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1 . INTRODUCTION

Many problems of economic and physical origin form

important classes of network problems. Traffic assignment

and pipeline problems constitute such classes of problems.

In the traffic assignment problem the streets form the

network and the vehicles may enter or leave at any of the

intersections. In this situation various types of traffic

flows can take place. For example all the vehicles may enter

at one point on the network and travel on different streets

to some common destination. This is called a one way flow

problem. If the vehicles enter and leave at two different

points, traveling in two different directions, this is call-

ed a two way flow problem. Thus there are as many types of

problems as there are directions of traffic flows. In each

of these problems vehicles may enter and leave the network

at any of the intersections.

An optimal path through a network can be selected based

on a number of different objectives. It has been observed

that more time is required to travel a street as the traffic

volume increases. Thus in making a trip, the driver will

tend to select a route which requires the minimum time. Thus

the traffic assignment problems arise where vehicles are to

be assigned on each street so that the total travel time for

all drivers is a minimum.

Pipeline problems arise in a similar fashion as the

traffic assignment problems. These occur when oil, gas,



water or any fluid is collected from various reserves and

transported to a number of destinations through a network

of pipelines. It is assumed in these problems that the cost

of transportation of the fluid increases as the volume in-

creases. This problem becomes one of assigning the volume

of fluid to be transported over each link so that the total

cost of transportation is minimum.

The solution of the traffic assignment problem can be

used to determine the deficiencies of the existing trans-

portation system and to assist in the development of future

transportation system. The solution of the pipeline problem

can be used for determining the optimum utilization of the

existing system and to evaluate alternate system proposals

for the development of future systems.



2. THE TRAFFIC ASSIGNMENT PROBLEM

In this section, the traffic assignment problem con-

sidered is one of assigning the vehicles to the streets of

a network, where the vehicles enter or leave at one or more

points on the network and travel in the same or different

directions and minimize the total travel time for all drivers.

Figure 1 . represents a travel time volume relationship.

The form of the equation is:

t = Ej + k2 . V + k
3

• ( V/c f (2.1 )

where

t = link travel time in hours per vehicle

k-| = constant representing travel time at free flow

conditions

k2 ,k^ = empirically derived constants

V = link volume in vehicles per link per hour

c = link capacity in vehicles per link per hour

r = empirically derived exponent

The first term of equation (2.1) represents the travel

time at free flow conditions. The second term serves to in-

crease travel time as the link volume increases. The increase

in travel time due to a unit increase in volume deoends on

the magnitude of the constant k
2

« The first two terms of

equation (2.1) represents the linear portion of the time-volume

curves between the points A and B as shown in Figure 1 . The

third term represents the effect of congestion on the travel



time for the facility under consideration. As the link

volume nears capacity, the value of this term increases

rapidly and at volumes beyond capacity (V>c) the travel

time becomes so great that in effect the link has been closed

for additional traffic. In Figure 1., the curve between E

and C represents conditions of congestion and thus is the

undesirable region for operation. Total travel time through

each link is obtained by multiplying both the sides of equa-

tion (2.1) by the traffic volume V.

r
T = K

1
• V + K2 • V2 + K^ • (I) • V (2.2)

A traffic assignment problem is illustrated in Figure

2. The following definitions and terms are given here to

simplify the latter discussion of the mathematical formula-

tion of the traffic assignment problem.

2.1 Definitions

1. Objective function: The function which is to be

optimized. In this discussion

it is the time function and it is

to be minimized.

2. Zone Centroid: The place of trip origin or destina-

tion.

3. Node: The point where the segments of the streets

system connect.

4. Link: The connection between two nodes which represent

the segments of a street system.



M

>

H

I

J
w

TYPICAL TIMS VOLUME \

CURVE

\/^ = \ + k .V +k .(V/cf

AVERAGE LINK VOLUME

Figure 1. Typica! 7ravel-Ttoe yolrao felationshtp



v
(o,o) v

(o,i)

r(l,0)

\
(0,0)

\

(0,1)

(1,0)

v
(2,l)

\

(1,1)

(2,0) (2,1)

r(2,0)

y
(N-2,0)

y
(N-2,l)

r
(N-l,0)

r
(N,0)

(N-2,0)

v(N-l,l)

\ ^J

(N-2,1)

(N-1,0)

(N,l)

(N-1,1)

U,0) (N,l)

V
(0,M-1)

V
(0,M)

(0,M)

(1,M)

(2,H-2) j(2,K-l) (2,H)

(N-2,M-l)
V
(N-2,K)

U-2,K-2)

(n-i, ::-i)

(N-l,H-2)

v
(n,m-i)

\

(N-2,H-l)

W(N-1,M)

(N-2,M)

(n-i,m-i) (n-i,m)

(N,M-2) (N,M-1)
(N,M)

Figure 2. NxM network



5. Path: The series of connected links representing the

trip route.

6. Network: The combination of all links and nodes.

2.2 Formulation of the Traffic Assignment Problem

Consider the network of streets as shown in Figure 2

where the following notations are used:

(n,m) = represents the nodes (n = 0,1,2,...N; m = 0,1,

2,...M)

y(n,m) = the total number of vehicles entering at the .

node (n,m)

z (n,m) = the total number of vehicles at the node (n,m)

y(n,m) = the total number of vehicles going in the

horizontal direction from the node (n,m) towards

node (n,m+1

)

y(n,m) = the total number of vehicles going in the

vertical direction from the node (n,m) towards

node (n+1 ,m)

Using the above notations the percentage of the volume

at the node (n,m) which travel in the horizontal direction

can be expressed as:

p
(n,m) = x (n,m) / z

(n,m) (2.3)
H

and consequently,

1 _ p (n,m) = y (n,m) / 7 (n,m) (2.4)

The last term of the equation (2.2), which is

(r+1)

K3
# —r » is insignificant at lower values of V and hence

c



it can "be neglected for small values of V. Thus the total

time required to travel the network when this occurs is given

by:

M N
= Y V" r(n,m) • T (n,m) + K (n,m) / y(n,mK2T =

+ K (n,m) • y (n,m)
V1 V

+ _(n,m) • , (n,m) 2 (2.5)
^V2 v XV )

with initial conditions that:

p
(n,M) = 0.0 and y(n,M) = 0.0, (n = 0,1,2..., I) (2.6)

? (^,m) = 1.0 and x (N,m) = 0.0, (m = 0,1,2..., M) (2.7)

and where v (n,m)
, Y (n,m) = the constants associated withA

V1
A
V2

the vertical streets from the

node (n,m) to (n+1 ,m)

„(z.,m) , ~(n,m) = the constants associated with the
^H1 %2

horizontal street from the node

(n,m) to (n,m*1

)

In summary then, the problem becomes one of minimizing

T given by equation (2.5) by finding suitable values of

p
(n,m) (n = 0,1,2,...,N; m = 0,1,2,...,M) and satisfying the

conditions given by equations (2.6) and (2.7).



2.3 Fxamnle Problems

1. The 3x3 network shown in Figure 4 is solved where

7 (0,0) vehicles enter at node (0,0) and leave at node

(3,3). The problem is to determine p(n,m) (n = 0,1,2,3;

m = 0,1,2,3) for the network which will minimize the

total traveling time.

2. The 2x2 network shorn in Figure 5 is solved where

y(0,0) vehicles enter the network at node (0,0). from

the Northwest and leave at node (2,2) and v (2,0) vehi-
SW

cles enter the network at the node (2,0) from the South-

west and leave at node (2,0). The problem is to deter-

mine p (n,m) and ^(n.m) (n =0,1,2; m = 0,1,2) which
sw rsw

will minimize the total traveling time.

3. The 2x2 network shown in Figure 7 is solved where

v (0,0) vehicles enter at node (0,0) from the Northwest
NW

and 7 (2,1), v (2,2) and v ( 1 » 2 ) vehicles leave at node
NW N¥ Vtf

(2,1), (2,2) and (1,2) respectively. Similarly, v (2,0)
SW

vehicles enter the netowrk at (0,2) and v (0,1), v (0,2)
sw vsw

and v (1,2) leave at node (0,1), (0,2) and (1,2) re-
SW

spectively. The problem is to determine p (n,m) and
N T

.-r

p (n,ia) (n = 0,1,2; m = 0,1,2) which will minimize ther
S?7

total traveling time.
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3. GENERAL FIP3LI?ra PROBLEM

The pipeline problem is similar to the traffic assign-

ment problem with the exception that the flow of fluid is

considered as a continuous function. The fluid can be fed

in or tapped at any node. The cost of transporting fluid

through a section of pipe can be represented by the follow-

ing equation:

C = K
1

• v + K2 • v2 (3.1

)

where K^ , K2 = the constants for the pipeline to be

experimentally determined

v = the quantity of the fluid flowing through

the pipe under consideration.

Thus the total cost for N X M pipeline network is

given by:

=^-v-T,(n,m) • T (n,m) + „(n,m) •
,

(n,m) 2

LL K
H1

X
H

K
K2 ( % •

)

m=o n=o

+ K (n,m) • (n,m)A
V1 XV

+ rr{n 9 m) -
t
_(n,m) ,2 (3.2)

V2 *
/lV '

where Tr(n,m), T,(n,m) = the constants for the vertical -Dine
V1 "T2

from (n,m) to (n + 1 ,m)

r (n,m), v-(n,m) = the constants for the horizontal pine
H1 H2

from (n,m) to (n,m + 1)

(n,m) = the quantity of fluid flowing in the

horizontal direction from the node

(n,m) to (n,m + 1

)
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T (n,m) = the quantity of fluid flowing in the
v

vertical direction from the node (n,ta)

to (n + 1 ,m)

Using the above notations the percentage of the volume

at the node (n,m) which flows in the horizontal direction can

be expressed by:

p (n,m) = x(n,m) /
^ x^'^O + r(n,m)j (3.3)

with initial conditions that

p
(n,m) = 0.0 and

x (n,m) = 0.0 (n = 0,1,2) (3.4)
H

p(N,m) = 1.0 and y(H,m) = 0.0 (in = 0,1,2) (3.5)

3.1 Example Problem

4. A 2 x 2 network shown in figure 8 is solved where

v(0,0) units of fluid enter at node (0,0) and

Y (n,m) (n = 0,1,2; m = 0,1,2; (n,m) 4 (0,0) ) units

of fluid enter and leave at other nodes which are

not necessarily the same nodes. The problem is

one of determining
p (n,m) that will minimize the

total cost of transportation of the fluid through

the network.
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4.0 LITERATURE SURVEY

Various optimization techniques and algorithms have

been used as a basis for traffic assignment. Wilson Camp-

hell (1) presented a procedure to assign traffic to express-

ways in 1956. Moore (2) and Dantzing (3) developed al-

gorithms for selecting the shortest path through a network.

