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I . INTRODUCTION

The problem of the reflection of an acoustic plane wave from

a plane interface separating two isotropic media has been solved

by many physicists and geologists. Exact forms of the generated

waves are given, related to the incidence angle and the acoustic

impedance$.of the media. Brekhovskikh extended the work to deal

with a layer having plane interfaces. The nature of wave scatter-

ed by a layer with rough interface, however, is generally unknown,

The backscattering of acoustic wave from a rough layer is

analyzed in this report. The model of the layer considered con-

tains a smooth interface in front and a random rough interface

in back. The Kirchhoff's approximation for evaluating the scat-

tering field of a rough surface (Beckmann 1963) is extended to

deal with such a layer; experimental work has also been done for

this model at different incidence angles and frequencies.

A tentative try is also made on the evaluation of back-

scatter from a layer with a very rough surface in the front.

Equations are derived for this layer with no experimental

support.

Owing to the analogies between acoustic and electromag-

netic waves, the results of this work can be directly applied to

the same problems in electromagnetic waves. The radar cross sec-

tion is obtained just by modifying the variance of the scattering

coefficient with a scaling factor. Application of the results

can be found in the survey of lunar surface and in geological

explorations.
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II. EQUATIONS OF ACOUSTIC WAVE MOTION

2.1 Stresses, strains , and elastic constants

In an ideal isotropic homogeneous medium, a wave may propa-

gate without any loss of amplitude due to internal friction. When

the medium is defomable and undergoes a change in configuration

due to the application of forces, the body is said to be strained.

(Redwood 1960, Ewing 1957). It is assumed that a point P (X , Y,

z) is displaced, and the coordinates of the displacement are (u,

v, w) . An adjacent point Q(x+6x,y+6y ,z+6z) is displaced by (u+

6u,v+5v,w+6w) . By Taylor's theorem, neglecting the higher terms

under the assumption of small perturbation,

u + 6u = u + {H 6x + |H 6y + |H 6z ,

v + 6v = v + |X 6x + jX 6y + |Z 6Z , (2.1)

w + 6w . w + |* 6x + »S 6y + || 62 .

The analysis may be simplified by writing

3u 1Z - e
3w _

3x
=:

xx ' 3y " yy ' 3z
'" zz '

3x 3y " e
xy " yx ' 3z 3x " zx "" xz

3y 3z yz zy '

— - — co iH-iZso) 3w 8v m |

3x " 3y z ' 3z 3x y ' 3y " 3z
"' x
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Then the displacements may be rewritten as

u+6u=u+(exx
6x+ie

xy
6y+ie

xz
6z) + (u)

y
6z-u>

z
5y)

v+6v=v+(^eyx
6x+e

yy
6y+|eyz

6z) + (a)
2
6y-u)

x
6x) , (2.3)

w+6w=w+(^e
zx

5x+je
z

6y+e
zz

6z) + (uj
x
6y-(o 6x)

e , e , e represent simple extensions of the medium in the
xx ' yy zz r

vicinity of P (x, y, z)

;

e , e , e represent the shear strains; and o> , , w repre-
xy ' yz' zx * x y z

sent the rotation of the element as a rigid body.

To express the displacement in vector form

s = ux„ + wz^ + vy„ ,
(2.4)

o o o

where x . v / and z are unit vectors in the directions of
o o o

x-, y-, and 2- axes, respectively.

For small perturbation, the shear strain is so small that it

has no contribution to the volume change. Then the cubic dilata-

tion A is defined as

A = lim
(6x+exx 6x)

(6y+e
yy

6y) (6z+e
zz

6z)r6x6y6z {25)
6x,6y,6z->-0 6x6y6z

= e + e + e
xx yy zz

= div s ,

and the rotational displacement u becomes
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•*«*» *•

x o y-^o z o

= j curl s . (2.6)

To discuss the force acting on an element of volume in a

medium, nine components of stress, which have the units of force/

area, are required. Let the stresses be denoted by t * . , where

the first subscript is associated with the axis normal to the

place on which the stress acts, and the second subscript to the

direction of the stress. In an isotropic homogeneous medium,

there are only two elastic constants, Lame's constants X and y

.

to relate the stress and strain together. In the case of ideal

fluid and ideal gas u 0. The stress and strain relations by

Lame are as follows:

t =X (e +e +e )+Zye =XA+2ue
xx v xx yy zz' ^ xx xx

t «x (e +e +e )+2ue =XA+2ye
yy xx yy zz yy H

yy
/

t =X (e +e +e )->2ue =XA+£ue ,

zz xx yy zz 7 M zz fcH zz '

t =t =pe =ye , (2.7)
xy yx xy yx '

t =t =ue =ue ,

yz zy M yz M zy '

t =t =ue =ue
zx xz M zx xz

From (2.7), other elastic constants can be derived as follows,

(Lamb 1925) :



-5-

(a) . Uniform stress and dilatation, t v =t =t , and

x = T - T =(X+|-u)A=kA
xx yy zz 3

2
k=(X+-=-y) is the compressibility,

(b) . Shear stress t as defined by Eq. (2.7)xy

T T T
xy _ yz _ zx

M e e e
xy yz zx

is the coefficient of rigidity,

(c) . Longitudinal stress, t v=t zz
=

m y(3X+2y) m
xx X+y xx xx '

E is the Young's Modulus.

(d) . Poisson' s ratio, a , represents the ratio of lateral

contraction to longitudinal extension. In this case,

T
yy

= T
zz " ° '

e
yy " e

zz
= oe

xx '
and °

=
aTI+yT

The constants X, y, k can be expressed in terms of Young's

Modulus and Poisson 's Radio:

X Lame's constant =

V

(l+o) (l-2a)

= Rigidity = ^ 1+p) , (2.8)

E
k = Compressibility =

^ /i_j \

2.2 The equation5Qf motion

According to Newton's equation of motion, the x-component of

the resultant force on the volume element is
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(p6x.6y 5z)0 = (t
xx

^x
6x- Txx ) 6y62

+ < Tyx
+ -^* 6y- Tyx)6Z6x

3t
zx

+ ^« + -arl8M«,6x6 y

3
2u

. ,

3xxx ,

3Tyx t

3t
zx

,or
'

p ap-" ( "ax" + "ay" + ^i~ >

/

where p is the density of the medium. For an isotropic homo-

geneous medium, Equation (2.7) holds, giving

" fc (u+2ue
Xx»

+
37 (UV + h <»•«>

5A 3to 3u>

Similar arguments apply to the y-, and z- components, so that

3 2 s -*

p jp- = (X+2y) grad A - 2p curl w . (2.9)

Equation (2.9) is the equation of motion in an isotropic medium.

It is usually rewritten in the form of displacement potentials
<J>

and % by the following transformations

s = - (grad
<J>

+ curl $) , (2.10)

div ty -
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Substituting (2.10) into (2.9),

p—-(grad <j)+curli^) = (A+2y )grad(V<()) -ucurl (curlcurl^) ,

at

p—
9 (grad<{i+curl|) = (X4Z;M)grad(V <j>)+ucurl(V J), (2.11)

3t
z

2 . 2
where V denotes the Laplacian, defined by V Div. Grad $

_ 2-*- •*
, •* , +

for a scalar <|> , and V $ = Grad Div ijj-curl curl ij) for a vector ij/.

In the cartesian coordinate system,

2 2 2

v
2 =i- + i- + i-

2 2 2
3x 3y 3z •

By taking the divergence and curl on Equation (2.11) the scalar

and vector potentials can be separated:

9
2

4> .. r 2 2 2 . A + 2p . ,- ,_.—£ - C. 7
<f>

, C. = r
; (2.12)

3t < ^ p

i4- C Vj , C
2 = H.

. (2.13)
3t

2 s s p

In Equation (2.11) and (2.12), the scalar displacement

potential $ travels with velocity C» and involves no rotation; it

is called "longitudinal", or "compressional" , or "dilatational"

or "irrotational" , or "P-Wave"; the vector displacement potential

i|» travels with velocity C and involves rotation; it is called

"shear", or "transverse", or "lateral "
, or "equivoluminal" , or

"rotational", or "distortional" , or "S-Wave". The names Longi-

tudinal and Shear waves shall be used throughout this report.
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In ideal gases and fluids, the ordinary acoustic wave init-

iates a wave motion in which the sign of dilatation changes very

fast so that there is no time for sensible transfer of heat be-

tween adjacent portions of the medium. The flow of heat hardly

sets in from one element to another before its direction is re-

versed, and the conditions are practically adiabatic. Moreover/

since u o, no shear wave propagates in an ideal gas or fluid.

