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Chapter 1

Introduction

"The purpose of this module is intuitively obvious

to even the most casual of observers."

Anonymous

1.1 Project Design

The purpose of this work is the determination of the in-

formation needed for an expert system so it can analyze a

software design document. The goal is for the expert system

to examine an Entity - Relationship - Level (ERL) design

specification [Gu84] and to evaluate it for completeness,

workability and understandability. To do this evaluation the

expert system must extract the appropriate information from

the ERL and must possess the requisite knowledge to do the

analysis.

The ERL provides information about entities, and rela-

tionships between entities. The ERL is a frame-based document

that has frames for activities, data types and control infor-

mation. The ERL document [Figure 2.2] is a product of the re-

quirement phase of the software life cycle' designed to provide

the information base required to support software development

and maintenance through the entire life cycle. The ERL at the

end of the requirements phase provides a description of in-
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puts, outputs, activities and nodes. Complex data structures

can be described in terms of simpler data items.

When the project moves to the design stage the ERL con-

tinues to be used because it allows for the addition of ac-

tivities as entities with relations to the data. As more de-

tails about the project are determined, more slots are filled

in this document, including control information via call rela-

tionships. A hierarchy diagram for the design can be created

from information in the ERL at the end of the preliminary

design phase.

From the ERL document the system will obtain the names of

the inputs to a module, the data types of the inputs, and the

names and structures of the outputs. The system can calculate

where the inputs belong in the data flow. The ERL provides

control information with the "calls" slot. The "keyword" slot

describes the general purpose of the module. The system can

combine this information with the name of the module to give

clues about the function of the module. One additional field

introduced into the ERL is an intrinsic knowledge field that

will describe information to be embedded in the module code.

The data structure of the inputs and outputs of the

module represents extremely valuable information. Many data

structure texts [Ah7H] [Tr8H] and other books [W176] [De84]

- 2 -
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define what operations are allowed on each of the various data

structures. A major aspect of the expert system's design

analysis will be to make a correspondence between the data

type and the operations proposed. The combination of the key-

word of a module and the module name will assist the system to

determine the primitive type or combinations of primitive

types of operations the module is designed to do. Experience

and experiments have shown that people choose meaningful names

for their modules [So84] [Do84], The expert system will scan

the name for such meaningful words.

The ERL supports top down design, which fits well with

maintaining abstraction levels of both design and data struc-

tures. An aspect of the design analysis will be to compare

the given control flow with the analyzed data flow to present

the designer with alternative designs and to reveal potential

concurrency in the system.

The intrinsic knowledge field, to be added to the ERL,

allows this design document to pass along the same information

as the requirement documents. Many cases exist where data are

encoded in the module code, but could be perceived as input.

For example, a module that has an error message as output must

have some data to make a comparison with to determine an out-

of-domain error. These data could either be entered as paran-

3 -
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eters or written straight into the code. The data are known

to exist because of the type of operations being performed,

and should be added to the ERL in the intrinsic knowledge

slot.

The Yourdon - Constantine approach to designing software

projects used in this paper is called structural design

[Yo79]. Modules, programs or subsystems are identified and

appropriate relationships are established between the activi-

ties. In other words, a person using this method designs ma-

jor components of the system and then works on the details of

the individual components.

1 .2 Background Information

The development of an expert system to analyze designs is

possible at this time due to the recent work being done at

several locations. The design analysis has foundations in the

work of Charles Rich at MIT on the Programmer's Apprentice

[R181]. His work in developing program plans and the work by

Elliot Soloway et. al. at Yale [Ad85] and a group at Advanced

Information and Decision Systems including Eric Domeshek,

Brian McCune and Jeffrey Dean demonstrate that programmers

have generalized, stereotyped algorithms to design systems

with, and a relative standard vocabulary that they use to
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reference these concepts. The impetus of this project com-

pared to the works mentioned above is to move the automated

analysis one level forward in the software life cycle. The

expert system is to analyze the product of the detailed design

phase which is still at an abstract level. Code transforma-

tions may be viewed as an automated task, i.e. simply compil-

ing higher level languages, whereas design is still viewed as

an art form. Code transformation systems are programmed to

proceed depth-first into the problem. The design is assumed

to be correct so that the transformation need only produce the

correct code for the operation at hand. For contrast, the

person analyzing a design is concerned with assuring that the

different pieces fit together in the correct manner.

Showing how an expert system would go about analyzing the

design will help formalize rules as to what makes a good

design. In this effort I will attempt to formalize the design

rules and will show how they will work on different designs.

1.3 Hypothesis

This thesis proposes that:

The rules to analyze software design for correct-

ness given the limited information of module

names, inputs, outputs, calls, and keywords from
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and Entity - Requirement - Level document can be

formalized for manual application.

In this manner the rules can be made precise enough to form

the basis on which the expert system can rest.

People have many types of expectations, such as a "How

are you?" after greeting a friend on the street. An example

of a design expectation would be that an output file implies

an input file. That is, if there is a module in the system

that outputs a file to secondary storage then there should

also be a module to input a file from secondary storage.

Another expectation would be if two different software

designers were given the same set of requirements, two dif-

ferent designs would be produced. However, one could expect

that certain features would exist in the design because they

exist in almost all software designs. A design which is

closer to these preconceived ideas is easier to understand

and therefore less likely to have errors introduced and

easier for people to maintain.

The standard pieces the expert system will look for in-

clude modules to input data and modules to output data. The

system expects to see afferent, transform, efferent, and

coordinate sections. The afferent modules are responsible

for accepting and massaging data into the system. This in-
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eludes any error checking and the building of data struc-

tures. Modules that take the data and convert them into

output form are considered efferent modules. Transform is

the label for the pieces in the middle that convert the

data. Coordinate modules do the control and switching.

Coordinate modules are standard pieces of design as are ag-

gregate data types.

Designing software systems is not an exact science, and

as such a debate as to what makes one design better than

another design is not absolute. I define a good design of a

software system to be a design that in addition to low cou-

pling and high cohesion is consistent in the level of data

abstraction input and output from modules across a level of

modules. The modules towards the top of the design hierar-

chy should not introduce details that should be handled at

lower levels in the design.

1 .1 Guide to Reading

The following chapters provide detail on how the rules

for automated analysis of a design document were generated.

Chapter 2 presents an example of a design and shows what

rules are used to evaluate it. Chapter 3 gives a discussion

of the developed rules. Chapter 1 presents a hierarchy of
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data types and the operations that may be performed on the

structures. Chapter 5 demonstrates the consistency of the

rules by applying them to another design problem. Chapter 6

is a summary of results and conclusion. Chapter 7 contains

a discussion of further research.



Chapter 2

An Unknown Example

2.1 Introduction

To develop the rules used to analyze software design for

correctness, I have gone through an example design, extracting

the facts I used to reach conclusions about the design. Rules

were developed so that if the same facts are present in any

design, the same conclusions can be reached. I had only the

hierarchy diagram and the ERL specification for this analysis.

I did not have any other documentation on this program, nor

was I familiar with any portion of the project. The expert

system would have only the textual description and not the

picture which is very helpful for the human.

2.2 The Design Model

I used the Yourdon - Constantine structured design [Yo79]

as a model. The features of this design include a hierarchi-

cal structure, and modules are identified as coordinate, af-

ferent, efferent, transform or undetermined. Studies show

that one can establish the type of system the design is model-

ing depending upon the shape of the design.

The hierarchical structure reveals information about in-

dividual modules. The higher up in the hierarchy a module is,
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the more probable it will be that the module is a coordinate

module. One can also anticipate that the inputs and outputs

will be more complex structures at the higher levels. The

modules at the lower levels are more likely to be transform

modules.

Modules are identified as coordinate if their function is

to control the modules below it. Afferent modules introduce

data into the system. Efferent modules work with the informa-

tion in the system and pass it to subordinates and out of the

system. Afferent and efferent modules may do some manipula-

tion of the data, but modules whose purpose is to take data

and perform some type of computation or conversion are desig-

nated transform modules. If the purpose of a module cannot be

determined, the activity is marked as undetermined.

Although Yourdon and Constantine realize that little can

be determined about a design just from the depth or width of

the hierarchy, good designs tend to have a definite overall

shape. The closest visualization of this shape is a mosque.

The concept that underlies the shape is that there is consid-

erable fan-out at the upper level modules and fan-in at the

lower levels of the hierarchy.

The shape of the hierarchy also may reveal the type of

project the specification represents. If the depth of the af-
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ferent section is noticeably greater than the depth of the

transform or efferent sections, then the system is input in-

tensive. The converse applies for a large efferent section,

it being output intensive. If the system appears to split an

input data stream into several separate output streams then

the system is trying to model a transaction system over a

transformational system. A transform system takes input and

proceeds to produce the same type of output each time it is

activated. A transaction system generates different types of

output based upon the transaction the user calls.

By taking a software system design specified in the ERL

language, a person can try to fit that design to this model

and get some ideas as to the type of problem being solved and

the sensibility of the design. I will illustrate the

knowledge used in a manner that will make it apparent that

this knowledge can be coded for machine use.

Once a determination is made about the purpose of a

module and the types of input and outputs then expectations

are developed about the information that will be needed to

perform the perceived operation. If the actual inputs and

outputs do not match the presumed data needed, a remark con-

cerning the discrepancy will be made.

11
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2.3 Evaluation

This example was selected from an assignment given to the

Software Engineering Project class at Kansas State University

in Spring 1 986 . The class is composed of juniors and seniors

majoring in Computer Science and Information Systems, who work

in teams on a modest size software project. A typical project

will have 1.5 to 2 K lines of code. The unmodified hierarchy

diagram is shown in Figure 2.1 and the accompanying ERL

specification is shown in Figure 2.2. This team did not use

the keyword or mode slots of the ERL which provide more infor-

mation about the system.

2.3.1 Main module

Analysis of the design starts at the top of the hierarchy

chart, with the Main module. Most designs will have this and

at least one more layer at the top of the hierarchy which con-

sist of coordinate modules. Main is defined in Webster as

"the chief part", thus the module name does lend some informa-

tion. The other details of the module are that all the out-

puts are identical to the inputs to the module. In the ERL,

if data are used in two different modules, they must be de-

clared as data for all the activities that make a path between

the modules. I have determined Main to be a coordinate

12
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modul e.

