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Abstract 

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the most costly virus 

to the swine industry, worldwide. This study explored the application of deep sequencing 

techniques to understand better the virus-host interaction. On the virus side, PRRSV exists as a 

quasispecies. The first application of deep sequencing was to investigate amino acid substitutions 

in hypervariable regions during acute infection and after virus rebound. The appearance and 

disappearance of mutations, especially the generation of a new N-glycosylation site in GP5, 

indicated they are likely the result of immune selection. The second application of deep 

sequencing was to investigate the quasispecies makeup in pigs with severe combined 

immunodeficiency (SCID) that lack B and T cells. The results showed the same pattern of amino 

acid substitutions in SCID and normal littermates and no different mutations were identified 

between SCID and normal littermates. This suggests the mutations that appear during the early 

stages of infection are the product of the virus becoming adapted to replication in pigs. The third 

application of deep sequencing was to investigate the locations of recombination events between 

GFP-expressing PRRSV infectious clones. The results identified different cross-over occurred 

within three conserved regions between EGFP and GFPm genes. And finally, the fourth goal was 

applied to develop a set of sequencing tools for analyzing the host antibody repertoire. A simple 

method was developed to amplify swine VDJ repertoires. Shared and abundant VDJ sequences 

that are likely expressed by PRRSV-activated B cells were determined in pigs that had different 

neutralization activities. These sequences are potentially correlated with different antibody 

responses.  
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Chapter 1 - Introduction: PRRSV infection, antibody repertoire and 

deep sequencing 

This chapter gives the relevant background for this dissertation, including a review of 

PRRSV, PRRSV genomics, PRRSV replication cycle, the origin and evolution of PRRSV, 

mechanisms of PRRSV genetic diversity, PRRSV-host interactions, control and elimination 

strategies of PRRS, and also an introduction of swine antibody repertoire and next-generation 

sequencing. 

 1.1. PRRSV and PRRSV replication 

Porcine reproductive and respiratory syndrome (PRRS) is the most economically 

important swine disease worldwide. In the United States only, the estimated cost of PRRS losses 

in national breeding and growing pig herds is at $664 million annually. The additional costs 

attributed to PRRS for veterinary, biosecurity and other outbreak related costs is estimated to be 

$477.79 million annually (98). PRRS is characterized with either severe reproductive failure in 

pregnant sows, or respiratory distress in neonatal pigs (107). Some common clinical signs 

include fever, anorexia, cough, asthma, diarrhea, and blue discoloration of the ears (182). In 

addition, the disease has been complicated by the patterns of persistent infection and subclinical 

infection as well as being a co-factor for porcine respiratory disease complex (PRDC) (222). 

Furthermore, the emergence of highly pathogenic PRRS (HP-PRRS) in China and several 

neighboring countries from 2006 has posed a significantly threat to the global swine industry (5, 

57, 226).  

 1.1.1 PRRSV genome 

The etiological agent of PRRS is PRRS virus (PRRSV). PRRSV is an enveloped, single-

strand positive-sense RNA virus (Fig. 1.1) belonging to the family of Arteriviridae in the order 

of Nidovirales (202). Within the Arteriviridae family, PRRSV, equine arteritis virus (EAV), 

lactate dehydrogenase-elevating virus of mice (LDV), and simian hemorrhagic fever virus 

(SHFV), form the only genus Arterivirus (46). PRRSV genome is about 15kb in length, 

containing a 5’ cap structure, 5’ untranslated region (UTR), at least 10 open reading frames 

(ORFs), 3’ UTR and a 3’ poly (A) tail (Fig. 1.2).  
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The viral genome RNA (mRNA1) is utilized for the translation of ORF1a and ORF1b. 

Translation of ORF1a yields the pp1, a replicase polyprotein, whereas ORF1b is expressed 

through -1 programmed ribosomal frameshifting (PRF) to extend pp1a into pp1ab (72). A short 

transframe ORF (TF) has been identified to be translated via -2 PRF to yield a transframe 

protein, nsp2TF (85). Both -1 and -2 PRF are transactivated by nsp1β (126). The pp1a and pp1ab 

polyproteins are processed and cleaved by four viral proteases (nsp1α, nsp1β, nsp2 and nsp4) to 

release 14 non-structural proteins (nsps). Ten of them (nsp1-8, including nsp1α/1β and nsp7α/7β) 

are encoded in ORF1a and the other four (nsp9-12) are encoded in ORF1b (77). Several 

proteolytic cleavage products of pp1a are important for post-translational processing of replicase 

polyproteins, whereas nsp9 to nsp12 are involved in viral genome transcription and virus 

replication (158).  

Most of the nsps, if not all, assemble into a replication and transcription complex (RTC) 

accumulating at the virus-induced endoplasmic reticulum (ER)-derived double-membrane 

vesicles (DMVs). The RTC directs both genome amplification and subgenomic (sg) mRNAs 

synthesis. The transmembrane (TM) domains in nsp2, nsp3 and nsp5 appear to play a role in the 

formation of the membrane-bound RTC and in recruiting other viral components of RTC that 

lack membrane-spanning domains (231). RNA-dependent RNA polymerase (RdRp) in nsp9 and 

RNA helicase in nsp10 are two core enzymes for viral RNA synthesis (84). Intriguingly, nsp9 

and nsp10 may also contain virulence determinants of HP-PRRSV (127). Nsp11 contains the 

uridylate-specific endoribonuclease (NendoU), which is a unique genetic marker of nidoviruses 

(158, 255). The NendoU activity may be associated with the inhibition of interferon (IFN) 

responses (250), but the exact function of NendoU and other nsps are still unclear.  

PRRSV structural proteins are translated from a nested set of six major sg mRNAs. All sg 

mRNAs are both 5’- and 3’- coterminal with the genomic RNA, containing a common short 

“leader” sequence corresponding to the 5’-proximal region of the genome fused to different 

“body” segments that are co-linear with its 3’-proximal region. The leader-body joining relies on 

the mechanism of discontinuous RNA synthesis (202). PRRSV sg mRNAs are structurally 

polycistronic but functionally monocistronic with two exceptions that are functionally bicistronic 

GP2a/E and GP5/ORF5a (87, 103, 204). The six sg mRNAs are translated to produce eight viral 

structural proteins (GP2a, E, GP3, GP4, GP5, ORF5a, M and N) to constitute an infectious 

virion. 
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Three N-glycosylated minor envelope proteins (GP2a, GP3 and GP4) are presented in 

virions as disulphide-linked GP2a-GP3-GP4 heterotrimers. The non-glycosylated minor 

envelope protein E is associated with GP2a-GP3-GP4 heterotrimers (68). In addition, E protein 

is likely an ion channel protein embedded in the viral membrane envelope and may facilitate 

uncoating of the virion and releasing of the viral genome into the cytoplasm (123). GP3 is 

heavily glycosylated and can be an integral membrane protein or a non-virion-associated soluble 

protein (69, 138). GP4 is not only a part of the GP2a-GP3-GP4 heterotrimer, but also interacts 

with the major glycoprotein GP5 (68). Major envelope proteins GP5 and M form a disulfide-

linked heterodimer in the virion (139). The small hydrophobic protein ORF5a is also an 

enveloped protein and essential for PRRSV viability (213). Nucleocapsid (N) protein is the sole 

component of PRRSV capsid, which plays dual roles during PRRSV infection: a virion structural 

function and a non-structural role in the nucleus/nucleolus (183). The GP5-M heterodimer may 

interact with host receptor proteins heparan sulfate and sialoadhesin (Sn/SIGLEC1/CD169) (71), 

while the GP2a-GP3-GP4 heterotrimer interacts with the scavenger receptor CD163 (68), 

resulting in successful PRRSV infection of macrophages (173). The characteristics and functions 

of PRRSV non-structural and structural proteins are shown in table 1.1. 

 1.1.2 PRRSV replication cycle 

Macrophages are the primary target cells of PRRSV. The life cycle of PRRSV in 

macrophages includes the following steps: virus attachment and internalization, genome 

translation and replication, post-translational processing of the replicase, formation of replication 

complex, subgenomic mRNAs synthesis and translation, virions assembly and release (Fig. 1.3).  

During PRRSV entry into the macrophage, the first host receptor CD169 may interact 

with sialic acids on the GP5-M heterodimer (230), which promotes the attachment and 

internalization of the virion in the clathrin coated vesicle. The virion then enters porcine alveolar 

macrophages via the standard endocytotic route (203). However, the CD169 receptor is not 

required for the attachment and internalization of PRRSV (173). PRRSV can replicate in 

MARC-145 cells derived from African green monkey kidney cell line (MA104) (110), even 

though they do not have CD169, indicating the existence of other alternative receptors (104). The 

second receptor CD163 locates in the endosome compartment, binds to the GP2a-GP3-GP4 

heterotrimer and participates in the uncoating of the virion (68, 225, 241). In low pH 
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microenvironment, the virion fuses with the endosome envelope and releases its genome into the 

cytoplasm.  

Even though three proteins (nsp1α, nsp1β and N) can enter the nucleus/nucleolus (59, 

183), the replication cycle of PRRSV is completed entirely in the cytoplasm (202). After 

uncoating of the virion, the viral genome is translated to produce two replicases pp1a and pp1ab, 

which comprise all functions required for viral RNA synthesis. During post-translational 

processing of the replicases, four viral proteases (in nsp1α, nsp1β, nsp2 and nsp4) cleave pp1a 

and pp1ab to produce 14 nsps, which assemble into a RTC. RTC accumulates at the virus-

induced ER-derived DMVs, where viral RNA synthesis occurs. The continuous genome-length 

minus-strand RNAs (antigenomes) are generated first, then serve as the templates for the plus-

strand genome synthesis (genome replication). In addition, the discontinuous sg-length minus-

strand RNAs are also produced using a complex transcription mechanism, and serve as the 

templates for the plus-strand sg mRNAs synthesis (sg mRNAs transcription). Six sg mRNAs 

express eight structural proteins, including seven envelope proteins residing on the membranes 

of ER and Golgi complex and the N protein located nearby DMVs. After encapsidation of viral 

genome into N protein, the complex of genome and N protein becomes enveloped via budding 

into the lumen of the smooth ER and/or Golgi complex. Virions accumulate in intracellular 

vesicles to finish the maturation program, and then are transported to the plasma membrane for 

the release of progeny viruses through the exocytic pathway (203). 

 1.2. PRRSV origin, divergence and subtyping 

PRRSV emerged almost simultaneously in the United States and in Europe in the late 

1980s.  It evolves at a higher evolutionary rate of 10
-2

/site/year compared to other RNA viruses 

of 10
-3

 to 10
-5

/site/year (96). Phylogenetic analysis of PRRSV isolates indicates the existence of 

two major genotypes: European PRRSV (genotype 1) and North American PRRSV (genotype 2) 

strains (149). Lelystad virus (LV) and ATCC VR-2332 strain are considered the prototype 

viruses for Type 1 and Type 2 PRRSV isolates, respectively (61, 242). The amino acid identity 

between these two types is less than 60% and the short time period between the appearance of 

PRRSV in two continents, strongly suggest that these two PRRSV genotypes evolved separately, 

possibly from non-disease-causing viruses, and are only distantly related to a common ancestor 

(203).  
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 1.2.1 The origin of PRRSV 

PRRSV specific antibody could be detected from swine herds in Ontario as early as 1979 

(44). The first report of PRRSV infection was in 1987 (107). PRRSV was isolated almost 

concurrently in the United States and the Netherlands (61, 242). Currently, both genotypes of 

PRRSV strains have been isolated in North American, European and Asian countries (55, 83, 

208). However, the origin of PRRSV is still a mystery. Several studies proposed the hypotheses 

for the origin of PRRSV genotypes (96, 170). Phylogenetic analysis showed that PRRSV is 

closest related to LDV (Fig. 1.4), suggesting that PRRSV might be derived from LDV (170). 

Since swine is the only known host of PRRSV, the origin of PRRSV may have coincided with a 

host-species jump from mice to swine (156, 198). A plausible hypothesis is that ancestral LDV-

like PRRSV in rodents adapted to Eurasian wild boars, which served as intermediate hosts that 

brought the virus from rodents to domestic swine population (170). Even though the origin of 

PRRSV is extremely difficult, if not impossible, to identify due to the absence of retrospective 

data prior to the epidemic in late 1980s, it’s possible to determine the origin of highly pathogenic 

PRRSV (HP-PRRSV). HP-PRRSV first emerged in China in 2006 (226), and has currently 

spread to several Asian countries (5). A phylogenetic study has shown that HP-PRRSV probably 

originated from CH-1a-like Chinese classical PRRSV isolates and that HB-1(sh)/2002, SHB-

2005 and GD3-2005 viruses might serve as intermediate PRRSV isolates (6). 

 1.2.2 The divergence time of PRRSV 

Even though type 1 and 2 PRRSVs emerged almost concurrently, they showed about 

40% difference in amino acid sequences, which indicated they underwent pre-emergence 

evolution (197). They might have diverged not long before emergence but went through 

extremely high substitution rate. Another possibility is they might have diverged long before the 

emergence then evolved independently for a long time. During the estimation of the most recent 

common ancestor (MRCA) of all PRRSV isolates, Hanada et al (96) favored the recent 

divergence of these two genotypes. They estimated that the MRCA of PRRSVs is around 1982-

1988 and the rate of PRRSV nucleotide substitution is 4.71-9.8×10
-2

/site/year, which is the 

highest among RNA viruses so far reported. However, Forsberg et al (88) pointed out the 

problems in the study of Hanada et al such as using inappropriate methodology. They re-

estimated the MRCA of Type 1 and 2 PRRSVs to be around 1880, which favored the early 
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divergence of the two types of PRRSV isolates. The scenario of early divergence is consistent 

with the origin hypothesis proposed by Plagemann, 2003 (170). In addition, the MRCAs of Type 

1 and Type 2 PRRSVs have been placed at 1946-1967 and 1977-1981, respectively (198). The 

results further supported the early divergence because the MRCA of all PRRSV must be ahead 

of the MRCAs of each genotype. 

 1.2.3 The subtyping of PRRSV 

Type 1 PRRSV was referred to as European type PRRSV, which was first recorded in 

early 1990s in Western Europe. The first PRRSV isolate, Lelystad virus, was isolated in 

Netherlands (242). However, Lelystad-like viruses were not likely the ancestors for most of the 

current Type 1 PRRSV isolates (197) (Fig. 1.5). The virus diversity for ORF7 was 12.0% in 

Eastern Europe while it was 5.8% in Western countries. The larger diversity indicated longer 

establishment of Type 1 PRRSV in Eastern Europe than in Western Europe, which supported the 

hypothesis that Type 1 PRRSV first emerged in Eastern Europe (206).  In addition, Type 1 

PRRSVs have been introduced to several countries outside of Europe, including the United 

States, Canada, Thailand, South Korea and China in the last decade (55, 73, 122, 181, 223). The 

coexistence of Type 1 and Type 2 PRRSV in the same countries, even in the same farms, 

contributes to PRRSV diversity and makes it more complicated to control PRRS. According to 

currently available sequence data, the highly diverged Type 1 PRRSV has been grouped into 

three subtypes based on the size polymorphism of ORF7, including a pan-Europe subtype I, a 

subtype II with samples from Belarus, Lithuania and Russia, and a subtype III mainly containing 

Belarus isolates. Most of The type 1 isolates outside of Europe belong to the pan-Europe subtype 

I. The nucleoprotein sizes of the three subtypes are 128, 125, and 124 amino acids, respectively 

(207).  

Type 2 PRRSV is referred to as North American type because the United States reported 

the first outbreak of type 2 PRRSV infections and Canada detected the earliest PRRSV positive 

sera so far (44, 107). Compared to Type 1 PRRSV, Type 2 PRRSV is more international. 

Besides in North America, Type 2 PRRSVs were detected in several Asian and European 

countries, and became predominant in Asia. According to a recent study, Type 2 PRRSV isolates 

could be divided into nine lineages, including four major clusters and five small groups with at 

least 10% genetic distance in ORF5 between any two of the lineages (198). Besides the small 
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lineages 3 and 4 were only found in China and Japan, respectively. The other seven lineages 

could all be detected in North America. The major lineage 1, represented by MN184 (A-C), 

caused outbreaks in Minnesota in 2001 (95), which likely originated from Eastern Canada (197). 

The major lineage 5, represented by type 2 PRRSV prototype strain VR-2332 and Ingelvac 

PRRS modified live vaccine (MLV), is the most cosmopolitan cluster. The major lineages 8 and 

9 are also widespread, causing the outbreaks of “acute PRRS” in United States in 1996 (94). In 

addition, the causative agent of highly pathogenic PRRS in China in 2006 was clustered in 

lineage 8 (198, 226). Remarkably, swine herds experienced outbreaks of PRRS even though they 

had been vaccinated with MLVs, including Ingelvac PRRS MLV (lineage 5) and Prime Pac 

PRRS vaccines (lineage 7) (94, 108, 226). The observations are consistent with the fact that 

PRRSV MLVs cannot provide sufficient cross-over protection.  

 1.3 Mechanisms of PRRSV diversity 

Mutation and recombination are two evolutionary mechanisms responsible for the 

genomic diversity of PRRSV (92). High mutation rate is a common trait in RNA viruses due to 

the lack of proofreading activity of viral RNA polymerase (121). The error-prone replication and 

quick replication kinetics of PRRSV produce a mutational cloud of variants known as viral 

quasispecies (18, 91, 187). Recombination is another important genetic mechanism contributing 

to PRRSV diversity, which is a common phenomenon in the field (144). Both type 1 and type 2 

PRRSV have been identified to undergo intra-type recombination (56, 83, 125, 128, 234, 254). 

The high diversity of PRRSV generated by mutation and recombination allows the viral 

population to rapidly adapt to dynamic environments and evolve resistance to vaccines (121). 

Although both mutation and recombination could occur frequently in the course of viral RNA 

genome replication, only a minority of viable mutants and recombinants could actually be 

detected in the progeny viruses because natural selection is continuously pruning away unfit 

mutants and recombinants (78). 

 1.3.1 Mutation 

A mutation is a change of the nucleotide sequence in the viral genome, which is likely to 

be harmful, but few mutations are either neutral or beneficial. Mutations are from errors in the 

process of virus replication or unrepaired damage to viral RNA genome. PRRSV has a high 

mutation rate of 4.71-9.8×10
-2

/site/year (96). Two main contributors to such a high mutation rate 
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are: 1) the virus RNA polymerases make mistakes per 10
3
 to 10

5
 nucleotides copied during RNA 

synthesis; and 2) they lack proofreading-repair ability (210). The high mutation rate of PRRSV 

produces a swarm of diverse variants (quasispecies) that interact cooperatively on the functional 

level and collectively contribute to the characteristics of the virus population. The fitness of the 

viral quasispecies is likely to be determined more by its freedom to mutate into related sequences 

than by its own replicative ability (121). Low replicative fidelity generates a diverse population 

of variants, which are generally more fit in a dynamic environment, while a homogeneous 

population, generated by high replicative fidelity, may lack the flexibility and be less successful 

in the dynamic host environment (78). 

 1.3.2 Recombination 

Recombination of RNA viruses is the process to form chimeric molecules from parental 

genomes of mixed origin. The process is termed recombination if it occurs within a single 

genomic segment, and is referred to as reassortment in the viruses that possess segmented 

genomes (199). Recombination has been associated with the expansion of viral host range, 

increases in virulence, immune evasion and resistance to vaccines and antivirals (19, 109, 137, 

199). The PRRSV genome is composed of a single segment. The most widely accepted model of 

PRRSV recombination is copy-choice recombination (Fig. 1.6). During the synthesis of negative 

strand viral RNA, the RNA-dependent RNA polymerase switches from the donor template to the 

acceptor template while remaining bound to the nascent nucleic acid chain, thereby generating an 

RNA molecule with mixed ancestry (1). The factors that influence template switching include 

the sequence similarity between RNA templates and secondary structure of the viral RNA (89, 

256). According to the sequence similarity, RNA recombination can be divided into homologous 

and non-homologous types (120). Homologous recombination occurs most often between 

regions of high sequence identity and also must be present close to, although not necessarily at, 

the cross-over sites. Non-homologous recombination between different genomic regions or non-

related RNA molecules that do not show any sequence homology may also occur, even though 

it’s relatively infrequent. PRRSV could undergo homologous recombination with the frequency 

from <2% up to 10% in vitro and ~38% in vivo, whereas non-homologous recombination has not 

been detected (128, 234, 254). PRRSV recombination is a common phenomenon in the field and 
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may contribute to the outbreak of novel HP-PRRSV (144, 196); however, very few recombinants 

can obtain selective advantages to compete with the parental viruses and gain dominance (79).  