Wattleworth and Shuldiner (4) illustrated a basic application

of inear programming to traffic assignment problems. Since

1957 many other techniques have been developed to determine

the shortest path through a network. However, these tech-

niques have not "oeen as widely adapted as the Moore al-

gorithm which is currently the method used with most com-

puter traffic assignment problems(5).

Current traffic assignment are of "all or nothing" type,

that is, all of the trips between two zones are assigned to

a single route regardless of traffic volume on that route.

This method lacks realism in that it does not provide for a

revision of the link travel time as traffic volume increases.

Tsung-chang Yang and R. R. Snell (6) presented an appli-

cation of an optimal traffic assignment technique which has

the ability to overcome the capacity restraint shortcoming

of the present day assignment procedure. They used the dis-

crete version of the "maximum principle" (7) with linear time

functions. R. R. Snell, M. L. Punk and J. B. Blackburn (5)

used the same method with constant, linear and nonlinear time

volume relationship.
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Cantrell (9) has made investigations of pressure and

flow of fluid through pipeline network. He determines the

pressure drop in an existing pipeline for a given Reynold's

number. However, a suitable method of assigning the volume

of fluid to be transported over each link has not been developed

By considering the pressure drop as a cost of transportation

the proposed dynamic programming method will provide such a

method

.

No one has yet solved the problems 2,3, and 4 above and

no one has utilized dynamic programming for solving these types

of problems. Thus the purpose of this paper is to illustrate

that dynamic programming can be used to solve the problems

stated above.
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5. DYNAMIC PROGRAMMING

Dynamic programming developed by Bellman (9) is a

mathematical technique which is used to serve many types

of multistage decision problems. This technique is based

on the "principle of optimality" which is stated by Bellman

as

:

"An optimal policy has the property that whatever the

initial decisions are, the remaining decisions must con-

stitute an optimal policy with regard to the state resulting

from first decisions."

Let the function to be maximized be denoted by:

H(X 1? X
2

, ,X
k ) = g^X^ + g 2

(X
2 ) +

+ SK(V (5.1)

K
over the region X >, 0.0 and £ X, = X

where

X = the amount of resources available

X
1
= the amount of resources allocated at stage k. •

Since the maximum of the function R(X., , X ,...., XK ) over

the designated region depends upon X and K, the sequence of

functions f
k (X) are introduced and are defined for k = 1,2

....X and X^ ^-0.0 as follows:

f
k
(X) = maximum R(X , T

?
,... X ) (5.2)



where

. 2^ > 0.0 and = X

The optimal value of the function f
fc
(X) is obtained

"by allocating the resources X to the X activities In an

optimal fashion. The problem considered here satisfies the

following relationships

f^X) = g,(X) , X >, (5.3)

where

f
Q
(0) = 0.0

The recurrence relation connecting f
T (X) and fr m « (X)

for some arbitrary X is obtained from equation (5»1)» thus

fK (x) = Xaz: [%(*) + f
K _ ,U - X

K
)
]

(5.4)

The orocess is re-oeated for f . (X - XT.) to obtain
K - 1 K

the resurrence relationship

f
k
(x' ) = Maximum |"g

k
(X
k ) + f

fc _ 1

(X - X^)
]. (5.5)

o N< x
k N< X'

where

X = X - IX;

Thus if f, (X
#

) is known, the seauence f, (X ) can be

obtained from equation (5.5).
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6. THE SOLUTION PROCEDURE

Before discussing the method of solution for a traffic

and pipeline network, it is necessary to state the assump-

tions made for each problem.

I. For the traffic assignment problem the assumptions

are:

1. There are no turn penalties, that is, no extra time

is required in making a turn.

2. The zone centriod coincides with the nodes.

3. The traffic directions are known.

4. Travel time is the only factor that influences the

traffic pattern.

5. The travel time on each link can "be expressed "by

Equation (2.1) with the appropriate constants.

II. For the pipeline problem the assumptions are:

1. The flow directions are known.

2. Cost is the only factor that influences the flow

pattern.

3. Fluid is tapped or fed into the network only at

the nodes.

4. The cost of transportation for each link is given "by

Equation (3.1) with the appropriate constants.

6. 1 The Solution of a N x X Traffic Assignment Problem "by

Dynamic Programming

The following procedure is outlined for solving a N x M

network by dynamic programming.
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STEP 1 : Divide the network into K stages in the following

way:

X"^ stage: All the routes that form a rectangular

•whose diagonal nodes are (N - 1, M - 1)

and (N,M)

.

(K-1)'
t stage: Ail the routes that form a rectangle

whose diagonal nodes are (U - 1, M - 2)

and (N,M).

(K-2)'fc *1 stage: All the routes that form a rectangle

whose diagonal nodes are (N - 2, M - 1)

and (N,M).

1
s ° stage: All the routes that form a rectangle

whose diagonal nodes are (0,0) and

(it.m).

In short the network can he formed by moving a diagonal

straight line, perpendicular to the line joining (0,0) and

(N,M) . Whenever this line touches the node (n,m) (n v~ N

and n /K) a stage can be formed by taking all the routes

that form a rectangle whose diagonals are (n,m) and (N,M)

.

Figure 4 shows a step by step procedure of dividing a 3 x 3

network into 9 stages. It is also noted that the nodes covered

with hatch marks should be excluded from the stages since

they do not alter the value of
p (n,m) in determining the

minimum travel time.



18

STEP 2: Assume an initial value of 0.5 for all p(n,m),.

the fraction of vehicles at node (n,m) that travel

in the horizontal direction towards the node

(n,m + 1) with the exceptions that:

p(n,M) = 0.0 , n = 0,1,2....,N

and -oU^m) = .1 .0 , m = 0,1 ,2 M

STEP 3: With these values of p(n,m), start from the node

(0,0) and determine the number of vehicles on all

the routes. This number must be an integer. If it

is a fraction, convert it to the nearest integer.

STEP 4: Now with the vehicles loads as determined in step

3, start at the k*^1 stage, which represents node

(i,3) and by Iceeping the number of vehicles entering

the k'
fcn stage constant, determine the new value of

p(i,5) that minimizes the total time given by the

following equation:

M N
= r Y vA n >™) *

Y (n,m) + K (n,m)
•

,
(n,m).2 (6.1)

H . H1 XH H2 l XH )

T =

mr.j n=i

+
T
,(n,m) • y(n,m)

iV
vi nr

+ K (n,m) • , (n,m) 2A
V2 } XY )

In this discussion a single search technique (see

appendix I for details ) has been used for all the

problems. Now the previous value of
p (i,3) is

replaced with the new value and the number of

vehicles on all the routes are adjusted according
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to the following relation:

v (n,m) = ,(n,m) • / Y (n,m - 1) + T (n - 1 ,m) (6.2)AH I
^
XH V )

(n = i,i + 1,..., N; m = J, 3 + 1,..., M)

Procede to the next stage and repeat the process.

The process is repeated for all stages until new

values for all p (n,m) have "been determined.

STEP 5: One iteration is complete when the new values for

all the p(n ? m) have been determined. The values

of p(n,m) from this iteration are compared to the

corresponding values from the previous iteration.

When the values of p(n,m) do not differ signifi-

cantly on two successive iterations the answer is

considered optimal. If they do differ significantly,

go to step 3 using these new values of the p (n,m)

as the initial values and repeat the entire procedure

until an optimalsolution is obtained.

The solution procedure is illustrated by solving Example 1.



6.2 Exam-pie 1 .

Example 1 is "based on the 3x3 network illustrated in

Figure 3 where all nodes are denoted by (0,0),..., (3»3).

The percentage of vehicles at each node which procede in the

horizontal direction is denoted by p(n,m) (n = 0,1,2,3;

m = 0,1,2,3). Similarly the percentage of the vehicles which

procedes in the vertical direction is denoted by 1 - p(n,m).

The number of vehicles entering the network at node (0,0)

is denoted by y(0,0). The total time required to travel

from (0,0) to (3,3) is given by the following equation:

20

3 3 , ,= ZLK(n,m) ,(n,m) + v (n,m)

m=o n-o
H1 ^K

X

H2

(n,m)
V1

v-(n,m)
V2

/ (n,m) 2
{ XH >

Y (n,m)

1 4n - m)

)

2

where v (n,m) , „(n,m) = the constants for the horizontal
H1

X
H2

street from the node (n,m) to

(n,m + 1

)

v-(n,m), rr{n t m) = the constants for the vertical
V1 V2

street from the node (n,m) to

(n + 1 ,m)

„(n,m), (n,m) = number of vehicles massing in the
*H XV

horizontal and vertical direction

from the node (n,m) to (n,m + 1)

and (n + 1 ,m) respectively.

In this example:

p
(n,3) = 0.0 ; n = 0,1,2,3

(6.3)

(6.4)
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and p (3,m) = 1 .0 ; m = 0,1,2,3 (6.5)

Thus p (n,m) = Y (n,m) / , v (n,m) + (n,m). (6.6)r Ajj
[ XH xv )

The objective is to determine the set of p (n,m)

(n = 0,1,2,3; m = 0,1,2,3) which will minimize the time

required to travel from node (0,0) to node (3,3). The pro-

cedure for solving this problem by dynamic programming is

as follows

:

STEP 1: Divide the network into 9 stages as shown in

Figure 4.

Stage 9: (2,2), (2,3), (3,3) and (3,2)

Stage 8: (2,1), (2,2), (2,3), (3,3), (3,2) and

(3.1)

Stage 1: (0,0) to (0,3) to (3,3) to (3,0)

STEP 2: Assume Initial values of all
p (n,m) to be 0.5.