The facts that allow me to conclude that this is a coor-

dinate module are:

1. The top level of the hierarchy is almost always

(.95) a coordinate module.

2. The word "main" indicates (.9) coordination.

3. All the outputs are the same as the inputs.

4. More than one module is called.

5. There are no external inputs.

6. There are no external outputs.

The certainty factors listed with the first two facts are

first approximations, as are all the certainty factors in this

paper. After the expert system is implemented these probabil-

ities will be adjusted to maximize agreement between the ex-

pert system evaluation and the judgment of the human evalua-

tors of designs.

2.3.2 Afferent Controller module

The analysis of design includes the evaluation of the

collaboration between the modules; thus, a breadth first exam-

ination of the hierarchy is the appropriate method to use.

The module Af f erent_contr oiler also has all inputs passed
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through as outputs. The root word "control" tells me that

this is a coordinate module, also supported by the facts that

it is in the second level of the hierarchy and that it calls

more than one other module. Obviously the students were re-

cently exposed to the concepts of afferent and efferent flow

when they named their modules. Although I wouldn't expect

these names, I could anticipate names denoting I/O like input,

read, get, output, print and write. Programs generally have

stages of input, process and output. Designs also are

developed in this fashion and generally proceed left to right.

The facts used to determine the nature of Af f erent_con-

troller are:

1. The second level of the hierarchy is likely (.8)

to include coordinate modules.

2. The word "control" embedded in the module name

indicates (.95) that this is a coordinate module.

3. All the outputs are the same as the inputs.

4. More than one module is called.

5. There are no external inputs.

6. There are no external outputs.

Therefore this module is a coordinate module. Because

this module is the first module in the calls slot, I can say:

7. This is the left most module in the second level
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of the hierarchy.

8. The module on the left of the second level of the

hierarchy is generally (.8) an afferent module.

9. The module returns more data into the system than

it receives.

Aff erent_contr oiler is part of the afferent portion of

the design.

2.3.3 Transform Controller module

The next module to analyze is the Transf orm_contr oiler.

Note that I select the search based on the order of the calls

as they appear in the Main module and not on the order of ap-

pearance in the ERL specification. In this example the order

of Transf orm_controller and Eff erent_controller is switched in

the document. Disregarding the information obtained from the

names of the modules, I would question the succession of the

modules because the order in which they are listed differs

from the sequence listed in the calling module. By choosing

the next module by order of appearance in the calling module I

expect to be correct more often than if I chose by the order

of appearance in the document. The justification of this

heuristic is that the information is more local in the module

than in the document. In automating the analysis of design

- 27



An Unknown Example Chapter 2

the Pitching of the order would prompt the expert system to

question which is the more proper order. Selection by the se-

quence in the calling module is the default sequencing.

My conclusion of the purpose of the Transf orm_contr oiler

is that it is a coordinate module. The following facts are

used to support this conclusion.

1. The second level of the hierarchy is likely (.8)

to consist of coordinate modules.

2. The word "control" embedded in the module name

indicates (.95) that this is a coordinate module.

3. All the outputs are the same as the inputs.

4. More than one module is called.

5. There are no external inputs.

6. There are no external outputs.

Additionally this module is in the middle 50 percent of

the second level of the hierarchy, determined by its position

in the calls slot of the Main module in the ERL. Therefore it

is likely to be part of the transform section of the design.

Also, it receives more information than it returns to the pro-

gram.

2.3.4 Efferent Controller module

The examination of the Eff erent_controller module will
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follow the same lines as the previous two modules. I've

determined the Eff erent_oontroller to be a coordinate module

of the efferent section because:

1. The second level of the hierarchy is likely (.8)

to consist of coordinate modules.

2. The word "control" embedded in the module name

indicates (.95) that this is a coordinate module.

3. All the outputs are the same as the inputs,

t . More than one module is called.

5. There are no external inputs.

6. There are no external outputs.

7. The module on the right of the hierarchy is gen-

erally (.8) an efferent module.

8. No data are returned to the parent module.

Now that all the activities across the second level have

been examined, it is wise to look across the breadth of this

level to evaluate how well the modules link together. All the

modules have been judged as coordinate modules, and I have

even gone so far as to place afferent, transform and efferent

labels on each of them. This is consistent with what the

model expects for a design, partially because the design

forced some labels on the module. Further support is needed

to establish the correctness of these decisions.
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2.3.5 Get Filename module

Proceeding to the next level of the hierarchy I take the

first module called from the Af f erent_oontroller; the

Get_filename activity. To a human, the intent of Get_filename

is obviously to obtain the name of an input file. What are

the facts that allow one to determine its function?

1. There is an external input.

2. There is an external output that has "error" as

part of its name.

3. The word "get" occurs in the name of the module.

4. A correspondence of words in the input of the

module and the name of the module makes it likely

(.7) that input is a major function of this

module.

5. The structure of the external input is the same

as the output from the module.

6. The parent module is a coordinate module for the

afferent section.

7. The module passes more information back to its

parent than it receives.

8. No other modules are called from this module.

Therefore, I can say that Get_filename is an afferent

module whose purpose is to get primary input from the key-
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board, the medium of the external input. Since the input

medium is keyboard, an expectation is developed that a prompt

should be generated. A human evaluator of the design would

make a note about the keyboard prompt, and an expert system

should do the same.

Another point needs to be clarified about this module:

What conditions are going to trigger the error message? This

is why I will add the intrinsic knowledge field to the ERL

specification so a slot is available to contain this informa-

tion, thereby making the ERL a more complete document. The

intrinsic knowledge slot would contain information like "if

filename cannot be opened then print ' file_error'". The for-

mat is that of a test and the error message is the result of

the test. This will satisfy the expectation that the condi-

tions triggering the error message are stated in the ERL. At

this time, just a check will be made to see if such a state-

ment is present, deferring the attempt to obtain any further

meaning from the condition statement for future work.

2.3.6 Find Comment and Variable Declarations module

The next module to examine is Find_comment_and_variable_

declarations. The items I can determine from this module are:

1. All inputs are also outputs, but there are two
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additional outputs.

2. The name of a new output, Comment, appears in the

name of the module.

3. The name of a new output, Variable_declaration

appears in the name of the module.

1 . There are no external inputs.

5. There are no external outputs.

6. The module passes more information to its su-

perordlnate than it receives.

Therefore, the olassif ioation of this module is a choice

between transform, because of the changes of input to a dif-

ferent .output, and afferent, because more data are passed into

the system. By drawing on the environment, the system will be

influenced by the identification of the sibling and parent

modules and declare this module afferent. However, the confi-

dence of this choice will be low (around fifty percent).

Inspection of this module reveals a problem. $Comment$

is not declared in the data type, but $Comments$, with the ' s 1

is. I did not notice this error until the nth time through

the ERL specification: n greater than four. This demonstrates

one of the needs for automated analysis of design.

The above error is easily overlooked and automatically

corrected by a human. It also should not be a stumbling block
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for an expert system. The omission or addition of an extra

letter(s) to give the plural is such a common error that an

automated system should be able to recover from it, print a

warning message and not grind to a halt.

$Comments$, besides being an Input_output, is traced

through the data structure to be a part of $Code_string$, and

$Code_string$ is the structure of $Assertion_code$.

$Assertion_code$ is used as a variable in the modules Main,

Transf orm_controller, Eff erent_controller, Insert_assertion_

code and Cheek_assertion_code. It is not connected to the af-

ferent section or Find_comment_and_variable_declaration. The

above trail leaves $Comments$ in limbo, and the matter needs

to be brought to the attention of the user.

Following the paths of $Variable_declaration$ does not

produce any clues about the origin of $Comments$ either. The

trail ends at a string with no revealing non- terminals. The

object of the search through the data structure is to find if

either $Comments$ or $Variable_declaration$ was part of the

structure of one of the inputs to the module.

Because these two modules are the only activities called

from the Aff erent_controller, a review of the compatibility

between the modules is in order. Get_filename is resolved to

be an afferent module, as is Find_comment_and_variable_de-
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clarations. Get_filename can also pass back the information

that it is an afferent module. Although this is circular

reinforcement of the fact that the parent was an afferent sec-

tion module, this information should be exchanged so that the

certainty factor of the beliefs can be adjusted accordingly.

The certainty factor should not be adjusted by Find_comment_

and_variable_declarations response that it is an afferent

module because the certainity factor is less than already es-

tablished for Aff erent_controller.

2.3.7 Append to Variable Table module

Among the children of the Transf orm_contr oiler, the com-

parison of the inputs and outputs of Append_to_variable_table

is very interesting. The other information obtained from the

ERL entry is the word "append" in the module name. Var_table,

the output, is an array of Variable_declarations, the input.

Since an array is a way of implementing a collection of ele-

ments, and "append" is associated with adding information to a

collection, the pieces fit together. Establishing the in-

termediary of the Variable_declaration as the element of the

collection to be inserted, I can justify that an insertion

operation is the most likely intent of the module. The diffi-

culty is that the array, Var_table, is not passed into this

m odul e.
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I can think of two explanations for what must be the in-

tent of this module. First is that the ERL is correct and a

number of Variable_declarations are passed to the module and

the Var_table is constructed and passed back only when com-

pleted. This would make this module fit nicely under the

transform section and would also explain why there is no array

index passed into the procedure.

The problem with that assessment is: Where do the

numerous Variable_declarations come from? Since the Var_table

is an array of Variable_declarations, it appears that its pur-

pose must be the collection of Variable_declarations. There-

fore, another explanation of what the module should be is that

Var_table was omitted as an input. With that correction, the

module is seen as building up a data structure, and therefore

must be an afferent module. Missing is the array index as in-

put, which is a common error, especially if the array is ab-

sent as input.

The facts of Append_to_variable_table are:

1. The input is an element of the output structure.

2. The word "append" appears in the activity name.

3. The information provided does not fit the expec-

tations of an append module.

This module should be flagged as undetermined, and the
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user should be questioned to determine if the Var_table was

overlooked as an input or if the first alternative was actual-

ly correct. If the ERL entry is correct, the intrinsic

knowledge field can be used as a flag and set to "confirmed"

to prevent the assessment from reproducing the problem on sub-

sequent iterations.

