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Abstract: In this paper, we present a pipeline to perform improved QSAR analysis of peptides. The modeling 

involves a double selection procedure that first performs feature selection and then conducts sample selection 

before the final regression analysis. Five hundred and thirty-one physicochemical property parameters of 

amino acids were used as descriptors to characterize the structure of peptides. These high-dimensional 

descriptors then go through a feature selection process given by the Binary Matrix Shuffling Filter (BMSF) to 

obtain a set of important low dimensional features. Each descriptor that passed the BMSF filtering also 

receives a weight defined through its contribution to reduce the estimation error. These selected features were 

served as the predictors for subsequent sample selection and modeling. Based on the weighted Euclidean 

distances between samples, a common range was determined with high-dimensional semivariogram and then 

used as a threshold to select the near-neighbor samples from the training set. For each sample to be predicted, 

the QSAR model was established using SVR with the weighted, selected features based on the exclusive set 

of near-neighbor training samples. Prediction was conducted for each test sample accordingly. The 

performances of this pipeline are tested with the QSAR analysis of angiotensin-converting enzyme (ACE) 

inhibitors and HLA-A*0201 data sets. Improved prediction accuracy was obtained in both applications. This 

pipeline can optimize the QSAR modeling from both the feature selection and sample selection perspectives. 

This leads to improved accuracy over single selection methods. We expect this pipeline to have extensive 

application prospect in the field of regression prediction.  

Keywords: Peptides; Quantitative structure-activity regression; Feature selection; Semivariogram; Support 

vector regression 
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1. Introduction 

Known as the important elements in biological world especially in human life, peptides have attracted considerable 

interest from biochemist and pharmacologist (Sewald and Jakubke 2002). With the development of peptide library, 

thousands of different peptides have been designed, synthesized, and then subjected to experimental screening procedures 

and biological assays. To be effectively used, the peptides data have been analyzed more and more using quantitative 

structure-activity regression (QSAR) method in recent years (Liang et al. 2006; Liang et al. 2009; Zhou et al. 2010; 

Hemmateenejad et al. 2012). The weak and transient interactions between peptides and modular domains often mediate 

protein-protein interactions. So characterizing the interaction interface of domain–peptide complexes and predicting 

binding specificity for modular domains are critical for deciphering protein–protein interaction networks. The most 

abundant peptide recognition domain in the human proteome is the Src homology 3 (SH3) domain. Based on homology 

modeling, molecular dynamics and molecular field analysis, Hou et al. (2006) have constructed a complex structure of the 

amphiphysin-1 SH3 domain and a high-affinity peptide ligand and then performed three-dimensional QSAR analyses on 

the 200 peptides with known binding affinities to the amphiphysin-1 SH3 domain. A proof of concept study based on the 

molecular interaction energy components (MIECs) was conducted for predicting binding affinities of amphiphysin-1 SH3 

domain interacting with its peptide ligands and for classifying peptides into binder and non-binder categories (Hou et al. 

2008). A generic structure-based model was proposed to decipher the binding specificity of SH3 domains (Hou et al. 2009) 

and then it was used for predicting SH3 domain-mediated protein–protein interaction network in Yeast (Hou et al. 2012). 

Integrated computational prediction method and peptide microarray were used for detecting Abl1 SH3-binding peptides on 

proteome-wide, in which a comprehensive list of candidate interacting partners were provided for the Abl1 protein (Xu et al. 

2012).  

In QSAR modeling, how to characterize the properties of peptides is an important task. Since Kidera et al. (1985) first 

coded 10 orthogonal factors from 188 reported physicochemical properties through factor analysis, a series of inductive 

descriptors have been constructed and applied in peptide computational study. Some examples are Z-scales (Hellberg et al. 

1991; Sandberg et al. 1998), ISA-ECI (Collantes and Dunn 1995), SZOTT (Liang et al. 2006), T-scales (Tian et al. 2007), 

ATS-QTMS (Yousefinejad et al. 2012), etc. However, these inductive descriptors are the linear combinations of the 

multiple physicochemical property parameters selected for the amino acids and hence, the QSAR models established using 

these descriptors could not clearly elucidate the correlation between the initial physicochemical properties and the 

bioactivity of peptides. As a relatively comprehensive summary of amino acid physicochemical properties, the 531 features 

derived from AAindex database (Kawashima and Kanehisa 2008) can be used as descriptors to characterize the primary 

structure of peptide and protein.  

Even though using AA531 features as descriptors provides rich information, the feature dimensions also sharply 

increase. High dimensionality has adverse impact on QSAR modeling. In our previous study with gene expression data, a 

novel method called Binary Matrix Shuffling Filter (BMSF) has been proposed to select informative genes from high-

dimension feature set for classification problems (Zhang et al. 2012). BMSF first conducts multi-round of filtering to 

reduce the dimensions of the features to a manageable low dimension and then performs a backward elimination to refine 

the selected feature set. Matthews Correlation Coefficient was the criterion in BMSF of Zhang et al. (2012) for feature 

selection and comparison of pattern classification accuracy among different models. In this study, the activity of pipetides 

is a continuous variable. We apply a modified BMSF method to select important descriptors for QSAR regression analysis 

by changing the selection criterion to mean squared prediction error. Importance ranking of the selected features can be 

given afterward. 
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Beyond the feature selection problem, another concern in QSAR modeling is how much weight each feature should be 

given to better describe its contribution to the model. Without assigning different weights, each feature was assumed to 

play a uniform role. In this case, the features with large values can mask the contribution of all the other features with small 

values. Consequently, the modeling is largely focused on only those features with large values, neglecting the information 

provided by other features. Li et al. (2005) considered the particular contributions of each feature and proposed a novel 

feature weighted fuzzy clustering algorithm ReliefF to assign weight for every feature. Wölfel et al. (2005) proposed to 

weight the different features in the Mahalanobis distance according to their distances after the variance normalization. 

Vivencio et al. (2007) constructed a feature weighting method based on a χ2 statistical test to be used in conjunction with 

the k-NN classifier. To consider the different contributions of different features, noisy features should receive less weight 

and noise free features deserve more weight since they are more reliable. In this work, we assign a weight to each 

descriptor that passed the BMSF filtering based on how much contribution the selected descriptor helps to reduce the 

estimation error. 

In addition to the aforementioned feature selection and weight assignment consideration in QSAR analysis of peptides, 

sample selection within a training set was also found to be helpful to improve prediction accuracy. It is important that the 

molecules in the training data are representative of the samples to be predicted. The prediction of a molecule’s bioactivity is 

generally more accurate if the QSAR model was built with similar molecules. However, how to measure the similarity 

between two molecules and in particular how close a query molecule is to the training sample can be defined very 

differently. Some examples are multidimensional rectangle or ellipsoid containing a given fraction of the training set, each 

dimension corresponding to a chemical descriptor. Eriksson et al. (2000) have proposed a procedure for training set 

selection recognizing clustering and then, further tested and elaborated it by applying it to a series of 351 chemical 

substances. Furusjö et al. (2006) have demonstrated the importance of appropriate training set selection for QSAR analysis 

and how the reliability of QSAR predictions can be increased by outlier diagnostics. Sheridan et al. (2004) have proposed a 

way to estimate the reliability of the prediction of an arbitrary chemical structure on a given QSAR model, and given the 

training set from which the model was derived. By studying several non-locally fitted QSAR methods (random forest, 

ensemble artificial neural network, k-NN, Support Vector Machine with the linear kernel) without feature selection, 

Sheridan et al. found that the models constructed using the k nearest neighbor (KNN) samples often obtain better 

performance in prediction accuracy and time saving (k≤n) compared to the model containing all the samples (global 

prediction). However, how to determine the optimal k value is still an unresolved issue at present.  In addition, with the 

AA531 features as descriptors, the feature space for most dataset is very sparse due to high dimensionality. A direct 

consequence of the sparseness is that it requires to use majority of the feature space in order to find a certain proportion of 

nearest neighbors out of a given sample size. Therefore the k nearest neighbors are not local any more in that they are not 

close to the query molecule.  