Note that:

p
(n,3) = 0.0 ; (n = 0,1,2,3)

and

p
(3,m) = 1.0 ; (m = 0,1,2,3)

Now, starting from node (0,0), determine the

number of vehicles on all the routes of the

network by equation (6.2).

STEP 3: Beginning at the kth stage and keeping the number

of vehicles entering this stage constant,
p
(i,j)

is determined by changing Y (i,J) such that the
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total travel time for this stage is a minimum.

The equation for determining the travel time at

each stage are given below.

The equation for the 9th stage is:

3 3
= ff ir(a»m) ' v(n,m) + ^(n,m) • (n,m) 2L Z- K

K 1 *H *H2 ( XH )

T =

+ v {n,m) • Y (n,m)

+ K (n,m)
•

, v (n,m) v
2 (6.7)

The equation for the 8th stage is:

T =r-r- xr(n.m) • Y (n,m) + ^(n.m) •
, (n,m) 2

2_2_ K
H1

X
H *H2 ( XH '

)

m=2n=l

+ ~(n,m) • v (n,m)
*V1 *V

+ K (n,m) • . (n,m).2 (6.8)AV2 » Xv ;^V2 I XV

The equation for the 7th stage is:

T=|-£ K (n,m ) • jji.., +
K
(„,») •

(jXn..) a

m^i n=2.

+ K (n,m) • Y (n,m)
V1 *V

+ K (n,m)
•

/ v (n,m) v
2 (6.9)

Hh> ( ir 9

)

The equation for the 6th stage is:

3 3
T =y Y" K

(n,m) • (n,m) + K (n,m) •
, (n,m),2L L Km x

h *H2 ( xH )

+ T,(n,m) • Y (n,m)A
V1

A
V

+ K (n,m) • . (n,m)x2 (6.10)
V2 v AV



The equation for the 5 stage is:

^ 3
T =y- r-j^n.m) •

x (n,m) + K (n,m)
• ,

x
(n,m)j2

L— L— Hi H H2 H

m^i n=o

+ r (n,m) • Y (n,m)x
V1 Zf

K
V2

The equation for the 2nd stage is:

3 3
T =

( xr )

r-r- K (n,m)
• y(n,m) + ».(n,in) • , (n,mh2

L.I- hi ni
A
H2 < xh ;

+ K (n,m)
•

x
(n,m)

V2
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m=i r)=i

+ v (n,m) • (n,m)
*V1 XV

+ (n,m) •
,

(n,m).2 (6.11)
KV2 <

XV J

The equation for the A**1 stage is:

3 3
T =5-r- K (n,m) • Y (n,m) + »-(n,m) •

,
(n,m) 2

t- t- *
H 1 *H ^2 ( XH )

m=on=o

+ ™.(n,m) • Y (n,m)

+ jrCn.m) • ,

x
(n,m) 2 (6.12)

The equation for the 3rd stage is:

T = yr-
K
(n,m) •

x
(n,m) + jr(n>m) *

( x
(n,mh2

^— ^— H1 H x!2 H

+ ™.(n,m) •
, . (n,m).2 (6.13)

171:0 11=1

+ \
T1 *V

+ K (n,m) • , „(n,m)
v
2 (6.14)
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The equation for the 1
s-t stage is:

3 3

v v (n,m) • y(n,m) + (n,m) • , (n,m),2
L2-*H1 *H KH2 { XH ;

T =

m-o n=o

+ v (n f m) • y (n f m)K
V1 *V

+ K (n,m)
• / T (n,m) 2 (6.15)

^V2 \ ^
v )

Thus the new value of p (2,2) for the 9th stage

is the one which minimizes the time given by the

equation for the 9th stage and this is determined

by varying the value of .(2,2). The previous

value of p(2,2) is replaced by this new value and

the number of vehicles on all the routes are ad-

Justed according to equation (6.2).

y(n,m) =
p
(n,m) •

| x
(n,m - 1 ) + -(n - 1 ,m)

(n = 0,1,2,3; m = 0,1,2,3) (6.16)

STEP 4: Preceding to the 8"th stage and repeat step 3

to determine the new value of p(2,1) that will

minimize the total time for all vehicles at the

8th stage given by equation (6.8). The previous

value of p(2,1) is replaced by the new value and

the number of vehicles on all the routes are

adjusted. This procedure is repeated for all the

stages to determine the new value of p(n,m).

STEP 5: One iteration is completed when all the values

of p (n,m) have been determined. These values are

then compared with the corresponding values of
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the previous iteration. If they are not signifi-

cantly different the optimal answer has been ob-

tained. If they are different the procedure con-

tinues at step 3 and the number of vehicles on

all the routes are adjusted for this new set of

p(n,m). The procedure is repeated until the

optimal solution is obtained.

This procedure has been programmed for the IBM 1410

computer and is listed in appendix II. The solution to

examnle 1 which follows was obtained using this program.
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Example 1.

Data

4?'
0)

= 50.0 4°
2

' 0)
= 2.8 4J.

1). 66.0

4J'
2)=56.0 4°

2
' 2)=1.7 4i'

0)
= 80 '

4i
,l5

= 6o -° 42
,1)= i - 3 4i

,2)
= 45 -°

4
2 '°>

= 52.0 4
2 '°>

= 1.2 4
2 ' 1)

= 71.0

4
2 ' 2)=91.0 4

2

2

' 2)=L6 4^= 63.0

K^l'
1^ 51.0 42

,l)=
1#9 4l'^ = 50 *°

4°' 0)
= 60.0 4°' 0)=3.2 4°' 1)

= 75.0

4°' 5)
= 71.0 4°

2

' 3)=2.1 4i'
0)

= 85 .0

4i
,:L)

= 45.o 42
,1)= 2 * 9 4i'

2)
= 52 -°

4^
3)=90.0 4

1

2
' 3)=3.1 4

2 ' 0)=6l.O

4
2 ' 1 )

= 31.0 4
2 ' 1) =2.6 4°' 2)

= 66.0

4
2 ' 2)

= 8i.o 42
,2)

= 2 - 5 4
2 ' 3)

= 50 *°

v(o,o)_s 100.0

JO.l)
K
H2 " 2.1

„(i.o)
Kg

2
= 1.9

*H2 = 2.1

K(2,l)
*H2 = 3.2

K(5,0)K
H2 = 1.4

K(3,2)
*H2 = 2.8

K(0,l)
*V2 = 2.5

Ji,o)_
K
V2 "

2.6

*V2 = 1.8

K(2 f 0)K
V2 = 1.4

,,(0,2)
*V2 = 3.1

^(2,3).K
V2 "

2.1

Results

P
(o,o)

= 51>000g p
(0,l)_

52.941$ p(°' 2 )
= 58.851$

pt 1 ' )- 44.897$
p(l,l)_

63.043$ P^
1

' 2). 26.190$

p( 2 ' )_ 44.444$ p( 2,1 )= 37.931$ p( 2 ' 2 ) = 66.666$
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6.3 Example 2.

Example 2 is based on a simple 2x2 network Illustrated

in Figure 5 where the nodes are represented by (0,0), (0,1)

. .., (2,2). In this example y(0,0) denotes the vehicles

which enter the network from the northwest at node (0,0) and

leave at node (2,2). Similarly v (2,0) denotes the vehicles
SW

which enter the network at node (2,0) from the Southwest

and leave at node (0,2). p (0,0), p (0,1), p (1,0) and ,,(1,1)
nw nw nw *w

represent the percentage of the vehicles which enter from

northwest and turn in the horizontal direction. Similarly

p(2,0), p (2,1), ^(1,0) and -n(1,1) represents the percentagerSW *SW PSW PSW

of vehicles which enter from the Southwest and travel in the

horizontal direction. The problem is one of determining the

values of p (n,m) and p(n,m) which will minimize the total
NW r

S¥

travel time of the network.

Observe from Figure 5 that the directions of these two

types of vehicles are not the same everywhere. When the

directions of two types of vehicles are the same, their sum

can be combined to equal x (n,m) in equation (2,4), but when
H

they are not traveling in the same direction, their times

are found separately and added.

This problem is treated as a combination of two problems

which are solved simultaneously. Thus there are eight stages;

four for the Northwest vehicles and four for the Southwest
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r(0,0)
NW

(0,0) (0,1)

.(0.0)
y

NW

__ P(i»o)__,
(1,0)

,d.o).
nw

-_p(2,0)__.
sw

/Ko)

,(o,i).

'NW

v
(°,2) YV
SW /

(0,2)/

, . __ P(1,1)_-^ . .

(1,1) SW (1,2)

p
(l,l)_^

r
NW

_ _p(2,D___
SW

'/
(2,0)
'SW

(2,1) (2,2)

,(2,2)
'nw

Figure 5. 2x2 Network
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STAGE #8

,
N \ S \N

STAGE # 7

wn
STAGE # 6

\

TT-

w
> s \

VS \

t V
'

STAGE #5

::J:
- III!'

•

'

"-'-"X.'. :x
1

1

n v V \ V s VN

STAGE # 3
\

' STAGE # 2

v \

V

v\\v\\\
>V

STAGE # 1

Note : A stage with solid hatched lines represents the part of the

(n m)
network where P„,,' is to be determined by varing the

NW

Northwest vehicles on the appropriate routes and by keeping

the other vehicles which enter the stage constant. The

alternate is true for the Southwest vehicles represented

by dashed lines. The cross hatched portion is omitted from

consideration since the vehicles in that area do not affect

the value of P^, or PgJ}'^ at that stage.

Figure 6. 8 stages of a 2x2 network.
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vehicles. The procedure for solving this problem is as

follows:

STEP 1 : Divide the network into eight stages as shown in

Figure 6. The Northwest and Southwest vehicles

are considered alternately.

STEP 2: Assume initial values for P (0,0), p (0,1), p (1,1),M NW NW

p (1,0), p(2,0), p(2,1), p(1,0), p(1,D to be equal
r
N¥ SW SW SW rSW

to 0.5.