2.3.8 Create Assertion Code module

Create_assertion_code is found to have one output that is

different than the input. The others are passed through to

the one module that it calls. The structures of the input and

output are different, but there is a similar word, "assertion"

in Correot_assertion and Assertion_code, signifying some type

of correspondence. Whether the other inputs are used in this

module to generate the Assertion_code cannot be determined.

I evaluate Create_assertion_code to be a transform module

because

:

1. There are no external inputs.

2. There are no external outputs.

3. At least one output differs from the inputs.

4 . The word "create" occurs in the module name.

5. The word "assertion" occurs in the new output and

in the module name.
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6. The word "assertion" occurs in the one input that

is not an output.

7. The parent module is a transform module.

Among the children of Transf orm_contr oiler, there is

Append_to_variable_table which has been labeled as undeter-

mined and Create_assertion_code which has been recognized as a

transform module. Create_assertion_code will support the

deduction of the parent module as a transform activity. The

evidence to go back and label the Append_to_variable_table is

there, but a strong counter argument exists with the inputs

and outputs that the purpose of the module is to build a data

structure. Generating a data structure is considered to be an

afferent activity. The decision is best put off until the

questions are resolved.

2.3.9 Insert Assertion Code module

The first child of the Efferent controller is Insert_

assertion_code. The inputs are Validity_message and

Assertion_code, and the output is New_code. Because New_code

is labeled as output from the program and in view of the fact

that the parent module is believed to be efferent, this module

is also labeled as efferent. The word "insert" in the pro-

cedure name generates uncertainty about the purpose of this
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module. New_oode is traced through Code_file to have a struc-

ture of file of string, and file is a type of collection. The

type declaration of New_code is an external output, but inser-

tion is not an operation one expects to find in the efferent

section of a system. The concept of the module is easy to

determine. After "insert" in the name is the name of one of

the inputs to the activity. The variable type of Assertion_

code is string, which can be an element of the collection

called New_code.

The facts present in this procedure are:

1. The output eventually becomes an external output.

2. New_code can be a collection of Assertion_code.

3. Insert is an allowable operation on a collection

of items.

4. The parent module is a controller for the ef-

ferent section.

5. This module is the first introduction of the

variable New_code.

Using facts 1, 4, and 5, I conclude the module is an ef-

ferent module. Facts 2 and 3 indicate the purpose is to add

elements into a collection.

2.3.10 Insert User Code module
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The Insert_user_code module presents an interesting set

of facts for analysis. The inputs and outputs are the same, a

major indication that the activity is used as a coordinate

module, yet there is only one process called by the procedure.

When there is only one child a controlling process is not

needed, notably if the parent activity is a coordinate module.

Designs generally do not duplicate effort. The analysis of

Insert_user_code determines that it is useless because:

1. All the outputs are the same as the inputs.

2. Although Source_code can be an external input, it

has been passed to this module, therefore there

are no external inputs.

3. There are no external outputs.

1| . There is only one called module.

2.3.11 Insert Reserved Variable module

I have difficulties judging Insert_reserved_variable. It

has New_code as output, which eventually becomes external out-

put, and it calls the same module as its sibling processes, so

I am confident in labeling it as an efferent module like the

others in this section. The problem is how New_code is gen-

erated from the Validity_message. The Validity_message is

passed into numerous modules, making its use perplexing. The

structure of this data is a string constant, indicating it is
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used as a flag. Validi ty_message is passed into Insert_

reserved_variable and it is also passed back to the parent.

This leads me to think that something is happening to the

Validity_message inside the module, and that New_code is being

generated. Recalling that the sibling module Insert_

assertion_code had Validity_message as input and New_code as

output, I reason that there is some difference in the output

of the two activities. I would question whether a similar ad-

ditional input is needed for Insert_reserved_variable. There

are no variables used with the name Heserved_variables to make

a tight coupling between the two activities. The word

"reserved" does not appear in any of the variable names. How-

ever, "variable" appears in the data declaration of Variable_

declaration. A link of Variable_declaration to Var_table has

been established from Append_to_Variable_Table so it also may

be the possible missing input. The user would be queried

whether information is missing from this module, either as in-

put, suggesting Variable_deelaration and Var_table, or as in-

trinsic knowledge such as a mapping from one state of

Validity_message to another.

The facts obtained from this module are:

1. The output eventually becomes an external output.

2. New_code is a collection of elements of type

string.
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3. Validate_message is of type string and therefore

could be added to New_code.

1. Insert is an allowable operation on a collection

of elements.

5. The parent module is a part of the efferent sec-

tion.

6. A sibling module is determined to be efferent.

7. A sibling module is determined to insert elements

into New_code.

Therefore, Insert_reserved_variables is an efferent

module and it adds elements into a collection. A note is made

to question what information triggers a change in Validity_

message and whether Variable_declaration or Var_table might be

an expected input.

A considerable part of the dissection of Insert_reserved_

variables involves looking back to one of its sibling modules.

This should point to the need to examine the breadth of all

the children of a module at each level to determine the

cooperation among the siblings. Had the order of the sibling

modules been reversed, the information that could be provided

by going back over the entire group would have been available

at this stage. Of course, since considerable knowledge was

transferred from the first child to the third child, less re-
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lianoe should be made on the information passed back. Two

modules were evaluated to be efferent, and this detail can be

returned to the parent to increase the confidence that it is a

part of the efferent section. The declaration of the other

child as useless does not weaken that conclusion.

Also a piece of information can be passed down the

hierarchy. Since the last three modules call the same module,

a label needs to be passed down that it potentially is a util-

ity module. Utility modules are harder to write, because they

must interface with more than one parent. When examining

Output_file_bandler the system will have to be more careful.

2.3.12 Input File Handler module

In the next level of the hierarchy, the Input_file_

handler is determined to be an afferent module because:

1. There is an external input.

2. The external input is passed directly as output

to the calling module.

3. The word "input" occurs in the name.

H. The word "file" in the name suggests (.7) that

the use is I/O.

5. The ancestors are believed to be afferent

modules.
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2.3.13 Find Assertion module

Scrutinizing the Find_assertion module I note that the

inputs differ from the outputs. The output appears to be gen-

erated from the inputs, and some type of string-to- string

conversion takes place. The word "find" in the name suggests

some type of search through the string.

An error occurs in this module which halts complete

analysis until resolved. The data type of output $Word$ is

not defined in the ERL. Additionally it is output from

Find_assertion but neither the parent nor the two called

modules have $Word$ as an input. Inspection continues and re-

veals that something happens to $Comments$ and that $Asser-

tion$ and $Word$ are generated in the module. The two data

types known do not have any intersecting non-terminals in the

data structure portion of the ERL and eventually are resolved

to be strings.

With the facts obtained:

1 . The outputs are different from the inputs.

2. "Find" implies a search (.7), but since no

tables, trees, lists are input, a parse of a

string must be the search.

3. A word in the name matches a word in the output.
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I judge this module to be a transform module to conduct a

parse of $Comments$ producing $Assertion$ and $Word$, whatever

$Word$ is used for.

Input_file_handler and Find_assertion send conflicting

data back to their common parent Find_comment_and_variable_

declaration. One is definitely afferent and the other is

marked transform, slightly raising the confidence that the

parent is afferent.

2.3.14 Check Assertion Syntax module

Check_assertion_syntax is the only called process of

Create_assertion_code. I've evaluated this procedure to be a

transform module because:

1 . The structure of the inputs contains parts of all

of the output.

2. A word in the name matches a word in one of the

outputs.

3. Its ancestors are transform modules.

2.3.15 Output File Handler module

Output_file_handler is a module that is called from

several sources, in other words a fan-in greater than one, and

as mentioned earlier will have a entry that it is a utility
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module for that reason. Output and file as words in the name

give clues about the purpose of this activity. The inputs are

the same as the outputs and because the outputs are external,

this must be an efferent module. Once the purpose is estab-

lished to output to a file an expectation is generated that a

filename is needed. This module does not have one provided,

and the system has not encountered an efferent procedure that

has a filename. Contrast the above to the afferent section

that had a module to obtain a file name.

The facts extracted from this module are:

1. It is an utility module.

2. There are external outputs.

3. The inputs go directly to outputs.

4. The word "output" occurs in the name.

5. The word "file" occurs in the name.

Output_file_handler is an efferent module to write to a

file, yet missing a filename, either default, inputted, or

identical to the input filename. No matter what the case the

filename should be specified on the ERL document. This is

another example of the use for the intrinsic knowledge slot.

If the project outputs to a standard file, then the intrinsic

knowledge slot would look like "$filename$ = 'out. file'".
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2.3.16 Find Keyword module

Find_keyword at the next level of the hierarchy in the

afferent section is the originator of the $Validity_message$.

The input $Pkword$ is not defined and there rests a problem

with determining this module's purpose. The only interpreta-

tion available is undetermined. A message describing the

missing data about $Pkword$ should be printed. A weak connec-

tion can be made to the parent, Find_ assertion. That module

has an output, $Word$, which is not defined or supplied to any

module. Humans can recognize a link between $Word$ and

$Pkword$, but the pattern recognition scheme necessary for au-

tomated analysis is more complex than that for detection of a

missing ns" in the case of $Comment$ described earlier.

2.3.17 Check Assertion Form module

The last module in the hierarchy to be evaluated is

Check_assertion_form. The inputs of $Validity_raessage$ and

$Assertion$ apparently map to give the output $Correct_

general_form$. This is supported by the fact that $Correct_

general_form$ and $Assertion$ are strings and $Validity_mes-

sage$ is one of a certain type of string. Because

$Validity_message$ is passed back, the possibility exists that

it may be changed in this procedure.
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The facts are:

1. At least one output is different from the inputs.

2. There are no external inputs.

3. There are no external outputs.

4. Correct_general_forra can be created from the in-

puts.

5. A word of the name matches a word in the dif-

ferent output.

6. The parent is a transform module.

Therefore, this is a transform module that does a mapping

to obtain Correct_general_form. The analysis reveals the

structure depicted in Figure 2.3.

2.3.18 Review

In the whole system, a data type, $Comment_remainder$, is

defined, but never used, another point to bring to the atten-

tion of the designer. No judgment can be offered whether the

omitted data item is extraneous, was hidden by remaining con-

tained in a complex module, or was overlooked in two or more

modules.

