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CHAPTER 1

INTRODUCTION

Natural or free-convection, distinct from forced-convection, is the

heat-transfer mechanism observed as a result of the motion of the fluid due

to the action of body forces which are imposed on the fluid by the density

gradients arising from the temperature difference.

Free-convection flow is a principal mode of heat-transfer in many

engineering applications such as in the fields of nuclear engineering,

aeronautics, and gas turbines industry. In the last decade, the problem of

free-convection flow under the influence of the gravitational field has been

investigated extensively analytically as well as experimentally.

If body forces other than gravitational forces, such as centrifugal or

Coriolis forces, exist, approximate solutions can be obtained by replacing

the gravitational acceleration in Grashof's number by the acceleration of

the body forces in the problem of interest.

Several investigations on the subject of this report were published by

Schmidt and Beckmann (12), Saunders (11), Schuh (13), Squire (5), Ostrach

(9), Sparrow (14), Sparrow and Gregg (15), Eckert (2), and others. Solu-

tions dealing with different geometries, various boundary conditions, and

the effects of property variations with temperature were found in litera-

ture. In general, there are two approaches to the solution of heat flow by

free-convection, namely, exact solutions and approximate solutions of the

Numbers In parenthesis refer to references in bibliography.



boundary-layer equations.

Several analytical investigations using the approximate integral method

have been reported by Squire (5), Eckert (2), Sparrow 114), and others. All

these analytical approaches have been based on the assumption that the

thicknesses of the thermal and the velocity boundary-layers are very nearly

equal. However, results reported by Ostrach (9) for the analysis of laminar

free-convection flow and heat transfer about a flat vertical plate at con-

stant wall temperature, showed that the thicknesses of the thermal and the

velocity boundary-layers are different and the relative thickness depends on

Prandtl number. For fluids whose Prandtl numbers are greater than one, the

thickness of the velocity boundary-layer is greater than that of the thermal

boundary-layer, while for fluids whose Prandtl numbers are less than one, the

thickness of the thermal boundary-layer is greater than that of the velocity

boundary-layer.

The object of this report is to analyze the gravitational free-convec-

tion problem around a vertical plate under various boundary conditions for

the cases of Pr > 1 and Pr < 1 and to present some physical interpretations

of the heat transfer mechanism of free-convection, since this mechanism is

of vital importance in various engineering applications. In the analytical

treatment of the problem, the technique of the approximate Integral method,

without assuming S . = 6 , will be used.

In this analysis, the natural flow existing around the vertical plate

is assumed to display a laminar boundary-layer structure so that the Grashof

9 4
number is 10 > Cr > 10 (8). The thermal boundary-layer thickness is

defined here as the distance perpendicular to the plate surface at which the

See nomenclature.



difference between the fluid temperature in the immediate neighborhood of

the plate surface and the ambient fluid temperature and the derivative of

the ambient fluid temperature with respect to y cease to be perceptible.

Similarly, the velocity boundary-layer thickness is defined as the distance

perpendicular to the plate surface where the tangential velocity u and

it6 derivative with respect to y cease to be perceptible.

In accord with the usual practice in free-convection analyses, the

density will be considered a variable only in the buoyancy term. All other

properties will be assumed constant. Viscous dissipation and work against

the gravity field will be neglected.



CHAPTER 2

LITERATURE SURVEY

The problem of laminar f ree-convection heat transfer from a heated

vertical plate in still air was first considered by Lorenz in 1881 (6), by

assuming that the temperature and velocity at any point of the flow field

depended only on the distance from the plate. Since then, numerous theo-

retical Investigations have been conducted on the problem under considera-

tion either by using the exact solution method, that is, the complete

solutions of the boundary-layer equations for given set of boundary condi-

tions, or by approximate solution method which is usually obtained from the

solutions of the integral momentum and energy equations.

In the following sections, a literature survey for the above-mentioned

methods will be presented.

2.1. EXACT SOLUTIONS

2.1.1. flat Plate with Uniform Surface Temperature.

The first exact solution of the free-convection problem for the verti-

cal flat plate was developed by Pohlhausen in 1921 (10). The basic boundary-

layer equations with constant properties were considered. By the introduc-

tion of the stream function and a suitable similarity transformation, he

demonstrated that the partial differential equations could be reduced to

ordinary differential equations. Integration of the resulting equations was

done for air (Prandtl number = 0.733).

Schmidt and Beckmann (12) conducted excellent experimental and



theoretical studies on the free-convection flow of air subjected to the

gravitational force about a vertical flat plate. Their experiments shoved

that Lorenz 1 assumption was invalid. In their theoretical development, they

assumed that the thicknesses of the layers in which the temperature and the

velocity differed appreciably from the values at infinity were small com-

pared with the height of the plate, and the assumptions were verified by

experimental observation. Their experimental measurements of the tempera-

ture profiles agreed well with their analytical results. Eckert (3) further

verified the experimental results of Schmidt and Beckmann (12) by means of

Zehnder-Mach Interferometer studies. Schuh (13) extended the numerical

calculations of Pohlhausen' s method by integrating the same equations for

Prandtl numbers of 0.733, 10, 100, and 1000. His calculated velocity and

temperature distributions showed that, as Prandtl number increased above

unity, the viscous boundary-layer became progressively thicker than the

thermal boundary-layer.

Ostrach (9) performed further calculations using electronic computer

techniques to obtain numerical solutions of the free-convection boundary-

layer equations for Prandtl numbers of 0.01, 0.72, 0.733, 1, 2, 10, 100, and

1000. These values of Prandtl number are representative of liquid metals,

gases, liquids, and very viscous fluids. It was found that the Grashof

number was the principal factor which determined the type of flow and, for

large Grashof numbers (Gr > 10 ), the flow was of the boundary-layer type.

Computation results for air of Pr - 0.72 and Pr = 0.733 were presented in

Ostrach' s paper. Ostrach' s results for Pr = 0.733 were compared with the

previously obtained results of Schmidt and Beckmann (12), and they were

found to be in agreement. Results for the heat-transfer coefficients were

in agreement with other experimental and approximate theoretical



investigations over the range of Prandtl numbers covered by both investiga-

tions. Ostrach noted that the velocity and thermal boundary-layer thick-

nesses could be estimated from the dimensionless velocity and temperature

profiles presented in his paper and pointed out that, for Pr > > 1, the

velocity boundary-layer was much thicker than the thermal boundary-layer.

However, no conclusion was drawn regarding the two boundary-layers thick-

nesses for low Prandtl numbers, though his results showed a noticeable

difference between their thicknesses for Pr = 0.01.

2.1.2. Flat Plate with Uniform Surface Heat Flux.

Sparrow and Gregg (15 J analyzed the problem of laminar free-convec-

tion from a vertical plate with uniform surface heat flux, by integrating

the transformed momentum and energy equations. The modified Grashof number,

t,
* eBqx

Gr„ (
=

, ) > was introduced in his analysis to replace the conventional
k v 3

gP<T„ - T„ )x
J

Grashof number, Gr (= ) , because the former containsx y z

quantities which would all be known at the beginning of a calculation whereas

the latter contains a temperature difference which is unknown at the begin-

ning of a calculation. Surface temperature variation and local Nusselt

numbers were calculated for Prandtl numbers 0.1, 1, 10, and 100. Results
Nu

of the Numerical calculations of
*

versus Pr were extrapolated to a
(Gr )

1/;>

x
Prandtl number of 0.01. Heat-transfer results were expressed in terras of

an average Nusselt number which was based on the difference between the

average wall temperature and the ambient fluid temperature. A comparison

between their results and those of Ostrach (9) was made for the range of

Prandtl numbers from 0.1 to 100. The resulting prediction of the heat

transfer coefficient for constant wall heat flux was found to be always



higher Chan the constant wall temperature results for the same local temper-

ature difference (T -T ) . However, the difference was less than 8X.
w " x

Further, it was pointed out that the experimentally determined Nusselt

numbers based on the temperature difference halfway along the plate were

very close to those for the constant temperature case.

2.2. APPROXIMATE SOLUTIONS

2.2.1. Flat Plate with Uniform Surface Temperature.

(i) Integral Method (or Von Karman-Pohlhausen Method).

The integral method most often employed in free-convection boundary-

layer flows is attributed to Squire (5). He analyzed the problem under

consideration by assuming a polynomial for the velocity and temperature

profiles which could be made to satisfy the boundary conditions. The temper-

ature distribution assumed for air was in fair agreement with the values

calculated by Schmidt and Beckmann (12), while the assumed velocity distri-

bution was not.