The Lame's constant X for an ideal gas is found to be

X = K , = \Pn (2.14)
ad o

K ,: adiabatic compressibility,

X : (specific heat at constant volume) /(specific

heat at constant pressure)

,

P : gas pressure.

In an ideal fluid, X = K , is usually influenced by many

factors. X is related to the longitudinal wave velocity C
&

by C, /x/p , and an empirical equation giving C, in water is

C^ = 141, 000+4. 21t-3.7t
2
+110s+0.018d, (2.15)

C. = longitudinal wave velocity (cm/sec)

,

t = temperature (C)

,

s = salinity (1/1000 in weight)

,

d = depth (cm)

.

2.3 General equation- for damped waves

The dissipative forces in acoustic wave motion are propor-

tional to the velocity of the particles in the medium for small

perturbations. The force of the elastic stress must both accel-

erate the medium and overcome the dissipative forces, so the

equations of motion, Equations (2.11) and (2.12) are modified

(Kinsler and Frey 1950) as follows:
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^4 + 7 if- C,
2
V
2
4>, (2.16)

9t
2 p 3t *

ll + a || = C V* ,
(2.17)

3t
2 p 3t S

,.1. c (mass ) (time)
where n has the unit of

(volume)

The general solution of Equations (2.16) and (2.17) has the

usual form E = Ae1 *
X

•
r_U)t)

, where r is the distance from certain

reference point. Substituting into Equations (2.16) or (2.17),

the propagation constant X is found to be

X = K+Kat

where

K = o)/C is the wave number,

a = n/2pC is the attenuation constant.

For water at room temperature, the attenuation constant is

about one thousandth of the value of air. For this reason,

ultrasonics are very well suited for underwater signal transmis-

sion as opposed to the case in air. As for the possible shear

waves transmission in viscous gas and liquid, the skin depth is

found to be /2£/po> , where K is the shear viscosity.

These waves behave very much like electromagnetic waves

penetrating a metal. For water at 1 mc, the skin depth is only

5.6 x 10~ cm. In most cases, shear wave propagation can be

neglected in gases and liquid.



3. REFLECTION OF PLANE WAVE FROM A PLANE INTERFACE

3.1 Boundary conditions

The continuity of normal and tangential components of dis-

placements and stresses across the interface give the following

boundary conditions (Brekhovskikh 1960) :

-* ,-*-* \

n . (s
1
~s

2
)=o ;

n x (s
1
~s

2
)=o ; (31)

n . (t
1
~t

2
)=o ;

n x (t,-t
2
)=o .

Taking the z-axis as the normal to the plane, Equation

(3.1) can be expressed in terms of displacement potentials $

and <(i as,

n s w v az 3x 3y ' '

nxs=-ux
o
+vy

o=(^ + ^ - ^) x
Q

+ (-j* - ^ + ^ J yQ ;

n.T=x
zz

=a, ^ +^ —£«.—* + niy ^Brg^.
s

^= - t zx^o
+ T

zyy

,2. 3
2
^, 3

2
*, 3

2
1\, 3

2
*v

o" U
\
Z

- 3x3z
+

3y3z Tz
7"

3x*
3x3y /

L»ii + !!i
a2 *x

+
!^x »

2

».w
"^ SySz* 3y3z 7~2"~

a
_2 3z3x /

yo
3y 3z

3.2 Reflection of waves at the interface of two isotropic and

homogeneous media

Let A, B, and D represent the amplitudes of the potential

of incident, reflected, and transmitted waves, where the subscripts

-10-
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% and s denoting longitudinal and shear wave (Fig. 1). Accord-

ing to Huygen's principle, the phase velocities for each wave

are equal at the boundary, therefore,

C
1A .

C
ls .

C
l& = ^ls m

C
2i m

C
2s

p " sine, ' simr, ' sine,' ' slnff sine
2

"' sinf
2

It is shown that the longitudinal or vertically polarized wave,

ty =$ y , is always reflected and transmitted in the modes of

longitudinal and vertically polarized shear waves (Brekhovski Kh,

1960) . In other words, the vector displacements potentials in-

volved can always be assumed to be in the direction of the

y-axis and independent of y. The potentials in media #1 and #2

are assumed as follows:

l=A »* exP [ iK 1A (xsine
i
+zcose i) J + Bj»exp [ iKj (xsinOi - zcos6i)]

^!=A »exp [iK (xsin^+zcosK^) lyo
+B

s
«exp [iK^xsint^-zcosYj) ]yQ

<(>2=D exp [iK
2

(xsine
2
+zcos6

2
) ] ,

^ 2
=D exp [iK

2
(xsinK'

2
+zcosir

2
) ] . (3.3)

The boundary conditions at z=0 are

3$ 3* 3$ 3*—=- + * = —- + cY. (3.4)
3z 3x 3z 3x

|J **'

- - =%- m - - =2- (2 5)
3X 3Z 3X 3Z VJ,:"
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Is 2s

2»u5i? +
»'(i^ - ^i = 2"^ + »

2(^ - ^y •
« 3 - 7 »

Upon substituting Equation (3.3) into Equations (3.4), (3.5),

(3.6) and (3.7), the boundary conditions are expressed in terms

of potentials as follows:

(ArB
l
)Kucos6 1 +(As+Bs )K lssinri=D Jl

K
2jl

cose
2
+D

s
K
2g

siny
/

2 , (3.8)

(A
i
+B

t
)K

li
8ine

1
-(A

8
-B

8
)Kl8

C06f
1
-D

i
K
2l

8ine
1
-D

8
K
28

C08jr
2 J (3.9)

v

p l
(A

*
+V (

l-2-¥*L*2
*i) +Pi (As~B s ) sin2 ^i

"

ls
2

K
P 2

D
Jl

(l-2-|^sin
2
e
2
)+p

2
D
8
sin2/

2
(3.10)

K
2s

K
2

p I*
A£~B

i* -2
-"sin2e

1"Pi^
A> +%^ cos2,f

'i
=

Is

P 2
D
£

^2~-sine 2"" p 2
D
s
COs2 ^2 *

(3.11)
K
2s

By setting As , or A^ equal to zero, corresponding to longitudinal

or shear wave incidence, respectively, the amplitude of the

generated waves can be expressed in terms of the amplitude of the

the incident wave potential. It is to be noted that when the

incident angle is small, all the sinusoidal term tends to the

limits 1 and 0. Then the boundary condition is further simplified

to

<W KirD
*
K
2l »

< 3 ' 12 >
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-
(VB

s
)K

ls=-
D
s
K
2s ; (3 ' 13)

-
Pl (A

t+
B
t
)-p

2
D
t

; (3.14)

"
p l

(VB
s
)=- p s

D
s •

(3 ' 15)

Solving Equations (3.12) f (3.13), (3.14), and (3.15)

B
£

p 2
Czr p l

C
l*

D
*

2p
2
C
2£ p l

A
t

P
2
C
2£+P 1

CU ' k
t

p
2
C
2A

+p
l
C
l* p 2

fs ? 2
C2s-?l

C
ls

D
_s £ p 2

C
2s ^1

A
s

" p s
C
2s

+p
l
C
ls'

A
s

"'
p 2C2s

+p
l
C
ls p 2

(3.16)

(3.17)

Equations (3.16) and (3.17) imply that when the angle of

incidence is small, no change of mode occurs at the interface

of acoustic wave motion. This is a very J important limitation

in the acoustic simulation problem. The angle of incidence has

to be very small if change of mode is to be avoided in the

experiment.



4. THE GENERAL KIRCHHOFF SOLUTION FOR SCATTERING
FROM ROUGH SURFACES

4.1 General solution for surface with one dimensional roughness

Beckmann (Beckmann, 1963) has derived the solution for the

mean scattered field, power, and the statistical distribution of

those quantities by the Kirchhoff approximation method. The

principal limit of the approximation is that the surface must

not contain a large amount of sharp edges, sharp points or other

irregularities with small radii of curvature. The criterion for

the validity of the approximation is given as

4Kr cos6>>\ ,c '

where r is the radius of curvature, 9 is the local angle of

incidence, and A is the wavelength of the wave.