The overall shape of the design has one first level

module, three second level, seven third level modules, four

modules on the fourth level and two modules at the fifth lev-
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el. This has a bulge in the middle and more tapering at the

lower end than expected, suggesting that detail was omitted

from the design. The depth of the hierarchy under the af-

ferent section is five and the depth under the transform and

efferent sections is four. The evidence is slightly indica-

tive of an input intensive system. A simple count lends sup-

port to this expectation. There are six modules under the af-

ferent controller, three under the transform oontr oiler and

four under the efferent controller. This evidence would sup-

port the hypothesis that the process is input intensive. A

count of the labels analysis attached to the modules points to

a different interpretation. Four modules have an afferent la-

bel, five have a transform label, four are marked as efferent

and three modules are unknown or useless. The balance ob-

served points to a normal transform system.

2.4 Remarks

Knowledge of the source of inputs and destination of out-

puts can be a significant aid in the evaluation of the pur-

poses of the modules. The first pass an expert system should

make of a design is to traverse the hierarchy and establish

the paths of the data by matching subordinate inputs to su-

perordinate outputs and vice versa. The notation showing

which data items were externally inputted and outputted was
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helpful. After this initial pass, the system should generate

a hierarchy graph with the data items labeled, so a designer

may compare what the EHL states against what he or she intend-

ed it to say. In this example, the Validity_raessage would not

be detected as being passed down in the afferent section, but

only passed up, originating in Find_keyword and used in

Check_assertion_form. Also a graph of all the different data

structures should be made. The graph will help determine how

certain data items can be created and how others are used. In

this example, if the connection between Source_code and Com-

ments would have been established, the task of analyzing

Find_comments_and_variable_declarations would have been

easier.

The results of this evaluation were not given to the team

that created the design. A test of this thought experiment

will be to compare the difficulties discovered in the analysis

with the hierarchy of the project determined from the code and

not from the documentation and to see if changes occurred

where problems were spotted.
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Examination of the Rules

The example of the previous chapter was selected after a

preliminary review of several designs. A scan of these

designs shows that some facts produce consistent results while

others indicate a trend, and yet others are only good for in-

validating a conclusion.

In this chapter the Yourdon - Constantine model will be

discussed in terms of what information it provides to assist

analysis. Additional information provided from studies of the

previous authors is also discussed. The results of an experi-

ment conducted by Adelson and Soloway with expert and novice

designers will be examined to see how the expert design

knowledge can be incorporated into the automated system.

3.1 Yourdon Constantine Model Shape

The shape of the example in chapter 2 does not fit the

expected shape of the Yourdon Constantine model. Two explana-

tions contribute to this behavior. First, the students are

dealing with relatively small software projects, therefore,

shallow but broad hierarchy diagrams are the result. A shal-

low hierarchy does not have a well established shape. The

second reason the shape of the student's designs fails to fit

the model's predicted shape is that students are not likely to
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develop the detail expected of real-world designs. I am in-

clined to believe that each shop needs to inspect its data for

the shapes its designs have before establishing the parameters

expected on the shape.

I believe that the rules that judge a design on the basis

of its shape are not as reliable as others.

3 .2 Module Names

Many of the facts used to determine the function of an

activity are based on words extracted from the name of the

module. Several naming conventions are in general use in

software design, including the use of a consistent set of

names by design teams. These names can be programmed to be

associated with certain functions or types of functions.

Names are not meant to indicate specific processes but indi-

cate generic processes in general terms. That is also how

this expert system will analyze a software design. Table 3.1

from Yourdon - Constantine shows names that are commonly used

along with the module type that is associated with the name.

The guidance provided by module names will be discussed furth-

er in the next chapter.

3.3 Rule Confidence

51



Module Names

Afferent processes with external sources of data

GET ACCEPT (usually asynchronous)
OBTAIN FIND
INPUT LOAD

Afferent processes with internal sources of data

SETUP FORM
DEVELOP CREATE
GENERATE

Transform processes

ANALYZE COMPUTE
TRANSFORM CALCULATE
CONVERT PERFORM
DO PROCESS
Specific verbs like SORT, VALIDATE, etc.

Function-oriented nouns like SQUAREROOT, INVERSION

Efferent processes with external targets

PUT OUTPUT
PRODUCE STORE
SAVE WRITE
DELIVER PRINT

Table 3.1
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Throughout the examination of designs for rules, atten-

tion was paid to the universality of the generated rule. The

rule must be conclusive for the module and must not contradict

other rules already proposed. Additionally, the rules must be

applicable to other designs.

For example, in trying to develop a rule for determining

if a module was a coordinate module, one item I looked at was

the number of called activities and the number of mode transi-

tions allowed in the module. While examining other designs, I

discovered that many of the student designs only had a fan-out

of two from many controlling modules, whereas the first design

studied had typical fan-outs of four. Thus, the number of

called activities is not important in determining if a module

is coordinating. One fact that is consistent across all

designs was that if the inputs were directly passed as outputs

I had also determined the module to be a coordinating activi-

ty.

One must be careful when attempting to determine the

category of a module based upon the external I/O. For exam-

ple, the Get_filename activity has both external input and

external output, but its purpose can not be both afferent and

efferent. The task is to determine the intent of the activity

using information extracted from the inputs and outputs.
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An external output that is an error message cannot be

used to classify an activity since any activity may generate a

message communicating that an error condition was detected.

External outputs that are prompts belong to the afferent sec-

tion because they are used to request more information for the

sy st em

.

The indication that the external input or output is part

of an afferent or efferent module respectively would be if its

medium is secondary storage. Evidence of considerable amounts

of input to or output from outside sources, ie. a file or ar-

ray data type, also implies that the module belongs to the af-

ferent or efferent portion of the system, respectively.

A good measure of a module being afferent or efferent is

a comparison of the count of items the activity passes to its

superordinate to the number of items it receives from its

parent. Afferent modules will pass more information back to

the parent, and efferent modules receive more data than they

return. These facts are part of the definition of afferent

and efferent. I noticed these facts give more reliable clues

near the top of the hierarchy than they do at the bottom.

3.4 Matching Inputs and Outputs

A significant amount of programming is associated with
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construction of data structures, extraction of particular in-

formation from a data structure, and validation of data. A

comparison of the data types of the inputs and outputs of an

activity and the discovery of a common data type, if any, is

essential in determining the function of an activity.

In the example, the function of Append_to_Variable_Table

was easy to determine. Since Variable_declaration, as input,

is the type of the elements of the array Var_table, which is

output, a deduction is confidently made that the activity

builds an array data structure. The difficulty of fitting the

activity into the design was the result of following up on the

conclusion.

Examination of the data types of the inputs and outputs

benefits analysis by revealing if a data structure is being

erected or if information is extracted. The check of elements

or fields of a data structure assists the examination of

modules that manipulate arrays, lists, graphs, stacks, files,

records, etc. There is a limited set of operations allowed on

each data structure; if the possible functions of a module are

limited to a subset of those operations, then the determina-

tion of what the module is attempting to do is simplified.

Once a certain operation on a data structure is recog-

nized, expectations are developed that complementary opera-
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tions also will be performed. The example in chapter 2 in-

cludes the construction of an array which is used in only one

other module. One would expect to see the array enter a coor-

dinating module from where the elements are passed to a called

process where some calculation is executed. This is not the

case in this example, supporting the idea that details of the

design are missing.

The operations of numerous computer systems are manipu-

lating data into aggregate types or mapping data structures to

other data structures. The determination of what each module

intends to accomplish can be made from a comparison of the

data structures of inputs and outputs, and a search for a com-

mon data type.

3.5 Go Around Again

In analyzing designs from the ERL, the system can extract

information from three entities. The data entity relates each

data item used to its structure and source. The activity en-

tity details the data items entering and exiting the module, a

location in the hierarchy, some activity name, and/or some

keyword. The mode entity, which was not used in the example

of chapter 2 makes known the control flow of the system.

These entities are related and reinforce each other. Once a
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set of facts is found present, a rule fires suggesting what

the function of the module is. The function of the activity

in turn triggers a rule to expect the presence of certain

facts in the module. The circular path either generates con-

firmation of the module or raises questions to be resolved by

the designer.

The mode entity reveals the control of the system. It

lists all modes of the system, the allowed transitions between

modes and the conditions that permit or trigger the transi-

tion. The ERL can establish the data flow, thus, an automated

analysis can be performed to determine if the control flow

matches the data flow. The data flow and control flow must be

compatible because data flow is control flow with the added

property that it specifies the transfer of data [Wa78]. In

the Append_to_Variable_Table module of the previous example,

two determinations were proposed as to what the purpose of the

module is. If control information was also present, one argu-

ment may have been eliminated because it would violate the in-

dicated mode transition. In the example, if the mode transi-

tion did not allow control to alternate between Find_comment_

and_variable_declaration and Append_to_variable_table, then

the second proposed purpose of obtaining Variable_declaration

and building the array, Var_table, would be eliminated, there-

by clarifying the intent of the activity.
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3.6 Breadth Examination of Designs and Abstraction Levels

Maintenance

There was little use of complex data structures in the

previous example, but some points need to be made about why

breadth- first examination of the design is used.

A design hierarchy of a software project expressed in the

textual form of the ERL may not hold the level structure that

was intended by the designer. Figure 3.1 shows a structure

that when expressed in the ERL evaluates activity F at the

same level as activities B and C. A depth- first search would

not catch the different level of activity F until it passed

over F, C and D.

With the breadth-first scan of the system, after each

section has been examined the levels of abstraction of the

data types of the activities can be compared. If there is a

significant difference, ie. if two modules are processing

two-dimensional arrays and another sibling is working with a

few integers, then the abstraction level of the hierarchy is

skewed, and the activity dealing with the integers should be

moved down the hierarchy to the level concerned with base data

types.

Adjustment of the levels of the hierarchy by the abstrac-
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Figure 3.1
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tion level of the data type will aid the designer in several

ways. First he or she can see if an activity is trying to

work with data structures at too basic a level. In other

words the system is fighting against the aggregation of data

in the structure and is not making use of the operations

designed to work on the data structure. Or the data structure

was assembled before the pieces were ready. The second exam-

ple of chapter 5 will demonstrate the matching of hierarchy

levels with the data abstraction levels.

