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Abstract 

Extensive, often exclusive, use of glyphosate in crop production has resulted in evolved 

glyphosate resistance in several weed species globally. Kochia is a competitive summer annual 

weed, well adapted to the North American Great Plains and has recently evolved resistance to 

glyphosate by gene amplification of 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS), the 

target-site of glyphosate. The overall objective of this research was to investigate the genetic 

basis of glyphosate resistance in kochia, specifically to study 1) the inheritance of glyphosate 

resistance and 2) determine the chromosomal distribution of EPSPS gene copies. Homozygous 

resistant (R) and susceptible (S) parental lines of kochia were identified. Using these parents, 

reciprocal crosses were performed to produce F1 progeny. As expected for a nuclear encoded 

EPSPS gene, F1 plants from both crosses survived various doses of glyphosate application. 

However, F1 plants showed intermediate shikimate accumulation and EPSPS gene copies 

(relative to ALS reference gene) compared to parents. F2 progeny were produced by selfing F1 

plants. In response to 870 g ae  ha-1 glyphosate, F2 plants (n=115) segregated into 3:1 (R:S) 

implying a Mendelian monogenic segregation of glyphosate resistance in kochia. Additionally, 

relative EPSPS gene copies ranged from 1-10 in the F2 progeny (n=51) with a genotypic 

segregation of 40:11 (plants with 3 or more EPSPS gene copies: plants with 1 EPSPS gene 

copy). In F2 dose-response, a correlation between the level of resistance and relative EPSPS gene 

copies was observed. Genomic organization of the amplified copies using fluorescent in situ 

hybridization (FISH) displayed a single and larger hybridization site of the EPSPS gene on one 

pair of homologous chromosomes in R compared to a faint hybridization site in S samples of 

kochia. These results suggest possibility of amplification of EPSPS gene mediated via unequal 

recombination leading to the evolution of the glyphosate resistance in kochia. 
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Chapter 1 - Review of Literature  

 Kochia – A Problematic Weed of the US Great Plains  
Kochia [Kochia scoparia (L.) Schrad.], a summer annual broadleaf weed, is commonly 

found in 42 of the contiguous United States and in southern Canada (Friesen et al. 2009). 

Although kochia grows all over North America, it is well adapted to the arid to semi-arid 

environments of the Great Plains and Canadian Prairies (Friesen et al. 2009) (Figure 1.1). Kochia 

is capable of tolerating extreme environments including drought, hot and cold temperatures, as 

well as saline soils (Friesen et al. 2009). Kochia is able to withstand such conditions because it is 

a C4 plant (Friesen et al. 2009). C4 plants can adapt to harsh environments because of more 

efficient water conservation and CO2 fixing via the C4 pathway. Typically, kochia germinates 

early in spring and continues to emerge throughout the season (Dille et al. 2012). Usually, 

flowering of kochia plants starts approximately 8 to 10 weeks after emergence (Thill and 

Mallory-Smith, 1996). Kochia is a short-day plant and will initiate flowering if exposed to a 

short photoperiod of less than 12 hours of light (Eberlein and Fore, 1984). A single, small flower 

is formed at each axial leaf along the branches. Kochia bears protogynous flowers, in which the 

stigmas protrude and are receptive one week prior to dihiscence of anthers on the same flower.  

Because of its protogynous nature, kochia is prone to outcrossing. Mulugeta et al. (1994) found 

that 99.9% of kochia pollen was deposited within 154 meters of the source plant and that pollen 

was viable for 1-12 days depending on prevailing temperature and humidity. Post senescence, or 

upon maturity, an abscission layer forms at the base of the plant and the above ground portion 

detaches from the roots. Once detached, the plants tumbles along with the direction of wind, 

dispersing seed along the landscape. Kochia is considered a prolific seed producer, with average 

seed production reported of 15,000 to 25,000 seeds per plant (Friesen et al. 2009). Kochia is a 

diploid species with a chromosome number of 2n=18 (Friesen et al. 2009). 

Kochia is an aggressive competitor with crops because of its early and continual 

emergence, extreme environment tolerance, growth habit and high seed production. Studies have 

shown that kochia densities of 0.5 and 0.2 kochia plants m-1 reduce sugarbeet yields up to 32 and 

18%, respectively (Schweizer, 1973; Mesbah et al. 1994). Season long competition of kochia in 

soybean has been shown to reduce yield up to 30% (Forcella 1985). Wicks et al. (1993) 
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documented that for every kg ha-l of kochia dry weight, corn grain yields decreased 0.33 kg ha-1. 

Futhermore, in a three year study, it was found that grain sorghum yields were reduced between 

11-38% and as high as 85% in one season with above average rainfall because of kochia 

compeition (Wicks et al. 1994).  

 Herbicide Use for Kochia Management 
Typically, kochia can effectively be managed by tillage or use of herbicides. Tillage 

controls kochia by uprooting and killing emerged plants and buring seed in the seedbank farther 

within the soil profile. Schwinghamer and Van Acker (2008) found a 48% reduction in kochia 

emergence when seed was buried 2 mm and 73% emergence reduction when buried 20 mm in 

the soil profile. Conversely, no-till practice can increase kochia emergence by four-fold 

(Anderson and Nielsen, 1996). In Kansas, a predominate concern is the prescence of kochia in 

winter wheat stubble and summer fallow (Godar, 2014). These systems are traditionally no-till 

systems which allow ample time for kochia to regrow and set seed after small grain harvest 

(Mickleson et al. 2004); therefore, growers heavily rely on herbicides for kochia control.  Both 

pre-emergence (PRE) and post-emergence (POST) herbicide applications have traditionally been 

effective in controlling kochia. Several different herbicide modes of actions are available for 

PRE and POST control of kochia. Acetolactate synthase (ALS), protoporphyringogen oxidase 

(PPO) and hydroxyphenyl-pyruvate-dioxygenase (HPPD) inhibitors can be applied as both PRE 

and POST herbicides (Thompson et al. 2011). Additionally, seedling shoot inhibitors as well as 

photosynthesis (PSII) inhibitors can be applied PRE; whereas, plant growth regulators, such as 

dicamba, and glyphosate, 5-enolypyruvyl-shikimate-3 phosphate synthase (EPSPS)-inhibitors, 

are applied POST (Thompson et al. 2011). Kochia has been shown to exhibit some natural 

tolerance to 2,4-D and is not always controlled by a reccommended field use rate of 2,4-D; 

however, 99% of kochia was controlled with POST mixtures consisting of: atrazine, 

carfentrazone, fluroxypyr, bromoxynil plus MCPA, nicosulfuron plus dicamba, and nicosulfuron 

plus dicamba plus atrazine when applied late August to early Septmenber (Nandula and 

Manthey, 2002). Mickleson et al.(2004) found that early September applications of 631 g ae ha-1 

glyphosate reduced kochia seed production 92-97% while a mixture of 631 g ae ha-1 glyphosate 

plus 561 g ae ha-1 2,4-D reduced seed production 64-99%. 
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 Glyphosate and Glyphosate-Resistant Crops 
Glyphosate (N-(phosphonomethyl)glycine) is a non-selective, broad-spectrum herbicide 

that was introduced as Roundup in the early 1970’s (Baylis, 2000). Glyphosate targets EPSPS 

in the shikimic acid pathway in plants (Cobb and Reade, 2010) (Figure 1.2). Glyphosate 

competitively occupies the binding site for phosphoenolpyruvate (PEP), which then results in the 

accumulation of shikimic acid upstream in the pathway. The EPSPS enzyme is important for 

synthesis of the aromatic amino acids: tyrosine, tryptophan, and phenylalanine. In addition, 

secondary plant metabolites including vitamins, flavonoids, and lignins are also synthesized in 

the shikimic acid pathway (Cobb and Reade, 2010). Mammals do not have the shikimic acid 

pathway, and therefore, human toxicity to glyphosate is a minimal concern (Cobb and Reade, 

2010). Environmentally, glyphosate shows rapid soil binding and biodegradation (Pline-Srnic, 

2006). When first introduced, glyphosate was primarily used to control vegetation in ditches, 

fallow fields, and rights-of-ways, but was not commonly used in agriculture (Nandula, 2010). 

