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Abstract

Current practices in software development heavily emphasize the development of reusable

and modular software, which allow software components to be developed and maintained inde-

pendently. While a component-oriented approach offers a number of benefits, it presents several

quality assurance challenges including validating the correctness of individual components as well

as their integration. Design-by-contract (DBC) offers a promising solution that emphasizes pre-

cisely defined and checkable interface specifications for software components. However, existing

tools for the DBC paradigm often have some weaknesses: (1) they have difficulty in dealing with

dynamically allocated data; (2) specification and checking efforts are disconnected from quality

assurance tools; and (3) user feedback is quite poor.

We present Kiasan, a framework that synergistically combines a number of automated reason-

ing techniques including symbolic execution, model checking, theorem proving, and constraint

solving to support design-by-contract reasoning of object-oriented programs written in languages

such as Java and C#. Compared to existing approaches to Java contract verification, Kiasan can

check much stronger behavioral properties of object-oriented software including properties that

make extensive use of heap-allocated data and provide stronger coverage guarantees. In addition,

Kiasan naturally generates counter examples illustrating contract violations, visualization of code

effects, and JUnit test cases that are driven by code and user-supplied specifications. Coverage/-

cost trade-offs are controlled by user-specified bounds on the length of heap-reference chains and

number of loop iterations. Kiasan’s unit test case generation facilities compare very favorably

with similar tools. Finally, in contrast to other approaches based on symbolic execution, Kiasan

has a rigorous foundation: we have shown that Kiasan is relatively sound and complete and the

test case generation algorithm is sound.
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Chapter 1

Introduction

1.1 Motivation

Best practices in software development nowadays heavily emphasize the development of reusable

and modular software, which allow software components to be developed and maintained inde-

pendently. This has improved software development processes employed today and development

time and cost are greatly reduced. However, it presents a set of quality assurance challenges. Two

of the main challenges are to validate individual component behavior and ensure software com-

patibility across independently-developed components. In particular, at the time of development

and analysis of a component, some components that are needed for the system to run may not

be available. We term the systems whose computation structures are incomplete as open system.

Deep semantical properties of open systems are difficult to reason about because of the missing

computation structures.

Object-oriented programming, the most popular programming paradigm today, further com-

plicates the two challenges. Programs written in object-oriented languages, such as Java and C#,

usually make extensive use of dynamically allocated objects. In order to analyze object-oriented

programs, one has to handle properties that deal with objects, their data, and their relationships.

We term such properties as strong (heap-oriented) properties as they are hard to analyze due to

issues such as aliasing1. The dual of strong properties are lightweight properties – for example,

1[51] shows that precise aliasing is undecidable.

1



simple relationships between scalar values and variable null-ness.

There are many techniques to address the quality assurance challenges. Among them, testing

is the most common technique. However, testing requires that test cases are written first. Testing

can be used to check but not verify any property (including strong properties) that one is willing to

write a test case. However, testing is expensive, it often costs about 50% of the total development

cost and time [49]. In addition, it can only be applied when the system is closed, that is, the

computation structure is complete. For example, to facilitate testing of open systems, one has to

create mock objects [27] to close the systems.

A promising approach to address the challenges of software quality assurance is design-by-

contract (DBC). DBC requires enforceable formal interface behavior specifications (contracts) for

software components. This allows modular reasoning of individual component behavior because

each component can be checked against its contract in isolation. Furthermore, DBC addresses

the component integration issue by making sure two communicating components’ contracts are

compatible. In the context of Java, Java Modeling Language (JML) [41] is the most popular spec-

ification language supporting DBC. JML has a compiler that translates JML specifications into

Java assertions that are checked during runtime. Essentially, it is a testing technique and has the

same weaknesses as testing. JML is also supported by many other tools, for example, ESC/Java

[26] which is a static checking tool based on the weakest precondition calculus and theorem prov-

ing. It is fully automatic but only checks lightweight properties. Another weakness of ESC/Java is

that it uses a pure compositional reasoning methodology that often requires comprehensive speci-

fication. In addition, it often depends on bounding loops to terminate the analysis (in the absence

of loop invariants). Thus, it is difficult to quantify the behavior coverage that it guarantees. Fi-

nally, ESC/Java gives a warning message with a line number when it finds a violation of properties

which sometimes is not very intuitive.

To address the quality assurance challenges and overcome shortcomings of existing tech-

niques, we present Kiasan2, a framework for reasoning about behavioral properties of open (se-

2The pronunciation is kē’ ah sahn, Indonesian for reasoning with analogy/symbolically.
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quential) systems, including strong properties. Our approach is driven by a number of design

goals that distinguish it in one or more ways from existing work (e.g., [26, 10, 32, 13]):

G1 Provides fully automated analysis: To gain wide-spread adoption from software developers,

it is crucial for analysis tools to require no manual intervention.

G2 Handles strong behavioral properties: To facilitate reasoning of object-oriented programs,

the analysis/tool should be able to precisely check strong properties (e.g., [55]).

G3 Allows mixed compositional and non-compositional analysis: While pure compositional

reasoning is more scalable, one of its usability problems is that it requires an up-front effort

for comprehensive specifications. In the case where an implementation exists or where it is

easier to implement than to specify, we should allow one to easily configure the analysis to

use the implementation. This allows one to focus on checking the more important parts of

the system without undesirable warning or error messages as is the case when using a pure

compositional reasoning approach with incomplete/nonexistent specification.

G4 Has flexibility to adjust analysis cost and coverage: We believe that an analysis tool should

provide enough control over the computational resources that the analysis requires, and it

should provide quantifiable behavior coverage guarantees. These allow users to increasingly

allocate more resources to gain higher levels of confidence from the tool. For example, when

assuring correctness of a method which sorts a list, it is not helpful to use techniques such

as iterative deepening in depth-first state-space exploration (e.g., [37, 59]), since the link

between a program’s behavior coverage and a suitable analysis depth is very difficult to

see. Rather, one should be able to specify the behavior coverage, that is, the correctness

assurance on lists up to a certain size.

G5 Provides helpful analysis feedback: For violations of strong contracts, only only pointing

out the program points is not informative. When the analysis finds an error, it should give

helpful feedback that explains it, and at the very least, generate an error scenario as evidence.
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To meet these design goals, Kiasan combines a collection of insightful designs and engineering

decisions that lead to an effective tool that hits a “sweet spot” with respect to the capabilities that

software developers would need in practice. More specifically,

• for G1, Kiasan provides a fully automated analysis based on symbolic execution [39] and

an extension of symbolic execution for handling objects [37];

• for G2, Kiasan maintains an explicit representation of the visible part of the heap, thus, it

can check strong properties;

• for G3, Kiasan uses compositional reasoning when specifications are available, otherwise,

it uses implementation directly which reduces the burden of up-front specification;

• for G4, Kiasan uses a longest-reference-chain bound that allows users to adjust the heap

configuration coverage and cost;

• for G5, Kiasan has an extension, KUnit, to provide analysis feedback; KUnit automatically

generates

– JUnit tests from contract-annotated method implementations;

– visualizations of heap objects flowing in and out of methods that can be very useful to

developers in understanding complex methods and diagnosing the causes of program

errors;

– branch and bytecode coverage report for generated JUnit tests.

Others [59] have argued that the systematic exploration of heap configurations used by Kiasan

and others [37] is computationally intractable for large or complex units. Indeed, previous work

on symbolic execution for Java has included very little in the way of experimental results (e.g.,

only one example is treated in [62]) that would contradict these claims. One of the primary contri-

butions of the work presented in this thesis is to present an experimental study involving twenty-

three Java data structure examples which have about 100+ methods (including helper methods)
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that assesses the performance of not only Kiasan but also two of the algorithms used in the most

closely related tools jCUTE [59] and JPF [62] – this is, by far, the most comprehensive study of

symbolic execution techniques for object-oriented programs undertaken to this point. Counter to

the arguments of [59], our experiments show that for the examples that we considered, KUnit’s

performance is almost never worse than that of jCUTE [59] and JPF [62], and in most cases it

is significantly better (e.g., reducing time to achieve high levels of coverage from multiple hours

down to a few minutes).

1.2 Contributions

We list the main contributions of this thesis as follows.

1. Core Algorithm Improvements: We have introduced two efficient algorithms for handling

the heap data in symbolic execution, lazier and lazier# initialization algorithms compared

to the lazy initialization of JPF [37]. Furthermore, we have a rigorous case analysis of all

possible heap shapes generated by several complex data structure operations that establishes

the optimality of the lazier# initialization algorithm on these data structures under the small

k bounds.

2. Rigorous Foundation: We have formalized the operational semantics of Kiasan and proved

that the basic (non-compositional) symbolic executions in Kiasan are relatively sound and

complete modulo the bounding strategy and underlying theorem provers. We have also

formalized the test input generation algorithms of KUnit and proved that they are relatively

sound (guaranteed to generate tests for all execution paths up to the bounding strategy).

3. Implementation of Kiasan and KUnit: We have implemented Kiasan on top of the Bogor

model checking framework [54, 3]. Kiasan can check strong heap properties of open sys-

tems with or without contracts. Kiasan uses a longest-reference-chain bounding strategy

which provides better heap configuration control compared to other approaches that bound

on the numbers of search steps or numbers of symbolic objects in the heap. We have also
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implemented an analysis feedback plugin, KUnit, for Kiasan. KUnit can generate JUnit test

cases (including mock objects for open systems), visualization of input/output heap graphs,

and branch/statement coverage metrics.

4. Extensive Experimental Study: We have done an empirical evaluation (using twenty-three

different data structure packages) of JPF’s lazy initialization algorithm, Kiasan’s lazier ini-

tialization algorithm, and lazier# initialization algorithm. It shows that the lazier# initial-

ization algorithm significantly improves upon the lazier initialization algorithm, which in

turn significantly improves upon JPF’s lazy initialization algorithm. We found that KUnit is

very efficient with heap data: it can obtain 100% feasible branch coverage on almost all of

our 23 heap intensive examples. In addition, we have compared the performance of jCUTE

[59] and KUnit on the same set of examples. We found that KUnit and jCUTE have compa-

rable performance on simple heap manipulation examples; but KUnit performs significantly

better than jCUTE on complex heap manipulation examples such as the red-black tree and

AVL tree.

1.3 Acknowledgments

Involvement with Kiasan My involvement with Kiasan was accidental. In summer 2005, Jooy-

ong Lee, a Ph.D student from BRICS (Denmark), came to our group as an exchange student.

Robby advised him to work on checking strong properties of open systems based on symbolic

execution. Just after they started, they needed to build an interface with theorem provers because

symbolic execution uses theorem provers to decide whether a path is infeasible (symbolic exe-

cution is presented in Chapters 2 and 3). At that time, I was stuck on my PhD research topic:

static bug finding based on patterns. Since I have some experiences on interfacing with theorem

provers, I volunteered to help them building the interface. It is such an interesting research topic,

and Jooyong and Robby were extremely nice to work with. I became more involved with the

Kiasan project. Finally, I focused my research solely on Kiasan.
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Initial Verification Effort of Kiasan Kiasan builds upon the JPF’s lazy initialization algorithm

[37]. However, Kiasan uses a different bounding strategy, the longest-reference-chain bound, and

fixes unsoundness issues in [37]. Kiasan also has an improved core algorithm: lazier initialization

algorithm. Furthermore, Kiasan extends the single method checking into compositional checking

and identifies two important techniques that enable the compositional checking. Jooyong, Robby,

and I worked very closely on all these ideas. In fact, we had at least one meeting a day. Overall,

I did about 70% of the implementation and almost all the examples. Later, we worked together

to setup a formalization framework for Kiasan and I solely proved the relative soundness and

completeness of Kiasan with guidance from Robby. The result of this effort is published as [23].

Improvements of Kiasan After Jooyong’s departure, I became the sole maintainer of Kiasan

code base. At that stage, Kiasan’s user feedback was quite poor: it only gave a line number

when an error was found which is similar to what ESC/Java does. This made adding examples to

Kiasan quite challenging. John Hatcliff suggested to conduct larger case study to further assess

Kiasan. To make debugging examples a little easier, we extended Kiasan’s algorithm to generate

helpful user feedback including input/output visualization, JUnit test cases, and statement/branch

coverage report. I proposed a novel “modified backtracking rule” approach to generate effective

pre-states. I also formalized the backtracking rules and input generation algorithm; and proved

its soundness. In addition, I did all the implementation for this work. With the help of KUnit, I

was able to accomplish an extensive experimental study which shows that Kiasan is a significant

improvement over the original JPF lazy initialization. The result of this effort is published as [24].

When I debugged complex data structures such as red-black tree, I found it was very hard to

verify the correctness of Kiasan’s output (for k = 3, there are hundreds of cases). Initially, I man-

ually inspected all the cases (up to k = 2) which was very labor intensive and did not even scale

to k = 3. I felt that we need a theoretical way to at least quantify the number of cases. Another

related question was that we knew lazier initialization improves dramatically over lazy initializa-

tion; but can lazier initialization be even better? I developed a method to count the theoretical

numbers of non-isomorphic states for several complex data structures such as binary search tree,
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AVL tree, red-black tree, etc. This method uses a standard combinatorics technique, generating

functions [64], to simplify complex recurrence relations or even further–get closed forms for those

relations. The result of this method shows that the lazier algorithm is sub-optimal for binary search

tree and red-black tree, which means that it generates more cases than that are computed by the

method. I investigated the examples and identified the root of the problem. Robby, John Hatcliff,

and I came up with an even lazier algorithm and we named it lazier# initialization algorithm which

was validated under small k by an extensive experimental study. I also formalized the semantics

of lazier# algorithm and proved its relative soundness and completeness. The result of this effort

is published as [25].

1.4 Organization

The rest of this thesis is organized as following.

• Chapter 2 presents background information about symbolic execution, more specifically,

the original symbolic execution technique proposed by King [39] and a recent extension of

symbolic execution to objects in object-oriented languages, lazy initialization algorithm.

• Chapter 3 discusses all the aspects of symbolic execution in Kiasan. We present two

improved core algorithms (lazier and lazier# initialization algorithms), and compositional

checking technique in Kiasan. Finally, we show the implementation of Kiasan.

• Chapter 4 contains the combinatorics analysis for optimal numbers of cases for several com-

plex data structures and algorithms using a standard combinatorics technique, generating

functions. We present the analysis for binary search tree, AVL tree, red-black tree, etc.

• Chapter 5 presents the formalization of Kiasan. The formalization includes the operational

semantics for symbolic executions with lazy/lazier/lazier# initialization algorithms and con-

crete execution in Java Virtual Machine (JVM). Furthermore, the soundness (for each sym-

bolic trace, there exists a corresponding concrete trace) and completeness (for each concrete

trace, there exists a corresponding symbolic trace) are proved.
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• Chapter 6 discusses the analysis feedback plugin, KUnit, for Kiasan. KUnit uses modified

backtracking algorithms for constructing effective symbolic input states and then concretizes

the effective symbolic input states to gets test inputs. Then we show the generation of

additional artifacts such as JUnit test cases, input/output graphs, and mock objects for open

systems.

• Chapter 7 presents the formalization of KUnit input generation algorithms and shows the

soundness proof of generated JUnit test cases.

• Chapter 8 presents three examples to demonstrate the specification in Kiasan and generated

output. The examples are insertion sort (array based), binary search tree, and red-black tree.

• Chapter 9 shows an extensive experimental study and comparisons with JPF and jCUTE. It

also includes a java.util.TreeMap coverage report.

• Chapter 10 presents the related work and Chapter 11 concludes.

9
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Chapter 2

Background

In this chapter, we describe the basic (scalar) symbolic execution techinque and a recent develope-

ment of symbolic execution for handling objects in object-oriented languages such as Java: lazy

initialization algorithm.

2.1 Symbolic Execution

In a 1976 paper[39], King proposed symbolic execution which is a technique for executing code

modules that treats input parameters and globals as symbolic values. Since symbolic values are

introduced, there are two changes to program analysis. First, the domain of values has to be

augmented to include symbolic values. Second, besides a mapping from variables to values, each

state of symbolic execution contains a boolean predicate (φ) called path condition to record the

condition that directs the execution to follow the current path.

1 i n t abs ( i n t x ) {
2 i f ( x < 0)
3 x = −x ;
4 i f ( x < 0)
5 asser t fa lse ;
6 return x ;
7 }

Figure 2.1: Absolute Value Method

Symbolic execution systematically explores all

feasible paths of the program. The result of the ex-

ploration forms an computation tree. We will use the

absolute value (abs) method shown in Figure 2.1 as

an example to illustrate the basic ideas of symbolic

execution.

The symbolic execution of the abs method will

generate a symbolic computation tree as shown in Fig-
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Figure 2.2: Absolute Value Method Symbolic Execution Tree

ure 2.2. In the tree, each node is a state. For example, the initial state (the root node) for the

abs method is that x has a symbolic value α and the path condition is true. When execut-

ing line 2, the symbolic execution does not have sufficient information to decide which branch

to take because x < 0 and ¬(x < 0) are satisfiable given current path condition true. So

it will take both branches and add branching conditions to the path conditions as indicated in

the tree where the root node has two children with edges 2,T and 2, F which lead to true

branch or false branch respectively. If symbolic execution takes the true branch, the path

condition becomes α < 0. Then after executing statement 3, the state becomes x = −α and

the path condition remains the same α < 0. At statement 4, a branching occurs again. But

after taking the true branch, symbolic execution finds out that the path condition becomes

α < 0 ∧ (−α) < 0 which is false. The path is infeasible, hence abandoned. So only the false

branch of statement 4 is taken. Execution follows the false branch of statement 2 is similar. In

all cases, the true branch of line 4 is always infeasible, and thus statement 5 is never reached.

King also described a commutative propertycommutative property of symbolic execution (without

proof): the operation of replacing symbols with concrete integers and the operation of executing

program are commutative. Figure 2.3 illustrates the commutativity where P(X) is a program under

analysis with X an input parameter; K is a concrete value (in this case, an integer); E(P(X)) is the
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result of symbolically executing P; and E(P(K)) is the result of executing P with input K. This

commutative property actually is a part of the simulation relation between concrete and symbolic

executions presented in Chapter 5.