Breadth- first analysis is the correct method to use to

ensure that the modules cooperate. The evaluation pertains

not only to the function of a module, but also to its relation

to the functions of its siblings. Activities called by the

same parent must work in harmony if the system is to perform

as the designer intends it to.

3.6.1 How Expert Designers Design

An experiment performed by Beth Adelson and Elliot Solo-

way [Ad85] illuminates how expert and novice designers develop

systems. The authors discuss the differences between the

styles of the two classes of designers. Of particular in-

terest is the case where the designers were working in a

domain in which they were familiar, but the object of the
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design was unfamiliar, the situation most designers find them-

selves in.

The expert designer begins at the high abstract level and

progressively works to the more concrete. The experimenters

noted that the designers worked on only one level at a time

and incrementally expanded the details of the design. It was

observed that the expert designers constructed a mental work-

ing model to simulate their design to check the consistency of

all the possible inputs and unforeseen interactions. Addi-

tionally the interaction between the modules was simulated.

During the simulation all the I/O elements have to be at the

same level of detail. In Figure 3.1, the output from activity

B cannot become input for activity C if the abstraction levels

are not comparable. If the expert designer had a concern

about part of the design but it was at a different level of

detail than was currently being worked on, he or she would

make a note to be acted upon at the appropriate time.

One other activity was observed during the experiment

that relates to automating analysis. The designers would de-

tail the design to the point where they knew how the rest of

the activities below would work. For example a designer would

detail to an activity "sort", but since he or she already had

a repertoire of sorting routines, the design process was con-
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sidered finished along that branch. This indicates the expert

system should have a library of pre-defined projects.

When the designers in the study were presented a task to

design outside of the domain they normally work in, the exper-

imenters noticed that the level of detail in the mental simu-

lation was not as deep. Another observation was that the

simulation of the design followed one input at a time, in iso-

lation, without the interactions the designers were able to

recognize when they were familiar with the design task.

As one would expect the designs of systems outside the

expert designer's domain had bugs whereas, within their

domain, the plans were essentially correct. One difference

between novices and experts is in the simulation process —

the novices have representations whereas the experts develop

models.

3.6.2 What to Include in the Expert System

By using breadth-first analysis the automated analysis

will simulate the behavior of the expert designer by moving

incrementally from the abstract to the concrete. It will ex-

amine the activities checking for unexpected interactions.

However, at this point of development the knowledge in the au-

tomated analyzer is viewed as representational knowledge, like
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the knowledge of the novice. Once a domain and design team is

established, relationships can be established between activi-

ties, the typical functions, and typical inputs so the machine

can create a symbolic model and run a simulation as the ex-

pert.
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Data Structures

t.1 Introduction

A designer of a software system must be able to collect

the pieces of information into manageable chunks. This leads

to the development of data structures. Because data struc-

tures are designed for a computer scientist to assemble data

in manageable pieces, it seems a natural way to have a machine

analyze design schemes.

Data structures have also been proposed as a means for

data hiding. Data hiding is an excellent idea and should be

encouraged. The difficulty of this approach is that in the

Yourdon - Constantine model of design, an afferent module

builds the data structure, a transformation section does its

manipulations, and an efferent part outputs the data. In this

model and in others the knowledge about the data structure

must be known throughout the system.

There are two ways of looking at data types; first one

can look at the operations that can be performed on the data

type, and second one can look at the characteristics of the

data type. I have found that operations and characteristics

are related. The terminology we use to refer to a data struc-

ture corresponds with what items we can manipulate through
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operations on a data structure. For example, a list and an

array are very closely related; but because an array allows

random access whereas a list must be traversed sequentially,

we communicate about the index of an array. An index of a

list would take further explanation to most programmers to

describe exactly how you intend to use an index.

Data structures are defined so that each data structure

has a unique set of characteristic values. A taxonomy was

developed on the basis of the attributes that distinguish one

data type from another. For example, the attribute that a

real number is an approximation of a number and an integer is

the exact value of a number is a distinction between the two

numeric types. This analysis will make the addition of new

data types to the taxonomy easier.

The operations on the data structures discussed in this

paper are either primitives in the language, such as an as-

signment statement, or very common algorithms that have been

amply discussed in the literature.

Under the assumption that programs are built from smaller

pieces I have developed a taxonomy of data structures built

upon the concept of primitive operations. Thus, the analysis

of a design can proceed along the line of the data structure

that enters a module, the type of structure that is output
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from a module, and the operations the module is intended to

perform.

1.2 Operations

Each data type has associated with it a set of operations

that can be performed on or with that data type. As data ob-

jects become components of other data objects, they bring with

them their associated operations, generally with the restric-

tion that the component must be broken out of the structure

before the operation can be performed. The concept of adding

two lists of integers together has two different implications,

one result being a list that contains the catenation of both

lists of integers, the second a list containing the sums of

the corresponding integers. Thus, a major component of exam-

ining a design is to insure that the purpose of a module is

to perform an operation that is appropriate for the types of

inputs to the module.

Operations for the data types are well known. A brief

description of the operations and associated data types that

should be known by an expert system is included in Appendix A

and summarized in Figure 1.1.

The most basic operation of a computer is the storage of

a value to a variable and the examination of a variable to ob-
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tain the value stored there. Data types place attributes on

the storage location to indicate the manner in which the bits

are to be interpreted.

Another example to point out the need for consistency in

the level of abstraction between the operations a module per-

forms and the data structures that are associated with the

module is stack multiplication. A module that has a stack of

integers as input and a stack of integers as output, and an

operation of multiply, does not make logical sense. Although

many computer scientists would assume that the last two

numbers would be popped off, multiplied and the product pushed

back on the stack, the operation is not consistent with the

data type stack. The need to show the actual inputs used by

an activity is consistent with DeMaroo' Functional Partition-

ing Rule [DM84] that a module should not have to decompose the

tokens supplied to it.

Computer science is a rapidly expanding field, and hence

new data types and operations are being created. Graphics has

a set of data types — line, arc, rectangle, etc — and opera-

tions that include rotate, shrink, expand, fill, flash, etc.

Similarly, data types will be developed in phonetics for

speech understanding. Researchers in robotics also will

develop data structures specific for their field. And the
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list will continue to grow. If a system is to perform a

design analysis on the basis of data types and operations then

a similar hierarchy of operations and related data structures

will need to be appended to the expert system for the new ap-

plication areas.

4.3 More Information about Operations

The expert system must have some pre-established expecta-

tions about operations on data types. A human has more infor-

mation associated with the manipulations of data structures

than just the name of the operation.

4.3.1 Operation Categorization

I have mentioned three major categories for modules in a

design; afferent, transform and efferent. Certain operations

are more likely to be found in one of these categories than in

the others.

Modules with operations such as "retrieve" or "input" are

almost always afferent modules. "Add" or "assign" modules are

probably afferent modules, but may be transform. Modules to

perform searches or to store data can be assumed not to be

part of the afferent portion of the system.
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Modules containing operations of mathematics, subsets,

restricting, balancing, or modifying will probably be found in

the transform section. Sections that work with semaphores,

monitors, stacks and queues may also be expected to be

transform modules.

Efferent modules are expected to perform store or output

operations. Traversing and searching may be included in ef-

ferent operations, but those operations also may be found in

the transform section of the design.

Not all operations lend themselves to this analysis,

nevertheless the manipulations that are analyzed give the ex-

pert system the capability to handle more complex tasks.

4.3.2 Operation Pairs

Humans have even more information about data operations

which must be built into the expert system. One item a pro-

grammer expects is matching operations. If there is a push on

a stack, one expects to find a pop operation elsewhere in the

design. There is also a certain ordering of these operations.

With a stack, the expectation is that a push will precede the

pop, additionally if "empty" is included the empty test will

come before a pop.
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On a file data type an "open" will precede a "close" and

if a design includes either one, then the other is expected.

The same goes for "retrieve" and "store."

There are other combinations that are highly probable if

the first element is present, but there is a comparable proba-

bility that the second element appears by itself. These

operation pairs include "remove", "add" and "pred", "succ. "

Awareness of such combinations will assist the expert

system to detect potential missing pieces in software design.

4.4 Data Characteristics

The characteristics of a data structure are parts that

any computer programmer can identify. These characteristics

control the selection of a particular data structure for a

design. For example a record is chosen over an array because

the fields may be heterogeneous. The various attributes be-

come important depending upon how the data objects are com-

bined. Algorithms are simply the means programmers use to

manipulate the characteristics of the data structure.

The top of a hierarchy of characteristics of data struc-

tures, Figure 4.2, is the atom. All data types are construct-

ed from atoms. A characteristic of an atom is that each has a
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value. The value is appropriate for that data type or it may

be undefined. When designing a project, a designer must be

aware of the range of values he wants represented by a vari-

able and he must choose the data type that represents that

range.

The characteristics of the other data structures identi-

fied as knowledge needed for an expert system are explained in

Appendix B.
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Chapter 5

The Grader Program

5.1 Second Evaluation

To demonstrate that equable facts for analysis can be ex-

tracted from other EHL design specifications and that the

rules for interpreting the facts are consistent, I will go

through another example. This design is for a program to keep

track of student grades for a class. In addition to demon-

strating that the facts are consistent, this example has more

slots of the Entity Relationship Level document filled than

does the first example.

Figure 5.1 shows the hierarchy diagram of the design.

Figure 5.2 is the ERL specification for the grader program.

The purpose of each module in this example is understood by

more people than the first example. Two reasons for this

understanding are: The example is small and a program to cal-

culate grades is familiar. I shall use the rules and varia-

tions of rules that have been previously discussed or rules

that result from the additional information supplied in the

ERL and I shall compare the results with the human understand-

ing of the problem.

5.2 Evaluation
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One of the results of the previous analysis was that the

first step in the study of a design is the identification of

the relations among the data structures. This example has ad-

mirable data structures for a small project. The derived

graph of the data structures is shown in Figure 5.3.

Important details about the graph are the number of data

items that have identical structures and the construction of

the data structures. An goal of the design analysis will be

to discover the relation between Student_Scores, Max_Score_

for_All_Assignments and New_Max_Score_for_All_Assignments be-

cause they have the same structure. The variations on

Student_Array probably indicate that a change has occurred

within the data. If a project design contains identically

constructed data structures then the expert system will have

an expectation created to find relationships between these

structures. However, the same assumption cannot be made with

the base types: — real, integer, boolean, character and

strings. Strings are not matched because two strings are

rarely related.

