.04 13 0.88±0.04
6 0.92±0.06 14 0.92±0.04
7 0.93±0.03 15 0.92±0.03
8 0.92±0.03
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Table 13.8: AUC for SVM presented with graph-based features and interest-based numerical
features refined using words ontology “O2”

Level# AUC Level# AUC
1 0.93±0.03 16 0.91±0.04
2 0.92±0.03 17 0.93±0.05
3 0.90±0.05 18 0.95±0.02
4 0.93±0.04 19 0.92±0.04
5 0.89±0.04 20 0.92±0.04
6 0.91±0.05 21 0.91±0.07
7 0.91±0.05 22 0.93±0.03
8 0.93±0.03 23 0.91±0.06
9 0.92±0.06 24 0.91±0.06
10 0.90±0.06 25 0.91±0.04
11 0.90±0.06 26 0.92±0.03
12 0.95±0.02 27 0.94±0.03
13 0.93±0.05 28 0.94±0.03
14 0.92±0.04 29 0.93±0.03
15 0.91±0.03

Table 13.9: AUC for SVM presented with graph-based features and interest-based numerical
features refined using phrases ontology “O1”

Level# AUC Level# AUC
1 0.93±0.03 7 0.92±0.04
2 0.92±0.05 8 0.91±0.03
3 0.92±0.05 9 0.92±0.04
4 0.92±0.04 10 0.92±0.03
5 0.92±0.06 11 0.93±0.03
6 0.93±0.04 12 0.91±0.04
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Table 13.10: AUC for SVM presented with graph-based features and interest-based numer-
ical features refined using phrases ontology “O2”

Level# AUC Level# AUC
1 0.91±0.05 10 0.91±0.04
2 0.90±0.06 11 0.94±0.03
3 0.93±0.05 12 0.93±0.04
4 0.90±0.02 13 0.94±0.03
5 0.91±0.05 14 0.90±0.05
6 0.93±0.04 15 0.94±0.04
7 0.93±0.04 16 0.90±0.06
8 0.94±0.03 17 0.91±0.03
9 0.92±0.03 18 0.95±0.03
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Chapter 14

Appendix E

In this Chapter, we report the AUC values of various classifiers at the task of predicting

interests of users of the Live Journal social network (see Sections 5.2 and 6.2). The task

of predicting interests is performed for two sets of interests. “Set 1” comprises of four

interests namely Books, Movies, Words and Phrases. And “Set 2” comprises of nineteen

interests namely Movies, Words, Phrases and sixteen genres into which Books are divided.

Tables 14.1, 14.2 and 14.3 list the AUC values for classifiers at the task of predicting interests

from “Set 1” when presented with interest-based nominal features, interest-based numerical

features and a combination of the two respectively.

Table 14.1: AUC for different classifiers presented with interest-based nominal features

Interest SVM Logistic J48 RandomForest OneR
Books 0.486 0.532 0.486 0.505 0.5
Movies 0.493 0.499 0.49 0.47 0.498
Words 0.502 0.497 0.492 0.474 0.5

Phrases 0.616 0.611 0.522 0.56 0.526
Average 0.524 0.5348 0.498 0.50225 0.506

In addition, Tables 14.4, 14.5 and 14.6 show the AUC values for classifiers at the task

of predicting interests from “Set 1” when presented with interest-based nominal features,

interest-based numerical features and a combination of the two respectively.
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Table 14.2: AUC for different classifiers presented with interest-based numerical features

Interest SVM Logistic J48 RandomForest OneR
Books 1 0.988 0.99 0.995 0.995
Movies 0.997 0.989 0.982 0.994 0.978
Words 0.993 0.981 0.942 0.981 0.962

Phrases 0.992 0.991 0.988 0.995 0.982
Average 0.996 0.9873 0.976 0.99125 0.97925

Table 14.3: AUC for different classifiers presented with interest-based nominal and numer-
ical features

Interest SVM Logistic J48 RandomForest OneR
Books 1 0.993 0.99 0.995 0.995
Movies 0.997 0.993 0.982 0.994 0.978
Words 0.993 0.954 0.95 0.981 0.962

Phrases 0.992 0.991 0.988 0.995 0.982
Average 0.996 0.9828 0.978 0.99125 0.97925

Table 14.4: AUC for different classifiers presented with interest-based nominal features

Interest SVM Logistic J48 RandomForest OneR
Books1 0.532 0.64 0.618 0.599 0.498
Books2 0.594 0.556 0.497 0.552 0.494
Books3 0.526 0.6 0.559 0.575 0.517
Books4 0.575 0.598 0.635 0.633 0.496
Books5 0.523 0.526 0.526 0.552 0.495
Books6 0.606 0.6 0.535 0.57 0.543
Books7 0.551 0.556 0.519 0.596 0.531
Books8 0.574 0.564 0.497 0.536 0.469
Books9 0.62 0.618 0.554 0.562 0.539
Books10 0.544 0.539 0.557 0.55 0.546
Books11 0.528 0.536 0.508 0.484 0.54
Books12 0.594 0.583 0.543 0.574 0.513
Books13 0.544 0.544 0.502 0.598 0.503
Books14 0.574 0.582 0.484 0.575 0.514
Books15 0.543 0.53 0.507 0.554 0.525
Books16 0.554 0.547 0.503 0.597 0.498
Movies 0.532 0.553 0.478 0.588 0.496
Words 0.487 0.535 0.477 0.574 0.498