 1.4 PRRSV-host interactions 

Exposure of pigs to PRRSV induces immunity that begins with an innate antiviral 

response principally involving the production of type I interferons (IFNs). PRRSV infection 

appears to elicit only a minimal interferon and cytokine responses (157, 189, 250). Innate 

immune cells such as activated macrophages and dendritic cells function in viral recognition, 

immune surveillance and antigen presentation, which directly bridge innate and adaptive 

immunity (189). The weak innate response seems to compromise the initiation and elaboration of 

PRRSV-specific adaptive immune responses (157). Although the humoral and cellular immune 

responses are vague and delayed, they still can clear the virus from circulation in due course, but 

not from lymphoid tissues, where the virus persists for 6 months or longer (4). Meanwhile, the 

virus modulates the host antiviral responses and develops several evasion strategies to survive 

and replicate in the host cells. Currently, at least four PRRSV proteins, including three 

nonstructural proteins nsp1, nsp2, nsp11, and the structural protein N, are known to function as 

the viral antagonists of host defenses (13, 59, 218, 219, 250). 

 1.4.1 Protective immune responses 

Both innate and adaptive immune systems are involved in antiviral immunity. Innate 

immune response provides immediate frontline protection against viral infections. In addition, 

innate immune cells, including activated macrophages and DCs, are antigen-presenting cells, 

which are involved in the development of adaptive immunity and potentiate the adaptive immune 

system for viral clearance (97). Currently, the elements of protective immunity against PRRSV 

infection are still far from been fully elucidated. Here is a brief review of current knowledge 

about swine immune responses to PRRSV infection. 

 1.4.1.1 Innate immune response to PRRSV 

NK cells are one of the most important components of innate antiviral immunity, which 

can be activated within hours of infection and result in cytotoxicity to virus-infected cells (14). 

However, NK cytotoxicity toward PRRSV-infected primary alveolar macrophages (PAMs) 

showed to be suppressed (43). Innate immunity to PRRSV begins in the cytoplasm of an infected 
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macrophage. The presence of viral dsRNA in infected cells triggers the induction of type I IFNs, 

such as IFN-α and IFN-β, which are hallmarks of cellular antiviral defense (157). Type I IFNs 

induce antiviral responses through a heteromeric receptor composed of two subunits, IFN-α/β 

receptor 1 (IFNAR1) and IFNAR2 (229). Type I IFNs can induce antiviral responses via both 

autocrine and paracrine mechanisms, resulting with inactivation of viruses and the limit of viral 

spreading (189). Infection of monocyte-derived DCs (mDCs) by PRRSV significantly suppresses 

type I IFN production of the IFN-α subtypes but not the IFN-β subtypes (135). This result is 

likely associated with the notion that IFN-α subtypes seem to play a more important role in anti-

PRRSV innate immunity, while IFN-β subtypes display more immunomodulatory activity (39, 

105). In addition, antimicrobial molecules, such as antimicrobial peptides (AMPs), are another 

major group of innate antiviral immune effectors (190). AMPs can exert antiviral activity by 

distortion of the virion glycoproteins and lipid membranes in enveloped viruses, and the blocking 

of virus entry into host cells (189). PRRSV infection generally decreases the production of 

AMPs, and suppresses the antimicrobial activities of both PAMs and NK cells (190). These 

findings suggest that intervening in the interaction between sugar moieties of the viral envelope 

proteins and host cells is a target for innate immune molecules to inhibit PRRSV infection (117). 

IL-10 is an immunosuppressive cytokine, which has shown to be either up-regulated or down-

regulated by PRRSV infection. This indicates that PRRSV-regulation of IL-10 production may 

depends on both pig breeds and virus strains used in the studies (211, 224). Taken together, the 

initial innate immunity to PRRSV is weak, which is consistent with suboptimal stimulation of 

antigen-specific humoral and cellular immune responses (157). 

 1.4.1.2 Humoral immune response to PRRSV 

Adaptive immunity against PRRSV has been extensively studied, particularly the 

development of neutralizing antibodies (nAbs) and cell-mediated immune (CMI) responses (Fig. 

1.7). NAbs are now considered an important component of protective immunity against PRRSV 

(133). The onset of nAbs after experimental infection showed to be accompanied with the 

clearance of PRRSV from circulation (119). Since nAbs have the potential to clear free virus 

from circulation, it is presumed to play an important role in prevention or reduction of viral 

spread from animal to animal (252). A serum passive transfer experiment provided direct 

evidence that PRRSV nAbs alone could prevent transplacental infection by PRRSV, extinguish 

PRRSV infection in the pregnant sows, and provide sterilizing immunity in vivo (162). The 
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minimal neutralizing titer in recipient piglets that would fully protect animals against viremia 

upon challenge at nAb titers was 1:8, whereas sterilizing immunity could be attained at titers of 

1:32 (132). Viral epitopes that induce nAbs appear to reside on the GP2a, GP3, GP4, GP5 and M 

proteins (40, 112, 249). Of these, the neutralizing epitope B (aa 37-44) in GP5 may be most 

relevant to protection (163, 171). Generally, nAbs appear only at 4 weeks post infection or later 

and maintain at low levels (119, 130, 133, 252). The observations that PRRSV induces low 

levels of nAbs and nAbs in sera and may not react with virions due to glycan shielding of the 

neutralizing epitopes provide indirect evidence for the significance of nAbs in providing 

protective immunity against PRRSV (114).  

 1.4.1.3 Cellular immune response to PRRSV 

Cell-mediated immunity (CMI) is also extremely important for PRRSV protection. The 

different capacity of PRRSV strains to induce protective immunity depends on their abilities to 

induce CMI, involving IFN-γ secreting cells (IFN-γ-SCs) and probably IL-10 (75). IFN-γ-SCs 

are probably the main factors in protection against PRRSV infection and IL-10 may constrain the 

development of such IFN-γ-SCs (114). IFN-γ-SCs are mainly CD4+CD8+ cells, with a small 

proportion of CD4-/CD8αβ+ cytotoxic T cells (148). IFN-γ blocks PRRSV replication in 

macrophages by inhibiting viral RNA synthesis through a dsRNA inducible protein kinase (12, 

186). However, the establishment of long-term persistent infection in the host suggests that CMI, 

including IFN-γ and IL-2 production, is not potent or effective in curtailing the infection (2, 

245). This observation may be due to the weak and delayed CMI against PRRSV (157). PRRSV-

specific lymphocyte responses began in peripheral blood at approximately 4 weeks post 

vaccination (wpv) and virus-specific IFN-γ-SCs became detectable between 4 and 12 wpv (114, 

131, 147). T-cell proliferative responses were mainly directed against GP5, M, and N proteins 

(11). In a vaccinia virus system, M protein showed to be the most potent inducer of T-cell 

proliferation, followed by GP5, GP3, GP2 and N proteins (12). Intriguingly, two distinct regions 

of GP5 (Amino acid residues 117-131, LAALICFVIRLAKNC, and 149-163, 

KGRLYRWRSPVII/VEK) appeared to contain immunodominant T-cell epitopes based on their 

abilities to stimulate IFN-γ-SCs (235). PRRSV-specific IFN-γ-SCs were only 50-100/10
6
 

peripheral blood mononuclear cells (PBMCs) at 13 wpv (147). In contrast, virus-specific IFN-γ-

SCs were 200-300/10
6
 PBMCs at 3 wpv against Aujeszky’s disease virus (148). However, the 

intensity of PRRSV-specific IFN-γ-SCs gradually increased to 400-500/10
6
 PBMCs at 48 wpv, 
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whereas nAbs were barely detectable, indicating CMI might be necessary for the complete 

elimination of PRRSV at late phase (147, 157). 

 1.4.2 Mechanisms of immune evasion  

The host immune system recognizes and responds to invading pathogens, while the 

pathogens have successfully evolved a range of immune evasion strategies to overcome both 

innate and adaptive immune responses. The anti-immune strategies that may be used by PRRSV 

are shown in table 1.2. 

PRRSV can evade, minimize, or block innate antiviral immune responses through no 

surface expression of viral proteins in infected cells (63), interference with antigen presentation 

(239), suppression of NK cell-mediated cytotoxicity (43), down-regulation of antimicrobial 

molecules (190), and inhibition of type I IFN production via at least four viral proteins (nsp1, 

nsp2, nsp11, and N) (13, 111, 169, 219, 250). Nsp1α inhibits IFN production by degrading 

CREB-binding protein (CBP) in the nucleus and blocks NF-κB activation in the cytoplasm (111). 

Nsp1β antagonizes IRF3 activation (13). Nsp2 ovarian tumor (OTU) domain interferes with the 

NF-κB signal pathway (219). Nsp11 may be associated with the inhibition of IRF3 activation 

(250). Nuclear localization of nsp1α, nsp1β and N proteins may facilitate PRRSV persistence 

(59, 169).  

PRRSV uses many strategies to evade antibody neutralization. First, the decoy epitope A 

(aa 27-31) at the upstream of neutralizing epitope B (aa 37-44) in GP5 induces a strong non-

nAbs response rapidly after PRRSV exposure, which is consistent with the function of a decoy 

epitope and may cause the diminishment of immune response against the adjacent neutralizing 

epitope B (163). Second is the presence of N-linked glycosylation sites in GPs. Glycan shielding 

of neutralizing epitopes delays nAbs production and diminishes sensitivity of the virus to 

neutralization. Mutants without the glycan residues in GP5 induced significantly higher titers of 

nAbs (7). Third is antibody-dependent enhancement (ADE). The non-nAbs increase the 

association of viral particles with permissive macrophages via binding of virus-antibody 

complexes to the Fc receptor, thus enhancing virus attachment and internalization in 

macrophages (40, 251). Enhancement of viral entry into target cells contributes to PRRSV 

immune evasion and reduces virus neutralization efficacy (114). Fourth is the prevention of 

normal B-cell repertoire development. PRRSV infection causes biased expansion of a 
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subpopulation of the pre-immune repertoire with hydrophobic binding sites that normally 

disappear during antigen-driven repertoire diversification. The subversion of normal repertoire 

development may contribute to the delayed immune response to PRRSV (37). Fifth, the diversity 

of viral quasispecies results in incomplete protection against heterologous variations (187). 

 1.5. Control and elimination of PRRSV infection 

Currently, several strategies have been used to control and eliminate PRRS. Control at 

the farm level is pursued through different management procedures, such as semen monitoring, 

gilt acclimation, and vaccination. Elimination methods include testing and animal removal, 

whole herd depopulation and repopulation, and herd closure and rollover (52, 62). 

 1.5.1 Current PRRSV vaccines 

Vaccination is now considered the most effective method for PRRS prevention and 

control. Many vaccines have been developed to combat PRRSV infection all around the world, 

including modified live vaccines (MLVs), killed virus vaccines (KVs), and a subunit vaccine 

(Table 1.3).  

PRRSV MLVs protect pigs from PRRSV-mediated reproductive and respiratory diseases. 

MLVs shorten viremia in gilts and reduce numbers of pre- and post-natal death and congenitally 

infected piglets (193). Utilization of MLVs in sows reduces abortion and return to oestrus, 

increases farrowing rates and number of weaning pigs (3). MLV immunization in growing pigs 

reduces viremia, respiratory signs, and improves growth performance (41, 42). Remarkably, 

MLV vaccination during acute PRRSV infection reduces virus shedding and respiratory disease 

(41, 42, 118). PRRSV KVs have less efficacy than MLVs. KVs fail to provide protection in 

naïve pigs, whereas they improve reproductive performance in PRRSV-infected pigs (166, 192). 

There are still several concerns about current commercial PRRSV vaccines. PRRSV 

MLVs confer delayed protective immunity (260). The protection is genotype-specific and, to the 

most extent, strain-specific (142). In addition, MLV immunization may interfere with the 

protective efficacy of other vaccines (80). Another major concern about PRRSV MLVs is 

reversion to virulence (17). The revert-to-virulence vaccine virus can cause clinical diseases and 

affect growth performance (159). In addition, MLV vaccinated pigs develop viremia and spread 

the virus to other naïve animals (52). KVs are safe, but the non-nAbs induced by KVs may 

contribute to virus infectivity and immune evasion via ADE (40).  
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To summarize, PRRSV MLVs can provide satisfied protection against homologous or 

closely related viruses, whereas the efficacies of killed and subunit vaccines are limited or 

unknown. Currently, none of the vaccines can provide sufficient protection against heterologous 

PRRSV strains (155). A better vaccine is still urgently needed. 

 1.5.2 Next-generation PRRSV vaccines 

The development of PRRSV next-generation vaccines is the topic of interest among 

PRRSV researchers. Numerous efforts have been made to develop an ideal PRRSV vaccine. An 

ideal vaccine against PRRSV should possess high immunogenicity, induce a high level of broad 

nAbs and specific CMI against PRRSV within a short period of time, establish memorial 

protection, and is safe (52, 99, 114, 154, 155).  

Efforts have been reported to develop more effective PRRSV vaccines, including the use 

of several adjuvants (51, 53), use of multi-strain vaccines (151, 152), and the generation of 

alternative vaccines, such as mucosal vaccines (179), DNA vaccines (8), subunit vaccine (174), 

synthetic peptide vaccine (54), alphavirus-derived replicon (52), bacterial vector vaccine (10), 

insect cell-derived vaccine (172), plant-derived vaccine (58), recombinant DNA vector vaccines 

using adenovirus (102), PRV (175), poxvirus (195), vaccinia virus (257), and transmissible 

gastroenteritis virus (64) as vectors. However, none of these efforts confer significantly better 

protection when compared to PRRSV MLVs alone (52). 

In the guide of the immunological principles for infectious diseases, current thinking 

about next-generation PRRSV vaccine development can be related to the induction of type I 

IFNs, the production of high titer of cross-protective nAbs, and the suppression of regulatory T 

cell activity (99). Several PRRSV non-structural proteins (nsp1, nsp2, nsp4 and nsp11) have 

been reported to suppress antiviral type I IFN responses (217, 250). Genetic manipulations of 

PRRSV by deletion of essential factors (nsps as deletion targets) using reverse genetics 

techniques may generate a suitable MLV candidate that can restore or enhance type I IFN 

responses. The identification of broad nAbs in our laboratory provides direct evidence for the 

existence of conserved broad neutralizing epitopes in PRRSV. Determination of the lineages of 

broad nAbs and the corresponding epitopes will tremendously contribute to the development of a 

cross-protective PRRSV vaccine. Inhibition of T cell activity during PRRSV persistent infection 

may be associated with CD25+Foxp3+ regulatory T cells (Tregs) (99). Suppression of Tregs 
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induction may enhance the efficacy of the next generation PRRSV MLVs. Further work is 

needed to identify the viral components associated with Tregs induction, and then mutated 

MLVs can be generated by reverse genetics to block Tregs induction.  

Even though there are many knowledge gaps and challenges existing in PRRSV 

immunology and vaccinology, the recent completion of the porcine genome provides an 

important resource for further expansion of our molecular and genetic understanding of porcine 

immunology (93). Along with the increasing knowledge in the field of immune development and 

regulatory pathways in pigs, the generation of a broadly effective and safe PRRSV vaccine will 

become a more and more realistic goal. 

 1.6. Swine antibody repertoire 

        An antibody is made by the products of two genes, encoding heavy and light chains, which 

form a cleft for antigen binding. To elicit immune response to unlimited numbers of foreign 

antigens, the immune system must be able to recognize countless numbers of antigens. However, 

the unlimited numbers of unique antigen receptors are not genetically encoded. Rather, it is 

achieved by creating variation in the antigen-recognition regions. The mechanisms of generating 

variation in the antigen-binding pockets basically involve mixing and matching variable (V), 

diversity (D), and joining (J) gene segments in a process called V(D)J recombination (141). The 

heavy chain undergoes V-D-J rearrangement first, then both κ and λ light chain undergo V-J 

rearrangements. At the end of this process, each B cell contains only a single functional variable-

region for its heavy chain and another for its light chain (κ or λ) to form a unique antigen 

receptor (115). In addition to V(D)J rearrangement, the diversity of the antibody repertoires can 

be further expanded by somatic hypermutation (SHM) and gene conversion (homologous 

recombination) (76). 

        Swine antibodies have about 30 VH genes, 2 functional DH genes, and 1 functional JH gene 

encoding the heavy chain, and also 11 functional Vκ genes, 5 Jκ genes, 12-13 functional Vλ 

genes, and two functional Jλ genes encoding light chains (27, 34). For the heavy chain, swine 

utilize seven major VH genes (VHA, VHB, VHC, VHE, VHF, VHY, VHZ), two DH segments and a 

single JH gene to account for nearly the entire (>90%) VDJ pre-immune repertoire (34). The 

situation for light chains is less well studied, but there is little junctional diversity (small 

insertions and deletions), less SHM, and mutations are not concentrated in the complementarity 
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determining regions (CDRs) of light chains (35). There is a hypothesis that light chain functions 

allow specificity modification and rescue auto-reactive B cells through receptor editing (227). 

        When a foreign antigen enters the peripheral lymphoid system, any mature B cell displaying 

an antibody specific to that antigen will bind to it and be activated, then identical B cell clones 

and antigen-specific antibodies are produced through clonal expansion (Fig. 1.8) (20, 101). 

Intriguingly, the exposure to environmental antigen does not change the VH genes that comprise 

the pre-immune repertoire. The same VH genes comprise the adaptive repertoire but ~90% of 

them are somatically mutated (34). SHM of the seven VH genes results in the diversification of 

the heavy chain variable regions. SHM is concentrated in heavy chain CDRs but lower and 

widely distributed in rearranged light chains (27). The antibody binding site is primarily 

determined by the heavy chain and specifically its CDR3, whereas the light chain may only play 

a supporting role and its presence primarily affects the conformation of the heavy chain binding 

site (34, 165). This unique feature provides an opportunity to analyze porcine antibody repertoire 

by detecting the entire VDJ repertoire. 

 1.7. Next-generation sequencing 

In 1977, Dr. Sanger described a method for determining nucleotide sequences in DNA 

using dideoxynucleotide analogs as chain-terminating inhibitors of DNA polymerase (191), 

which became the gold standard for DNA sequencing. In 2005, the commercial launch of the 

first massively parallel pyrosequencing platform ushered in the new era of high throughput 

genetic analysis now referred to as next-generation sequencing (NGS) (236). Currently, 5 NGS 

platforms are commercially available, of which, Roche 454 GS FLX and Illumina MiSeq/HiSeq 

are most popularly used (129). The properties of these platforms are shown in table 1.4. 

In this dissertation, we used 454 sequencing (Fig. 1.9), which included amplicon library 

preparation, emulsion PCR (emPCR), 454 sequencing and data analysis. The preparation of an 

amplicon library incorporated two rounds of PCR (65). The first round of PCR was performed 

using target sequence-specific primers. A second round of amplification was performed using 

454-adaptor multiplex identifier (MID) primers. For unidirectional sequencing, MIDs were 

included only on forward primers for the second round of PCR. The annealing temperature was 

set at 60 °C for both first and second rounds of PCR. The cycles of PCR amplification were set 

at 35 cycles. The final concentrations of primers and DNA polymerase were 0.3 μM and 
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0.02U/μl, respectively. The other reaction components and thermocycling conditions were set 

according to the recommended protocols provided for the Phusion high fidelity DNA polymerase 

(New England Biolabs). 

The second round amplicons were purified with Agencourt AMPure XP 5mL Kit 

(Beckman Coulter). The concentration of each amplicon was measured using a NanoDrop ND-

8000 Spectrophotometer (Thermo Scientific). Products were converted to molecules/μl using the 

following formula: 

Molecules/μl = [sample conc. (ng/μl) × 6.022 × 10
23

]/[656 × 10
9
 × amplicon length (bp)] 

We normalized each amplicon by dilution and mixed equal volume of each normalized amplicon 

to create a library including all samples. The amplicon library was diluted to the final 

concentration at 1 × 10
7
 molecules/μl for each amplicon in 1 × TE buffer and stored at -20 °C. 