P(X) X←K //

Symbolic execution
��

P(K)

Concrete execution
��

E(P(X)) X←K // E(P(K))

Figure 2.3: Commutativity Diagram

Generalized Symbolic Execution King [39] pro-

posed symbolic execution with integer types as in-

puts. But as object-oriented languages such as Java

become popular, it becomes imperative to extend the

symbolic execution technique to handle objects. Re-

cently, Khurshid etc.[37] proposed a generalized sym-

bolic execution algorithm called lazy initialization which deals with object inputs. Lazy initializa-

tion treats input objects as symbolic objects with each field uninitialized until the field is accessed.

The initialization algorithm for a field f of a symbolic object o is listed as following:

i f t y p e o f o . f , T , i s p r i m i t i v e
o . f := a new s y m bo l i c p r i m i t i v e v a l u e

e l s e
o . f i s n o n d e t e r m i n i s t i c a l l y a s s i g n e d t o n u l l ,

a new s y m bo l i c o b j e c t o f t y p e T , o r one o f t h e e x i s t i n g heap o b j e c t s
t h a t have t h e t y p e T
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Chapter 3

Symbolic Executions in Kiasan

In this chapter, we discuss symbolic executions in Kiasan and implementation of Kiasan. Sec-

tion 3.1 explains the symbolic execution with lazy initialization in Kiasan and two consecutive

core algorithm improvements over the lazy initialization: lazier and lazier# initialization. To guar-

antee the termination of Kiasan, we use a longest-reference-chain bounding technique presented

in Section 3.2. Section 3.3 presents the compositional checking in Kiasan. Finally, Section 3.4

shows the implementation of Kiasan framework.

Acknowledgments
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for Checking Strong Heap Properties of Open Systems” by Xianghua Deng, Jooyong Lee, and
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Algorithm for Analyzing Strong Properties of Object-Oriented Programs” by Xianghua Deng,

Robby, and John Hatcliff to appear in the Proceedings of the 5th IEEE International Conference

on Software Engineering and Formal Methods [25].
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public class Node<E> {
/ /@ ensures data == \ o ld ( n . data ) && n . data == \ o ld ( data ) ;
public void swap ( @NonNull Node<E> n )
{ E e = data ; data = n . data ; n . data = e ; }
private Node<E> next ; E data ;

}

Figure 3.1: A Swap Example
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Figure 3.2: Lazy Symbolic Execution Tree and An Example Trace (3-33-334-3341 and Sibling
States)

3.1 Basic Symbolic Execution

In this section, we describe our basic (non-compositional) and stateless symbolic execution tech-

nique. Essentially, given a method, we start with a symbolic state where all method parameters

and global variables are assigned symbolic values (or non-deterministically  and all possible

aliasings for reference variables). For primitive values, we keep track of their relations to other

(symbolic and/or concrete) values during the method execution, i.e., path conditions. For objects

and arrays, we take the lazy initialization algorithm described in Section 3.1.1 as the starting point

and develop two successively improved algorithms: lazier initialization and lazier# initialization

discussed in Sections 3.1.2 and 3.1.3.
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3.1.1 Lazy Initialization

To handle unknown heap structures, Kiasan uses an enhancement of the lazy initialization al-

gorithm originally introduced in [37]. The lazy initialization algorithm starts with no or partial

knowledge of object values (i.e., symbolic objects whose fields are uninitialized) referenced by

program variables. As the program executes and accesses object fields, it “discovers” (i.e., mate-

rializes) the field values on an on-demand basis (i.e., hence the term “lazy initialization”). When

an unmaterialized field is read, if the field’s type is a primitive, then a fresh symbol is created for

that scalar value. Otherwise, for an unmaterialized reference field, the algorithm systematically

(safely) explores all possible points-to relationships by non-deterministically choosing among the

following values for the reference: (a) , (b) any existing symbolic object 1 whose type is com-

patible with the field’s type, or (c) a fresh symbolic object (whose type is constrained to be equal

to or a subtype of the field’s type).

To illustrate lazy initialization, consider the following swap method for Node in Figure 3.1.

The top part of Figure 3.2 illustrates the symbolic execution computation tree built using lazy

initialization. To save space in the display of the tree, we represent each tree node (system state)

by a unique label corresponding to the path through the tree to the current code. The bottom part

of Figure 3.2 shows heap configurations for some of the states in the computation tree.

To generate the computation tree of Figure 3.2, the symbolic execution begins with a non-

deterministic choice of possible aliasing between the method parameter n and the this reference

(i.e., States 1, 2, and 3). Note that both the next and the data fields of this and n are unknown

(unmaterialized). Out of the three cases, State 1 does not satisfy the @NonNull precondition for n,

thus it is not considered further. Now, consider the sub-tree starting from State 3. Upon executing

swap’s first statement, the this.data field is now materialized according to the lazy initializa-

tion algorithm described above; it non-deterministically chooses the value of this.data to be:

 (31), equal to this – n0 (32), n1 (33), or a fresh symbolic object e0 (34). Let us continue

1The algorithm does not choose from concrete objectswhich is created in the method because the object that the
field really “points to” should exist before the method entry, but concrete objects are created after the method entry.
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with the sub-tree starting from State 33. Upon executing swap’s second statement, the algorithm

non-deterministically chooses the  value, n0, n1, or a fresh symbolic object e1 for the n’s data

field, thus, resulting in the States 331, 332, 333, and 334, respectively. Executing swap’s last state-

ment from 334 produces 3341 (the trace 3-33-334-3341 is highlighted in Figure 3.2). Note that

the symbolic computation tree characterizes all possible concrete executions of swap; Kiasan’s

lazy initialization algorithm has been formalized and its relative soundness and completeness has

been proven in Chapter 5. In addition, all swap’s post-states in Figure 3.2 satisfy swap’s postcon-

dition, thus, we conclude that the postcondition always holds (checking the postcondition requires

reconstructing the effective pre-state of each post-state 6).

Handling Arrays: Arrays present a unique challenge: the length of an array may be unknown. In

addition, arrays can be accessed by a symbolic (unknown) integer index. To address these issues,

we model an array as an accumulator that remembers the set of indexes that have been accessed

and their corresponding values. Initially, the accumulator is empty. If the array is accessed with

an index v (concrete or symbolic integer), v is compared with the already accumulated indices: if

v is equal to one of them, then we use its corresponding value; otherwise a new entry with a fresh

symbolic value X is stored with v as its index and X is returned. Similarly to field lazy initializa-

tion, this cuts down the number of paths that have to be explored, i.e., instead of comparing the

index being accessed with all the indexes of the array (which can only be tractably done if the

length of the array is bounded), we only compare the index with what have been accessed.

3.1.2 Lazier Initialization

As we can observe, the lazy initialization algorithm produces a rather large state-space even for

swap. In [23], we introduced an optimized algorithm called lazier initialization based on the

observation that when an uninitialized reference type variable is first read, it is not necessary to

resolve the aliasing/object value at that particular point; only when the object referenced by the

variable is accessed, that is when it is necessary to resolve the value. Basically, the lazier algorithm

divides the lazy initialization into two steps as follows. Step 1, when an uninitialized reference
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Figure 3.3: Lazier Symbolic Execution Tree and An Example Trace (2-22-223-2231 and Sibling
States)

type variable is read, it is lazier-ly initialized with the  value or a fresh location (whose type is

the same as the variable’s type); in essence, the symbolic location represents all possible objects

that may be referenced by the variable (i.e., it abstracts such a set of objects). Non-reference-type

variables are handled similarly to the lazy algorithm. Step 2, when a field of a symbolic location is

accessed (read), (a) the symbolic location is then replaced by non-deterministically choosing any

existing object or a fresh symbolic object (with compatible type); if the access is a read access and

the field is unmaterialized, (b) the field is then initialized (with the  value or a fresh symbolic

location). The effects of these two steps are: (1) delaying the non-deterministic choice of objects

in the lazy algorithm, and (2) the second step may not be needed in some cases. Thus, it produces

a (significantly) smaller state-space (see our experiment data in Chapter 9).

To illustrate the lazier algorithm, let us reconsider the swap example in Figure 3.1. The left

hand side of Figure 3.3 illustrates the symbolic computation tree using lazier initialization; the

highlighted path in the (lazier) computation tree corresponds to the highlighted path in the (lazy)

computation tree shown in Figure 3.2 (i.e., it simulates the lazy path). Symbolic locations are

annotated with ·̂. Similar to the lazy algorithm, the lazier initialization algorithm starts with a

non-deterministic choice. However, there are only two choices instead of three in the beginning.

State 1 in Figure 3.2 is abstracted into State 1 in Figure 3.3, and State 2 and 3 in Figure 3.2 are

abstracted into State 2 in Figure 3.3 (i.e., both n̂0 and n̂1 may actually be n0 or n1). When n̂0’s

data field is read at swap’s first statement, n̂0 is replaced with n0 (there is no existing symbolic

17



object for the non-deterministic choice, thus, it uses a fresh symbolic object), and n0’s data field

is initialized with either the  value (21) or a fresh symbolic location ê0 (22). From State 22,

there are three possible choices when executing swap’s second statement. We first replace n̂1 by

non-deterministically choosing the existing object n0 or a fresh symbolic object n1. In the former

case, the data field has been initialized, thus no special treatment is needed (221). In the latter

case, n1’s data field is “lazier-ly” initialized with either  (222) or a fresh symbolic location

e1 (223). Executing swap’s last statement from 223 produces 2231. Note that 2231 in Figure 3.3

safely approximates 3341 in Figure 3.2.

As we can observe, the computation tree in Figure 3.3 which has 16 states and 6 paths, is much

smaller than the one in Figure 3.2 which has 50 states and 20 paths, because the non-deterministic

choices for this, n, and the data fields are delayed, and the second steps of the lazier initialization

for data field accesses never happen. Moreover, all swap’s post-states in Figure 3.3 still satisfy

swap’s postcondition, thus, we conclude that the postcondition always holds. Note that we do

not need to replace ê0 and ê1 with symbolic objects when checking the postcondition, as they

will be compared against themselves (i.e., data==\old(n.data) iff ê1 = ê1). Kiasan’s lazier

initialization algorithm has been formalized and proved that it simulates the lazy initialization

algorithm as shown in Chapter 5 (i.e., it is relatively sound and complete).

3.1.3 Lazier# Initialization
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ē1

data

dat
a

this

n

e

(e) 1121

Figure 3.4: Lazier# Symbolic Execution Tree and An Example Trace (1-11-112-1121 and Sibling
States)

As described previously, the lazier initialization algorithm significantly reduces the state-space

for symbolic execution of object-oriented programs while still preserving strong heap-oriented

properties. However, one might wonder whether it can still be improved. More specifically,
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we are interested in investigating whether the algorithm is case-optimal – it considers the min-

imum number of behavior cases (i.e., pairs of pre/post-states) when analyzing a given prop-

erty and example (e.g., it considers only non-isomorphic heap shapes). Clearly, the answer is

problem-dependent (and size-dependent for programs working with possibly unbounded num-

ber of objects). We have leveraged a combinatorics technique, generating functions, to calculate

the minimum numbers of cases for different k-bounds for the binary search tree, AVL tree, and

red-black tree. Detail calculation is shown in Chapter 4. For example, for k = 1, lazier initializa-

tion generates 12 cases for the insert method of the binary search tree example; but the calcu-

lated number is 4. We conclude that there is an inefficiency in the lazier initialization algorithm.

1 BinaryNode<T> i n s e r t (T x , BinaryNode<T> t ) {
2 i f ( t == nul l )
3 t = new BinaryNode<T>(x , null , nul l ) ;
4 else i f ( comparator . compare ( x , t . element ) < 0)
5 t . l e f t = i n s e r t ( x , t . l e f t ) ;
6 else i f ( comparator . compare ( x , t . element ) > 0)
7 t . r i g h t = i n s e r t ( x , t . r i g h t ) ;
8 else
9 ; / / Dup l i ca te ; do noth ing

10 return t ;
11 }

Figure 3.5: A Binary Search Tree Insertion

To address the inefficiency of the lazier

initialization algorithm, we have developed

an even lazier initialization algorithm which

we named the lazier# initialization algo-

rithm. We observed that one source of ef-

ficiency in the lazier initialization algorithm

is due to the fact that it is optimized for

non- variables; it optimistically assumes

most variables are non- (this is in-line with JML’s default invariant for reference type vari-

ables). That is, it eagerly initializes an uninitialized (reference type) variable as  or a fresh

symbolic location upon access. For example, consider the source code of insert shown in Fig-

ure 3.5, the lazier initialization algorithm non-deterministically chooses between  and a fresh

symbolic location for the field t.element at line 4. However, the t.element is only used when

comparing with the inserted element by comparator.compare, and the Java Comparator inter-

face does not require compare’s parameters to be non-. Thus, whether the value is  or

non- is irrelevant (i.e., processing the compare interface following a compositional check-

ing approach to check the insert implementation will produce either negative, zero, or positive
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regardless). Therefore, the non-deterministic choice is too early at line 4 in the sense that it un-

necessarily exposes details about the heap objects.

In the lazier# initialization algorithm, we introduce an intermediate step by initializing such

variables with a new flavor of symbolic object that abstracts  as well as any object of the

appropriate type. We use the general term “symbolic references” (with annotation ·̄) for abstract

values that abstract both  and any object of the appropriate type, and we use the term “sym-

bolic locations” (with annotation ·̂ as used previously) to refer to non- values (i.e., we now

have three abstraction levels for objects: (1) symbolic objects, (2) symbolic locations, and (3)

symbolic references). Thus, the lazier# algorithm can be described as follows. Step 1, when an

unmaterialized variable is read, it is initialized with a fresh symbolic reference (i.e., there is no

non-deterministic choice). Step 2, when a field of a symbolic reference is accessed, the symbolic

reference is replaced with  (which results in raising a null dereference exception), or a fresh

symbolic location. In the case of the latter, the algorithm proceeds similarly to the lazier initializa-

tion algorithm (but, an uninitialized field is lazier#-ly initialized instead lazierly initialized). Note

that the first step can be further optimized (NV:) by directly using a fresh symbolic location if the

variable is known to be non-.

To illustrate the lazier# initialization algorithm, let us revisit the swap example. Figure 3.4

illustrates the symbolic computation tree using the lazier# algorithm and a trace (along with its

states and their sibling states) that simulates the highlighted trace in Figure 3.3 (and thus, it sim-

ulates the trace highlighted in Figure 3.2). The algorithm starts with one state (State 1). Notice

that n refers to symbolic location n̂1 instead of a symbolic reference because of the NV optimiza-

tion mentioned above (without the optimization, we use a fresh n̄1). When executing swap’s first

statement, n̂0 is replaced with a fresh symbolic object n0, and its data field is initialized with a

fresh ē0, thus resulting in State 11. Continue on with executing swap’s second statement, n̂1 is

replaced with either the existing symbolic object n0 or a fresh symbolic object n1. In the former

case, n0’s data field has been initialized, thus no special treatment is needed (111). In the latter

case, n1’s data field is initialized with a fresh symbolic reference ē1 (112). From 112, it produces
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1121. As we can observe, the lazier# computation tree in Figure 3.4 realizes a correct abstraction

of both the lazy (Figure 3.2) and lazier (Figure 3.3) computation trees while still exposing enough

information to establish swap’s postcondition.

3.2 k-bounding

There are two main challenges when using symbolic execution: (1) the termination of and (2) the

scalability of the algorithm. To address these issues, Kiasan [23] incorporates a different bound-

ing technique to help manage symbolic execution’s complexity, while providing fine-grained

control over parts of the heap that one is interested in. In essence, we bound the sequence of

lazy/lazier/lazier# initializations originating from each initial symbolic object (longest-reference-

chain) up to a user-supplied value k. This user-adjustable bounding provides an effective and

controllable trade-off between analysis cost and behavioral coverage. When using a bound k, the

analysis can guarantee the correctness of a program on any heap object configuration with ref-

erence chains whose lengths are at most k. In the case where the analysis does not exhaust k, a

complete behavior coverage is guaranteed. To handle diverging loops (or recursions), we limit

the number of loop iterations that do not (lazily) initialize any heap object. That is, we prefer

exhausting the k-bound first to try to achieve the advertised heap configuration coverage.

3.3 Contract-based Symbolic Execution

To reason about open systems, we employ contract-based reasoning often used in compositional

analysis techniques such as ESC/Java [26]. When we analyze a method M, we require that M’s

contract is transformable to an executable form similar to [16]. Intuitively, when analyzing M,

Kiasan assumes M’s effective pre at the method entry and asserts M’s effective post at method

exits. To achieve this using symbolic execution, Kiasan creates a wrapper method for M that:

1. assumes M’s executable pre,

2. calls M and stores M’s return value (if any) to a temporary variable x,
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3. asserts M’s executable post (that uses x’s value in place of the return value.)

In essence, executing (1) sets up the symbolic states according to M’s pre (e.g., they initialize

the heap appropriately), and states non-conforming to (1) will be ignored. Executing (3) checks

whether the resulting states from (2) satisfy M’s post (if post cannot be ensured from the path

condition, then an error is raised). Kiasan can check post referring to pre-state’s values (i.e.,

values at method entry), and JML’s modifies, assignable, and \fresh similar to [55].

Instead of directly executing method calls from M, Kiasan uses contracts in place of the actual

implementations of open-ended methods (user-configurable). Intuitively, if M calls an open-ended

method N, it checks whether N’s pre is satisfied; an error is raised if that is not the case. If it is

satisfied (or if none is specified), Kiasan uses N’s post to determine the effects of the method

call. To do this, for each open-ended method N called by M, it creates a stub for N, and redirects

the corresponding method call to N to call the stub instead; the stub consists of a sequence of

statements that:

1. asserts N’s pre,

2. removes values from modified fields stated in N’s contract (hence their values become un-

defined), if the modified fields do not refer to fresh objects created in N (as specified in N’s

contract using a similar construct such as JML’s \fresh); otherwise, fresh symbolic objects

are created for such fields,

3. pushes a symbolic reference in M’s stack for non-primitive return type and a symbolic value

for primitive return type,

4. assumes N’s post.

In essence, executing (2) drops information about fields that are modified by N, and executing (4)

initializes them with values which satisfy N’s post.