Glyphosate was not only lethal to crops, but also extrememly expensive at that time.  

Introduction of Roundup Ready-canola and -soybeans in 1996 increased glyphosate’s 

popularity in agriculture because the crops could withstand typically lethal glyphosate 

applications. By 1998, glyphosate-resistant (GR) corn and cotton were also available for 

cultivation. GR crops were created by identifying a glyphosate-insensitive CP4 EPSPS and 

inserting this transgene into crops (Bradhaw et al. 1997; Dill et al. 2008). In order to increase the 

level of resistance in the crops, CP4 EPSPS was paired with glyphosate-degrading enzymes such 

as glyphosate oxioreductase (GOX) or glyphosate acetyltransferase (GAT) (Bradshaw et al. 

1997; Nandula et al. 2010). 

 GR cropping systems provided farmers with an option for reduced- and no-till practices 

(Young, 2006). Farmers that have adopted no-till practices rely on glyphosate as a burndown 

treatment, as opposed to mechanical weed control techniques. No-till practices reduce soil 

erosion and improve soil moisture retension. In addition to soil conservation, no-till has also 

reduced labor and fuel requirements compared to traditional tillage. Givens et al. (2009) found 

that among farmers who used conventional tillage prior to GR crops, 25 and 31% transitioned 

into no-till and reduced-till systems, respectively, after adopting GR crops. Therefore, GR crops 

were quickly adopted by growers and by 2006, over 96% of soybeans varieties planted in the 

U.S. were glyphosate-resistant (Dill et al. 2008). The use of GR crops continued to increase with 
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nearly 77% of combined corn (Zea mays), cotton (Gossypium hirsutum) and soybean (Glycine 

max) acres planted in 2008 in the US were GR (Nandula, 2010). However, integrated weed 

management practices, such as tillage and herbicide/crop rotations, were negetively impacted 

due to adpotion of GR technology and reliance on glyphosate as a single weed management 

tactic increased tremendously (Johnson et al. 2009). 

 Evolution of Glyphosate-Resistant Weeds 
Weed Science Society of America (WSSA) defines herbicide resistance as the inherited 

ability of a plant to survive and reproduce following exposure to a dose of herbicide normally 

lethal to the wild type. Repeated and continuous use of glyphosate created selection pressure on 

weed species resulting in the evolution of resistance to glyphosate. Rigid ryegrass (Lolium 

rigidum) was the first weed species to evolve glyphosate resistance in 1996 in Austraila and was 

also identified in the US in 1998 (Powles et al. 1998; Heap, 2014). To date, there are 28 different 

weeds species that have evolved resistance to glyphosate worldwide, and 14 of which are present 

in the US (Heap, 2014). Several weed species in the US were identified as resistant to glyphosate 

soon after GR cropping systems were accepted and utilized. Horseweed (Conyza canadensis), 

was the second species to evolve resistance to glyphosate in the US (VanGessel, 2001; Heap, 

2014). By 2005, five more weed species had evolved resistance to glyphosate including: Italian 

ryegrass (Lolium multiflorum), common ragweed (Ambrosia artimisiifolia), giant ragweed 

(Ambrosia trifida), Palmer amaranth (Amaranthus palmeri), and tall waterhemp (Amaranthus 

tuberculatus) (Heap, 2014).  

Weeds can evolve berbicide resistance via target-site and/or non-target site based  

mechanisms. Target-site resistance typically results from a mutation that induces an 

nucleotide/amino acid change in the enzyme preventing the herbicide from binding to the target-

site (Powels and Yu, 2010). Overexpression of the target enzyme, conferred by gene 

amplification or changes in the promoter, is also considered a target-site based mechanism of 

herbicide resistance (Powels and Yu, 2010). Other mechanisms such as reduced 

absorption/translocation, enhanced metabolism, and vacuole seqestration are considered as non-

target-site-based mechanisms (Delye et al. 2013). Known mechanisms of glyphosate resistance 

in weeds include target-site alterations, limited or reduced translocation, increased EPSPS gene 

copy number, vacuole sequestration and rapid necrosis response (Sammons and Gaines, 2014).  
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Rigid ryegrass species were found to have reduced translocation as the primary 

mechanism of resistance (Wakelin et al. 2004). In some biotypes of rigid ryegrass and 

goosegrass (Eleusine indica), an altered target-site, in which the amino acid proline at position 

106 in the EPSPS gene is changed to serine or threonine, also results in glyphosate resistance 

(Wakelin and Preston, 2006; Baerson et al. 2002).  Recently, Palmer amaranth (Amaranthus 

palmeri), Italian ryegrass, common waterhemp (Amaranthus tuberculatus) and kochia were 

found to exhibit increased EPSPS gene copy number as means of resistance to glyphosate 

(Gaines et al. 2010; Salas et al. 2012; Tranel et al. 2011; Wiersma, 2012). Gaines et al. (2010) 

identified a single nucleotide polymorphism (SNP) at amino acid position 316 in which lysine 

was substituted for arginine in glyphosate-resistant Palmer amaranth; however, susceptible 

Palmer amaranth also had this mutation indicating it was unlikely to be the source of resistance. 

Using quantitative PCR, it was found that GR Palmer amaranth plants had increased EPSPS gene 

copy numbers ranging from 5 to 160. Fluorescent in situ hybridization (FISH) mapping was done 

to determine the chromosomal locations of the EPSPS gene copies in Palmer amaranth and 

showed that the duplicated genes were randomly spread across the entire genome.   

 Gene Amplification as a Means of Resistance  
Gene amplification can occur via chomosome duplication, unequal crossing over, or 

transposable elements (Zhang, 2003). When a duplicated gene sequence contains transcription 

sequence or inserted behind a promotor, increased mRNA and protein levels are observed 

(Sammons and Gaines, 2014). Gene amplification leading to insecticide resistance has been 

documented in the aphid (Myzus persicae) and mosquito (Culex quinquefasciatus) (Field et al. 

1989; Mouches et al. 1986). In the case of  plants, aluminum tolerance in corn was found to be 

associated with increased MATE1 gene copies, in which tandem triplication was found to 

provide tolerance to  typically lethal concentrations of aluminum (Maron et al. 2013). In the case 

of Palmer amaranth, genetic mobile elements, specifically transposons, are the most probable 

cause of the multiple EPSPS gene copies located across the entire genome (Gaines et al. 2010; 

Gaines et al. 2013). Increased EPSPS gene copies also tend to positively correlate with the level 

of glyphosate resistance in Palmer amaranth (Gaines et al. 2013). 
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 Genetic Basis of Herbicide Resistance in Weeds 
The genetic basis for herbicide resistance varies much like the mechanisms of herbicide 

resistance. In general, herbicide resistance in weeds is inherited as a nuclear trait; however, 

cytoplasmic inheritance, or inheritance via maternal DNA, has been documented in some  

triazine-resistant weed species (Jasieniuk et al. 1996). Nuclear-inherited resistance tends to 

spread more rapidly than cytoplasmic-inherited resistance due to enrichment of resistant alleles 

within a population as resistance can be transmitted via seed and pollen as opposed to only seed 

in a cytoplasmic-inherited resistance mechanism (Mithila and Godar, 2013). Additionally, 

herbicide resistance in the majority of weeds tends be a domiant or semi-dominant trait. In wild 

mustard (Brassica kaber), resistance to picloram, 2,4-D, and dicamba result from single, 

dominant nuclear genes (Jugulam et al. 2005; Jasieniuk et al. 1995). MCPA resistance in wild 

radish (Raphanus raphanistrum) is governed by a single incompletely dominant nuclear gene 

(Mithila et al. 2013). In kochia, dicamba resistance was found to be controlled by a single 

nuclear trait with a high degree of dominance (Preston et al. 2009). Nonetheless, few cases of 

recessive gene inheritance of herbicide resistance have been documented. Trifluralin resistance 

in green foxtail (Setaria viridis), and clopryalid resistance in yellow starthistle (Centura 

solstitialis) are examples of resistance conferred by a single nuclear recessive gene (Jasieniuk et 

al. 1994; Sabba et al. 2003). Inheritance of glyphosate resistance has been reported in some weed 

species. Using traditional breeding methods, glyphosate resistance in rigid ryegrass was found to 

be a nuclear, incompletely dominate trait (Lorrain-Colwill et al. 2001; Simarmata et al. 2005). 