            The amplicon library was sent to the Department of Plant Pathology, Kansas State 

University for emPCR amplification and 454 sequencing. Lib-L emPCR Kit (Roche) was used 

for emPCR according to the emPCR Amplification Method Manual. For 454 sequencing, GS 

FLX Titanium Sequencing Kit XLR70 (Roche) was used following the protocol described in the 

Sequencing Method Manual. Sequencing was performed at GS FLX+ System and data 

acquisition, and processing and analysis were performed with 454 Sequencing System Software 

Version 2.6 packages on the GS FLX+ Instrument. Reads for each sample were sorted according 

to the MID. Sequence reads were mapped against reference sequences with 454 Life Sciences 

GS Reference Mapper (Version 2.6). Minimum overlap length was 40, and the minimum overlap 

identity was 90%. Coverage (number of reads per amplicon) was calculated and variants were 

called. Variants were further filtered based on the coverage, variant frequency, and 

homopolymer. Only high confidence single nucleotide variants that had the following features 

were selected: (1) at least 3 non-duplicate reads with the nucleotide substitution; (2) a 

substitution frequency greater than 5%; and (3) not located at homopolymer sites. All mutations 

were further confirmed by sequence assembly visualization using Tablet (153). 
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Figure 1.1 Schematic representation of a PRRSV particle. 

The PRRSV particle is enveloped, spherical, and ~55 nm in diameter. The envelope proteins 

include GP2, E, GP3, GP4, GP5, 5a, and M. Minor glycoproteins GP2, GP3, GP4 form a 

disulfide-linked heterotrimer. Major glycoproteins GP5 and M form a disulfide-linked 

heterodimer. Glycoproteins have different numbers of N-linked glycosylation sites. The possibly 

icosahedral nucleocapsid core is ~39 nm in diameter. The ssRNA genome is associated with the 

N protein to form the nucleocapsid. The figure is modified based on previous studies (202, 203). 
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Figure 1.2 PRRSV genome organization 

The replicase ORF1a and ORF1b are translated from viral genome RNA (mRNA1) and cleaved 

into 14 nonstructural proteins (nsps). ORF1b is expressed via -1 programmed ribosomal 

frameshifting (PRF) to extend pp1a into pp1ab. A short transframe (TF) ORF is expressed via -

1/2 PRF to yield nsp2N and nsp2TF. Pα, Pβ and P2 are three proteinases residing in nsp1α, 

nsp1β and nsp2, whereas the main proteinase S is located in nsp4. The cleaved sites for Pα, Pβ 

and P2 are shown in pink, light blue and green triangles, respectively, while the cleaved sites for 

S are shown in black triangles. A hypervariable region (HVR) resides in nsp2. ORF1a encodes 

three transmembrane domains (TM). ORF1b encodes four highly conserved domains: RNA-

dependent RNA polymerase (R), multinuclear zinc-binding domain (Z), RNA helicase (H) and 

NendoU endoribonuclease domain (N). ORFs 2-7 are expressed from six subgenome mRNAs 

encoding eight structural proteins, including minor envelope proteins (GP2a, GP3, GP4, E and 

ORF5a), major envelope proteins (GP5 and M) and the nucleocapsid protein (N).  
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Figure 1.3 Overview of PRRSV life cycle in macrophages. 

PRRSV enters macrophages in a low pH microenvironment. The first host receptor CD169 may 

interact with sialic acid on the GP5-M heterodimer, which promotes the attachment and 

internalization of the virion in the clathrin coated vesicle. The virion subsequently enters the cell 

via the standard endocytotic route. The second receptor CD163 locates in the endosome 

compartment, binds to the GP2a-GP3-GP4 heterotrimer and participates in the uncoating of the 

virion. The virion fuses with the endosome envelope and releases its genome into the cytoplasm. 

The replication cycle of PRRSV is entirely completed in the cytoplasm. The viral genome is 

translated to produce two replicases pp1a and pp1ab, which comprises all functions required for 

viral RNA synthesis. Four viral proteases cleave pp1a and pp1ab to produce 14 nsps, which 

assemble into a replication and transcription complex (RTC). RTC accumulates at the virus-

induced endoplasmic reticulum (ER)-derived double-membrane vesicles (DMVs), where viral 

RNA synthesis occurs. Both minus-strand genomic RNA and minus-strand sg RNAs are 

produced and serve as the templates for the synthesis of new genomic RNA and sg mRNAs. 

Viral dsRNA can also be produced, which triggers the induction of type I IFNs. Six sg mRNAs 

express eight structural proteins, including seven envelope proteins residing on the inner 

membranes of the ER and Golgi complex, and the nucleocapsid (N) protein encapsidates viral 

genome. Interestingly, N protein together with nsp1α and nsp1β can enter the nucleus/nucleolus, 

but the effects of the transportation are still unknown. The genome encapsidated N protein is 

enveloped by budding into the lumen of the smooth ER and/or Golgi complex. Virions 

accumulate in intracellular vesicles to finish the maturation program and then are transported to 

the plasma membrane for the release of progeny viruses via the exocytic pathway. This figure is 

modified based on previous studies (202, 203). 
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Figure 1.4 The phylogenetic tree of Nidoviruses. 

The phylogenetic tree was constructed based on the complete genome sequences of 20 

representative viruses in the order of Nidovirales using the neighbor-joining method and the  

maximum composite likelihood model. The robustness of the tree was evaluated by 

bootstrapping using 1000 replicates. The numbers at each branch are the bootstrap values (%) 

that support the grouping. The viruses that belong to different Genuses are shown in different 

colors. This phylogenetic tree indicates that the closest evolutionary related virus to PRRSV is 

LDV.  
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Figure 1.5 PRRSV isolates show high genetic diversity. 

This phylogenetic tree was constructed using 66 complete genomes of PRRSV isolates, 

including 33 type I and 33 type II PRRSV strains, and LDV Plagemann strain, the representative 

virus of arterivirus. The viruses are indicated by the name and the reported year, followed by the 

country/region of origin (eg. Lelystad/91/Netherlands means the Lelystad virus was isolated in 

1991 in Netherlands). The phylogenetic tree was built using the neighbor-joining method and the 

maximum composite likelihood model. The robustness of the tree was evaluated by 

bootstrapping using 1000 replicates. The numbers at each branch are the bootstrap values (%) 

that support the grouping. The branches of different genotypes and subtypes are marked in 

different colors. This tree shows that the two genotypes of PRRSV  evolved independently. Each 

genotype of PRRSV shows high diversity and includes subtypes. The viruses are clustered into 

different subtypes according to previous studies (197, 198). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    

 



25 

 

     

                    

                      

      

 

 

 

 

 

              

Figure 1.6 Copy-choice recombination. 

During anti-sense strand synthesis, the viral RNA-dependent RNA polymerase (RdRp), along 

with the nascent RNA, switches positive template strands from donor to acceptor. The RdRp 

continues along the acceptor templates. The produced anti-sense strand contains specific 

sequences from both donor and acceptor strands. RdRp is shown in purple, donor strand in black, 

acceptor strand in red, and anti-sense strand in blue. 
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Figure 1.7 Virus replication and adaptive immune responses against PRRSV. 

PRRSV reaches the first peak of viremia around 7 days post infection (dpi). Rebound viremia 

may show up at any time after the first peak during persistent infection. PRRSV-specific Abs 

targeting at N protein are detectable after 7dpi, but the early produced Abs cannot provide 

protection for pigs against PRRSV infection. Neutralizing Abs can provide protection, but 

usually appear after 28dpi. IFN-γ secreting cells may also proliferate after 28dpi. This figure is 

modified based on a previous study (133). 
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Figure 1.8 Clonal expansion theory. 

In bone marrow, stem cells are developed into mature antigenetically committed B cells. Mature 

B cells are transported into peripheral lymphoid organs. When a foreign antigen enters the 

peripheral lymphoid system, any B cell displaying an antibody specific to this antigen will be 

activated and go through clonal expansion. Memory cells and plasma cells are produced and 

antigen-specific antibodies are secreted. These antibodies have same antigen binding activities. 
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Figure 1.9 454 sequencing system.  

In the first step (A), two rounds of PCR are used to prepare the library. In the first round PCR, 

target gene specific primers are used. In the second round PCR, universal primers with 454-

adaptor sequence and unique multiplex identifier (MID) are used. All amplicons are normalized 

to the same concentration and mixed together to form an amplicon library. In the second step 

(B), the library is submitted to emulsion PCR. The PCR is completed in water-in-oil droplets. In 

the third step (C), isolated DNA-carrying beads are loaded into individual wells on a PicoTiter 

plate to perform 454 pyrosequencing. Only one type of nucleotides is flowed over the plate at a 

time. When the nucleotide matches to the template and is incorporated into the strand by 

polymerase, a pyrophosphate is released, which is utilized to produce ATP with the function of 

sulfurylase. ATP activates the luciferin by luciferase to emit light. The light signals are 

proportional to the numbers of incorporated nucleotides in the given flow. The extra nucleotides 

after each flow are degraded by apyrase. The nucleotide sequence is determined with the GS 

Amplicon Variant Analyzer software. This figure is modified based on a previous study (65, 90). 
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Table 1.1 Characteristics and functions of PRRSV nonstructural and structural proteins. 

Proteins Genes No. of aa Characteristics and functions 

EU NA 

nsp1α ORF1a ? 180 Zinc-finger protein. Accessory protease PCPα. Regulator of sg mRNA synthesis. 

Potential IFN antagonist. 

nsp1β  ? 203 Protease PCPβ. Potential IFN antagonist. 

nsp2  1078 1196 Protease PLP2. Deubiquitinating enzyme. Potential IFN antagonist. Transmembrane 

protein involved in membrane modification. Forming replication complex. 

nsp3  230 230 Transmembrane protein involved in membrane modification. Forming replication 

complex. 

nsp4  203 204 Main protease SP. IFN inhibition. 

nsp5  170 170 Transmembrane protein possibly involved in membrane modification. 

nsp6  16 16 ? 

nsp7α  149 149 Recombinant nsp7 is highly immunogenic, may activate immune responses through 

class I MHC-mediated antigen presentation pathways. nsp7β  120 110 

nsp8  45 45 ? 

nsp9 ORF1b 685 685 RNA-dependent RNA polymerase (RdRp) 

nsp10  442 441 RNA helicase. Contains putative zinc-binding domain 

nsp11  224 223 Uridylate-specific endoribonuclease (NendoU) 

nsp12  152 153 ? 

GP2a ORF2a 249 256 Minor highly glycosylated structural protein. Essential for virus infectivity. 

Incorporated into virions as a multimeric complex. Viral attachment protein. 

E ORF2b 70 73 Minor unglycosylated and myristoylated structural protein. Essential for virus 

infectivity. Incorporated into virions as a multimeric complex. Possesses ion-

channel-like properties and may function as a viroporin in the envelope. 

GP3 ORF3 265 254 Minor highly glycosylated structural protein. One of the most variable PRRSV 

proteins. Essential for virus infectivity. Highly antigenic and may involve in viral 

neutralization. Incorporated into virions as a multimeric complex. A subset of GP3 is 

secreted as a non-virion-associated soluble protein. 

GP4 ORF4 183 178 Minor highly glycosylated structural protein. Essential for virus infectivity. Key 

glycoprotein for formation of multiplex complex incorporated into virions. Viral 

attachment protein and may involve in viral neutralization. 

GP5 ORF5 201 200 Major glycosylated structural protein. Transmembrane protein with a variable 

number of potential N-glycosylation sites. The most variable structural protein 

involves in virus neutralization. GP5-M is crucial for virus assembly. May involve in 

the entry of virus into host cells and in the apoptosis phenomenon. 

ORF5a ORF5a 43 46/51 Minor unglycosylated and hydrophobic structural protein. Essential for virus 

viability. Incorporated into virions as a multimeric complex.  

M ORF6 173 174 Major unglycosylated structural protein. Highly conserved. GP5-M 

heterodimerization is crucial for virus infectivity. Play a key role in virus assembly 

and budding. 

N ORF7 128 123 Major unglycosylated and phosphorylated structural protein. The sole component of 

the viral capsid and forms dimer through covalent and non-covalent bonds. Can 

enter the nucleus/nucleolus. Highly immunogenic. 

*The table is modified from previous studies (84, 158).  
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Table 1.2 Potential immune evasion strategies utilized by PRRSV. 

Strategy Mechanism Consequences Reference 

Quasispecies variation Mutation and recombination Insufficient protection against heterologous 

variations 

(187) 

Minimal IFN-α production  Inhibition of dsRNA signaling pathway Reduced the production of proinflammatory 

cytokines and the induction of acquired 

immunity 

(233) 

Presence of a decoy epitope in GP5 Masking the neutralizing epitope Delayed the neutralizing antibody response (163) 

Antibody-dependent enhancement 

(ADE) 

Enhancement of virus entry into target 

cells by antibody 

Reduced the effectiveness of neutralizing 

antibody response 

(40) 

N-linked glycosylation of GPs Glycan shielding of neutralizing epitopes Delayed neutralizing antibody response and 

diminished viral neutralization sensitivity 

(7) 

Lack of surface expression of viral 

proteins in infected cells 

Budding of viral proteins into the lumen 

of ER and/or Golgi compartments 

Infected cells are invisible to PRRSV-

specific antibodies and refractory to 

antibody- and complement-mediated cell 

lysis 

(63) 

Interfere antigen-presentation by DCs Apoptosis of DCs. Downregulated 

CD11b/c, CD14, CD80/86, MHC I and 

II, inflammatory cytokines and T cells. 

Upregulated IL-10. 

Downregulation of viral antigen 

presentation 

(239) 

Prevention of normal B cell repertoire 

development 

Biased expansion of a subpopulation of 

the antibody repertoires 

Abnormal antibody response to PRRSV 

infection 

(37) 

N protein nuclear localization ? Decreased the production of neutralizing 

antibodies and facilitated viral persistence 

(169) 

Block the production of antimicrobial 

molecules (AMPs) 

Modulation of porcine innate immunity 

by AMPs 

Downregulated the expression of AMPs and 

decreased anti-PRRSV activities 

(190) 

 

Nsp1α inhibits type I IFN production Degradation of CREB-binding protein in 

the nucleus and Blocking NF-κB 

activation in the cytoplasm 

Nsp1α blocks phosphorylation of IκB and 

thus prevents IκB degradation to keep NF-

κB silent 

(111) 

Nsp1β subverts host innate immunity Antagonizing IRF3 activation Inhibited IRF3-dependent gene expression. 

Inhibited the dsRNA-induced 

phosphorylation and nuclear translocation 

of IRF3 

(13) 

Nsp11 inhibits type I IFN induction NendoU activity of nsp11 is associated 

with the inhibition of IRF3 activation 

Inhibited IRF3 phosphorylation and 

blocked the nuclear translocation of IRF3 in 

stimulated cells 

(250) 

Regulation of ISGylation pathways PLP2 antagonizes the immune responses 

by removing Ub or Ub-like molecules 

from cellular proteins. 

Inhibited ISG15 production and conjugation (217) 

Suppression of NK cell-mediated 

cytotoxicity 

? Reduced the susceptibility of PRRSV-

infected cells toward NK cytotoxicity 

(43) 
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Table 1.3 Commercial PRRS vaccines. 

Name Parental virus Description Year Manufacturer Marketing area 

Amervac PRRS VP046 BIS Type 1 MLV \ HIPRA Europe 

Suipravac PRRS 5710 Type 1 KV \ HIPRA Europe 

Porcilis PRRS DV Type 1 MLV 2000 Merck Europe 

Pyrsvac-183 All-183 Type 1 KV 2000 Syva Spain 

Progressis P120 Type 1 KV 2000 Merial Europe 

PRRS Vaccine VI-94+KPR-96, 

VI-94+KPR-97 

Type 1 KV \ FGBI-Federal Centre 

for Animal Health 

Russia 

SUIVAC PRRS-IN VD-E1, VD-E2, 

VD-A1 

Type 1 KV \ Dyntec Czech Republic, 

Russia 

SUIVAC PRRS-INe VD-E1, VD-E2 Type 1 KV \ Dyntec Czech Republic, 

Portugal 

PRRS Vaccine VP-046 BIS Type 1 MLV \ Philippines Bureau of 

Animal Industry 

Philippines 

Ingelvac PRRS MLV VR-2332 Type 2 MLV 1994 Boehringer Ingelheim Worldwide 

Ingelvac PRRS ATP JA-142 Type 2 MLV 2004 Boehringer Ingelheim North America 

Fostera PRRS P129 Type 2 MLV 2012 Zoetis Worldwide 

Prime Pac PRRS Prime Pac Type 2 MLV 2014 Merck United states 

ImmunoPRRS \ Avian Igs 2007 Iasa Mexico 

MJPRRS \ Type 2 KV 2008 MJ biologics United States 

PRRS RS \ Type 2 GP5/6 

vectored vaccine 

2009 Sirrah Bios United States 

CH-1R CH-1a Type 2 MLV 2009 Shanghai Hile China 

PRRS vaccine CH-1a Type 2 KV 2009 Harbin Weike China 

PRRS MLV R98 Type 2 MLV 2010 Jiangsu Nannong China 

HP-PRRS vaccine JXA1 Type 2 KV 2007 Zhongmu China 

HP-PRRS JXA1-R JXA1 Type 2 MLV 2009 Guangdong Dahuanong China 

HP-PRRS HuN4-F112 HuN4 Type 2 MLV 2010 Harbin Weike China 

HP-PRRS TJM-F92 TJM Type 2 MLV 2011 Qindao Yiban China 

SuiShot PRRS \ KV \ ChoongAng South Korea 

PRRS Vaccine \ MLV \ Kaketsuken Japan 

BSL-PS 100 \ MLV \ Bestar Singapore 

BSK-PS 100 \ KV \ Bestar Singapore 

\: No available information. 
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Table 1.4 Comparison of commercial sequencing methods. 

Method Sanger 3730xl 454 GS FLX Illumina HiSeq 2000 SOLiDv4 

Year of launch 1995 2008 2010 2010 

Mechanism Dideoxy chain termination Pyrosequencing Sequencing by synthesis Ligation and two-base coding 

Read length 400~900bp 400~700bp 50-250bp 85-100bp 

Accuracy 99.999% 99.9% 98% 99.94% 

Reads per run N/A 1 million Up to 3 billions 1200~1400 millions 

Output data per run 1.9~84K 700M 600G 120G 

Time per run 20min~3h 24 hours 10 days 7-14 days 

Cost per run $4 $7000 $23,000 $15,000 

Cost per million bases $2400 $10 $0.05~$0.15 $0.13 

Advantages High quality, long read length Fast, long read size High throughput Accuracy 

Disadvantages High cost low throughput Homopolymer errors Short read assembly Short read assembly 

* This table is modified from a previous study (129). 
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Chapter 2 - Analysis of mutations within hypervariable regions of 

the PRRSV genome during acute infection and rebound  

Abstract: 

Genetic variation in both structural and non-structural genes is a key factor in the capacity of 

PRRSV to maintain persistence within animals, farms and metapopulations. However, the exact 

mechanisms of how genetic variation contributes to persistence remain unclear. As part of a 

study to understand the role of host genetics in disease resistance, a subpopulation of pigs were 

identified that were still viremic at 42 days after PRRSV infection. This study focused on the 

deep sequencing of nine regions of the PRRS genome in four selected pigs. Samples for 

sequencing included the parental virus, NVSL 97-7895 and sera collected at 4, 28 and 42 days 

after infection, as well as tonsils collected at 42dpi. Specific and universal primers were designed 

for the amplification and sequencing of hypervariable regions within nsp1, nsp2, ORF3 and 

ORF5. The amplicon library was constructed based on two rounds of PCR, which was submitted 

for 454-pyrosequencing. When compared against the NVSL sequence, virus collected at 28dpi 

had the most mutations. Substitutions that were either increasing or decreasing in percentage 

during infection were present in both non-structural and structural regions, including the 

appearance of L852S in nsp2, D85E in GP3, A27V and N32S in GP5 and the disappearance of P96L 

in GP3, respectively. In addition, the N32S substitution in GP5 created a new N-glycosylation 

site. 
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 2.1 Introduction 

Nucleotide variation is not constant across the PRRSV genome, but can be located to 

hotspots that possess sequence hypervariability. Examples of non-structural proteins include 

nsp1 and nsp2 (67, 82). Mutational hotspots have also been located within the structural genes, 

such as ORF3 and ORF5 (140, 150). Presumably, mutations in hypervariable regions play crucial 

roles in the escape from host defense (7, 13, 67, 91, 187, 219, 238). The best-studied example is 

ORF5, which includes two hypervariable regions flanking a highly conserved region bound by 

glycosylation sites. Presumably, altered glycosylation combined with peptide sequence 

hypervariability protect a conserved epitope from nAbs: an immunological escape strategy 

described for gp120 of HIV (240). 