We can summarize method calls similarly to [32]; that is, we cache method results and their

corresponding contexts; if subsequent calls use the same context, we use the cached results.
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To close the environment, Kiasan creates a driver for M that starts with a symbolic state where

all method parameters and fields that are possibly referenced by M are initialized with primitive

symbolic values or symbolic references, according to their types. The analysis proceeds with

symbolically executing the driver for M. The subsequent subsections describe two techniques that

improve Kiasan’s performance as well as enable us to check strong heap properties in the context

of analyzing open systems.

3.3.1 Heap Region Versioning

public class L inkedL is t <E> {
/ /@ inv : i s A c y c l i c ( ) ;
@NonNull LinkedNode head = new LinkedNode ( ) ;
/∗@ pre : i sSor ted ( c )

@ && other . i sSor ted ( c ) ;
@ post : i sSor ted ( c ) ;
@∗ /

void merge ( @NonNull L inkedL is t <E> other ,
@NonNull Comparator<E> c ) {

L inkedL is t <E> l l = new L inkedL is t <E> ( ) ;
LinkedNode n1 = th is . head . next ;
LinkedNode n2 = other . head . next ;
while ( n1 != nul l && n2 != nul l ) {

i f ( c . compare ( n1 . data , n2 . data ) < 0) {
l l . addLast ( n1 . data ) ; n1 = n1 . next ;

} else {

l l . addLast ( n2 . data ) ; n2 = n2 . next ;
}

}

while ( n1 != nul l ) {
l l . addLast ( n1 . data ) ;
n1 = n1 . next ;

}

while ( n2 != nul l ) {
l l . addLast ( n2 . data ) ;
n2 = n2 . next ;

}

head = l l . head ;
}

class LinkedNode {

E data ; LinkedNode next ;
} }

Figure 3.6: A Merge Example (excerpts)

Figure 3.6 2 presents a sorted list merge example

that motivates our approach. Intuitively, the merge

method’s contract indicates that given a non-null

and sorted (from the preconditions @NonNull and

pre) acyclic list (from the invariant inv) with re-

spect to the specified Comparator c, the method

merges the contents of that list into the receiver

object (given that it is also sorted) and as the re-

sult, the receiver object is also a sorted acyclic list

(isAcyclic and isSorted are pure, i.e., they do

not modify existing objects). We highlight one

challenge when reasoning about such programs

and specifications.

The compare method is open-ended, i.e., in

contrast to reasoning about a complete system such

as [37] where we know the actual objects and the

data being manipulated, we do not know the actual

implementation of the method (or even if there is an implementation for the type that will substi-

tute E). This is also in contrast with some systems [42, 65, 38, 6], where elements being compared

2The formats of annotations (pre/postconditions and invariants) are for illustration purposes. Kiasan uses slightly
different annotations.
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Figure 3.7: A Region Relation Scenario of merge

are of scalar types or immutable objects. Since we can not decide which data will be used for

comparison, we have to be conservative and assume that it will use all the data that the method

can reach.

We have to establish that whatever information used for comparisons must not be modified

by merge (or methods called from it) to ensure the comparisons done later in postcondition are

unaffected. (This is a bit too strong as it is fine to modify any information that will be accessed

by compare if it does not change compare’s result; we only consider the former case in this

thesis.) Otherwise, there is no guarantee that the receiver object is sorted afterward. For example,

suppose that we insert a code just before the end of merge. We need to check whether the inserted

code invalidates the elements’ ordering. This can be detected by using heap region separation.

That is, the inserted code cannot invalidate the ordering if it does not modify the element objects.

However, establishing this requires a precise heap analysis that is able to leverage, for example,

heap region information.

Consider the scenario depicted in Figure 3.7 where each list object is in its respective region

ρ1 and ρ2, this,other, and the list elements are in a separate region ρ3. It indicates that objects

in ρ3 cannot reach objects in ρ1 and ρ2.

Enhanced with this region specification, the analysis starts with two fresh symbolic locations

pointed by this and other, tagged with ρ1 and ρ2 as their region descriptors, respectively. Freshly

created concrete objects are tagged with a special region ρ. When a field fρ is materialized,

24



it can point to objects from region ρ, the choosing range of the existing symbolic objects will be

existing symbolic objects in region ρ. This reduces the number of aliasing cases, thus improves

the performance of the analysis. Furthermore, we associate a version number to each region that

is incremented when any object in the region is updated. This allows us to detect that subsequent

method calls such as compare whose context is in the same region and version, return the same

result values. That is, we cache the method calls, and return previously computed result values

if there is no change in any of the objects inside the regions reachable from the context. There-

fore, we are able to conclude that merge’s post holds, because compare is pure, and merge and

addLast do not update ρ3’s version.

Modeling of Comparator and Comparable

According to Java 1.5 API, Comparable.compareTo and Comparator.compare are pure and

return either a negative integer, zero, or a positive integer; furthermore they impose a total order

on a set of objects. This is crucial because object ordering relationship is often used in programs

manipulating data structures. The transitivity property of the total order cannot be specified in

an executable form because establishing the transitivity property requires the execution history.

To facilitate this, we provide a specification pattern for describing transitive closure relation on

objects (e.g., via method calls). First, we define a function

comparison-Id(o)=object-Id(o)+region-Id(o)+ region-Version(region-Id(o)),

which captures the object identity together with the region identity and version. Then we let

α = Comparator.compare(o1,o2) or o1.comparesTo(o2),

where α is a fresh integer symbol, and add the following formula into the path condition:

α < 0 ⇐⇒ comparison-Id(o1) < comparison-Id(o2)∧

α = 0 ⇐⇒ comparison-Id(o1) = comparison-Id(o2)∧

α > 0 ⇐⇒ comparison-Id(o1) > comparison-Id(o2).
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Empowered with this, Bogor/Kiasan successfully checks the strong properties of merge shown

in Figure 3.7 and other examples shown in Chapter 9.

3.3.2 Context Versioning

1 public class W {

2 MyInt myInt ;
3 void foo ( @NonNull W wrapper ) {
4 MyInt m = new MyInt ( ) ;
5 i n t tmp = wrapper . myInt . f ;
6 W w = bar (m) ;
7 i f (w. myInt != m) { . . . }
8 }

9 / /@ post : \ r e s u l t . myInt != n u l l ;
10 @Fresh W bar ( @NonNull MyInt m) {
11 W w = new W( ) ; w. myInt = m; return w;
12 }

13 }

14 class MyInt { i n t f = 0 ; }

Figure 3.8: A Context Versioning Example

Recall that in the original lazy initialization algo-

rithm, when it chooses existing objects, it only

chooses from heap objects that are symbolic. This

produces unsoundness in the context of contract-

based reasoning described earlier. The example

in Figure 3.8 demonstrates this problem. Suppose

we are analyzing the method foo where we use

bar’s specification instead of its implementation.

Since wrapper is a non-null parameter, the anal-

ysis starts with a symbolic location for it. The

field access wrapper.myInt.f at line 5 will make

wrapper.myInt initialized and the choosing range does not include the local MyInt object cre-

ated at line 4. This is consistent because wrapper.myInt at line 5 can only point to any object

from the calling context of foo. For the method invocation at line 6, contract-based reasoning

creates a symbolic object (because of @Fresh) for the return value of bar and assigns it to w.

After the method call at line 6, w.myInt points to the object o created at line 4 in real execution.

However, according to the lazy initialization algorithm, the choosing range unsoundly excludes o

because it is a concrete object.

To address this, instead of using one bit flag attached to an object to indicate whether it is

concrete or symbolic in implementation, we record context version by using an integer value at-

tached to each object. Each time a method invocation uses the method’s specification in place of

its implementation, the objects created after the invocation have a higher version number than the

objects created before the invocation. The generalized algorithms for lazy/lazier/lazier# initial-
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izations then choose from existing heap objects with version numbers less than or equal to that

of the object instead of choosing from existing heap objects that are symbolic. For example, the

parameter wrapper starts with the context version 0, and the version of the object o pointed by

m at line 4 is 1. Meanwhile, the returned object from bar at line 6 has 2 as its context version.

Therefore, the choosing range of w.myInt at line 7 includes the object o pointed by m because

1 ≤ 2.

3.4 Implementation

Figure 3.9: Tool Architecture

We have implemented Kiasan using the Bogor framework [54, 3]. Figure 3.9 shows the archi-

tecture of Kiasan. The prototype uses a specification processor similar to jmlc [16] that translates

annotated Java source code and embeds the effective contracts in the code. The resulting code is

compiled into classes using a standard Java compiler, the classes then translated to Bogor’s input

language (BIR) extended with Java bytecode instructions modeled as BIR language extensions [3].

Each language extension modeling a Java bytecode is interpreted using the semantics presented

in Section 5.2 and enhanced with the versioning techniques described in Section 3.3. The Java

bytecode to BIR translation uses the ASM bytecode engineering framework [2], and it virtually
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generates one atomic transition for each bytecode. During the translation, we close the system as

described in Section 3.3. We use CVC Lite [11] as a decision procedure to determine satisfiability

of path conditions. For KUnit, we use POOC [57] for solving constraints. KUnit generates a JUnit

test case and input/output visualization for each symbolic path that Kiasan explores.
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Chapter 4

Optimality Analysis

In Chapter 3, we are concerned with whether lazier initialization is optimal, that is, it generates

minimum numbers of cases. In this chapter, we calculate the possible numbers of cases for three

types of trees (binary search tree, AVL tree, and red-black tree) and other data structures using a

combinatorics technique called generating functions [64, 30]. For each data structure, we calcu-

late the numbers of different (non-isomorphic) structures and the numbers of cases after certain

operations such as search/insert/remove. To our best knowledge, counting cases after cer-

tain operations has not been done before whereas previous work only counts the non-siomorphic

structures.

Section 4.1 presents the foundation of calculating numbers of cases for the binary search trees.

(Note that AVL tree and red-black tree are special cases of binary search tree.) Sections 4.2,

4.3, and 4.4 show the counting of binary search tree, red-black tree, and AVL tree respectively.

List merge counting is presented in Section 4.5. Finally, binary heap counting is discussed in

Section 4.6.
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4.1 Foundation of Binary Search Tree Counting

This section presents the foundation for counting numbers of non-isomorphic binary search trees

[40] (including red-black trees and AVL trees) and the numbers of cases after certain opera-

tions such as insert/remove/search. The definition of binary search trees is presented in

Section 8.2.

Without loss of generality (WLOG), we assume that the elements contained in tree nodes

are integers (Z). First we define BS T to be the set of all binary search trees and BS Tn =

{ t ∈ BS T | height(t) < n } for all n ∈ N. Then we define two relations.

• R : BS T × BS T as

t1 R t2 ⇐⇒ ∃ f : Z⇀ Z. dom f ⊇ elements(t1)∧ f is strictly increasing ∧ f (t1) = t2. (4.1)

where elements(t) returns all the elements of tree t and f (t) substitutes elements of t using

f and keeps the structure of t. The relation R is an equivalence relation:

1. reflexivity, let f be the identity map then we get t R t for all t ∈ BS T .

2. symmetry, if we have t1 R t2 for some f , we need to show t2 R t1. By the property of f

is strictly increasing, f must be injective. Then we know that f −1 is a partial function

and strictly increasing. So we get t2 R t1 by f −1.

3. transitivity, if we have t1 R t2 and t2 R t3, we need to show t1 R t3. Suppose f1 maps t1 to

t2 and f2 maps t2 to t3. We can define a function f ′ : Z→ Z as f ′ = f2 ◦ f1 and clearly

f ′ is strictly increasing. Thus we conclude that t1 R t3 by f ′.

• R′ : (BS T × Z) × (BS T × Z)

(t1, x1) R′ (t2, x2) ⇐⇒ ∃ f : Z⇀ Z. dom f ⊇ elements(t1)∪{x1}∧ f is strictly increasing

∧ f (x1) = x2 ∧ f (t1) = t2. (4.2)

Similarly, R′ is also an equivalence relation.
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We want to count two things:

1. |BS Tn/R|, the number of partitions of binary search trees with heights less than n. Essen-

tially, we count the number of unlabeled binary trees.

2. |(BS Tn × Z)/R′|, the number of partitions of pairs of binary search trees with heights less

than n and integers. Obviously,

(BS Tn × Z)/R′ =
⊎

T∈BS Tn/R

(T × Z)/R′.

Now we proceed to count |(T × Z)/R′| for T ∈ BS Tn/R. We claim that

|(T × Z)/R′| = 2 × #nodes(T ) + 1,

where #nodes(T ) is the number of nodes of any tree in T . Clearly, all the trees in T have

the same shape, #nodes(T ) is well-defined. Suppose #nodes(T ) = k and we define a tree

t ∈ T which has elements: 2, 4, . . . , 2k. Then define P = { (t, i) | 1 ≤ i ≤ 2k + 1 }. Clearly,

P ⊂ (T × Z). Also it is easy to see that no two (t, i1), (t, i2) ∈ P with i1 , i2 are in the

same partition, that is, ¬(t, i1) R′ (t, i2). If we can show for all (t′, x) ∈ (T × Z), (t′, x) R′ p

for some p ∈ P, then we can conclude |(T × Z)/R′| = |P| = 2 × #nodes(T ) + 1. Given any

(t′, x) ∈ (T × Z) and the elements in t′ are e1, e2, . . . , ek (in increasing order), since t′, t ∈ T ,

then t′ R t, that is, there exists a strictly increasing function f such that f (t′) = t. Then we

know f (ei) = 2i for all 1 ≤ i ≤ k. If x = ei for some 1 ≤ i ≤ k, we get (t′, x) R′ (t, 2i) by f .

Otherwise, suppose e1 < x < e2, we define a new function f ′ as follows:

f ′(y) =


f (y) if f (y) is defined and y ≥ e2 or e1 ≥ y
3 if y = x
unde f ined otherwise

.

Clearly, f ′ is strictly increasing. The other cases are similar. Therefore, we get (t′, x) R′ (t, 3)

by f ′. We conclude that

|(BS Tn × Z)/R′| =
∑

T∈BS Tn/R

2 × #nodes(T ) + 1.
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This number is used to count the number of cases after the search/insert/remove oper-

ations. The search/insert/remove operations are similar:

• these operations take in a tree t and an integer x;

• the most important part of these operations is to find/search the suitable position for x

in t. Suppose t has n nodes, there are total 2n + 1 positions that include n nodes and

n + 1 s. That is, for any binary search tree t with n nodes,

|{ [(t, x)]R′ | x ∈ Z }| = 2n + 1.

Clearly, |BS Tn/R| is the number of non-isomorphic binary search trees and |(BS Tn × Z)/R′| is the

number of cases after the search/insert/remove operations.

4.2 Counting Binary Search Trees

4.2.1 Counting Numbers of Binary Search Trees BS Tn/R

Since we only consider tree shapes but not the labels (elements) of tree nodes, the number of

binary search trees with heights less than n is the same as the number of binary trees with heights

less than n. Let an be the number of binary trees whose heights less than n for n ≥ 0. We admit the

empty tree as a legal binary tree with height −1. Clearly we have a0 = 1 because only the empty

tree’s height is less than 0. Let consider an for n ≥ 1. Then for each tree of height less than n,

either it is empty or non-empty. For a non-empty binary tree, it must have a root. The heights of

the left and right subtrees of the root are less than n − 1. Therefore, we get

an = 1 + a2
n−1 n ≥ 1 (a0 = 1). (4.3)
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We get

a1 = 1 + a2
0 = 2

a2 = 1 + a2
1 = 1 + 22 = 5

a3 = 1 + a2
2 = 1 + 52 = 26

a4 = 1 + a2
3 = 1 + 262 = 677

...

This sequence grows double exponentially. In fact, Aho [4] showed an = [k2n
] where [] is the

nearest integer function and k = 1.502837 . . ..

4.2.2 Counting (BS Tn × Z)/R′

Let b(m, n) be |{ [t]R | t ∈ BS Tn ∧ t has m nodes }|, the number of binary trees with m nodes and

heights less than n. Clearly b(0, n) = 1 for all n ≥ 0 and b(m, 0) = 0 for all m ≥ 1. Let

cn = (BS Tn × Z)/R′. We have cn =
∑

0≤i(2i + 1)b(i, n). 1 Define a generating function for b(m, n)

as

Tn(x) =
∑
m≥0

b(m, n)xm n ≥ 0. (4.4)

Note from the definition of b(m, n), we can see clearly that an = Tn(1) where an is the number of

binary trees whose heights are less than n. A non-empty tree with height less than n and m > 0

nodes can have a left subtree with i nodes and height less than n − 1 and a right subtree with

m − 1 − i nodes and height less than n − 1 for any 0 ≤ i ≤ m − 1. Thus we get

b(m, n) =
∑

i+ j=m−1

b(i, n − 1)b( j, n − 1) m > 0, n ≥ 1 (4.5)

After multiplying xm to both sides of (4.5) and summing over 1 ≤ m ≤ ∞, we get

Tn(x) = x(Tn−1(x))2 + 1 n ≥ 1. (4.6)
1This result allows the duplicated resulting trees and corresponds to the stateless case.

33



Since b(0, 0) = 1 and b(m, 0) = 0 for m > 0, we have T0(x) = 1. Using recurrence (4.6), we can

get T1(x) = 1 + x, T2(x) = 1 + x + 2x2 + x3, etc. From the definitions of an and b(m, n), we know

an =
∑

m≥0 b(m, n). Thus an = Tn(1) and (4.6) becomes (4.3) with x = 1 as expected.

Next, define generating function

Gn(x) =
∑
m≥0

(2m + 1)b(m, n)xm n ≥ 0. (4.7)

Then

Gn(x) =
∑
m≥0

(2m + 1)b(m, n)xm

= 2
∑
m≥0

mb(m, n)xm +
∑
m≥0

b(m, n)xm

= 2xT ′n(x) + Tn(x),

where T ′n(x) is the derivative of Tn(x). Clearly, cn = Gn(1). In order to get the closed formula of

Gn(x), we need to calculate T ′n(x),

T ′n(x) = (x(Tn−1(x))2)′ = 2xTn−1(x)T ′n−1(x) + (Tn−1(x))2 n ≥ 1,T ′0(x) = 0.