Similarly, glyphosate resistance in goosegrass and horseweed was also found to be a semi-

dominant trait (Ng et al. 2004; Zelaya et al. 2004). However, glyphosate resistance in Palmer 

amaranth populations from North Carolina and New Mexico were found to exhibit polygenic 

inheritance as opposed to a single gene (Chandi et al. 2012; Mohseni-Moghadam et al. 2013).  

 Evolution of Herbicide Resistance in Kochia 
Kochia is prone to evolving resistance to herbicides with different modes of actions.  

Kochia has evolved resistance to photosystem II-, ALS- and auxin-inhibiting herbicides (Heap, 

2014). Photosystem II-inhibitor (e.g. atrazine) resistance in kochia was first reported in 1976 in 

Kansas. Subsequently, ALS-inhibitor and auxinic herbicide resistances were reported in other 

US states in  1987 and 1995, respectively (Morrison and Devine, 1994; Cranston et al. 2001). 
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Primiani et al. (1990) collected kochia biotypes from wheat stubble fields in Kansas that were 

resistant to both pre-plant and post-emergence applications of ALS-inhibitor herbicides. The 

level of resistance to ALS-inhibitos ranged from 3-75 and 3-30 fold for PRE and POST 

applications of several diferent ALS-inhibitor herbicides, respectively. A dicamba resistant 

kochia biotype from Henry county, NE was found to be 30 times more resistant than a 

susceptible biotype (Preston et al. 2009). It has been estimated that more than 90% of kochia 

populations across the prairies are ALS-inhibitor resistant (Beckie et al. 2011). This sizable 

estimation of ALS-inhibitor resistance in kochia populations adds to the concerns of evolution of 

multiple herbicide resistance in kochia. In Alberta, Canada, GR kochia populations were 

screened for ALS-inhibitor and dicamba resistance; however, only ALS resistance was 

confirmed in those GR populations (Beckie et al. 2013). 

 Glyphosate-Resistant Kochia 
 Kochia was first confirmed resistant to glyphosate in Kansas in 2007; since then GR 

kochia has been reported and confirmed in six additional US states and three Canadian provinces 

(Waite et al. 2013; Heap, 2014; Beckie, 2014; Godar, 2104). Across western Kansas, it is 

estimated that approximately one-third of the kochia populations possess glyphosate resistance 

(Godar, 2014). Eight GR kochia populations were found to have an ED50 (effective dose to cause 

50% mortality) ranging from 0.54-1.35 kg ae ha-1 compared to a glyphosate-susceptible (GS) 

population with an ED50 of 0.17 kg ae ha-1 which corresponded with a resistance index of 3.3-8.0  

for GR populations previously tested (Godar, 2014).  

 Several studies have been conducted to identify the mechanism of glyphosate resistance 

in kochia. In four kochia populations that exhibited differential response to glyphosate, no 

significant difference between absorption and translocation of glyphosate was found (Waite et al. 

2013; Godar 2014); and application of glyphosate at 870 g ae ha-1 resulted in 4-91% injury of 

those populations 3 weeks after treatment (Waite et al. 2013). Wiersma (2012) found increased 

EPSPS gene copies in several  kochia populations that survived 870 g ae ha-1 or higher doses of 

glyphosate. Additionally, increased transcript and protein was positively correlated with 

increased EPSPS gene copies, suggesting that the EPSPS copies are functional in kochia. EPSPS 

sequence was also analyzed and no amino acid (Proline 106) mutations were found at the 

binding site.  
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 The above studies suggest that glyphosate resistance in kochia is mediated by EPSPS 

gene amplification and not due to glyphosate uptake or translocation differences between GR 

and GS kochia; however, the genetic basis and the EPSPS copy location on the genome of 

kochia are unknown. Therefore, the overall goal of this research was to investigate the genetic 

basis of glyphosate resistance in kochia as well as to determine the chromosomal distribution of 

EPSPS gene copies. 
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Figure 1.1 Distribution of kochia in the United States and Canada. Shaded areas represent 

states/provinces where kochia is present in cropland, non-cropland, or both. 
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Figure 1.2 Shikimic acid pathway disrupted by glyphosate. 
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Chapter 2 - Inheritance of Glyphosate Resistance in Kochia 

 Abstract 
Extensive, often exclusive, use of glyphosate in crop production has resulted in evolved 

glyphosate resistance in several weed species globally. Kochia is a competitive summer annual 

weed, well adapted to the North American Great Plains and has recently evolved resistance to 

glyphosate by gene amplification of 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS), the 

target-site of glyphosate. The overall objective of this research was to investigate the genetic 

basis of glyphosate resistance in kochia, specifically to study 1) the inheritance of glyphosate 

resistance and 2) determine the chromosomal distribution of EPSPS gene copies. Homozygous 

resistant (R) and susceptible (S) parental lines of kochia were identified. Using these parents, 

reciprocal crosses were performed to produce F1 progeny. As expected for a nuclear encoded 

EPSPS gene, F1 plants from both crosses survived various doses of glyphosate application. 

However, F1 plants showed intermediate shikimate accumulation and EPSPS gene copies 

(relative to ALS reference gene) compared to parents. F2 progeny were produced by selfing F1 

plants. In response to 870 g ae  ha-1 glyphosate, F2 plants (n=115) segregated into 3:1 (R:S) 

implying a Mendelian monogenic segregation of glyphosate resistance in kochia. Additionally, 

relative EPSPS gene copies ranged from 1-10 in the F2 progeny (n=51) with a genotypic 

segregation of 40:11 (plants with 3 or more EPSPS gene copies: plants with 1 EPSPS gene 

copy).In F2 dose-response, a correlation between the level of resistance and relative EPSPS gene 

copies was observed. Genomic organization of the amplified copies using fluorescent in situ 

hybridization (FISH) displayed a single and larger hybridization site of the EPSPS gene on one 

pair of homologous chromosomes in R compared to a faint hybridization site in S samples of 

kochia. These results suggest possibility of amplification of EPSPS gene mediated via unequal 

recombination leading to the evolution of the glyphosate resistance in kochia. 
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 Introduction 
Kochia [Kochia scoparia (L.) Schrad.] is a broadleaf weed that predominates in semi-arid 

environments of the U.S. Great Plains and Canadian Prairies. This annual weed creates 

substantial economic impact in the central Great Plains states and Canadian Prairies where it 

infests cropland and non-cropland areas including wheat, corn, sorghum, sugar beet, pastures, 

rangeland, waste areas, ditch banks, and roadsides (Friesen et al. 2009). Biological 

characteristics of kochia such as early germination that continues all season, and tolerance to hot 

and cold temperatures as well as drought make it an extremely competitive weed (Dille et al. 

2012; Friesen et al. 2009). On average, kochia produces 15,000-25,000 seed per plant and upon 

maturity the seed gets dispersed via a tumbleweed mechanism in which wind blows the plant 

across the landscape scattering seed (Friesen et al. 2009). Kochia infestation is typically 

controlled by tillage and/or use of herbicides.  