In this work, we define the closeness of peptide molecules based on the AA531 features. Peptides with similar 

physicochemical property parameters of amino acids are expected to have similar bioactivity levels. However, not all 

physicochemical property parameters are related to the bioactivity. Instead, we believe it is helpful to first perform 

descriptor selection and then define the closeness of a query peptide to a training set using the selected features. Through 

the high-dimensional semivariogram on weighted features, we give a common range that defines a multidimensional 

ellipsoid within the training data for each test sample. The training samples with selected features falling inside of the 

ellipsoid were selected as the near-neighbor samples for further QSAR modeling. The final QSAR model and prediction for 

this sample was established using SVR with the weighted, selected features and the near-neighbor training samples in the 

ellipsoid.  
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2. Results and Analysis 

2.1. QSAR analysis on angiotensin-converting enzyme (ACE) inhibitors  

To assess the performance of the pipeline proposed in this study, a set of 55 tripeptides as inhibitors of the angiotensin-

converting enzyme (ACE) (Lin et al. 2008) was first analyzed. We conducted 5 different random partitions with the same 

ratio of 45/10 as Lin et al (2008) to form the training and test sets. The bioactivity of ACE inhibitors was expressed as the 

log values of 1/IC50 (pIC50). The sequences of those tripeptides and their corresponding experimental data were presented in 

Table 1. 
Table 1 Sequences and bioactivities of ACE inhibitors 

In test seta Peptide Bioactivity 
In test 
sample

Peptide Bioactivity 
In test 
sample

Peptide Bioactivity 

1 VVV 1.63 0 YGY 1.82 0 PGG 3.14 

0 RPG 3.09 0 GYY 1.07 2 PGP 1.82 

1 GRP 0.48 0 YYY 1.54 0 GPG 2.65 

2,3 LLL 1.35 0 FIV 2.04 1 GGP 1.28 

5 GLG 2.45 1 FPP 1.50 1,2 PGI 2.23 

4 LGL 1.52 0 FPK 2.45 0 KPK 2.63 

2 FGG 2.79 4,5 PFP 1.74 1 ADA 2.17 

3 GFG 2.53 2 RRR 1.77 3,5 GEG 2.28 

0 GGF 1.11 0 PPP 1.86 3,5 LEL 1.19 

4,5 FFG 2.71 0 FFF 1.20 2,4 RGP 1.73 

1,2 FGF 1.29 3,5 RGP 1.73 0 PIP 1.69 

4 GFF 1.02 1 PGR 2.67 0 FPF 1.32 

3,5 GGG 2.61 0 GGV 1.99 3 KPF 1.51 

3 GYG 2.33 4 GVV 1.82 4 VYP 0.82 

2 GGY 1.35 3,5 PPG 3.18 1 YPF 1.60 

0 LGG 2.49 2,5 YGG 3.07 4 RPF 1.59 

1 GGL 1.63 4 YYG 2.79 4,5 PPF 1.68 

0 LLG 2.33 3 LDL 1.42  

0 GLL 1.47 2 VIF 0.78  
a tells in which partition, the peptide was used as a test sample; 0 means the peptide was not used for test sample in any of the partitions. 

Using the AA531 descriptors to represent the structural information of peptides yielded a total of 1593 features for each 

tripeptide. In each of partitions, the high-dimensional features were screened firstly by BMSF performing multi-rounds of 

selection on the training set. At this stage, a large number of redundant features were rejected and the feature dimension 

was reduced to an acceptable lower degree in all the 5 partitions. Further fine evaluation step of BMSF on those retained 

descriptors would gave an optimal subset consists of the final reserved descriptors. A summary of number of features 

selected by BMSF including the initial filtering and fine evaluation steps from 5 partitions were shown in Table 2. We 

could see that the number of rounds in initial filtering of BMSF ranged from 5 to 9, and the average number of final 

reserved features is 15.4 from the 5 different partitions. The residue position information and detailed description of 

retained features from 5 partitions for ACE inhibitors were shown in the first sheet of "Supplementary Table 1.xlsx". 

Table 2 Number of retained features obtained by BMSF from 5 partitions for ACE inhibitors 
Repetition Rounds of initial filtering Number of retained featuresa Number of retained featuresb 
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1 6 24 17 
2 9 22 18 
3 5 24 14 
4 6 21 12 
5 6 24 16 

a Number of retained features after the initial filtering of BMSF; b Number of retained features after the fine evaluation of BMSF 

Based on the DMSE values of retained descriptors, the weight was calculated for each descriptor. Then, a new 

descriptor set was obtained through multiplying the values of the original descriptors with their corresponding weights. The 

weighted descriptors were used for further QSAR modeling as the independent variables. 

With the weighted descriptors, the mean pairwise Euclidean distances were calculated and the semivariogram curve 

based on high-dimensional geostatistics (GS) was then plotted. Even though there are some variations among the 

semivariograms corresponding to the 5 different partitions in the left panel of Figure 1, there is a clear overall increasing 

pattern. This show that this dataset has strong structural property in that the correlation of the observed bioactivity level is 

strong among molecules of similar structure and the correlation is weak between molecules of different structures. The 

class mid-value corresponding to the largest semivariogram value was set as the range a. The values of the range a in these 

5 partitions are 0.2458, 0.2499, 0.2468, 0.2501 and 0.2499, respectively. For each test sample in each partition, a multi-

dimensional ball with radius a was formed with center given by the values of the weighted descriptors for the test sample. 

The training samples inside of the ball were the near-neighbors in that their mean Euclidean distances to the center 

calculated with the weighted descriptors were less than a. For the 5 partitions in ACE inhibitors dataset, the average values 

of the selected near-neighbor samples are 9.9, 11.1, 10.9, 11.2 and 11.3, respectively, which imply that heterogeneity exists 

in the dataset. 

 

 Figure 1 Estimated semivariogram (left panel) and experimental versus predicted bioactivity level plot (right panel) 

from the 5 partitions of the ACE inhibitors data. The predicted values in the right panel are from the full pipeline model. 