Thus we get a recurrence relation

T ′n(1) = 2Tn−1(1)T ′n−1(1) + (Tn−1(1))2. (4.8)

We know that Tn(1) = an = [k2n
]. Then the recurrence (4.8) becomes

T ′n(1) = 2[k2n−1
]T ′n−1(1) + [k2n−1

]2. (4.9)

Let b(n) = 2[k2n−1
] and c(n) = [k2n−1

]2. Using the technique in page 18 of [31], multiply both sides

of (4.9) by F(n) = 1/
∏n

j=1 b( j) and get

yn = yn−1 + F(n)c(n),

where yn = b(n + 1)F(n + 1)T ′n(1). Finally we can get

T ′n(1) =
T ′0(1) +

∑n
i=1 F(i)c(i)

b(n + 1)F(n + 1)
.
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Now we can substitute in F(n), b(n), and T ′0(1) = 0 and get

T ′n(1) =
0 +

∑n
i=1

1∏i
j=1 2[k2i−1 ]

[k2i−1
]2

2[k2n]/
∏n+1

j=1 2[k2 j−1]
=

n∑
i=1

[k2i−1
]2

n∏
j=i+1

2[k2 j−1
].

Therefore, we get

cn = Gn(1) = 2T ′n(1) + Tn(1) = 2
n∑

i=1

[k2i−1
]2

n∏
j=i+1

2[k2 j−1
] + [k2n

]. (4.10)

Now we can calculate the first few terms of cn:

c0 = [k20
] = 1,

c1 = 2
1∑

i=1

[k2i−1
]2

1∏
j=i+1

2[k2 j−1
] + [k21

] = 2 + 2 = 4,

c2 = 2
2∑

i=1

[k2i−1
]2

2∏
j=i+1

2[k2 j−1
] + [k22

] = 16 + 5 = 21,

c3 = 2
3∑

i=1

[k2i−1
]2

3∏
j=i+1

2[k2 j−1
] + [k23

] = 210 + 26 = 236,

c4 = 2
4∑

i=1

[k2i−1
]2

4∏
j=i+1

2[k2 j−1
] + [k24

] = 2 × 6136 + 667 = 12939,

...

Numbers of non-isomorphic binary search trees after insert operation Now we only con-

sider the insert operation and want to find out the number of non-isomorphic binary search trees

after insertion,

fn = |{ insert(t, x)/R | t ∈ BS Tn ∧ x ∈ Z }|, (4.11)

where insert(t, x) is the binary search tree after inserting x into tree t. The above calculation of

cn trees contain a lot of duplications. For example, the empty tree inserted with element 1 will

end up with the same tree as a tree with a single node 1 inserted with element 1. Clearly the set

of non-isomorphic binary search trees after insertion consists of all the input binary trees except

the empty tree and the set of binary trees with one node of depth n. Let eh be the total number
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of binary trees (after insertion) with heights h. Since after insertion, the resulting tree can not be

empty, we have

fh = ah + eh − 1 h > 1, (4.12)

and f0 = 1.

In order to calculate eh, we need to count the number of binary trees with one node of depth n.

Define d(h, l) as the number of binary trees with heights less than h and having l nodes with depth

h − 1 for h ≥ 0, l ≥ 0. Then d(0, 0) = 1, d(0, n) = 0, for n > 0, d(1, 1) = 1, and d(h, 0) = ah−1.

Similar to (4.5), since each node of depth h−1 can have a left or right new child, eh =
∑

l≥0 2l·d(h, l)

for h > 1 and e0 = 1, e1 = 2. Then for h > 1, we have

d(h, l) =
∑
i+ j=l

d(h − 1, i)d(h − 1, j) h > 1.

Define a generating function for d(h, l) as

Fh(x) =
∑
i≥0

d(h, i)xi.

Then we get Fh(x) = (Fh−1(x))2 for h > 1 and F0(x) = 1, F1(x) = 1 + x. Since eh =
∑

l≥0 2l · d(h, l)

for h > 1, eh = 2F′h(1) = 2
(
(1 + x)2h−1

)′
(1) = 2h(1 + 1) = 2h+1 for h > 1. Thus

f0 = 1 + 2 − 1 = 1,

f1 = 2 + 2 − 1 = 3,

f2 = 5 + 8 − 1 = 12,

f3 = 26 + 16 − 1 = 41,

f4 = 677 + 25 − 1 = 708,
...

4.3 Counting Red-black Trees

A red-black tree2 [63] is a balanced binary search tree with an additional field “color” in each

node. We will denote RBT as the set of red-black trees. Similarly, we define RBTn as the set of
2Definition of red-black tree is presented in Section 8.3.
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red-black trees with heights less than or equal to n. In this section, we let red-black trees to have

 leaf nodes which have no elements. We admit the empty tree () as a legal red black tree

with height 0 and black height 0.

4.3.1 Counting Number of Red-black Trees RBTn/R

Define

a(n, k) = |{ t | t ∈ RBTn ∧ blackheight(t) = k } /R| (4.13)

as the number of non-isomorphic red-black trees with heights at most n and black heights k.

Clearly we have a(0, 0) = 1 for only the empty tree with height 0 and black height 0 and a(n, k) = 0

for k > n. If k = 0, the only legal red black tree is the empty tree . Thus a(n, 0) = 1 for all

n ≥ 0. Let us consider a(n, k) for k ≥ 1 and n ≥ k. By the properties of red-black trees, the root of

any non-empty red-black tree has to be black. There are four cases according to the colors of the

children of the root as shown in Figure 4.1:

1. both the left and right children of the root node are black as shown in Figure 4.1(a). Then

two subtrees have heights less than n − 1 and black heights k − 1.

2. the left child is black but the right child is red as shown in Figure 4.1(d). Then two subtrees

of the left child have heights less than or equal to n − 2 and black heights k − 1. Right child

of the root has height less than n − 1 and black height k − 1.

3. the right child is red but the left child is black as shown in Figure 4.1(c). It is symmetric to

the black-red case.

4. both the left and right children are red as shown in Figure 4.1(b). Four grandchildren of the

root have heights less than or equal to n − 2 and black heights k − 1.

Therefore, we get

a(n, k) = a(n − 1, k − 1)2 + 2a(n − 1, k − 1)a(n − 2, k − 1)2 + a(n − 2, k − 1)4

= [a(n − 1, k − 1) + a(n − 2, k − 1)2]2, n ≥ 1, k ≥ 1.
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(a) Both Children Black (b) Both Children Red

(c) Left Child Red and Right Child Black (d) Left Child Black and Right Child Red

Figure 4.1: Red-black Tree Counting Cases
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We let a(n, k) = 0 for n < 0. Then we get a(1, 1) = 1.

a(2, 1) = [a(1, 0) + a(0, 0)2]2 = (1 + 12)2 = 4.

a(2, 2) = [a(1, 1) + a(0, 1)2]2 = (1 + 0)2 = 1.

a(3, 1) = [a(2, 0) + a(1, 0)2]2 = (1 + 12)2 = 4.

a(3, 2) = [a(2, 1) + a(1, 1)2]2 = (4 + 12)2 = 25.

a(3, 3) = [a(2, 2) + a(1, 2)2]2 = (1 + 02)2 = 1.

a(4, 1) = [a(3, 0) + a(2, 0)2]2 = (1 + 12)2 = 4.

a(4, 2) = [a(3, 1) + a(2, 1)2]2 = (4 + 42)2 = 400.

a(4, 3) = [a(3, 2) + a(2, 2)2]2 = (25 + 12)2 = 676.

a(4, 4) = [a(3, 3) + a(2, 3)2]2 = (1 + 02)2 = 1.
...

Let bn = |RBTn/R| be the number of non-isomorphic red-black trees with heights less than or equal

to n. Clearly bn =
∑n

k=0 a(n, k). Thus we get

b0 = a(0, 0) = 1,

b1 = a(1, 0) + a(1, 1) = 2,

b2 = a(2, 0) + a(2, 1) + a(2, 2) = 1 + 4 + 1 = 6,

b3 = a(3, 0) + a(3, 1) + a(3, 2) + a(3, 3) = 1 + 4 + 25 + 1 = 31,

b4 = a(4, 0) + a(4, 1) + a(4, 2) + a(4, 3) + a(4, 4) = 1 + 4 + 400 + 676 + 1 = 1082,
...

4.3.2 Counting (RBTn × Z)/R′

We will first count the numbers of non-isomorphic red-black trees indexed by heights. Define

f (n, h, k) = |{ t ∈ RBTh | blackheight(t) = k ∧ lea f (t) = n } /R|, (4.14)
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the number of non-isomorphic red-black trees with n leaf nodes (s) and heights less than or

equal to h and black heights equal to k. So we have

f (n, h, k) =
∑
i+ j=n

f (i, h−1, b−1)a( j, h−1, b−1)+
∑

i+ j+k=n

f (i, h−2, b−1) f ( j, h−2, b−1) f (k, h−1, b−1)

+
∑

i+ j+k=n

f (i, h − 1, b − 1) f ( j, h − 2, b − 1) f (k, h − 2, b − 1)

+
∑

i+ j+k+l=n

a(i, h − 2, b − 1)a( j, h − 2, b − 1)a(k, h − 2, b − 1)a(l, h − 2, b − 1),

for n > 0. Clearly, we have f (1, 0, 0) = 1 and f (1, h, k) = 0 for (h, k) , (0, 0) and f (n, h, k) = 0 for

h < 0 or k < 0. Define a generating function Fh,b(x) =
∑∞

n=1 a(n, h, b)xn for k ≥ 0. Then we get

Fh,b(x) = F2
h−1,b−1(x) + 2F2

h−2,b−1(x)Fh−1,b−1(x) + F4
h−2,b−1(x) = (Fh−1,b−1(x) + F2

h−2,b−1(x))2.

The boundary condition is

Fh,0(x) =

x, if h ≥ 0;
0, otherwise.

We can get F1,1(x) = x2, F2,1(x) = (x+ x2)2, F2,2(x) = x4, F3,1(x) = (x+ x2)2, F3,2(x) = ((x+ x2)2 +

x4)2, F3,3(x) = x8, F4,1(x) + (x + x2)2 = x4 + 2x3 + x2,

F4,2(x) = (F3,1(x) + F2,1(x)2)2 = [(x + x2)2 + (x + x2)4]2 = x4 + 4x5 + 8x6 + 16x7+

32x8 + 48x9 + 58x10 + 68x11 + 72x12 + 56x13 + 28x14 + 8x15 + x16,

F4,3(x) = (F3,2(x) + F2,2(x)2)2 = [((x + x2)2 + x4)2 + x8]2 = x8 + 8x9 + 32x10+

80x11 + 138x12 + 168x13 + 144x14 + 80x15 + 25x16,

and F4,4(x) = x16. Define Gh(x) =
∑h

i=0 Fh,i(x). So [xn]Gh(x) is the number of non-isomorphic

red-black trees with n − 1 nodes 3 and heights less than or equal to h. Let compute Gh(x) =

3This is because for a n node binary tree, it has n + 1  leaves [56].
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g(h, 0) + g(h, 1)x + g(h, 2)x2 + · · · :

G1(x) = x + x2,

G2(x) = 2x4 + 2x3 + x2 + x,

G3(x) = x8 + ((x + x2)2 + x4)2 + (x + x2)2 + x

= 5x8 + 8x7 + 8x6 + 4x5 + 2x4 + 2x3 + x2 + x,

G4(x) = 27x16 + 88x15 + 172x14 + 224x13 + 210x12 + 148x11+

90x10 + 56x9 + 33x8 + 16x7 + 8x6 + 4x5 + 2x4 + 2x3 + x2 + x
...

Now we will compute ph = |(RBTh × Z)/R′|, the total number of cases after the insert operation

for red-black trees with height less than or equal to h is

ph =
∑
i≥0

(2i − 1)g(h, i).

Then we have ph = 2G′(1) −G(1).

p1 = 2 × 3 − 2 = 4,

p2 = 2 × 17 − 6 = 28,

p3 = 2 × (40 + 56 + 48 + 20 + 8 + 6 + 2 + 1) − 31 = 331,

P4 = 2 × (27 · 16 + 88 · 15 + 172 · 14 + 224 · 13 + 210 · 12 + 148 · 11 + 90 · 10 + 56 · 9 + 33 · 8 + 16 · 7

+ 8 · 6 + 4 · 5 + 2 · 4 + 2 · 3 + 2 + 1) − 1082 = 2 · 13085 − 1082 = 25088,
...

4.4 Counting AVL Trees

AVL Tree [40] is another balanced binary search tree. The structure constraint is that for any node

in the tree, the heights of its left subtree and right subtree differ at most by 1. Similar to red-black

tree, we treat s as legal nodes.
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We define AVL be the set of all AVL tree and AVLh = { t ∈ AVL | height(t) = h } for h ∈ N. So

AVL0 is a singleton that only contains the empty tree .

4.4.1 Counting Numbers of AVL Trees AVLh/R

Define ah = |AVLh/R|, the number of non-isomorphic AVL trees with heights equal to h. For an

AVL tree with height h greater than 0, there are three cases according to the heights of its left and

right subtrees:

• the heights of the left and right subtrees are the same. So the heights of the left and right

subtrees must be h − 1.

• the height of the left subtree is greater than the height of the right subtree by one. So the

height of the left subtree is h − 1 and the height of the right subtree is h − 2.

• the height of the left subtree is less than the height of the right subtree by one. So the height

of the left subtree is h − 2 and the height of the right subtree is h − 1.

So we get

ah = a2
h−1 + 2ah−1ah−2 h > 0. (4.15)

The boundary condition is a0 = 1. Thus we have

a1 = a2
0 = 1,

a2 = a2
1 + 2a0a1 = 3,

a3 = a2
2 + 2a2a1 = 15,

a4 = a2
3 + 2a3a2 = 152 + 2 × 15 × 3 = 315,

...

Note, [40] shows that

ah = bθ
2h
c − bθ2

h−1
c + bθ2

h−2
c − · · · + (−1)hbθ2

0
c,

where θ ≈ 1.43687.
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4.4.2 Counting (AVLh × Z)/R′

Define b(h, n) = |{ [t]R | t ∈ AVLh ∧ t has n nodes }|, the number of non-isomorphic AVL trees with

n nodes and height h. Then we have

b(h, n) =
∑

i+ j=n−1

b(h − 1, i)b(h − 1, j) + 2
∑

i+ j=n−1

b(h − 1, i)b(h − 2, j) h > 0, n ≥ 1. (4.16)

Clearly, we have b(0, 0) = 1 and b(0, n) = 0 for n > 0. Define a sequence of generating functions,

for h ≥ 0,

Hh(x) =
∑
i≥0

b(h, i)xi. (4.17)

We have H0(x) = 1. We can multiply (4.16) by xn and sum over 1 ≤ n ≤ ∞ and get

Hh(x) = xH2
h−1(x) + 2xHi−1(x)Hi−2(x) h > 0. (4.18)

So we get

H1(x) = x,

H2(x) = x × x2 + 2x × x = x3 + 2x2,

H3(x) = 4x4 + 6x5 + 4x6 + x7,

...

Now we will compute ch = |(AVLh × Z)/R′|, the total number of cases after insert operation for

AVL trees with height equal to h,

ch =
∑
i≥0

(2i + 1)b(h, i).

Then we have ch = 2H′h(1) + Hh(1). From (4.18), we get

H′h(1) = H2
h−1(1) + H′h−1(1)Hh−1(1) + 2Hn−1(1)Hn−2(1) + 2H′h−1(1)Hh−2(1) + 2Hh−1(1)H′h−2(1).
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Then we get H′0(1) = 0,H′1(1) = 1,H′2(1) = 7,H′3(1) = 77, . . . . Therefore,

c0 = 2 × 0 + 1 = 1,

c1 = 2 × 1 + 1 = 3,

c2 = 2 × 7 + 3 = 17,

c3 = 2 × 77 + 15 = 169,
...

4.5 Counting List with Merge Operation

The merge [40] operation takes two sorted lists and merges them into one sorted list. Since merge

takes two lists and each list has length less than k, the total number of cases before the operation

is k × k = k2.

Number of cases after the merge operation equals to

bk =
∑

0≤m,n<k

(
m + n

n

)
=

∑
0≤m<k

∑
0≤n<k

(
m + n

n

)
=

∑
0≤m<k

(
m + k
k − 1

)
=

(
k − 1 + 1 + k

k − 1 + 1

)
− 1 =

(
2k
k

)
− 1.

Number of cases after the operation if postcondition is strictly ascending Now we need to

consider additional error cases: two elements in two lists are equal. Let the two input lists to be

[c1, c2, . . . , cn] and [d1, d2, . . . , dm]. If all the ci, d j are distinct, there are bk cases after merging.

Otherwise, suppose that ci and d j are the first pair that equals, so we have to merge sub-lists

before ci, d j ([c1, c2, . . . , ci−1] and [d1, d2, . . . , d j−1]) and after the two elements ([ci+1, ci+2, . . . , cn]
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and [d j+1, d j+2, . . . , dm]). Thus there are

∑
0≤m,n<k

∑
1≤i≤n,1≤ j≤m

(
i − 1 + j − 1

i − 1

)
×

(
n − i + m − j

n − i

)
extra cases.

4.6 Counting Binary Heap

Binary Heap [63] is a special kind of binary tree with two properties:

• structure property a heap is a complete binary tree, that is, a binary tree that is completely

filled with possible exception of the bottom level which is filled from left to right;

• heap-order property any node is smaller than its children.

The number of non-isomorphic binary heaps with n nodes is 1 because of the structure prop-

erty.

The number of cases after deleteMin operation is n−1 for a n node input binary heap because

the last node can be put in any of the previous 1..n− 1 position. Once the position of the last node

is decided, the other nodes are moved deterministically.

The number of cases after insert operation for a n node binary heap is blog(n + 1)c + 1

because the inserted element can be put in any place in the path from the root to the last element

and blog(n + 1)c is the number of nodes in the shortest path from the root to a leaf.
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Chapter 5

Formalization of Symbolic Executions in
Kiasan

In this chapter, we formalize the basic (non-compositional) symbolic executions in Kiasan and

prove the symbolic executions with lazy, lazier, and lazier# initialization are relatively sound and

complete with respect to a JVM concrete execution operational semantics. Section 5.1 defines

some substitution functions that will be used throughout this chapter and Chapter 7. Operational

semantics of symbolic executions with lazy, lazier, and lazier# initialization and concrete JVM

operational semantics are presented in Section 5.2. Finally, Section 5.3 shows the proof of relative

soundness and completeness.
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5.1 Substitution Functions

First we will define some substitution functions. Assume that D,D′ are some domains and Seq(D)

is the set of all sequences of elements in D:

• a substitution function, sub : D × (D⇀ D)→ D as

sub(d, g) =

g(d) if d ∈ dom g;
d otherwise.