Eckert et al. (2) also analyzed the same problem by introducing the

same simplified assumptions of the boundary-layer as Squire did. For air,

the heat-transfer result calculated by his approximate solution agreed quite

well with the exact analytic solution obtained by Pohlhausen and the experi-

mental results of Schmidt and Beckmann. Nusselt number results were also in

good agreement with the results of Ostrach (9): within 107. in the range of

Prandtl numbers from 0.01 to 1000. Eckert, also, pointed out the fact that,

for high Prandtl numbers, the velocity boundary-layer is expected to be

thicker than the thermal boundary-layer. Furthermore, Eckert mentioned that

the inner part of the velocity profile, between the wall and the point of

maximum velocity, might change very little with Prandtl number in relation



Co the temperature profile, but that the outer part of the velocity profile

from the location of maximum velocity to the edge of the boundary-layer,

might become thicker, because the driving force for the flow results from

the temperature differences.

The assumptions made in the Squire-Eckert analyses vere as follows:

1. The thicknesses of the boundary-layers are finite.

2. The difference between the thermal and the velocity boundary-layers
thicknesses is negligible, namely, S , = 8 .

3. The expressions for the velocity and temperature profiles are given by

u = u £ (1 - h 2

x b o

• (T - T ) (1 - I)
2

where u is a characteristic velocity which is a function of x and is

to be determined. Their approximate methods resulted in a relation between

the local Nusselt number, Grashof number and Prandtl number of the form

Nu 0.508 Pr' (Pr + —-^ (Gr )^
x 21 x

Yamagata (16) made assumptions similar to those in Squire-Eckert

analysis. However, he tried to make the velocity and temperature profiles

more general than those used in Squire's analysis. A free parameter which

depends on Prandtl number was introduced in the velocity profile In order

that the form of the profile could change with Prandtl number over the whole

range of the practical interest. The following expressions were assumed for

the boundary-layer profiles:

u = u
x
0(i;, 0(f)=iu- y

l)
3 {i+i3-;wiS



T„ + (T - T ;»(-!), 811) = (1 - 1 )

3
(1 *n )

where
'J

= £ , and S is the thickness of the boundary-layer. X is a para-

meter to be determined and is a function of Prandtl number. Also, the fol-

lowing boundary-condition was introduced:

2
ay

3 u

y=0

It was noted that the velocity within the free-convection layer

increased gradually with the distance from the wall and, after the maximum

value was reached, velocity decreased asymptotically to zero. Yamagata

pointed out that it is very difficult to define the thickness of the veloc-

ity boundary-layer in free-convection for Prandtl number smaller than unity,

because the asymptotic decrease of the velocity profile to zero value made

the thickness of the boundary-layer ambiguous. He assumed the following

general expression for the Nusselt number,

Nu =X, (Gr Pr* 1

k

where £ is another parameter introduced. For the limiting cases of zero

and infinite Prandtl numbers, the Nusselt number becomes

Nu K, (Gr • Pr)
1

x 1 x

NUj[ = K
2

(Gr
x

• Pr
2
)* for Pr -

In other words, the parameter £ varies in the range of 1 < e < 2 for

Prandtl number in the range of - > Pr » 0. Values of s corresponding to

each Prandtl number were calculated in his paper.

Fuji! (4) proposed a "Modified Integral Method" to supplement inaccurate
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results of the velocity distribution obtained from Squire's method. He

suggested a velocity profile which included the feature of variable thick-

ness and had a free parameter, s, vhich depends on Prandtl number. Two

approximate solutions were presented, and the velocity and temperature

profiles were assumed respectively as follows;

1st method: For Pr <T 0.01

0(s1) = s>|e~
S

»(*!> - (1 k 1)e"'1

2nd method: For 0.01 < Pr < 1000

5 'j<»: 0(s1> = s-ie
-8

''

£ 't < 1: eci) = (1 + 1 ) (1 - 1 )

3

1 < ^<~ : 9(1) =

where T = y/ 6 , u = u 0(s7) , 9 = 9('|) .

It was pointed out that the second method would be most suitable as a sup-

plement to the Squire's solution (5), while the first solution would be the

simplest and the most accurate for liquid metals. The calculated results

showed satisfactory agreement with those of Ostrach (9) and Squire (5).

(11) Meksyn's Method.

Meksyn (7) devised an analytic technique for solving boundary layer

equations. It was reported in a series of papers which appeared in the

Proceedings of the Royal Society of London beginning 1948. Brindley (1)
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applied this technique to the classical problem of a free-convection flov at

a constant wall temperature for a vertical wall placed In an Infinite fluid

at rest. He found that the first three terms of the asymptotic series would

provide a good approximation. The computations were based on the first

three terms of the appropriate gamma function expansion for the temperature

and stream functions. Numerical results obtained for Pr 0.733 were com-

pared with those of Schmidt and Beckmann (12), and Squire (5). Values of

the mean Nusselt numbers agreed within 4% with those of Ostrach (9) for

various values of Pr i 1. However, for liquid metal, the technique did not

give good results due to mathematical difficulties.

2.2.2. Flat Plate with Prescribed Nonuniform Surface Heat Flux or

Prescribed Nonuniform Surface Temperature.

Sparrow (14) analyzed the problem of flat plate with prescribed non-

uniform surface heat flux or prescribed nonuniformed surface temperature by

the Integral method. He assumed that the thicknesses of the velocity and

the temperature boundary-layers were very nearly equal. The two boundary-

layers profiles were approximated by the following polynomials:

Velocity profile: u = u (?) (1 - ?)
2

x A 4

'

Temperature profile:

for prescribed nonuniform wall heat flux: T - T S* II - £i 2

2k •'

for prescribed nonuniform wall temperature: T - T^ = (T - T )(1 - ^) 2

where u
x

Is the characteristic velocity and S is the boundary-layer

thickness, and both are functions of x and Pr.
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Results were presented (1) for the wall-temperature distribution at a

prescribed distribution of wall heat flux, and (2) for the wall heat flux

along the plate at any prescribed distribution of wall temperature. Local

heat-transfer coefficients for both cases could be obtained from Sparrow's

results. The numerical calculations were made for fluids having Prandtl

numbers in the range of 0.01 to 1000. However, the derived results of

Sparrow's analysis could not be checked due to the unavailability of any

corresponding experimental data or any similar analysis for range of Prandtl

numbers considered. For the special cases of uniform wall temperature and

uniform heat flux, the heat-transfer results obtained were in good agreement

with those of other exact solutions and available experimental measurements.



CHAPTER 3

ANALYSIS

3.1. BASIC EQUATIONS

The physical model and the co-ordinate system to be used are shown in

Fig. 1. The x-direction extends vertically upward from the lower edge of

the plate for the case of heat transfer from the plate to the fluid and

downward from the upper edge of the plate for the case of heat transfer from

the fluid to the plate. The y-direction is measured in the direction of the

outward normal to the plate.

V

T > T

Gravity
Field

\\
\
\.
\
N

T < T

Fig. 1. Co-ordinate Systems
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The analysis will be performed for the case of heat transfer from the

wall to the fluid, but the results apply to both cases. A flat plate heated

to a temperature T is suspended in a large body of fluid, which is at

temperature T« . In the neighborhood of the heated plate, the fluid rises

because of the buoyancy force.

Integral Momentum Equation

To derive the equations governing the motion of the fluid, we consider

the momentum balance and the energy balance for the aggregate of fluid

particles within the control volume, abed, in the boundary-layer of Fig.

2(a).

>- .
d J<

/

I

a , b

/

/

x /

I

I

o

\
\

I:

\ '

i

/

(a) (b)

Fig. 2. Control Volume in Boundary-layer
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Let us consider a unit length in the direction normal to the x-y plan.

The rate of x-momentum inflow through face ab la

r
Sh

2,
p u dy

o

and the rate of x-momentum outflow through face cd is

p u dy p — ( I u dyj dx
o o

No momentum crosses face be, because x-component of the velocity at the

edge of the velocity boundary-layer is zero. The net outflow rate of

x-component momentum is therefore

— U udyjdx

The net outflow flow rate of x-component momentum is equal to the sum-

mation of the forces in the x-direction acting on the surfaces of the con-

trol volume. These forces in free-convection are

1. The shearing stress at the surface ad, - (T ) dx

T
S
h

2. The pressure on face ab, ' pdy

yx
y=0

3. The pressure on face cd, -
f

'

pdy — (i pdy) dx
[

l o
x

o

<*. The gravitational forces acting on the control volume, -
| pgdxdy
o

Since the velocity gradient, -~
, on face, be, is zero, no shearing

stress exists on the face, be.

Equating the forces to the rate of outflow of x-component momentum
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yields

A , ... A
(

i
r

h ^--^> -v^-r »*
y-0

However,

(T
yx

)

y=0
= P(—

1,

dx -P- B

P-P-
fid- T..