Virus rebound is a phenomenon first described in HIV in 1988 (205), and also in PRRSV 

in 2010 (177). During PRRSV infection, viremia typically reaches a peak between 4 and 11 days 

after infection followed by the decay and disappearance of PRRSV from the blood. However, 

virus replication can be detected in lymphoid tissues, including the tonsil. Rebound is the 

reappearance of subsequent peaks, which can occur at any time after infection. In a study 

directed at identifying genomic markers linked to PRRS, the experimental infection of several 

hundred pigs identified a subpopulation that showed virus rebound (16). The new virus may 

represent a quasispecies variant that has attained a new adaptive peak, either through a change in 

tropism or escape from adaptive immunity. The purpose of this study was to incorporate next-

generation sequencing as a means to characterize viruses during the course of infection. The 

focus was on deep sequencing nine regions of the PRRSV genome that were previously 

described as exhibiting nucleotide and peptide sequence hypervariability.  

 2.2 Materials and Methods 

 2.2.1 Sample sources 

The samples for this study were obtained from the PRRS Host Genetics Consortium 

(PHGC) (16, 136, 185). All studies involving animals and live viruses were performed after 

approval by the Kansas State University Institutional Biosafety and Animal Care and Use 

Committees. Each infection trial included approximately 200 three week-old pigs infected with a 

high virulence type 2 PRRSV isolate, NVSL 97-7895 (GenBank accession no. AY545985).  

Blood samples were collected at 0, 4, 7, 11, 14, 21, 28, 35, 42 days post-infection (dpi). PRRSV 
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viremia was measured using Applied Biosystems AgPath-ID
TM

 NA & EU PRRSV One-Step 

Multiple qRT-PCR kit according to the manufacturer’s recommendations. The results were 

reported as the log10 copies per 50 μl reaction. Four pigs that exhibited a rebound in viremia 

were subject to further study.  

 2.2.2 Library preparation and 454 sequencing 

Samples used for the library preparation include sera obtained at 4, 28 and 42 dpi from 4 

pigs, tonsils collected at 42dpi from 2 pigs, as well as the NVSL 97-7895 inoculum used for 

infection. Total RNA was extracted from 100 μl of tissue culture medium or serum, or 50 mg 

tonsil homogenized in 1 ml TRIzol Reagent (Invitrogen) using acid guanidinium thiocyanate-

phenol-chloroform extraction method (60) and eluted in 50 μl RNase-free water. cDNA was 

generated by reverse transcription using random hexamer primers and Transcriptor High Fidelity 

cDNA Synthesis Kit (Roche). The preparation of the amplicon library incorporated two rounds 

of PCR (65). The first round of PCR was performed using virus sequence-specific primers that 

possessed virus-specific sequence. A second round of amplification was performed using 454-

adaptor multiplex identifier (MID) primers (Table 2.1). Primers were selected that yielded a 

product between 447 bp and 542 bp in length. Fifteen MIDs were used for 15 samples and each 

sample used the same MID for 9 amplicons from the hypervariable regions of PRRSV. A total of 

135 amplicons were obtained to form the library. More detailed methods describing library 

preparation, 454 sequencing and data analysis are presented above in chapter 1.7.  

 2.3 Results 

 2.3.1 PRRSV rebound 

The analysis of PRRSV replication in small groups of pigs indicates that virus replication 

achieves a peak within 7-21 days after infection, which is followed by the disappearance of 

detectable virus from the circulation. The last phase of infection is the gradual decay of 

replication in lymphoid organs followed by virus extinction. The mechanism responsible for the 

eventual disappearance of virus is not well understood.  In this study, a group of 200 pigs were 

experimentally infected and viremia was followed for 42 days. Results of PRRSV PCR for 141 

pigs (which possessed a complete set of data points) are shown in Figure 2.1A. In this example, 

all pigs were productively infected, achieving levels of viremia between 5.5 and 7.5 log 
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templates per 50 μl PCR reaction. The results show several peaks indicating virus rebound in the 

blood.  Out of this population, four pigs that showed rebound were selected for further study 

(Fig. 2.1B). All four pigs showed rebound peaks at between 28dpi and 42dpi.  

 2.3.2 Mutations identified by deep sequencing 

The regions selected for amplification are shown in Figure 2.2. The first round of PCR 

yielded all products of the expected size. As a representative example, the 9 PCR products 

amplified from the tissue culture fluid used for inoculation of pigs is shown in Figure 2.3. A total 

of 135 amplicons were submitted for 454 sequencing. The coverage for each amplicon was 

between 118 and 4073 reads with an average of 679 reads. A summary showing the total number 

of nucleotide substitutions is shown in table 2.2. The parental virus had 14 mutations compared 

to the GenBank sequence. When compared to the inoculum, sera collected at 28dpi had the 

greatest number of nucleotide changes.  

To investigate whether the viral quasispecies in peripheral blood could represent the viral 

population in lymphoid tissues, we compared the mutations in sera and tonsils collected at 42dpi 

from the same pigs. We found 16 substitutions shared between serum and tonsil samples, within 

which, T2555C in nsp2, C255A in ORF3 and C80T in ORF5 were shared between pigs (Table 2.3). 

PRRSV could replicate in tonsil and identical mutations shared in tonsils and sera indicated that 

the tonsil was a source of PRRSV quasispecies in the serum. However, we also identified 8 

substitutions only occurring in sera or tonsils but not shared between each other (Table 2.3). 

Difference of viral quasispecies in tonsils and sera was consistent with the notion that PRRSV 

has different replication sites and the evaluation of viral quasispecies in sera only may not 

represent viruses replication in other lymphoid organs such as in the tonsil. 

We also found five substitutions that showed the trend of either increasing or decreasing 

in frequency during infection (Table 2.4). These nucleotide changes were consistent at least in 

two pigs at each time point and could lead to amino acid substitutions. We found the trend of 

decreasing variation frequency at the C287T mutation in ORF3 (resulted in P96L in GP3). The 

percentage of C287T mutation in the parental virus was 44% and from 33% to 57% in the 4dpi 

sera. However, the mutation was gone in the 28dpi and 42dpi serum and tonsil samples from all 

the pigs except the 42dpi serum from pig 6685, which had 26% C287T mutation in 595 reads. 
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Furthermore, there were four mutations, including T2555C (L852S) in nsp2, C255A (D85E) in ORF3, 

C80T (A27V) and A95G (N32S) in ORF5, that showed the trend of increasing variation frequency.  

Remarkably, the two substitutions in ORF5 drew our attention. The C80T (A27V) 

substitution was located in the previously described decoy epitope (163). The A95G (N32S) 

substitution created a new N-glycosylation site (from NAN to NAS) in two pigs (Fig. 2.4). 

Several N-glycosylation sites in GP3 and GP5 have been reported to help PRRSV escape host 

immune responses by glycan shielding (7, 238). The influence of this new generated N-

glycosylation site needs further investigation.  

 2.4 Discussion 

PRRSV is a rapidly evolving RNA virus due to its high mutation rate and lack of 

proofreading-repair ability (96, 210). As a consequence, PRRSV circulates in vivo as a 

quasispecies with a dynamic distribution subjected to a continuous process of genetic variation, 

competition and selection (86). The genomic heterogeneity provides rapid adaptation of a virus 

population to changes in the microenvironment when the viral quasispecies is subjected to 

selection pressure such as host immune responses (121, 134). In this study, we dynamically 

analyzed the mutations in the hypervariable regions of PRRSV genome during the infection in 

pigs. These regions are not only the most variable segments of the PRRSV genome, but also are 

vital in dictating the host immune responses (7, 13, 219, 220, 238). In detail, nsp1α/β followed 

by nsp2 have strong to moderate inhibitory effects on beta interferon (IFN-β) promoter activation 

and nsp1β can inhibit both the induction of IRF3- and NF-κB-mediated genes (13). PRRSV nsp2 

contains an ovarian tumor (OUT) domain, which antagonizes the type I IFN induction by 

interfering with NF-κB signaling pathway (219). In addition, changes of N-glycosylation sites in 

GP3 and GP5 can alter the sensitivity of PRRSV to nAbs and help PRRSV escape host humoral 

immune response through glycan shielding (7, 238).  

Numbers of mutations dynamically changed in all hypervariable regions of PRRSV 

genome during the infection in pigs; however, 28dpi sera always have more nucleotide mutations 

than the other samples (table 2.2). The increased numbers of substitutions from 0dpi to 28dpi are 

possibly due to the accumulation of mutations during error-prone replication of PRRSV, whereas 

the decreased numbers of substitution from 28dpi to 42dpi are likely due to competition and 

selection of viral quasispecies during infection. The trend of increasing percentages of mutations 
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(L852S in nsp2, D85E in GP3, A27V and N32S in GP5) indicates these may be favorable residues 

of viruses. Inversely, the trend of decreased percentages of the mutation P96L in GP3 may be the 

negative selection of PRRSV incapable of resting in the new host microenvironment. This 

selected subpopulation replicated rapidly and became predominant in the quasispecies (42dpi), 

which was consistent with the rebound viremia detected at around 42dpi as shown in Figure 2.1. 

Although the substitutions may be the results of immunological selection (156, 194), another 

possible explanation is that these mutations may be associated with the adaption of viral 

quasispecies to replicate in pigs (188).  

PRRSV quasispecies in sera and tonsils were different, which was consistent with the 

result observed in HCV that viral populations in serum and liver were distinct (15). The 

phenomenon also indicated that lymphoid tissue tropism might affect the selection of a favorable 

PRRSV population capable of persisting in different lymphoid cells (184, 187). Our data imply 

that beside the serum, lymphoid organs should also be considered to evaluate PRRSV diversity 

in pigs in the future. 

Intriguingly, we found a mutation creates a new N-glycosylation site in GP5. The new N-

glycosylation site created by N32S mutation is located at the same region of N-glycosylation sites 

that have been identified (238). N-glycosylation sites in both GP3 and GP5 could help PRRSV 

evade host humoral immune responses by glycan shielding (7, 238). Previous studies showed 

that within quasispecies, virus variants containing mutations in envelope glycoproteins that 

altered recognition by nAbs would be positively selected in situations where the nAbs play an 

important role for virus control (259). Several mechanisms may account for the immune evasion 

of neutralization-resistant mutants. First, amino acid substitutions within the neutralization 

determinant may alter the binding affinity of nAbs to the virion (244). Second, mutations at 

distant sites may change the global conformation of the antigenic determinant (74, 167). Third, 

mutations may allow additional glycosylation sites that mask neutralizing epitopes (113, 177, 

178). This new generated N-glycosylation site might have a similar function. However, the 

substitution was only presented in two pigs but not in all pigs. The alternative explanation is that 

mutations that associated with PRRSV immunological selection and immune evasion might 

present in regions other than these hypervariable regions. We are still working on determining 

the function of this new N-glycosylation site by a PRRSV reverse genetics system. 
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Figure 2.1 Raw phenotypic data of log-transformed viremia in pigs infected with PRRSV. 

(A) Viremia of 141 pigs within 42 dpi. (B) Four pigs showing rebound viremia were selected for 

deep sequencing.  
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Figure 2.2 Location of regions on the PRRSV genome selected for 454 sequencing 

The nine amplicons are located in nsp1α/β, nsp2, ORF3 and ORF5. The numbers show the 

location of the fragments on the PRRSV genome according to NVSL 97-7895 (GenBank 

accession number: AY545985). 
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Figure 2.3 The nine amplicons from the parental virus NVSL 97-7895.  

The sizes of nine amplicons are between 447 bp and 542 bp. Each amplicon from the other sera 

and tonsils has the same size. 
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Figure 2.4 The generation of a new N-glycosylation site in GP5. 

The alignment of amino acid (aa) sequences of GP5 from 42dpi sera identified the N32S mutation 

in GP5 creating a new N-glycosylation site (NAS) (marked in red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

Table 2.1 Primers used in this study. 

Names Sequences* 

First Round PCR Primers 

Univ_A_nsp1α-F297 TCTCGGTTCTGCATTCGACCTCTGAATCTCCAAGTTCCTGA 

Univ_B_nsp1α-R731 ATTCGCTGGCACGCACTTCATAGCACACTCAAAAGGGCAA 

Univ_A_nsp1β-F713 TCTCGGTTCTGCATTCGACCCTTTTGAGTGTGCTATGGCT 

Univ_B_nsp1β-R1093 ATTCGCTGGCACGCACTTACACCATGCTTGGTTTGATAGCC 

Univ_A_nsp1β-F997 TCTCGGTTCTGCATTCGAACTGCTGGTGGCGCTTGTT 

Univ_B_nsp1β-R1366 ATTCGCTGGCACGCACTTCGTGCTTTCCTTGCTCTCTTTC 

Univ_A_nsp2-F1311 TCTCGGTTCTGCATTCGATTCCGGTTTGGCAGTCACA 

Univ_B_nsp2-R1725 ATTCGCTGGCACGCACTTTCACAGAGACAGTCCAATGCTC 

Univ_A_nsp2-F1705 TCTCGGTTCTGCATTCGAAGCATTGGACTGTCTCTGTGA 

Univ_B_nsp2-R2101 ATTCGCTGGCACGCACTTGCCGCAACCTCTTCCG 

Univ_A_nsp2-F2701 TCTCGGTTCTGCATTCGACCGCTCCACGCAGGAAGGT 

Univ_B_nsp2-R3040 ATTCGCTGGCACGCACTTTGGTGCGTCAGCGTTGTTGC 

Univ_A_nsp2-F3535 TCTCGGTTCTGCATTCGACTCACACGCCTGCACCTTC 

Univ_B_nsp2-R3921 ATTCGCTGGCACGCACTTAGAAGAAAACAGGGAGATGGGA 

Univ_A_ORF3-F12761 TCTCGGTTCTGCATTCGATGTGCTGTGGTTGCGGATTC 

Univ_B_ORF3-R13154 ATTCGCTGGCACGCACTTCGTTCTCCCCGTCGTGAAC 

Univ_A_ORF5-F13718 TCTCGGTTCTGCATTCGACTGAGACCATGAGGTGGGCAAC 

Univ_B_ORF5-R14091 ATTCGCTGGCACGCACTTAACCCGGCGGTAGACACAGT 

Second Round PCR primers 

A-KMID1-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACGACGACTTCTCGGTTCTGCATTCGA 

A-KMID2-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACGTAGTATTCTCGGTTCTGCATTCGA 

A-KMID3-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACTACTCGTTCTCGGTTCTGCATTCGA 

A-KMID4-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGACACGTATTCTCGGTTCTGCATTCGA 

A-KMID5-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGAGTAGACTTCTCGGTTCTGCATTCGA 

A-KMID6-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCGTCTAGTTCTCGGTTCTGCATTCGA 

A-KMID7-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTACACACTTCTCGGTTCTGCATTCGA 

A-KMID8-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTACTGTGTTCTCGGTTCTGCATTCGA 

A-KMID9-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTAGATCGTTCTCGGTTCTGCATTCGA 

A-KMID10-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACGTCTCTTCTCGGTTCTGCATTCGA 

A-KMID11-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTATACGAGTTCTCGGTTCTGCATTCGA 

A-KMID12-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTCGCGTCGTTCTCGGTTCTGCATTCGA 

A-KMID13-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGACTCGACGTTCTCGGTTCTGCATTCGA 

A-KMID14-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACGAGAGTTCTCGGTTCTGCATTCGA 

A-KMID15-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACTACTATTCTCGGTTCTGCATTCGA 

B-K-Univ-B CCTATCCCCTGTGTGCCTTGGCAGTCTCAGATTCGCTGGCACGCACTT 

* 454 adaptor sequences are highlighted in bold. Key sequences are italic and underlined. MID sequences are bold 

and italic. Universal sequences are underlined. Target gene sequences are shown in regular. 
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Table 2.2 Total number of substitutions for all four animals. 

Segment Size       Number of substitutions 

Day 4 Day 28 Day 42 Tonsil 

nsp1α (297-731) 435 3 33 6 4 

nsp1β (713-1093) 362 0 47 4 3 

nsp1β (997-1366) 273 0 11 11 1 

nsp2 (1311-1725) 359 2 2 6 4 

nsp2 (1705-2101) 376 1 28 6 4 

nsp2 (2701-3040) 340 4 5 5 3 

nsp2 (3535-3921) 387 2 43 2 1 

ORF 2/3 (12761-13154) 394 4 4 7 2 

ORF 5a/5 (13718-14091) 374 1 32 8 4 
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Table 2.3 Mutations identified in serum and tonsil samples collected at 42dpi. 

 *The locations of substitutions in nsp1α, nsp1β and nsp2 are based on ORF1a gene of NVSL 

97-7895. The location of mutations in ORF3 and ORF5 are based on the nucleotide positions in 

ORF3 and ORF5 genes of NVSL-97-7895. Substitutions shared between sera and tonsils are 

shown in regular except the three substitutions that shared between pigs are highlighted in bold. 

Eight substitutions that differed between sera and tonsils in the same pig are marked in italic. 

 

 

 

 

 

 

   Source 

 Pig 6576  Pig 6721 

Segment Size Position* Serum Tonsil  Serum Tonsil 

nsp1α (297-731) 435 C227 T (55%) T(85%)  - - 

  C230 - -  T(95%) T(24%) 

nsp1β (713-1093) 362 A587 - -  G(37%) G(60%) 

  A672 G(84%) G(74%)  - - 

nsp1β (997-1366) 273 C871 - -  T (33%) - 

  A922 - -  G (34%) - 
  G1109 - A (13%)  - - 

nsp2 (1311-1725) 359 G1268 A(18%) A(15%)  -  

  G1294 A(17%) A(14%)  - - 

  C1357 - A (25%)  - - 
nsp2 (1705-2101) 376 T1632 - C (10%)  - - 

  C1834 T(19%) T(12%)  - - 
  A1846 G(17%) G(6%)  - - 

nsp2 (2701-3040) 340 T2555 C(97%) C(99%)  C(98%) C(97%) 

  A2621 G(12%) G(9%)  - - 
  G2830 - A (24%)  - - 

nsp2 (3535-3921) 387 C3427 - T (13%)  - - 

ORF3 (12761-13154) 394 C255 A (100%) A (100%)  A(100%) A (100%) 
  C306 T (17%) -  - - 
  C372 T(13%) T(19%)  - - 

ORF5 (13718-14091) 374 G56 A(29%) A(34%)  - - 
  C80 T(70%) T(35%)  T(42%) T(62%) 
  A95 - -  G(52%) G(25%) 
  A243 - -  T(100%) T(92%) 
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Table 2.4 Substitutions that are either increasing or decreasing in frequency during infection. 