• a function substitution function, sub-fun : (D′ ⇀ D) × (D ⇀ D) → (D′ ⇀ D) as

sub-fun( f , g) = f ′ where dom f = dom f ′ and ∀d ∈ dom f . f ′(d) = sub( f (d), g).

• a one-step function substitution function, sub-fun1 : (D′ ⇀ D) × D × D → (D′ ⇀ D) as

sub-fun1( f , d, d′) = sub-fun( f , {(d, d′)}).

• a sequence substitution function: sub-seq : Seq(D)×(D⇀ D)→ Seq(D) as sub-seq(nil, g) =

nil and sub-seq(d ::q, g) = sub(d, g) ::sub-seq(q, g).

• an one-step sequence substitution function: sub-seq1 : Seq(D) × D × D → Seq(D) as

sub-seq1(q, d, d′) = sub-seq(q, {(d, d′)}).

• a functional substitution function sub-fun2 : (D′′ ⇀ D′ ⇀ D) × (D ⇀ D) → (D′′ ⇀

D′ ⇀ D) as sub-fun2( f , g) = f ′ where dom f = dom f ′ and ∀d′′ ∈ dom f . f ′(d′′) =

sub-fun( f (d′′), g).

• a one-step functional substitution function sub-fun21 : (D′′ ⇀ D′ ⇀ D) × D × D→ (D′′ ⇀

D′ ⇀ D) as sub-fun21( f , d, d′) = sub-fun2( f , {(d, d′)}).

Then we introduce some simple properties of the substitution functions:

Lemma 1. Suppose a partial function g : D ⇀ D for some domain D satisfies dom g ∩ ran g =

∅. Then for any (d, d′) ∈ g and function f : D′ ⇀ D, sequence q : Seq(D), and funtional

f ho : D′′ ⇀ D′ ⇀ D, we have sub-fun( f , g) = sub-fun(sub-fun1( f , d, d′), g), sub-seq(q, g) =

sub-seq(sub-seq1(q, d, d′), g), sub-fun2( f ho, g) = sub-seq(sub-fun21( f go, d, d′), g).
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Lemma 2. if R is the range of f : D′ ⇀ D, the set of elements in a sequence q : Seq(D) or the

second range of f ho : D′′ ⇀ D′ ⇀ D, then for any g : D⇀ D, sub-fun( f , g) = sub-fun( f , g |R∩dom g

), sub-seq(q, g) = sub-seq(q, g |R∩dom g), sub-fun2( f ho, g) = sub-fun2( f ho, g |R∩dom g).

5.2 Operational Semantics

This section presents the formal operational semantics of Kiasan’s symbolic executions with lazy

(SEL), lazier (SELA), and lazier# initialization (SELB), as well as a concrete execution semantics

for JVM bytecode instructions.

5.2.1 Operational Semantics of Symbolic Execution with Lazy Initialization

We will discuss the symbolic execution with lazy initialization operational semantics of JVM

bytecode with additional two instructions, assume and assert. First, the semantic domains are

introduced. Then some auxiliary functions that facilitate the definition of semantic rules are de-

fined. Finally the semantic rules for bytecode instructions and assume/assert are presented.

Semantic Domains

The semantic/syntactical domains are listed as following:

• the set of primitive types, Typesprim, consisting of INT, CHAR, etc.,

• the set of array types, Typesarray,

• the set of record types, Typesrecord,

• the set of symbolic types, SymTypes,

• the set of non-primitive types, Typesnon−prim = Typesrecord]
1 Typesarray ] SymTypes,

• the set of all types, Types = Typesprim ] Typesnon−prim,

• the set of program counters, PCs
1] denotes disjoint union.
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• the set of boolean expressions, Φ,

• the set of locations, Locs,

• the set of natural numbers, N,

• the set of constants, Consts, including N, T, F, , etc.,

• the set of fields, Fields, including , , , etc.,

• the set of integer symbols, Symbols,

• the set of primitive symbols, Symbolsprim, including Symbols,

• the set of values, Values = Consts ] Locs ] Symbolsprim,

• the set of indexes, Indexes = Fields ] N ] Symbols,

• the set of non-primitive symbols, Symbolsnon−prim =
{

Xm,n
τ | X

m,n
τ : Indexes⇀ Values

}
,

• the set of symbols, Symbols = Symbolsprim ] Symbolsnon−prim,

• the set of globals, Globals = { g | g : Fields⇀ Values },

• the set of operand stacks, Stacks =
{
ω | ω : Seq(Values)

}
, all sequences of values,

• the set of locals, Locals = { l | l : N⇀ Values },

• the set of heaps, Heaps =
{

h | h : Locs⇀ Symbolsnon−prim

}
,

• the set of bytecode instruction with additional assert and assume instructions, Instrs,

We follow Java type system in the semantic domains: we use Typesprim to model the primitive

types and Typesnon−prim for the reference types which are divided into object types (Typesrecord),

array types (Typesarray), and symbolic types (SymTypes). SymTypes is used to model the vari-

able real types of the non-primitive input parameters and global fields.2 PCs denotes the set of
2In fact, all the non-primitive symbolic objects are created with symbolic types.
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program counters or indexes of code arrays. A special program counter, , is introduced to in-

dicate that the end of code array is reached and execution stops. Similar to types, Symbols are

divided into two types: primitive symbols, such as symbolic integers, symbolic floats, etc.; and

reference symbols including symbolic objects and symbolic arrays. Concrete values are modeled

by the Consts domain. For simplicity, we unify concrete objects and all symbolic values into the

Symbols domain. Each member of Symbolsnon−prim domain, Xm,n
τ , has three properties (we often

omit properties when they are not important/applicable): τ is the type of the symbol, m is the

object field or array element expansion bound, and n is the number of array element bound. (We

will discuss the difference between m and n for arrays at the end of this section.) And each non-

primitive symbol, Xm,n
τ , is modeled as a partial mapping from its fields to values. Each primitive

symbol Xτ or field fτ also has a property of its type τ. Since arrays are also modeled by Symbols,

the domain (Indexes) of the partial mapping of array X includes natural numbers and symbolic

integers. Concrete objects created during the execution are represented as non-primitive symbols

too, but their fields are all initialized (see the new-obj auxiliary function). On the other hand, fields

of symbolic objects may have not been initialized (initially created using the new-sym function).

Fields of the array include indexes and length, , (which is always defined). Symbolic arrays and

concrete arrays are created using the new-sarr and new-arr functions respectively. Locs represents

the set of addresses in the heap.

State Since we only consider single threaded programs modularly (one method at a time), we

represent a SEL state with only one stack frame element (the stack frame element of the method

being analyzed). A state is represented as a tuple of global variables, program counter, locals,

operand stack, and heap following the JVM specification [43]; we add path condition φ (as a

conjunctive-set of formulas) as another state component. So the definition of the set of SEL states

is :

Σs = Globals × PCs × Locals × Stacks ×Heaps × Φ

and we let σ ranges over Σs.
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We will follow the convention that

• τ ranges over types, Types,

• pc ranges over program counters, PCs,

• φ ranges over boolean expressions, Φ,

• i and j range over locations, Locs,

• m, n, and k range over natural numbers, N,

• c and d range over constants, Consts,

• f ranges over fields, Fields,

• X, Y , and Z range over symbols, Symbols,

• v ranges over values, Values,

• ι ranges over indexes, Indexes,

• g ranges over globals, Globals,

• ω ranges over operand stacks, Stacks,

• l ranges over locals, Locals,

The meta-variables used to range over the semantic domains may be primed or subscripted.

Auxiliary Functions

We define some auxiliary functions to facilitate the definition of operational semantics:

• default value function, default : Types→ Values as λτ.v,where v is the default value of τ;

• fields of a type function, fields : Types→ P(Fields) as λτ.{ fτ′ | fτ′ is a field in τ};

• subtype function, τ′ <: τ : Types × Types→ Boolean as τ′ is a subtype of τ (reflexive);
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• defined integral indexes of a non-primitive symbol function, acc-idx : Symbolsnon−prim →

P(N ∪ Symbols) as λX.
{
ι ∈ N ∪ Symbols | X(ι)↓

}
;

• locations that map to symbolic objects function, collect : Heaps→ P(Locs) as

λh. { i | h(i)() ↑ };

• the set of all symbols in a state function, symbols : Σs → P(Symbols) as

λσ.
{

X | X appears in σ
}
;

• new primitive symbol function, new-prim-sym : Typesprim × P(Symbols) → Symbolsprim

as λ(τ, ss).Xτ, X < ss;

• new symbolic type function, new-sym-type : P(Symbols) → SymTypes as λss.τ s.t. τ ∈

SymTypes and τ does not appear in ss;

• new array type function, array-type : Types → Typesarray as λτ.τ′, where τ′ is the array

type of element type τ;

• new symbolic record function, new-sym : P(Symbols) × N × N → Symbolsnon−prim as

λ(ss,m, n).Xm,n
τ , s.t. X < ss ∧ τ = new-sym-type(ss) ∧ ∀ι ∈ Indexes.X(ι)↑;

• new symbolic array function, new-sarr : P(Symbols)×N×N→ Symbols as λ(ss,m, n).new-sym(ss∪

{X},m, n)[ 7→ X] where X = new-prim-sym(, ss);

• new concrete object function, new-obj : P(Symbols)×Typesrecord → Symbols as λ(ss, τ).X0,0
τ ,

s.t. X < ss ∧ ∀ fτ′ ∈ fields(τ).X( fτ′) = default(τ′);

• new concrete array function, new-arr : P(Symbols) × Types × (N ] Symbols) × N →

Symbols as λ(ss, τ, v, n).X0,n
τ′ , X < ss ∧ τ′ = array-type(τ) ∧ dom X = {, , } ∧

X() = default(τ) ∧ X() = v.
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Semantic Rules

Given an array of instructions, we define a function code : PCs ⇀ Instrs which takes a program

counter and returns the corresponding instruction that is pointed to by the input program counter.

Operational semantic rules are in the format of

premises

σ⇒S σ1[‖ σ2] | E, σ′|E, σ′′

that shows how a state is changed by one bytecode instruction to multiple normal states, an ex-

ception, or an error due to non-determinism. More specifically, given a state σ, if pre is satisfied,

after executing the instruction pointed by the program counter component of σ, the resulting state

is σ1; or nondeterministically σ1 or σ2; or an E with a state σ′; or E with a state

σ′′. Exceptions are handled the same way as JVM specification [43] does. If an error occurs,

then the program stops. For simplicity, we assume that garbage collection is performed after each

transition. Moreover, we terminate silently when a state’s path condition becomes unsatisfiable.

Each SEL semantic rule name is the format of xxxx#-S where xxxx is the instruction name

and since there may be multiple rules for one instruction, we use a number # (from 1 to n) to

distinguish the rules for the same instruction. Due to limit of space, we only present semantics for

some representative JVM instructions and the instructions are divided into following categories:

• Arithmetic instructions: Instruction iadd adds two integers from the top of the stack and

puts the result back into the stack. The semantics of iadd is represented by the rule IADD-S.

A fresh symbolic integer is introduced as the result and a constraint is added to the path

condition stating that the fresh symbolic integer equals to the sum of the two operands.

• Object creation and manipulation instructions: new τ, getfield f , putfield f , instanceof

τ, and checkcast τ are presented. Accesses to symbolic objects (e.g., getfield f ) operate

according to the lazy initialization algorithm described previously. Similar to [37], we limit

the choosing range to symbolic objects and arrays by introducing an additional field, ,

which is defined for concrete objects while undefined for symbolic objects. This eliminates

false alarms in the case where freshly created objects (using the new τ instruction during the
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execution) are reachable through object expansion; concretely, this only happens through

assignments.

– Instruction new τ creates a fresh object of type τ and puts it into heap. By the definition

of new-obj, all the fields including  are initialized. This guarantees that the newly

created object will not be in the choosing ranges of lazy initializations.

– Instruction getfield f reads the f field of an object which is indexed by the heap

address on the top of the stack. Semantic rules GETFIELD(1..7)-S are for getfield.

Rules GETFIELD1-S and GETFIELD7-S are the default behavior of the getfield f :

GETFIELD1-S is for the case that the field of the object is defined; GETFIELD7-S is

for the case that the object reference is . Rules GETFIELD(2..6)-S demonstrate

the lazy initialization algorithm when the field is undefined. GETFIELD2-S handles the

sub-case of primitive field type. A new symbol is created and the field is initialized

with the fresh symbol. GETFIELD3-S lazily initializes a non-primitive field to .

GETFIELD4-S lazily initializes a non-primitive field by nondeterministically choos-

ing from existing symbolic objects (with  undefined) from heap with compatible

types. Rules GETFIELD5-S and GETFIELD6-S show the field is initialized with a new

symbolic object or array respectively if the object bound is not exhausted (greater than

zero).

– Instruction putfield τ writes a value to a field of an object. The value and heap ad-

dress of the object are on the top of the stack. There are two rules for putfield τ:

PUTFIELD1-S and PUTFIELD2-S. PUTFIELD1-S handles the normal case and PUTFIELD2-S

deals with the case that the object is .

– Instruction instanceof τ tests whether an object is a type of τ. According to the

JVM specification [43], if the object is , the test returns true. If the object is non-

, returns true if the type of the object is a subtype of τ, false otherwise. Rule

INSTANCEOF1-S represents the  case and INSTANCEOF2-S does the non-

case.

54



– Instruction checkcast τ is very similar to the instruction instanceof. The difference

is the return: if the test passes, it does nothing; otherwise it throws a ClassCastExcep-

tion exception.

• Array manipulation instructions: only anewarray τ, iastore, and iaload are presented

here. As mentioned previously, symbolic arrays present a unique challenge: fields of sym-

bolic objects are fixed by their types but elements of symbolic arrays are not fixed because

the length may be unknown; this includes arrays explicitly created with a symbolic length.

To address this, we introduce another bound n on symbol Xm,n that limits the number of

distinct array elements that can be lazily initialized, that is, each symbolic array allows lazy

initializations up to n kinds of distinct elements. If an array element is accessed through a

symbolic index (e.g., iaload), there are three possibilities:

1. the index maybe out of bounds,

2. the index is equal to one of the accessed indexes (from the acc-idx function), or

3. n is decremented if the above does not hold, the number of distinct indexes accessed

so far is less than the length of the array, and n is greater than zero.

Elements of local arrays (created by anewarray) should have default values, but we cannot

simply assign default values to all elements to a local array because the array length maybe

unknown. Instead, we keep a default value for the array on its  field and lazily initialize

an accessed index with it.

– Instruction anewarray τ creates a new array with its length equals to the value on

the top of the stack. Because the way we bound arrays, there are two rules for this

instruction: ANEWARRAY1-S for fixed (concrete) array length and the array bound is

the same as the length; ANEWARRAY2-S for symbolic array length.

– Instruction iastore writes an integer value into an integer array. Rule IASTORE1-S is

for the array index out of bound case. IASTORE4-S presents the case that the array is
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. Rule IASTORE2 is for the case that the index equals to one of accessed indexes.

Rule IASTORE3 creates a new index in the array.

– Instruction iaload reads the value from an index of an array. Similar to getfield,

lazy initialization is applied when an index is undefined (Rule IALOAD3-S). The rest

rules are similar to the rules for instruction iastore.

• Control transfer instructions: we list semantic rules for instructions if icmplt and if acmpeq.

– Instruction if icmplt compares the two top integral values on the stack. Since the

two compared values may be symbolic and thus the ordering may not be decided,

rule IF ICMPLT-S has two end states to cover both the true and false branches. If

the comparison can be determined, one branch will have inconsistent path condition,

which will then be ignored.

– Instruction if acmpeq compares two object references on the top of the stack. Since

Kiasan maintains a precise visible heap, the two references are either equal or not

equal. Thus there are two rules for if acmpeq: IF ACMPEQ1-S for not equal case and

IF ACMPEQ2-S for the equal case.

• Instructions assume and assert instructions: the semantics for assume and assert are

standard: if the top of the stack is true, assume and assert does nothing; otherwise,

assume terminates the execution silently by making path condition F, while assert

signals an error and terminates the execution.

We use the binding, σ = (g, pc, l, ω, h, φ), for all the rules. And k is used as both the object

bound and the array bound.