)

where 8 Is the coefficient of volumetric expansion of the fluid and p

is the density of the stagnant fluid. Hence,

d r&h 2 J fau\ . r*h
Ph. "

dy = -y[Tj) + &
h?~ g "J P8 dy

o l ''y=0 b

T^h
M TT "J ( P " P„> 8 dy

' ''y=0 b

_d f
h 2

.

(3»1 r
S
h

dx" J
U dy = " " Ty" * 8|S

J
(T - T„ ) dy (3.1.1)

o '
y/y=0 o

Integral Energy Equation

We consider the control volume, a'b'c'd', of Fig. 2(b).

Energy is convected into and out of the control volume, a'b'c'd', as a

result of the fluid motion, and there is also heat flow by conduction across

the interface. The energy flow rates across the individual faces of the

control volume, a'b'c'd', are as follows:
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1. Rate of energy convected into the control volume through face, a'b',

pc uT dy
" o

2. Rate of energy convected Into the control volume through face, b'c',

r o

3. Rate of energy convected out of the control volume through face, c'd 1

r^t d r^t
pc uT dy pc —

( uT 6y)dx
o

A. Rate of heat conducted through face, a'd',

1 3yVo

From the first law of thermodynamics, one can write

d f t ,. „ , / a T
dx. (T " T- »

udy ' "" T7 '3.1.2)

Equations (3.1.1) and (3.1.2) are the basic integral momentum and

energy equations. They can also be derived by integrating the following

three equations which express conservation of mass, momentum, and energy for

steady laminar flow in the boundary-layers.

d u a v77*17=0 (3.1.3)

17 +V 77 = V £*g/MT-T_) (3.1.4)
3y
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3 T '.IT 3
2
T

u '
"* v = &• 1 "3

1 si3x 3y 2
IJ.l.S;

ay

The limits of integration in such a case will be from y = to y = 6 .

3.2. NEW ANALYSIS

In this analysis the following four particular problems will be con-

sidered :

I. Flat plate with uniform surface temperature.

1. The case of high Prandtl number, Pr > 1.

2. The case of low Prandtl number, Pr < 1

.

II. Flat plate with uniform surface heat flux.

3. The case of high Prandtl number, Pr > 1.

4. The case of low Prandtl number, Pr < 1.

As mentioned in the literature survey, these problems have been exten-

sively studied, both theoretically ana experimentally. The selection of the

above mentioned cases will provide a basis for checking the validity of the

analysis presented in this report.

In spite of the fact that the integral method has been used in analyses

of free-convection boundary-layer flow problems to predict heat transfer

with acceptable accuracy, error in skin friction calculated by this method

could be significant. In addition, the theoretical relations derived by the

previous investigations predict much lower results for heat transfer to

molten metals (Pr < < 1) than those results obtained from the exact solu-

tions. These discrepancies are the result of the choice of temperature and

velocity profiles and the assumption that the velocity and thermal boundary-

layers are identical in thickness. Thus, it is possible that the degree of
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accuracy of the heat transfer prediction by the integral method, especially

at low Prandtl number, could be improved by assuming & , i & as shown in

Fig. 3.

For simplicity, we Introduce the ratio of the thicknesses of the

boundary-layers as follows: 5 ~
c

— for fluids of Pr > 1, ? < 1,
& h

f. £ h t.

and § = — for fluids of Pr < 1 , 5 < 1.
6
t

The integrals in the integral momentum and energy equations will be

evaluated by dividing the boundary-layers Into two parts; namely, for

Pr>l,y=Otoy=i> and from y = S t to y = S . , and for Pr < 1,
t t n

y = to y = 5, and from y=8,toy=6 .

3.2.1, Flat Plate with Uniform Surface Temperature.

The velocity and temperature profiles in the neighborhood of the plate

with uniform surface temperature are shown in Fig. 3 for the cases of Pr > 1

and Pr < 1, and in this analysis they will be approximated by the following

polynomials:

2

U - \ (fj U - f^) 13.2.X. 1)

T - T„ = (T
w

- T_ ) (l - -j-j (3.2.1.2)

where the characteristic velocity u and the boundary-layer thicknesses

& .
and S are functions of x and Pr and remain to be determined.

Equatlons(3.2.1.1) and (3.2.1.2) satisfy the following boundary conditions:
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(b) Pr ± l

Fig. 3. Laminar Free-Convection Heat Transfer from a
Vertical Flat Plate Surface to Fluid
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At y = 0; u 0, and T = T (3.2.1.3)

At y " ^
h'

u = °> And "^t
= ° (3.2.1.4)

At y - S
t

i T = T„ , and -^ « (3.2.1.5)

Case 1 . High Prandtl Number, Pr > 1.

For fluids of Pr > 1 the kinematic viscosity is greater than the thermal

diffusivity; as a result, the viscous effects penetrate much deeper into the

fluid than the thermal effects. Therefore, as illustrated in Fig. 3(a), the

velocity boundary-layer can be assumed to be thicker than the thermal

boundary-layer. It is also to be noted that despite the fact that there is

no temperature gradient in the region between y = S and y = S , the fluid
t h

is still in motion. This is due to the drag action created by the motion of

the fluid near the edge of the thermal boundary layer.

Substituting Equations (3.2.1.1) and 13.2.1.2) into the integral

momentum Equation (3.1.1),

IoS dH
C&

h •
u
x
2) =

3 8e lT»- T" 1 ^h -4- 13.2.1.6)*
h

Similarly, substituting the assumed velocity and temperature profiles

into the Integral energy Equation (3.'.'M yields

6 Zx
< M S *

tV = IT • (3.2.1.7)*

where

The details of the derivation of Equations (3.2.1.6) and (3.2.1.7) are
given in Appendices 1.1. and 1.2. respectively.



22

»-£-i^s 2

and S m —

-

&
h

In order to solve the differential Equations (3.2.1.6) and (3.2.1.7),

the assumptions are made that both u and o follow a power-law varia-

tion with x and that the ratio § is not a function of x. Thus,

'"l
u
x

= C.j x (3.2.1.8)

and o
h

= C
12

x . (3.2.1.9)

Introducing Equations (3.2.1.8) and 0.2.1.9) into Equations (3.2.1.6)

and (3.2.1.7) gives

2
2V V1

1 "l

11
C
12

X " J8MT„-T„) C
12

x
l
£

2m +n „ 2m, + n.-l

105

and

V'l „ „ 2 ,. ,3 -l*
2"!-1

C m -n

X— v x (3.2.1.10)
L
12

6~" C
11

C
12

M5 x " = a (3.2.1.11)

Since Equations (3.2.1.10) and (3.2.1.11) must be valid for any value

x, the value of the exponent of x must be the same on both sides of each

equation so that

2m +n -1 = n m -n

and m +2n -1 » ,
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from which

1 j I

"l
=

2
S

"l ' 4
'

Substituting these values of m and n back into Equations

(3.2.1.10) and (3.2.1.11) yields

CU
2
C
12

= 84 ji g,3(T
w

- T.. > Cu 5 " ^ v
] (3.2.1.12)

and

2 3
-1

C
11

C
12

= 8 Q lM ^ ' •
(3.2.1.13)

Solving Equations (3.2.1.12) and (3.2.1.13) simultaneously for C

and C. _i we get

C
ll <f»

%
** *

_1

K 5"3 H"
1 Pr^

{
^SLlI=l

f - C3.2a.14/

and

C
12

= (24)' M"* r {J* !T M"
1
* Prj* (^—*-

2 ] (Pr)
k „-* f-i 1-1 ,-3 M-i . D„i* JiiiZvjLlril ,,_,-*

(3.2.1.15)

The resultant expressions for u , S h and £ are

(3.2.1.16)

The details of the derivation of Equations (3.2.1.14) and (3.2.1.15)
are given in Appendix 1.3.
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5>* = (2*)* IT* r1

[i r
3
M"

1
Pr}* Or/* Pr"* , (3.2.1.17)

and

* = (24)
4 m"* [|2 S"

3
M
_1

+ Prj* Gr^* Pr^ . (3.2.1.18)

The rate of heat flow from the plate surface Is given by the following

equation

^y=0
q = " H"^l __„

= h
x
(T
w " T» J (3.2.1.19)

where h
x

is Che local film coefficient of heat transfer.