5.2.1 Main

Analysis of the design starts with the Main module at the

top of the hierarchy chart. As mentioned earlier, most

85



The Grader Program Chapter 5

designs will have two or more layers at the top which contain

control activities. The conclusion that Main is a control

module is supported by Main being at the top of the hierarchy

and by the word "control" in the comment slot as well as by

the name "Main. "

The twist in this analysis is the external input of

Menu_Selection. "Menu" is defined in Webster as "a list shown

on the display of a computer from which a user can select the

operation the computer is to perform." The fact that the

structure of Menu_Selection is one of a "set of strings" indi-

cates that the intention of this module is still control, with

the user being able to control the program. A note about this

module would be sent to the designer suggesting a prompt as

external output to the terminal because of the external input,

Menu_Selection, from the keyboard.

The Menu_Selection input into the Main module has biased

the analysis to expect the structure of a transaction program,

whereas the example of chapter 2 was a transform program.

5.2.2 Add Name

The Add_Name activity yields these facts: the word "add"

is contained in the name, the keyword is "insertion", the

external inputs are files of the record which is an element of

- 86 -



The Grader Program Chapter 5

the array that is output, the array input has the same struc-

ture as the array output, and an input and output have the

same name except for the word "new" concatenated to the front

of the input name. The evidence says the intent of this ac-

tivity is to build a data structure.

Although a count of the inputs and outputs does not re-

veal that the module is afferent, the details of the operation

impart the knowledge that more data are being passed into the

system than are passed from the system. Also included is the

presence of two external inputs. Another message will be sent

to the designer about the absence of prompts for keyboard in-

puts.

5.2.3 Add Assignment

Evidence collected from the ERL on the activity Add_As-

signment includes the external inputs of Student_Score and the

input of Student_Array. The output of Updated_Student_Array

declares that information in the structure of Student_Array

will be modified. Justification of the modification comes

from the fact that the output has the same structure as an in-

put and from the considerable matching of names. The differ-

ence in the names also contributes to the idea of modifica-

tion. Words such as "update", "new", "revised" and "edited"
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imply change. Again the keyword "insertion" indicates that

some type of addition is to be made.

A problem exists with the module concerning matching of

data abstraction levels as discussed earlier. The inputs are

at different levels of complexity. Student_Score is an entry

that is an element of an array that is a field of the Student_

Record of which the Student_Array is built. Since a perceived

intent of this module is to add a score into the student_

Record, the operation "Add_Assignment" should be taken down

one more level in the hierarchy, and the 3tudent_Record rather

than the Student_Array should be passed to it.

Another way of evaluating how to match the data abstrac-

tions is that the lower level module should build the Student_

Scores_Array field and have that data structure added to the

Student_Record and then to Student_Array. In either case the

analysis of the module results in messages to the designer in-

dicating the mismatch of data abstraction and again the ab-

sence of prompts for keyboard inputs.

5.2.1 Sort Crypt

In the Sort_Crypt module, the input is the Student_Array

and the output is Crypt_Sorted_Student_Array. There is still

a common base in the names used and the structures are the
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same. The keyword "sort" is an operation one recognizes as

being performed on sequences, (e.g. arrays). A search of all

the data types gives no indication of stacks or queues, so a

sort is a reasonable operation for this module.

A sort is a rearranging of elements. Therefore, the

Student_Records are to be rearranged by some criteria. Since

records contain fields it is presumable that the sort will key

on one of the fields. A human designer, even though he has

not been told on what field the sort must be based on, would

be able to identify that field by the correspondence of the

word "crypt" in the name of the module and the Crypt_Name

field of the Student_Record. An expert system should be able

to deduce the same information. A sort is a transform opera-

tion and the module is so tagged.

5.2.5 Sort Name

The analysis of the Sort_Name module proceeds along the

same lines as Sort_Crypt and determines that Sort_Name is a

transform module, although it is at the right end of the

second level of the hierarchy. When attempting to determine

which field to sort on, one finds two fields in Student_Record

that have "Name" as part of their title. There are several

clues in the way the data is constructed that will assist in
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resolving which field is the sort field. The first hint is

the order. Student_Name is the more probable choice for the

sort field because it is the first field. The fact that

Student_Name is a field of the Student_Hecord that is part of

Student_Array points to the word "Student" as being a primary

key of the records in this array. Supporting evidence is also

generated from the observation that there appears to be a sort

module that keys on the other field with "Name" in it. Good

designs do not have multiple modules that perform identical

operations, especially if the modules are called from the same

parent module.

Now that all the modules across the second level have

been examined, a look across the breadth of this level evalu-

ates how well the modules link together. Examination of the

inputs and outputs indicates that all modules operate on the

Student_Array. It appears as if each module modifies the data

in the Student_Array in one way or another. Two modules cause

concern in the first level; Sort_Crypt and Sort_Name. An

alert signal is triggered when two sorts are seen together.

The system should be analyzed to see if one may be eliminated

either by a redesign of the system, or by a change of data

structures. Also, the system expects to detect efferent

modules in the second level of a design. Because no efferent

modules were detected, a message will be issued describing
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this fact.

A sort is a permutation of the array without alteration

of the information contained in the elements. But because

sorts are known to consume large portions of computing time it

would be beneficial to try to eliminate one of them. The con-

trol flow, which is coordinated from the Main with a menu,

does not appear to give any order to the data flow, which may

mean that the sorts must stay as they are. However, the sys-

tem should question the designer for the need of two sorts,

suggesting a rearrangement of how modules are called. If a

sort cannot be eliminated, perhaps it may be moved so that it

is not performed as often.

The analysis of the Add_Assignment module is hindered be-

cause analysis already indicates the need for some changes.

The system will also note that not all fields of Student_

Record have had assignments made to them.

5.2.6 Find Max

Proceeding to the next layer of the hierarchy the

analysis will build on the information already extracted. In

the Find_Max module, the inputs include Updated_Student_Array

and Max_Score_for_All_Assignments. The output is New_Max_

Score_for_All_Assignments. Keyword is maximum. A designer
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will be able to take this information and deduce that the pur-

pose of this module is to find the maximum score in the

Student_Scores_Array field in the column of the assignment be-

ing added. Several inferences, with a complex set of interac-

tions, are made to arrive at this conclusion. "Maximum" is an

operation that makes sense on collections, specifically on

heterogeneous collections. Therefore, one would expect some

kind of looping through the Student_Records of the Student_

Array to determine a maximum. This is a transform module be-

cause all the data to be operated on are already in the

machine. The inputs to the module point to the Student_

Scores_Array field in the Student_Record as the field for

which the maximum is determined. The Student_Scores_Array

choice is further supported by a match in the number of ele-

ments in that array with the number of elements in the

Max_Score_for_All_Assignments array. Additionally because the

parent module deals with the Student_Scores_Array, the

Find_Max module will probably do the same.

Yet, a person's concept of a maximum routine is to return

a value, not an array of values as Max_Scores_for_All_Assign-

ments would indicate. A person evaluating the Find_Max module

might guess that the Max_Score_for_All_Assignments is to con-

tain the maximum for each column in the array. A rule can be

developed to evaluate designs along the same lines. However,
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I believe that the rule to cover this situation may not be

consistent across all designs. Further study is needed to

determine what is the most common error which produces a set

of facts similar to those present in this module. The word

"all" in the Max_Score_for_All_Assignments brings cognitions

that somehow a maximum is needed for the entire Student_

Scores_Array, not just for a column or a row.

A human understands that there is a limiting factor on

the array. The expert system needs to know that an index can

single out an element in an array. It also knows that the

concept of maximum is to return a single value. The expert

system may find it difficult to discover that a single value

is returned but that the value must be appended to the array

Max_Score_for_All_Assignments. A way to check this hypothesis

would be to return to the parent module and see if a limit to

the array would help resolve the problem in Add_Assignment.

The index could fit into the Add_Assignment module, and it

would further emphasize the need for a separate module to be

created one level down in the hierarchy.

There is a gap in the ability of the expert system to

determine the purpose of this module. Earlier I discussed the

value of being able to pull out words from the names of

modules and data items. A mechanism is needed to make the
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word "assignment" synonymous with the concept of one addition-

al score for each student. The machine would then be able to

evaluate Find_Max and Add_Assignment on par with a human.

5.2.7 Figure Averages

The analysis of the Figure_Averages module will proceed

along identical lines as the Find_Max, but with an additional

restriction. Whereas one can rationalize about finding a max-

imum string, calculating an average string does not have any

standard meaning. The average operation deals with a collec-

tion of numbers. The output, Average_for_Assignment, is of an

appropriate type, and is only one value, so it makes sense.

The analysis discovered that the calling module manipulates

the Student_Scores_Array field of the Student_Record. This

will guide the input analysis to use the same field in the

Figure_ Aver ages module. Because the Student_Scores_Array is

one of only two numeric fields in the Student_Record, the ex-

pert system will be confident of that selection. The system

sees no problem in averaging a two-dimensional array which is

what the input data structure appears to be at this point.

However, the system also knows about averaging one-dimensional

arrays. Because the system recalls the problem of analyzing

the calling module and the other module at this level, a ques-

tion mark about the correctness of this module design is
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suspect. A message will be sent to the user detailing the two

choices. "Average" has the implication that all the data

needed is already present, therefore this activity will be

marked as transform.

5.2.8 Calculate Percentage

Evaluation of the Calculate_Percentage module begins with

the inputs and outputs. The "uses" label or slot for Updated_

Student_Array and New_Max_Score_for_All_Assignments means that

these data are needed by the module for some calculation, but

they are not changed by the calculation. The name of the

module has two words to key on, "calculate" and "percentage."

The keyword is "ratio." "Calculate" is too ambiguous to be

used by the machine except to help label the activity as

transform. Calculations run from simple to complex. "Percen-

tage" is defined in Webster as "a part of a whole expressed in

hundredths" and is very helpful in interpreting the intent of

this module. The keyword "ratio" matches well with the defin-

ition of percentage, i.e. "part of a whole", therefore the

expert system will approve this module. The inputs to this

module are examined to check that there are numbers involved,

so after some calculations a division can be made, and that

the output is numeric. The expert system being described must

only evaluate the design, is does not generate code. There-
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fore, the system is concerned not with how the exact calcula-

tion is done, but with which inputs seem reasonable so that a

percentage could be generated for output.