The rough surface is given by the function

5 - 5(x) (4.1)

with mean level coinciding with the plane

z = . (4.2)

The medium in the space z>£(x) is assumed to be isotropic in

which a monochromatic plane longitudinal wave

El=e
ik

l
,r- ia)t

(4.3)

is transmitted, where

K =il . Kl (4.4)
1 A K 1

is the wave number of the incident wave, which is assumed to

lie in the xz-plane (Fig. 2) , and f is the radius vector

r - xx
o
+5(x)z

o m
(4.5)

-15-



-16-

The angle of incidence is denoted by B^, the scattering angle

by 6
2

, where the magnitude of k
2

and k
1

are equal:

[*2 I
- I^J = K - X

1
• (4.6)

iL also lies in the xz-plane for a one-dimensional rough scat-

tering surface.

In order to deal with plane scattered waves , the observa-

tion point P is removed to the Fraunhofer zone of diffraction,

R'-k», where R' is the distance from P to a point B(x,£(x)) on

the rough surface (Fig. 2). In other words,

K
2
R'=K

2
R
o
-K -r , (4.7)

where R is the distance of P from the origin. The scattered

potential E_ at P is given by the Helmholtz integral

where +
iKR' iKR -iK„ -r

e . e o z . .. Q .

*
=
-IP- * R^

(4 ' 9)

3E
E and -2— are the potential and its normal derivative on the

rough surface S. The values of those two quantities are approxi-

mated in the Kirchhoff method by the value that would exist on the

tangent plane at that point, i. e.,

(E)
s

= (1+R^
,

(4.10)

Os " i(1-R)ElV"/ (4 - ll}

n is the normal to the surface at the considered point B (Fig. 3)

and R is the longitudinal wave reflection coefficient of a

smooth plane.
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Then

= 6,-8 = 9, -arc tan?1x) . (4.12)

Substituting Equations (4.9), (4.10), and (4.11) in (4.8),

(P) =
J7)j

(l+RjE^-i K
2
nl-ifll-RlE^-n ds

= J.JT ei(V^2>'^ R(^^
2)-(^2

) -S ds,

E.

or

where

E (P) = ie^)J
s

(E^)eiv
* r ^ds (4.13)

iL = K(sin6,x -cos6,z )

,

iL = K(sin6
2
x^+cose

2
z )

,

n = -sinBx +cos8z^ .

o o '

r = xx +£ (x) z.
o /

J =V2
2

= K(sin8,-sin6 )x -K(cos6,+cose ) z^l / o 1 z o

? K(sin6,+sine )x +K(cos6 -cos8, ) z\
l, z o z i o

ds secSdx, ta.ft3=S'(x) .

For a one dimensional rough surface extending from x=-L to L,

Equation (4.13) may be rewritten in the scalar form.

« ik^kM L
(as-b)a

iv x+iVdx (W)
E2--nR^-j.

L



-19-

where

a= (1-R)sine
1
+(1+R)sin6

2
, (4.15)

b = (l+R)cos6
2
-(l-R)cose

1
. (4.16)

The scattering coefficient p is defined as

p-!U . (4.17)
E
20

Where E2Q is the potential reflected in the direction of specu-

lar direction (65=6,) by a smooth plane medium-air interface

of the same dimension. In this case

Vv =o, 5 J' Oi R = -1, e
1

= 8
2x

so that

.. ikR
f

L
ike

ikRo f

L
„

E
20 " ^fef— "

bdX =
^o~~ "

2RC°Se
i
dX

'

or

ike^Lcosei . (4-18)
20 1rRQ

Hence, from Equations (4.14), (4.17), and (4.18),

1 f
L
(ar-b)eiVxX+iVz5dx . (4.19)

4Lcos6,
1 /-L

For a smooth surface,

where

p = 1—_ \ (1+R) cose-- (1-R) cose, e
lVxXdx

* 4Lcos6, 2 1

J -L

. _ (l+R)cose2-(l-R)cosei . S incv L , (4.20)
2cos6,

sin V
x
L

sine V Lx" V..L
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As a special case, if R=-l, then p in Equation (4.20) becomes

p = sine V L . (4.21)
o x

For a rough surface with constant reflection coefficient R, a

and b are constant; from Equation (4.19),

P =
4Lcos

1

5T "-, ,-*-* T I>

e
AV ^dx- — e

-L
z U -

= - -

1
fl

.
2R+2Rcos(9 1+9 2 ) f

L
e^dx-e (L) .

4Lcos9
1 cos9

1
+cos9

2

The second termacounts for the edge effect tends to zero when

L>>\. Thus, ignoring the edge effect,

p = L.f
L
e^dx , (4.22)

2L J-L

where

F = - Rsec . = 1+cob(9i+9 2 ) (4#23)
1 COS9,+COS9

2
'

v-r" - ^|-[(sin9
;L
-sin9

2
)x-(cose

1
+cos9

2
) 5(x)] (4.24)

4»2 Rough surface as random process

The surface height £ (x) is assumed to be a random variable

assuming values z with a probability density w(z) , the mean

value, denoted by angular bracket <> , is

<Ux)> = , (4.25)

and the mean value of the integral for a stationary random

surface is



-21-

ivr, ivvx iv~C ,
e dx =e x e z dx

-L -L

e e
iv*xdx

= X(v
z

) e x dx

-L

(4.26)

x(v z ) \ w(z)e z dz is the characteristic function associ-

ated with the distribution w(z) . From Equation (4.26) the mean

scattering coefficient

<P> - jg x(v z )sinc vxL (4.27)

The variance of the scattering coefficient D{p} corresponding

to the mean of the normalized scattered power is defined as

<pp*> H
E
2

.2

20
> = D{p} + <pxp*> (4.28)

The asterisk * denotes the complex conjugate, and from Equation

(4.22),
-L rh

pp* =

41/

.iVxCxi-x^) e
ivz ( 5l

-5
2

) dxidx2

'-l ; -l

Denoting eivzU 1~K 2 ) &Y X 2
tv

z
~v

z )'
then from Equation (4.28),

L /-L

pp * -

41/
l-L

X2CvZ r-vz ) e
ivx (x

l~
x
2

) dx
1
dx

2

-L
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"h"e

x,(v,-v , . e
iv «i-«i> " L L •t'i.-a>-

iT
- Ul

"
la>-i-a

'2 NV
z

v
z

and

C,= S(x,) , e,*?(x,) •

X 9 (v ,-v ) is the two-dimensional characteristic function
£a Z Z

of the distribution w( z
1

, z
2

) . The random rough surface is

assumed to have a Gaussian distribution

1 2 /0 2
. -z /2o^

w(2) = /T^2 e
< 4 - 30)

and the two-dimensional distribution is

w(z,,z,,t) =
g

-exp
1 ^ 2iro^/l-c2( T )

2 2
z, -2c(t)z,z

2
+z

2

2a
2
(l-c

2
(t)J

(4.31)

2 2
a ss <z > is the variance of the rough surface,

<
z
l
z 2>

c(t)= * is tne autocorrelation function of the rough
< z, >

surface,

t=x,-x
2

is the separation factor between two points x,

and x~«

The autocorrelation function usually assumes the following two

forms:
2 . 2— x /T

(i) . c(x)=e
,

gaussian correlated, (4.32)

—
I T I /T

(ii) . c(x)=e ' " exponentially correlated, (4.33)

T is called the correlation distance, which is much less than

L to assure a random surface.

The one- and two-dimensional characteristic functions are
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evaluated as below (Appendix)

:

2tto

1 2 2

= e" ¥ Vz

1_. e"
22/20^1

e
xv z" dz

where

2 2
g = a v

2 5

X 2
(VZ'-V2 )

=
- x iv.,(z,-z ), -„

w(z,,z
2
t)e z> 1 2 dz^z

2

(4.34)

(4.35)

— 0L» I —00

- exp -g(l-c(x)) . (4.36)

From Equations (4.22), (4.26), (4.28), and (4.29), the variance

of p is

D{p} = <pp*>-<pxp*>

„ r L r L

4l/

e
ivx

(x
1
-x

2 )
X2 (v

z
,-v

z
)-x(v

z
) x*(vz ) dXldx 2

,

'-L >-L

Using the relative coordinate x already defined as

T = X
x
-X

2 ,

and introducing the center-of-mass coordinate

*o
=
7 (X

1
+X

2
)

the equation (4.37) can be rewritten as

(4.37)

(4.38)

(4.39)

D{p}=^ dx
4l/i-L °;-2L

[

C1J
^ 3(x,,x,)

o l m * x 2
(t)-xx*] jjzhj-^

2 r2L

-£-.,. 2L. [e
iv* T X z

(T)-x.X*l-det

4L
1-2L

1 -1/2

1 +1/2
dx

2L

=
2T)_

2f
VxT

L*2<
T >-XX*>T •
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From Equations (4.34) and (4.36), D{p} can be expressed in terms

of c(t) as

D{p}=F!e-^
2L

e
ivx T

(e*
cCT) -l)dT . (4.40)

2L
/ -2L

Two kinds of correlation functions, Gaussian and exponential,

are considered for g<<l
?
and g>>l .