IADD-S
code(pc) = iadd ω = v1 ::v2 ::ω′

σ⇒S (g, next(pc), l,Y ::ω′, h, φ ∪ {Y = v1 + v2})
where Y = new-prim-sym(, symbols(σ))

IF ICMPLT-S
code(pc) = if icmplt pc′ ω = v1 ::v2 ::ω′

σ⇒S (g, next(pc), l, ω′, h, φ ∪ {v2 ≮ v1}) ‖ (g, pc′, l, ω′, h, φ ∪ {v2 < v1})

NEW-S
code(pc) = new τ i < dom h

σ⇒S (g, next(pc), l, i ::ω, h[i 7→ new-obj(symbols(σ), τ)], φ)
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GETFIELD1-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↓

σ⇒S (g, next(pc), l, h(i)( fτ) ::ω′, h, φ)

GETFIELD2-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesprim

σ⇒S (g, next(pc), l, X ::ω′, h[i 7→ h(i)[ f 7→ X]], φ)
where X = new-prim-sym(τ, symbols(σ))

GETFIELD3-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesnon−prim

σ⇒S (g, next(pc), l,  ::ω′, h[i 7→ h(i)[ f 7→ ]], φ)

GETFIELD4-S

code(pc) = getfield fτ
ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesnon−prim j ∈ collect(h) Zτ′ = h( j)

σ⇒S (g, next(pc), l, j ::ω′, h[i 7→ h(i)[ f 7→ j]], φ ∪ {τ′ <: τ})

GETFIELD5-S

code(pc) = getfield fτ ω = i ::ω′

h(i)( fτ)↑ τ ∈ Typesarray Ym,n = h(i) m > 0 j < dom h

σ⇒S (g, next(pc), l, j ::ω′, h[i 7→ h(i)[ f 7→ j]][ j 7→ Zτ′], φ ∪ {τ′ <: τ,Z() ≥ 0})
where Zτ′ = new-sarr(symbols(σ),m − 1, k)

GETFIELD6-S

code(pc) = getfield fτ ω = i ::ω′

h(i)( fτ)↑ τ ∈ Typesrecord Ym,n = h(i) m > 0 j < dom h

σ⇒S (g, next(pc), l, j ::ω′, h[i 7→ h(i)[ f 7→ j]][ j 7→ Zτ′], φ ∪ {τ′ <: τ})
where Zτ′ = new-sym(symbols(σ),m − 1, k)

GETFIELD7-S
code(pc) = getfield fτ ω =  ::ω′

σ⇒S NullPointerException, (g, pc, l, ω′, h, φ)

PUTFIELD1-S
code(pc) = putfield f ω = v :: i ::ω′

σ⇒S (g, next(pc), l, ω′, h[i 7→ h(i)[ f 7→ v]], φ)

PUTFIELD2-S
code(pc) = putfield f ω = v :: ::ω′

σ⇒S NullPointerException, (g, pc, l, ω′, h, φ)

ANEWARRAY1-S
code(pc) = anewarray τ ω = m ::ω′ i < dom h

σ⇒S (g, next(pc), l, ω′, h[i 7→ new-arr(symbols(σ), τ,m,m)], φ)

ANEWARRAY2-S
code(pc) = anewarray τ ω = X ::ω′ i < dom h

σ⇒S (g, next(pc), l, ω′, h[i 7→ new-arr(symbols(σ), τ, X, k)], φ ∪ {X ≥ 0}) ‖
NegativeArraySizeException, (g, pc, l, ω′, h, φ ∪ {X < 0})

IASTORE1-S
code(pc) = iastore ω = v :: ι :: i ::ω′

σ⇒S ArrayIndexOutOfBoundException, (g, pc, l, ω′, h, φ ∪ {ι < 0 ∨ ι ≥ h(i)()})

IASTORE2-S
code(pc) = iastore ω = v :: ι :: i ::ω′ Z = h(i) ι′ ∈ acc-idx(Z)

σ⇒S (g, next(pc), l, ω′, h[i 7→ Z[ι′ 7→ v]], φ ∪ {ι = ι′})

IASTORE3-S

code(pc) = iastore
ω = v :: ι :: i ::ω′ Zm,n = h(i) n > 0 I = acc-idx(Z)

σ⇒S (g, next(pc), l, ω′, h[i 7→ Zm,n−1[ι 7→ v]], φ ∪ { ι , ι′ | ι′ ∈ I }
∪{0 ≤ ι, ι < Z(), |I| < Z()})
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IASTORE4-S
code(pc) = iastore ω = v :: ι :: ::ω′

σ⇒S NullPointerException, (g, pc, l, ω′, h, φ)

IALOAD1-S
code(pc) = iaload ω = ι :: i ::ω′

σ⇒S ArrayIndexOutOfBoundsException, (g, pc, l, ω′, h, φ ∪ {ι < 0 ∨ h(i)() ≤ ι})

IALOAD2-S
code(pc) = iaload ω = ι :: i ::ω′ Z = h(i) ι′ ∈ acc-idx(Z)

σ⇒S (g, next(pc), l,Z(ι′) ::ω′, h, φ ∪ {ι = ι′})

IALOAD3-S
code(pc) = iaload ω = ι :: i ::ω′ Zm,n = h(i) I = acc-idx(Zm,n)

σ⇒S (g, next(pc), l, v ::ω′, h[i 7→ Zm,n−1[ι 7→ v]], φ ∪ { ι′ , ι | ι′ ∈ I }
∪{0 ≤ ι, ι < Zm,n(), |I| < Zm,n(), n > 0})

where v =

Zm,n() if Zm,n()↓
new-prim-sym(INT, symbols(σ)) if Zm,n()↑

IALOAD4-S
code(pc) = iaload ω = ι :: ::ω′

σ⇒S NullPointerException, (g, pc, l, ω′, h, φ)

IF ACMPEQ1-S
code(pc) = if acmpeq pc′ ω = v2 ::v1 ::ω′ v2 , v1

σ⇒S (g, next(pc), l, ω′, h, φ)

IF ACMPEQ2-S
code(pc) = if acmpeq pc′ ω = v2 ::v1 ::ω′ v2 = v1

σ⇒S (g, pc′, l, ω′, h, φ)

IFNULL1-S
code(pc) = ifnull pc′ ω = i ::ω′

σ⇒S (g, next(pc), l, ω′, h, φ)

IFNULL2-S
code(pc) = ifnull pc′ ω =  ::ω′

σ⇒S (g, pc′, l, ω′, h, φ)

IFNONNULL1-S
code(pc) = ifnonnull pc′ ω = i ::ω′

σ⇒S (g, pc′, l, ω′, h, φ)

IFNONNULL2-S
code(pc) = ifnonnull pc′ ω =  ::ω′

σ⇒S (g, next(pc), l, ω′, h, φ)

INSTANCEOF1-S
code(pc) = instanceof τ ω =  ::ω′

σ⇒S (g, next(pc), l, 1::ω′, h, φ)

INSTANCEOF2-S
code(pc) = instanceof τ ω = i ::ω′ Xτ′ = h(i)

σ⇒S (g, next(pc), l, 1::ω′, h, φ ∪ {τ′ <: τ}) ‖ (g, next(pc), l, 0::ω′, h, φ ∪ {τ′ ≮: τ})

CHECKCAST1-S
code(pc) = checkcast τ ω =  ::ω′

σ⇒S (g, next(pc), l,  ::ω′, h, φ)

CHECKCAST2-S
code(pc) = checkcast τ ω = i ::ω′ Xτ′ = h(i)

σ⇒S (g, next(pc), l, i ::ω′, h, φ ∪ {τ′ <: τ}) ‖
ClassCastException, (g, pc, l, i ::ω′, h, φ ∪ {τ′ ≮: τ})

ASSUME-S
code(pc) = assume ω = v ::ω′

σ⇒S (g, next(pc), l, ω′, h, φ ∪ {v = 1})
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ASSERT-S
code(pc) = assert ω = v ::ω′

σ⇒S (g, next(pc), l, ω′, h, φ ∪ {v = 1}) ‖ E, (g, pc, l, ω′, h, φ ∪ {v = 0})

5.2.2 Operational Semantics of Symbolic Execution with Lazier Initializa-
tion

First we introduce a new semantic domain: the set of symbolic locations, SymLocs, to model

unknown non- references. We let δ ranges over symbolic locations and each δm,n
τ has the same

three properties as non-primitive symbols do. Clearly, we need to add the symbolic locations into

domain Values. So we have Values = Consts ∪ Locs ∪ Symbolsprim ∪ SymLocs. We use Σa
3 to

denote the set of SELA states.

The only difference between SELA and SEL states is that the SELA states can have symbolic

locations. Thus Σa ⊃ Σs.

Auxiliary Functions

We introduce some auxiliary functions to facilitate the definition of operational semantics of lazier

initialization. init-loc-heap returns the modified heap and new constraints introduced by initial-

izing a symbolic location to a location. init-sym-loc transforms a SELA state into a new SELA

state by initializing a symbolic location into a location. init-sym-loc∗ takes a SELA state and a

symbolic location and returns a set of SELA states with the symbolic location initialized.

init-loc-heap : (Heapsa × P(Symbols) × SymLocs × Locs)→ (Heapsa × Φ))

init-sym-loc : Σa × SymLocs × Locs→ Σa

init-sym-loc∗ : Σa × SymLocs→ P(Σa).

The definitions are listed as follows with binding σa = (g, pc, l, h, φ):

• the init-loc-heap function: init-loc-heap(ha, ss, δm,n
τ , i) = (h′a, φ

′) where

– if i ∈ dom ha: h′a = sub-fun21(ha, δ, i) and

φ′ = {τ′ <: τ} where ha(i) = Xτ′ .
3Subscript a denotes that the component is a part of SELA state.
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– if i < dom ha:

dom h′a = dom ha ∪ {i}

and

∀ j ∈ dom ha.h′a( j) = sub-fun1(ha( j), δτ, i)

and h′a(i) = Xτ′ where

Xτ′ =

new-sarr(ss,m, k) if τ ∈ Typesarray

new-sym(ss,m, k) if τ ∈ Typesrecord

and

φ′ =

{X() ≥ 0, τ <: τ′} if τ ∈ Typesarray

{τ′ <: τ} if τ ∈ Typesrecord

.

• init-sym-loc function,

init-sym-loc = λ(σa, δ
m,n
τ , i).{(sub-fun1(g, δ, i), pc, sub-fun1(l, δ, i), sub-seq1(ω, δ, i),

#1(init-loc-heap(h, symbols(σa), δm,n
τ , i)), #2(init-loc-heap(h, symbols(σa), δm,n

τ , i)) ∪ φ)}

• init-sym-loc∗ function,

init-sym-loc∗ = λ(σa, δ
m,n
τ ).{init-sym-loc(σa, δ

m,n
τ , i) | i ∈ collect(h)

or i ∈ (Locs \ dom h) if m ≥ 0}.

In general, the SELA semantic rules are the same as SEL semantics rules if all the operands

are not symbolic locations; otherwise, initializations of the symbolic locations in the operands

will be done first. We show the SELA semantic rules for instructions if acmpeq and getfield

below. There are two notable features in the operational semantics for SELA. First, the rules are

“small step”. For example, there are three semantics rules for the if acmpeq instruction: the

two rules just initialize the operands if either operand is a symbolic location (the program counter

does not change); if two operands are locations, then rule IF ACMPEQ1-S or IF ACMPEQ2-S will

apply. Second, instead of using a symbolic location to represent all the candidates (, existing

objects, and a new symbolic object) for return, the getfield rule treats the  case separately,
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thus for a reference field access, the getfield will return a non-deterministic choice between

 (rule GETFIELD3-S) and a symbolic location which denotes a non- unknown reference

(rule GETFIELD2-A). This is because there are usually a lot of null-ness tests in Java code and

specifications; and we still want to take advantage of lazier initialization after a null-ness test. So,

for getfield, the rules GETFIELD1,2,3,7-S stay the same in the lazier initialization and rules

GETFIELD4,5,6-S are replaced by GETFIELD2-A.

Similar to the semantics rules of SEL, we use the binding σ = (g, pc, l, ω, h, φ) and all the end

states with path conditions that are unsatisfiable are ignored.

IF ACMPEQ1-A
code(pc) = if acmpeq pc′ ω = δm,n

τ ::δm,n
τ ::ω′

σ⇒A (g, pc′, ω′, h, φ))

IF ACMPEQ2-A
code(pc) = if acmpeq pc′ ω = v ::δm,n

τ ::ω′

σ⇒A σ
′ where σ′ ∈ init-sym-loc∗(σ, δm,n

τ )

IF ACMPEQ3-A
code(pc) = if acmpeq pc′ ω = δm,n

τ ::v ::ω′

σ⇒A σ
′ where σ′ ∈ init-sym-loc∗(σ, δm,n

τ )

IFNULL-A
code(pc) = ifnull pc′ ω = δ ::ω′

σ⇒A (g, next(pc), l, ω′, h, φ)

IFNONNULL-A
code(pc) = ifnonnull pc′ ω = δ ::ω′

σ⇒A (g, pc′, l, ω′, h, φ)

GETFIELD1-A
code(pc) = getfield fτ ω = δm,n

τ ::ω′

σ⇒A σ
′ where σ′ ∈ init-sym-loc∗(σ, δm,n

τ )

GETFIELD2-A

code(pc) = getfield fτ
ω = i ::ω′ Ym,n = h(i) Y( fτ)↑ τ ∈ Typesnon−prim δ is fresh

σ⇒A (g, next(pc), l, δm−1,k
τ ::ω′, h[i 7→ Ym,n[ fτ 7→ δm−1,k

τ ]], φ)

5.2.3 Operational Semantics of Symbolic Execution with Lazier# Initializa-
tion

First we introduce a new semantic domain: the set of symbolic references, SymRefs, to model

unknown non- references or . We let δ̂ ranges over SymRefs. Each δ̂m,n
τ is the same as

δm,n
τ except that it can be initialized to . Clearly, we need to add the new domain into the

domain Values. So we have

Values = Consts ∪ Locs ∪ Symbolsprim ∪ SymLocs ∪ SymRefs.
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We use Σb
4 to denote the set of SELB states. Clearly Σb ⊃ Σa.

Auxiliary Functions

Similar to SELA, some auxiliary functions are introduced to facilitate the definition of operational

semantics of SELB:

init-sym-ref : Σb × SymRefs × (SymLocs ∪ {})→ Σb

init-sym-ref∗ : Σb × SymRefs→ P(Σb).

The definitions are listed as follows with binding σb = (g, pc, l, ω, h, φ):

• init-sym-ref function,

init-sym-ref(σb, δ̂, ) = {(sub-fun1(g, δ̂, ), pc, sub-fun1(l, δ̂, ),

sub-seq1(ω, δ̂, ), sub-fun21(h, δ̂, ), φ)}

and

init-sym-ref(σb, δ̂, δ) = {(sub-fun1(g, δ̂, δ), pc, sub-fun1(l, δ̂, δ), sub-seq1(ω, δ̂, δ),

sub-fun21(h, δ̂, δ), φ)}

• init-sym-ref∗ function,

init-sym-ref∗(σb, δ̂) = {init-sym-ref(σb, δ̂, δ) | δ < collect-sym-locs(σb)}

∪ {init-sym-ref(σb, δ̂, )}.

In general, the semantic rules of the SELB are the same as those of the SELA if all the operands

are not symbolic references; otherwise, initializations of the operands that are symbolic refer-

ences will be done first. We show the SELB semantic rules for instructions if acmpeq and

getfield below. For instruction getfield, instead of returning a non-deterministic choice be-

tween  and a symbolic location, rule GETFIELD2-B just returns a fresh symbolic reference.
4Subscript b denotes that the component is a part of SELB state.
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So, for getfield, the rules GETFIELD1,2,7-S and GETFIELD1-A stay the same in the lazier#

initialization and rules GETFIELD3, 4,5,6-S are replaced by GETFIELD2-A.

Similar to the symbolic semantics rules, we use the binding σ = (g, pc, l, ω, h, φ) and all the

end states with path conditions unsatisfiable are ignored.

IF ACMPEQ1-B
code(pc) = if acmpeq pc′ ω = δ̂m,n

τ :: δ̂m,n
τ ::ω′

σ⇒B (g, pc′, ω′, h, φ)

IF ACMPEQ2-B
code(pc) = if acmpeq pc′ ω = v :: δ̂m,n

τ ::ω′

σ⇒B σ
′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n

τ )

IF ACMPEQ3-B
code(pc) = if acmpeq pc′ ω = δ̂m,n

τ ::v ::ω′

σ⇒B σ
′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n

τ )

GETFIELD1-B
code(pc) = getfield fτ ω = δ̂m,n

τ ::ω′

σ⇒B σ
′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n

τ )

GETFIELD2-B

code(pc) = getfield fτ
ω = i ::ω′ Ym,n = h(i) Y( fτ)↑ τ ∈ Typesnon−prim δ̂ is fresh

σ⇒B (g, next(pc), l, δ̂m−1,k
τ ::ω′, h[i 7→ Ym,n[ fτ 7→ δ̂m−1,k

τ ]], φ)

5.2.4 Operational Semantics of JVM Bytecode Concrete Execution

To prove properties of symbolic executions in Kiasan, we need to formalize the concrete JVM

bytecode execution. We introduce concrete states:

σc ∈ Σc = Globals × PCs × Locals × Stacks ×Heaps × B.

Compared to the symbolic states, concrete states have three restrictions:

1. no X ∈ Symbolsprim appears in concrete states;

2. no SymTypes appears in the concrete states;

3. for all Xτ ∈ Symbolsnon−prim which appears in concrete states, all the fields of type τ are

defined and there is no bound associated with X. Furthermore,  and  are removed

from the Fields domain.
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We also need to change the definition of new-arr to new-arrc : P(Symbols) × Types × N →

Symbolsnon−prim =

λ(ss, τ,m).Xτ′ , s.t. X < ss ∧ τ′ = array-type(τ)∧

∀0 ≤ j < m.Xτ′( j) = default(τ) ∧ Xτ′() = m.

The concrete JVM bytecode operational semantic rules are listed below. We use the binding

σ = (g, pc, l, ω, h,T) for all the rules. When the last component of the end state is F,

the transition is ignored. Note that we do not use the wrap around semantics for integral types

because it complicates the operational semantics presentation. In addition, we do not check bugs

introduced by integer wrap around in symbolic executions. However, wrap around can be sup-

ported by using appropriate decision procedures that model integers using bit-vectors.