STEP 3: Starting from (0,0) and (2,0) respectively assign

the Northwest and the Southwest vehicles to all

the routes using the initial values of p (n,m)
NW

and p(n,m).
SW

STEP 4: Starting from stage 8 and keeping all the vehicles

entering the stage 8 constant, change Y (1,1) inANWH

such a way that the total travel time given by

equation (2.4) for this stage is minimum. Prom

this value of y(1»1) determine the value of p (1,1)
^twh NW

and replace the previous value with it. Make the

new assignment of vehicles using this new value

of p (1,1) and procede to step 5.
NW

STEP 5: Repeat the procedure of step 4 for the Southwest

vehicles at stage 7 and determine the value of

p(1,1) which will minimize the traveling time atrSW

stage 7. Replace the previous value of p(1,1) by
SW
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this new value and make the new assignment of

vehicles using these new values of P (1,1) and
NW

p(1,1). Repeat the procedure for all the remain-
rSW

ing stages to determine the corresponding values

of p (n,m) and p (n,m). At each stage the new
NW SW

values of p(n,m) and p (n,m) are used to make the
NW

r
S¥

new assignment of vehicles on the links.

STEP 7: One iteration is complete when all the values of

p (n,m) and _(n,m) have been determined. TheserNW fSW

values are compared with the values of the pre-

vious iteration. If there is no significant

difference the optimal solution has been obtained.

If they are different, return to step 3 with new

set of values for p (n,m) and p (n,m).
NW r

SW

This procedure has been programmed for the IBM 1410

computer and is listed in appendix III.

The solution to example 2 which follows was obtained

using this program.
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Example 2.

Data

Jo.o)
KH1 = 40.0 4r>= w r(0,l)

*H1 = 32.0

KH1 = 29.0
:

4\'°K 1.5 K
H1 = 35.0

KH1 " 34.0 4§'
0)
= 1.2 Hi ~ 32.0

K
(o,o)

K
vi - 30.0 4° ,0)

= °-8 ,(0.1).
*V1 -

41.0

K.(0,2)Hi = 51.0 4^'
2)=1.2 „(i,o)

. *V1 = 42.0

K
(l,l)
Si = 51.0 4

1
2
,1)

= i.» K(l,2)
*V1 = 42.0

v(o,o)
NW - 100.0 V^'°^ = 100.0

Results

4°2
,1)

= 1-5

4
1

2
,1)

= i.i

4J-0). 1.0

K
V2 = o.9

4
1

2
,0)

-- 1.«

4 2
' 2)

= 1-5

P<£'°>- 41.00* P^K 66.10* P^,0)
z 9.76* P^' 1^ 57.89*

P
Sw'°'= 55.00* 4¥°'= 3S -'6!* P

SW'
1)= 50 -Wi P

sw'

l)=
29,54?S
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6.4 Example 3.

Example 3 shown in Figure 7 is similar to problem 2

except that vehicles enter and leave at several nodes of the

network. The problem is one of determining the values of

p(n,m) and -p(n,m) so that the total travel time is minimum.

The method of solving this example is same as example

2. When the vehicles are assigned to the routes, the arrival

or departure of the respective vehicles at corresponding

nodes are taken into account.

The solution to example 3 was obtained using the computer

program in appendix III.
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Example 3.

Data

K
i£'

m)
'
4?'°°' ^l'^ "* K

V2'
m)

<
n - O' 1 ' 2 '

m = O' 1 ' 2 )

are same as example 2.

V
NW ~

iUU,U V
SW - 1UU,U V

HW ^U,°
.

V
NW = 50, °

*8W r -30.0 v
si'

2
^= -10 »°

Results

P
NW

,0)
= 45 ' 00^. PNW'°

)= 71 ' 92?S P
NW'

1)= ^-^ P
NW'

1)= 58 - 33*

4w'
0)

= 59 ' 00^ 4l'
0)

= 51.70^ P
si'

l)=
59 ' 52* P

sJ'

l)=
10 * 81^
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r(0,

NW
o)

(0,0)

(^V

(0,1)/

sw

/

y(°' 2V
sw /

p(o,o)
*NW

(0,2)/
/

p(0,l)
*NW

_ D(i.o).
(1.0) sw (1,1)

,(i,o)
"NW

_. P(2,0)__
(2,0) SW 1L21

__ p(i»i)_
sw (1,2) /

,(1,D
NW

__p(2,D_ .
SW

' v
sw

(2,2)

v
sw *
/

/

NW

Figure 7. 2x2 Network
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6.5 Example 4.

Pipeline problems are similar to traffic assignment prob-

lems except that fluid is treated as a continuous variable

rather than a discrete or integer valued variable. The prob-

lem is one of determining the values of p(n,m) which minimize

the cost of transporting fluid. The procedure of solving a

2x2 pipeline network, shown in Figure 7, is as follows.

STEP 1 : Divide the network into four stages in the same

way as the traffic problems. The stages for this

example are shown in Figure 8.

STEP 2: Assume initial values for p(n,m) to be 0.5 and

assign the corresponding quantity of fluid for

all the pipes, taking into consideration the

amount of fluid entering and leaving each node.

STEP 3: Starting from the 4th stage and keeping all the

fluid entering into this stage constant, search

for the suitable value of p(1,1) which will mini-

mize the cost of transportation at the 4"fch stage

which is given by equation (4.2). Replace the

previous value of p(1,1) with this new value and

make new assignment of fluid into network using

this new value.

STEP 4: This procedure is repeated until all the new values

of p(1,0), p(0,1) and p(0,0) have been determined

and the volume of fluid in the links of the net-

work have been adjusted.
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>

(0,2)

(1,2)

Figure 8. 2x2 Network
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in§§§
STAGE # 4 STAGE # 3

11—1__ ~~yy////////
/////////////////////SS//SSSS
77/777/7///S/Ss/sS
/ s/ S / S / / /

f§ py/y/Vy

p P
1^ if

y/y/y

'////B §1
STAGE # 2 STAGE # 1

Note : The cross hatched portion is omitted from

consideration since the fluid in that area

(n,m)
does not affect the value of P

stage.

at that

Figure 9.
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STEP 5: Compare these values of p(n,m) with the correspond-

ing values of the previous iteration. If there

Is no significant difference the optimal solution

has been obtained. If there is a significant

difference make the new load assignment with the

new values of p(n,m) and return to the step 3.

Repeat the whole procedure until an optimal solu-

tion is obtained. The solution to example 4 was

obtained using the computer program in appendix IV.
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Example 4.

Data

J0,0)KH1 = 51.0 4S'
0)
s i - 8 4¥

lY
= 67.0 4°2

,:L)

= *•»

jr(l,0)K
H1 = 70.0

'

KH2
,0)

= 1 - 6 K
Hl'

l)=
63 '° KU>1) - 1 4

^1 = 65.0 4
2

2

'°>
= 1.2

; 42 ' 1)=65.0 41'^z 1.8

K_(0,0) 55.0 4°
2
'°)

= 1.2 ' 4?
,:L)

= 61 -

" 4°- 1)
= i.i

*V1 "
58.0 4°

2
' 2 ) = 1.5 4i'

0)
* 65.0 fr

0)
. 1-3

r(l,l)
Hi = 58.0 i&ti- 1

4

; 4i'
2)
= 45 -° 4

1

2

,2)- i-«

v
(o,o)_

100.0 V^ ' 1^ 100.0 V
(0 ' 2)

= 50.0 r 1 ' 1)- ioo.o

v(2,0)= 50.0 y
(2,l)_ _5Q ^ V^

2 ' 2)- -350.0

Results

D(0,0) = 27.00$ ,d.o). ,(0,1)P^» u^_ 36.00$ Pw ' x '
= 38.00$ P

vx ' x;
= 53.00$

(1,1)
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.7. SUMMARY

A number of one way traffic, two way traffic and pipe-

line problems have been solved by this method on IBM 1410

and 1620 computer. This method is suitable for small net-

work problems. As the size of the network increases, the

size of program reaches the capacity of the existing com-

puter.

This method is not well suited for the complicated cases

of example 3 with vehicles entering or leaving the network

at more than two nodes. One reason is that the entrance or

exit of the Northwest or the Southwest vehicles at any node

other than the last stage, as in example 3» are dependent on

the directions of each other. However, this method is

applicable to pipeline problems since the question of multi-

directional flow does not arise.

The success of this method lies in its simplicity. An

important aspect of this method is that it is selfcorrecting

and thus converges to the optimal solution if errors occur

from roundoff, by performing additional iterations.

The percentage of vehicles at the node (n,m) which

travels in the horizontal direction, that is (n,m) (n = 0,

1,....N; m = 0,1,....M), is a function of number of vehicles

and it will not remain the same as the number of vehicles

are doubled.
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8. CONCLUSION

One way or two way traffic problems can be success-

fully solved by this method. The program size is the limit-

ing factor. This method is applicable for simple cases of

two way traffic problems like example 2 and 3» However, this

method is not applicable for two way traffic problems with

vehicles entering or leaving the network at more than two

nodes. The success of this method lies in its simplicity

and computational efficiency. Even if the mistakes are made

at a previous step, it is possible to obtain correct answer

at the cost of few more iterations.
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APPENDIX I

SINGLE SEARCH METHOD

In order to find the value of p (i f J) of the kth stage

which will minimize the time for this stage, the following

procedure is used.

STEP 1 : Keep all the vehicles entering the Xth stage

constant and assume an initial value of x^ 1 *^)
H

to equal 0.0. Adjust vehicles on all the routes

according to the equation (6.2) and find the total

time for ic
th stage according to the equation (6.1).

Denote this time by tq .

STEP 2: Increase the value of y(i,J) by 5.0, adjust vehi-

cles and find total time in the same way as in

step 1. Denote this time by T
1

.

STEP 3: Compare T and T
1

. If T
1
< TQ , replace the value

of T by the value of Tj , go to step 2 and repeat

the procedure. If Ti ^ T , go to step 4.

STEP 4: Decrease the value of x(i,3) by 1.0, adjust vehi-

cles and find the total time in the same way as

in step 1. Denote this time by T2 .