(i) . Gaussian correlated surface,

(A) If g<l, e
gc ^ T 'can be expanded by a uniformly

convergent series.

2L
-2 f » m m,_v

«/ i f --g\ «lvx t Z. g c ULa ,
2L

J-2L
m X m *

If g<<l,

=F
2

-g\ ivx x £ g
m
c
m

(T )dT, since L>>T
2L

6
J

_® m=l ml

2 2

_ /ttTF -g ^ _g__ e—j . (4.41)
2L

e
m= i m!/5T 4m

D{p} =
/l|F!g. exp ^-Vx

2
T
2
/4 ^ ; (4.42)

g*l

_^2 e
-Vvx

2
T
2
/4

< D{p} <
£**! . (4.43)

(B) g>>l,

,2 r2L tmm /-,_.-^
2
/T ?

, .1 dx

zr 2L
-t

2
/t

2
»

. £\ e
ivx T

e
-g(l-e /

Jtl2p
2
e
-g

2L
J-2L

sinc2v L

|!r e
ivxT

e
-g(i-e-

T2^2

; dt
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Because g is much greater than unity, the integrand is neglible

if t/T is not in the close vicinity of zero; the integral is

therefore simplified as

D(p% = ,ivx^-g[i-(i-^
2/T

2
)]dT

21" 2 2

= |_ e
ivx Te^ T /T

dx

TF ir

2iT? exP

2 2
(4.44)

4g J

(ii) . Exponentially correlated surface: the same procedure

in (i) can be followed.

(A) g<l,

.2

D{p}
^?*

e
-g 2 SL^ /St

_m -„2

ml" "XT
(4.45)

m*l m +v
x

T

if g<<l,

{p } = —t— •
*J—D{p

L 1+vx^2
(4.46)

(B) g>>l,

F ciT
Dtp) = — • TTX 2 '

g*+v
x

T
(4.47)

4.3 Statistical distribution of the field

The mean scattered field and power is show/? in Equation

(4.2); the probability distribution of those quantities can be

found by looking at the random variable p . From Equation

(3.22),
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-L 3

j-l

= re
1 * . < 4 - 48 >

A = £M i s a constant, and $ . is a random quantity. Beckmann
L D

has shown that for a very rough random surface (g>>l,<p>=o)

with zero mean <p>=o, the distribution of the resultant phase \|>

is uniform

wU) = i- , -»<<», (4.49)

and the distribution of the amplitude r is Rayleigh distributed

2

P

The variance of pp* is found to be

w(r) =
§f-}

•"* /° {p}
. (4.50)

D{pp*}=\ r
4p(r)dr-D

2
{p}

'0

r-
2r

5
e
-r

2/D<p>
dr_D

2
{p}

-)
o

dTp"}

. D
2
{p} (4.51)

The standard deviation of pp*

/D{pp*} = D{p} (4.52)

The normalized scattered power pp* is found having its mean

value and standard deviation equal to D{p}

4.4 The effect of absorption in the medium

The presence of absorption of the space in which the wave
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is transmitted has a great influence on the mean scattered

powers. The damped wave equation has a general solution

„ ik«r (l-ia/k)-iwt
hi — e t

which implies a change in the value of V"
x

and V"
z
of Equation

(4.13)

.

Let

V = V - i^ V ,vx
v
x

X
K

v
x '

V
z " V

z
" *t

V
z '

x{vn = .J_( e
-z

2
/2a

2
Qi(vz-iaVz )

Z
dz

Z tt)
e
AVV z *F

Hence,

2 2., r 2 2 2
= e

10 v
z

a/k
. e-|5_|z_(i-°L_j

/ \ * i \ ~g (l-a A )x(v
2
)x*(v

z
) = e yv '

(4.53)

(4.54)

The two-dimensional characteristic function x„ iv",-v') is

X(vW) - ^B
r.^«<W-Vk)Cl-o)-i.i-^di,

2o'

(Zj-CZj)

6" 2a^(l-c 2
) e

ivz (l-ia/k)(zr«2 ) d( c ,
00

/2tto2(1-c2)
1 2

2« 2
ig°A - |(l-o A

\ e
i(l-c)v

z
(l-ia/k)z2

^2\o2

. e
igocA

>e
-g(i-

a2A2
)(i-c) #

, e"
(Z2/2a)

dz.

(4.55)
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D{p} . |!\ e
iv

x
T

e
igac/k

.exp -g(l-a
2
/k

2
)(l-c) -exp [-g (l-a

2
/k

2
)]dx

2
L )-2L

For a very rough surface (g>>l) , c(t) is significant only for

very small value of x/T,

D{ P )=f Vvx .exp [-gd-aV^ld-OJe^^dT ,

or

D{p} = |_ e
ivx x exp [.g( i. a

2
/k

2
)(i-c )] dT . (4.56)

From the analogy between (4.56) and (4.40), the variance of p,

i. e. D{p} is

(i) . Gaussian correlated surface:

Dtp} - -j 5 T~ ' exP
L g(l- a

2/k2 )

2 2
V 'l
x

2—2~

4g(l-aVk'
(4.57)

(ii) . Exponentially correlated surface:

n/ \ - p2 g(i-*
2
/k

2
)D{p} =

L ^
" 2„2

(4.58)
L

g
Z
(l-a

2A2
)

2
TvV

Equations (4.17), (4.57), and (4.58) shows that the abosrption

will reduce the value of <EE*> , and high-frequency wave causes

more attenuation than a low-frequency wave.

4.5 Limitations of the general Kirchhoff method applied to

acoustic wave scattering

The acoustic wave reflection coefficient is a function of

the local angle of incidence, or alternatively, is a function of

6, , and Ctx)

.
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R = R(e) = R^ - arctan'U) . (4.12)

The approximations of <a5'> and <b> in Equation (4.14), which

are always used for varying reflection coefficient case, are

much more complicated in the acoustic wave scattering problems.

Owing to the elastic property of the medium when 6^ increases,

the generated waves change mode from one to another and the

reflection and transmission coefficients change very rapidly.

If the rough surface is chosen to be a gently rolling surface

(T>>a) , the probability distributions of the slope w(C') are

(i) . Gaussian correlated surface:

w(S') -=== exP
/4tto^

2,12

4a
(4.59)

(ii) . exponentially correlated surface:

(4.60)

wU') in Equations (4.59) and (4.60) imply a more dense distri-

buiton in the neighborhood of zero slope. If 8, is also chosen

to be small angle, the value of R can be averaged over as

R(e
1
,5') " R(C'=<£>)= RO^ , since <£,'> = o . (4.61)

For longitudinal wave incidence with 9,=0, from Equations (3.17)

and (3.16), the reflection and transmission coefficients are

defined as

Reflection coefficient

R
12 (6

1
) = Z 2" 2

1 , (4.62)
Z
2
+Z

l

Transmission coefficient

D,,(e,) = ;r%-& > (4.63)
Z
2
>Z

1
?'

I



-30-

where

z .
P±1L

, lf. !l2li . (4.64)z
2 cose

2
' X cosSj^

If the #2 medium is free space or air and the #1 medium is

liquid or solid

RlB^ = -1 ,

RO^ = .
(4.65)

Under the previous assumptions, a and b in Equation (4.14) are

considered to be constant and the general Kirchhoff approximation

can be applied to the acoustic wave problems.