 

Based on the weighted, selected descriptors, the QSAR model was constructed using SVR for each test sample with 

their exclusive set of selected near-neighbor samples in each of partition. The right panel of Figure 1 shows the plot of the 

predicted values versus their experimental data on the test set from the 5 partitions for ACE inhibitors. In general, all the 
samples in the test set were uniformly scattered around the diagonal, and all values of the 2

predR  are over 0.940 and 2
predQ are 

over 0.960. Thus the models could be regarded as valid for these test samples. 
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Table 3 lists the mean and standard deviation (in parenthesis) of the performance statistics from the 5 different 

partitions for ACE inhibitors established with different QSAR models. The results obtained by single SVR are relatively 
poor in predictive ability in terms of both the 2

LOOQ on the training set and the 2
predQ  on the test set. With feature selection, 

the method FS-SVR first performs QSAR modeling after BMSF screening of the high-dimensional features and then uses 

SVR for subsequent modeling. It is clear that after the process of feature selection, the performance of the constructed 
model was significantly improved as the 2

predQ  changed from 0.460 to 0.918. This verifies the efficiency of the feature 

selection on removing the redundancy among features or descriptors. The FS-Weight-SVR model not only consults with 

feature selection step but also adds the weights from BMSF for each descriptor. It can be seen that FS-Weight-SVR has 

some improvement over the FS-SVR model in predictive performance, which demonstrates the contribution of the 

weighting process. The full pipeline FS-Weight-GS-SVR uses the selected, weighted descriptors coupling with near-

neighbor samples. In this case, the near-neighbor sample selection used the range of the semivariogram and the weights 

obtained in the end of feature selection step. It gave the best performance for predication of the test samples with average 
2
predR  and 2

predQ  being 0.975 and 0.982 respectively. The two reference models Multiple Linear Regression (MLR) and 

Genetic Algorithm-Partial Least Squares (GA-PLS) were reported in Lin et al. (2008) and Hemmateenejad et al. (2011). 

The MLR does not involve feature selection procedure. The variable selection procedure in GA-PLS was conducted 5 times. 

The average number of selected variables is 10.2 and the average number of PLS latent variables used is 3. Our pipeline 
FS-Weight-GS-SVR has better prediction results than these two modes as can be seen in 2

predR  and 2
predQ .  

Table 3 Average performance statistics and their standard deviations from 5 partitions of ACE inhibitors using different 

QSAR models 

Model Descriptors nUV
a RMSEE R2 2

LOOQ  RMSEP 2
predR  2

predQ  

MLR Lin scale 9 
0.112 0.968 0.936 0.165 0.946 0.949 

(0.004) (0.002) (0.007) (0.015) (0.012) (0.009) 

GA-PLS QTMS-CUFQ 10.2(3)b 0.232 0.864 0.782 0.309 0.808 0.816
(0.016) (0.020) (0.030) (0.065) (0.079) (0.077) 

SVR AA531 1593 
0.009 1.000 0.407 0.540 0.437 0.460

(0.006) (0.000) (0.030) (0.070) (0.107) (0.083) 

FS-SVR AA531 15.4 
0.040 0.986 0.872 0.180 0.914 0.918 

(0.004) (0.002) (0.027) (0.069) (0.063) (0.057) 

FS-Weight-SVR AA531 15.4 
0.078 0.975 0.892 0.171 0.943 0.945 

(0.054) (0.024) (0.028) (0.049) (0.032) (0.031) 

FS-Weight-GS-SVR AA531 15.4 
0.047 0.995 0.931 0.092 0.975 0.982 

(0.006) (0.001) (0.021) (0.038) (0.016) (0.009) 
a Average number of variables used, except for MLR and SVR; b The value in the parentheses is the average number of PLS latent 

variables 

We summarized the union of the optimal feature sets from 5 partitions and obtained 72 features. The statistical results 

were shown in the second sheet of the "Supplementary Table 1.xlsx". In terms of the number of reserved descriptors for 

each residue, there were 19 and 24 descriptors reserved for the first and second residues, respectively, but 29 descriptors 

reserved for the third residue, which imply that the third residue site has more important effect on bioactivity of ACE 

inhibitor. The amino acid indices we used have been grouped into 6 groups with the result of clustering through analyzing 

amino acid indices and mutation matrices for sequence comparison (Tomii and Kanehisa, 1996). The frequency 

distributions of grouped descriptors in each residue position were shown in Table 4. We can see that the composition of 

amino acids in the first residue plays an important role in the activity of peptides, and the hydrophobicity for the second and 

the third residue has a significant association with the activities of ACE inhibitors. 
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Table 4 Frequency distributions of grouped descriptors in each residue position for ACE inhibitors 
No.1 Residue No.2 Residue No.3 Residue 

A 4 5 4 
B 2 3 1 
C 5 1 6 
H 3 9 10 
O 4 5 3 
P 1 1 5 

A. alpha and turn propensities; B. beta propensity; C. Composition; H. Hydrophobicity; P. Physicochemical properties; O. Other 

properties 

 

2.2. QSAR analysis on HLA data set  

The binding of 177 nonameric peptides to the HLA-A*0201 molecule were used as the second peptide panel 

(Doytchinova et al. 2005) (Shown in Table 5). The binding activity was expressed as the logarithm half-maximal binding 

level (BL50) which is the peptide concentration yielding the half-maximal fluorescence index of the reference peptide 

FLPSDFFPSV (IC50=2.6nM). We conducted 5 different random partitions with the same ratio of 131/46 as Doytchinova et 

al. (2005) in training and test set. 
Table 5 Sequences and bioactivities of HLA peptides 

In test 
seta Peptide Exp. 

In test 
set

Peptide Exp. 
In test 
set

Peptide Exp. 

1 ALCRWGLLL 4.91 3 ILDPFPVTN 5.29 1,3 RLWPFYHNV 5.72 

4 ALIHHNTHL 4.30 0 ILDPFPVTP 5.82 2 RLWPIYHNV 5.77 

3 ALPYWNFAT 4.66 2 ILDPFPVTQ 5.28 3,5 RLWPLYPNV 5.57 

2,3 CLTSTVQLV 4.93 2 ILDPFPVTS 4.78 1,4,5 SIISAVVGI 4.47 

1,3 FLCKQYLNL 5.21 5 ILDPFPVTT 5.54 3,5 SLHVGTQCA 3.79 

1,2 FLDQVPFSV 5.98 0 ILDPFPVTV 8.65 5 SLNFMGYVI 4.00 

2,4 FLLSLGIHL 5.17 5 ILDPFPVTW 4.71 3,5 SLYADSPSV 5.24 

1,5 FLLTRILTI 4.95 1 ILDPFPVTY 3.19 0 TLGIVCPIC 4.68 

4 FLNPFYPNV 6.16 3 ILDPIPPTV 7.30 4 TLHEYMLDL 4.94 

1,2 FLWPFYHNV 5.99 0 ILDQVPFSV 6.09 3,5 TTAEEAAGI 3.39 

1 FLWPFYPNV 5.89 3,4 ILFPGPVTA 6.23 1,4 VCMTVDSLV 4.20 

0 FLWPIYHDV 6.16 1,2,4 ILKEPVHGV 5.59 0 VLHSFTDAI 4.54 

2,4 FLWPIYHNV 6.37 3 ILWPIYHNV 6.24 3,4 VLIQRNPQL 5.06 

2 FLWPLYPNV 6.14 1,5 ILWQVPFSV 5.91 4 VLLDYQGML 4.52 

3,5 FVTWHRYHL 4.21 0 IMDPFPVTV 7.21 4 VTWHRYHLL 4.38 

2 GLLGWSPQA 5.13 0 IMDQVPFSV 5.71 0 WILRGTSFV 4.06 

0 GLSRYVARL 4.78 1,2 INDPFPVTV 4.78 3 WLDQVPFSV 5.23 

3 GLYSSTVPV 5.15 1,4 IPDPFPVTV 5.10 0 YAIDLPVSV 5.63 

0 HLESLFTAV 3.79 3 IQDPFPVTV 6.05 1,2 YLAPGPVTA 5.74 

1,2,4,5 HLLVGSSGL 3.91 3,5 ISDPFPVTV 5.50 0 YLAPGPVTV 6.00 

5 HLYSHPIIL 5.41 0 ITAQVPFSV 4.43 2,4 YLCPGPVTA 6.18 

4,5 IADPFPVTV 5.76 0 ITDPFPVTV 6.08 1 YLEPGPVTL 5.41 
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3,5 ICDPFPVTV 5.45 1,2 ITDQVPFSV 4.48 0 YLFDGPVTA 5.50 