Glyphosate is a non-selective herbicide introduced in the early 1970’s that targets the 5-

enolpyruvylshikimate 3-phosphate synthase (EPSPS) enzyme in the shikimic acid pathway. 

(Baylis, 2000; Cobb and Reade, 2010). This pathway is responsible for synthesizing aromatic 

amino acids as well as vitamins and lignins (Cobb and Reade, 2010). Introduction of glyphosate-

resistant crops in 1996 increased glyphosate use in agriculture. This technology provided farmers 

with opportunities to use reduced and no-tillage practices which were quickly adapted in addition 

to glyphosate burndown treatments (Young, 2006). Reduced tillage and no-till are used 

extensively in western Kansas because of soil moisture retention and reduced eroison benefits. 

Conversely, no-till practice can increase kochia emergence by four-fold; therefore, this 

necessitates use of herbicides to control kochia (Anderson and Nielsen, 1996).  

Continuous and often exclusive use of glyphosate created selection pressure in weed 

species that resulted in glyphosate resistance. Worldwide there are 28 different weed species that 

have evolved gyphosate resistance, 14 of which are present in the US (Heap, 2014). In Kansas 

alone, six different weed species including horseweed (Conyza canadensis), tall waterhemp 

(Amaranthus tuberculatus), giant ragweed (Ambrosia trifida), common ragweed (Ambrosia 

artimisiifolia), kochia, and Palmer amaranth (Amaranthus palmeri) have been confirmed as 

glyphosate-resistant (Heap, 2014). Glyphosate-resistant kochia was first identified in Kansas in 
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2007, but has since been reported and confirmed in six additional US states and three Canadian 

provinces (Waite et al. 2013; Heap, 2014; Beckie, 2014). Across western Kansas, it is estimated 

that approximately one-third of the kochia populations have evolved glyphosate resistance 

(Godar, 2014). Several studies have been conducted to identify the mechanism of glyphosate 

resistance in kochia. In four kochia populations that expressed differential responses to 

glyphosate, no significant differences in absorption or translocation were found among 

populations; however, a glyphosate application of 870 g ae ha-1 resulted in 4-91% injury among 

those populations 3 weeks after treatment (Waite et al. 2013). Wiersma (2012) found increased 

EPSPS gene copies in several different kochia populations that survived glyphosate applications. 

Additionally, increased transcript and protein abundance was directly correlated with increased 

EPSPS gene copies. EPSPS sequence was also analyzed and no amino acid (Proline 106) 

substitutions were found at the binding site. 

Kochia is prone to evolve resistance to herbicides with different modes of action. In 

addition to glyphosate, kochia resistance to triazines, ALS-inhibitors and dicamba has been 

documented across the US. Photosystem II-inhibitor resistance in kochia was first reported in 

Kansas in 1976 followed by ALS- and auxinic-inhibitor resistances in 1987 and 1995, 

respectively, in the US (Morrison and Devine, 1994; Cranston et al. 2001). It has been estimated 

that more than 90% of kochia populations across the prairies are ALS-inhibitor resistant (Beckie 

et al. 2011). This estimation of ALS-inhibitor resistance already present in kochia populations 

adds to the concerns of evolution of multiple herbicide resistance in kochia. Understanding the 

genetic basis behind different herbicide resistances will help in implementing and maintaining 

successful weed management practices. Although there is evidence that glyphosate resistance in 

kochia is mediated by EPSPS gene amplification, the genetic basis of resistance and the location 

of EPSPS gene copies in the genome of kochia are unknown. Therefore, the overall goal of this 

research was to investigate the genetic basis of glyphosate resistance in kochia and determine the 

chromosomal distribution of EPSPS gene copies. 

 Materials and Methods 

 Identification of Homozygous Parental Lines 
Glyphosate-resistant (R) kochia seed was obtained from fields in Lane, Russell and 

Phillips counties in Kansas. Seed of glyphosate-susceptible (S) was collected from Ellis county 
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Kansas. Seed was germinated in 28x6x8 cm flats filled with 2 kg Miracle-Gro moisture control 

potting mix in the Weed Science Greenhouse at Kansas State University. The greenhouse was 

maintained at 25/20 °C day/night and 15/9 photoperiod supplemented with 200 µmol m-2 s-1 

photosynthetic photon flux provided with sodium vapor lamps. Once 2-3 cm tall, seedlings were 

transplanted into 5 cm plastic cone pots filled with 160 g Miracle-Gro moisture control potting 

mix. Plants 8-10 cm in height were then sprayed with formulated glyphosate (Roundup 

WeatherMAX, Monsanto) at a rate of 870 g ae  ha-1 in 2% (v/v) ammonium sulfate (AMS) using 

a chamber bench-type sprayer calibrated to deliver 187 L ha-1 at 138 kPa. All subsequent 

glyphosate applications contained 2% (v/v) AMS solution. Also, in all treatments known 

glyphosate-resistant and -susceptible kochia plants were included as positive and negative 

controls. 

Plants that survived glyphosate application were transplanted individually into 15-cm 

round pots filled with 400 g Miracle-Gro moisture control potting mix. Upon flowering, the 

plants were self-pollinated using microperforated bread bags to produce seed. Seed was collected 

separately from all plants of Lane, Russell and Phillips populations. About 50 seeds from each 

per plant were sown in the greenhouse as described earlier and progeny from each self-pollinated 

plant were grown. When plants were 8-10 cm tall, the plants were sprayed with formulated 

glyphosate at a rate of 870 g ae  ha-1. One week after treatment, plants susceptible to glyphosate 

showed chlorosis and subsequently died; whereas resistant plants showed slight chlorosis, 

recovered, and then continued to grow normally. Progeny from self-pollinated plants that showed 

presence of  glyphosate resistant and susceptible plants were identified as heterozygous 

(segregating) and hence were not use for any genetic analysis experiments. Progeny that were all 

resistant to glyphosate without any susceptible individuals were labeled as homozygous resistant; 

whereas, those that were all found susceptible to glyphosate were considered as homozygous 

susceptible. Thus, the zygosity was determined based on phenotypic response to glyphosate since 

homogeneous response indicates whether or not alleles are segregating. 

 

 Production of F1 and F2 Progeny 
Seed of homozygous R and S parents were planted in soil in the greenhouse as described 

above. Parental R and S plants were transplanted into 15-cm round pots filled with 400 g 
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Miracle-Gro moisture control potting mix when 10-12 cm tall. Reciprocal crosses of 

homozygous R and S plants were performed as follows. For clarification, RxS respresents a 

resistant female pollinated with susceptible pollen and vice versa for SxR. Kochia bears 

protogynous flowers, therefore the stigmas (two per flower) are receptive approximately one 

week before antheis of the same flower. Therefore, prior to stigma emergence, all the leaves and 

apical meristems were removed from a few randomly selected branches of R or S plants and 

covered with translucent white water-repellent paper bags (Lawson ‘217’ Bag; Lawson Bags, 

Northfield, IL) . After stigma emergence, using sterile forceps, pollen from dehisced anthers of R 

or S (chosen as male parents) was transferred seperately onto the stigmas of the maternal flower. 

Immediately after pollination, the flowers were covered with the same pollination bags. Stigmas 

were dusted twice with pollen from the male parent, once when stigmas protruded, and the 

second time approximately 3 days after the first pollen dusting. After the second pollination, 

flowers were covered for 10 days. In one S plant, the entire plant was dusted daily with pollen 

from an R plant to ensure hybrid seed production. Mature F1 seed were harvested separately from 

reciprocal crosses. The seed was germinated as described above. Seedlings were transplanted 

into 4.5x4.5x6 square pots filled with 60 g Miracle-Gro moisture control potting mix when 2-3 

cm tall. Some F1 plants were transplanted into 15-cm round pots filled with 400 g Micacle-Gro 

moisture control potting mix and self-pollinated to produce F2 seed. Mature F2 seed was 

harvested seperately from each F1 plant and the family derived from each individual F1 plant was 

designated as an F2 family. 