IADD-C
code(pc) = iadd ω = c ::d ::ω′

σ⇒C (g, next(pc), l, (c + d) ::ω′, h,T)

IF ICMPLT1-C
code(pc) = if icmplt pc′ ω = d ::c ::ω′ c < d

σ⇒C (g, pc′, l, ω′, h,T)

IF ICMPLT2-C
code(pc) = if icmplt pc′ ω = d ::c ::ω′ c ≮ d

σ⇒C (g, next(pc), l, ω′, h,T)

IF ACMPEQ1-C
code(pc) = if acmpeq pc′ ω = i :: j ::ω′ i , j

σ⇒C (g, next(pc), l, ω′, h,T)

IF ACMPEQ2-C
code(pc) = if acmpeq pc′ ω = i :: j ::ω′ i = j

σ⇒C (g, pc′, l, ω′, h,T)

IFNULL1-C
code(pc) = ifnull pc′ ω = i ::ω′

σ⇒C (g, next(pc), l, ω′, h, φ)

IFNULL2-C
code(pc) = ifnull pc′ ω =  ::ω′

σ⇒C (g, pc′, l, ω′, h, φ)

IFNONNULL1-C
code(pc) = ifnonnull pc′ ω = i ::ω′

σ⇒C (g, pc′, l, ω′, h, φ)

IFNONNULL2-C
code(pc) = ifnonnull pc′ ω =  ::ω′

σ⇒C (g, next(pc), l, ω′, h, φ)

ANEWARRAY1-C
code(pc) = anewarray τ ω = c ::ω′ c ≥ 0 i < dom h

σ⇒C (g, next(pc), l, i ::ω′, h[i 7→ new-arrc(symbols(σ), τ, c)],T)

ANEWARRAY2-C
code(pc) = anewarray τ ω = c ::ω′ c < 0

σ⇒C NegativeArraySizeException, (g, pc, l, ω′, h,T)
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NEW-C
code(pc) = new τ i < dom h

σ⇒C (g, next(pc), l, i ::ω, h[i 7→ new-obj(symbols(σ), τ)],T)

IASTORE1-C
code(pc) = iastore ω = d ::c :: i ::ω′ c < 0 ∨ c ≥ h(i)()

σ⇒C ArrayIndexOutOfBoundsException, (g, pc, l, ω′, h,T)

IASTORE2-C
code(pc) = iastore ω = d ::c :: i ::ω′ 0 ≤ c < h(i)()

σ⇒C (g, next(pc), l, ω′, h[i 7→ h(i)[c 7→ d]],T)

IASTORE3-C
code(pc) = iastore ω = d ::c :: ::ω′

σ⇒C NullPointerException, (g, pc, l, ω′, h, ,T)

IALOAD1-C
code(pc) = iaload ω = c :: i ::ω′ c < 0 ∨ c ≥ h(i)()

σ⇒C ArrayIndexOutOfBoundsException, (g, pc, l, ω′, h,T)

IALOAD2-C
code(pc) = iaload ω = c :: ::ω′

σ⇒C NullPointerException, (g, pc, l, ω′, h,T)

IALOAD3-C
code(pc) = iaload ω = c :: i ::ω′ 0 ≤ c < h(i)()

σ⇒C (g, next(pc), l, h(i)(c) ::ω′, h,T)

GETFIELD1-C
code(pc) = getfield f ω = i ::ω′

σ⇒C (g, next(pc), l, h(i)( f ) ::ω′, h,T)

GETFIELD2-C
code(pc) = getfield f ω =  ::ω′

σ⇒C NullPointerException, (g, pc, l, ω′, h,T)

PUTFIELD1-C
code(pc) = putfield f ω = v :: i ::ω′

σ⇒C (g, next(pc), l, ω′, h[i 7→ h(i)[ f 7→ v]],T)

PUTFIELD2-C
code(pc) = putfield f ω = v :: ::ω′

σ⇒C NullPointerException, (g, pc, l, ω′, h,T)

INSTANCEOF1-C
code(pc) = instanceof τ ω =  ::ω′

σ⇒C (g, next(pc), l, 1::ω′, h,T)

INSTANCEOF2-C
code(pc) = instanceof τ ω = i ::ω′ Xτ1 = h(i) τ1 <: τ

σ⇒C (g, next(pc), l, 1::ω′, h,T)

INSTANCEOF2-C
code(pc) = instanceof τ ω = i ::ω′ Xτ1 = h(i) τ1 ≮: τ

σ⇒C (g, next(pc), l, 0::ω′, h,T)

CHECKCAST1-C
code(pc) = checkcast τ ω =  ::ω′

σ⇒C (g, next(pc), l,  ::ω′, h,T)

CHECKCAST2-C
code(pc) = checkcast τ ω = i ::ω′ Xτ1 = h(i) τ1 <: τ

σ⇒C (g, next(pc), l, i ::ω′, h,T)

CHECKCAST2-C
code(pc) = checkcast τ ω = i ::ω′ Xτ1 = h(i) τ1 ≮: τ

σ⇒C ClassCastException, (g, pc, l, ω′, h,T)

ASSUME1-C
code(pc) = assume ω = 0::ω′

σ⇒C (g, next(pc), l, ω′, h,F)
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ASSUME2-C
code(pc) = assume ω = 1::ω′

σ⇒C (g, next(pc), l, ω′, h,T)

ASSERT1-C
code(pc) = assert ω = 0::ω′

σ⇒C E, (g, pc, l, ω′, h,T)

ASSERT2-C
code(pc) = assert ω = 1::ω′

σ⇒C (g, next(pc), l, ω′, h,T)

5.3 Proofs of Soundness and Completeness

In this section, we will prove the soundness and completeness for noncompositional symbolic

executions with lazy/lazier/lazier# initialization based on the concrete execution.

5.3.1 Relative Soundness and Completeness of Symbolic Execution with
Lazy Initialization

In this section, we relate the symbolic execution (non-compositional) with lazy initialization and

the concrete execution under the assumption the object and array bounds are sufficient large. First

we will define a concretization function γs
5 to relate SEL states and concrete state. Second, we

will introduce binary relations between concrete and SEL states and prove simulation between

concrete state-space and SEL state-space. Finally, we will prove the relative soundness and com-

pleteness of SEL regarding to concrete execution.

Definition of γs

Let us start with some definitions:

• the set of all environments, Env =
{

E | E : Symbolsprim → Consts
}
;

• the set of all type environments, Γ =
{

T | T : SymTypes→ (Typesarray ] Typesrecord)
}
;

• the group of all permutations of Locations, Sym(Locs).

5Since we assume the ideal case: the object bound and array length bounds k are sufficient large, any symbol or
array always has bounds greater than 0.
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Then we introduce some semantic functions6 to facilitate the definition of γs.

Vs :Valuess → ((Env × Sym(Locs))→ Valuesc)

Os :Symbolsnon−prim → ((Γ × Env × Sym(Locs))→ P(Symbolsnon−prim))

Hs :Heapss → ((Γ × Env × Sym(Locs))→ P(Heapsc))

ST s :ΣS → ((Γ × Env × Sym(Locs))→ P(ΣC)).

Here are the definitions (∀T ∈ Γ, E ∈ Env, ρ ∈ Sym(Locs)):

• theVs function:

VsJvK(E, ρ) = sub(sub(v, E), ρ)

• the Os function:

OsJXτK(T, E, ρ) =
{

X′τ′ | τ
′ = sub(τ,T ) ∧ mapfields(X, X′τ′ , E, ρ)

}
,

where

mapfields(X, X′τ′ , E, ρ)
def
= ∀ι.X(ι)↓ =⇒ X′(ι) = VsJX(ι)K(E, ρ), if τ′ ∈ Typesrecord

mapfields(X, X′τ′ , E, ρ)
def
= X′() = VsJX()K(E, ρ) ∧ ∀ι ∈ acc-idx(X).

X′(VsJιK(E, ρ)) = VsJX(ι)K(E, ρ) ∧
(
X()↓ =⇒ ∀(0 ≤ m < X′()

∧ m <
{
VsJιK(E, ρ) | ι ∈ acc-idx(X)

}
).X′(m) = X()

)
, if τ′ ∈ Typesarray

• theHs function 7:

HsJhsK(T, E, ρ) = { hc | contains(hc, hs,T, E, ρ) ∧ well-typed(hc)

∧ well-formed(hc, hs,T, E, ρ) },

6From this point on, we use subscript s to denote symbolic state components and domains and c for concrete state
components and domains.

7An alternative view of functions as sets of pairs may be taken.
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where contains(hc, hs,T, E, ρ) if and only if

∀(i, X) ∈ hs.∃Y ∈ OsJXK(T, E, ρ).(ρ(i),Y) ∈ hc.

well-typed(hc) if and only if for each non-primitive symbol in hc must have all its fields

mapped to values of their types. More specifically, each primitive field is mapped to a

constant of its type; each reference type field is mapped to either  or a location in hc

which is mapped a non-primitive symbol of a compatible type.

well-formed(hc, hs,T, E, ρ) if and only if for each entry (i, Xc) in hc, Xc is well-formed, that

is,

1. if (i, Xc) is mapped from ( j, Xs) in hs (i = ρ( j) and Xc ∈ OsJXsK(T, E, ρ)), and if any

field f of Xs is undefined and non-primitive, Xc( f ) has to be one of following values:

– 

– i′ where i′ < ρ(dom hs).

– i′′ where i′′ ∈ ρ(dom hs) and hs(ρ−1(i′′))() ↑.

2. if (i, Xc) is not mapped from any entry in hs (i < ρ(dom hs)), all the fields of Xc are

treated as the ones with corresponding undefined fields in hs.

• the ST s function:

ST sJ(g, pc, l, ω, h, φ)K(T, E, ρ) = { (sub-fun(sub-fun(g, E), ρ), pc,

sub-fun(sub-fun(l, E), ρ), sub-seq(sub-seq(ω, E), ρ), h′,T) | h′ ∈ HsJhK(T, E, ρ) }.

Finally, the definition of γs : Σs → P(Σc) is

γs(σs) =
⋃

∀E,T�φ,∀ρ

ST sJσsK(T, E, ρ).
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Concrete and Symbolic Kripke Structures

Given a method m, we have a set of global variables G and local variables L (ordered from 0..n).

We use Kripke structures 8 C = (ΣC, IC,−→C, LC) and S = (ΣS, IS,−→S, LS) to model the state-

spaces from the concrete and the SEL, respectively. Each component is defined as following

• states,

ΣC = Σc ∪ (E × Σc) ∪ (E × Σc).

ΣS = Σs ∪ (E × Σs) ∪ (E × Σs).

Furthermore, we require that all the ΣC and ΣS are well typed according to the signature of

m.

• initial states, according to JVM specification [43], the initial states have empty operand

stacks and all the arguments are stored in local. So

IC = { (gc, pcinit, lc, nil, hc,T) | dom(gc) = G ∧ dom(lc) = L } ,

where pcinit is the start program counter of the method.

IS = { (gs, pcinit, ls, nil, hs, {T}) | dom(gs) = G ∧ dom(ls) = L }

and each local and global is initialized as follows: if its type is primitive, a symbolic primi-

tive symbolic is created; otherwise, it is nondeterministically initialized as a symbolic object

with all its fields undefined or  with all the possible aliasings.

• transition relations,

c1 −→C c2 ⇐⇒ c1 ⇒C c2 ∧ last component of c2 is T.

s1 −→S s2 ⇐⇒ s1 ⇒S s2 ∧ the path condition of s2 is satisfiable.

• labels, we will not use this component. So let them undefined.
8Appendix A presents definitions of Kripke structures and simulations on Kripke structures adapted from [58] for

a quick reference.

69



Function γs is trivially extended to γ∗s : ΣS → P(ΣC) as

γ∗s(s) =


γs(σs), if s = σs for some σs ∈ Σs;
{ (E, σc) | σc ∈ γs(σs) } , if s = (E, σs) for some σs ∈ Σs;
{ (E, σc) | σc ∈ γs(σs) } , if s = (E, σs) for some σs ∈ Σs.

Simulation Relations

To show the relationship between C and S, we define a relation.

Definition 1. R ⊆ ΣC × ΣS, as follows: c R s ⇐⇒ c ∈ γ∗s(s).

For any σs with path condition (φ) satisfiable, there exists one σc such that σc R σs since there

exist some E and T which satisfy φ.

Clearly, for all c0 ∈ IC, there exists s0 ∈ IS such that c0 R s0.

Proposition 1. C CR S.

Proof. It is sufficient to show that for all σc ∈ ΣC, σs ∈ ΣS if σc −→C σ
′
c and σc R σs then there

exists σ′s ∈ S such that σs −→S σ
′
s and σ′c R σ

′
s.

We will proceed with the rule induction on −→C.

• Rule IADD-C: Let σc = (gc, pc, lc, d :: c ::ωc, hc,T), then σ′c = (gc, next(pc), lc, (c + d) ::

ωc, hc,T). Suppose σc R σs. We need to show that there exists σ′s ∈ ΣS such that

σs −→S σ
′
s and σ′c R σ

′
s. Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs must

have the form of (gs, pc, ls, v1 ::v2 ::ωs, hs, φ) for some T, E, ρ with T, E � φ,VsJv1K(E, ρ) =

c,VsJv2K(E, ρ) = d, sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E), ρ) = lc,

sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ HsJhsK(T, E, ρ). Using the rule IADD-S, we get

σs −→S σ
′
s with σ′s = (gs, next(pc), ls,Y ::ωs, hs, φ ∪ {Y = v1 + v2}) where Y is fresh. We

only need to show σ′c ∈ γs(σ′s), that is, to find T ′, E′, ρ′ such that σ′c ∈ ST sJσ′sK(T ′, E′, ρ′).

We claim that T ′ = T , E′ = E[Y 7→ c + d], and ρ′ = ρ are the right choice. Since Y is fresh,

sub-fun(sub-fun(gs, E′), ρ′) = sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E′), ρ′) =

sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E′), ρ′) = sub-seq(sub-seq(ωs, E), ρ) =
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ωc, and hc ∈ HsJhsK(T ′, E′, ρ′) = HsJhsK(T, E, ρ). Furthermore, since VsJYK(E′, ρ) =

c + d = VsJv1K(E, ρ) + VsJv2K(E, ρ), we get T, E′ � (φ ∪ {Y = v1 + v2}). Therefore,

σ′c ∈ ST sJσ′sK(T, E′, ρ) ⊆ γs(σ′s).

• Rule IF ICMPLT2-C: Let σc = (gc, pc, lc, d :: c :: ωc, hc,T), then c ≥ d and σ′c =

(gc, next(pc), lc, ωc, hc,T). Suppose σc R σs. We need to show that there exists σ′s ∈ ΣS

such that σs −→S σ
′
s and σ′c R σ

′
s. Since σc R σs, we have σc ∈ γs(σs). The symbolic

state σs must have the form of (gs, pc, ls, v2 :: v1 ::ωs, hs, φ) for some T, E, ρ with T, E � φ,

VsJv1K(E, ρ) = c,VsJv2K(E, ρ) = d, sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E), ρ) =

lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ HsJhsK(T, E, ρ). Using the IF ICMPLT-S, we

get σs −→S σ
′
s with σ′s = (gs, next(pc), ls, ωs, hs, φ∪ {v1 ≥ v2}) (the first end state). We only

need to show σ′c ∈ γs(σ′s). Since VsJv1K(E, ρ) = c, VsJv2K(E, ρ) = d, and c ≥ d, we get

T, E � φ ∪ {v1 ≥ v2}. Therefore, σ′c ∈ ST sJσ′sK(T, E, ρ) ⊆ γs(σ′s).

• Rule ANEWARRAY1-C: Suppose σc = (gc, pc, lc, c ::ωc, hc,T). Then c ≥ 0 and σ′c =

(gc, next(pc), lc, ωc, h′c,T) where i is fresh and h′c = hc[i 7→ new-arrc(symbols(σc), τ, c)].

Suppose σc R σs. We need to show that exists σ′s ∈ ΣS such that σs −→S σ
′
s and σ′c R σ

′
s.

Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs has the form of (gs, pc, ls, v ::

ωs, hs, φ) for some T, E, ρ with T, E � φ, VsJvK(E, ρ) = c, sub-fun(sub-fun(gs, E), ρ) =

gc, sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ HsJhsK(T, E, ρ).

Using the ANEWARRAY2-S rule, we get σs −→S σ
′
s with σ′s = (gs, next(pc), ls, ωs, h′s, φ ∪

{v ≥ 0}) where h′s = hs[ j 7→ new-arr(symbols(σs), τ, X, k)] and j is fresh (the first end state).

We only need to show σ′c ∈ γs(σ′s). Define ρ′ = ρ[ j 7→ i][ρ−1(i) 7→ ρ( j)]. It is clear that

ρ′ ∈ S and for location i′ < { j, ρ−1(i)}, ρ′(i′) = ρ(i′). Since i is fresh in σc and σc R σs,

ρ−1(i) must be fresh in σs (not in dom hs) too. Thus we get sub-fun(sub-fun(gs, E), ρ′) =

gc, sub-fun(sub-fun(ls, E), ρ′) = lc, and sub-seq(sub-seq(ωs, E), ρ′) = ωc. From c ≥ 0,

VsJvK(E, ρ′) ≥ 0, that is, T, E � φ ∪ {v ≥ 0}. It remains to show h′c ∈ HsJh′sK(T, E, ρ′).

Clearly well-typed(h′c) because i is fresh in hc. Then we show that contains(h′c, h
′
s,T, E, ρ

′).

For any entry (i′, X′) ∈ hs, since j and ρ−1(i) are fresh in hs, we get
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OsJX′K(T, E, ρ′) = OsJX′K(T, E, ρ). Furthermore, since new-arrc(symbols(σc), τ, c) ∈

OsJnew-arr(symbols(σc), τ, X, k)K(T, E, ρ′), we can get contains(h′c, h
′
s,T, E, ρ

′). Next we

need to show well-formed(h′c, hs,T, E, ρ′). Since new-arr(symbols(σs), τ, X, k)() ↓, sym-

bol new-arrc(symbols(σc), τ, c) of entry (i, new-arrc(symbols(σc), τ, c)) in h′c is well-formed

under E and ρ′. For any symbol Y in the range of hc, if Y has a reference field f whose corre-

sponding field is not defined in hs, by the well-formed(hc, hs,T, E, ρ), f can not be any loca-

tion that points to concrete object in hc. But h′c has only one extra concrete object at i than hc

and i is fresh in hc. Therefore, f can not point to i, that is, symbol new-arrc(symbols(σc), τ, c)

is well-formed. We get well-formed(h′c, h
′
s,T, E, ρ

′). Thus h′c ∈ HsJh′sK(T, E, ρ′). Finally,

σ′c ∈ ST sJσ′sK(T, E, ρ′) ⊆ γs(σ′s).

• Rule GETFIELD1-C: Suppose σc = (gc, pc, lc, i :: ωc, hc), then σ′c = (gc, next(pc), lc, v ::

ωc, hc) where X = hc(i), v = X( f ). Let τv be the real type of symbol hc(v). Suppose

σc R σs. We need to show that exists σ′s ∈ ΣS such that σs −→S σ
′
s and σ′c R σ

′
s.

Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs must have the form of

(gs, pc, ls, i′ ::ωs, hs, φ) for some T, E, ρ with T, E � φ, ρ(i′) = i, sub-fun(sub-fun(gs, E), ρ) =

gc, sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ HsJhsK(T, E, ρ).