2,3 IDDPFPVTV 4.36 1,2,4,5 ITFQVPFSV 4.42 3,5 YLFNGPVTA 5.80 

0 IFDPFPVTV 4.89 0 ITWQVPFSV 5.01 3,5 YLFNGPVTV 5.65 

2,3 IGDPFPVTV 3.92 5 IVDPFPVTV 6.21 3,5 YLFPCPVTA 6.63 

2,4,5 IHDPFPVTV 4.96 1,5 IWDPFPVTV 5.13 1,2,4,5 YLFPDPVTA 6.09 

0 IIDPFPVTV 6.31 3 IYDPFPVTV 5.41 1 YLFPGPETA 5.81 

0 IISCTCPTV 5.17 0 KIFGSLAFL 4.40 2,3,4 YLFPGPFTV 5.81 

0 ILDDFPVTV 7.16 1,2,3,4 KLHLYSHPI 4.77 0 YLFPGPMTA 5.98 

1,2,5 ILDDLPPTV 7.14 5 KLPQLCTEL 4.50 1,5 YLFPGPMTV 5.85 

1,3 ILDPFPPEV 7.68 0 KTWGQYWQV 4.43 0 YLFPGPSTA 5.69 

4,5 ILDPFPPTV 8.17 2,4 LLFGYPVYV 5.45 1,4 YLFPGPVQA 6.14 

1 ILDPFPVTA 6.32 3,4 LLMGTLGIV 4.21 0 YLFPGPVTA 6.31 

3,4 ILDPFPVTC 5.65 2,5 LLWFHISCL 4.13 2 YLFPGPVTG 5.22 

5 ILDPFPVTD 2.94 4,5 LQTTIHDII 3.90 1,4 YLFPPPVTA 5.75 

1,2,4 ILDPFPVTE 3.13 1,2 MLDLQPETT 4.36 4 YLFPPPVTV 6.19 

2 ILDPFPVTF 5.67 3 MLGTHTMEV 5.37 1 YLNPGPVTA 5.53 

1,3 ILDPFPVTG 6.66 2,3,4 NLQSLTNLL 3.96 3 YLSPGPVTA 5.44 

0 ILDPFPVTH 3.60 1,2 NLSWLSLDV 4.75 1,2,4 YLWQYIPSV 5.17 

2,5 ILDPFPVTI 6.69 4 NMVPFFPPV 5.60 5 YLYPGPVTA 5.77 

4 ILDPFPVTK 4.59 0 PLLPIFFCL 5.32 5 YMNGTMSQV 4.67 

2,4 ILDPFPVTL 7.03 2,4 RLLQETELV 4.83 0 YTDQVPFSV 4.80 

1 ILDPFPVTM 6.13 4 RLMKQDFSV 4.97 0 YLFDGPVTV 4.96 

1 ALMPLYACI 5.08 5 ILKPLYHNV 5.25 2,3 YLFPFPITV 6.68 

3 FLDDHFCTV 6.68 2,3 ILNPFYHNV 6.16 1,2 YLFPGPFTA 5.65 

5 FLFPGPVTA 6.18 2 ILNPFYPDV 6.11 3 YLFPGPVWA 5.59 

0 FLFPLPPEV 6.53 2 ILWPLFHEV 6.03 3,4 YLFPGTVTA 6.16 

4 FLKPFYHNV 5.73 1,4,5 ILWPLYPNV 6.06 3,5 YLFPGVVTA 6.17 

0 FLNPIYHDV 6.16 0 ILYQVPFSV 5.06 0 YLFQGPVTA 5.21 

0 FTDQVPFSV 4.76 1,3 ITSQVPFSV 4.06 4 YLKPGPVTA 5.26 

2 GILTVILGV 4.57 2,3 LLAQFTSAI 4.51 3 YLMPGPVTA 5.27 

4 GLGQVPLIV 4.76 1,2 LMAVVLASL 3.99 5 YLWDHFIEV 6.36 

1 GTLGIVCPI 5.23 4 RLNPFYHDV 4.24 5 YLWPGPVTV 5.70 

2,5 ILDDFPPTV 7.08 1,2 RLNPLYPNV 5.37 5 YLWQYIFSV 4.94 

3,5 ILDPFPITV 8.14 1,5 RLWPFYPNV 5.24 0 YMLDLQPET 5.28 

4,5 ILDPFPPPV 7.44 1,4 RLWPIYHDV 5.55 4 YVITTQHWL 4.39 

5 ILDPLPPTV 7.15 3 SLDDYNHLV 5.27    

0 ILFPFPVEV 6.80 0 SVYDFFVWL 5.12  

0 ILFPFVHSV 6.58 1,3 VMGTLVALV 5.03  
a tells in which partition  the peptide was used as a test sample ; 0 means the peptide was not used for test sample in any of the partitions. 

The AA531 was used to represent the structural information of peptide giving 4779 descriptors for each nonapeptide. In 

each of partitions, the high-dimensional features were screened firstly by BMSF performing over 10 rounds of initial 

filtering on the training set due to the high dimensional features. At this stage, over 4700 features were screened and there 
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were about an average of 20 features retained from these 5 partitions. Further feature selection was then conducted for 

those reserved features with the fine evaluation of BMSF. Finally, an average of 15.8 features was reserved from 5 

partitions. The summary of the number of selected features by BMSF for HLA peptides was shown in Table 6. The residue 

position information and detailed description of retained features from these 5 partitions for HLA peptides were shown in 

the first sheet of "Supplementary Table 2.xlsx". 

Table 6 Number of retained features obtained by BMSF from 5 partitions for HLA peptides 

Repetition Rounds of initial filtering Number of retained featuresa Number of retained featuresb 
1 13 25 19 
2 12 20 17 
3 11 21 16 
4 10 17 13 
5 12 18 14 

a Number of retained features after the initial filtering of BMSF; b Number of retained features after the fine evaluation of BMSF 

The weight factor for each reserved descriptor was calculated based on its corresponding DMSE value. By multiplying 

the values of the original descriptors with their corresponding weight factors, the final weighted feature set was obtained 

and then used for subsequent QSAR analysis. 

The variation of the semivariogram values ( )h  in each of the 5 partitions with class mid-values h was depicted in the 

left panel of Figure 2. There are a lot more variations in these semivariograms than those for the previous data sets.  The 

mid-values, i.e., the range a, in 5 different partitions were 0.1751, 0.1751, 0.1644, 0.1745 and 0.1745, respectively, at 

which the semivariogram achieved the largest value. These values were used as the threshold to select the exclusive near-

neighbor training samples for each test sample in each partition. For the 5 partitions in HLA peptides dataset, the average 

values of the selected near-neighbor samples are 18.6, 19.2, 21.3, 19.3 and 20.0, respectively, which also imply that 

heterogeneity exists in the dataset. 