5. ACOUSTIC WAVE SCATTERING FROM LAYER

5.1 Layer with rough interface in the back

The evaluation of the scattering field from a very thick

layer with roughness in the back is a direct extension of the

scattering of a rough surface. Thickness d (Fig. 4) is assumed

to be

d >> L,

so that the smooth boundary of the layer is at the far field of

the random rough boundary. The layer to be discussed is a layer

without absorption, so that the wave can transmit in it with-

out attenuation. The smooth interface has the following char-

acteristics, at z = d:

|E
3

|
= D

12 | El | ,
(5.1)

|E
2 I

= D
21

|E
4 | ,

(5.2)

where E., E,, E-, and E
4

are shown in Fig. 4, and D
12 , D

21
are

the transmission coefficients.

1
2Z

2

12 " m z
2
+z

1

2Z
1

D„, « m
21 " z 2+Zl

Z
2 " P

2
C
2^

Z
l

= P 1
C
1«

n
2

(5.3)

m =
p
1

The rough surface in the back has the same statistical properties

as before. Then,
-Tl-
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E
x

- e
ik

l*
E+ik

3
dsGce

3 , (5.4)

E
3

= D
12

e
iJt3- ?+ik 3

dsec9
3 , (5.5)

The mean scattered field <E
4
> at a distance R^ from the origin is

.. _ iic^r", +ik-dsec8,
lk-Le 4 13 3 -a/2 P

<E„> = — = D-.cos e,e y/
• «f sine v L, (5.6)

4 irR, 12 J lit x

where g and vv is related to k- and

jL = k
3

(sin 6
3
x
Q

- cos 9
3

z
Q ) ,

2P

c, sin 6, sin 6-

n ^ = lp = —

,

i. = —

,

-=- is the Snell's refraction index. The
12 c, sin 8, sin 8.

2p 3 4

mean scattered power for a very rough surface (g>>l) is

k
2
L
2

, TF 2
2
rr~ v

x
2
T
2

<=4E 4* > = T7 C°S 9 3*2lT
D
12

/ 9 '
eXp[ - "Tg" ]

'
(5 ' 8)

it R,

After passing through the smooth interface, the mean scattered

field and power, from Equations (5.2), (5.6), and (5.8), are

ik,Le
ikR

o
+ik

3
d(8pce

3
+8pce

a )

_a

<V " WR +2dsec^)
^D
12

D
21

COse 3'2L*
e 9«^V '

o J

(5.9)

k
2
L
2
D.

2
D,

2
COS

2
8. TF2 ^r— v V

<E
2
E *> = -|

12 21
2

i-S- /-| exp [- -f—] .(5.10)
2 2

tt

2
(R +2dsec8.)

2 2L / g 4g
o J
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Since

ikLe
lkROcose

1
E
2o

=
inr '

o

2 2 2
k L cos e,

^20=20** = TT2
w R

o

so that, for R >> 2dsec6
3

,

<E~> . ^,. j cose.<E~> . ~, , „ COS6- _ _ /-
2 ,-, rv ^ i2k,dsec6-, 3 »F.-g/2 .__,, T

<P> =
"^20

=Vl2 D
21

e 3 3( ScTe^ ) 2T
e sincv

x
L

(5.11)

Using Equation (4.37), the variance of p can be calculated for

different statistical properties of the rough interface.

(i) Gaussian correlated surface:

2

~r i 2„ 2„ 2 r

COS 9
3 , TFf /it avrs ,

V
X *

,

D{p} = n
12

D
12

D
21 [ 2~],

2L- /g 6Xp [ 5g~]
'

9 2 2
cos

z
6, m„2 ,— v„t*

1

(5.12)

(ii) . Exponentially correlated surface

2 acos e, „2
n r x 2 n 2 n 2, "3

X P* gT ,- ,,*
D{p} = n

12
D
12

D
21 (

-r).—.—^-T- . (5.13)
cos e

1
g +v

x
T

For the back-scattering from a layer against air

©
2 ~®i ' ^4 = "^3 '

R = -1

i+cos(e
3
+e

4
)

2
F -RSpc9 « r—

;

r = sec 8.H 3 cose.+cose. 3

v = k
3
(sine

3
~sine

4
) = 2n

il
ksin6

3
= 2ksin6

1 ,

v z -k
3
(vne

3
+coseJ = 2n

l2
kcose

3
= -2k/n

12
^-sin iJ e

1
,(5.14)
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2 2 2 2 2 2
g = v o = 4k a (n

12
-sin 6.^)

112 " C
2*

The quantities in Equations (5.11), (5.12) and (5.13) show the

backscattering from the rough surface in the back of the layer.

The backscattered field from the smooth interface in the front

of the layer is negligible except for the normal incidence case,

which is equivalent to the reflection in the specular direction.

If the pulsed signal is used to approximate a monochromatic plane

wave, the backscattering from the front surface can be easily re-

jected by adjusting the gate position in the experimental measure-

ment.

In the actual case, all layers are more or less absorptive.

For a layer constructed with a material which has an attenuation

factor a, <p> and D{p} should be modified as follow:

_ _ i2n iokdsec0, iy2/k,
,

3*2
<p> = n

12
D
12

D
21

e 12 3-e ^(ScTe^ x

2

|!
--exp[-2dasece

3
- ^(1-^-j) ] sincvxL . (5.15)

k
3

(i) . Gaussian correlated surface:

2 2 2
cose

3 2 Tp
2 j— ——

—

D{p} = n
12

D
12

D
21 ( 15551q) -2L" /gd-d^A^)

2 2
v T

z

• axt> [-4Adsec6, = 5-] ; (5.16)
3

4g(l-dT/k
3
^)
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(ii) . Exponentially correlated surface:

222 cose
3 2 f

2 gd-q
2A 3

2
)

D{P > =n
12

D
12

D
21 ^ .-.^—f-^—^.

exp[-4adse6
3

] . (5.17)

2 2 2 2
The quantity a A 3

\s usually very small, so that (1-a /k
3

)**1#

but exp[-4adsee,] is very important, it is nearly unity at low

frequency, and decreases very fast as frequency increases.

For a layer with a very rough interface in the back

<p> - o . (5.18)

It is observed that the wave backscattered from an absorptive

layer with rough side in the back, the attenuation by the absorp-

tion increases as frequency increases. Aside from the attenuation

by the layer, the wave backscattered from the rough side of the

layer has the same characteristics as from a rough surface of the

same statistical property, except for a changing in magnitude.

5.2 Layer with rough interface in the front

The acoustic wave passes through the rough interface into

the layer, and comes back through it after being reflected by

the smooth interface. The mean scattered field is negligible

if the rough side is very rough, but the mean scattered power,

owing to the complicated phase relationship, is difficult to

evaluate. A tentative try without experimental support is made

here to look at some aspects of the nature of the backscattering

from such a layer. If it is proved to be successful, the same
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method can be extended to the layer with both sides rough.

As a first step, the field transmitted into the layer after

the wave hits the rough front surface is found by considering the

field at Q(Fig. 5),

v°> - t? JK - *f> as
•

(5 - i9)

where

ik-R -ik-«r
g 3 g 3 (5.20)

R
o

(E)
g

= (1+RJEj^ (5.21)

|£ = i(l-R)E.k\.r • < 5 - 22 >

3n 1 1
s

From the boundary conditions of the acoustic wave reflection,

for small incidence angle 6
1 ,

k^l-RjE-j^ = k
3
DE

1
,

P 1
(1+R)E

1
= P 2

DE
i '

(1+R) = —D = mD (5.23)
p l

(1 _ R) = 3 D = Zifi.D = np (5.24)
K
l

C
2p

Substituting Equations (5.23), (5.24) into (5.21) and (5.22)

(E) = mDEj^ ,
(5.25)

(||) . rtDE^.J . (5.26)
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Substituting Equations (5.10), (5.25), (5.26) into (5.19),

E
3
(Q) " 47

[mDE.f-iJiic «n) - ^(inDE
1
ic
1
«n) ]ds

where

n =-sinBx + cosgz^ ,
o o

r = xx
Q

+ C(x)z
Q

k\ = k(sin9,x - cose
1
z
1

)

jc, = nk(sin8-x„ - cose^z )3~o 3 o ;

w = k
l

" k3

= k(sine
1

- n sine
3
)x

Q
- Moos^ n cos6

3
)

z

= W X + w z^
X o z o

ds = secBdx , tanB = £ (x)

so that,

E
3
(Q)

, ik-Rmke 3 o
4lrR~

f
L

(ac'-bje
1* rdx

-L
(5.27)

where

a = D(sin6, + m sin8
3

) ,
(5.28)

b -D(cos6, + m cose
3

)

For smooth interface , C = C =



. inkR
_ .-. inke o
E
3
(Q) =

4Tr
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be
lw

x
x
dx

-L

or

E
3
(Q)

. . inkROTinKe - D(cose, + m cos9J sinew L
2irR_ 1 3 x

(5.30)

1_.
For the direction e

3
= arc sin ( -sine^^ )

E
3
(Q) = -

. , inkR_
inke °l

5TR~
o

D(cose
1

+ to/j_ _ 1 sin
2

e
n i

) . (5.31)

E.(Q) = , otherwise.