Using the temperature distribution of Equation (3.2.1.2), we obtain

feJ^O
= ' T~

t

(T
w " T- > • (3.2.1.20)

Therefore,

\-
5^

• (3.2.1.21)

By definition, the local Nusselt number is

h x
x

"x k
Nu~ " ~

• (3.2.1.22)

Substituting Equations (3.2.1.18) and (3.2.1.21) into Equation

(3.2.1.22) gives

Nu - -f*x ,S

t

2(24)-i Mi
( ifeM-

1
+ Pr|-i Gr

x
4

Pr^
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Nu
x

=
(f)

M* [J r3
M
_1

+ Pr[
_i

Gr
x
* Pr

%
. (3.2.1.23)

By rearranging Equation (3.2.1.23), it follows that

1*

2 *
Nu = (f)x 3

2^£
V Gr * (3.2.1.24)

lift-
9 -***

This equation can also be rewritten in the form

NU
*

(
8/- M_£jL

) m (3.2.1.25)

(OrJ 3 ^g^M-^P.

Equation (3.2.1.25) will be discussed later.

Case 2 . Low Prandtl Number, Pr < 1.

For fluids of Prandtl number less than one, the velocity and temperature

profiles are qualitatively shown in Fig. 3(b). Because the Prandtl number

is less than one, the kinematic viscosity is smaller than the thermal dif-

fusivity. Therefore, the thickness of the velocity boundary-layer can be

considered to be smaller than that of the thermal boundary-layer.

Let T be the temperature at the edge of the velocity boundary-layer;

namely,

T = (T) cy=&
n

Using T , we can write the integral momentum equation as

s s.

-4 i
h

u
2

dy = - v (-2JA)
«. p

r h
( T - T ) dy (3.2.1.26)

dx
b

" y y-0 4
S
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The limits to be applied to the right-hand side of the integral energy

equation (3.1.2) can be divided into two parts as shown below:

S 6 5

-^ r
C

(T - T. ) u dy = ^ [

h
(T - T_ ) u dy

jjjj-

P ' (T - T„ ) u dy

ST
- a (~)

5y
y=0

Since the velocity at the edge of the velocity boundary-layer vanishes,

then

r

s
t

I

(T - T„ ) u dy =

\

As a result, the integral energy equation reduces to

jjj-
r
h

(T - T„ ) u dy = - «. (-|I, (3.2.1.27)
b y y=0

Substituting Equations (3.2.1.1) and (3.2.1.2) into Equation (3.2.1.26)

yields

105 ex
* u

h -» ' - » r "w " *- " - 3 ' « h " '
"f

CS h
• u

x
) = g p (T

w
- T. ) | (1 - |g) S .

h

(3.2.1.28)*

where § is ratio of the velocity boundary layer thickness to the thermal

boundary-layer thickness, and this ratio is assumed to be Independent of x.

Inserting Equations (3. 2. 1 . 1 ) and (3.2.1.2) into Equation (3.2.1.27)

yields

The details of the derivation of Equation (3.2.1.28) are given in
Appendix 11.1.
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6to (N '

h
- V = T (3.2.1.29)

where

4 5 20 ^

In order to solve Equations (3.2.1.28) and (3.2.1.29), we introduce

assumptions similar to those made in Case 1. Thus,

2
"
x

= C
21

x (3.2.1.30)

and

K "26
h

= C
22

x (3.2.1.31)

Introducing Equations (3.2.1.30) and (3.2.1.31) into Equations

(3.2.1.28) and (3.2.1.29) gives

2m2* n
2 2

2V V 1 n
9 5 9

TSS Ca C
22

x . 8fi (T
w
-T_) C

22
x

2 (<-§ ?
2

)

1

m9"n 9
" C

91
C99~ V x (3.2.1.32)"21 22

V n
2 2 -1

ra
2
+2n

2
- 1

and -

—

- - " ' » e J

6
C
21

C
22

N ? x = a
• (3.2.1.33)

By the same argument as was employed in Case 1, values of m and n

are found to be

n
2 " 2 '

and n
2

=
4

The details of the derivation of Equation (3.2.1.29) are given in
Appendix 11.2.
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Substituting these values of m and n into Equations (3.2.1.32)

and (3.2.1.33) yields

C
21

2
C
22

" 84 (*» (T„ " T- > C
22

( | -
f |

2
) - C

21
C^" 1

v) (3.2.1.34,

and C C
22

2
= 8a N

-1
§ . (3.2.1.35)

Solving Equations (3.2.1.34) and (3.2.1.35) simultaneously for C and

C
22

. we get

C
21

- (,)* N-* g[l -
f

t}
k
[^N" 1 Pr^

[

g
S

(

;2

"
T
"

'

f
»

(3.2.1.36)*

and C
22

. ,.,* f* [1 -
f^ (^ ^

{

' » ";
2

-
?
"

'

J'
«,-*

•

(3.2.1.37)

The resultant expressions for u , J, and S are

Ux =(a)^^ ? v( 1 .
f
^U ?N

-
1+Pr^i^l^| „*

(3.2.1.38)

^ . (8)* »-* fl -*|.V"*f-f* N-
1

Pr l* Gr "* Pr"^
3 M IT? * Pr

]
Gr

x
Pr ' (3.2.1.39)

and

k. (8) * N
-i r i L.^pu^-' t a* ft -k Pr-* . ,3 . 1 . 1 .4oi

The details of the derivation of Equations (3.2.1.36) and (3.2.1.37)
are given in Appendix 11.3.
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The velocity and temperature profiles in the neighborhood of a plate at

uniform surface heat flux are qualitatively illustrated in Fig. 3 for the

cases of Pr > 1 and Pr < 1. In this analysis, the following polynomial

expressions will be used to approximate the profiles:

2

u = u (-?-) (1 - -?-) (3.2.2.1)
x \ &

h

and

qS
t v

2

T - T„ •
-JJ»

(1 - -£-) (3.2.2.2)

where the velocity u and the boundary-layer thicknesses, &, and S ,

are functions of x and Pr, and remain to be determined.

The temperature and velocity profiles expressed by Equations (3.2.2.1)

and (3.2.2.2) satisfy the following boundary conditions:

At y = 0; u = 0, and q = - k 0^*)
s yy y=0

At y = S, ; u=0, and tt^ =
h 3y

At y = S : T = T_ , and — =
t

' ay

Case 3 . High Prandtl Number, Pr > 1.

The viscous and thermal effects in this case will follow a pattern

similar to that discussed in Case 1; therefore, the velocity boundary-layer

is considered to be thicker than the thermal boundary-layer.

Substituting Equations (3.2.2.1) and (3.2.2.2) into the integral

momentum equation (3.1.1) yields
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h

Similarly, substituting Equations (3.2.2.1) and 13.2.2.2) into the

integral energy equation (3.1.2) gives

k 7T tM ? h .

Z
u ' = a (3. 2. 2. A)*

6 ax t x

where

In order to solve the two differential equations (3.2.2.3) and

(3. 2. 2. 4), assumptions similar to those made in Case 1 are introduced here.

Thus,

u
x

= C
31

x
3

(3.2.2.5)

3
and o

h
• C

J2
x (3.2.2.6)

Introducing Equations (3.2.2.5) and (3.2.2.6) into Equations (3.2.2.3)

and (3.2.2.4), we get

2m +n 2m +I1-1 2n

-W5 C
31

C
32

x -hP (
k
)C

32 * '« - C
31

C
32

m -nxv (3.2.2.7)

and

m +2n m + 2n -1

6
C
31

C
32 MS X = °

*
(3.2.2.8)

The details of the derivation of Equations (3.2.2.3) and (3.2.2.4)
are given in Appendix 111.1 and 111.2 respectively.
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The value of the exponent of x must be the same on both sides of

Equations (3.2.2.7; and (3.2.2.8) so that

2m„+ n_—1 = 2n_ = m„ - n

and m-+ 2n -1 =

Solving for m and n , we get

m
3

=
5

, and n
3

- -
.

Substituting these values of m and n into Equations (3.2.2.7) and

(3.2.2.8) yields

Si' C32= "(»«*<*> C
32

2
?

2 - C
31

C
32

_lv

}
13.2.2.9)

and

C
31

C
32

2 = 6 ° tM ?
3)

• (3.2.2.10)

Solving Equations (3.2.2.9) and (3.2.2.10) simultaneously for C and

we get

Sl - 36
l0

M
S
t'

X
v(5» ?"3 M"

1

Prf* [^ («,]* Pr~* (3.2.2.11)**

C32> we get

and

C
32

- 36^ M~* C"
1

f ^f
^ M"

1
Prj

1 (^ tjjp P r
~^

. (3.2.2.12/

The resultant expressions for u , £ . and 5 are
x h t

**
The details of derivation of Equations (3.2.2.11) and (3.2.2.12)

are given in Appendix 111.3,
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u
x

- 36
10

M~Vl v (-2,-3 „-l
*r)*{f-2 C^Pr'U , (3.2.2.13)

5|- 36
J m'V 1

[5* r3
M"

1
Prj

1
(Gr/)"5 Pr~

?
, (3.2.2.14)

k - 36* m"
1^r3

M-
1

Pr}
5 (Gr/,"1 Pr~* , (3.2.2.15)

where Gr is the modified Grashof Number defined as follows

4

e
* bP qx

x
,

2
k

Surface Temperature Variation

When a value for the uniform surface heat flux is specified, the sur-

face temperature variation can be calculated.