 Whole-Plant Dose-Response Experiments  
Parental lines, F1 and F2 progeny were all subjected to whole-plant dose-response to 

glyphosate. When plants reached 8-10 cm in height, plants were treated with formulated 

glyphosate (Roundup WeatherMAX, Monsanto; St. Louis, MO) in 2% (v/v) ammonium sulfate 

(AMS) using a chamber bench-type sprayer calibrated to deliver 187 L ha-1 at 138 kPa. Parental 

lines were treated with six different doses (0, 0.25, 0.5, 1, 2, and 3X; where X is 870 g ae  ha-1 ). 

At least four plants were included per dose. F1 plants were subjected to only five glyphosate 

doses (0, 0.25, 0.5, 1, and 2X) due to limited availability of  F1 plants. Five F1 plants were 

included in each dose, and 3 plants were used for biomass determination and two plants were 

used for self-pollination to produce F2 seed. F2 plants derived from F1 plants from two different 
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families were used to determine segregation rates when treated with (0, 0.25, 0.5, 1, 2, 3, and 

4X) doses of glyphosate. Visual observation of plant mortality to glyphosate treatment was 

recorded 3 weeks after treatment (WAT). Above ground biomass was harvested 3 WAT from all 

plants except from the F1 plants that were maintained for F2 seed production. The plant samples 

that were harvested were dried in at 60 °C in an oven for 72 hours. Dry weight was recorded and 

the data analyzed using the ‘drc’ package in R (Knezevic, 2007). The three-parameter non-linear 

log-logistic model (Equation 2.1) showed good fit, thus, the relationship between herbicide dose 

and mortality or aboveground biomass was described as 

Equation 2.1 Three parameter non-linear regression model. 

 
where Y is aboveground biomass, e (also known as GR50) denotes the herbicide dose that 

caused 50% response, d is the response upper limit, b denotes the relative slope around e, and x 

represents herbicide dose. The response lower limit was set equal to 0. 

Eight F2 families were subjected to 870 g ae  ha-1 glyphosate treatment and response was 

recorded weekly for 3 WAT.  

 Shikimate Assay  
Glyphosate inhibits production of the aromatic amino acids in the shikimic acid pathway 

causing a build-up of shikimate-3-phosphate, a substrate of EPSPS (Figure 1.2), and its 

dephosphorylated state-shikimate (Shaner et al. 2005). Thus, glyphosate susceptible plants will 

accumulate shikimate after exposure to glyphosate. A measure of shikimate accumulation can be 

determined following the procedure developed by Shaner et al. (2005). Six 6-mm leaf disks were 

collected from the top leaf of a single plant. Leaf disks were place in a 96-well microtiter plate 

with one disk per well. Individual leaf disks were subjected to either a buffer solution (0 µM 

gyphosate) or glyphosate solution. The buffer solution was comprised of 0.6902 g ammonium 

phosphate dissolved in 600 ml deionized water. In all treatments, 100 µM glyphosate was used, 

except in dose-response experiments. In shikimate dose-response assay glyphosate 

concentrations ranging from 0 µM to 1000 µM were used. After each disk was placed in a well 

containing buffer with or without glyphosate, the plates were wrapped with clear, plastic wrap 

and incubated under light for 16 hours. After the appropriate time had elsapsed, plates were 

frozen and thawed at -20 and 60 °C, respectively. Leaf disks were then treated with 1.25 N HCl 
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(25 µL) and incubated at 60 °C for 20 minutes. In a new 96-well microtiter plate, 25 µL of 

solution from the treated leaf disk was added to 100 µL of reaction buffer (periodic acid (0.25% 

v/v)/meta-periodate (0.25% v/v)). The plates were incubated at 23°C for 90 minutes and then 100 

µL of quenching buffer (0.6 M sodium hydroxide/0.22 M sodium sulfite) was added to each 

well.  

Shikimate accumulation was measured at OD380 using an Epoch Microplate 

Sprectrophotometer (BioTek Instruments, Inc.) equipped with Gen5 version 2.01 software. A 

shikimate accumulation standard curve was generated and used to calculate the shikimate 

accumulation in each well. The values for 0 µM glyphosate treatment were subtracted from the 

100 µM glyphosate treatment (or whichever concentration of glyphosate was teseted) to 

determine the change or accumulation of shikimate in ng shikimate µL-1 solution. Each plant 

sample was done in triplicate and repeated twice.  

 Estimation of Relative EPSPS Gene Copy Number  
Relative EPSPS gene copy number was determined by quantitative PCR (qPCR) using 

genomic DNA (gDNA). To account for variability, the acetolactase synthase (ALS) gene was 

used to normalize the relative copy number. ALS was chosen as a reference as there have been no 

reports of variation in ALS gene copies in plant species (Wiersma, 2012). EPSPS gene copy 

number was determined in parents, F1 and F2 plants. Fresh leaf tissue (100 mg) was collected in 

1.5 mL microcentrifuge tubes, immediately frozen in liquid nitrogen and stored at -20 °C until 

DNA was extracted. Genomic DNA was extracted using a Quigen DNeasy kit. The protocol as 

outlined in the kit was followed for DNA extraction. The final concentration of DNA was diluted 

to 8 ng/µL and qPCR was performed using a Bio-Rad CFX-96 Touch for all experiments.  

K. scoparia specific primers were used for qPCR and EPSPS forward and reverse 

sequences were 5’ GGCCAAAAGGGCAATCGTGGAG 3’ and 5’ 

CATTGCCGTTCCCGCGTTTCC 3’, respectively. ALS forward and reverse primers were 5’ 

ATGCAGACAATGTTGGATAC 3’ and 5’ TCAACCATCGATACGAACAT 3’, respectively. 

These primers produced products of 102 and 159 bp for EPSPS and ALS, respectively. qPCR 

was performed using 96-well microtiter plates with each well containing a master mix comprised 

of: 10 µL of iQ™ SYBR ® Green Super Mix (Bio-Rad), 1µL of each corresponding forward and 

reverse primer (5 µM), 16 ng of gDNA, and 4 µL of diH2O. Each reaction was done in triplicate 
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and duplicated. Cycle parameters were set at 95 °C for 3 minutes for the initial denaturing,  95 

°C for 10 seconds for denaturing, annealing and extension at 60 °C for 30 seconds and the 

denaturing/annealing steps repeated 39 times for a total of 40 cycles. 

A threshold (CT) was used to determine at which cycle the primers had reached a point of 

equal products. EPSPS copy number was normalized to the ALS reference gene (∆CT = CT
EPSPS 

– CT
ALS) (Gaines et al. 2010). The ∆CT method (2-ΔCT = relative gene copy number) was used to 

determine copy number in Microsoft Excel. Each plant sample was measured in triplicate and 

repeated twice. Replicates were averaged and standard deviation was calculated. 

 Sequencing the EPSPS Gene 
Geneomic DNA was extracted as previously described and used to amplify and sequence 

the EPSPS binding site at the Proline 106 position. A 200 bp PCR product was amplified using 

the forward and reverse primers 5’ CCAAAAGGGCAGTCGTAGAG 3’ and 5’ 

ACCTTGAATTTCCTCCAGCA 3’, respectively. Each reaction was comprised of 2.5 µL of 

both forward and reverse primers (5 µM), 12.5 µL of Promega PCR Master Mix (Promega), 40 

ng of gDNA and 2.5 µL of nuclease free water (Promega) for a total reaction volume of 25 µL. 