 

Figure 2 Estimated semivariogram (left panel) and experimental versus predicted bioactivity level plot (right panel) from 

the 5 partitions of the HLA peptides data. The predicted values in the right panel are from the full pipeline model. 

Based on the final selected and weighted descriptors, the QSAR model was constructed using SVR for each test sample 

with their exclusive set of selected near-neighbor samples in each of repetition. The right panel of Figure 2 shows the plot 

of the predicted values versus their experimental data on the test set in these 5 partitions for HLA peptides, the samples 

were scattered around the diagonal but with some deviations. This tells that the established QSAR model has satisfactory 
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extrapolating ability but large variations exist among the data, which can also be seen from the variations in semivariogram 

plots.  

Table 7 lists the mean and standard deviation of the performance statistics of our proposed pipeline and other reference 

methods from these 5 partitions for HLA peptides dataset. The models with the feature selection process using BMSF are 

significantly superior to the single SVR model. This reveals that significant redundancy exists in the original feature set. 

For the SVR model, the prediction performance on both leave-one-out cross validation and external prediction are poor. 
Even though the fitting measure R2 on the training set almost reached 1, its external prediction measure 2

predR  and 2
predQ  on 

test sets are still very low. This shows that there is extreme over-fitting in the single SVR model. For the three SVR models 
processed with feature selection, the predictive 2

predR on test sets are all over 0.770, and the predictive 2
predQ  are in the range 

of 0.778-0.806. In addition, these three models all performed better than existing PLS (Doytchinova et al. 2005) and GA-

PLS models (Hemmateenejad et al. 2011). The model that used the range of semivariogram to select near-neighbor samples 
is has better average prediction measure 2

predR  and 2
predQ  than those without sample selection. The best average predictive 

result was obtained by the full pipeline FS-Weight-GS-SVR model, with statistics 2
predR  and 2

predQ of 0.805 and 0.806, 

respectively. This demonstrates that using the exclusive selection of training samples for each test sample, the prediction 

performance of the QSAR model can be improved. However, due to the large standard deviations shown in Table 7, the 

improvement of prediction accuracy appears to be marginal.  

Table 7 Average and standard deviation (in parenthesis) of the performance statistics from the 5 partitions of HLA 

peptides using different QSAR models 

Model Descriptors nUV
a RMSEE R2 2

LOOQ  RMSEP 2
predR  2

predQ  

PLS Additive 161(3.4)b 0.377 0.854 0.291 0.561 0.603 0.627
(0.031) (0.025) (0.027) (0.017) (0.058) (0.038)

GA-PLS QTMS-ADFQ 19(3.6) 
0.697 0.494 0.309 0.669 0.436 0.469

(0.071) (0.081) (0.072) (0.067) (0.096) (0.081)

SVR AA531 4779 
0.024 0.999 -0.015 0.704 0.411 0.436

(0.023) (0.002) (0.000) (0.064) (0.108) (0.063)

FS-SVR AA531 15.8 
0.241 0.938 0.641 0.425 0.771 0.778

(0.021) (0.014) (0.038) (0.057) (0.029) (0.035)

FS-Weight-SVR AA531 15.8 
0.235 0.947 0.656 0.421 0.785 0.790

(0.024) (0.022) (0.053) (0.062) (0.018) (0.027)

FS-Weight-GS-SVR AA531 15.8 
0.275 0.919 0.666 0.430 0.805 0.806 

(0.029) (0.015) (0.041) (0.032) (0.011) (0.012) 
a Number of variables used; b The value in the parentheses is the number of PLS latent variables 

The union of the final selected feature sets from the 5 partitions was given in the second sheet of the "Supplementary 

Table 2.xlsx". The numbers of selected descriptors are 17, 13 and 20 for the second, fourth and ninth residues, which 

indicates that these three residuals play important roles for the bioactivity of HLA peptides. The numbers of retained 

features in others positions are all less than 7.  The frequency distributions of grouped descriptors on these 3 important sites 

are shown in Table 8. We can see that the alpha and turn propensities in the second residue might be correlated with the 

activity of HLA peptides. The hydrophobicity and the alpha and turn propensities in the fourth residue have apparent 

relevance with the bioactivity, and the hydrophobicity for the ninth residue plays an important role in the activity of HLA 

peptides. However, the beta propensity in all of the 3 sites is almost absent, which indicates that the variety of its values has 

little influence on the bioactivities of HLA peptides. 

Table 8 Frequency distributions of grouped descriptors in each residue position for HLA peptides 
No.2 Residue No.4 Residue No.9 Residue 

A 6 4 3 
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B 0 2 0 
C 1 1 3 
H 5 5 11 
O 2 1 2 
P 3 0 1 

A.  alpha and turn propensities; B.  beta propensity; C.  Composition; H.  Hydrophobicity; P.  Physicochemical properties; O.  Other 

properties 

 

3. Principles and Methodologies  

3.1 Data set 

Two peptide data sets with known bioactivity were used to test the performance of the QSAR models constructed with 

our pipeline. They were a set of 55 angiotensin-converting enzyme (ACE) inhibitors and a set of 177 nonameric peptides 

binding to the HLA-A*0201 molecule. The data sets were reported in Lin et al. (2008) and Doytchinova et al. (2005). 

3.2 Structural description of peptide ligand 

To characterize the peptide or protein structures, we consider the physicochemical properties of 20 amino acids derived 

from the AAindex database (Kawashima and Kanehisa 2008). There were 531 physicochemical properties that can be used 

as descriptors. Since these descriptors belong to different property groups such as electrical property, hydrophobicity, 

hydrophilicity and so on, there is quite a lot of heterogeneity across these descriptors. To eliminate their heterogeneity and 

prepare for subsequent descriptor weighting, each physicochemical property of 20 amino acids was normalized to a unified 

scale with mean zero and standard deviation one. In this work, the normalized 531 physicochemical descriptors (AA531) 

for each amino acid residue were first arranged in tandem order and then subject to feature selection before modeling. 

3.3 Feature (descriptor) selection and reserved descriptor weighting 

By using AA531 features to characterize peptide sequences, the tripeptides ACE inhibitors and nonameric peptides 

contain 1593 and 4779 descriptors, respectively. The sharp increase in feature dimensions is adverse for accurate modeling. 

For rapid and efficient selection of high dimensional features, we have reported a novel method named Binary Matrix 

Shuffling Filter (BMSF) based on Support Vector Classification (SVC). The method was successfully applied to 

classification of 9 cancer datasets and obtained excellent results (Zhang et al. 2012).  

In this method, a controlled matrix with the same number of columns as the number of features was generated. The 

matrix consists of equal number of randomly positioned 0s and 1s per column. Then a 10-fold cross validation with SVM 

on the training set was conducted for each row of the matrix using only the features corresponding to the 1s in the row.  The 

importance of a feature was judged based on contrasting the prediction accuracy of two sets of models, one set with the 

feature included and the other with the feature excluded. The accuracy was defined as the Matthews correlation coefficient 

(MCC) of the constructed model. The detailed procedures can be found in the reference (Zhang et al. 2012). This method is 

able to find a parsimonious set of features which has high joint prediction power. 