 

 

 

Samples 

T2555C (L-S) in 

nsp2 

C255A (D-E) in 

ORF3 

C287T (P-L) in 

ORF3 

C80T (A-V) in 

ORF5 

A95G (N-S) in 

ORF5 

Depth Proportion Depth Proportion Depth Proportion Depth Proportion Depth Proportion 

Inoculum 1129 0 498 0.56 497 0.44 320 0 320 0 

6576 4dpi serum 1055 0 1305 0.84 1301 0.37 1121 0 1118 0 

6685  1175 0 629 0.84 627 0.57 548 0 545 0 

6721 295 0 833 0.85 814 0.31 1235 0 1235 0 

6774  1063 0.22 775 0.84 774 0.48 598 0 598 0 

Mean 897 0.05 885 0.84 879 0.43 875 0 874 0 

           

6576 28dpi serum 4073 0.10 2180 0.89 2166 0.21 1528 0.20 1945 0 

6685  718 0.77 435 0.96 473 0 662 0.45 633 0.23 

6721 653 0 804 0.99 852 0 680 0.7 661 0.06 

6774 299 0.54 205 1.00 222 0 289 0.54 259 0.14 

Mean 1435 0.35 906 0.96 928 0.05 790 0.47 874 0.11 

           

6576 42 dpi serum 380 0.97 523 1.00 571 0 450 0.70 452 0 

6685 591 0 599 1.00 595 0.26 118 0 118 0 

6721 359 0.98 442 1.00 465 0 426 0.42 421 0.52 

6774 280 0 421 1.00 437 0 243 0.7 242 0.62 

Mean 402 0.49 496 1.00 517 0.06 309 0.45 308 0.285 

           

6576 tonsil 368 0.99 356 1.00 384 0 354 0.35 359 0 

6721 tonsil 215 0.97 289 1.00 313 0 305 0.62 305 0.25 

Mean 292 0.98 322 1.00 348 0 330 0.48 332 0.125 
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Chapter 3 - PRRSV replication and quasispecies evolution in pigs 

that lack adaptive immunity 

Abstract: 

The replication of PRRSV was studied in a line of pigs possessing a severe combined 

immunodeficiency (SCID). Real-time RT-PCR revealed a unique course of infection for the 

SCID group: initially viremia was lower for days 0 through 11, but by Day 21 was elevated 

compared to normal littermates. The absence of PRRSV-specific antibody in the infected SCID 

group confirmed the SCID phenotype. Deep sequencing of the structural genes at days 11 and 21 

identified seven amino acid substitutions in both normal and SCID pigs. The most significant 

change was a W99R substitution in GP2, which was present in the inoculum at a frequency of 

35%, but by Day 21 had disappeared from all pigs regardless of immune status. Therefore, amino 

acid substitutions that appear during acute infection are likely the result of the adaptation of the 

virus to replication in pigs.   
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 3.1 Introduction 

PRRSV is considered one of the most rapidly evolving RNA viruses (160). Similar to 

other RNA viruses, PRRSV exists in a pig as a quasispecies of closely related sequences (91, 

187). Antigenic and genetic drift are the likely mechanisms that explain the emergence of genetic 

variants, which can evade host immune defenses. Another consequence of genetic variation is 

the appearance of viruses with enhanced virulence (49, 226). Immunological selection is 

considered the principal force driving the genetic diversity of PRRSV (156). Several studies have 

documented the emergence of amino acid substitutions during PRRSV infection. For example, 

consistent mutations were observed in envelope glycoproteins and M protein of persistent 

PRRSV during experimental infection (4). Amino acid substitution could also be identified when 

analyzing PRRSV quasispecies during natural infection (91). However, specific experimental 

evidence demonstrating the quantitative influence of adaptive immunity on the evolution of 

PRRSV during infection of the pig is lacking.  

The recent characterization of a line of pigs with severe combined immunodeficiency 

(SCID) creates the opportunity to study the role of adaptive immunity in PRRSV protection and 

pathogenesis. The SCID pig, first described by us, lack B and T cells, does not produce antibody 

in response to PRRSV infection and fails to reject human tumors (9, 164). In this study, we 

evaluated viremia and antibody responses in normal and SCID littermates during the first 21 

days after infection. Deep sequencing of the structural genes was used as a means to evaluate the 

makeup of the qausispecies population of each group.  

 3.2 Materials and Methods 

 3.2.1 Animals and viruses 

Prior to initiating experiments involving animals and viruses, all works were approved by 

Kansas State University’s Institutional Biosafety Committee and Institutional Animal Care and 

Use Committee. Five SCID pigs and seven unaffected normal littermates were derived from 

matings between two immunocompetent heterozygous (SCID
+/-

) parents. The identification of 

normal and SCID pigs was based on staining peripheral blood for the presence of B and T cells. 

For antibody staining, 100 l aliquots of whole blood were placed in 12 mm x 75 mm 

polystyrene flow cytometry (FACS) tubes and incubated for 10 minutes at room temperature in 



50 

 

the presence of 10% normal mouse serum.  Primary antibodies (50 µl) were diluted 1/20 in PBS 

with 2% BSA, added to whole blood, and incubated for 30 minutes at room temperature. Primary 

antibodies included FITC-conjugated mouse anti-porcine CD3 (clone PPT3; Southern Biotech) 

for the staining of T cells and APC-conjugated mouse anti-porcine CD21 (clone B-ly4; BD 

Biosciences) for the identification of B cells. Red blood cells were lysed by the addition of 1x 

multispecies lysis solution (eBiosciences). Cells were then washed twice in PBS with 2% BSA 

(Fraction V; Hyclone) and immediately analyzed on an EC800 flow cytometer (Sony 

Biotechnology) with FCS Express 4 software (De Novo Software).  Absolute cell counts were 

calculated directly by EC800 software (version 1.3).  

Pigs were infected with a type II PRRSV isolate, KS06-72109 (GenBank # KM252867).  

Each pig was intramuscularly and intranasally inoculated with 2 ml 10
5.0 

TCID50/ml of virus 

diluted in MEM. Pigs were monitored daily for clinical signs and serum samples were collected 

at 0, 4, 7, 11, 14 and 21 days after infection. The experiment was terminated when the SCID pigs 

became moribund. All samples were stored at -80 °C until further use. 

 3.2.2 PRRSV real-time RT-PCR 

PRRS viral RNA was quantified using EZ-PRRSV
TM

 MPX 4.0 Real Time RT-PCR 

Target-Specific Reagents (Tetracore
®
, Rockville, MD) and assay performed according to the 

manufacturer’s instructions. For consistency, each plate contained a set of Tetracore
® 

Quantification Standards and Controls. All PCR reactions were carried out on a CFX96 Touch
TM

 

Real-Time PCR Detection System (Bio-Rad, Hercules, CA) in a 96-well format using the 

recommended cycling parameters. Results were reported as the log number of templates per 50 

μl PCR reaction.   

 3.2.3 Fluorescent microsphere immunoassay (FMIA) 

The PRRSV nucleocapsid (N) protein gene was cloned and expressed in E. coli as 

described in previous studies (45, 228). Recombinant N was affinity-purified under native 

conditions using a PrepEase His-Tagged Protein Purification Kit (USB) according to the 

manufacturer’s instructions. The purity and concentration of each protein was assessed by SDS-

PAGE and Protein Assay (Bio-Rad), respectively. 

Recombinant N protein was coupled to carboxylated Luminex MagPlex
®
 polystyrene 

microspheres according to the manufacturer’s directions. For the assay, approximately 2500 
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antigen-coated beads, diluted in PBS with 10% goat serum (PBS-GS), were placed in each well 

of a 96-well polystyrene round bottom plate (Costar, Corning, NY). Fifty microliters of a 1:400 

dilution of serum in PBS-GS was added to duplicate wells. The plate, wrapped in foil, was 

incubated for 30 min at room temperature with gentle shaking then placed on a magnet to hold 

the beads, and the buffer was aspirated from the wells. Beads were washed three times with 190 

µl of PBS-GS. For the detection of Ig, 50 µl of biotin-SP-conjugated affinity-purified goat anti-

swine secondary antibody (IgG, Jackson ImmunoResearch) was added and incubated for 30 min.  

IgM was detected with a biotin-labeled affinity-purified goat anti-swine IgM (KPL, 

Gaithersburg, MD). Secondary antibodies were diluted to 2 µg/ml in PBS-GS and incubated with 

the microspheres for 30 min. Plates were washed three times, followed by the addition of 50 µl 

of streptavidin-conjugated phycoerythrin (2 μg/ml in PBS-GS; SAPE). After 30 min, the plates 

were washed and microspheres resuspended in 100 µl of PBS-GS and analyzed on a MAGPIX 

instrument (Luminex) with Luminex
®
 xPONENT 4.2 software. The results were reported as 

mean fluorescence intensity (MFI).  

 3.2.4 Preparation of the amplicon library and deep sequencing 

Eight primers directed at highly conserved regions were designed to amplify ORF2-7. 

Total RNA was extracted from 100 μl of tissue culture medium or serum using TRIzol Reagent 

(Invitrogen). cDNA was prepared by reverse transcription with random hexamer primers using a 

Transcriptor High Fidelity cDNA Synthesis Kit (Roche). As described previously (65) and 

shown in Figure 1.8, two rounds of PCR amplification were used to prepare the library. The first 

round incorporated PRRSV sequence-specific primers. A second amplification was performed 

using 454-adaptor multiplex identifier (MID) primers (Table 3.1). Fifteen MIDs were used for 15 

samples and each sample used the same MID for eight amplicons from the structural genes of 

PRRSV. The sizes of amplicons were between 340bp and 446bp (Fig. 3.1).A total of 120 

amplicons were obtained to create the library. The detail procedures of library preparation and 

454 sequencing are described in chapter 1.7. 
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 3.3 Results 

 3.3.1 PRRSV viremia in normal and SCID pigs 

PRRSV viremia for the seven normal and five SCID pigs is shown in Figure 3.2. The 

normal littermates showed a pattern of viremia typical of PRRSV infection: reaching a peak at 

about 11 days after infection followed by a gradual decline. In contrast, the SCID pigs showed 

lower amounts of virus in the blood, which were significantly reduced relative to the normal 

littermates at 4, 7 and 11 days after infection. At 11 days after infection, the mean viremia for the 

SCID group was approximately one log lower than the normal group. Instead of declining, 

viremia in the SCID group remained elevated, and by 21 days after infection, viremia in the 

SCID group was approximately one log higher than the group of normal littermates. Soon after 

Day 21, the experiment was terminated when the SCID pigs began to exhibit a variety of clinical 

signs, including weight loss and respiratory distress. Necropsy at the time of sacrifice showed 

that the SCID pigs succumbed as a result of an overwhelming infection caused by a variety of 

bacteria. Together, these data demonstrate that PRRSV infection follows a unique course in 

SCID pigs. 

 3.3.2 PRRSV-specific IgM and IgG responses 

The antibody responses for the seven normal and five SCID pigs are shown in Figure 3.3. 

For normal pigs, IgM was first detected at the 7-day time point, reached a peak at 11days, and by 

21 days began to approach background MFI values. This pattern was consistent with the primary 

antibody response of pigs to PRRSV infection. MFI values for all the SCID pigs remained at 

background levels for all time points. PRRSV-specific IgG was initially relatively high for all 

pigs, the result of a high non-specific level of background activity carried over by maternal 

antibody. For normal pigs, the initial decay in maternal antibody was followed by a steady 

increase in PRRSV-specific antibody. For the SCID group, the non-specific maternal antibody 

response continued to decay throughout the remainder of the experiment. By Day 21 the MFI 

values for the SCID pigs approached background for the assay. These results confirmed that 

PRRSV-specific humoral immunity was absent in PRRSV-infected SCID pigs.  
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 3.3.3 Nucleotide and amino acid substitutions at 11 and 21 dpi 

PRRSV infection is characterized by the emergence of genetic variants, presumably, the 

result of positive and negative selection. We used a deep sequencing approach to determine the 

number and rate of nucleotide substitutions during acute infection in SCID pigs and normal 

littermates. The two time points selected for investigation were 11 and 21 days after infection. 

Day 11 covered a period during peak viremia when virus levels were elevated in normal pigs. By 

Day 21, the levels of viremia were reversed; viremia in the SCID group was elevated compared 

to the normal littermates (see Fig. 3.2). All five pigs in the SCID group were selected for deep 

sequencing; whereas, for the purpose of comparison, two normal littermates were randomly 

chosen. A summary of the nucleotide and amino acid substitutions in all seven pigs is presented 

in Figure 3.4 and Table 3.2. Using the criteria described in Methods, the coverage for each 

amplicon was between 60 and 1988 reads with an average of 399 reads. There were no insertions 

or deletions and only nine point mutations were identified, seven of which resulted in changes in 

amino acids. All mutations except for one were the result of a purine or pyrimidine transition. 

The predominance of transitions was observed by Allende, et al. (4), who followed changes in 

PRRSV sequence over a 150 day period. A single transversion, A186T in ORF4 was silent. One 

mutation appeared within the overlapping region of ORF2 and OR2b. The mutation was silent in 

GP2, but resulted in an arginine to cysteine change in the E (2b) protein.  

The frequencies of amino acid substitutions at 11 and 21 days for individual pigs are 

summarized in Table 3.2. Overall, there was no difference in the pattern of amino acid 

substitutions between the SCID pigs and normal littermates. A W99R substitution was present in 

the parent virus at a frequency of 35%. By 11 days, the frequency decreased, ranging from 0% 

(SCID pig 2-8) to 27%  (SCID pig 2-5). By 21 days, the amino acid substitution was absent in all 

pigs.  Examples of amino acids that increased in frequency can be found in the appearance of 

A121V in GP5 (pig 1-9) and I95V in M protein (pig 1-4), both SCID pigs. The A121V substitution 

increased from 28% at 11 days to 90% at 21 days. The I95V substitution increased from 66% (11 

days) to 86% (21 days). At Day 21, the I95V substitution appeared in a second SCID pig, 2-2. 

When going below the 5% threshold, the I95V substitution was detected at a low frequency in 

both normal and SCID pigs and was present in the parent virus. Overall, the data show very few 

mutations for the KS06 PRRSV isolate over the 21 days of infection. The most significant amino 

acid change was the loss of the W99R substitution, which appeared in both normal and SCID pigs.   
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 3.4 Discussion 

PRRSV possesses a high mutation rate, the result of the absence of proofreading activity 

in the virus-encoded RNA-dependent RNA polymerase. Over time, error-prone replication 

produces a cloud of genetic variants known as a quasispecies. The role of mutation and selection 

in preserving the pathogenesis or fitness of PRRSV has been studied by documenting the 

appearance of nucleotide substitutions in viruses over time and by comparing the sequences of 

non-pathogenic variants (50, 161, 253). One outcome of this body of work is the notion that 

amino acid substitutions in structural proteins are the result of selective pressure by B and T cells 

(156). One important consequence is antigenic drift, which contributes to a long-term or 

“persistent” infection (209).  

In this study, we followed amino acid substitutions in ORFs 2-7 in pigs that lack B and T 

cells. The SCID phenotype was confirmed by the absence of humoral immunity.  The eventual 

disappearance of a W99R substitution in GP2, present in the inoculum, occurred in SCID pigs 

and normal littermates. This outcome demonstrated that the tryptophan substitution at position 

99 was not the result of the escape from adaptive immunity. A more plausible explanation is that 

the presence of Arg-99 in 35% of the virus population was the result of the selection of viruses 

better adapted for growth in MARC-145 cells, a simian cell line. The subsequent reversion to the 

wild-type sequence was due to the selection of viruses that were “re-adapted” to replication in 

pigs. A molecular explanation can be found in the interaction of PRRSV with CD163, the 

receptor on the surface of macrophages. Transfection of non-permissive cell lines with truncated 

CD163, which lacks the scavenger receptor cysteine-rich (SRCR) domain 1 and 2 (SRCR 1 and 

SRCR 2) confers permissiveness to PRRSV infection (38). However, repeating the experiment 

with the replacement of CD163 SRCR 5 with the corresponding domain from a similar CD163-

like protein, CD163-L1, does not support PRRSV infection, indicating that SRCR 5 is essential 

for PRRSV infection (232). On the virus side, GP2 and GP4 have been identified to directly 

interact with CD163; however, the exact domains responsible for binding CD163 have not been 

determined. The selection of viruses with a tryptophan at position 99 of GP2 may increase the 

affinity of the virus for pig macrophages. Similarly, the appearance of isoleucine-46, valine-81 

and phenylalanine-171 in GP4 may also be driven by increased affinity for porcine CD163. None 

of the amino acid substitutions mapped to known B-cell epitopes (aa 41-55 and 121-135 in GP2 

and aa 51-65 in GP4) (70). The E protein functions as an ion channel (123), and also interacts 
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with GP2a-GP3-GP4 heterotrimers (247). The disappearance of cysteine-59 in E may also 

contribute to the adaption of virus to macrophages. 

Compared to normal littermates, PRRSV replication followed a unique course in SCID 

pigs (Fig. 3.2). The lower viremia at the early stage of infection suggests that fewer numbers of 

permissive macrophages are available for infection. Therefore, the role of T cells would be to 

regulate the number and/or permissiveness of macrophages for PRRSV infection. As reviewed in 

Cecere et al (47) and demonstrated by Patton et al (168), T cell cytokines, such as IL-10, enhance 

the susceptibility of macrophages to infection.  In contrast, T cell cytokines, such as interferon-

gamma protects macrophages from infection (186). Therefore, T cells play a positive role in 

viremia by increasing the number of permissive macrophages. However, by Day 21 of infection, 

viremia in SCIDs becomes elevated relative to the normal littermates, a failure of T cells to 

control virus replication.  
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Figure 3.1 PCR amplification of the structural protein regions of PRRSV. 

(A) The bars show the location of each application. The number above each bar shows the 

coordinates of the PRRSV genome covered by each amplicon. The lower figure in (A) shows the 

location of each ORF in the structural region of the genome. (B) is a representative DNA gel  

showing each amplicon at the end of the amplicon amplification procedure. 
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Figure 3.2 PRRSV viremia for SCID pigs and normal littermates. 

Results for both panels are for 12 normal pigs (solid line) and 6 SCID pigs (dashed line). P-

values are shown for those days there was a significant difference between groups. Statistics 

were performed using the Mann-Whitney U test. 
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Figure 3.3 PRRSV-specific IgM and IgG responses in normal and SCID pigs.  

Antibody results are shown as mean fluorescence intensity (MFI) +/- standard deviation. P-

values are shown for those days when there was a significant difference between groups. 

Statistics were performed using the Mann-Whitney U test. Results for both panels are for 12 

normal pigs (solid line) and 6 SCID pigs (dashed line). 
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Figure 3.4 Location of mutations in the structural genes of PRRSV. 

The triangles identify the location of each mutation. Open triangles identify silent mutations. The 

numbers identify nucleotide and amino acid position in the respective ORF/polypeptide. The 

underlined mutation was present in overlapping ORFs. The C180T was silent in ORF2, but 

resulted in a R99C change in ORF2b. 
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Table 3.1 Primers used in this study. 

Primer Sequence (5’-3’) 

ORF2-F1-KS06 TCTCGGTTCTGCATTCGAATGAAATGGGGGCTATGCAAA 

ORF2-R1-KS06 ATTCGCTGGCACGCACTTCGACGCGACACCATTTCATCA 

ORF2-F2-KS06 TCTCGGTTCTGCATTCGATGATGAAATGGTGTCGCGTCG 

ORF2-R2-KS06 ATTCGCTGGCACGCACTTATTGCCCCTAACCAGCGGAAA 

ORF3-F-KS06 TCTCGGTTCTGCATTCGATTTCCGCTGGTTAGGGGCAAT 

ORF3-R-KS06 ATTCGCTGGCACGCACTTAGCCATTCTAGGTGAAACCAA 

ORF4-F-KS06 TCTCGGTTCTGCATTCGATTGGTTTCACCTAGAATGGCT 

ORF4-R-KS06 ATTCGCTGGCACGCACTTTGTTGGACGTAGCTGGTAAA 

ORF5-F1-KS06 TCTCGGTTCTGCATTCGATTTACCAGCTACGTCCAACA 

ORF5-R1-KS06 ATTCGCTGGCACGCACTTACTGTGTCAAGGAAATGACTGG 

ORF5-F2-KS06 TCTCGGTTCTGCATTCGACCAGTCATTTCCTTGACACAGT 

ORF5-R2-KS06 ATTCGCTGGCACGCACTTGCATATATCATTACTGGCGTGT 

ORF6-F-KS06 TCTCGGTTCTGCATTCGAACACGCCAGTAATGATATATGC 

ORF6-R-KS06 ATTCGCTGGCACGCACTTGCATATTTGACAAGGTTTACCACT 

ORF7-F-KS06 TCTCGGTTCTGCATTCGAAGTGGTAAACCTTGTCAAATATGC 

ORF7-R-KS06 ATTCGCTGGCACGCACTTTCACGCTGAAGGTGGTGCTGT 

A-KMID1-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACGACGACTTCTCGGTTCTGCATTCGA 

A-KMID2-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACGTAGTATTCTCGGTTCTGCATTCGA 

A-KMID3-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACTACTCGTTCTCGGTTCTGCATTCGA 

A-KMID4-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGACACGTATTCTCGGTTCTGCATTCGA 

A-KMID5-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGAGTAGACTTCTCGGTTCTGCATTCGA 

A-KMID6-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCGTCTAGTTCTCGGTTCTGCATTCGA 

A-KMID7-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTACACACTTCTCGGTTCTGCATTCGA 

A-KMID8-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTACTGTGTTCTCGGTTCTGCATTCGA 

A-KMID9-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACGTAGATCGTTCTCGGTTCTGCATTCGA 

A-KMID10-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACGTCTCTTCTCGGTTCTGCATTCGA 

A-KMID11-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTATACGAGTTCTCGGTTCTGCATTCGA 

A-KMID12-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACTCGCGTCGTTCTCGGTTCTGCATTCGA 

A-KMID13-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGACTCGACGTTCTCGGTTCTGCATTCGA 

A-KMID14-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACGAGAGTTCTCGGTTCTGCATTCGA 

A-KMID15-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACTACTATTCTCGGTTCTGCATTCGA 

B-K-Univ-B CCTATCCCCTGTGTGCCTTGGCAGTCTCAGATTCGCTGGCACGCACTT 

* 454 adaptor sequences are highlighted in bold. Key sequences are italic and underlined. MID sequences are bold 

and italic. Universal sequences are underlined. Target gene sequences are shown in regular. 
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Table 3.2 Amino acid substitutions in the structural proteins at 11 and 21 dpi. 