Phrases 0.634 0.616 0.556 0.59 0.527
Average 0.56 0.5696 0.529 0.57153 0.512737
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Table 14.5: AUC for different classifiers presented with interest-based numerical features

Interest SVM Logistic J48 RandomForest OneR
Books1 0.843 0.877 0.779 0.8 0.699
Books2 0.761 0.853 0.735 0.747 0.633
Books3 0.877 0.879 0.793 0.813 0.734
Books4 0.865 0.863 0.74 0.789 0.721
Books5 0.866 0.865 0.766 0.792 0.757
Books6 0.88 0.877 0.79 0.842 0.769
Books7 0.908 0.903 0.823 0.87 0.783
Books8 0.916 0.914 0.838 0.866 0.811
Books9 0.926 0.925 0.861 0.887 0.83
Books10 0.938 0.938 0.843 0.897 0.838
Books11 0.937 0.936 0.857 0.913 0.842
Books12 0.929 0.928 0.835 0.879 0.817
Books13 0.959 0.951 0.932 0.916 0.861
Books14 0.969 0.97 0.917 0.911 0.835
Books15 0.983 0.987 0.942 0.963 0.857
Books16 0.984 0.987 0.916 0.971 0.889
Movies 0.996 0.997 0.936 0.975 0.912
Words 0.995 0.993 0.929 0.979 0.921

Phrases 0.904 0.911 0.816 0.865 0.815
Average 0.918 0.9239 0.845 0.87763 0.806526
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Table 14.6: AUC for different classifiers presented with interest-based nominal and numer-
ical features

Interest SVM Logistic J48 RandomForest OneR
Books1 0.875 0.875 0.776 0.816 0.699
Books2 0.783 0.851 0.718 0.805 0.633
Books3 0.887 0.889 0.784 0.863 0.734
Books4 0.867 0.861 0.781 0.85 0.721
Books5 0.868 0.856 0.775 0.808 0.757
Books6 0.883 0.891 0.765 0.863 0.769
Books7 0.908 0.9 0.808 0.875 0.783
Books8 0.916 0.917 0.826 0.875 0.811
Books9 0.926 0.921 0.855 0.892 0.83
Books10 0.938 0.934 0.843 0.91 0.838
Books11 0.937 0.925 0.835 0.91 0.842
Books12 0.929 0.919 0.865 0.891 0.817
Books13 0.958 0.948 0.873 0.934 0.861
Books14 0.967 0.971 0.902 0.927 0.835
Books15 0.983 0.982 0.916 0.957 0.857
Books16 0.985 0.97 0.916 0.977 0.899
Movies 0.996 0.968 0.944 0.984 0.912
Words 0.995 0.964 0.903 0.97 0.921

Phrases 0.905 0.915 0.837 0.88 0.815
Average 0.921 0.9188 0.838 0.89405 0.807053
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Chapter 15

Appendix F: Visualization of the
Ontology

Visual inspection of an ontology can provide useful insights about how various instances

have been organized into concepts that capture the semantic knowledge in a domain. We

have used the open source tool “Cytoscape” [Shannon et al., 2003] to inspect the ontology of

interests constructed by our algorithm. Because HAD involves minimal human intervention

during the ontology building process (Divisive Clustering step, see Section 3.2), semantically

incorrect concepts may get introduced into the hierarchy. In principle, visual inspection of

the ontology is useful in finding such incorrect concepts and tools like Cytoscape can help

editing and correcting the ontology by adding/deleting nodes and edges. Cytoscape scales to

very large networks (our Ontology consists of about 85, 000 nodes), and by using Cytoscape,

the ontology and its associated annotations can be imported from or exported to standard

file formats such as Graph-ML (GML), Simple Interaction Format (SIF), and even to simpler

file types like delimited text files and excel workbooks. Figure 15.1 shows a screen-shot of

this tool.

We have not edited the ontology returned by HAD, but have performed visual analysis

to get an idea about its quality.

One small subset of the ontology constructed from the Live Journal data using HAD is

shown in Figure 15.2, which delineates the organization of several interests related to the
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Figure 15.1: Cytoscape open source tool-kit

concept of “networking”. It is comprised of the following concepts:

1: networks, topology, networks, networking, wireless,

radio, networks, wifi

2: networks, networks, networking, topology

3: radio, networks, wireless, wifi

4: networks, topology

5: networks, networking

6: radio, wireless

7: networks, wifi

8: networks (defined as)-

net| network| mesh| meshing| meshwork| wire

9: topology (defined as)-
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Figure 15.2: Ontology of terms related to “networking”

network| components| connected| mesh| wire

10: networks (defined as)-

network| communicate| group

11: networking (defined as)-

network| communicate| group

12: wireless

wireless| communication| electromagnetic| waves

13: radio (defined as)-

wireless| communication| based| broadcasting|

electromagnetic|waves| transmit| radio| waves

14: networks (defined as)-

broadcasting| communication| stations|

transmit| programs

15: wifi (defined as)-

wireless| network| high| frequency| radio|

signals|transmit| receive| data| broadcasting

Figure 15.2 shows that there are several instances describing the “networking” interests and

they combine together (based on similarity) in a meaningful way to form more abstract

concepts.
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