From Equation (3.2.2.2), the surface temperature variation with x can

be expressed by

T
w " T- =

(

2k
,
"'S

t
• (3.2.2.16)

Substituting Equation (3.2.2.15) into Equation (3.2.2.16), we get

1

T - T - A5 (S*-)
j
0-8 (10 M)

-1
S

"3
PrlV "k 1

) 2 * • (3.2.2.17)
Pr (Gr

2
) N

Details of the derivation of Equation (3.2.2.17) are given in
Appendix III. 4.
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Equation (3.2.2.17) can be rewritten in the form

(«)

* 5 9 5
(Gr )

D
= (rr

1

0.8 (10 M)~
X ^~3

Pr l

2
Pr M

(3.2.2.18)

From Equations (3.2.2.17) and (3.2.2.18), it can be seen that the tempera-

ture difference between the wall and the ambient, T - T^, , is proportional

to the fifth root of x. Therefore, the surface temperature variation with

distance along the plate is expressed by the formula,

CT - T„ ) 7
w x _ ,X)5

(T - T ), L '
(3.2.2.19)

where L is the length of the plate surface for which the flow is laminar.

By definition, the local Nusselt number is

h x

Nu
,

(-) •

CT - T„ ) J V (3.2.2.20)

Substituting Equation (3.2.2.18) into (3.2.2.20) leads to

k
I 2

Nu = (-) — —
[0.8 g (10 M) + Pr

* 5
(Gr ) (3.2.2.21)

Rearranging of Equation (3.2.2.21) yields

Nu

1 9
6 5

* 5
(Gr )

0.8 C"
3

(10 M)"
1

+ Pi

(3.2.2.22)

Equation (3.2.2.22) will be discussed later.
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Case 4 . Low Prandtl Number, Pr <; 1.

Referring to Fig. 3(b). Let T be the temperature at the edge of the

velocity boundary-layer.

The integral momentum equation for this case takes the form of Equation

(3.2.1.26), i.e.,

.5. - 4.

)

y=0

The integral energy equation takes the form of Equation (3.2.1.27),

I.e.,

—
J

u dy = - v (-|^) + g)3
I'

h
(T - T

q
) dy (3.2.2.23)

o

T- r (T - T_ ) u dy = - a (-|2) (3.2.2.24)dXJ
o 3y

y=0

Substituting Equations (3.2.2.1) and (3.2.2.2) into Equations

(3.2.2.23) and (3.2.2.24) yields

h

and

6 d* [
N ?"l8

h

2
uxl

= °
• (3.2.2.26)*

where

I i fc . 1 ».2N «i.Afc + J.t
4 5 ^ 20 S4 5^ 20

and

Derivations of Equations (3.2.2.25) and (3.2.2.26) are given in
Appendices IV. 1 and IV. 2, respectively.
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By a procedure similar to Chat employed in Case 1 of Section 3.2.2,

both u and S> . are assumed to follow an exponential variation with x.
x h r

Thus,

4
u = C.. x (3.2.2.27)
x 41

and

n,

^h " C42 X - (3.2.2.28)

Introducing Equations (3.2.2.27) and (3.2.2.28) into Equations

(3.2.2.25) and (3.2.2.26), we get

2lV n
4 2

2m,.* n ,.-l < - ->
2n

>

105
C
41

C
42

2ra. + n,-l 2n

1
m
4
_n

4
- C C~ x v (3.2.2.29)

and

m, + 2n, m, + 2n,-l

6~ C
41

C
42

X £~ N = a
•

(3.2.2.30)

The value of the exponent of x must be the same on both sides of

Equations (3.2.2.29) and (3.2.2.30); therefore,

2m
i,

* "
4 " 1 = 2n

4 " ra
4 " n

4

and

Solving for m, and n. , we get

3 a 1m
4

= -
, and n^ = -
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Substituting these values of m, and n back into Equations

(3.2.2.29) and (3.2.2.30), we get

C
41

2
C
42

=
"(i 8^ C

U1
(1 "f^ " C

41
C42~M '3. 2. 2.31)

and

C
41

C
42

2
- 6a N"

1
g . (3.2.2.32)

Again, solving Equations (3.2.2.31) and (3.2.2.32) simultaneously for C,

,

41

and C
42 ,

13 3 2 2 2 1

C = 543 N~3 S:
5

(, -itPvUt.- 1 . P.\" 5 fsi- ,S,]5 p
~5

(3.2.2.33)

41 "
»> I* 3 b J [25

«"
**J [ v 2 V

**

and

c
A2

=i23
N

-"

?
3

(l .
f
^F(_

f?N
-i

+ pr^ (
a

)p pr
-f

**
(3.2.2.34)

The resulting expressions for u , S. and & are
x h t

u
x

- 54
3 /h" [l -

f
^V^N"1

* Pr)

_
"

[f2 $y J } .

(3.2.2.35)

th . 12
5 ,3 {

5 ^ . 1^-3
J_1,

N
-1

+ pr |j ^'S pr
"f

( (3i2 _ 2i36)

and

**
Details of the derivation of Equations (3.2.2.33) and (3.2.2.34) are

given in Appendix 111.3.
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^ - 12* N~* f5
(l -

f
gP U$K-1 ?J IGr/f* J . (3.2.2.37)

Su rface Temperature Variation

By a procedure similar to that employed In Case 3, the surface tempera-

ture variation can be calculated from Equation (3.2. 2. 2) by letting y -*
;

thus,

Tw"^ =
if S

t
• (3.2.2.38)

Substituting Equation (3.2.2.37) into Equation (3.2.2.28) yields

1If , l5

t„ " t. - lh* («) °1 (1Vr
l

g - P-
, (3.2.2.39)

**

k 2 * 4 2
(fr Gr

x
N | (I -|?)j

where Gr is the modified Grashof number.

Equation (3.2.2.39) can be rewritten in the form,

1

t-t . * , i I „ „ ,,„ „,-i r

^
X 8

[pr
2 N| 4

(1-f?) J

From Equations (3.2.2.39) and (3.2.2.40), it can be seen that the

temperature difference between the wall surface and the ambient, T-T
w °°

is proportional to the fifth root of x.

The surface temperature variation with distance along the plate is

Details of the derivation of Equation (3.2.2.39) are given in Appendix
III. 4.
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(T - T ) 7—- *- = (Z) 3 (3.2.2.41)
(T - T ), V

By a procedure similar to that employed in Case 3, the local Nusselt

number can be written as

H»«* (l-fS)Pr 2 ^
Nu = (-)- ^ (Gr ) - . (3.2.2.42)

* J
' 0.8^(10 N) * * Prj

X

Rearranging Equation (3.2.2.42) yields

Nu„
8
i( NgSl-f^,Pr2

f
= (?) *-;

1 • (3.2.2.43)
. 0.8 | (10 N) + Pr

(Gr r

Equation (3.2.2.43) will be discussed later.

3.3. LOCAL NUSSELT NUMBER CALCULATIONS

In order to be able to calculate the local Nusselt number for the four

cases discussed in the previous section, it is necessary to evaluate the

parameters ? and § in Equations (3.2.1.25), (3.2.1.43), (3.2.2.22), and

(3.2.2.43). In the analysis, it was assumed that K and £ were only

functions of Pr. For simplicity it was assumed that

K -
I

(Pr)

for Pr > 1

1

£ « (Pr) for Pr < 1

where T is a parameter to be determined.
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In Equation (3.2.1.25), T was selected so that the prediction of

Nu

r by that equation will match the prediction of the exact solution
(G^/4)*

of Ostrach (9) at corresponding values of Pr. It is to be recalled that

Equation (3.2.1.25) is applicable to fluids of Pr > 1, when the wall

temperature is constant. The values of Pr selected for the matching pro-

cess were 1, 10, 100 and 1000. Over this range of Pr, it was found that

T could be approximated empirically by

T - (Pr)°-
42Pr

"°"m
. (3.3.1)

Nu
Equation (3.3.1) is plotted in Fig. 4. The prediction of -—r given

(Gr /4)
4

x

by Equations (3.2.1.25) and (3.3.1) is shown in Fig. 5. The results of

Ostrach (9) and the approximate solution of Eckert (2) are also plotted on

the same figure for comparison.