5.2.9 Calculate Grade

The Calculate_Grade module is examined in the same manner

as the Calculate_Percentage activity. The difference between

the two modules is that a single input is given and a single

output is produced. Since the input and output of this module

are of different types, some type of mapping function is indi-

cated. Further support is provided for this conclusion by the

keyword "comparison." The expert system knows that mapping

functions exist between different data types and that the

modules are generally transform modules. The system can rea-

son that the mapping will be explicitly developed in the code,

but to make this design document more useful the information

about the mapping from the requirements phase should be

transferred into this document. Part of verifying a design is

to insure that all the requirements are specified; therefore,

I introduced the intrinsic knowledge slot to have a location

to place this type of information.

The type of information included in the intrinsic

knowledge slot is decision-specific and not necessarily
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machine translatable. The automated system will simply check

for the presence of the intrinsic knowledge field. The infor-

mation included in the field should be sufficient so that de-

cision code could be written.

With completion of the analysis of the set of modules

called from the same parent, the group as a whole must be

analyzed. Using this method, one first examines the inputs

and outputs. Three modules, Find_Max, Figure_ Aver ages and

Calculate_Percentage, use the Updated_Student_Array. The data

flow indicates that some change occurs to the Student_Array in

the Add_Assingment module before it is passed on to these

modules. The last module, Calculate_Grade has the input of

Student_Percentage which is the output of Calculate_Per cent-

age. Because of the close coupling of Calculate_Grade to

Calculate_Percentage and the non-use of the Updated_Student_

Array by the Calculate_Grade module, a suggestion will be made

to the user to move the Calculate_Grade module to be called

from the Caloulate_Percentage module.

The output from Find_Max is used by Calculate_Percentage,

which signifies sequential operation between the two modules.

Yet there is no connection with the output of Figure_ Aver ages

or with the other modules in this branch. If the designer had

changed the slot of Updated_Student_Array in Find_Max to

97



The Grader Program Chapter 5

"uses" instead of "input", which indicates a change occurring,

the possibility for concurrency between these two modules

would be pointed out.

The output from Calculate_Percentage and Calculate_Grade

bestows a different meaning on the Add_Assignment module. The

only field of Student_Record pointed to before the examination

of Calculate_Percentage and Calculate_Grade, was the Student_

Scores_Array. Analysis now has two additional fields of

Student_Hecord referenced: Students_Percentage and Students_

Letter_Grade.

The system has marked all the fields of Student_Record as

being assigned. A view of the design now reveals one first

level module that inserts a new Student_Record into Student_

Array only filling in fields it has identified as keys, Stu-

dent_Name and Crypt_Name. The system also sees that the

modules currently under analysis, Add_Assignment' s called

processes, create a new record with all the fields assigned

except for those identified as key fields. An analyzer of the

design, human or computer, knows there are no more modules in

this section for analysis, and it knows that adding a new

record without including the key information does not make

sense. Consequently, the two proposals for the Add_Assignment

module will be reviewed.
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The expert system already evaluated the words "add" and

"insertion" in the Add_Assignment module and experienced dif-

ficulty in the levels of abstraction between Student_Score and

Student_Array. With the added information of doubting that

the purpose of the module is to insert a new record into the

Student_Array, a single interpretation of the intent of the

module remains. The system will convey this information to

the designer along with the explanations of the ambiguities

encountered.

5.2.10 Print Crypt

During the evaluation of the Print_Crypt module the sys-

tem discovers that the inputs and outputs harmonize well with

the keyword "output to printer" and the "print" word in the

activity name. The outputs of this module are external to the

program and they have the same structure as the inputs. This

labels the function of this module as an efferent activity of

the program.

5.2.11 Save File

The last module examined in this design is the Save_File

module. It has several inputs, all of which have been gen-

erated earlier, and the outputs all correspond with the "File"
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part of the name. Therefore, this module passes inspection

and will be labeled as an efferent mpdule. This module is the

only called activity of Sort_Name, so there is nothing to

evaluate in examining all the called processes. The results

are passed back to Sort_Name to affect the certainity factor

of its evaluation.

5.2.12 Review

All modules and all relevant combinations of modules have

been examined. The designers have been made aware of ques-

tionable areas in the Add_Assignment section. A look at the

overall design will check if everything matches with expecta-

tions.

When the expert system analyzed the Save_File module, an

expectation was created that a corresponding Retrieve_File ac-

tivity would exist in the design. When the expert system en-

countered modules that had as inputs Student_Array, which is

declared as input from secondary storage in the ERL, it fig-

ured each module read the array in from the file. This

matches the idea of menu control; If you make some changes you

don't want to keep, you don't save the file, and you can start

with the same data on each selection of the menu.

The system would also note that the Save_File module uses

- 100 -



The Grader Program Chapter 5

inputs not only of the type Student_Array but also of type

Max_Seore_for_All_Assignments and Average_for_Assignment.

This indicates that the three different items were all saved

together. Nowhere in the design are they read together. Ad-

ditionally no module declared Max_Score_for_All_Assignments as

an external input, which is indicated by its declaration as

"Input" in the type entities of the ERL. Although the three

entities may each be saved on a different file, the expert

system will print a message relating the fact that these data

are not all read together.

By no means have all the cases been exposed with the two

examples discussed in this paper, but a start has been made to

determine the information needed to develop an expert system.
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Results and Conclusions

A set of rules has been generated that given a software

design presented in the form of an Entity - Relationship -

Level document, an expert system can determine a generalized

concept of the intent of most activities in the design. With

the information of the inputs, outputs and the deduced func-

tion of a module, the design can be compared to a model and

discrepancies can be pointed out to the designer. The

knowledge used to analyze a design comes from three major

sources which are known to software designers and can be coded

into an expert system.

First, people use meaningful names in designs. Although

an argument can be made that interpreting the names used in-

volves natural language understanding, I believe the domain is

sufficiently restricted that keyword recognition can be used.

Heizenbaum's ELIZA uses similar keyword recognition. I've

demonstrated how the semantics of words useful to analyzing

design can be extracted and used in a manner that can be en-

coded into an expert system.

Second, the structure of the inputs and outputs of an ac-

tivity can reveal the generalized purpose of the activity. If

the data structures are related (e.g. through an intermediate

data type in the ERL) then the module may be considered as

constructing a data structure or extracting information from a
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more complex data structure. If the inputs and outputs are

not related through the data structures then a mapping from

the input to the output is suggested.

Third, the correlation of data structures with the de-

duced functions results in the creation of other expectations.

These expectations of a module are based on prototype program

plans and the expert system either confirms the expectations

or generates a query to the user. Plans often involve opera-

tions expecting certain data types as inputs and producing

other specific data types. These programming plans serve as

the foundation for the analysis.

The knowledge needed to analyze a design is rather

specific. It may appear that a considerable amount of "common

sense" knowledge is needed, but the domain is restricted, lim-

iting ambiguous interpretations of most of the words used in

software design. The narrow domain also means that the number

of rules needed to reason "intelligently" is probably not

overwhelming.

I do not know if the analysis of the example in chapter 2

pointed to any potential trouble spots or not. The design of

the grader program of chapter 5 was changed as a result of the

analysis. Some of the recommendations from the analysis were

followed, but many of the design changes reflected the
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designer's own concepts after certain questions were present-

ed.

The system discussed in this paper will only question a

designer about suspected areas. It cannot determine if the

design is good or bad, since there is no general agreement

among humans. Design is and remains an art form and the

designer is not forced to produce designs according to rigid

algorithms.

The use of the Entity - Relationship - Level document

needs to be made consistent. The several different interpre-

tations of how to name inputs and outputs to show change in-

side a module will have to be made consistent for all users of

the system. Other features such as declaring inputs or out-

puts external to a module, recently added to the ERL model,

must be firmly and consistently used by all users if the ex-

pert system is to be successful.

My recommendation for use of the ERL is: The term "uses"

is for specifying that an input is used but that it is not al-

tered by an activity. If the output to the calling module is

different than the input passed to the activity then use the

"input" and "output" slots with the same variable name. If

the activity changes an input before passing it as an output

to its children processes then the output to the children

- 101 -



Results and Conclusions Chapter 6

should have a different name. The same name of the variable

in the output slot signifies that the data is returned to the

parent.

The knowledge required to start building an expert system

has been extracted from the two examples in this paper. The

system is designed to grow. As more examples are examined and

as new rules are discovered, they can be added to the expert

system. Rules developed from the first example were used in

the second example and the new cases not seen before resulted

in the addition of new rules to the system. Although two ex-

amples are not enough to set a pattern, I believe that to in-

corporate new types of designs into the expert system will not

require a new set of rules. Thus, I anticipate that the

number of rules to analyze a larger set of designs will level

off as occurred in PECOS [Ba85]. This system should be able

to point out activities that are incomplete or inconsistent.

With potential errors revealed, the designer can concentrate

on those areas, producing a design that makes more intuitive

sense.
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Future Work

The future work to convert the expert system described

into a useful product involves more than just implementing the

sy st em

.

I was the sole source of interpretation of the designs.

To validate the facts extracted and the rules generated in

this paper, other persons familiar with the ERL and the Your-

don - Constantine model need to be observed as they evaluate

designs. The different techniques, facts, rules and determi-

nations they use will be compared and contrasted with those

described here to develop a more universal set of knowledge.

I feel it is necessary to analyze software designs from

industry. Industrial sources should be able to provide larger

designs that are produced by more experienced programmers and

that have a consistent level of detail.

Of course this system must be implemented and tested. I

expect to use two artificial intelligence paradigms, rule

based and object oriented programming. The two entities of

the ERL discussed in this paper, data and activities, fit into

hierarchies. Object oriented programming is well suited to

this facet of the problem structure. Facts and rules was the

other approach used in analyzing the modules of the design,

therefore, the rule based approach resembles the technique
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used by humans.

Finally the results of the implementation must be

evaluated to discern the effectiveness of the system in

detecting potential trouble spots. I hope that the automated

analysis of software designs will point out difficult areas of

a project early in the software lifecycle so that changes to

the design can be made earlier at less cost. Several itera-

tions are expected to be necessary to optimize the automated

analysis for industrial use.
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Appendix A

Data Structure Operations

To determine a viewpoint on how to look at data struc-

tures in assisting the analysis of designs reminds me of the

question of which came first, the chicken or the egg. Do data

structures define operations allowed on them or do the opera-

tions define the data structure? For the computer, all data

are a voltage or no voltage. The data type places attributes

on the bits specifying the operation to interpert the bits in

different ways.