STEP 5: Compare T 2 and' Tj . If T 2 < ^ , replace the value

of Tj by the value of T2 , go to step 4 and repeat

the procedure. If T 2 > Tj the value of P (i,J)

which minimizes the time for the kth stage is given

b7!
'(M) = (41,J,,

')
/ (x^W' 1 ^- 1

',
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APPENDIX II

PR 115 PROGRAM FOR EXAMPLE 1.
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MCMS^ JCB
MCN5S CC.^7 15 MINUTFStlO PAGES
MCNSS ASGN VJR,?2
v^Mtt; ASGN MG0»16
MC^Sf "ODE GC»T^5T
MCN$$ FXFO FORTRAN* »»»»»»NC01
DIMENSION P1(20),P?(20),P3(?C),P4(20),P5(20)»P6(20)
DIMFNSICN P7(20),P8(20),P9(20)

160 FCRf.AK I2»9F9. C «F15.2)
BK1=50.
B<2=60.
BK3*66.
RK4=75.
BK"5 = 56.
p^6=*6.
P V 7 = 7 1 .

prp=pn.
B K9 = 8 5 •

BK10=5^.
p<i 1=45.
BK12=45.
B<] ^=52.
BK14=90.
BK] * = 52.
R<16=61 .

P^!7 = 7i .

R y 1 p = -5 i .

BHO : Q1 ,

P^2 n =P 1 .

B K 2 1 = 5 .

Rk22=*3.
RK23=51 .

RK24=3v.
,CK1=2.8
CK2=3.2
CK3=-.l
r •/ /, = ; . ^

rvR=i .7

rrf, = o..i

TK7=2.1
fi<R = i .0

C K 9 2 • 6
ck.i o=i .?

rkn = ? . 9
c^ i 2=?.:
CK-13^ .8
CKl/'=3.]
C kf 1 t = 1 .2

r K 1 6 = 1 • 4

C < 1 7 = i . 2

C"l 8=2.6m 9=1 .6
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CK20=2.5
CK21=?.!I
CK2?=1 .4
CK??=i .0

M = ]

<; v a = i n .

Pi
( 1 ) = .

5

P ? ( 1 ) = . 5

P3( 1 )=-5
DM 1 ) = .5
nM 1 ) = .5
D ^( 1 ) = .5
P7(

] )=.5
D 8 ( 1 ) = .5
P?(l )=.5
r a=i

rr=i
ID=]
IF=]
^ c =!

!G=1
IH=1
I 1 = 1

PA = 0.
PR = 0.
vr = o.
f>rs-n .

DF=0.
DF=0.
^. = P.
HH = l .

D!=0.
V] =Pl ( IA ) *5MA+.

5

SMlsM]
SM2=SMA-SM1
W-a=p?

j I^)#SMl + .5
5 v ^ = v •»

SV4scm 1 —SW3
Mfl=P4( TO) *SM2+«5

r
,

•
' 9 = c

;
w p _ <; m p

V r = p r» ( I r ) #SW3+ • 5

S w 5

=

m5
Sy6=5W3—SM5
SM7=SM5
mi 0=P5

( IF )*( SM4+SM8
SM10=M10
S'-'l i = ( SM4+SM8 ) -SMI
Ml ^=P7( IG)*SM9+.5

)+.5
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i

1

i ?

13
i a

i 5
i A

1 7

18

19
3

36

?0

SM16»S

V1?=P6
SV]?rM
c M 1 3 = (

5 M 1 1\ - c

M l 7 = i P,

5 v 1 7 = m

S M 1 8 = (

SV23=S
M-|0 = P9
S M 1 O - V

SM20=(
sm21=f
SM2A = <^

tf ( r i

I P

I F
T tr

IF

IF
TF
IF
IF

l TH

f TF

( IG
( I

c

( ir

( tp

( tp
( IA

A2

CI1*=BK
CI2=RK
r i = ct i

IF ( F

M

("HI rPV
CH?=pv

CH=CH]
IF ( ?M
CF1=RK
CF2=BK
CF3=RK
CF'-=PK

CF=CF]
IF (SM
CG!=°v
rr?=pc
CG3=P*
CGA=B<
CG5=PK
CG=C<. ]

I F ( SM
CE1=BK
CF2=BK
CE3*BK
CFA=P,K
CF5=PK

M16
(IF
1 2

0/5
vi ?

( IH
17
SMI
Ml 8

( I I

19

SMI
MIA
^23
-IH
-IF
-IG
-IF.

-IC
-in
-IB
-IA
-M)
19*
2]*
+r t

19-
1 7*
2?*
1 9*
21*
+rn
17-
12*
IA*
2 0*
2 A*
J-rF

12-
1 5*
22*
i7*

2^*
2A*
+CG
15-
1C*
12*
13*
1 a*
20*

S^15

)*( SM6 +SW0 ) + .5

+ <;m]0 J-SM12
+SM7
}*( SM] ]+SM] ^ )+.5

1+SM15 J-SM17
+SM22
)*( SM13+SM] 7)+.

S

3 + SM
+SM1
+SM2
) 1?

) 1 3

W
15
16
17
1
R

19
60,

SM19
SM21
2

DI

1

SVH7
FV2?
SM19
5M2]
2+CH
OH)
SMI 2

SMI A

SM20
SM2A
2 + CF
DF)
SM 1

5

SW22
SM17
SM23
SM2A
2+CG
DG)
SM10
SM12
SMI 3

SMI A
SM20

17J-SM19
9

»32»30

»*>A»36
,: 5»39
,16*42
»1 7»45
» 1 8 » 4 8

,19,51
60»5A
+CK19*SM1
+CK21*SM2

66,6
+CK1
+r<2
+ GK1
+GK2

76,7
+ C<1
+ CK1
+CK2
+CK2
3 + CF
86,8
+CK1
+rx?
+GK1
+GK?
+CK2
3+CG
96,9
+CK1
+ CK1
+CK1
+ CK1
+GK2

1 ,63
7*SM1
^*S W 2

9* SM

1

1*SM2
h

1 ,73
2*SM1
A*SM1
P*SM2
A*SM2
A

1 »83
cS*c;M1

?*SM2
7*SM1
1 * s M ?

A*SM2
A +CG5
1 *93
0*SM1
2*SM1
^*SM1
A*SM1
C * S M 2

9**2+BK
1**2+BK

7 *#2+ n *

3*#2+BX
q**2+RK
1**2

2**2+BK
A**2+BK
0**2+BK
A**2

S**2+ R K

?*#2+«<

3**2+RK
/+*#2 + BK

0**2+PK
2**2+BK
3**2+RK
4**2+BK
0**2+BK

20*SM20+C<2 0*SM20**2
2A*SM2A+C<2A*SM2A**2

]8*SM18+r<lfi*SV18**2
20*S^20+CK2 0*SM20**2
2A*FM2A+r<2A*SM2A**2

13*SM13+CK13*SM13**2
19*SM,19 + C<19*SM 19**2
21*SM21+CK21*SM21**2

16*SM16+G<16*SM16**2
1 8*F^18+CK1 8*SM1 8**2
20*S^20+r<2 0*SM2 0**2
19*SM19+C<1 °*S^1 9**2
2I*5M21+CK21*SV21**2

11*SM11+CK11*SM11**2
18*SM18+CK18*SM18**2
17*S M 17+C<17*SM 17**2
2 3*SM23+CK23*SM2 3**2
19*SV'19 + CK19*S»> 19**2



53

CE6=BK21*SV21+CK21*SM21**2+BK24*SM24+CK24*SM24**2
CE=CE1+CE2+CE3+CE4+CE5+CE6
IF (SM10-DE) 106,101,103

4 5 CC1=RK5*S*15+0'5*SV5**2 +RK6*SM6+CK6*SM6»*2
fC2 = r^7*SV7+CK7* <;v7**? + R<1 2#SM1 ? + CK] 2*SM1 2**?
Cr3 =R<13*^, 13 +CK13*SN, 13**? + Ri<ri9*SM19 +CK19*SNM9**2
CC4=BK14*SN>14+CK14*SM14**2+BK20#SM20+CK20*SM20**2
CC5=RK?!*SV2 3+CK?1*SM21*#? + RK/>4*SV24+rK24*SM24**2
CC=Cri+CC2+CC3+CC4+CC5
IP ( rv5_nr) ii6»m»ii3

4 8 CD1=I K8*SN,

8 +CK8*SM8**2+BK9*SM9 +CK9*SM9**2
CD2=BK15*SM15+CK15*SM15**2+BK11*SM11+CK11*SM11**2
CD3=BK10*SM10+CK10*SM]0**2+BK13*SM13+CK13*SM13**2
CD4 = R.K17*SM17+CK17*SM]7**2 + BK. 12*SM12+CK12*SM12**2
CD5=RK14*SM14+CK14*S^14**2 + BK19*SM19+C!<19*SM19**2
CD6=t'K16*SM16+CK16*SM16**2+BK18*SM18+CK18*SM] 8**2
CD7='BK22*SM22+rK2?*SM22**2+BK23*SM23+C<23*SM?3**2
eO8=RK20*SW20+CK20*SM20**2+PK21*SM21+CK2l*SM21**2
fr>9=R< 24*5>M24+rK24*SM24**2
CD-CD1+CD2+C03+CD4+CD5+C06+CD7+CD8+CD9
tp ISM8-DD) 126*1?] » 123

51 CBlr-RK3*SV3 + CK'a *SV3**2+BK4*SV!4 +CK4*SM4**2
CB2=BK5*SM5+CKI *SV5**2+BK6*SM6+CK6*SM6»*2
CB3=BK7*Sy7+CK7*SM7**2+BK10*SM10+CM0*Syi0**2
CB4=RK]2*SM12+CK12»SM12**2+BK11*SM11+CK11*SMH**2
CB5 = BK1 3*SM13+CKn*SM] 3**2 + BK 14*5M 14+CK 14*S.V14**2
CB6=RK17*SM17+CK17*SV17**2+BK19*SM19+CK19*SM19**2
CB7=B<18*SV18+CK18*SV18**?+R<20*SM20+CK2 0*SK20**2
CB8 = D '-'?l*S^2 1+r<?i#sw7-|**2 + n K23*Sr', 23 +rK23*SV23**2
CR9=RK?4*SM24+CK?4*SM?4#*2
CR=CB1+CB2+CB3+CB4+CB5+CR6+CP7+CB 8+CB9
IF (SM3-DB) 136»131 .133