To apply the idea of BMSF to QSAR analysis, we replace the support vector classification in the algorithm by support 

vector regression and use the mean squared prediction error (MSE) as the criterion instead of MCC to determine the 

contribution of each feature set. For each round of initial filtering, we use the features and the bioactivity on the training set. 

Starting with the generated matrix with binary values as mentioned above, each row defines a subset of features by 

including only features such that the value 1 appears in the row for those features. For example, if the first five elements of 
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a row in the binary matrix are 0, 1, 0, 0, 1, then 2nd and 5th features are in the subset while 1st, 3rd, and 4th features are 

excluded.  With the subset of features and the bioactivity level of the training set as the response variable, conduct a 10-fold 

cross validation using SVM regression and obtain the cross-validated MSE. This MSE gave us an initial idea of the 

contribution from this subset of features. Such MSE was obtained for every row of the binary matrix. Since the binary 

matrix contains equal number of 1s and 0s in each column, every feature was included in about half of the computed MSEs. 

However, as many features are in each subset, the obtained MSEs contain the mutual contribution of many features.  

To consider the contribution of the ith feature alone, we obtain a new matrix by changing all the 1s in ith column of the 

binary matrix to 0 and all the 0s in that column to 1 while keeping the remaining columns of the matrix unchanged. This 

switch between 1 and 0 in the ith column alone gives us a contrasting feature set compared to the feature set defined by the 

same row of the original binary matrix.  A SVM regression model was then trained using the MSE values as the response 

variable and the original binary matrix as the independent variables. Then the model was used to predict the value of the 

response variable (i.e. MSE) for each row of the new binary matrix. All the differences between the cross-validated MSE 

and the predicted MSE values reflect the change due to the switch between exclusion (0) and inclusion (1) for the ith feature 

while holding all other features in each subset unchanged.  Next form two vectors Z1 and Z0 by first initializing them equal 

to the cross-validated MSE and predicted MSE, respectively. Then switch the jth element of Z1 with the corresponding 

element of Z0 if the value in jth row and ith column of the original binary matrix is 0, where j is an integer between 1 and the 

number of rows in the binary matrix. After the switch, Z1 and Z0 give us a paired data set, one with ith feature included and 

the other with ith feature excluded from the model. Conduct a paired comparison with Z1 and Z0. If the mean of Z0 is greater 

than the mean of Z1, then including the ith feature tends to give better prediction performance measured by MSE. Such 

paired comparison gives us an idea of how significant the ith feature contributes to explain the variations in the bioactivity 

level conditional on various combinations of other features included in the model. Repeat the process for all the features 

and discard those features with higher mean of Z0. This finishes one round of initial filtering. 

Generally, the feature selection goes through  several rounds of initial filtering and would be stopped when the MSE for 

the variable subset from cross-validation starts to increase. After the initial filtering with BMSF, the dimensions of the 

selected feature set often declines quickly to an acceptable lower degree. To further improve the model robustness in QSAR 

analysis, a backward elimination was performed to refine the selected feature set.  Starting with all the features retained 

after the initial filtering, a MSE0 can be obtained during the 10-fold cross-validation on the training set. Then a cross-

validation MSE vector (MSE1, …, MSEj, …, MSEq1 ) is obtained by eliminating the jth descriptor one by one, where q1 is 

the number of initially selected descriptors. If all the elements of the MSE vector are greater than the MSE0, the backward 

elimination will stop since by deleting any of the descriptors will cause the model accuracy decrease. Otherwise, the 

descriptor that corresponds to the minimum in the MSE vector is deleted since the precision of the model improves the 

most when the descriptor is absence. Further backward elimination continues in the same way repeatedly. Every time either 

the least significant descriptor is eliminated from the pool of selected descriptors or the process stops when no further 

improvement can be made.  

       In the last round of backward elimination, suppose the final set of selected descriptors is {X1, …, Xq}. Let 

1 1 1, , , , ,j j qX X X XMSE
    and 

1 , , , ,j qX X XMSE    be the mean squared error from 10-fold cross validation without and with the jth 

selected descriptor, respectively. The difference between the two tells the relative importance of the jth descriptor when 

compared to other selected features: 

1 1 1 1, , , , , , , , ,j j q j qj X X X X X X XDMSE MSE MSE
 

                                                (1) 

To differentiate the contribution of different features, the normalized weight wj for descriptor xj can be calculated 

through the equation below: 
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                                                                           (2) 

 

3.4 Near-neighbor sample selection and individual prediction  

The bioactivity of a peptide is a stochastic process which depends on the structure of the peptide and the 

physicochemical properties of the amino acids that formed the peptide. It has been a common belief to majority that 

peptides with similar structure and physicochemical property parameters tend to have close activities. To improve the 

bioactivity prediction accuracy for a new peptide not in the training sample, it is important that the model is built with only 

peptides that are close to the new sample. Models using the entire set of descriptors selected by a feature selection 

procedure (such as the BMSF and backward elimination described above) can not guarantee that only closely related 

peptides be used in the modeling. When unrelated peptides are used in the model, the prediction becomes extrapolation 

which could lead to erroneous results.  

Here we give a peptide selection method based on semivariogram of geostatistics extended to high-dimensional 

descriptor space. In geostatistics, the modeling of a process (such as the precipitation) typically considers the spatial 

correlation into account. Nearby locations with close latitude and longitude tend to be more correlated than locations that 

are far apart. Here in the bioactivity modeling, the physicochemical properties of amino acids serve a similar role as the 

longitude and latitude. The difference is that the location data (latitude and longitude) are in low dimensional space while 

the many physicochemical properties are in high dimensional space.  

The traditional semivariogram in geostatistics depicts the spatial dependence of a stochastic process at two different 

locations. Specifically, for locations l1 and l2, the semivariogram is defined as  1 2 1 2( , ) 0.5 ( ( ) ( ))l l Var Z l Z l   , where Z(li) 

represents the stochastic process at location li, i = 1, 2. It is a decreasing function of the covariance between the process 

values at the two locations. When the process is stationary, the semivariogram can be expressed as a function of the 

separating distance between the two locations. In general, the correlation decreases as the distance increases. Hence the 

semivariogram as a function of the distance h typically increases and then approaches a constant as the distance increases to 

infinity. At a certain distance a, the value of the semivariogram can be so close to the limit of the semivariogram such that 

the difference is negligible. This distance is referred as the range in geostatistics. It is the maximum separating distance 

such that the correlation between two locations needs to be considered.  

In QSAR analysis, the bioactivity as a stochastic process also resembles the correlation pattern of the spatial process in 

that as the structure and physicochemical properties between two peptides differ more and more, their bioactivities are 

expected to be less and less correlated. Therefore, we extend the definition of semivariogram from the domain of 2-

dimensional spatial locations to high dimensional descriptors. Specifically, we consider the weighted, selected descriptors 

{wj·Xj, j = 1, …, q} from the BMSF and backward elimination procedure. These weighted descriptors can be calculated for 

both the training and test samples. We will use the bioactivity levels of the training sample along with the values of their 

weighted descriptors to obtain the empirical semivariogram as a function of the separating distance. 