For a rough interface,

. . inkR_
t, /«^ inke o
E
3
(Q) =

4TR-

w
[-(b+a^ )w

z

e
lw,r

dx]

J -L

inkR,
inke

1 °D .
l-nm+ (m-n) cos (e^-6i

)

.

T?R cose, - n cos 8,
e^dx
-L

or

E
3
(Q)

;

inkR
Q

R 2L
o

e^dx

-L

(5.32)

where

,

G = -
, „ l-mn+(m-n)cos (6-,-e,

)

inkD
#

2 1

2ir
* cose, - n cose

3

w«r = K [(sine^n sine
3

) x-tcose^n cose
3
H] • (5.33)
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Equations (5.32) and (5.33) are analogues of the equations for

scattering from a rough surface. The mean field and mean

scattered power can be written down in similar form.

e
inkRo 6 T

<E
3
> = g—-^ e sinewy (5.34)

2 2
If it is a very rough interface (h = w a >>1)

<E
3
>

and,

(i) Gaussian correlated interface^
2

<E
3
E
3
*> = TG

ZLR ' / E
o

/ ir *exp
w T
X
ih

(5.35)

(ii) Exponentially correlated interface:

<E
3
E
3
*> =

LR

hT
~2 T~~2
h
z+W V

(5.36)

Equations (5.32) to (5.36), which are derived under the assump-

tion that the incidence angle to be very small, show the pro-

perties of the transmission through a very rough interface. The

next step is to find the effect of the layer's second interface,

thus obtaining the overall effect of the layer with rough side

in front. This layer is essentially the same as the previous one

in section 5.1, except it has been turned over with rough side

facing the incident wave (Fig. 6) . The field E
3

strikes the

lower plane interface at z = and produces a reflected field E
4

in the specular direction only (see Fig. 6). If R
1

is defined

as the distance from the point Oj to the point of observation Q
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below the rough interface, then

E
3

"
inkR, G,

e 1 1
R
x

*2L
iw, «r,

e 1 Idx l

-L

and the reflected field E
4

is related to E
3
by the following

boundary condition:

(E
4

) z—d = {R
23

E
3

} z=-d

Under this boundary condition, the field E
4

incident on the rough

surface from below is

i2k3dsec03 G
(E

4
) z=Ux)

=
U(d-5)sece 3

' R23'2T e1Wl
' r
ldxi J-e

lK
4
,r

2 (5.37)

-L

The transmitted field E
2
(P)e

3
caused by the incidence of

(EJ . can be derived from Equation (5.32), here the subscript

6- denotes that the field E
2
(P)& is contributed only by the com-

ponent of E. in the direction of k
4

. Then,

i2k3dsec03 ikRo G
i
G
2

E
2
(P)e

3

=e
2R (d-5)sece

3

*
23 '~^? e

i(Vl+^2 ,?
2

) dx
1
dx

2

-L

where

(5.38)

G
l

"

G
2

-

inkLD
12

l-mn+(m-n)cos (e«-e
1

)

2.r, cose, - ncqs8.

iKLD
21

.

1-Si
+ f5"^) C08(fl 2- e

3
)

2tt 00383-1^ cos6
2

n
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w, = k. - k_

= Msine. - n sine
3
)x

Q
- McosOj^ - n cos6

3
)z

(

x% o zl o ,
(5.39)

w
2

= k
4

- k
2

- k(n sine
3

- sine
1
)X

Q
+ k(n cose

3
- cose^S.

Vo + W
z2*o '

?
i - xiK + c(x

i
)?

o

r
2

= x
2
x
Q

+ C(s+x-,)?2"*o

It should be noted here that r^ and r
2

are refered to origins 0^

and 0,, respectively. And more -over, since the maximum value of

£(X) is much less then the thickness of the layer, so that,

V p)
e,

i

i2k 3
dsece 3 . e

ikR GjGj

2R dsece,
o 3

23 !
2"" 4IT

-L

e
i(w

1
.r

1
+w

2
.r

2
) dXidX2

-L

(5.40)

In the backscattering direction, 6
2

=-9
1

, then

G, = -
inkLD.

2
l-mn+fm-njcosteij-ej^)

5fir cos6,-n cos9
3

G, = -
ikLD

21
1-E+(^)COS(9

3!
e
i'

2ir cos6,-n cose.
(5.41)

$
1

= K(sin6
1
-n sine

3
)x

Q
-k (cose^n cose

3
)z

Q

$2 - MsinBj+n sine^x^-Mcose^n cose
3
)z

o
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From Equations (5.40) and (5.41), the mean value of E
2
(P)9

3
can

be found,
j oo » oo

<E
2
(P)6

3
> =

2R dsec(

>

i2kdsec9
3

ikR G
\
G
2

3
"^'7?

r
L

r
L

W(Z
1/
Z 2ls)dz 1

dz
2

,

-L -L

, (5.42

where s in Equation (5.42) is the separation factor between ^
and £ 2 '

s = (2d+C
1
+5

2
)tan6

3

since iw <<d

s * 2.dtane. (5.43

Hence, from Equation (5.42)

<E~(P)6-> = A-exp[-h(l+c(s)] 'sinctkLfsinej^-n sin6
3
)]

•sinc[kL(sin6.+n sin6
3
)] (5.44)

where

,,2 2
h = W„ a

z

W = -K(cose
1
~n cos6

3
)

A =
ik^dsece-i ikR_

e 3 -j »e o
2dR^sec6,

o 3

(5.45)

From Equation (5.44), it is seen that if the front interface is

very rough (h >> 1)

,
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<E
2
(P)

9

3
>

and,

<E
2
(P)> =

tt/2

<

-ir/2

<e
2
(p) e

3
>de

3
= (5.46)

The evaluation of <E
2
E
2
*> is very much involved, approxi-

mations have to be used throughout the derivation. From equation

(5.40),

L L L L

(E
2
E2* )

e
3

ss ***"

* .-*

iw
l*

(r
l*

r
l
)+iW2' (r2"r 2 ) dx

1
dx

2
dx'

1
dx

2
(5.47)

-L-L-L-L

where the subscripts 1 and 2 are referred to the origions 0^ and

2
, respectively (see Fig. 6).

The mean value of (E
2
E
2
*)

e

3
over the rough interface is

L L L L

<(E
2
E
2
*)6

3
> - AA* <e

iWz(5
1
-C 1

, )+iW
z
(5 1

-C 2
,

>
>

-L-L-L-L

.e
iwxl txrX

l
)+iW

x2.
(x2" x

2
) dx

1
dx

2
dx

1
'dx

2
« (5.48)

and from Mood ( Mood 1963 ) , the 4th order characteristic func-

tion associated with W
2

is
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(s,T> S <eiW* (5r«i)+iWz U 2-«2 l >

00 / 00 /> 00 / 00

— OO —00 —00 / — 00

W(z
1 , Z2 ,z£,z-, T ,s)e

i^ U l-«i'
+iŴ 2-«2 )

dz.dz
2
dz£dz2

= exp[- |(2+2c(s)-2c(t
1
)-c(s+t

1
)-c(s-t

1
)

- |(2+2c(s)-2c(t
2
)-c(s+t

2
)-c(s-t

z )3 , (5.49)

where

t,=x
1
-x^ , and t

2
=x

2
-x

2
(5.50)

For a Gaussian correlated random surface,

2 2
, , -t7T

c(t) = e ,

and as seen from Equation (5.49), the 4th-order characteristic

function X 4
(s,t

;l

,t
2

) is equal to zero except when

s<<T, t,<<T, and t
2
<<T

In the case shown in Equation (5.51),

(s^^t^^e-^dx
2-^

2
)/^].