The base data types, integer, character, boolean and real

can have values assigned to them, can have their contents re-

trieved or two values can be compared. In most imperative

programming languages all but the boolean can be directly in-

putted or outputted and there are several math operations that

can be performed on the numeric types.

The operations on records include: Modify, which is the

concept of assigning a new value to a field without changing

other portions of the record. This concept is different from

assignment to an atom because with an atom the entire value is

new, whereas only a portion of the record is new. An analogy

is: putting new tires on a car, it is the same car, only with

new components. Key-retrieve operation on a record is the

concept that you can gain access to data contained in a record

by knowing the identifying key to that record and matching the
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keys. This operation is identified with records but it is not

truly useful unless there is some collection of records to ap-

ply the search to.

Frames are similar to records in the aspect that frames

contain attributes in respective slots associated with a sin-

gle object. However, in order for a data type to be commonly

called a frame, there is an associated hierarchy of inheri-

tance and relations between frames of different objects. The

demons associated with a frame are operations that the user

defines to be triggered when frame values are added, deleted

or modified.

Similar to frames are items referred to as Intelligent

Data Objects [Un86]. This abstract data type not only In-

cludes the operations associated with it, but may have infor-

mation as to who can access the object, and when certain

operations are allowed. An additional operation connected

with an intelligent data object is a message. Messages can be

sent requesting an action to take place, like to modify, or to

request information given only a key.

Operations connected with a stack and a queue are push,

pop and empty. There may be the need to break pop into an

operation called top, to return the top value in the stack or

queue, and pop to remove the top value from the structure.
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Also depending upon the stack or queue implementation it may

be necessary to include a full operation and a depth opera-

tion. These cover the operations that may be performed on a

stack or queue. The terminology used is more common with

stacks, but a simple mapping to terms computer scientists are

more likely to use with queue is push - add, pop - remove, top

- front and depth - length. The analyzer of a software design

needs to know about all these basic operations. Additionally

the expert system needs to be flexible to fit the applications

of different software development shops.

If a design calls for a collection of objects then many

more operations become important in making use of the comput-

er. It now becomes necessary to be able to add elements to

and remove elements from a collection. Other operations on

collections include testing if the collection is empty, or if

an element is contained as a member of a collection or if one

collection is a subset of another. The operational concept of

restrict is to derive a subset of a collection containing ele-

ments that maintain a certain property. The mathematical

operations on sets that can be applied at this level include:

union, intersection, and set difference.

A large group of operations is exposed when a designer

thinks about sequences. He can write modules that will return
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the length of a sequence, search a sequence for a particular

value, map the sequence to some other sequence, can truncate a

sequence after certain criteria are met and return the next

element in the sequence. The operation truncate is different

from the operation restrict on a collection for the reason

that the criterion for ending the sequence is based on the lo-

cation in the sequence and not on the value of the element, as

is the only way to restrict in a collection. A sequence may

be truncated after the first 10 elements, whereas a subset may

be restricted to elements whose value is less than 10.

An important subset of sequence in programming is the

finite sequence. If a sequence is finite in size, the concept

of sorting is valid. You can have the notion of searching an

infinite sequence, but there is no intuition of sorting an in-

finite sequence.

If you are dealing with arrays, the indexing operation

that allows random access into the array is important to

understand how algorithms and data structures cooperate. The

other operation concerning arrays is overflow, since an array

in many languages must be of a predetermined size, you may

have more information to insert in the array than the array

can hold.

A list is an implementation of a sequence that does not
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necessarily have to be thought of in the context of being fin-

ite. The additional operations associated with a list data

type beyond a sequence are head, which returns the first ele-

ment of a list; cdr, which returns all the elements of a list

except the first; and last, which returns the last element of

the list.

A file has associated with it the create, open, close,

store and retrieve operations which are connected with the

permanency property of a file. Store and retrieve are dis-

tinct from input and output inasmuch as they carry the impres-

sion of reuse of the data object at a later time.

Because a next operation on a graph can return a set of

elements, instead of a single element, there is a distinction

on graphs to convey this concept. The successor operation

conveys the thought that a set of elements is returned instead

of just a single element. A designer of a software module

dealing with graphs is likely to traverse the graph rather

than search. The determination of a node being an end node is

done with a terminal operation.

A tree is a specialized case of a graph that has opera-

tions to return the root, to return the parent of a node and

to balance a tree.
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The data structures used in concurrent computing are ad-

ded to the taxonomy of data structures by noting the opera-

tions that distinguish the data types from each other. A

semaphore has the operations signal and wait. A monitor has

its monitor entry, similar to an intelligent data objects mes-

sage.

A feature of many of the newer languages is an abstract

data type. The abstract data type is a powerful concept for

the user because he or she defines not only the properties of

the abstract data type, but also define all the operations al-

lowed on the data type. This is closely related to objects

and concurrent processes. The concept is to totally encapsu-

late the data to prevent unknown side effects.
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Data Structure Characteristics

The characteristics of a data structure are the nouns

people use to describe the parts of the data types.

The numbers are branched off from atoms because they have

a characteristic of sign. Although there may be little

difference in comparing a number with the value 100 or the

value 0, many operations are legal with positive numbers that

are not legal with negative numbers. The distinction is large

enough that certain design decisions are influenced by a

number's sign. Other characteristics of a number's represen-

tation in a computer program are its range and size. If exact

values are needed, then a designer is restricted to integers,

however, if the design calls for a large range of numeric

values and approximations can be handled, then reals are an

acceptable data type.

The other short path through this hierarchy, as shown in

Figure 4.2, are records which are composed of fields. Each

field may have a different data type with its own set of

values. Yet the fields of a record are descriptions of a sin-

gle item. It is the desire to group information about single

items into one structure that makes the record data type use-

ful to a program designer.

A characteristic about a collection is that it is made up
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of an aggregation of elements. A designer of a system is con-

cerned that the elements are all of the same type, but when he

is thinking abstractly about the collection, he is not con-

cerned with the type of elements whether they are atoms,

records or other collections. This aggregation is generally

thought of as a group of similar objects and not as different

features of the same object as a record is thought of. The

distinction that makes looping through an array meaningful is

that it is different objects of the same type. Whereas loop-

ing through a record is enigmatic because it is different as-

pects of the same object.

A sequence has the characteristic attribute of a set with

the additional properties of next and length. To a designer

of a software system, it is those two properties that give se-

quences meaning. Wherever you are in a sequence there is one

element that is the next element, even if it is a special end

case. The other aspect of sequences a designer is concerned

with is the sequence length. Even if the sequence is infin-

ite, the program must be designed to handle the length charac-

teristic.

One way to implement a sequence is with a list. A list

inherits all the properties of a sequence. As a designer

simulates execution of a program, he is generally concerned
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with two parts of the list, the head, or first element and the

rest of the list, or to borrow a term from LISP, the cdr. The

tail may not be a characteristic of the list structure because

of the possibility of a circular list. A characteristic of a

list is a pointer to the next element in the list.

Another way to implement a sequence is with an array.

Two characteristics about arrays that designers must concern

themselves with is the fact that an array is of finite length,

and the other is the need for an index into the array. The

length of an array may have to be determined at compile time,

or can be established at run time depending upon the language.

The index allows for random access into the array which may

make it an attractive alternative to a list.

A comparison between an array and a list may help clarify

the concept of the finite characteristic. While abstractly

thinking about a project using an array you are conscious of

the fact that there is some size which you cannot exceed,

whereas with a list, there is no constraint on the size of the

list. This is not to say that the size of a list is of no

concern to a designer, but that the concern is handled dif-

ferently.

A file is recognized as a data object that combines the

characteristics of both arrays and lists. The implementation
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of a file, i.e. whether or not random access is possible,

determines which type a file more closely models. An addi-

tional characteristic about a file is its permanency. The

concept that the data will continue to exist beyond the life

of the program is the useful aspect of a file.

An interesting branch from sequences is the data struc-

tures of stack and queue. A major component of these two data

objects is the inaccessible part of the structure. The fact

that they keep elements from being accessed is a key concept

in their use. The stack access is only through the top, both

for adding and deleting items. Since the location for adding

an item is defined and the location where the next item com-

ming from a stack is known, the sequence concept of next is

applicable. The same is true for a queue with the additional

concept of bottom for adding items to the queue and removing

them only from the top.

When dealing with graphs, there are two component charac-

teristics, nodes which generally denote objects and arcs which

generally represent relations. The arcs are pointer to the

next set of nodes. A more specialized form of a graph is a

tree. A tree has two characteristics that identify it as a

separate data structure. The first is a unique node from

which you can follow various arcs to get to any other single
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node in the tree, this is known as the root. The other pro-

perty that all arcs have is a direction that is away from the

root node.

The combination of the operations and characteristics of

a data type uniquely identify it among the computer science

community. An expert system must have the knowledge about the

characteristics and operations of common data structures in

order that it can successfully analyze designs.
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Before an expert system can be implemented, the knowledge

that is required to perform the task must be known. A thought

experiment is described in which two example designs are

evaluated. The questionable points of the designs are ex-

tracted and pointed out to the user. The extraction process,

executed by a human, is broken down into facts and rules that

could be coded into an expert system.

This paper demonstrates how the intent of an activity can

be inferred from the name of the activity, the inputs to the

activity, and the outputs from the activity. The information

presented about the design is in an Entity - Relationship -

Level (EHL) document as would be produced at the end of the

Design Phase of the Software Lifecycle. The data obtained

from the ERL is compared to a structural design model and a

database of knowledge regarding data structures.

One area of knowledge common to software designers and

programmers is abstract data structures. Programmers are cog-

nizant of the operations allowed and not allowed on each of

the various data structures. The knowledge base of data

structures needed in the expert system is discussed in terms

of two hierarchies: data characteristics and operations on

abstract data types. The restrictions and expectations of

operations in relation to each data structure is compared to

the information in the ERL. This comparison provides suffi-

cient data to evaluate the design specification for complete-

ness, workability and understandability.