Working with high dimensional descriptors, we need a measure of distance between molecules. Here we use the mean 

weighted Euclidean distance between the selected descriptors. Specifically, the distance between peptides A and B with 
selected descriptors 1 2( , , , )A A A Aqx x x x   and 1 2( , , , )B B B Bqx x x x   is defined as follows: 

 
1/ 22

1 2

1
,

j j

q

AB j A Bj
d q w x x



   
 

                                                               
(3) 

where the wj are the weights defined in equation (2).  
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To estimate the semivariogram function at different distances, we collect all the pairwise distances between the training 

samples and their corresponding observed bioactivity levels   , , :1AB A B trd y y A B n   . It is not possible to estimate 

the semivariogram at all values of distance due to limited samples. Instead, the whole interval between the minimum 
distance 1 A B ABtrnmin d    and maximum distance 1 A B ABtrnmax d    is further partitioned into overlapping intervals of equal 

width and the semivariogram is estimated for the representative value of each interval. More specifically, let M be the 
number of intervals to be partitioned and calculate 1

1 1( )A B AB A B ABtr trn nL M max d min d
       . Then the lower and upper 

bounds of the intervals are given by 1 ( 1)i A B ABtrnC min d i L      and Ui = Ci + 1.5L, i = 1, …, M. The centers of the 

intervals hi = (Ui + Ci) / 2 are the representative distances, for which the semivariogram function will be estimated.  For 

reliable estimate, the number of intervals M and the maximum distance h for estimating the semivariogram need to follow 

the rule (Journel and Huijbregts 1978) that: 

1 10.5( )A B AB A B ABtr trn nh max d min d      
                                                 

(4) 

For each interval i, i = 1, …, M, let {( , ) :1 , }i i AB itrQ A B A B C d Un        be the collection of indices for sample 

pairs whose distance is in the ith interval. Let N(hi) be the number of sample pairs in Qi. Then the empirical semivariogram 

at distance hi is estimated as follows: 

     
( ) ( )

2 2

( , ) 1

1 1
ˆ( ) ,

2 ( ) 2 ( )
i

i iN N

i A B A B i AB i
A B Q A Bi i tr

h h

n
h y y y y I C d U

N h N h


   

      
                    

(5) 

where I (.) is the indicator function.  

Once the semivariogram values are estimated for all i = 1, …, M, we can find the range a of the semivariogram by 

examining the plot of hi versus ˆ( )ih . Even though the theoretical semivariogram typically increases as the distances 

increases, the empirical values may fluctuate showing variations. We report the estimated range as the smallest h value 

among h1, …, hM that satistifies inequality (4) such that ˆ( )ih  is maximized.  

In spatial analysis, the semivariogram is often fitted with a parametric model such as the exponential, spherical or 

Gaussian model. Such models involve additional parameters including the nugget and sill parameters whose estimation 

increases the computational burden. In addition, the choice of the model may not correctly describe the relationship 

between the semivariogram and distance. Hence we do not recommend to fit a particular parametric variogram model for 

estimating the range.  

With the estimated range of the high dimensional semivariogram, we can decide which molecules in the training sample 

are close to the query molecule. To be more specific, for a query peptide with values for the selected descriptors given by 

(x01, …, x0q), the set of training samples to be used for modeling of the bioactivity of the query peptide is 

    1/22
1 2

1 01
, , , :

q

A A j jjAq Ajall x x y q w x x a


 
  

 
 , for A = 1, …, ntr. The range a essentially defines a high 

dimensional ellipsoid that are centered at the query peptide. Instead of a multidimensional ball, the ellipsoid differentiates 

the contribution of different selected descriptors by the different lengths of semi-principle axes of the ellipsoid through the 
weights. In terms of the weighted descriptors Aj j Ajz w x  and 0 0j j jz w x , the near-neighbor samples are located inside of a 

multidimensional ball  1, , ,A AAqall z z y  such that  2
2 2

01

q

jj Ajz z a q


  , for A =  1, …, ntr. 

The prediction of a query peptide is based on the QSAR model using SVR fitted with the selected descriptors using the 

selected training samples from above peptide selection method.  
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3.5 QSAR Modeling and Validation 

For a given training data set and any query sample, the QSAR model was fitted with the SVR using the selected 

samples and selected features. The test set was not used in the feature selection step since the bioactivities of peptides in the 

test set are unknown for the actual prediction and another important reason is that this would generate overly optimistic 

estimation for the external prediction if the test set were involved in variable selection. The features of the test samples 

were used in sample selection procedure but the bioactivity levels of the test samples were never used in any part of the 

model selection. We refer the entire pipeline as FS-Weight-GS-SVR in the reported result. The SVR model fit calls the 

software LIBSVM developed by Chang and Lin (2011). The epsilon-SVR was used and the nonlinear radial basis function 

(RBF) was used as the SVM kernel since the RBF kernel has shown much better generalization capability in most dataset. 

The tuning parameters of LIBSVM including cost c, RBF kernel parameter gamma g and epsilon p in loss function were 

optimized by a grid search strategy in cross validation on the training set. The range of c is the base 2 power of the elements 

of -1 to 6, the range of g is the base 2 power of the elements of -8 to 0 and the range of p is base 2 power of the elements of 

-1 to -8. The subroutines for doing FS-Weight-GS-SVR were written in MATLAB (Mathwork Inc., version 7.12.0.635 

(R2011a)). 

The reference models include PLS and GA-PLS. The PLS was conducted using the 'plsregress.m' program in the 

statistic toolbox of MATLAB. As an accepted procedure of refinement process in selecting the optimum number of PLS 

latent variables, minimum estimate of MSE was used from leave-one-out cross validation (LOO-CV). The GA-PLS 

algorithm toolbox developed by (Leardi 2000) was used to select the most suitable set of input variables for GA-PLS model 

We used the default values for the set of tuning parameters in this toolbox: i.e., the population size is 30 chromosomes on 

average 5 variables per chromosome in the original population; the deletion groups is 5; the maximum number of variables 

selected in the same chromosome is 30; the probability of mutation is 1%; the probability of cross-over is 50%; the 

maximum number of components is 15; the number of runs is 100; backward elimination was conducted after 100 

evaluations; the window size for smoothing is 3. 

For performance evaluation on the training set, we report the root mean squared error of estimation (RMSEE) for all 

peptides in the entire training data and the coefficient of determination R2. Additionally, leave-one-out (LOO) cross-

validation was also conducted for the training data. During the LOO cross-validation, the entire set of features first went 

through BMSF and backward elimination to perform feature selection. Then the selected features were used with all 

peptides in the training dataset to determine the common range a of the semivariogram. Afterward, each peptide was left 

out and the remaining ntr – 1 peptides went through the sample selection procedure. All training samples that were in the 

ellipsoid centered at the left out sample were used to build the QSAR model with the SVR using the selected features. The 

prediction for the left out peptide was then conducted. For each of the training sample with the observed bioactivity level yi, 

let ˆiy  be the predicted level and y  be the mean of the observed values of all samples in the training set. The following 

LOO coefficient of determination 2
LOOQ  was reported by Golbraikh and Tropsha (2002): 

 
 
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




                                                                     

(6) 

Since the feature selection and range determination were based on the entire training data, the 2
LOOQ  is for reference only. It 

does not represent the extra sample performance.  

For each peptide in the test data set, we used the selected descriptors and the common range a of the semivariogram 

determined from the training data to define an ellipsoid centered at the test sample. The training samples that fall inside of 

the ellipsoid were used to build the SVR model using the selected features based on the training data. To evaluate the 

performance of the proposed pipeline on all test data, we report the root mean squared error of prediction (RMSEP), the 
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coefficient of determination 2
predR  (Gedeck et al. 2006), and the external predictive evaluation index  2

predQ  proposed by 

Tropsha et al. (2003): 
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where yi is the experimentally observed activity level of the ith sample in the test set, ˆiy is the predicted value, i = 1, …, nte. 