The initial PCR denaturation step was done at 95 °C for 3 minutes, followed by 40 cycles of 

denaturation at 95 °C for 30 seconds, primer- annealing at 60°C for 30 sec, and product 

extension at 72 °C for 1 minute. After 40 cycles, the reaction was completed and held at 4°C. 

The PCR product was separated on 1% agarose gel stained with ethidium bromide and bands 

were detected. The remaining PCR product was purified using GeneJET PCR Purification Kit 

(ThermoScientific #K0701) and separated on another agarose gel to ensure PCR product quality 

post purification. PCR products were sequenced at the Genomic and Sequencing Lab in the Plant 

Pathology Department at Kansas State University and aligned using Multalin software (Corpet, 

1988). 

 Chromosome Location of the Amplified EPSPS Gene Copies 

FISH work was performed in the Plant Pathology Department at Kansas State University 

using the outlined procedure below. 

 Chromosome preparation and FISH procedure 
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Somatic chromosome preparations of R and S kochia were done using the drop 

technique, direct probe labeling by nick translation, and the FISH procedure as described 

previously (Kato et al. 2004; Kato et al. 2006) with minor modifications. Root tips were 

collected from young plants and treated in a nitrous oxide gas chamber for 90 minutes, fixed on 

ice in cold 90% acetic acid for 10 minutes, washed and stored in 70% ethanol at −20 °C. For 

slide preparation, roots were washed in tap water for 10 minutes and then in KCl buffer 5 

minutes (75 mM KCl, 7.5 mM EDTA, pH 4); 7 meristems (0.5–1 mm long) were placed in 20 µl 

of 4% cellulase Onozuka R-10 (Yakult, Japan, Tokyo cat # 201069), 1% pectolyase Y23 (Karlan 

cat # 8006) in KCl buffer, and incubated for 43 minutes at 37 °C. Digested meristems were 

washed for 5 minutes in ice-cold Tris–EDTA buffer, pH 7.6, then three times in 100% ethanol. 

Meristems were dispersed with a needle in 20 µL of ice-cold acetic acid - methanol mix (9:1) and 

immediately dropped on to 3 pre-cleaned glass slides placed in a humid chamber. Dried 

preparations were UV cross-linked, soaked in methacarn solution (methanol : chlorophorm : 

glacial acetic acid 6:3:1) during 1 minute, dried and used for hybridization on the same day. For 

labeling the nucleolus organizing region (NOR) rRNA loci, clone pTa71, containing a 9-kb 

insertion with 18S, 5.8S, and 26S rRNA wheat genes and intergenic spacers (Gerlach and 

Bedbrook 1979) was used as a probe. Five µl of probe mixture contained 200 ng of each EPSPS 

gene PCR product labeled with Texas red-5-dCTP and 160 ng of pTa71 labeled with 

Fluorescein-12-dUTP (PerkinElmer, cat # NEL413001EA and NEL426001EA). The mixture of 

probes and the slide preparation were denatured at 100°C separately. The rest of the FISH 

procedure and washes were the same as in Kato et al. (2006). Chromosome preparations were 

mounted and counterstained with 4', 6-diamidino-2-phenylindole solution (DAPI) in Vectashield 

(Vector Laboratories, cat # H-1200, H-1300). Images were captured with a Zeiss Axioplan 2 

microscope using a cooled charge-coupled device camera CoolSNAP HQ2 (Photometrics) and 

AxioVision 4.8 software (Zeiss) and processed using the Adobe Photoshop software (Adobe 

Systems Incorporated, San Jose, CA, USA).  

 EPSPS FISH probe 

Sequences of kochia EPSPS mRNA from the susceptible parent (Ellis county population) 

and the Amaranthus palmeri EPSPS gene (accession number JX56456) were used to develop the 

PCR primers. The EPSPS gene was amplified using kochia genomic DNA as a template isolated 

with Qiagen DNeasy Plant Mini kit (cat. # 69104). The PCR reaction included JumpStart 
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REDTaq ReadyMix (Sigma, Cat. P0982), 0.4 µM of each primer and 0.5-4 ng/µl of template 

DNA. PCR cycles consisted of 96 °C for 5 minutes for the initial denaturation, 35 cycles of 

annealing and extension: 96 °C for 30 seconds, 57 °C for 30 seconds, 72 °C for 4 minutes and a 

final extension at 72 °C for 15 minutes. PCR products were cut and eluted from agarose gel with 

Qiagen Gel Extraction kit (Cat. # 28706) and re-amplified using the same primers. PCR products 

were purified with Invitrogen PCR Purification kit (Cat. # K3100-01) and verified by sequencing 

(Genewiz). The sequence of amplified part of kochia EPSPS gene was submitted to NCBI 

GeneBank database with accession number KJ374721. Three PCR products were tested 

separately by FISH and products 1 and 3 showed no background staining on kochia 

chromosomes were used as a pooled FISH probe. 

 Results  

 Whole Plant Response to Glyphosate 
Parental R and S plants were identified based on whole plant response to 870 g ae  ha-1 

glyphosate 3 WAT. Self-pollination of kochia plants from Lane (n=4), Phillips (n=2), and Ellis 

(n=2) were successful. Ellis populations are labeled as PSI in tables. Three WAT, progeny from 

both plants in the Phillips population survived 870 g ae ha-1 glyphosate while progeny from the 

Ellis county plants were susceptible (Figure 2.1). All plants from the Lane population segregated 

as glyphosate R or S (Table 2.1). Progeny from Phillips 88-4 and PSI-6 were selected as R and S 

parental lines, respectively. Whole-plant dose-response (0, 0.25, 0.5, 1, 2, 3X doses) of parental 

lines indicated that the R plants were 3.4 times more resistant than the S line (p-value 0.007). 

GR50 (effective dose to cause 50% growth reduction) was 367 and 1266 g ae ha-1 for S and R, 

respectively (Table 2.2. and Figure 2.2). Reciprocal crosses (RxS and SxR) were successful, 

approximately 10% of hand-pollinations set seed. Specifically, of 450 hand crosses made, 50 F1 

seed were produced and 45 seed germinated. Twenty-two SxR and 23 RxS (45 total) F1 seedlings 

were produced. F1 progeny were sprayed with various doses of glyphosate (0, 0.25, 0.50, 1 and 

2X) and phenotypic data was collected for 3 WAT in comparison to parental R and S plants. F1 

plants from both RxS and SxR crosses survived all rates of glyphosate as expected from a 

nuclear encoded EPSPS gene (Figure 2.3).  

A total of 115 F2 plants representing a composite of 8 families were treated with a 1X 

rate of glyphosate. In response to the glyphosate application, the F2 plants segregated 3 
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resistant:1 susceptible (Figure 2.4). Chi-square tests for goodness of fit to a 3:1 segregation (R:S) 

supported the null hypothesis; the observed frequencies (R or S) after herbicide treatment were in 

accordance with the expected frequencies for a 3:1 (R:S) segregation ratio. Plants from two F2 

families (derived from self-pollination of F1 SxR or F1 RxS) segregated 37:13 (R:S) and 48:17 

(R:S). When response of all F2 plants (n=115) to 1X rate of glyphosate was pooled, plants 

segregated into 85:30 (R:S) with a χ2 = 0.076 (Table 2.3, Table 2.4). Glyphosate dose response 

(0, 0.25, 0.5, 1, 2, 3, and 4X) of F2 progeny, 3 WAT also demonstrated segregation of plants into 

3:1 (R:S) at each dose (Table 2.5). Phenotypic variation in response to 1X glyphosate was 

observed in F2 progeny within a family (Figure 2.4). The variability (plant size and branching) 

did not correlate with the number of EPSPS gene copies; therefore, the phenotypic variation 

observed could possibly be attributed to the vast genetic variability present in kochia. 