Fig. 4 shows that T varies from 1 , at Pr = 1, to 2.39 at Pr = 1000.

Also, the change in the value of "r is negligible in the range of Pr

between 100 and 1000. As anticipated, Fig. 5 shows that the prediction of

Nu

T of the present analysis is in fair agreement with the prediction
(Gr

x
/4)*

of Ostrach (9) except for values of Pr between 1 and 4. In general, the

7k

Nu
approximate analysis of Eckert (2) predicts higher values of over

(Gr /4)*

the whole range of Pr. This might be due to the fact that, in Eckert 1 s

analysis, it was assumed that S = S .

h t

In a similar manner, the value of the parameter T In Equation

Nu
(3.2.2.22) was determined by matching Its prediction for 1— with

(Gr *) 1/5
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the prediction of the exact solution of Sparrow and Gregg (15). Values of

Pr selected for the matching process were 1, 10, 100. It was found that

the same empirical relation for T given by Equation (3.3.1) and plotted in

Fig. 4 is also applicable to this case. This means that the ratio of the

thicknesses of the thermal boundary-layer to the velocity boundary-layer

does not depend on the boundary condition at the plate surface for fluids of

Pr > 1. It is to be recalled that this is the case of fluids of Pr > 1

with constant wall flux at the plate wall.

Nu
Figure 6 shows the prediction of

*
by Equation (3.2.2.22) for

(Gr )

x

various Prandtl numbers. On the same Figure, results of Sparrow and Gregg

(15) as well as the results of the approximate solution of Sparrow (14) are

also shown. Despite the fact that the selection of T in this analysis was

based on matching the prediction of Equation (3.2.2.22) with the prediction

of the exact solution of Sparrow and Gregg, at Prandtl numbers 1, 10 and

100, the agreement between the prediction of the present analysis and that

of Sparrow and Gregg for 10 < Pr < 1000 is fairly good. Figure 6 also shows

that the approximate analysis of Sparrow (14) predicts higher values for

Nu

J j
., over the whole range of Pr. This also may be due to the fact

(Gr
x

)

1/5

that Sparrow assumed in his analysis that S . = S
h t

For fluids of Pr < 1, the exact solution of Ostrach is available only

for Prandtl numbers of 0.733 and 0.01. Following the same procedure as was

employed with Equations (3.2.1.25) and (3.2.2.22) in determining T , it was

found that the value of T in Equation (3.2.1.43) must assume the form

^ <
Pr > • (3.3.2)
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Figure 7 shows a plot of Equation (3.3.2). Equation (3.3.2) was used in

Nu

evaluating r in Equation (3.2.1.43). The results are plotted in

(Gr /4)*
x

Fig. 8. On the same Figure, the results of the exact solution of Ostrach

(9) as well as the results of the approximate solution of Eckert (2) are

Nu

also shown. Values of from the exact solution of Ostrach in the

range of 0.01 < Pr < 1 are plotted in Fig. 8. The results of the present

analysis are slightly lower than the prediction of Ostrach for Pr < 0.1.

Nu„
The approximate analysis of Eckert (2) predicts higher values of

(Gr /4)*

for Pr > 0.06 and lower values for Pr < 0.06.

For the last case, namely, the case of natural convection about a

vertical plate with constant heat flux for fluids of Pr < 1, Sparrow's

paper (15) reported only the results of the exact solution for only one

Prandtl number, namely, 0.1. Due to lack of information needed for this

case, it was assumed that T as used in Equation (3.2.2.43) could be deter-

mined by Equation (3.3.2). If this is the case, one can assume that, for

fluids of Pr < 1, the ratio of the thickness of the velocity boundary-layer

to the thickness of the thermal boundary-layer is independent of the boundary

Nu
condition at the wall. Results of the prediction of J~

,

given by

(Gr )

l/5

x

Equation (3.2.2.43) are shown in Fig. 9. On the same Figure, results of the

approximate solution of Sparrow are also shown for the sake of comparison.

The curve of heat transfer coefficient predicted by the exact solution

of Sparrow and Gregg (15) was drawn by extrapolation of their results from

Pr > 1. Figure 9 shows that the approximate analysis of Sparrow (14)
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Nu

predicts values of ^ slightly higher than those of the present

CGr )

n
x

analysis for values of Pr > 0.03 and values lower than those of the

present analysis for Pr < 0.03.
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CHAPTER 4

CONCLUSIONS

The problem of laminar free-convection on a vertical plate with uniform

wall temperature or uniform heat flux at the wall was investigated by apply-

ing the Karman-Pohlhausen method. The analysis was made for fluids whose

Prandtl numbers are either greater than, less than, or equal to one.

Unlike previous investigations, the assumption that the thicknesses of the

velocity and the thermal boundary layers are identical was not made. In the

analysis, it was assumed that the ratio of the thicknesses is a function of

Prandtl number only, i.e., it was assumed that

for fluids of Pr > 1« !_
l

m
Pr

and that

1

1

« Pr for fluids of Pr < 1

The resulting expressions for Nusselt number, for the four cases analyzed

required a knowledge of the parameter T . "r was determined by matching

the theoretical predictions in this analysis with the prediction of known

exact solutions at corresponding Prandtl numbers. From the results of the

Investigation, the following conclusions can be drawn:

1. For the case of a vertical plate with uniform wall temperature for

fluids of Pr > 1, the parameter or is a function of Pr. The prediction
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Nu
of r of this analysis is slightly lower Chan the prediction of

(Gr ll*)
X

x

Eckert's approximate analysis over the range of Prandtl number investigated,

namely, 1 < Pr < 1000.

2. For the case of a vertical plate with uniform heat flux, for fluids

of Pr > 1, the parameter -r was identical to that of the previous case.

This means that the ratio K is independent of the boundary condition at the

Nu

wall. The prediction of *~T7s °^ tne present analysis is lower than
(Gr )

x

the prediction made on the basis of Sparrow's analysis (1A).

3. For fluids of Pr < 1, in the case of a vertical plate with uniform

wall temperature, the parameter or is also a function of Pr. The approxi-

Nu
mate analysis of Eckert (2) predicts higher values of —r for fluids

(Gr /4)*
x

of Pr > 0.06 and lower values for Pr < 0.06, than does the present

analysis.

4. For fluids of Pr < 1, in the case of vertical plate with uniform

heat flux, it was assumed that T is identical to its value in the case of

the plate at constant wall temperature. If this is the case, the ratio of

the thickness of the velocity boundary-layer to the thickness of the thermal

boundary-layer is independent of the boundary condition at the wall. For

this case, the approximate ana / i of ?~ :rrow (14) predicts values of

Nu

^ . slightly higher than those of the present analysis for fluids of
(Gr )

/J
x

Pr > 0.03 and values less than those of the present analysis for Pr < 0.03.



NOMENCLATURE

Symbols
m
i

C . Constant In the equation u C. x and defined bv Equations
il x ll - M

(3. 2.1. 14), (3.2.1.36), (3.2.2.11) and (3.2.2.33)

n
i

C Constant in the equation 6 = C x and defined by Equations

(3.2.1.15), (3.2.1.37), (3.2.2.12) and (3.2.2.34)

c Specific heat at constant pressure, Btu/slug deg F

2
g Gravitational acceleration, ft/sec

h Local film heat transfer coefficient, Btu/hr sq ft deg F

K E Constant in the equation Nu = K £ (Gr Pr
£

)xx
k Thermal conductivity, Btu/hr ft sq deg F

L Length of the flat plate over which the flow is laminar, ft

M Function defined by the equation M= 4-7? + ™£ 2
. dimensionless

m
m^ Exponent in the equation u = C. x , dimensionless

m Parameter defined by the equation m' = s , dimensionless

N Function defined by the equation N= 4-J? + dj' ?
2

. dimensionless
n

.