5 4 CA1=RK1*SM1+CK1 *SM1** 2+RK2*SM2+CK2*SM?**2
CA2=RK3*SM3+CK3*SK3**2+BK4*SV4+CK4*SM4**2
CA3 =RK5*SM5 +CK5*SM5**2+BK6*SM6+CK6*Sr/6**2
CA4=BK7*SM7+CK7*SM7**2+BK8*SM8+CK8*SM8**2
C A

5

=sk9*SM9+CK9*SM 9**2 +BK 1 0*SM1 0+CK10*SM 10**2
CA6=BK] 1*SM11+CK11*SM1 1**2+BK 12*SM12+CK12*SM12**2
CA7=BK1.3*SM] 3 + CKT-5*S^13**2 + B l<14*SMJ4 +CK14*SM14**2
CA8 =RK15*SM15+Cia5*SM15**2+BK16*SM16+CK16*SM16**2
CA9 = Pk''' 7*SM17+CK1 7*5^1 7**?+BK 18*SM18+CK1 R*SMi 8**2
CA1 0=BK19«SM19+CK1 9*SM1 9**? +BK2 0*SN'20 +CK?0*SW20**?
fAn=Pr?T*^?i+ r K?i*5^?1**? +nK??*SM22+CK?2*SM2;>**?
CM 2 = R^23*SM23+CK?3*SN,

2 3**2 + RK2 4*5M24 +CK24*SM24**2
CA = CAl-+rA2 + r /

(

.3 + rA4+rA5 +rA6 + '"A7 + r/\8 +CA9 +CA10 + rAll+rA12
IF (S^l-DA) 146,141,14^

60 I 1=1 1 + 1

S.M19=0.
GO Tr 10

61 CCIleCI
b? SMl9=SM19+5.

GC T~ 10
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63 CCI2=CI
IF (CCI1-CCI2) 65,65.64

64 CCI1=CCI2
GC TC 6?

65 SM19=SM19-1.
DI=PM1 9+5.
GC T C 10

66 rri3=ci
IF (CCI2-CCI3) 69,69,67

67 CCI2=CCI3
GC TC 65

69 P9( I I ) = (SM19 + 1. )/(SM13+SM17)
GC TC 70

70 IH=IH+1
S V 1 7 = .

GC TC 9

71 CCH1=CH
7? SM17=SM17+5.

GC TC 9

73 CCH2=CH
IF (GCH1-CCH2) 75,75,74

74 CCH1=CCH2
GC TC 72

75 SM17=SM17-1.
DH=S^17+5.
GC TC 9

76 CrH3=CH
IF (rrH2-CCH3) 79,79,77

77 rCH?=rfH3
GC TC 7S

70 P8( IH)=( SM17+] . ) /(SM11+SM15)
GC TC 80

80 T F= I F+1

SMI ?^0.
GC TC. 8

81 CCF1=CF
8? SM12=SM12+5.

GC TC 8

P3 CGF2=CF
IF (CCF1-CCF2) 85,85,84

P4 rrF]=rcF2
GC T^ 8?

DF=S"12+5.
G /~i X <~>

86 CCF?=CF
IF (CCF2-CCF3) 89,89,87

87 CCF2=CCF3
GC TC 8 5

89 P6( IFJ=(SM12+1. )/(SM6+SM10)
GC TC 90
IG=IG+1
SMI ^ = n .

fiC TC 7
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91
92

Q'

04

05

Q6

07

00

100

101
10 2

103

104

105

106

107

109

110

1 1 1

1 1 ?

113

114

11 5

116

1 1 7

CCG
SMI
GO
CCG
IF

CCG
GC
SMI
DG =

GC
CCG
IF

CCG
GC
P7(
GC
IF =

SMI
GC
CCF
SMI
GC
CCF
IF

CCF.

GC
SMI
0F =

GC
CCF
IF
CCF
GC
P5(
GC
IC =

SM5
GC
rrr
o/c

GC
ccc
IF

CCC
GC
SM5
DC =

GC
CCC
IF
err

1

5=

2 =

(C
1 =

TC
5 =

Sf-'

TC
3 =

(C

2 =

TC
J
r<

TC
IF
=

TO
1 =

0=

TC
2 =

IC

0=

SM
TC
3 =

(
r

2

TC
I

17

tc

IC
-r

TC
1 =

= c;

TC
2 =

(<

1 =

TC
= S
SM
TC
3 =

(C

2 =

CG
SM15+5.
7

CO
CG1-CCG2) 95,95,94
CCG2
92

SM15-1.
15 + 5.
7

CG
CG2-CCG3) 99,99,97
CCG3

) = ( <;mi5 + 1 . )/<^M9

100
+ 1

0.

6

CF
SM10+5.
6

CF
CF1-CCE2) 105,105,104
CCF2

1 02
CM10-1.
10+5.
6

CF
CF2-CCE3) 109,109,107
CCE3
105

)=(SM10+1. )/(SMR+SM4)
110

+ 1

GC T:

V5 +
r.

cc
cci
ccc

1

1

M5-
5 + 5

5

CC
rC2
rrr
11

r..

-CCC2) 115,115,114
2

2

1 .

-CCC3) 119,119,117
3

5
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119 P3( IC) = (SM5+1.
GC TC 120

)/SM3

120

GC TC A

121 CCD1=CD
122 SW8 = SV!8 + 5.

GC TC 4

12? CCD2=CD
IF (CCD1-CCD2) 125,125,.124

12 A CCD1=CCD2
GC TC 122

125 SM8=«M8-1

.

CP=SM8+5.
(~,^ T« Zt

126 rrD3=rn
IF (rrr>?-ccD3) 129,129.,127

127 CfD2=CCD3
GC TC 125

129 P4( ID-) = ( SM8+1.
GC TC 130

)/SM2

130 IB=IB+1
SM3 = f .

GC TC 3

131 crBi=cP
1.3? SM3 = <;mt + 5 .

G C T c i

7 ? i rrpp = r&

IF (CCB1-CCB2) 13 5,135..134
134 rrBl =rrp,2

GC TC 1 32
13 5 SM3=SM3-]

.

0B=SM3+5.
GC TC 3

136 CCB3=CB
IF (CCB2-CCB3) 139,139..137

i *7 ccb2=ccr3
GC TC 135

1 3<? p?( IR)s( SM3+1 .

GC TC 14°
)/SMl

1 e,
r T A = T A +

1

S M i =n .

GC TC 2

141 CCA1=CA
142 SMl=SMl+5.

GC TC 2

143 rr/\2 = GA
IF (CCA1-CCA2) 145,145. 144

144 CCA] =CCA2
GC TC 142

1 4 r
,

DA=SM1 +5.
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G

C

T

r

G
149 P

146

147

150

171
172
173
17^
175
176
177
178
170
180

W
IP
M
T

I

I

T

T

I

I

I

T

S

C TO 2

CA3=CA
F (rr/\

CA2=CC
to i

1 ( I A )
=

TO 3

RITF( 3

8 ( I H ) ,

= M+]
F (PI (

(P2 (

(P3 (

(P4(
(P5 (

(P6(
(P7(
(P8(
(P9(
P

?-f"CA3) 140,149,147
A3
45

( SM1+] . ) /5MA
50
,160)M,P1( IA) ,P2(IB) ,P3( IC) ,P4( ID) ,P5HF) ,P6( IF) ,P7( IG) ,

P9( I I ) ,CCA2

IA)-P1( IA-1

)

IB)-P2( IB-1

)

IC)-P3( IC-1

)

ID)-P4( ID-1

)

IF )-P5( IE-1

)

IF )-P6( IF-1)
IG)-P7( IG-1

)

IH)-PP( IH-1

)

I I )-P9( I 1-1

)

MP
:ad

172,1
173,1
174,1
1.75,1

176,1
177,1
178,1
179,1
180,1

FXEQ linkl:
CALL NC01
EXEO N001 ,MJB
JC8 ACTSS D. K. PAI IE 0313C40409
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APPENDIX III

PR 115 PROGRAM FOR EXAMPLE 2 AND 3.
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MONSS
MCN$$
DIMENSI!
1PB4U0)

JOB
CCMT
ASGN
ASGN
VCDF
FXEO

15 MINUTEStlO PAGES
WJB»1

2

VGC s 1

6

GCSTEST
FORTRAN, »»»»• .NC01

INPRH40) , PR 2 (40) ,PR3(40) ,PR4(40) * PB1 ( 40 ) » P32 ( 40 ) ,PB3(40) ,

200 FCRN!AT(I2»8F9.5»F15.3)
420 FORMAT (7F8.4)

PFAD 420,RB11,RB12*RB2,RB8»RB69,RB10»RB1
r?TAD 42 0,RR1,RR2»RR3,PR4»RR56,RR8,RR11
CKl = i . i

C2 = .8

CK3 = ] .5

r<4 = i .?

C*6 = ] .3
CK7=1 .2
CKR = * .6

CK9=1.5
CK10=1 .3

CK11=1.2
CK12=1 .0

P<]=/'0.
B K ? » 3 •

B < 3 = ** ? •

BK4=51

.

Rie^A] .

RK6=?9.
BK7* 35.
BK.8=-A2.

BK9=51.
BK10=^2.
B< 11 = 34.
3K12 = ,3 2.
1=1

J-l
K«] •

L = l

T 1 = 1

JJ=1
KK=1
LL = 1

M=I
SMB=lOt.
SMR=]00.
PB1 (1 )=.5
PR2( 3 )=.5
PP3 (1 ) =.5
"P4 (1 )=.5
""i ( -\ ) =.5
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•JAP

to

1

1

1 ?
1 -x

1 *

DOp
PP"*

DP4
^p7
PP6
PR]

DR1
PR7
DR6
DR3
DR1
(VRl

S3]

MP]

SB]
SPP

SR3
SR5
SPA
MB1
S n

1

SP9
SR]
v P f,

<;op

cot

VR 6

SR6
S n ?

SRI
MP 7

S»7
SR9
SP1
s ° ^

VP7
SB7
COR

SR4
S P ?