  2 2b 3 4 5 5a M N 

Parent virus W99R 

(35-60) 

R59C 

(10-63) 

- 

(0-91) 

- 

(0-108) 

- 

(0-129) 

- 

(0-129) 

- 

(0-83) 

- 

(0-75) 

Day 11  Pig 

Normal 1-10 W99R 

(3-477) 

- 

(0-502) 

- 

(0-711) 

- 

(0-1528) 

- 

(0-866) 

- 

(0-866) 

- 

(0-638) 

- 

(0-667) 

Normal 2-1 W99R 

(8-439) 

- 

(0-461) 

- 

(0-376) 

- 

(0-500) 

- 

(0-529) 

- 

(0-529) 

- 

(0-399) 

- 

(0-586) 

SCID 1-4 W99R 

(9-497) 

- 

(0-517) 

- 

(0-845) 

- 

(0-264) 

- 

(0-1988) 

- 

(0-868) 
I95V 

(66-65) 

- 

(0-690) 

SCID 1-9 W99R 

(10-514) 

- 

(0-537) 

- 

(0-94) 
V46I 

(20-415) 

A121V 

(28-669) 

- 

(0-669) 

- 

(0-350) 

- 

(0-541) 

SCID 2-2 W99R 

(15-471) 

R59C 

(10-492) 

- 

(0-261) 
I81V 

(6-302) 

- 

(0-449) 

- 

(0-449) 

- 

(0-232) 

- 

(0-483) 

SCID 2-5 W99R 

(27-365) 

- 

(0-381) 

- 

(0-391) 

- 

(0-311) 

- 

(0-367) 

- 

(0-367) 

- 

(0-337) 

- 

(0-454) 

SCID 2-8 - 

(0-366) 

- 

(0-366) 

- 

(0-341) 

- 

(0-281) 

- 

(0-296) 

- 

(0-296) 

- 

(0-224) 

- 

(0-614) 

Day 21          

Normal 1-10 - 

(0-331) 

- 

(0-331) 

- 

(0-558) 

- 

(0-635) 

- 

(0-684) 

- 

(0-684)  

- 

(0-326) 

- 

(0-300) 

Normal 2-1 - 

(0-325) 

- 

(0-325) 

- 

(0-274) 

- 

(0-220) 

- 

(0-389) 

- 

(0-389) 

- 

(0-167) 

- 

(0-208) 

SCID 1-4 - 

(0-288) 

- 

(0-288) 

- 

(0-199) 

- 

(0-270) 

- 

(0-445) 

- 

(0-445) 
I95V 

(86-538) 

- 

(0-359) 

SCID 1-9 - 

(0-295) 

- 

(0-295) 

- 

(0-260) 

-  

(90-398) 
A121V 

 (90-483) 

- 

(0-483) 

- 

(0-269) 

- 

(0-297) 

SCID 2-2 - 

(0-307) 

- 

(0-307) 

- 

(0-138) 
L171F 

(12-413) 

- 

(0-455) 

- 

(0-455) 
I95V 

(17-315) 

 

(0-286) 

SCID 2-5 - 

(0-298) 

- 

(0-298) 

- 

(0-255) 

- 

(0-350) 

- 

(0-447) 

- 

(0-447)  

- 

(0-286) 

- 

(0-295) 

SCID 2-8 - 

(0-245) 

- 

(0-245) 

- 

(0-104) 

- 

(0-166) 

- 

(0-229) 

- 

(0-229) 

- 

(0-106) 

- 

(0-324) 

*The results show the amino acid substitutions in 2 normal pigs (highlighted) and 5 SCID pigs. The cutoff for 

detection of a mutation was based on a minimum variation frequency value of 5%. Below each substitution is the 

percentage of each substitution in the population of sequences and minimum sequence coverage for the ORF. 

 

 

 

 

 

 

 

 

 



62 

 

Chapter 4 - Identification of recombination patterns between two 

PRRSV infectious clones 

Abstract: 

A reverse genetics system was developed to study the properties of recombination in PRRSV 

infectious clones that expressed GFP. Next generation sequencing was used as a means to map 

sites for recombination. Two PRRSV infectious clones, P129-EGFP-97C and P129-GFPm-d(2-

6), were co-transfected into HEK-293T cells. P129-EGFP-97C is a fully functional virus that 

contains a non-fluorescent EGFP. P129-GFPm-d(2-6) is a defective virus that lacks ORF2-6 but 

contains a fluorescent protein GFPm, which possesses an EGFP cDNA sequence flanked by 

sequences from GFP cDNA. Successful recombination was evident by the appearance of fully 

functional progeny virus that expresses fluorescence. At 72h after infection, cells were sorted 

based on the presence of green fluorescence. Total RNA was extracted and amplified using two 

sets of primers to prepare an amplicon library for 454 sequencing. Deep sequencing showed that 

the variation frequency changed from ~37% (nucleotides that are identical to EGFP in 21nt-

165nt region) to 20% (T289C substitution) to ~38% (456nt-651nt region) then to 100% (672nt-

696nt region). The results indicated that cross-over events occurred in three conserved regions 

(166nt-288nt, 290nt-455nt, 652nt-671nt). In addition, we found four cross-over patterns (two 

single and two double cross-over) could be used to produce viable recombined viruses. The 

results demonstrate the utility of deep sequencing in assistance with this reverse genetics system 

for understanding virus recombination. 
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 4.1 Introduction 

Recombination occurs in many RNA viruses and can be of evolutionary importance. The 

occurrence of PRRSV recombination was first suggested by the phylogenetic analysis of field 

isolates (106). An up-to-date study provided evidence supporting that PRRSV recombination is a 

common phenomenon in the field (145). Recombination events have been identified in both type 

1 and 2 PRRSV strains but not between the two genotypes (56, 83, 125, 128, 234). PRRSV could 

undergo homologous recombination with the frequency from <2% up to 10% in vitro and ~38% 

in vivo (128, 254). A recent phylogenetic analysis showed that viruses from an outbreak of novel 

highly pathogenic PRRS in China between 2009 and 2010 were originated from a single 

recombination event, indicating the potential importance of recombination for PRRS emergence 

(196). This result supported previous reports that recombination is sometimes a powerful 

mechanism for the rapid emergence of novel strains (120, 199). 

        Previous methods to analyze PRRSV recombination were based on PCR and sequencing to 

determine sites and frequency of recombination events (56, 143, 234, 254). We developed a new 

in vitro system that can be used to analyze recombination events that are nonessential and 

present in viable offspring (48). This reverse genetics system uses GFP- and EGFP-expressing 

PRRSV infectious clones to study the properties of recombination. Successful recombination is 

evident by producing a viable fluorescent virus from the co-transfection of a non-fluorescent 

viable virus with a mutation in EGFP (P129-EGFP-97C) and a fluorescent defective virus (P129-

GFPm-d(2-6)) (Fig. 4.1). In this study, we took advantage of high throughput sequencing to 

determine the locations and frequencies of all cross-over events between EGFP and GFPm genes 

and to identify the cross-over patterns potentially used to produce viable recombined viruses.  

 4.2 Materials and Methods 

 4.2.1 Sample preparation 

HEK-293T cells were co-transfected with two PRRSV infectious clones: P129-EGFP-

97C and P129-GFPm-d(2-6). P129-EGFP-97C is a fully functional P129 virus with a non-

fluorescent EGFP gene, the result of a C289T nucleotide substitution in the fluorophore active site 

of EGFP. P129-GFPm-d(2-6) is a defective virus that lacks ORFs 2-6, but contains a fluorescent 

GFPm gene. GFPm is a chimeric gene that contains a middle EGFP sequence flanked on each 

side by sequence derived from GFP (EGFP and GFP share only 83% nucleotide identity). 
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Successful recombination between the two infectious clones in the fluorescent gene leads to a 

fully functional virus that expresses fluorescence. Therefore, after 48 hours of co-transfection, 

the supernatant was placed on a 100% confluent monolayer of MARC-145 cells and green 

fluorescent plaques could be observed at 72hpi. Due to the low frequency of recombination, 

enrichment was done using fluorescence-activated cell sorting (FACS) for cells that expressed 

green fluorescence (BioRad S3 Cell Sorter). After two rounds of enrichment, roughly 80% of 

cells carried the fluorescent virus.  

 4.2.2 Library preparation and deep sequencing 

Total RNA was extracted from 100 μl of the sorted cell sample using TRIzol Reagent 

(Invitrogen) according to the manufacturer’s protocol and eluted in 50 μl RNase-free water. 

cDNA was generated by reverse transcription using random hexamer primers from the 

Transcriptor High Fidelity cDNA Synthesis Kit (Roche). Two sets of primer pairs were used in 

two rounds of PCR for the preparation of the amplicon library (65). The first round of PCR was 

performed using EGFP sequence-specific primers and the second round of amplification was 

performed using 454-adaptor multiplex identifier (MID) primers (Table 4.1). Three amplicons 

were obtained from three overlap regions, which were 369bp, 270bp, and 336bp in length, 

respectively. A same MID was used for the three amplicons produced from first round PCR in 

the second round of PCR. The amplicon library was created by these three amplicons. The detail 

procedures of library preparation and 454 sequencing are described in chapter 1.7. 

 4.3 Results and Discussion 

 4.3.1 Identification of cross-over events 

The numbers of reads for three amplicons were around 6000 ~ 15000. All sequences 

were compared to GFPm sequences. The mutations identified by 454 sequencing were shown in 

Table 4.2. The percentages of mutations identical to EGFP in the first variable region (from 21bp 

to 165bp) were around 31% to 41%, with 37% in average. The percentage of C289T substitution 

indicated that only 20% was the same as EGFP, while the other 80% was identical to GFPm. The 

second variable region (from 456bp to 651bp) is about 29% to 45% with the average of 38% 

identical to EGFP. The third variable region (672bp to 696bp) has 100% identity with EGFP. 

The changes of the percentages of mutations between variable regions after each conserved 
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region indicated that cross-over events did occur in three conserved regions: 166bp to 288bp, 

290bp to 455bp, and 652bp to 671bp. 

As shown in Figure 4.2, the percentage of nucleotide identity to EGFP decreased from 

~37% to 20% in the 123bp-conserved region (from 166bp to 288bp), which indicated there was a 

cross-over occurrence. In addition, the percentage increased from 20% to ~38% in the 166bp-

conserved region (from 290bp to 455bp), indicating that a second cross-over existed in this 

region. Remarkably, the percentage dramatically changed from 38% to 100%, which meant 

~62% cross-over events proceed in only the 20bp-conserved region (from 652bp to 671bp), 

indicating the 20bp-conserved region is a hotspot of cross-over. 

 4.3.2 Potential cross-over patterns 

Four kinds of recombination events could occur in our sample. As shown in Figure 4.3, 

there were two kinds of single cross-over recombination events (Fig. 4.3A, 4.3B), having cross-

over occurring in the 20bp-conserved region (from GFPm to EGFP) and 166bp-conserved region 

(from GFPm to EGFP), respectively. Furthermore, there were other two types of double cross-

over recombination events (Fig. 4.3C and 4.3D). One had the double cross-over occur in the 

123bp-conserved region (from EGFP to GFPm) then in the 20bp-conserved region (from GFPm 

to EGFP), and another one occurred in the 123bp-conserved region (from EGFP to GFPm) then 

in the 166bp-conserved region (from GFPm to EGFP). The exact rates of these four 

recombination patterns could not be identified due to the limitation of the length of sequences 

(<400bp) obtained from the deep sequencing method we used in this study. However, the 

alignment analysis did provide direct evidence for cross-over events occurring in the 123bp- and 

20bp-conserved regions (Fig. 4.4A, 4.4B).  

In conclusion, this study used the deep sequencing method to analyze the nucleotide 

identity of progeny viruses to their parental viruses in the EGFP and GFPm genes. Based on 

thousands to ten thousands of sequences from the progeny virus quasispecies, we found that the 

identity percentages changed between the variable regions and conserved regions of 

EGFP/GFPm genes indicating the cross-over events did occur in progeny viruses in the 

conserved areas. There were four types of recombination patterns (two single cross-over events 

and two double cross-over events) utilized in the EGFP/GFPm region during the co-infection of 

two PRRSV infectious clones. The 20bp-conserved region shows to be a cross-over hotspot and 
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has the highest rate of cross-over when compared with the other two cross-over regions. Previous 

studies demonstrated that cross-over events occurred more frequently at the transcriptional 

pausing sites or polymerase-binding motifs (89, 120, 180, 246). The mechanisms responsible for 

this cross-over hotspot may be explored by analyzing the secondary structure of EGFP sequence. 

Our results indicate that deep sequencing in addition to the new in vitro reverse genetics system 

could be a useful tool for analyzing different kinds of recombination events that occurred during 

the co-infection and might contribute to elucidate the underlying mechanisms of PRRSV 

recombination. 
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Figure 4.1 Recombination event occurred between two infectious clones. 

P129-EGFP-97C is a fully functional non-fluorescent virus and P129-GFPm-d(2-6) is a 

fluorescent defective virus lacking ORF2-6. Recombination between these two parental viruses 

will produce a viable fluorescent progeny virus. 
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Figure 4.2 Evidence for the occurrence of cross-over events. 

The percentages of nucleotide identity to EGFP decreased from 37% (21bp-165bp variable 

region) to 20% (C289T substitution), then increased to 38% (456bp-651bp variable region) and to 

100% (672bp-696bp variable region). The changes indicated that the cross-over events occurred 

in three conserved regions: 166bp-288bp, 290bp-455bp, and 652bp-671bp. 
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Figure 4.3 Four potential cross-over patterns for the recombination events. 

Two single cross-over (4.3A and 4.3B) and two double cross-over patterns (4.3C and 4.3D) 

could be used to produce the viable fluorescent recombined viruses in this in vitro reverse 

genetics system. 
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Figure 4.4 The alignment analyses identified two cross-over events. 

The recombinants from cross-over events in the 123bp conserved region (4.4A) and 20bp 

conserved region (4.4B) were identified. The recombinants were identical to GFPm in region-1 

and identical to EGFP in region-3. The conserved and cross-over regions were shown as region-2 

in the red box.  
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Table 4.1 Primers used in this study. 

PCR Name Sequence*(5'-3') 

1st round Univ-A-Rec-F1 TCTCGGTTCTGCATTCGACCCCGTCATTGAACCAACTTT 

Univ-B-Rec-R1 ATTCGCTGGCACGCACTTTGTAGTTGCCGTCGTCCTTGA 

Univ-A-Rec-F2 TCTCGGTTCTGCATTCGATCGTGACCACCCTGACCTAC 

Univ-B-Rec-R2 ATTCGCTGGCACGCACTTCGTTGTGGCTGTTGTAGTTGTA 

Univ-A-Rec-F3 TCTCGGTTCTGCATTCGATACAACTACAACAGCCACAACG 

Univ-B-Rec-R3 ATTCGCTGGCACGCACTTTGTTCCGCTGAAACTCTGGT 

2nd round A-KMID1-Univ-A CCATCTCATCCCTGCGTGTCTCCGACTCAGACACGACGACTTCTCGGTTCTGCATTCGA 

B-K-Univ-B CCTATCCCCTGTGTGCCTTGGCAGTCTCAGATTCGCTGGCACGCACTT 

* The universal tails are shown in bold, 454 adaptor sequences are highlighted in bold and 

underlined, the key sequences are shown in italic, and the multiple identifier (MID) is underlined. 
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Table 4.2 Mutations and their percentages in the co-infected sample. 

Amplicon 
Location* 

 

Reference 

nucleotide 

(GFPm) 

Variant 

nucleotide 

(EGFP) 

Total Depth 
Variant 

Frequency 

>Rec1-EGFP 21 A G 7182 37% 

>Rec1-EGFP 30 T C 7093 37% 

>Rec1-EGFP 33 C G 7086 37% 

>Rec1-EGFP 39 C G 7040 37% 

>Rec1-EGFP 48 C G 6797 35% 

>Rec1-EGFP 51 G C 6731 34% 

>Rec1-EGFP 54 A G 6716 34% 

>Rec1-EGFP 60 T C 6683 34% 

>Rec1-EGFP 66 T C 6315 31% 

>Rec1-EGFP 117 A C 6437 41% 

>Rec1-EGFP 123 A C 6425 41% 

>Rec1-EGFP 129 C G 6416 39% 

>Rec1-EGFP 138 A G 6403 39% 

>Rec1-EGFP 153 T C 6343 38% 

>Rec1-EGFP 165 A C 6300 36% 

>Rec2-EGFP 289 C T 15531 20% 

>Rec3-EGFP 456 C T 15566 29% 

>Rec3-EGFP 474 A G 14345 37% 

>Rec3-EGFP 480 T C 14178 39% 

>Rec3-EGFP 492 C G 13736 43% 

>Rec3-EGFP 505 A C 13035 45% 

>Rec3-EGFP 507 A C 13023 45% 

>Rec3-EGFP 514 A G 12684 39% 

>Rec3-EGFP 607 T A 8032 37% 

>Rec3-EGFP 608 C G 8029 37% 

>Rec3-EGFP 618 T C 8407 36% 

>Rec3-EGFP 633 T C 8606 35% 

>Rec3-EGFP 641 A C 8598 36% 

>Rec3-EGFP 642 A G 8598 36% 

>Rec3-EGFP 646 A C 8711 35% 

>Rec3-EGFP 648 A C 8706 35% 

>Rec3-EGFP 651 C T 8698 35% 

>Rec3-EGFP 672 T C 8616 100% 

>Rec3-EGFP 681 T C 8601 100% 

>Rec3-EGFP 684 T C 8591 100% 

>Rec3-EGFP 693 A T 8643 100% 

>Rec3-EGFP 695 A T 8648 100% 

>Rec3-EGFP 696 T C 8646 100% 

* The locations of mutations are determined according to EGFP sequence. Mutations in the 

variable region (from 21bp to 165bp) are in regular. The C289T mutation is highlighted in bold 

and underlined. Mutations in the second variable region (from 456bp to 651bp) are marked in 

italic. Mutations in the third variable region (from 672bp to 696bp) are underlined. 
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Chapter 5 - Analysis of B-cell repertoire related to PRRSV 

neutralization 

Abstract:  

Neutralizing antibodies (nAbs) play an important role in protective immunity against PRRSV 

infection; however, PRRSV infection and vaccination usually induce weak and delayed nAbs. 