The try  is the mean of the experimentally observed values of all samples in the training set. We use 2
predQ and 2

predR as our 

major criteria to compare different models or methods. The only difference between 2
predR  and 2

predQ  is the mean value that 

is used in the denominator ( 2
predQ : mean of training data, 2

predR : mean of test data).  Since the numerator is equal in both 

cases and since tey minimizes the sum of squares in the denominator, 2
predR is always smaller than 2

predQ . 

    In order to assess the risk of chance correlation for the pipeline proposed in this study, we report results from 5 different 

random partitions with the same ratio of references in training and test set for each data set. Based on the variability of the 

estimates for the different partitions, a rough estimate of the significance of feature selection and sample selection can be 

gained. 

 

4. Discussion and Conclusions  

Impact of feature selection and sample selection: 

Based on the analyses of the two data sets, we could see that the precision of external prediction in SVR series models 
improved significantly after features selection was carried out (Tables 3 and 7). The evidence is obvious as the 2

predR  and 
2
predQ  using SVR only are less than 0.500 for both datasets, but these measures in FS related methods are all over 0.918 for 

the ACE inhibitors and over 0.778 for the HLA peptides data set respectively. This clearly demonstrates that our feature 

selection method can significantly improve the SVR prediction accuracy. The models with extra feature weighting and 

sample selection appear to have even higher average prediction measures for both data sets. However, the numerical values 
of the model quality changes only slightly. Although our full pipeline gave the highest 2

predQ  value for both datasets (over 

0.980 and 0.800 respectively), we could only conclude significant improvement of the full pipeline over FS-SVR and FS-

Weight-SVR models in one data set. Specifically, for the ACE inhibitors dataset, the one-sided upper 95% confidence 
bound for 2

predQ
  

for FS-Weight-SVR and FS-SVR are 0.975 and 0.972, respectively (these were obtained based on t-

distribution with 4 degrees of freedom for the standardized averages). This suggests that adding feature weighting does not 

make a significant improvement of accuracy at 0.05 level if the prediction does not involve sample selection (p-value from 
one-sided t-test = ). Both upper confidence bounds are less than the 2

predQ
 
0.982 for the full pipeline model, which suggests 

that results from the full pipeline with sample selection are significantly better than those of FS-SVR or FS-Weight-SVR at 

0.05 level for this data set ( p-value from one-sided test =   and   , respectively). For the HLA peptides dataset, the one-
sided upper confidence bounds for 2

predQ are 0.816 and 0.811 for the FS-Weight-SVR and FS-SVR methods respectively. 

Both upper bounds are greater than the 2
predQ  0.806 of full pipeline performance, which tells that the impact of sample 

selection on prediction accuracy in the HLA peptides data set is not as significant as in the previous dataset. 

There were several reasons that might have resulted in the small impact of sample selection relative to feature selection. 

Firstly, due to the small sample size in the training set for both datasets, the near-neighbor samples for modeling were 

insufficient as the range estimation of the semivariogram is restricted by the training sample size. When this happens, we 

can not expect big gains from sample selection. For the ACE inhibitors, the average number of near-neighbors was about 

10 for the test set from the 5 partitions. There were only three or four near-samples for some samples in the test set, whose 

information for regression modeling was inadequate and lack of statistical significance. For the HLA peptides dataset, the 
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average number of near-neighbor sample was about 20 from 5 partitions, which accounted for a small part of the training 

set. Although the relationship between near-neighbors and the query sample was extremely relevant, there were still some 

related samples exist in the training set that were not included in the near neighbors. These samples could be included in the 

near-neighbors as the ranges of the semivariogram are extended. However, the near-neighbor samples for modeling would 

be close to all of the samples in the training set once the estimated range is too large if the sample size stays unchanged, and 

thus would lose the meaning of sample selection. 

Secondly, due to the nature of high-dimensionality on the feature space and low-dimensionality on the samples space 

for both datasets, there were a large number of redundant features but far fewer uncorrelated samples to a query sample. 

Significant improvement in the precision of prediction was able to be achieved by feature selection because plenty of 

irrelevant features were eliminated. If the sample size is also large (for example, in thousands), the information in the 

samples is sufficient and there must exists a large number of irrelevant samples to a query sample in the test set.  In this 

case, the impact of sample selection may be more prevalent and the impact of sample selection on model quality might be 

improved significantly.  

Thirdly, the marginal effect of the sample selection might be resulted from the experimental flow. In our pipeline, the 

feature selection was first conducted followed by the sample selection in the end. However, we can not recommend a 

reverse experimental flow for these two datasets since the impact of feature selection is expected to be more important than 

sample selection due to  high-dimensional features and small sample size in these two datasets. On the other hand, the 

experimental process can be reversed if the dataset has the characteristic of large number of samples and low-dimensional 

features. In this case, the impact of sample selection may become dominant.  So the order of selection on features and 

samples should be considered on different datasets. 

 

Conclusions: 

Redundancy often exists among high-dimensional features, which are adverse for QSAR analysis. Feature selection is 

one of the critical steps to improve QSAR prediction accuracy. Recent studies also suggested that prediction of the 

bioactivity of a new molecule using a given training sample could give poor result if the training samples are very different 

from the new molecule. It has been reported in the literature that QSAR analysis based on the near-neighbors samples are 

often better than that with all the samples.  

In this work, we presented a pipeline FS-Weight-GS-SVR for QSAR analysis that performs selection of important 

descriptors using the training data, conducts sample selection for each query molecule to reduce modeling error due to 

heterogeneity, and builds a QSAR prediction model with the selected samples based on the selected descriptors. For feature 

selection, this work extends our feature selection method BMSF previously given for classification problem to the current 

setting of regression problem. Through the selection with BMSF, the dimensions of the retained physicochemical 

properties decline to an easy-to-handle lower degree. In our application to the two datasets, 15.4 and 15.8 features on 

average from 5 partitions were retained from the original set with 1593 and 4779 features, respectively. To consider the 

different contributions of different features, each selected descriptor that passed the BMSF filtering also received a weight 

defined through its contribution to reduce the 10-fold cross validation estimation error.  

For sample selection, we give a procedure to define a multi-dimensional ellipsoid centered around the query sample. 

The dimension of the ellipsoid is equal to the number of selected features. The lengths of the semi-principle axes of the 

ellipsoid depend on the weights of the selected descriptors and the range of the semivariogram function estimated with the 

training data. For each test sample, training samples that fall into the ellipsoid define an exclusive set of near-neighbor 

samples that can be used for further modeling. With the weighted selected features as the predictors and the exclusive set of 

near-eighbor samples as training data, the QSAR analysis was conducted for each test sample. The performance of our 
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proposed QSAR analysis pipeline was evaluated with the QSAR modeling of ACE inhibitors and HLA data sets. 

Satisfactory results confirm the validity and reliability of this method.  

Overall, the method can optimize the QSAR model from both the feature selection and sample selection perspectives. 

This leads to improved accuracy over single selection methods, which has an extensive application prospect in the field of 

regression prediction for bioactivity of molecules. 
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