SMI
SM3
SM6
SM7
SV]
SM]
IF
T
r

I
r

TF
T P

M )

r )

(i)
=n.
= o.
1=0
?-o
= 0.
= 0.
= 0.
= 0.
= PR

1=p
]=M
= C\»

= PP
= VR
= SR
=SR
2 = P

2=M
= SB
o = <;

= PP
= MP
= qp

l= c

= DP
= MR
= SB
= SR
= PR
= MR
=SR
0=S
? = c

=MR
= »-p

= SP
= «;p

SR
= S B

= SR
= SB
1=^

2=S
(L

(i -

' JJ
( J-
( ^

= .5

= .5
= .5

1 ( I )*SVR+.5

-SRI
1(11 )*SM3+.5
1 1

-SB11
(K)*< SR1+RR1 )+.n

+RR1-SR3
+RR3
3(KK)*(SB11+RB11 )+.5
12
1+RB11-SB12
1 ?+PRl?
(J)»(SR2+RR2)+«5

+PP2-SP6
R + PDP
(JJ)*(SRR+RR8 K.5

+PB8-SB6
+ RS2
(l)*(SR5+SR6+RR56>+.5

+SR6+PR56-SR7
7+SP4+RR4
o+<;pi i j.ppi i

( LL )*( SR9+«;R6+RB69) + . 1

+S n 9+RR60-^n7
+SP10+PR1C
+ SR c

s +Pm
+ SP1
+ SR3
+ SR6
+ SR7
1 1+SR1]
1 2+^Rl?
U 12»1 ?, or>

J) 13,13,23
Jl ]4(i4,^
*

) ] - , 1 <- ,?P
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16 IF (K-II) 17,17,35
1 7 IF ( I I -I ) IP ,1 8,38
1
r if f.I-M) 50,50,4]

?-' CBAi = RK7*SM7+Cr7*SM7**2 +3K3*SM3+CK3*SP'3**2
CBA2=BK4* ( SR4+LB4)+CK4*(SR4**2+SB4**2 )

CBA3=BK5*(SR5+SB5)+CK5*(SR5**2+5B5**2)
CBA=CBA1+CBA2+CBA3
I F ! SR7-DB7) 56,51 ,53

23 CRA] =PKl*S*M+c.f~?*^-H**2+B<l?*SW\ 2+CK12*SM12**2
C"DA2= ni'9*(SP c>+ r P |31+CK9*(SP c>**2 + SBP**2)
CPA3 = P |<'l n *( <:; Pi n + ,:: Rl0)+rK10*(SP1 0**2+SB 10**2 )

CRA=CRA1+CRA2+CRA3
IF (^R7-0P7) 66,61 ,63

2 6 CBB1=BK6*SM6+CK6*SM6**2+BK7*SM7+CK7*SM7**2
CBB2=BK1*SM1+CK1*SM1**2+BK3*SM3+CK3*SM3**2
CBB3=BK2* (SR2+SB2 )+CK2*( SR2**2+SB2**2

)

CBB4=BK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
CBB5=BK4*fSR4+SB4)+CK4*(SR4**2+SB4**2l
CBB=CBB1+CPB2+C8R3+CBB4+CBB5
IF (CRf,-0 n 6) 76,71 ,73

29 rPRI = R^6* V''6+ri<6* <;M6**2 + BK7*SM7 + C l<7*S v'7**2
ronp-DK -i J»sM] 1 +CK1 1*SM1 i **? + P K"! 2*SM12+CKl ?*SM1 ?**?
CPR3=RK8* { SR8+SB8 )+CK8*( SRB**2+SB8**2

)

rPR4 = PK9*(<;P9+<;R9)+CK r>*(^P<3**-2 + SR9**2)
C p8?=RK10*(SR]0+SB10 )+CK10*(SR10**2+SB10**2

)

CPB=CRB1 +CPB2+CRB3+CRB4+CRB5
IF (SR6-DP6) 86,81 ,83

3? CBC1=BK12*SM12+CK12*SM12**2+BK7*SM7+CK7*SM7**2
CBC2=BK3*SM3+CK3*SM3**2+BK9*( SP9+SB9 ) +CK9* ( SR9**2+SR9**2

)

CBC3=BK10*(SR] 0+SB10 ) KTK10*

(

SRI 0**2+SR 10**2

)

CPC4*-PK4*(SR4+SB4)+CK4*($R4**2+SB4**2)
CBC5=BK5*(SR5+SB5)+CK5*(SR5**2+SB5**2)
CPC =CRC1 + CPC2+CBC.3 +CBC4+CBC5
tf (<-n]?.r)ni ? , 96*91,9?

».
«; CRn=P<1 2*SM1?+CK1?*SM1 ?**?+8K7*SM7+CK7*$M7**2
CPC2-Rk'3*SM3+CK3*SM3**2+BK9*< SP9+SB9 ) +CKQ* ( SP9**2+SB9**2 )

CRC3=BK10*(SR10+SB10)+CK10* (SR10**2+SB10**2 )

CPr4=P^A* (SR4+SB4)+CK4*(SR4**2+SB4**2

)

CRC5=BK5* (SR5+SB5 ) + CK5* ( SP 5**2+ SB 5**2

)

CRC=CRC1+CRC2+CRC3+CRC4+CRC5
IF (SR3-0R3) 106,101,103

3 8 CRD." =BK1*SM1+CK1*SM1**2+BK3*SM3+CK3*SM3**2
CBDL=BK6*SM6+CK6*SW6**2+BK7*SM7+CK7*SN,7**2
CR03=RK i 1 *SM1 1 h CK1. 1 *SM] 1 **?+PKl 2*SM12+CK] 2*SM] ?**?
fRD4=R!<?*{SR2+.SB2)+CK2*(SR2**2+SR2**2)+BK5*lSR5+SB5)
ra,r>* = r «5* ( SP 5**2 + C>R 5**2 )+BK"4* ( SR4+SB4 )+CK4* ( SR4**2+SB4**2 )

CRDSsP^S* (.SP8+SB8)+CK8*(SR8**2+SB8*#2)+BK9*(SR9+SB9)
CRD7=<T9* fSR9**2+SR9**2)+BKl 0* ( SR 1 + SR1 ) +CK 10* ( SR 10**2 + SB 10**2 )

CRD=rn ni + CPD2+<"R r>3+CRD4+CBD5+CRn6+CBD7
t f («ii-noin 1 1 a , 1 1 1 , i

i ?

41 CRD1=BK1*SM1+CK1*SM1**2+BK3*SM3+CK3*SM3**2
CRD2 = RK6*SM6 +CK6*SN, 6**2 +BK7*SM7+CK7*SM7**2
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CRD3=RIO 1*S M 11+C"<H i-fr^Ml 1 *#2 + PKl 2*.SM1 2+CK12*S^12**2
CRD4=PK2*(SR2+SB2 ) +CK2* ( SR2**2+SR2**2 ) +BK5* ( SR5+SB5 )

CR05 = C"'<5*(SR5**2 + C>P5**2)+P!<4*(SR4+SB4)+CK4*( SR4**2+SB4**2 )

OD6=PK8*(SR8+SB8)+CK8*(SR8**2+SB8**2)+BK9*(SR9+SB9)
CRD7=C^9* (SR9**2+SB9**2 )+BK10*(SR] 0+SP1 ) +CK1 0* ( SRI 0**2+SB10**2

)

CPD=CRD1+CRD2+CRD3+CRD4+CRD5+CRD6+CRD7
IF (SR1-DR1 ! 126»] 21 »] 2?

50 LL=LL+1
5^7=^.
GC Tl 8

c, i rr n Ai=rqfi
k? FP7 = e;n7+5.

r. «» j «» 3

^ ^ CCBA?=CBA
IF (CCRA1-CCBA2) 55*55*54

R4 CCRA1=CCBA2
GO TC ^2

5 5 SB7-SB7-1.
[>B7 = SB7+5.
GO T D 8

*6 CCB/.**=Cpa
TF (CCBA2-CCBA1) 59,59,57

£7 rCBA? =CrBA?
G C TO 55

so PR4(| L)=( ««7+l« )/(SB6+SR9J

ao L=L+1
SP7 = 0.

GC TO 7

61 CCRA1=CRA
a? SP7=SR7+5.

GC TC 7

6? CCRA?=CRA
IF (CCPA1-CCRA2) 65,65,64

f,u CCPA1=CTRA2
GC T ^ A?

0D7-CP7+5.
GO T C 7

aa rrpA,3 = CRA
IF (rcRA2-CCRA3) 69,69,67

67 CCRA7=CCRA3
GO TO 65

aq PP4(L)=(SR7+1 . ) /(SR5+SP6)
GO TO 70

70 JJ=JJ+1
SR6=0.
G C T *" 6

7? SP6=^R6+5.
r-r t~ a

?7 rCPB?=CRB
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IF 'rrr>oi-Cf OR ? ) 75,75,74-
74 (TPLT=CCRB?

GO t^ 7?

75 SB6=5B6-1.
DR6=SB6+5.
GO TO 6

76 CCBB3=CBB
IF (CCBB2-CCBB3) 79,79,77

77 ff"PB? = CCBR'?
GC TO 75

70 PP2( JJ)=(SR6+1.)/SP8
r; « t 8 r-

on
I
_

^ J + 1

s p 6 = n

.

GO TO *

pi CCPB1=CRB
p? SP6=SR6+5.

G to c
>

P3 CCRB2=CRB
IF (CCRB1-CCRB2) 85,85,84

pa CrRBl=CCRB2
G C T 8 ?

q ^ rrpn

^

: rpR
IF (CCRB2-CCRB3) 89,89,87

P7 rrPR?=ccPB?
GO T^ 8 5

P9 P©2 (.,) = ( SR6+1. ) /SR2
GO TO 90

SB 12=0.
GO T lx

rror^-rnr
c; R1 7 = c.ni 7+5.
G C TO 4

tc (rrpri-rffarp
) 95,95,94

94 CCB<"!=CCBC2
GO TO 92

ok c,Di? r cni;_i i

DB12=SR12+5,
GC TO /.