Lack of knowledge about PRRSV-specific nAbs has become a big obstacle to develop an 

effective PRRSV vaccine. Within the PRRS Host Genetics Consortium (PHGC) project, pigs 

producing a wide range of humoral immune responses from no detectable nAbs to broad nAbs 

have been identified. In this study, we analyzed the B cell repertoires from pigs that produced no 

nAbs, homologous nAbs, and broad nAbs. Swine VDJ gene segments were amplified using a 

single primer pair, cloned into TOPO pCR2.1 vector and submitted to high-throughput 

sequencing. A total of 385 VDJ sequences were obtained from mock-infected and PRRSV-

infected pigs. Sequence alignment showed that the diversification of the VDJ gene was mainly 

due to the variation in CDRs, especially CDR3, which is the main determinant of antibody-

antigen binding. Seven major VH genes accounted for >70% of the antibody repertoires from 

mock-infected pigs, whereas, the percentages were <50% in PRRSV-infected pigs. In addition, 

one, six and two lineages were considered as the candidates associated with non-nAbs, 

homologous nAbs, and broad nAbs, respectively. This study provided a simple straightforward 

method to analyze swine immunoglobulin VDJ repertoires and identified potential lineages 

associated with different antibody responses.  
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 5.1. Introduction 

Neutralizing antibodies (nAbs) are important effectors of immunity against viruses (259). 

NAbs are considered important for protective immunity against PRRSV (133). However, the 

production of high titer homologous nAbs or broad nAbs are rarely observed after PRRSV 

infection. Therefore, current PRRSV vaccines cannot provide efficient protection, especially 

against heterologous isolates (66, 114, 157). The PRRS Host Genetics Consortium (PHGC) 

project aims to identify genetic determinants of resistance/susceptibility of commercial swine to 

PRRSV infection (136, 185). During the experimental infection of more than 3000 pigs with 

PRRSV, we have identified pigs producing a wide range of humoral immune responses, from no 

detectable nAbs to broad nAbs. No detectable nAbs (non-nAbs) indicate the serum has no 

neutralization activity against the inoculum virus and other isolates. Homologous nAbs (Homo-

nAbs) only have neutralization capacity against the inoculum virus but not other heterologous 

isolates. Broad nAbs can neutralize not only the inoculum virus, but also a large number of 

unrelated isolates, including both type 1 and type 2 PRRSV. Pigs that produce non-nAbs, 

homologous nAbs, and broad nAbs provide an ideal opportunity to explore swine B cell 

repertoires associated with different antibody responses.  

The genetics of swine immunoglobulin were briefly reviewed in Chapter 1.6. Antibody 

binding to antigen is primarily determined by the heavy chain (34, 165). Compared to mice and 

humans, there are relatively few genes involved in antibody production in pig. Swine utilize 

seven major VH genes (VHA, VHB, VHC, VHE, VHF, VHY, VHZ), two DH segments and a single 

JH gene to account for nearly entire (>90%) VDJ pre-immune repertoire (34). Furthermore, the 

exposure to environmental antigen does not change VH genes that comprise the pre-immune 

repertoire. The same VH genes comprise the adaptive repertoire but ~90% of them are 

somatically mutated (34). This unique feature provides an opportunity to analyze porcine 

antibody repertoire by detecting the entire VDJ repertoire, which can be recovered using a single 

PCR primer set.  

It’s known that PRRSV subverts antibody repertoire development by proliferation of B 

cells bearing heavy chain hydrophobic CDR3 (37). However, the antibody repertoires associated 

with PRRSV neutralization have not been investigated. This study used a simple method to 

analyze the immunoglobulin heavy chain repertoires of samples from pigs producing different 

antibody responses and attempted to identify PRRSV-activated B cells and lineages potentially 

associated with different antibody responses.  
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 5.2. Materials and Methods 

5.2.1 Primer design and sample selection 

The design of primers was based on the alignment of 46 swine Ig VDJ cDNA sequences 

obtained from GenBank (Table 5.1). Even though the sequences were unique, the differences 

were concentrated in the complementarity determining regions (CDRs), whereas the 5’UTR and 

framework regions (FRs) were relatively conserved (Fig. 5.1). Therefore, the entire VDJ 

repertoire could be analyzed by using only a single primer set with forward (5UTR-F: 5’-

ATGGAGTTTCGGCTGAACT-3’) and reverse (FR4-R: 5’-TGAGGACACGACGACTTCA-3’) 

primers located within 5’UTR and FR4, respectively. The samples used in this study were 

derived from the PRRS Host Genetics Consortium (PHGC) PRRS-CAP Project (16, 136, 185). 

At 42dpi, pigs produced a wide range of antibody responses, including non-nAbs (pig no. 63), 

homologous nAbs (pig no. 21), and broad nAbs (pig no. 45) (Table 5.2). Lymph nodes collected 

at 42dpi from mock-infected pig (no. 22) as well as the above three PRRSV-infected pigs were 

used in the repertoire analysis. According to clonal expansion theory, antigen activated B cells 

undergo clonal expansion to create a population of identical B cell clones, the majority of which 

become plasma cells to secret identical antibodies (20, 101). Recapturing a VDJ sequence in two 

separate aliquots requires at least two cells of the same B-cell clone expressing this VDJ 

sequence (237). Therefore, two aliquots from the lymph node of each pig were utilized to 

determine the activated B-cell repertoires. 

5.2.2 Cloning and sequencing 

Lymph nodes were homogenized with TRIzol® Reagent (Invitrogen) at the concentration 

of 50mg/ml. Total RNA was extracted from the homogenized samples using TRIzol Reagent 

(Invitrogen) and eluted in 50 μl RNase-free water. cDNA was generated by reverse transcription 

using random hexamer primers (Transcriptor High Fidelity cDNA Synthesis Kit, Roche). PCR 

was performed with the above-mentioned primer set (5UTR-F and FR4-R) amplifying entire 

swine VDJ repertoires (GoTaq® Green Master Mix, Promega). The annealing temperature was 

set at 50 °C and the final concentrations of primers were 0.25 μM. PCR products were purified 

(Wizard® SV Gel and PCR Clean-Up System, Promega), cloned into pCR2.1-TOPO Vector 

(TOPO TA Cloning® Kit, Invitrogen), and transformed into NEB 10-beta Competent E. coli 

(NEW ENGLAND BioLabs) according to recommended protocols. Positive clones were 

determined by blue-white selection (0.1mM IPTG and 40μg/ml Xgal) and colony PCR. Plasmid 

DNAs from positive clones were purified (PureYield
TM

 Plasmid Miniprep System, Promega), the 
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concentrations were measured (NanoDrop ND-8000 Spectrophotometer, Thermo Scientific), and 

then submitted for sequencing using M13 primers (ACGT, INC.). 

5.2.3 Phylogenetic analyses 

A total of 385 swine VDJ sequences were obtained, including 78, 74, 104, and 129 

sequences from the mock-infected pig, non-nAbs pig, homo-nAbs pig, and broad-nAbs pig, 

respectively. Multiplex sequence alignments were generated using CLUSTAL X version 1.83 

(100). Phylogenetic analyses were conducted with MEGA4 program (221). Phylogenetic trees 

were constructed from aligned amino acid sequences using neighbor-joining method. The 

robustness of the phylogenetic constructions was evaluated by bootstrapping using 1000 

replicates. The other default parameters were the same as in our previous report (55).  

5.2.4 Selection of lineages potentially associated with different antibody responses 

Although it is not currently possible to identify functional antibodies solely based on the 

sequences, a number of strategies have been developed to determine functional antibodies from 

antibody sequences, including population-based strategy, sequence-based strategy and evolution-

based strategy (258). In this study, the following criteria were used to select lineages that might 

associate with PRRSV nAbs (116, 176, 248, 258). 1): Recapturing a same sequence from two 

separate aliquots indicates at least two identical cells expressing this VDJ sequence (237). Only 

sequences that could be recaptured in both aliquots were considered as the candidates. 2): Highly 

prevalent antibody sequences suggest a particular biological function (176). Only the abundant 

lineages (>3 VDJ sequences/lineage) were considered. 3): High sequence identity (>95%) 

indicates antibodies have similar recognition (258). Only one of the lineages with high similarity 

was considered. 4): Evolutionary similarity often reveals functional relationships between 

proteins (258). A phylogenetic tree was constructed. Only one lineage from each branch of the 

phylogenetic tree was considered. 5): The lineages that were clustered in the same branch with 

lineages identified in mock-infected pig or non-nAbs pig indicated they were likely induced by 

other factors not related to PRRSV, or probably encoded non-nAbs, were not considered as the 

candidate genes of homologous or broad nAbs. 6): About 90% of swine VH genes are 

somatically mutated to comprise the adaptive repertoire (34). Similar phenomenon was observed 

that HIV-1 broad nAb VRC01 accumulates roughly 70 amino acids changes during the 

maturation process (248). Furthermore, mutations in framework regions (FRs) are generally 

required for broad nAbs against HIV (116). Therefore, VDJ sequences containing mutations in 

FRs were considered as candidate genes of broad nAbs.  
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 5.3. Results 

5.3.1 Analysis of heavy chain sequences 

As shown in Figure 5.1b, the alignment of 385 VDJ sequences indicated that the 

diversification of VDJ genes was mainly due to the variation in the CDRs, which was consistent 

with previous studies (27, 34, 37). The diversification of CDRs was not only due to a high 

mutation rate, but also due to the variation in length. According to the variation of CDR1 and 

CDR2 sequences, swine VH genes can be clustered into at least 25 types (Fig. 5.2), of which, 

seven major VH genes account for the vast majority of the antibody repertoire (Fig. 5.3). CDR3 

showed the highest diversity when compared with CDR1, CDR2, and framework regions (FRs). 

The length of CDR1 was 5 aa and CDR2 was 6-9 aa; the length of CDR3 varied from 5 to 24 aa 

(Table 5.3). CDR3 includes part of FR3, entire DH and JH regions. CDR3 extends from but 

doesn’t include the FR3 cysteine-104, down to the 5’ region of JH, not including the invariant 

tryptophan that starts FR4 (37). The phylogenetic tree constructed based on 385 VDJ sequences 

showed that the primer set used in this study could amplify all seven major VH genes (Fig. 5.4). 

In addition, we did not find any sequences shared between different pigs, which were consistent 

with the notion that each individual has a unique B-cell repertoire formed via VDJ 

rearrangement, somatic hypermutation (SHM) and gene conversion (27, 34, 76).  

Seven major VH genes, two DH genes and a single JH account for >90% of the preimmune 

repertoire (24, 34, 212). Figure 5.3 shows that for the mock-infected pig, no. 22, the seven major 

VH genes (CDR1 and CDR2) still accounted for >70% of the antibody repertoire at 42 days of 

age. However, in PRRSV-infected pigs, the percentages were <50% mainly due to SHM in 

CDRs. Comparison of the B-cell repertoires between mock-infected and PRRSV-infected pigs 

also showed that the percentages of VHA and VHB genes in PRRSV-infected pigs decreased 

from >23% to <15% and from >13% to <4%, respectively. However, the percentage of VHC 

gene increased from 10% to >16% in PRRSV-infected group, suggesting that PRRSV infection 

selected specific antibody lineages (37).  

5.3.2 Identification of an activated B-cell compartment 

The criteria for the selection of VDJ sequences from activated B cells were described in 

materials and methods 5.2.4 and shown in Figure 5.5. For mock-infected pig no. 22, 78 

sequences were obtained from two separate aliquots containing 41 and 37 sequences, 

respectively. As shown in table 5.3, five lineages of VDJ sequences had identical CDR3; 

however, only one lineage (sequences 22-15 and 22-140) was shared between two aliquots and 
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all of the five lineages were less abundant with only two identical sequences. Therefore, no 

sequence from the mock-infected pig met the criteria. The duplicate sequences might be age-

related (22).  

For PRRSV-infected pigs (Table 5.3), 74 sequences (38 and 36 sequences from each 

aliquot) were obtained from pig no. 63, which didn’t produce nAbs. Two lineages had identical 

sequences but only one lineage met our criteria, which was shared between two aliquots and 

abundant (>3 sequences) (Fig 5.6A). In pig no. 21, which produced high titers of PRRSV 

homologous nAbs, we had 104 sequences (52 sequences from each aliquot). Sixteen lineages had 

identical or highly similar CDR3 with the maximum of a lineage containing 9 identical CDR3s 

(Fig 5.6B1). Sequences in 10 of the 16 lineages were shared between aliquots, within which, six 

lineages met our criteria (Fig 5.6B1-B6). In pig no. 45, which produced broad nAbs, we got 129 

sequences (73 and 56 from each aliquot). There were 14 lineages sharing identical or highly 

similar CDR3 with 6 lineages sharing the maximum of 3 identical CDR3s. Four of the 14 

lineages were shared between aliquots, and two of them met our criteria (Fig 5.6C1-C2).  

 5.4. Discussion 

Much of the work on the development of the swine antibody repertoire focused on studies 

of fetal and neonatal piglets (21-23, 25, 26, 28-33, 35, 36, 81, 146, 200, 201, 212, 214-216, 243). 

Only a few Ig genes account for a majority of the antibody repertoire (seven VH genes account 

for >95%; two Vκ genes for ~80%; three Vλ genes for ~70%) (27, 36, 243). Furthermore, the 

usage of variable region gene segments remains constant during fetal and postnatal development 

even though 90% of the adaptive repertoire is somatically mutated (28, 34). Similar results were 

obtained in this study. As shown in Figure 5.3, seven major VH genes accounted for >70% of the 

postnatal antibody repertoire. However, the usage of major VH genes in PRRSV infected pigs 

was significantly lower (<50%) than in the mock-infected pig (p<0.05), mainly due to the 

selection of new abundant VH genes (Table 5.3). The abundant sequences identified in PRRSV-

infected pigs account for ~19% (58/307) of the VDJ repertoire, none of which is identical to the 

major or other known types of VH genes (Table 5.3, Fig. 5.2). Phylogenetic analysis also showed 

that all the abundant sequences from PRRSV-infected pigs are not closely related with the major 

VH genes (Fig. 5.4). The diversification of VDJ sequences is mainly due to high mutation rate in 

CDRs and the wide variation in length of CDR3. 

In this study, we used a simple method to investigate swine immunoglobulin heavy chain 

VDJ repertoires of lymph nodes. This method could detect all major swine VH genes (Fig. 5.4). 

We identified abundant sequences in all PRRSV-infected pigs that displayed different antibody 
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responses. Capture-recapture analysis using two separate aliquots from the same lymph node was 

performed to refine the activated B-cell clones. The majority (10/15) of abundant sequences from 

PRRSV-infected pigs could be recaptured. We believe if the depth coverage of sequencing goes 

higher, there will be a higher percentage of abundant sequences that can be detected in both 

aliquots. Assuming no other antigens stimulated immune responses in these pigs and random 

proliferation of B cells could not generate shared and abundant VDJ genes during PRRSV 

infection, these shared and abundant sequences were likely from PRRSV-activated B-cells.  

Pigs that induced non-nAbs (pig no. 63) and broad nAbs (pig no. 45), only have the 

maximum coverage of 3 identical sequences; however, pig no. 21 that induced homologous nAbs, 

has the maximum coverage of 9 identical sequences, which are consistent with the no nAbs, low 

titer of broad nAbs, and high titer of homologous nAbs responses (Table 5.2). As shown in Fig 

5.6C1, CDRs of this lineage were identical among three sequences, but four mutations that 

conserved in two sequences presented in FRs, which was consistent with a previous report that 

somatic mutations in immunoglobulin FRs were generally required for broad HIV-1 

neutralization (116). In addition, several duplicate sequences could also be detected in both 

mock-infected and PRRSV-infected pigs (Table 5.3). The duplicate sequences were probably 

age-related, but not PRRSV-related as previously described (22). B cells from various lymphoid 

tissues of a PRRSV-infected pig sampled at the same time displayed a similar pattern suggesting 

widespread dissemination of the same B cell clones (22, 124). Therefore, B cell repertoires of the 

lymph nodes identified in this study might represent the entire B cell repertoires of PRRSV-

infected pigs, which support that the shared and abundant sequences in these pigs were 

potentially correlated with their different antibody responses. 
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Figure 5.1 The variation of swine VDJ genes is concentrated in the CDRs. 

5.1A, Comparison of 46 swine Ig heavy chain variable VDJ region mRNAs obtained from 

GenBank shows the variation frequency. Three complementarity determining regions (CDRs) 

are hypervariable while the 5’UTR and framework regions (FRs) are relatively conserved. 5.1B, 

Comparison of 385 swine Ig VDJ sequences shows quite similar results.  
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#VHA MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS TYINWVRQAP GKGLEWLAAI STS--GGSTY YADSVKGRFT ISRDNSQNTA YLQMNSLRTE DTARYYCAR- --- [123] 

#VHB MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFDFSD NAFSWVRQAP GKGLEWVAAI ASSDYDGSTY YADSVKGRFT ISRDNSQNTV YLQMNSLRTE DTARYYCAI- --- [123] 

#VHC MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YEISWVRQAP GKGLEWLAGI YSS--GGSTY YADSVKGRFT ISRDNSQNTA YLQMNSLRTE DTARYYCAR- --- [123] 

#VHE MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YAVSWVRQAP GKGLEWLAGI DSGSYSGSTY YADSVKGRFT ISRDNSQNTA YLQMNSLRTE DTARYYCAR- --- [123] 

#VHF MEFRLNWVVL FALLQGVQGQ EKLVESGGGL VQPGGSLRLS CVGSGFDFSS YGVGWVRQAP GKGLESLASI GSGSYIGSTD DADSVKGRFT ISSDNSQNTA YLQMNSLRTE DTARYYCAR- --- [123] 

#VHG MEFRLNWVVL FALLQGVQGQ EKLVESGGGL VQPGGSLRLS CVGSGFDFSS YSMSWVRQAP GKGLEWVAGI YSS--GSSTY YADSVKGRFT ISSDDSQNTV YLQMNSLRTE DTARYYCAI- --- [123] 

#VHH MEFRLNWVVL FALLQGVQGE VKLVESGGGL VQPGGSLRLS CVGSVFDFSS YAVSWVRQAP GKGLEWLAAI YS---GGSSY YADSVKGRFT ISKDNSQNTA YLQMNSLRTE DTARYYCATG --- [123] 

#VHI MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YAVSWVRQAP GKGLEWLACI YSS--GSSTY YADSVKGRFT ISRDNSQNNN GLSANEQPEN RRHGPDITVQ EAQ [123] 

#VHJ MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGITFSS YAVEWVRQAP GKGLEWLASI GSGSYIGSTD YADSVKGRFT ISSDDSQNTV YLQMNSLRTE DTAPITVQE- --- [123] 

#VHK LEFWLN-VVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS SPIGWVRQAP GKGLEWLASI GSGSYSGSTY YADSVNGRFT ISRDNSQNTA YLQMNSLRTE DTARYYCAR- --- [123] 

#VHL ---------- ---------E VKLVESGGGL VQPGGSLRLS CIGSVFDFSS YAVSWVRQAP GKGLEWLAAI YS---GGSSY YADSVKGRFT ISKDNSQNTA YLQMN----- ---------- --- [123] 

#VHM ---------- ---------- ---------- -----SLRLS CVGSGFDFSS YGVGWVRQAP GKGLEWLAGI YSG---GSTY YADSVKGRFT ISRDNSQNTV YLQMT----- ---------- --- [123] 

#VHN MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YSMSWVRQAP GKGLEWLAGI YSS--GSSTY YADSVKGRFT ISSDNSQNMA YLQM------ ---------- --- [123] 

#VHO ---------- ---------E EKLVESGGGL VQPGGSLRLS CVGSGYTFSS YPIGWVRQAP GKGLEWLAAI STS--GSSTY YADSVKGRFT ISRDNSQNTA YLQMT----- ---------- --- [123] 

#VHP ---------- ---------- ---------- -----SLRLS CVGSGFDFSD YAFSWVCQAP GKGLEWLAAI STS--GSSTY YADSVKGRFT ISRDNSQNTA YLQMT----- ---------- --- [123] 

#VHQ ---------- ---------E EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YEISWVRQAP GKGLEWLAAI STS--GAGTV YADSVKDRFI YSRDNSQNTA YLQMN----- ---------- --- [123] 

#VHR LEFRLNWVVL FALLQGFQGE VKLVESGGGL VQPGGSLRLS CVGSGYTFSS YPIGWVRQAP GKGLEWLACI YSS--GSSTY YADSVKGRFT ISKDNSQNNN SLSANDQ--- ---------- --- [123] 

#VHS ---------- ---------E EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YNMIWVRQAP GKGLEWLAYI TSS--GGSTY YADSVKGRFT ISSDNSQNTA YLQMT----- ---------- --- [123] 

#VHT ---------- ---------E EKLVESGGGL VQPGGSLRLS CVGSGITFSS YAVSWVRQAP GKGLESLASI GSGSYIGSTD YADSVKGRFT ISSDDSQNTV YLQMN----- ---------- --- [123] 

#VHU MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YEISWVRQAP GKGLEWLAAI GCGSYSGSTY YADSVKGRFT ISSDNSQNTA YLQMT----- ---------- --- [123] 

#VHV MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS TYINWVRQAP GKGLEWVAAI ASSDYDGSTY YADSVKGRFT ISSDNSQNTA YLQMT----- ---------- --- [123] 

#VHW ---------- ---------- ---------- -----SLRLS CVGSGFTFSS TYINWVRQAP GKGLESLASI GSGSYIGSTY YADSVKGRFT ISSDDSQNMV YLQMT----- ---------- --- [123] 

#VHX MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGWSLRLS CVGSGYTFSS YGIGWVRQAP GKGLEWLAGI YSG---GSTY YADSVKGRFT ISKDNSQNTA YLQMNSLRTE DTARYYCARG --- [123] 

#VHY ---------- --------ME VKLVESGGGL VQPGGSLRLS CVGSGFDFSS YEIRWVR-AP GKGLEWVAAI STS--GGSTY YADSVKGRFT ISKDNSQNTV YLQMNSLRTE DTARYYCAI- --- [123] 

#VHZ MEFRLNWVVL FALLQGVQGE EKLVESGGGL VQPGGSLRLS CVGSGFTFSS YSMSWVRQAP GKGLEWLACI YSS--GSSTY YADSVKGRFT ISRDNSQNTA YLQMNSLRTE DTARYYCAKG --- [123] 

 

Figure 5.2 Alignment of 25 types of swine Ig VH genes. 