n^ Exponent in the equation 6 = C x x
, dimensionless

q Heat flux rate at the wall, Btu/hr sq ft

s Parameter in the approximate velocity profile suggested by Fujii,

dimensionless

T Static temperature, deg F

T^ Temperature at the edge of the velocity boundary-layer, deg F

T Wall temperature, deg F

T„ Ambient temperature, deg F
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u Velocity component in x-direction, ft/sec

u Characteristic velocity, ft/sec

v Velocity component in y-direction, ft/sec

x Distance measured along the flat plate from the leading edge, ft

y Distance measured normal to the flat plate, ft

M Thermal diffusivity, ft /sec

P Coefficient of volumetric expansion, - j ("jr) , deg R™

!
P

"f Parameter in the equation ? = ——-— , dimensionless
Pr

o Boundary-layer thickness when S, = S = S , ft

6, Velocity boundary-layer thickness, ft

& Thermal boundary-layer thickness, ft

4 Parameter in equation Nu « K 6 (Gr • Pr' ) suggested by Yamagata

*a Ratio of thermal boundary-layer thickness to velocity boundary-layer

& t
thickness, K = ~r~ , dimensionless

6 h

"1 Similarity variable, \ = -^ , dimensionless

T — T
9 Dimensionless temperature profile, 9 — ^r~

w "
/* Absolute viscosity, slug/ft sec

2v Kinematic viscosity, ft /sec

C, Ratio of velocity boundary-layer thickness to thermal boundary-layer

5 h
thickness, q = -r— , dimensionless

°t
" Density, slug/ft

yx

3

f
vv

x-direction tangential shear stress on the flat plate surface,

lbf/ft
2

Dimensionless velocity profile, = —
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Dlmensionless Groups

3

Gr Grashof number based on x,
g p, (T - T„ ) x

Gr Modified Grashof number based on x, ^

—

^-—~
* kv 2

h x

Nu Local Nusselt number based on x. ——
x k

c„r v
Pr Prandtl number, -~— « —

Subscripts

h Denotes velocity field

i Denotes case number of the problems

t Denotes thermal field

w Denotes the wall

00 Denotes evaluation at undisturbed conditions
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APPENDIX I

1.1. Derivation of Equation (3.2.1.6)

The derivation will be conducted by substituting Equations (3.2.1.1)

and (3.2.1.2) Into each term of Equation (3.1.1);

J
&h

u
2
dv =

;

Sh
u
x

2

(-f-)

2

(1 - -t" dy .

o o h h

Let -*- - t,

Then

dy = &
h

drj

This leads to

/
h ***-£ u

x

2
,
2 (l-,)^S

h
d,

u
x

2
6
h J

1

^
2 (l-^dr,

1 2
c

105
U
x •

& h

Therefore,

dx J
" "' " 105 dx

l "h u
x

irh 2 . 1 d , c 2,
u dv 77^ x: ( 5 u • u. ) • (i. i.i)

The shear stress at the wall is given by

u (~—

)

y z r 3 y' ' y=0



However,

_u B u dl _ 1 , au
dy a 1 dy " &

h

so that

a u __ a

[
u
x

>) (1 - 1 )

2
} = a

x
(1 - 4<7 - 3T

2
)

but

y y=0 h ^=0

1=0

therefore.

Also,

60

' y-Q h

r
s
h r

6
t A

<T - T_ ) dy = ' (T - T„ ) dy +
J

(T - T„ ) dy .

o o "S

But, f.or y •> o , T T„ ; therefore,

S

r h
CT - T_ ) dy =

t



r
£
t r

8
t v

2

I

(T - T_ ) dy =
J

CT
w

- T_ ) (1 - -J-) dy00 t

fl --§* C-f") ]dy = | CT
w

- T. ) S
fc
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Thus,

r
h

(T - T„ ) dy = 7 (T - T_ )
S

,
J 3 w t

(1.1.3)

Substituting Equations (1.1.1), (1.1.2) and (1.1.3) into Equation

(3.1.1), we obtain

Hv lnS v h X ^ ° l w 1dx 105 x h'

-
2

' '4gP (T -T.jt-S,rrr 7(11 .4,) = rg6 (T - T„) Co - v —^ . (3.2.1.6)
105 dxxh3 r w h 6,

n

1.2. Derivation of Equation (3.2.1.7)

The derivation will be conducted by substituting Equation (3.2.1.1) and

(3.2.1.2) into each term of Equation (3.1.2):

r
S
t r

S
t-

2 2

(T - T„ ) u dy = (T - T_ ) (1 - -*-) u (-£-) (1 - -£-) dv
o o t h h

c 2 2

- U
X "w" 1-*/ ' ( t-f-) 'I" «"f-> CX--J-) dy

o t t t
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" u
x

(T„" T-\r
' <*-£-> [l-2 (l*t ) <-f-)

o t t

9
2 3 4,

(1 + 4 £ + O (-£-) - 2? U + g ) (-£-) + £
J

(-jH [dy
S
t

6
t

6
t >

where £ = "7

—

A
h

After integration we get

J
St CT-T^udy-u^^-T^S^f^-jif^t 2

(1.2.1)

Now,

_l = _5_r (T _ x_) (i - -£->
3 y 3y I w "• b

2 CT
w
-T„) (1 --|-) <--£-) .

From this,

H . 2

y=0 ' \
("57 }

_„
= "X (T

-
" T- } • (I - 2 - 2)

Substituting Equations (1.2.1) and (1.2.2) into Equation (3.1.2) yields

d

dx(.!t t w
x ~- '12 15 ? M ?

j 6 w
T„ ) .

(1.2.3)

i-*c*£ft 2 -"

As a result, Equation (1.2.3) can be rewritten as
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z £[**.**<)' + (3.2.1.7)

1.3. Derivation of Equations (3.2.1.14) and (3.2.1.15)

From Equation (3.2.1.13), we have

2 3
_1

Cu = 8 o (C
12

M K ) (1.3.1)

Substituting Equation (1.3.1) into Equation (3.2.1.12), we get

64 a. - CV3 (^ 3

) •»[-? (T
w

- T„)Z - 8cjv C
12

"3
[Mt

3

j

3r 16 a 2
[ M^

3
\ = 21

12
(T - T_ ) ? - 8 av [m£

3

]

C —2 —1

or -lf-gpCT
w

- T.)^ -
^f

a 2 {m^ 3
')

+ 8avfM^ 3
'

Then,

C^4
= 3 f

gf,
(T
w

- T.)^j l

|8 (M^ 3
) Ma 2

(M^3
) + 0-

(24)* ^ (HK) ^ (M^;
3

) + ~] (£)
12

or C
12

- (24)* H-* ^
f£ K

^ M"
1

* Prf
\

%>\ ^

(3.2.1.15)

Substituting this value of C into Equation (1.3.1), we get

(24)"'s M^l^i:"3
M
_1

+ Prp^
I

Cu =8» (M £ ) (24)" M < [if *
3
M

l +PrJ-*.-E-JL V
(jr)
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(3.2.1.14)
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APPENDIX II

II. 1. Derivation of Equation (3.2.1.28)

T - T « (T - T„ ) - (T - T„ )

s s ^

Substituting Equation (3.2.1.2) into the above Equation, we get

S
h

2

T - T = (T - T_ ) (1 - -?-) - (T - T„ ) U - -T-)
s w o W "

h
h

where ? = -y—
.

Hence,

& S

J
h

[(T - T_ ) - (T
s

- T„ ) }dy =
J

h
(T
w

- T„ ) f 2 £ (1 - -£-)

o oh
?
2
ti--tT>}o»- "v" 1-' &

h'
£(1 -f 5)

(II. 1.1)

Substituting Equation (I. 1.1) and (1.1.2) and (II. 1.1) into Equation

(3.2.1.26) yields

r~ -p(&.-u 2
) = g(J(T -T ) £ (1 - ft) 8 - ^ -r-

2-

105 dxhx °
I w ~ 3 ^ h i> u

h

(3.2.1.28)



II. 2. Derivation of Equation (3.2.1.29)

By a procedure similar to those in Appendix 1.2, each term of Equation

(3.2.1.27) will be evaluated:

S S 2 2

f

h
(T - T„) u dy = "

h
(T - T„)(l - -*-) u (-f-)U - -£") dy

% o h h h

S 2 2

= u (T - T_ )
" (1 - -f~ I ) ("f") (1 - ~H dy

o h h n

8 (- 2 2 3

- u (T - T >
I 1 -t 2 CI § )(-c-) (1 «S+ 6 >Hf-)

x w " i I \ \ s
h

4 2 5 ,

- 2 5 (1 S, ) ("£-) + £ (-f->
> dy

Let

Thus,

u
x

(T„- T »> s
h Ii-TF^ +

65

-i-H*iJt

r h
(T - T„ ) u dy • ^ N • & u (T - T„ ) . (II. 2.1)

Substituting Equations (1.2.2) and (II. 2.1) into Equation (3.2.1.27),

we get

d r
1 c t 2 a—

)
- N- o, 'U • (T - T„ ) - V- (T - T„ ) .

dx [ 3 hxw "•
J 6 w

Therefore,
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a ~T \
N- &u « \ " "T" • (3.2.1.29)

6 dx I h x J &

II. 3. Derivation of Equations (3.2.1.36) aid (3.2.1.37)

From Equation (3.2.1.35), we get

C
21

= 8 oc c
22

-2
N
_1

\ (II. 3.1)

2

C
21

2
C
22

= (8a C
22

_2
N
"
1?) C

2 2
= 64 W2 C

22

_3
N
"2

^
2

•

(II. 3. 2)

From Equations (11.3.2) and (3.2.1.34) we can write

64 cc
2

c
22

-3
N
_2

g
2

= 84^C
22

gp(T
w

- T„)(?- |^
2

) - 8*v c^-3
N
_1

?