(5.51)

(5.52)

Introducing new coordinates,

yl
= l^l^V '

and y 2
=

2
(x

2
+x

2* '

and using Equation (5.52) for a very rough layer, Equation (5.48)

becomes

2 2

(E
2
E*)9

3
=AA*«

.L
r
L
r
L,L t, t

2

\\\\ e
" 2hV + ? > .«

i^lT+i,teT*T
1
dT

a
d
yi

4W ' exp L~5K—

J

-L-L-L-L

2

4L
2
AA.. /£

Wx\t
21

exP I —SH-
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2

<(E
2
E*)

9
>=2L

2AA**^- .exp
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,2 ,„2

8h
l (5.53)

where

2 2 2
h=k a (cos8.-ncos8

3
) ,

(5.54)

W2
+W

2
= 2K

2
(sin

2
9,+n

2
sin 9.J

Substituting Equation (5.54) into Equation (5.53),

/ ,-r, r,*x« \ 2irT
2
L
2
AA*

<(.E
2
E*)6 3> = -5-5 5

3
K (cos8

1
-ncos6

3
)

• ex;p [-T (sin
2
6
1
+n

2
sin

2
e
3
)/4o

2
(cose

1
-ncos6

3
) J

(5.55)

In Equation (5.55), ^(E^jjpe^ is significant only when 9
1

and 9
3

are very small angles, i. e.

,

sine, =6, , cos9,=l

sine
3
= 8

3 , cos9
3

=: l . (5.56)

Then, the limit in the integration for obtaining <E
2
Ei> can

be extended to infinity, so that

^ E
2
E2>=\ <<E 2

E
2
)9 3>d6 3

«\ 2L
2AA*--^ y .exp f-T

2
(6

2
+e

2
)/4a

2
(l-n)

2
de,

J.. K<r(l-n) z L J J J

(i-mn^m-n)^ (1-^.(1-1))2 2 4 4 2 2

AA *
R
23

nKLP
12

D
21

4d"R*» J6L" 16ir (1-n)
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Rewriting Equation (5.55),

2 2 2. 2 4

<E
2
E*>=

R23D
12

D
21

L !*_ #k
2

#I exp ^ejT2
/4a

2
(l-n)

2
] (5.57)

256*
2
d
2
R
2m2

|l-n|

2 2

Since E
2Q
E*=^i

2- , and<E
2
>=o, the variance of the scattering

* R
o

coefficient p becomes

<E 2E2>
D{p} = ^ *

-
E
20

E
20

4
R__D, D , (1+m ) -, 2 2 2 2 .

= 23 12 21 x —V- .exp -e£r/4a (l-np (5.58)

256 Trm
2
|l-n| ad

From Equations (5.46), (5.55) and (5.58), it is seen that the

backscatter from a layer with rough side in front is much smaller

than that from a layer with rough side in back. Moreover, the

parameters of the media has more influence on the backscattered

power as compared with the previous one in Section 5.1, and as

the incidence angle e, increases, the backscattered power drop

off very rapidly.

5.3 Discussion of the derivation

(A) Rough side in back: The fields E
3
and E

4
in the layer have

been assumed to be caused by a plane wave and the amplitudes are

independent of the thickness "d" of the layer. If the thickness

d is much larger then the illuminated length 2L, the amplitudes

of E^ and E. will depend on the value of d. From Equation (5.3),

introducing the dispersion caused by the thickness of the layer,

the value of E
3
given by Equation (5.5) will be changed to

in keik3-ri
+ik 3dsece 3

E, m ——s— LD, -(cose,+mcose,) . (5.5a)
3 ZifR-. -L* J- J
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A similar modification should be made on E
4
and E

2
also. The

results of these changes in E
2

, E
3

, and E
4
will modify D{/>} of

Equations (5-12) and (5-13) to the form

2 2fi99 4432r— V T
n
12

D
12

D21 008^63(0086^1000863) _kLTF h
exp _ x

D(p}= t~2 2 74" Jg 4g~
32* m cos^ d ^ y

(5.12a)

(ii) exponentially correlated surface:

D{p}=
n
12

D
12

D 21 cos
2
63(cQse

L+
mcose

3
)

4

>

k
4
LV

_
gT

(5 . 13a)

le/m2 " cos
2
e
1

d
4

g
2+vV .

(£) Rough side in front: Under the same condition, D{p}

in Equation (5.58) should also be modified to the form

D{o}=
n
2
K
2
R
2

3
D
2

2
D
2

1
(l+m )

. TL
2

. eXp|'-g
2
T
2/4o

2
(l-n)

2
]. (5.58a)

_, 3 2,, !

74" L J

l

2
K
2
R
2

3
D|^l+m4

:

T 5
256* m |l-n| od

D{p} in Equations (5.12a), (5.13a), and (5.58a) are derived

under the condition that the layer is very thick. However, in

most cases, d is not so much larger than the illuminated length,

and the Equations (5.12), (5.13), and (5.58) give us a good

estimate on the value of D{p}.



6. EXPERIMENTAL WORK

6.1 Experimental set-up and procedure

The experimental measurement of the variance of the scatter-

ing coefficient has been done in the Underwater Acoustic Labora-

tory, Electrical Engineering Department, Kansas State University.

Details of the equipment can be found in the report by Toliver

(Toliver 1965) . The block diagram of the experimental set-up is

shown in Fig. 7.

In the experiment, pulsed signals generated by the pulsed

oscillator are sent out and collected by one pair of transducers

in the water tank. For each single pulse sent out, the received

signal will contain a train of pulses. A gating circuit, which

is synchronized by the delayed trigger output from the pulsed

oscillator, is used to select the portion of the pulse train for

feeding into the detector and boxcar circuit. The boxcar cir-

cuit has the function of converting the discrete pulse into an

analog signal so that it can be recorded by the graphic level

recorder.

The distance S from the transducers to the front side of the

target is determined by

S Dcose, (6.1)

where 6. 0°, 5°, and 10°, and D is the distance travelled by

the radiated signal before it hits the target. It is desired

to have D as large as possible so that the illuminated area will

be much larger than the correlation distance of the random

interface. The choice of 32 inches is made to give an average

-51-
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value of L = 0.75 inches for different pairs of transducers. The

pulse recurrence frequency, PRF, is also determined by D. It

is selected to be the largest value without causing any overlapp-

ing of the first few returns with the following pulse sent out

from the transmitter. And the pulse length, which should be as

larger as possible to simulate a monochromatic wave, is limited

by the thickness of the layer. The pulse length must be less

than the time that is necessary for the wave to make a round trip

in the layer. A safety choice of PRF and pulse length for the

model target constructed and the distance D specified is as

follows:

pulse length = 20 *isec,

PRF = 250 pps.

The operating frequencies are chosen to be

0.72, 1.0, 1.28, 1.6, 1.9, 2.25, 3.0, and 3.5 mc.

Before the measurements of D{p} start, the folliwng pro-

cedures are conducted at 8, - 0°, S = D = 32 inches, f - 1 mc.

(a) The target suspension is carefully checked by the

returned pulse position on CRO to make sure that D

is equal to 32 inches for all possible positions of

transducers.

(b) Transducers focusing is done by adjusting the mount-

ing of transducers for maximum return from a smooth

plane target 32 inches apart.

After checking on the mounting of target and transducers,

measurements proceed as follows:

(c) Setting the operating frequency with the help of test

oscillator and CRO.
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(d) The pulse length and PRF is set at pulse length 20psec,

PRF = 250 pps.

(e) The RF output level and the transducer compensator is

adjusted to yield the best possible undistorted pulse.

Procedures (c) , (d) , and (e) are conducted iteratively to

fit all the figures required.

(f) Measurement |e
2Q |

: the water-air interface is used

as target, because it acts as perfect reflector; and

D = 32 inches, 6., = 0° are carefully checked. Then

the magnitude recorded by the recorder gives

M
1

= K
1
AB|E

2() |

(6.2)

where A is the magnitude of the output pulse, B is the

gain of the transducers, and K
1

is the overall gain of

receiver and recorder.

(g) Varying 6, to the desired angle (0 , 5 , 10 ) and

setting S according to the relation shown in Equation

(6.1), then I EJ , which is a function of the horizontal

position of the transducers, is measured by scanning

the transducers through the target. The gate is ad-

justed in the way that only the return from the back

side of the layer is detected and recorded. The sample

magnitude of a point on the recording sheet gives

M
2

= K
2
AB |E

2 | , (6.3)

where K
2

is the overall gain in this measurement. The

ratio of K
2

to K. can be read from the settings.