However, after glyphosate treatment, two F1 plants were found to be not true parental 

crosses, as progeny of one F1 (SxR) did not have any plants survive glyphosate treatment and on 

the other hand, all plants in one F2 family (derived from self-pollination of RxS) were resistant to 

glyphosate without R:S segregation; therefore, data from these crosses was not included in data 

analyses. 

 Shikimate Accumulation and Gene Copy Determination 
Shikimate accumulation was significantly higher in susceptible parental plants compared 

to resistant plants (Figure 2.5). F1 plants accumulated an intermediate level of shikimate 

compared to either parent at low doses; however, all plants showed higher shikimate 

accumulation at 500 and 1000 µM (Figure 2.5). In general, shikimate accumulation negatively 

correlated with EPSPS gene copies, with low accumulation corresponding to higher number of 

gene copies (Figure 2.6 A to C). Relative EPSPS:ALS gene copies were measured in parental and 

F1 plants. Realtive EPSPS copies in parental resistant lines ranged from 6.5-7.5, while 

susceptible lines had 0.6-0.8 copies. Relative EPSPS:ALS copies for susceptible plants are less 

than one due to the size of the amplified product. EPSPS primers produce 159 bp product while 

ALS primers produced 102 bp product, which is approximately 65% of the EPSPS primer 

product. For this reason, and for simplifying presentation of copy number, relative EPSPS:ALS 

copies of 0.6-0.8 for S plants are considered as 1 and EPSPS copies in R plants are normalized 

accordingly. All F1 progeny possessed 3.4 to 4.6 EPSPS copies, intermediate to either R and S 
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parent (Figure 2.6 A to C). In the F2 progeny (n=51), relative EPSPS:ALS gene copies ranged 

from 1-10 with approximately 21.5, 51, and 27.5% plants possessing 1, 3-7, and 8-10 copies, 

respectively (Figure 2.7). Segregation of the F2 plants (n=51) was 40:11 in which 40 plants had 

multiple EPSPS gene copies while 11 had only one gene copy. Chi-square analysis of F2 relative 

EPSPS gene copy number segregation of plants with 3 or more EPSPS gene copies: plants with 1 

EPSPS gene copy supported the null hypothesis; the observed frequencies (plants with more than 

3 copies: plants with 1 copy) were in accordance with the expected frequencies for a 3:1 (R:S) 

segregation ratio base on EPSPS gene copy number (Table 2.6).  

 Sequencing the EPSPS Gene 
Mutations in the EPSPS gene, specifically at amino acid 106 position, where a change 

from proline to serine or threonine, has been known to result in resistance to glyphosate in some 

weed species, such as rigid ryegrass and goosegrass (Wakelin and Preston, 2006; Baerson et al. 

2002). The EPSPS gene in kochia was sequenced to determine if mutation at amino acid 

proline106 position was present in the R plants. The results indicated no amino acid change at 

the proline 106 site in either R or S parents, suggesting that a mutation in the EPSPS gene is not 

the basis for glyphosate resistance in these kochia populations (Figure 2.8).  

 Chromosomal Distribution of EPSPS Gene Copies 
Analysis of FISH indicated a visible increase in EPSPS signal in R plants relative to S 

plants. In S plants, three chromosome pairs with nucleolus organizer region (NOR) sites were 

detected; one of which, with a minor NOR signal, had the EPSPS gene on the distal end (Figure 

2.9 A). On prometaphase chromosomes and interphase nuclei, only a faint EPSPS signal was 

seen on each chromatid on S samples (Figure 2.9 B, C). On metaphase spreads of R kochia, the 

EPSPS probe detected much brighter signal on the same chromosome pair with a minor NOR 

site (Figure 2.9 D). On prometaphase chromosomes and interphase nuclei of R samples, 5-7 

partially overlapping signals of the EPSPS probe can be distinguished at this location (Figure 2.9 

E, F). Isolation of EPSPS probe localized on one chromosome is dissimilar than Palmer 

amaranth in which several EPSPS copies were dispersed throughout the entire genome, likely 

mediated by transposable elements (Gaines et al. 2010; Gaines et al. 2013).  
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 Discussion 
 F1 phenotypic response to glyphosate from both SxR and RxS crosses supported the 

nuclear inheritance of glyphosate resistance in kochia. Similarly, glyphosate resistance in rigid 

ryegrass, goosegrass, and horseweed was reported to be inherited via nuclear genes (Lorrain-

Colwill et al. 2001; Simarmata et al. 2005; Ng et al. 2004; Zelaya et al. 2004). In this research it 

was found that three EPSPS copies were sufficient to provide resistance to a field use dose of 

glyphosate in kochia; however, shikimate dose-response data indicate that with increase in 

glyphosate concentration (100, 250, and 500 µM), variation in shikimate accumulation primarily 

depended on the number of EPSPS copies present in resistant plants. These data suggested that R 

plants with few EPSPS copies will accumulate more shikimate at higher glyphosate rates 

compared to those with higher copy numbers. F2 whole-plant dose-response data suggest that 

regardless of glyphosate dose, the progeny segregated 3:1 (R:S), demonstrating that glyphosate 

resistance in kochia behaved like a Mendelian monogenic trait. Futhermore, F2 plants also 

segregated 3:1 for EPSPS gene copy number as well (plants with 3 or more EPSPS gene 

copies:plants with 1 EPSPS gene copy). Although a phenotypic and genotypic segregation ratio 

of 3:1 (R:S) was observed in F2 progeny, genotypic segregation based on EPSPS gene copy 

number appears to be more complicated; as the possibility of recombination during meiosis at the 

location, where EPSPS copies are present may result in variation in copy number. 

Gene amplification as a means of glyphosate resistance was first reported in Palmer 

amaranth (Gaines et al. 2010). Interestingly, it was found that EPSPS copies in glyphosate-

resistant Palmer amaranth were randomly distributed throughout the entire genome, possibly 

mediated by transposable elements (Gaines et al. 2010; Gaines et al. 2013). However, in kochia, 

FISH results indicated a cluster of EPSPS gene copies located at one location on two 

homologous chromosomes (Figure 2.9). Based on the chromosomal location of EPSPS gene 

copies, it is clear that the gene amplification mechanism resulting in glyphosate resistance in 

kochia evolved differently than that of Palmer amaranth. FISH analysis also indicated that the 

EPSPS copies were arranged in tandem in kochia, as all copies are localized on a single 

chromosome. Tandem arrangement of EPSPS copies suggest that glyphosate resistance in kochia 

may have evolved possibly via unequal recombination or unequal crossing over. This physical 

exchange of chromosome segments between homologous chromatids typically occurs during 

prophase of meiosis I; however, in a rare event, recombination is possible during mitosis as well 
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(Brooker, 2009). In addition to gene duplication, unequal crossing over can also lead to gene 

inversion or deletion (Hurles, 2004). Once a duplicated gene becomes fixed, the gene may 

become degraded (nonfunctionalization), embark a new function (neofunctionalization), or 

compliment the original gene (subfunctionalization) (Hurles, 2004). Based on the positive 

correlation between number of EPSPS copies and level of glyphosate resistance in kochia, it can 

be assumed that the gene copies are fixed as subfunctionalization genes (Hurles, 2004). This 

hypothesis needs to be tested. 

In the context of gene amplification, cytogenetic arrangement of the amplified genes and 

the number EPSPS copies may largely determine the inheritance of glyphosate resistance in 

kochia. Since the EPSPS copies were present in tandem at the distal end of homologous 

chromosomes, there is a likelihood that the copies may tend to inherit as a single gene. In the 

case of kochia, 3:1 (R:S) segregation of F2 progeny provides evidence that the EPSPS copies are 

inherited as a single Mendelian trait. Genetic diversity can results from natural events, such as 

gene deletion or duplication; however, this occurs at a very low frequency in nature. Intense 

selection pressure from glyphosate may have selected individuals with duplicated EPSPS genes 

and over repeated selection the EPSPS copies may have increased due to unequal 

recombination/crossing over.  