}

or

& a 2
N
_2

g = c
22

4
gp,(T

w
- T„) (1 -

| ^ ) - 8« v n"
1

.
21 ^ 22

Thus,

4
C
22
(gMIv -t.) (1 -§ I )}

_1

(tf«
2

N
-2

? 8«v N"
1

}

Therefore,

(3.2.1.37)

Substituting Equation (3.2.1.37) into Equation (11.3.2), we get

C
21

= 8« (8) * N* (1 -*g) [^N l
$ Pr)

[ \ Pr N"
1

?.



Rearranging the above Equation yields

(3.2.1.36)
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APPENDIX III

111.1. Derivation of Equation (3.2.2.3)

S S &

f
(T - T„ ) dy =

P t
(T - T_ ) dy + (T - T„ ) dy ,

However, as the temperature in the region beyond the thermal boundary-

layer is equal to the ambient temperature, T „, , the second term of the

right-hand side in the above equation vanishes.

Therefore,

S 8

J
(T - T_ ) dy »

J
<T - T„) dy . (III. 1.1)

o o

Substituting Equation (3.2.2.2) into Equation (III. 1.1) leads to

o t

(III. 1.2)

Substituting Equations (1.1.1), (1.1.2) and (III. 1.2) into Equation

(3.1.1) and rearranging, we get

77^ T- l s
h • u

2
> = lefl?) ?

2
S

k

2
" v IT • (3.2.2.3)

105 dx h x 6 0| k h o,
h

111.2. Derivation of Equation (3.2.2.4)

From the boundary condition at the wall we have

a T q(— ) --». (in.2.1)
' y=0
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Making use of Equations (3.2.2.1) and (3.2.2.2) in evaluating the terms

of Equation (3.1.2), we can write

S & 2 q S 2

' (T - T. ) u dy = ' u C-f-Xl - -£-) t-5*>« "
-f"' ^

b h h t

qS
t A v v

2
v

2

u (-TT*) ! ("J") (1 - "t") (1 - -t- ) dy
X 2k o. a. *oh h t

o t t t

where s = "*?
.

Therefore,

f (I- T„) u dy = u
x
("^) |

6
(-|-?) (l - (1 + £ )

2.2

fc(-f->) dy

x ^2k
;

t
S 12 15 ^ 60 S

Thus,

f

C
(T - T„ ) u dy = ^ (^) u

x
&

t

2
^ M (III. 2. 2)

o

where M = 45^'t

'2C>*»

Substituting Equations (111.2.1) and (HI. 2. 2) into Equation (3.1.2)

leads to
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_4 1(4
dx b ^-.St^-J-V.

but, since q is constant along the plate,

6 dx x t ^ (3.2.2.4)

III. 3. Derivation of Equations (3.2.2.11) and (3.2.2.12)

From Equation (3.2.2.10), we have

C
31

= 6« C
32

- 2
M-

1

?
"3

. (III. 3.1)

Substituting Equation (III. 3.1) into Equation (3.2.2.9) leads to

36 «
2

C
32

"3 «-2 C"
6
- 75

f
1 gp (J)

C
32

2
^

2
- 6 - C

32

"3
M"

1 <

36<x 2
M-

2 r6
= 75 ig

f (4) C
32

5

?
2 - 6 « m"

1
^

"3 v

From this result,

II III
\f5 r3

M"
1

Pr]
5

(^ (4)j"
5

(Pr
>~ 5

. (3.2.2.12)32

Substituting Equation (3.2.2.12) into Equation (III. 3.1) yields

_2 2 2

C
31

= 6 o (36)
5

M
5
?
2

( ^f
?"3 M

_1
+ Pr 1

'

2 4

^| (^)l
3

(Pr)
5

M'
1
K

-'

36
(2_3,

a M

(f- U
?

2-3
f_l r

3
M
-l +p

2 2 4

2 V
Therefore,
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Sl
- 36

10
M
_
5 5-1 V U

?
-3 M'

1
Pr)"

1
f&\

(*)]
J

(Pr)~
?

(3.2.2.11)

III. 4. Derivation of Equation (3.2.2.17)

Substituting Equation (3.2.2.15) into Equation (3.2.2.16) leads to

Thus,

1
I

I - T. - (*) 5 (^( 0.8 (10M)-
1
K

~3
+ Pr

j

5

"
I Pr Gr M
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APPENDIX IV

IV. 1. Derivation of Equation (3.2.2.25)

Substituting Equation (3.2.2.2) into the integrand of the right-hand

side of Equation (3.2.2.23) leads to

T ) dy =
1 (T - T_ ) - (T - T_ ) \ dyr

h
( T - -

q. o S, , 2 c 2

*r «•{«-+, -a -4*, }dy
2k .

o t

o h

^A[»-'*>t>* i=W-l + 2§ - ?
2 }dy

o L h h J

^h
2

h , , 2 t .—2j- (i - j § ) • (iv. i.i)

Substituting Equations (I. 1.1), (1.1.2) and (III. 1.1) into Equation

(3.2.2.23) yields

h

(3.2.2.25)

IV. 2. Derivation of Equation (3.2.2.26)

Substituting Equations (3.2.2.1) and (3.2.2.2) for the integrand of

Equation (3.2.2.24), we get
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IV. 3. Derivation of Equations (3.2.2.33) and (3.2.2.34)

From Equation (3.2.2.32), we get

C
41

= 6 " C
42

_2
N_1 ? • (IV. 3.1)

Substituting Equation (IV. 3.1) into Equation (3.2.2.31) yields

36 « 2
C
42

"3
N"

2
§
2

= 75(| gM£> C
42

2 U-§S) -6- C^H^v}

36 « 2
N'

2
^

2
= 75rigM a, c 5 (1 _1 g j _ ecgN" 1 v\

fsM^C^U-f ?) = M„2 N
-2

5
2 +6 ^ N

-l g v

c
42
.j N""^f 1 -f?r"u ?^ + pir&L

(e)
]-?

Pr
-f

(3.2.2.34)

Substituting Equation (3.2.2.32) into Equation (IV. 3.1) leads to

C
4l

= 6«N- 1 ?(12)"J ^ C5
[l -f e}

5 j^N" 1 hp[»i £>]* Pr^

C
4l . 54^ »"Vfl " f Sl'fis S""

1
* "rPK ®\* ^ » •

(3.2.2.33)
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IV. 4. Derivation of Equation (3.2.2.39)

Substituting Equation (3.2.2.37) into Equation (3.2.2.28) leads to

T„ - T„ = (£, J N^ ^ [i -
§^U |

.-» Pr)3 Gr/-J pr
-f

-<!)
5
^'§

5
fl-fgr

5

fe!«-
l
*Prl 5 Cr^Pr-^-5

I ft I I I 1 1

,5 ax, t~5 f.
2 j.)"5

f_2V ( k^
i

1 "3 5]
[

25

Rearranging the above Equation yields

1 i

T . Tm .
(
3,5 as

f
o.8 (ion;-

1
S * ?r I

5

8 k Ur 2
Gr

x*N.?(l-f | ,] '
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The problem of laminar free-convection on a vertical plate with uniform

wall temperature or uniform heat flux at the wall was analyzed, using the

Karman-Pohlhausen method. The following four cases were investigated:

1. Vertical plate at constant wall temperature,

for fluids of Pr > 1

2. Vertical plate with uniform wall heat flux,

for fluids of Pr > 1

3. Vertical plate at constant wall temperature,

for fluids of Pr < 1

4. Vertical plate with uniform wall heat flux,

for fluids of Pr < 1

Unlike previous investigations, the thickness of the velocity boundary-

layer and the thickness of the thermal boundary-layer were assumed different

in this analysis. Also, the ratio of the two thicknesses was assumed to be

a function of Pr only. Expressions for Nu , for the four cases inves-

tigated were derived. The derived expressions required a knowledge of the

ratio of thicknesses of the thermal boundary-layer to the velocity boundary-

layer as a function of Pr . This ratio was obtained by matching the predic-

k * 1/5
tion of Nu /(Gr /4) or Nu /(Gr ) of the present analysis with the

prediction of exact solutions of earlier investigations. The results of the

present analysis were compared with results of other approximate investiga-

tions.