*h CCBCUCRC
tp (rr^r?-rf "C3) 99,99,97

07 rrixry-rrr\ro,

ftr\ jr\ OR,

00 PR^H'i?) = («;pi2-fi.)/«;Rl]

SP3=0.

P2
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G C TO 3

101 r^Pf i =rpr
J0J> c;P3 = <;p^ + 5 .

GC T~ 3

103 crt?c=cpc
IF (CCR01-CCRC2) 105,105,104

104 CGRC1=CCRC2
G;; to 1C2

105 SR3=SR?-1»
0o? = <;P'3 + 5 .

GC TC 3

106 rror-i = C q C

if CTRC2-ceRC3> 109,109*107
1.07 rrpr% = rrpr-j

GC TC 1 05
IPO ppV(<) = { s o:>+i . ) /SRI

GC TC 110
HO I 1 = 1 T + l

SRI 1=0.
GC TC 2

111 CfPr>i=CRD
1 1? SBll=SBll+5.

GC TO 2

11 * C<-BC?=CBD
TF (rCRDl-CCRDD 115,115,114

i i A rmm -rrnp,?

GO TO 1 1

2

I 1 5 SRI ]=SP1 1-1

.

r>ni i -<;n i ) + c,
#

GC TO 2

116 CCBD3=CBD
IF (CCBD2-CCBD3) 119,119,117

117 CCPD2=CCBD3
GC TO 115

i , o Dpi (T!)s(SP.11 + 1«)/$MR
ftp Jf» 1 ?o

i ->r T = T+1
c d i = n .

C-, T 1

l.?1 crDni =rP0
1 22 Spi =sRl+5

.

GO TO 1

123 CrP02=CRD
IF (CCRD1-CCRD2)

1?4 rrP01=CC r?D2
GO TO 122

125 c-k1 = C-Ri -1 .

PiOl =c.R1 +5 .

r r.
J j>

-J

17*, rrD^o = rpn
ir

( rr or>p>_rr"PP^ 1

i 77 ^rPn~-rrop-}

125,125,124

1 29,1 29,1 27
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i 7 o

1-5(0

140
14]

142
143
14 4

146
]47

P

(J

W

v

G

I

T

T

I

T

T

I

T

S
c

^C

MC

° 1 ' T )

RITF(
PR 4 (

L

- V J- 1

l.?5

= ( ^91 + 1 . ) /<^R

3*200)M»fRl( I ) »PR2(J) »PR3(K) »PR4(L) »PB1 ( I I ) ,PB2 ( J J ) »PB3 ( KK

)

! ) ,<"CRO?

(PR
(PR
(PR
(PR
( P"
(pn

( PR
( DP

P

140
1 ( I )-PR] ( 1-1 ) )

?(J)-PR2( J-1 )

)

3(K)-PR3(K-1 )

)

4(L!-PR4(L-1 )

)

1(11 )-PBl (II-]))
?{ JJ)-P D ?( JJ-1 )

)

300*141 ,300
-*,00,]4?,300
300,143,300
300,144,300

300 , ] 45,300
300 ,1 46,300.

3 (KO-P^ (TV-] ) )

4(LL)-PBMLL-1 ' )

300 , ] 47,300
300 , 1 50, ^OO

N$$ EXEO LINKICAD
CALL NC01
EXEQ NC0] ,MJB
JOB ACTSS D. K( PAI IE 0313C40409
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APPENDIX IV

FORGO PROGRAM FOR EXAMPLE 4.
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10

PIPFLINE PROBLEM
DIMENSION! P1(20).P2(20)»P3(20)»P4(20)
Rl=100.
R2 = 0.
R3=50.
R4=0.
R56=l0u.
R8=50.
"1 7 =-50.
CKl=1.8
r<2=i.?
CK3 = 1 .9

CK4 = 1 .5
CX5 = i .1

CK6=1.6
'CK7=1.4
CK8=1.3
CK9 = 1 .4

CK10=1 .2

CK11=1.2
r kri 2 = 7 .8
Bx] =ri .

BK2=55.
PK?=67.
BK4=58.
BK5c61

.

BK6=70.
BK7=63.
BK8=65.
BK9=58.
BKI 0=A5.
BK11=65.
8X12=65.
T T = 1

1 = 1

J = l

K = 1

L = l

PI (1)=0.5
P2(l>=0.5
P3( 1 ) = ^.5
P 4 ( 1 ) = . 5

Dla.05 ^
D2=.n5
f53=.05
n 4 = . n «i

S M A = 1 P .

SV1 =P1 f I ) #100.
SM2=SMA-SM1
SW3=P3 (K) #(SM1+R1

)

SM5=SM1 +R1-SM3
SM4=SM3+R3
S^6=P2 (J) *(SM2+R2)
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SM8=SM?+R2-SM6
SM] 1 =F^8+R8

4 SM7 = P4(!_) *(SV!5+SN*6+R56)
SM9=(SM5+SM6+R56)-SM7
SM] 0=SM7+SM4+R4
SM] 2=SM9+SM1 1+R1 1

5 IF (L-J) 1*6»11
6 IF (J-K) 1,7,1?
7 IF (K-I) 1,8,1!
s IF (I-II) l,2n,17

i ] CO] =n^7* c;v7+r<7#c;M7#*;? +pi<Q*sv9 +r<9*SMQ**?
CT2= D K1 0*S^1 C+CK1 0#S*<110**2 + RK12*SM12+CK12*5;M ] 2**2
CA=CC1+CC2
IF (PMU-D1) 26,21,23

13 CP1=B<6*SM6+CK6*SM6**2+BK8*SM8+CK8*SV8**2
CP2=BK1 1*SM11+CK11*SM11**2+BK9*SM9+CK9*SM9**2
CP3 = BK7*SM7+CK7*SM7**2+BK10*SM10 +CK.10*SM10**2
CP4=BK12*SM12+CK12*SM12**2
CB=CP1+CP2+CP3+CP4
IF (P2(J) -D2) 46, ^1 ,43

1 S CO] =n^*V' , + CK3*^3**?+RK.4# <:;v4 + C l<4*SM4**2
C02=B"f5*SM5+C l<5*SM5**2+BK7*SM7+CK7*SM7**2
C03=Rkf9*SM° + CK f) * c

.
M 9**? + B!<10*SM10 +CK!0*S^10**?

C04=RK12*SM12+CK12*SM] 2**2
CC=CQ1+CQ2+CQ3+CQ4
IF '(P3(K)-D31 66,61 ,63

1 7 CR1=BK1*SM1+CK1*SM1**2+BK2*SM2+CK2*SM2**2
CR2 = BK3*SM3 + CK3*S W<3**2+BK4*SM4 + CK4*SM4**2
CR3=BK5*SM5+CK5*S^5**2+SK6*SM6+CK6*SM6**2
CR4=PK7*SM7+CK7*SM7**2+BK8*SM8+CK8*SM8**2
CR5=BK9*SM9+CK9*SM9**2+BK] 0*SM10+CK10*SM 10**2
CR6=BK1 1.*SM11+CK11*SM1"]'**2 +RK12*SM] 7 + CK1 2*SM1 2**2
fn = rRi+rR2+CR3+CR4+rR5+rRft
IF (PI ( I }-D4) 86,8 1 ,83

2° \. = l+i

P4(t_) = .05
GC tc a

21 CA1=CA
2 2 P4(L)=P4( D + .05

.GC TO 4

23 CA2 = r A

IF (CA1-CA21 25,25,24
24 CA]=^A7

GC TC 22
25 P4(L)=P4(L)-.0]

Di=m+5.
GC f f! 4

26 r^-r^
IF (CA2-CA3) 28,28,27

27 CA2=GA°
GC TC 25

28 D4(L)=P4( U + .01
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GO TO 40
60 J=J+1

P2( J)=.05
GC TO 3

41 rp.]=r D

4? P2(J)=P2( J)+.05
GC TO 3

A? ro?=rn
!F(CP1-CB?) 4 5,45,44

A4 CPl=rR?
GC TO 42

^ ^ D ?(J)= D ?(J)-. r>1

GC Jp o

IF (TB2-CB3) 48,48,47
47 CP2=< R3

GC TO A

5

4R P?( J)=P?( J)+.0l
GC TC 60

60 K=K+]
D"3 (< ) = .05
GC T n ?

6i ti -rr
A ? D^(k')=P-5(V) + .05

G C TO ?

6? CT2=CC
IF (CCl-CC?) 65,65,64

66 rr] -rr?
GO TO 62

65 P3(K )=P3(K)-.0l
D3=D3+5.
GC TO ?

*6 rr^^r
tf (rrp-rr^) 68,68,67

^7 cr 2 =rr

3

GO T ^5

6 fl P 9, (K)=P?(|f)+.01

RO T = J + 1

PI ( I )=.05
CO TO 1

81 CD1=CD
P? Pl( I )=P] ( D + .05

G T 1

jr (rni-cr>2) 85,8^,84
pu rn i = ro 2

r; o T o 8 ?
or p; ( I )=pi ( t )-.m

D4=n>4+5.
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r-o t~ 1

IF (CD2-CD?) 88,88*87

^o t« 85
PO Dl ( T ^=P1 (

T

)+.^

i

PUNCH 100,11 ,Pl(I ) »P2( J) »P3(K) »P4(L) tCD3
P"INT 100,11 ,P1 ( I ) ,P2( J) »P3(K ) »P4( L) ,CD3

100 FORMAT U2»2XF6.4,2XF6.4»2XF6.4,2XF6.4,2XF8.0)
I T=! 1+]

G C TO 1
1

HO IF (P4(L)-P4(l.-m 10,] II, 10

111 IF (P3(K)-P3(K-1) ) 10,112,10
112 I

r (P2( J)-P2( J-l) ) 10,113,10
n? T ^ tPI ( 1 1-PK 1-1) ) J0»115«10
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The" purpose of this report is to demonstrate the

application of dynamic programming to the network type

traffic assignment and pipeline problems. This technique

allows the use of nonlinear time-volume and cost-volume

relationships.

A number of one way and two way traffic assignment

and pipeline problems have been solved by this technique.

The success of this technique lies in its simplicity,

computational efficiency and selfcorrecting characteristics.