Nuclear monogenic inheritance of glyphosate resistance in kochia will likely spread more 

rapidly across populations and geographies as the resistance can be transmitted via pollen and 

seed. Presence of only three copies of the EPSPS gene are sufficient to provide resistance to the 

field use rate of glyphosate. The positive correlation of resistance level and EPSPS gene copies 

suggested an additive effect of copies on glyphosate resistance. Furthermore, in phenotypic 

response to field rates (870 g ae ha-1), glyphosate resistance trait may migrate across geographies 

at frequencies similar to a completely dominant trait as plants with 3-10 copies will all survive a 

1X rate of glyphosate. However, from a genotypic view, EPSPS gene copy number is unlikely to 

be a completely dominant trait as different number of copies may be present and inherited on 

different chromosomes in progeny. 
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Figure 2.1 Response of Phillips 88-4 (left) and PSI-6 (right) progeny to 870 g ae  ha-1 

glyphosate 3 WAT. 
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Figure 2.2 Whole-plant dose-response of parental lines as aboveground dry biomass 

presented as percent of untreated control.  

 

 



35 

 

 
Figure 2.3 Whole-plant response of F1 reciprocal crosses and parental lines in response to 

glyphosate 3 WAT. 

Top row: Phenotypic response to 1X rate of glyphosate 3 WAT. 

Bottom row: Phenotypic response to 2X rate of glyphosate 3 WAT. 
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Figure 2.4 Segregation of a single F2 RxS family 3 WAT to 870 g ae ha-1 glyphosate. Image 

shows 13:8 (R:S) segregation (n=21, χ2 = 1.921). 
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Figure 2.5 Dose-response shikimate accumulation of F1 progeny and parental R and S 

plants to six different glyphosate concentrations and vertical lines within bars represent ±1 

standard error. 
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Figure 2.6 A) Relative EPSPS gene copy number and shikimate accumulation for parental 

lines and F1 progeny in 100 µM glyphosate. B) Relative EPSPS gene copy number and 

shikimate accumulation for parental lines and F1 progeny in 250 µM glyphosate. C) 

Relative EPSPS gene copy number and shikimate accumulation for parental lines and F1 

progeny in 500 µM glyphosate. 
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Figure 2.7 Relative EPSPS:ALS gene copies for F2 progeny (n=51) ranged from 1-10 with 

22.5% having 1 copy, 51% having 3-7 copies, and 27.5% having 8-10 copies. Vertical bars 

are ± 1 standard error. 
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EPSPS-R1  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 
EPSPS-R2  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 
EPSPS-R3  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 
EPSPS-S1  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 
EPSPS-S2  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 
EPSPS-S3  GCCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC 

      Proline 106 
 
Figure 2.8 Sequence comparison of R and S kochia EPSPS coding regions known to have 

mutations (Proline 106) conferring resistance to glyphosate in other species (e.g. rigid 

ryegrass and goosegrass). 
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Figure 2.9 FISH images of glyphosate-resistant and -susceptible kochia. 

Figures A-C are images of glyphosate-susceptible (PSI) parent and D-F are of 

glyphosate-resistant (Phillips 88) parent. Red signal of the EPSPS probe can be seen on somatic 

metaphase chromosomes (top row), prometaphase chromosomes (middle row) and interphase 

nuclei (bottom row). 
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Table 2.1 Identification of parental lines based on phenotypic response to 870 g ae ha-1 

glyphosate. 

Populations 1 WAT 2 WAT 3 WAT  

 Dead Alive Dead Alive Dead Alive Total 

PSI-4 9 7 13 3 16 0 16 

PSI-6 20 9 25 4 29 0 29 

Lane 101-3 3 18 4 17 4 17 21 

Lane 101-6 0 13 2 11 2 11 13 

Lane 101-9 0 18 1 17 2 16 18 

Lane 101-10 2 26 2 26 3 28 31 

Phillips 88-4 0 22 0 22 0 22 22 

Phillips 88-6 0 17 0 17 0 17 17 

 

*Plants that survived 3 WAT were classified as glyphosate-resistant and plants that were dead 

were classified as glyphosate-susceptible.
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Table 2.2 Growth reduction from glyphosate and resistance index for parental lines.  

Population GR5 GR50 GR90 RI 

 ----------------------kg ae ha-1 ----------------------  

S 0.08 (0.04) 0.37 (0.06) 1.16 (0.32) 1 

R 0.22 (0.14) 1.27 (0.23) 4.71 (1.59) 3.44** 

 

GR5: glyphosate dose required to cause 5% growth reduction; GR50: glyphosate dose required to 

cause 50% growth reduction; GR90 glyphosate dose required to cause 90% growth reduction. 

Values in parenthesis are ±1 standard error.  

**; RI value significantly greater than 1 at p < 0.01. 
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Table 2.3 Phenotypic segregation of F2 families to 870 g ae ha-1 glyphosate 3 WAT. 

Family Alive (R) Dead (S) Total χ2 

SxR #1 5 2 6 0.222 

SxR #2 11 8 19 2.965 

SxR #5 4 2 6 0.222 

SxR #8 17 2 19 2.123 

RxS #3 16 5 21 0.016 

RxS #9 5 1 6 0.222 

RxS #12 14 3 17 0.490 

RxS #13 13 8 21 1.921 

All F2 Plants 85 30 115 0.072 

 

Chi square goodness of fit (df = 1, α = 0.05) testing for 3:1 (R:S) segregation with a critical value 

χ2 = 3.84. A calculated χ2 < 3.84 indiciates the observed segregation is in accoradance with the 

expected segregation (3:1).
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Table 2.4 Phenotypic segregation of F2 progeny 3 WAT to 870 g ae  ha-1. 

 Alive (R) Dead (S) Total χ2 

F2 Plants (SxR) 37 13 50 0.027 

F2 Plants (RxS) 48 17 65 0.046 

Pooled F2 Plants 85 30 115 0.072 

 

Chi square goodness of fit (df = 1, α = 0.05) testing for 3:1 (R:S) segregation with a critical value 

χ2 = 3.84. A calculated χ2 < 3.84 indiciates the observed segregation is in accoradance with the 

expected segregation (3:1).
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Table 2.5 Phenotypic response of F2 progeny to various rates of glyphosate 3 WAT. 

Glyphosate Dose 

(g ae ha-1) 
F2 Progeny Response 

 Alive (R) Dead (S) Total χ2 

0 4 0 4 1.333 

218 3 1 4 0.000 

435 2 2 4 1.333 

870 2 2 4 1.333 

1740 9 3 12 0.000 

2610 7 5 12 1.778 

3480 10 6 16 1.333 

Pooled 37 19 56 2.381 

 

Chi square goodness of fit (df = 1, α = 0.05) testing for 3:1 (R:S) segregation with a critical value 

χ2 = 3.84. A calculated χ2 < 3.84 indiciates the observed segregation is in accoradance with the 

expected segregation (3:1). 
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Table 2.6 Chi-square analysis of relative EPSPS gene copy number segregation in the F2 

progeny. 

 

Plante with 3 or 

more EPSPS 

Gene Copies (R) 

Plants with One 

EPSPS Gene 

Copy (S) 

Total χ2 

F2 Plants (SxR) 11 4 15 0.022 

F2 Plants (RxS) 29 7 36 0.592 

Pooled F2 Plants 40 11 51 0.320 

 
Chi square goodness of fit (df = 1, α = 0.05) testing for 3R:1S segregation based on EPSPS gene 

copy number with a critical value χ2 = 3.84. A calculated χ2 < 3.84 indiciates the observed 

segregation is in accoradance with the expected segregation (3:1). 

 