VH genes can be clustered into at least 25 types according to CDR1 and CDR2 sequences. CDR1 and CDR2 are shown in grey. GenBank 

accession numbers for the 25 VH genes: VHA (AF064686), VHB (AF064687), VHC (AF064688), VHE (AF064689), VHF (AF064690), VHG 

(AY911499), VHH (AY911500), VHI (AF064691), VHJ (AY911501), VHK (AF064692), VHL (AF321839), VHM (AF321840), VHN (AF321841), 

VHO (AF321842), VHP (AF321843), VHQ (AF321844), VHR (AF321845), VHS (AF321846), VHT (AF321847), VHU (AF321848), VHV 

(AF321849), VHW (AF321850), VHX (AY911502), VHY (AY911503), VHZ (AY911504). 
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 Figure 5.3 Percentages of major VH genes comprising adaptive antibody repertoires. 

(A) Percentage of CDR1 of major VH genes in four pigs. (B) Percentage of CDR2 of major VH 

genes. VHY is not shown because CDR1 and CDR2 of VHY are identical to CDR1 of VHC and 

CDR2 of VHA, respectively. In the mock-infected pig no. 22, major VH genes account for ~70% 

of the antibody repertoire, whereas in PRRSV infected pigs (no. 63, 21, and 45), major VH genes 

account for <50% of the antibody repertoires. 

A                               CDR1 

B                               CDR2 
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Figure 5.4 Phylogenetic analysis of swine VDJ sequences from four pigs. 

A total of 385 VDJ sequences were obtained and used to construct the phylogenetic tree. The 

tree shows that all seven major VH genes can be amplified using a single primer pair. The major 

VH genes (VHA, VHB, VHC, VHE, VHF, VHY, and VHZ) are shown in bold. A lineage of shared 

and abundant sequence from PRRSV-infected pig no. 63, which did not produce nAbs, is shown 

in blue. Six lineages of shared and abundant sequences from PRRSV-infected pig no. 21, which 

produced high titer of homologous nAbs, are shown in red. Two lineages of shared and abundant 

sequences from PRRSV-infected pig no. 45, which produced broad nAbs, are shown in purple.  
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Figure 5.5 Experimental setup and selection criteria. 

Lymph nodes were collected from mock- and PRRSV-infected pigs. Two separate aliquots of 

each homogenized lymph node were prepared and total RNAs were extracted. Two libraries 

were prepared and sequenced. VDJ sequences that met the above criteria were likely expressed 

by activated B cells. 

 

 

 

 

Lymph node 

Aliquot 1 Aliquot 2 

Criteria:  

1: shared between two aliquots; 

2: > 3 identical CDR3 sequences; 

3: >95% VDJ sequences identity; 

4: clustered in the same branch in the phylogenetic tree. 

Homogenization 

RNA 1 RNA 2 

RNA extraction 

PCR and cloning 

Library 1 Library 2 

Sequencing and analysis 
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A 

Non-nAbs_63-26  MEFRLNWVLLFALLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGFTFSMYAVSWVRQAPGKGLEWLAGIYSSGSSTYYADSVKGRFTISRGDSQNTAYLQMNSLRREDTARYYCAGHSDGGGYGYYYFMNLWGPGVEVVVS 

Non-nAbs_63-29  ......C....................................................................................................................................... 

Non-nAbs_63-108 ....................G......................................................................................................................... 

B1 

Homo-nAbs_21-120 MEFRLNWVVLFALLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGFTFSNYEIKWVRQAPGKGLEWLASISTSGFSTYYADSVRGRFTSSRDNSQNTAYLQMNSLRTEDTARYFCASDYSGCSYGLRPHLWGPGVEVVVS 

Homo-nAbs_21-27  ..................................................................................................................................-......... 

Homo-nAbs_21-58  ............................................................................................................................................ 

Homo-nAbs_21-143 ............................................................................................................................................ 

Homo-nAbs_21-126 ......................V.............................................................................R....................................... 

Homo-nAbs_21-147 ............................................................................................................................................ 

Homo-nAbs_21-122 ............................................................................................................................................ 

Homo-nAbs_21-116 .....................................................N..............G.YS..S........K.-...................................................... 

Homo-nAbs_21-152 .................................................RTY.N..............D.YS.DS........K....L................................................... 

B2 

Homo-nAbs_21-134 MEFRLNWVVLFALLQGVQGEVKLVESGGGLVQPGGSLRLSCVGSGFTFSGTGINWVRQAPGKGLEWLAACSGGGSNTYYADSVKGRFTISRDNSQNTAYLQMNSLRTEDTARYYCATSFSEANTISLWGPGVEVVVS 

Homo-nAbs_21-108 ..............G-......................................................................................................................... 

Homo-nAbs_21-38  ......................................................................................................................................... 

Homo-nAbs_21-42  ......................................................................................................................................... 

Homo-nAbs_21-51  ....................E.................................................................................................................... 

Homo-nAbs_21-137 ...........................................P............................................................................................. 

B3 

Homo-nAbs 21-62  MEFRLNWVVLFALLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGFTFSSYIVTWVRKAPGKGLEWLAHRSGSGISTYYADSVKGRFTISRDNSQNTAYLQMNSLRTEDTARYYCAKGRSGCTGNYDDWGPGVEVVVS 

Homo-nAbs 21-118 ..............................................I....T.S...............I.S..Y............................................................... 

Homo-nAbs 21-124 ........L..........................................T.S...............I....W.I..........A....D............................................. 

Homo-nAbs 21-127 ...................................................T.S....................V............................................................... 

Homo-nAbs 21-144 .........S.........................................T.S....................V.............T................................................. 

Homo-nAbs 21-146 .................................................T.T.S...............I.S..FT...................S.........K................................ 

B4 

Homo-nAbs 21-129 MEFRLNWVVLFALLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGFIFSSTYIHWVRQAPGKGLEWLAGTYTGGSNTYYADSVEGRFTISKDNSQNTAYLQMNSLRTEDTARYYCATVLVLLAIDIMDLWGPGVEVVVS 

Homo-nAbs 21-64  ......C.................................................................................................................................... 

Homo-nAbs 21-55  ........................................................................................................................................... 

Homo-nAbs 21-19  ..............................................T..RDE.S..............AVTAS..S.......K......R................................................ 

B5 

Homo-nAbs 21-41  MEFRLNWVVLFALLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGFTFSSYEITWVRQAPGKGLEWLAGIYSSGFSTVYADSVKGRFTISRDNSQNTAYLQLNSLRTEDTARYYCAGQNDLLPGTIVDCAMNLWGPGVEVVVS 

Homo-nAbs 21-103 ............................................................................................................................................... 

Homo-nAbs 21-111 ......................................................................C............R........................................................... 

B6 

Homo-nAbs_21-14  MEFRLNWVVLFALLQGVQGEEKLVESGGGLVQPGGSLKLSCVGSGFDFSSYNMIWVRQAPGKGLEWLAGI--TRFSGSTYYADSVKGRFTISRANSQNTAYLQMNSLRTEDTAHYYCTKNVYSYGTSCYDVVSMGLWGPGVEVVVS 

Homo-nAbs_21-21  ......................................................................--.......................................................................... 

Homo-nAbs_21-141 .....................................R........I...TYIH..............A.GCASS..N...G......L....DD................................................... 

C1 

Broad-nAbS 45-3   MEFRLNWVVLFALLQSVQGEEKLVESGGGLVQPGGSLRLSCVGSGFTFSSSYINWVRQAPGKGLEWLAGIYSSGRNTYYADSVKGRFTISRDNSQNTAYLQMNSLRTEDTARYYCGRDGVYYELDLWGPGVEVVVS 

Broad-nAbS 45-14  ...............G............................................................PQH......................................................... 

Broad-nAbS 45-112 ...............G............................................................PQH......................................................... 

C2 

Broad-nAbs_45-25  MEFRLNWVVLFAPLQGVQGEEKLVESGGGLVQPGGSLRLSCVGSGYTLSSYDIGWVRQAPGRGLEWLAGLSSGGNTYYADSVKGRFTISREHPQNTAYLQMNSLRTEDTARYYCARESQFKYSVMDLWGPGVEVVVS 

Broad-nAbs_45-41  ...............................................................................................................................-......... 

Broad-nAbs_45-152 ............L................................F.F.GTY.N................................................................................... 

 

Figure 5.6 Alignment of abundant and shared sequences likely expressed by activated B-cells.  

In each pig, VDJ sequences with numbers <100 are from one aliquot and sequences with numbers >100 are from another aliquot. Three CDRs of 

each sequence were shown in grey. 
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Table 5.1 Swine Ig heavy chain VDJ region mRNAs used in this study. 

No. Name GenBank No. No. Name GenBank No. 

1 N/A SSU15194 24 pvg1a SSU15522 

2 N/A SSU38217 25 pvg4 SSU15520 

3 N/A SSU38216 26 pvg4a SSU15519 

4 N/A SSU38215 27 pvg2a SSU15518 

5 N/A SSU38214 28 pvg25 SSU15517 

6 N/A SSU38213 29 pvg7a SSU15459 

7 N/A SSU38212 30 pvg9 SSU15457 

8 N/A SSU38211 31 pvg5 SSU15456 

9 N/A SSU38210 32 pvg7 SSU15455 

10 N/A SSU38209 33 pvg19 SSU15454 

11 N/A SSU38208 34 pvg20 SSU15453 

12 N/A SSU38207 35 pvg23 SSU15452 

13 N/A SSU38206 36 pvg24 SSU15451 

14 N/A SSU38205 37 pvg17 SSU15447 

15 N/A SSU38204 38 pvg15a SSU15446 

16 N/A SSU38203 39 PVM4A SSU15439 

17 N/A SSU38202 40 PVM3A SSU15438 

18 N/A SSU38201 41 PVM2A SSU15437 

19 PVAHDA SSU15430 42 PVM1A SSU15436 

20 pvg5a SSU15526 43 PVA2A SSU15423 

21 pvg6a SSU15525 44 PVA5A SSU15429 

22 pvg8 SSU15524 45 PVA4A SSU15428 

23 pvg3 SSU15523 46 PVA3A SSU15427 

N/A: information not available. 
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Table 5.2 Virus neutralization properties of sera from the pigs used in this study. 

Pig KS62
1
 

(100)
2
 

NVSL 

(97) 

VR-2332 

(92) 

P129 

(94) 

KS06 

(90) 

SD23983 

(89) 

AZ25 

(89) 

CO84 

(90) 

CO90 

(92) 

WY27 

(92) 

LV 

(55) 

No.22 ND
3
 ND ND ND ND ND ND ND ND ND ND 

No.63 <16
4
 <16 <16 <16 <16 <16 ND ND ND ND <16 

No.21 512 <16 <16 <16 <16 <16 ND
4
 ND ND ND <16 

No.45 64 32 16 32 16 16 16 32 32 16 64 

1
GenBank accession numbers for PRRSV isolates: KS62, KM035798; NVSL 97-7895, AY545985; VR-

2332, AY150564; P129, AF494042; KS06, KM035803; SD23983, JX258843; AZ25, KM035800; CO84, 

KM03502; CO90, KM035799; WY27, KM035801; and Lelystad virus (LV), M96262.  

2
The numbers in parenthesis represent GP5 peptide sequence homology with KS62. 

3
ND, Not Determined. 

4
Neutralization titer showing inverse of the highest serum dilution with VN activity. Titer <16 indicates 

no detectable virus neutralization activity.   
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Table 5.3 Sequences with identical or high similar CDR3 from four pigs. 

Sam
ple 

No. Aliq
uot 

Sequence CDR1 CDR2 CDR3 

Pig 
22 

1 1 22-15 SYGMS NIYSTGS ARGGGLLDG 
 2 22-140 ..... ....... ......... 
2 2 22-104 DYAFS AIASSDYDG AIGVDIAVPMDL 
 2 22-129 ..... ......... ............ 
3 2 22-105 STYIN AISTSGG ASRRYSGYVKARYAMDL 
 2 22-146 ..... ....... ................. 
4 2 22-109 SYEIS AIGCGSYSG AIHSYGASCYAVKYYAMDL 
 2 22-135 ..... ......... ................... 
5 2 22-117 SYSMS CIYSSGS ATDRYSDCYYAMDL 
 2 22-122 ..... ....... .............. 

Pig 
63 

1 1 63-26 MYAVS GIYSSGS AGHSDGGGYGYYYFMNL 
 1 63-29 ..... ....... ................. 
 2 63-108 ..... ....... ................. 
2 2 63-138 RYEIS GIYSSGG ARFPCYRSDASCNYWEVDYYPMDL 
 2 63-139 STY.N A.ST... ........................ 

Pig 
21 

1 1 21-27 NYEIK SISTSGF ASDYSGCSYGIRPHL 
 1 21-58 ..... ....... ............... 
 2 21-116 ..... G.YS..S ............... 
 2 21-120 ..... ....... ............... 
 2 21-122 ..... ....... ............... 
 2 21-126 ..... ....... ............... 
 2 21-143 ..... ....... ............... 
 2 21-147 ....N ....... ............... 

 2 21-152 RTY.N D.YS.DS ............... 
2 1 21-38 GTGIN ACSGGGS ATSFSEANTISL 
 1 21-42 ..... ....... ............ 
 1 21-51 ..... ....... ............ 
 2 21-108 ..... ....... ............ 
 2 21-134 ..... ....... ............ 
 2 21-137 ..... ....... ............ 
3 1 21-62 SYTVS HRSGSGI AKGRSGCTGNYDD 
 2 21-118 ..... .I.S..Y ............. 
 2 21-124 ..... .I....W ............. 
 2 21-127 ..... ......V ............. 
 2 21-144 ..... ......V ............. 
 2 21-146 ..... .I.S..F ............. 

4 2 21-129 STYIH GTYTGGS ATVLVLLAIDIMDL 
 1 21-55 ..... ....... .............. 
 1 21-64 ..... ....... .............. 
 1 21-19 RDE.S AVTAS.. .............. 
5 1 21-1 SYEIN GIYSSGS ARGIFCSKDGVSCYYMDL 
 1 21-40 ..... ....... .................. 
 1 21-48 ..... ....... .................. 
6 1 21-14 SYNMI GITRFSG TKNVYSYGTSCYDVVSMGL 
 1 21-21 ..... ....... ................... 
 2 21-141 .TYIH A.GCA.SSG ................... 
7 1 21-41 SYEIT GIYSSGF AGQNDLLPGTIVDCAMNL 
 2 21-103 ..... ....... .................. 
 2 21-111 ..... ..C.... .................. 

8 2 21-110 STVIN GINTSDG AAESIDDIYGADCYALGADL 



89 

 

 2 21-148 ..... ..R.... .T...E...P........GR 
 1 21-46 ....S ....... .K.........S...P.... 
9 1 21-6-2 VTYIN AISSSSS VRIYGDYRSGVRDL 
 1 21-65 ..... ....... .............. 
10 1 21-11-2 SYEIS DIYSSGS RGDFYGYGGSPYMDL 
 1 21-35 ..... ....... ............... 
11 1 21-25 SYGVG SGGSGSYID ARGRIHDYSGCYSGSPGCAMDL 
 2 21-132 ..... .I......G ............R......... 
12 1 21-28 TYEIS GIYTSGR ARGQAPSCEWTDTMDL 
 2 21-121 S.D.. ....... ................ 
13 1 21-36 SYEIN GIYSSGS ARERCYLYGRSCYDMDL 
 2 21-138 ..GV. ......V ................. 
14 2 21-105 GYGVG SIGSGSYIG ARTFCWNYGASCYSLYYYAMDL 

 2 21-131 ..... .....V... ........A............. 
15 2 21-125 SLDIH GISRSGG YGLYL 
 2 21-139 ..... ....... ..... 
16 2 21-140 SYEIN AIRSSGG ARGRGFYIAIAIGVTVKPMDL 
 2 21-155 T.AMT V...TSS ..............A...... 

Pig 
45 

1 1 45-25 SYDIG GLSSGG ARESQFKYSVMDL 
 1 45-41 ..... ...... ............. 
 2 45-152 GTY.N ...... ............. 
2 1 45-3 SSYIN GIYSSGR GRDGVYYELDL 
 1 45-14 ..... ....... ........... 
 2 45-112 ..... ....... ........... 
3 1 45-13 SYGIG AIYTGS GRRWAYNNYLDL 
 1 45-23 ..... ...... ............ 
 1 45-39 ..... ...... ............ 

4 1 45-15 SYEIS AMETSGS ARGYRFGIRFYQYAMDL 
 1 45-22 ..... ....... ................. 
 1 45-36 ..... ....... ................. 
5 1 45-16 SYEIS VIYSGG VRGYGGICYGWYDGMDV 
 1 45-30 ..... ...... ................. 
 1 45-6-2 ETY.- AIGTTGR ................. 
6 1 45-20 RHEIS GIYSSGS AIERPRYPTLLHDLYL 
 1 45-42 ..... ....... ................ 
 1 45-8-2 NTYIN A.ASDVHDG ................ 
7 1 45-21 SYEIS GIYASGG ARFSSYGRYGDDGMDL 
 1 45-81 ..... ....... ................ 
8 1 45-43 STYIN AISTSGG ANGYGASDDLPMDV 
 1 45-59 ..... ....... .............. 

9 1 45-45 TTYIN GISTSGG ARDLYSYGTYSYGTADYTMDL 
 1 45-73 ..... ....... ..................... 
10 1 45-47 SYALS GIDSGSYTG ARVRRTVAIAIAIGPMDL 
 1 45-50 ..... ......... ................ 
11 1 45-75 TYEIN GIVSSGS AKTNCYTYGSSCYRADAMDL 
 2 45-111 S.... ..Y.... ..................N. 
12 1 45-80 SYAVS AVSTSGT TRGGFGGYGASGDL 
 2 45-101 ....N .I...AG ..........T... 
13 2 45-104 GYSMS CIDSGS CARQSYYGADYYPK 
 2 45-121 S..IG GIY.SG .............. 
14 2 45-113 SDYTFS AIPKSVLDGR VRAMVTVPI 
 2 45-124 ...... .....DW..V ......... 
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