Since <p>=0, so that the variance of the scattering coef-

ficient is
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E.,
2 M

2
' ,K,

2

.(P>-<|P|
2>.<J^> «<».(£)

E
20

M
l

or
.2

n/ . < M2> . n (

k
db)

D{ P } = —Y~ * 10 WlT /

M
l

where K ,, = (K~/K, ) in db is the ratio of the overall receiver
(Id I 1

gain between the measurement of \E-\ and |

E

2Q \
. Attention must

be paid not to overdrive any stage in the steps (f ) and (g)

.

K~ is adjusted to give the maximum possible recording without

causing saturation in any one of the amplifiers and in the

recording devices.

6.2 Description of layer target

The target is a block of plexiglas with a one-dimensional

roughness on one side. (Fig. 8) . The length of the plexiglas

is limited by the dimension of the water tank; the width is equal

to 6 inches, which is much greater then the illuminated area of

any pairs of transducers; and the thickness, which should be as

thick as possible, is limtied to 2 inches by the material avail-

able at the time of construction. The profile of the rough sur-

face on the layer is desired to have a Gaussian probability

distribution in height with standard deviation o = 0.05 inches,

and to have a gaussian autocorrelation with respect to the

horizontal position, where the correlation distance is T = 0.15

inches. The profile is calculated by trial and error with the

help of an IBM 1620 computer. It is noted that the heights be-

tween -3a and +3o were considered in the calculation, and the

sample heights obtained from the truncated normal distribution

are so arranged that there is no sudden or periodical variations.
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The profile obtained was then cut by a shaping machine. A sample

measurement at intervals of 0.05 inches was then made on the

finished target and the distribution and correlation functions

were calculated.

The measured standard deviation and correlation distance are

0.0465 inches and 0.15 inches, respectively. Moreover, the

measured correlation function lies between Gaussian and exponent-

ial, and consists of certain periodical variation when the

separation factor is greater than the correlation distance T.

Moreover, the distribution of slope is found to be different

from normal and to have a pair of extra peaks at £'=tan(10 ).

This might be caused by the shape of the cutter of the shaping

machine.

6.3 Measurement and results

The quantity M, of Equation (6.1), owing to the drift in

the electronic circuit and the disturbance in water tank, is

usually a function of time. After the disturbance in the water

has died away, the fluctuation of M, with time is nearly zero.

2
The quantity M

2
is a varying positive quantity, the mean of M

2
is

< M
2 >" K gj"2i '

(6 - 5)

and M2i denotes the ith sample of M
2

« The variance of pp* is

as follows

2 2
D{pp*} = <p p* > - <pp*>

<M2*>
. 10

(
Kdb/5)-<^10Kdb/ 5 (6 ' 6)

M
l

where

<"a>"iJl"Si- <6 - 7)
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The samples {M„.} are taken at equal intervals from the recording

sheet. Since part of target is not seen at bigger 6^ the number

of samples taken is equal to 96, 90, and 84, for e
x

= , 5 , and

10° respectively. D{p} calculated from the experimental data is

shown in Fig. 9. As a comparison, the value D{p} for backscat-

tering from a rough surface is also obtained and shown in Fig. 10.

6.4 Discussion of results

To compare the experimental results with the theoretical

solution of the backscattering from layer, D{p} is calculated for

6, = 0°, 5°, and 10°, from Equations (5.12) and (5.13).

The parameters of water, air and plexiglas are

(A). Water:

p =1.0 gm/cm*,

4-

c = 15 x 10 cm/sec,
w

4
z = p c = 15 x 10 gm/cm -sec .www

(B) . Air:

p =1.29*10 gm/cm,
a

4.

c = 3.4 x 10 cm/sec,

4 2
z = 0.0041 x 10 gm/cm -sec.
a 3

(C) . Plexiglas:

p =1.2 gm/cm,

c = 27,8 x 10 cm/sec
P

4 2.

z = 33.4 x 10 gm/cm -sec.
P

The reflection and transmission coefficients at the plane

boundary of two isotropic medium as given by Equation (5.4) are

calculated for the following cases
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E— x -£ = 1.15,
12 z +z p

p w ^p

2z p
D
21

=
y

» x -E. 0.744
z
p
+zw pw

z -z
R
22 " z +z* * _1 *

a p

Other parameters are given as follows

CW n ca
n, ~ = — = 0.54 .

12 cp

The effective illuminated area represented by L is a rather

complicated quantity, it is assumed here to be equal to the

illuminated area by one pair of beam-limited transducers; mean

value is taken for five pairs of different transducers.

L = 0.75 inch.

The theoretical solutions Equation (5.12), and (5.13) are

calculated and shown in Fig. 11(a), 1Kb), 11(c). The experi-

mental results are also shown in these figures.

The relations among frequency, wavelength, and ratio a/

A

related to plexiglas are calculated and tabulated below:

Frequency (mc) A (mm) Ratio a/A(tf»1.18 mm)

0.72 3.86 0.306
1.00 2.78 0.425
1.28 2.17 0.544
1.60 1.74 0.679
1.90 1.465 0.806
2.25 1.235 0.955
3.00 0.927 1.27
3.5 0.794 1.49

From Fig. 11a, lib, lie, it is seen that the measurements of

D{p} deviate considerably from the theoretical solutions from a

layer having either gaussian or exponential correlated rough inter-
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face. This can be explained by the existence of an attenuation

factor a in the layer. If a is a non-decreasing function of

frequency, the Equations (5.12) and (5.13) should be modified to

the form of Equations (5.16), and (5.17). The modified results

are such that D{p} is reduced at low frequencies and decreases

faster as frequency increases. For such a choice of a, the

experimental results are then expected to lie between the modi-

fied theoretical solutions. Since the target constructed is such

~r 2/T
2

that the correlation of the thickness lies between e ' and

-
I T I /T

e ' "
, the experimental work proves that Equations (5.16) and

(5.17) are a good prediction of the backscattering of an acoustic

wave from a layer with the rough side in the back.
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7. CONCLUSIONS

The backscattering from a layer depends on the thickness,

acoustic impedance, and the statistical parameters of the rough

side. It also depends on the angle of incidence and operating

frequency. The thickness of the layer enables the separation

of the second pulse from the first one. In case of an absorp-

tive layer, the wave propagated through the layer is attenuated.

The attenuation may strengthen the frequency dependence of D{p},

if the attenuation factor a is a function of frequency.

D{p} obtained from a layer with rough surface in the back

has substantially the same form as that froa a rough surface,

on the condition that the layer is constructed with non-absorp-

tive material. If the random side is very rough, the value

of D{p} decreases very fast as the ratio o/X increases where o

is the standard deviation of the rough interface; and for small

angle of incidence, D{p} increases as o/X increases.

If the layer is turned over with rough side facing the

incident wave, the evaluation of D{p} involves an integral which

contains a four-dimensional characteristic function associated

with w . Approximation is made by assuming e
3
very small in

evaluating the integral. The theoretical solution for this

model has a very strong dependence on the thickness d, even if

the layer is non-absorptive.
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APPENDIX: EVALUATION OF INTEGRALS

The integration of the improper integrals

e
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e
ibx

dX/

O *5

-x /2a cosbxdx, and

rx
2/2a

2

e
i(b-ic)x
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involves contour integration. Choose the contour as shown

2 2

e
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2
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e
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2
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or
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ABSTRACT

The backscatter from a rough surface is usually calculated

by using Kirchhoff 's approximation. In this report, the Kirch-

hoff's approximation is extended to the backscatter'ing of an

acoustic wave from a rough layer. The random rough interface of

the layer is assumed to have one-dimensional Gaussian distri-

buted surface heights.

Gaussian and exponential autocorrelation functions are used

to represent the correlation of the heights at two different

points. Expressions for the variance of the scattering coefficient

are derived in the case that the rough side is very rough.

Experimental investigations were conducted at ultrasonic

frequencies on a target designed to have Gaussian distribution

and correlation. The measured variance of the scattering coef-

ficient p, D{p}, has the following properties:

(A) D{p} is highly frequency dependent; it decreases as

the frequency increases.

(B) D{p} decreases more rapidly than that obtained from a

rough surface.

(C) The dependence of D{p} on the incidence angle 8, is

such that it increases as 9, increases, if 6, is small.

The experimental results lie between the theoretical results

calculated for two kinds of correlation. This agrees with the

measured value of the correlation function of the target.