WLOG, assume that the type of f , τ, is a record type and f is not in the domain of hs(i′). We

will proceed with a case analysis according to the value of v by well-formed(hc, hs,T, E, ρ):

– case v = . We will apply the GETFIELD3-S rule and get σ′s = (g, next(pc), l,  ::

ω, h′s, φ), where h′s = hs[i 7→ hs(i)[ f 7→ ]]. It suffices to show contains(hc, h′s,T, E, ρ)

and well-formed(hc, h′s,T, E, ρ). Since ρ(i′) = i and σc R σs, X ∈ OsJYK(T, E, ρ).

Furthermore, Since hc ∈ HsJhsK(T, E, ρ) and X ∈ OsJhs(i)[ fτ 7→ ]K(T, E, ρ) by

X( f ) =  = hs(i)( f ), we get contains(hc, h′s,T, E, ρ) and well-formed(hc, h′s,T, E, ρ)

hold. We get hc ∈ HsJh′sK(T, E, ρ). Then σ′c ∈ γs(σ′s).

– case v ∈ ρ(dom hs) ∧ hs(ρ−1(v))() ↑. We will apply the rule GETFIELD4-S and

get σ′s = (g, next(pc), l, v′ :: ω, h′s, φ ∪ {τ
′ <: τ}) where h′s = hs[i 7→ hs(i)[ f 7→ j]]
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and Zτ′ = hs(v′). We also have v′ = ρ−1(v) (v′ ∈ collect(hs) because v ∈ ρ(dom hs)

and hs(ρ−1(v))() ↑). Since well-typed(hc), the type of hc(v), τv, is a subtype of τ.

Furthermore, since hc(v) ∈ OsJZτ′K(T, E, ρ), we arrive at T � τ′ <: τ. Thus T, E �

φ ∪ {τ′ <: τ}. The rest of the proof is similar to the  case.

– case v ∈ Locs ∧ v < ρ(dom hs). We will apply the rule GETFIELD6-S (because we

assume that bound k is sufficient large and m > 0) and get σ′s = (g, next(pc), l, v ::

ω′, h′s, φ∪{τ
′ <: τ}) where h′s = hs[i 7→ hs(i)[ f 7→ j]] and Zτ′ = new-sym(symbols(σ),m−

1, k). Define ρ′ = ρ[ j 7→ v] and T ′ = T [τ′ 7→ τv]. Since well-typed(hc), we get

τv <: τ. Furthermore, since ρ′ = ρ[ j 7→ v] and T ′ = T [τ′ 7→ τv], T ′ � τ′ <: τ.

Thus T ′, E � φ ∪ {τ′ <: τ}. Since j is fresh in hs, sub-fun(sub-fun(gs, E), ρ′) =

sub-fun(sub-fun(gs, E), ρ), sub-fun(sub-fun(ls, E), ρ′) = sub-fun(sub-fun(ls, E), ρ), and

sub-seq(sub-seq(ωs, E), ρ′) = sub-seq(sub-seq(ωs, E), ρ) hold. It remains to show

contains(hc, h′s,T, E, ρ) and well-formed(hc, h′s,T, E, ρ). Since X ∈ OsJYm,n[ fτ 7→ v′]K(T ′, E, ρ′)

and hc(v) ∈ OsJZτ′K(T ′, E, ρ′), contains(hc, h′s,T
′, E, ρ) holds. Since v < ρ(dom hs),

hc(v) is well-formed. Since the new symbol Zτ′ in h′s has  field undefined, the rest

of symbols in hc are well-formed. Thus we get well-formed(hc, h′s,T, E, ρ) and further,

hc ∈ HsJh′sK(T ′, E, ρ′). Therefore, σ′c ∈ ST sJσ′sK(T ′, E, ρ′) ⊆ γs(σ′s).

�

Definition 2. R• ⊆ ΣS × P(ΣC), as σs R• S c ⇐⇒ γ∗s(σs) = S c.

The relation R• is left total by definition. Also it is clear that for any σs R• S c, S c is not empty,

if and only if the path condition φ of σs is satisfiable. Furthermore, for any σs ∈ IS and σs R• S c,

it is clear that S c ⊆ IC by the definition of γs function.

Proposition 2. S CR• P(C).

Proof. It is sufficient to show that for all σs, σ
′
s ∈ ΣS, S c, S ′c ∈ P(ΣC), if σs −→S σ

′
s, σs R• S c,

and σ′s R• S ′c then S c
•
−→C S ′c.

We will prove by rule induction on symbolic operational semantics transitions, −→S.
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• Rule IADD-S: σs = (gs, pc, ls, v1 :: v2 ::ωs, hs, φ). Then σ′s = (gs, next(pc), ls,Z ::ωs, hs, φ ∪

{Z = v1 + v2}) where Z is fresh. Suppose σs R• S c and σ′s R• S ′c. We need to show that

S c
•
−→C S ′c, that is, for any σ′c ∈ S ′c, there exists some σc ∈ S c such that σc −→C σ

′
c.

Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c, c ::

ω′c, h
′
c,T) with some T, E, ρ such that T, E � φ ∪ {Z = v1 + v2}, VsJZK(E, ρ) = c,

sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) =

ω′c, and h′c ∈ HsJhsK(T, E, ρ). Take σc = (g′c, pc, l′c, E(X) :: E(Y) :: ω′c, h
′
c,T). Clearly

σc −→C σ
′
c. We only need to show that σc ∈ γs(σs). Since Z is fresh, T, E � φ. Thus

σc ∈ ST sJσsK(T, E, ρ) ⊆ γs(σs).

• Rule IF ICMPLT-S: σs = (gs, pc, ls, v1 :: v2 ::ωs, hs, φ) and σ′s = (gs, next(pc), ls, ωs, hs, φ ∪

{v2 ≥ v1}). (we only consider one end state, the other end state is symmetric.) Suppose

σs R• S c and σ′s R• S ′c. We need to show that S c
•
−→C S ′c, that is, for any σ′c ∈

S ′c, there exists some σc ∈ S c such that σc −→C σ
′
c. Suppose σ′c ∈ S ′c, that is, σ′c ∈

γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c, ω
′
c, h
′
c,T) with some T, E, ρ

such that T, E � φ ∪ {v2 ≥ v1}, sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) =

l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ HsJhsK(T, E, ρ). Takeσc = (g′c, pc, l′c,VsJv1K(E, ρ) ::

VsJv2K(E, ρ) :: ω′c, h
′
c). Clearly σc −→C σ

′
c. We conclude that σc ∈ ST sJσsK(T, E, ρ) ⊆

γs(σs).

• Rule ANEWARRARY2-S: Suppose σs = (gs, pc, ls, X ::ωs, hs, φ). We only consider that non-

exceptional end state here. Thenσ′s = (gs, next(pc), ls, i ::ωs, hs[i 7→ new-arr(symbols(σs), τ, X, k)], φ∪

{X ≥ 0}) where i is fresh. Supposeσs R• S c andσ′s R• S ′c. We need to show that S c
•
−→C S ′c,

that is, for any σ′c ∈ S ′c, there exists some σc ∈ S c such that σc −→C σ
′
c. Suppose σ′c ∈ S ′c,

that is, σ′c ∈ γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c, j :: ω′c, h
′
c,T)

with some T, E, ρ such that T, E � φ ∪ {X ≥ 0}, ρ(i) = j, sub-fun(sub-fun(gs, E), ρ) =

g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ HsJhs[i 7→

new-arr(symbols(σs), τ, X, k)]K(T, E, ρ). We need to find a σc ∈ ΣC such that σc ∈ γs(σs)

and σc −→C σ
′
c. We claim that σc = (g′c, pc, l′c, E(α) ::ω′c, hc,T) where hc = h′c \ ( j, h′c( j))
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satisfies the above two conditions. Since T, E � φ∪ {X ≥ 0}, T, E � φ. To show σc ∈ γs(σs),

it suffices to show that hc ∈ HsJhsK(T, E, ρ). Since new-arr(symbols(σs), τ, X, k) will return a

symbol with  field defined and h′c ∈ HsJhs[i 7→ new-arr(symbols(σs), τ, X, k)]K(T, E, ρ),

symbols in h′c such that their corresponding symbols in hs[i 7→ new-arr(symbols(σs), τ, X, k)]

have  fields not defined or do not have corresponding symbols can not contains j (ρ(i)).

Furthermore, since i is fresh in hs, hc does not have any symbol such that j is in its range.

Therefore, well-typed(hc), contains(hc, hs,T, E, ρ), and well-formed(hc, hs,T, E, ρ). We get

σc ∈ ST sJσsK(T, E, ρ) ⊆ γs(σs). Clearly σc −→C σ
′
c.

• Rule GETFIELD3-S: Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i)

and σ′s = (gs, next(pc), ls,  ::ωs, h′s, φ) where h′s = hs[i 7→ hs(i)[ fτ 7→ ]]. Suppose

σs R• S c and σ′s R• S ′c. We need to show that S c
•
−→C S ′c, that is, for any σ′c ∈ S ′c, there ex-

ists some σc ∈ S c such that σc −→C σ
′
c. Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s). Then σ′c must

be in the form of (g′c, next(pc), l′c,  ::ω′c, h
′
c,T) with some T, E, ρ such that T, E � φ,

sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) =

ω′c, and h′c ∈ HsJh′sK(T, E, ρ). We need to find a σc such that σc −→C σ
′
c and σc ∈ γs(σs).

Take σc = (g′c, pc, l′c, ρ(i) ::ω′c, h
′
c,T). From h′c ∈ HsJh′sK(T, E, ρ), it is clear that σc −→C

σ′c. Then it suffices to show h′c ∈ HsJhsK(T, E, ρ). Since h′c ∈ HsJh′sK(T, E, ρ),well-typed(h′c),

contains(h′c, hs,T, E, ρ), and well-formed(h′c, hs,T, E, ρ) hold. Finally,σc ∈ ST sJσsK(T, E, ρ) ⊆

γs(σs).

• Rule GETFIELD6-S: Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i)

and σ′s = (gs, next(pc), ls, j ::ωs, h′s, φ
′) where hs(i) = Ym,n, h′s = hs[i 7→ Ym,n[ fτ 7→ j]][ j 7→

Zτ′], φ′ = φ ∪ {τ′ <: τ} where Zτ′ = new-sym(symbols(σs),m − 1, k) and j < dom hs. Sup-

pose σs R• S c and σ′s R• S ′c. We need to show that S c
•
−→C S ′c, that is, for any σ′c ∈ S ′c,

there exists some σc ∈ S c such that σc −→C σ
′
c. Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s).

Then σ′c must be in the form of (g′c, next(pc), l′c, v
′ :: ω′c, h

′
c,T) with some T, E, ρ such

that T, E � φ′,VsJvK(E, ρ) = v′, sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) =

l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ HsJh′sK(T, E, ρ). We need to find a σc such that
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σc −→C σ
′
c and σc ∈ γs(σs). Define ρ′ = ρ[ j 7→ v′] and σc = (g′c, pc, l′c, ρ

′(i) ::ω′c, h
′
c,T).

From h′c ∈ HsJh′sK(T, E, ρ), it is clear that σc −→C σ
′
c. Since T, E � φ ∪ {τ′ <: τ}, T, E � φ.

Then it suffices to show h′c ∈ HsJhsK(T, E, ρ′). Since h′c ∈ HsJh′sK(T, E, ρ), well-typed(h′c)

and contains(h′c, hs,T, E, ρ) hold. Since h′s( j) = Z and  < dom Z, well-formed(h′c, hs,T, E, ρ)

hold. Finally, σc ∈ ST sJσsK(T, E, ρ′) ⊆ γs(σs).

�

Relative Soundness and Completeness

The soundness means that if there is an error in the concrete execution, then the symbolic execution

will be able to find it. And the completeness means that if symbolic execution finds an error, it

is a real error. We use a theorem prover to decide the satisfiability of path conditions. But in

general, theorem provers are neither sound nor complete for the first order logic with integer and

float arithmetics. But in this section, we proceed to show the symbolic execution is sound and

complete with assumption that the underlying theorem prover is sound and complete. This is why

we called it “Relative Soundness and Completeness”.

Proposition 3 (Soundness). Given any concrete trace c1 −→C c2 −→C · · · −→C cn with c1 ∈ IC,

there is a corresponding symbolic trace s1 −→S s2 −→S · · · −→S sn with s1 ∈ IS such that ck R sk

for all 1 ≤ k ≤ n.

Proof. We get s1 by the simulation relation between C and S. Then we proceed by mathematical

induction on n using Proposition 1. �

Proposition 4 (Completeness). Given any symbolic trace s1 −→S s2 −→S · · · −→S sn with

s1 ∈ IS, there is a corresponding concrete trace c1 −→C c2 −→C · · · −→C cn such that ck R sk for

all 1 ≤ k ≤ n and c1 ∈ IC.

Proof. Since the φ of s1 is not false, C1 = γ
∗
s(s1) , ∅. Then we show there exists a trace in P(C),

C1
•
−→C C2

•
−→C · · ·

•
−→C Cn such that sk R• Ck for all 1 ≤ k ≤ n by mathematical induction on

n using Proposition 2. Since the φ of sn is satisfiable, then Cn , ∅. Pick any cn ∈ Cn and use the

definition of
•
−→C, we get the corresponding concrete trace c1 −→C c2 −→C · · · −→C cn. �
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5.3.2 Relative Soundness and Completeness of Symbolic Execution with
Lazier Initialization

Following the outline of Section 5.3.1, we relate the SELA in Section 5.2.2 and SEL in Sec-

tion 5.2.1. First, we define a function γa which takes a SELA state and returns all the SEL states

that have the same shape and only symbolic locations are initialized to concrete locations. Then

we introduce binary relations between SEL states (power) and SELA states. Finally, we will prove

the relative soundness and completeness of SELA with regard to SEL intraprocedurely.

Definition of γa

Let us first introduce a definition: The set of all symbolic variable environments

Π = { F | F : SymLocs→ Locs } . (5.1)

Then we define some semantic functions with subscript a denoting SELA domains/compo-

nents:

Ha : (Heapsa × Φ)→ (P(Symbols) × P(SymLocs) × Π)→ P(Heapss × Φ))

ST a : Σa → Π→ P(Σs).

The definitions 9 are listed as follows (∀F ∈ Π.).

• theHa function:

HaJ(ha, φ)K(ss,∆, F) = {(hs, φ
′) | well-mapped(∆, ha, F) ∧ heap(ss,∆, ha, hs, F)

∧ pc(φ′, φ, hs, F) ∧ φ′ is satisfiable},

where well-mapped : P(SymLocs) × Heapsa × Π → B with well-mapped(∆, ha, F)

if and only if

∀δ ∈ ∆.
(
ha(F(δ)) ↑ ∨ha(F(δ))() ↑

)
;

9Subscript a is frequently used to indicate a component in the SELA states.
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heap : P(Symbols)×P(SymLocs)×Heapsa×Heapss×Π→ Bwith heap(ss,∆, ha, hs, F)

if and only if

dom hs = dom ha ∪ F(∆) ∧ ∀i ∈ dom ha.hs(i) = sub-fun(ha(i), F)

∧ ∀i ∈ (dom hs − dom ha).hs(i) = Xτ,

where Xτ =

new-sarr(ss ∪ hs(Locs − {i}), k, k), if∃δτ′′ ∈ F−1(i) such that τ′′ ∈ Typesarray

new-sym(ss ∪ hs(Locs − {i}), k, k) otherwise;

pc : Φ × Φ × Heapss × Π × P(SymLocs) → B with pc(φ′, φ, hs, F,∆) if and only if

φ′ is the least set of predicates that satisfies following condition:

φ ⊆ φ′ ∧ ∀δτ ∈ ∆.τ
′ <: τ ∈ φ′ ∧ X() ≥ 0 ∈ φ′ if τ ∈ Typesarray where hs(F(δ)) = Xτ′ .

Note: similar to the property of substitution, Lemma 2,

HaJ(ha, φ)K(ss,∆, F) = HaJ(ha, φ)K(ss,∆, F |∆),

for any F. The Ha function either returns the empty set which means contradicting F or a

singleton.

• the ST a function (we use binding σa = (g, pc, l, ω, h, φ)):

ST aJσaK(F) = {(sub-fun(g, F), pc, sub-fun(l, F), sub-seq(ω, F), h′, φ′) | (h′, φ′)

∈ HaJ(h, φ)K(symbols(σa), collect-sym-locs(σa), F)},

where collect-sym-locs takes a state and returns the set of symbolic locations that appear in

the state. Since the return ofHa function can only be ∅ or a singleton, ST a function returns

∅ or a singleton too.

Finally, the definition of γa : Σa → P(Σs) is

γa(σa) =
⋃
∀F∈Π

ST aJσaK(F).
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Properties of γa

Definition 3. A location i is a legal value for δ regarding to a SELA state σa = (g, pc, l, ω, h, φ) if

and only if the following conditions hold:

1. δ ∈ collect-sym-locs(σa);

2. i < dom h or h(i)() ↑;

3. (h′, φ′) = init-loc-heap(h, symbols(σa), δ, i) with φ′ is satisfiable.

Lemma 3. Let σa ∈ Σa and F ∈ Π. Suppose σs ∈ ST aJσaK(F). For any (δ, i) ∈ F, if σ′a ∈

init-sym-loc(σa, δ, i) and i is a legal location for δ regarding to σa, then σs ∈ ST aJσ′aK(F).

Proof. Suppose σa = (ga, pc, la, ωa, ha, φ) and σs = (gs, pc, ls, ωs, hs, φs). By the definition of

init-sym-loc,σ′a = (sub-fun1(ga, δ, i), pc, sub-fun1(la, δ, i), sub-seq1(ωa, δ, i), h′a, φ
′), where (h′a, φ

′) =

init-loc-heap(ha, φ, symbols(σa), δ)i. Sinceσs ∈ ST aJσaK(F), we have gs = sub-fun(sub-fun1(ga, δ, i), F),

ls = sub-fun(sub-fun1(la, δ, i), F), and ωs = sub-seq(sub-seq1(ωa, δ, i), F) by Lemma 1. It remains

to show that

(hs, φs) ∈ HaJ(h′a, φ
′)K(symbols(σ′a), collect-sym-locs(σ′a), F).

We know that (hs, φs) ∈ HaJ(ha, φ)K(symbols(σa), collect-sym-locs(σa), F). We will proceed by

the definition ofHa. Since σ′a has one fewer symbolic location (δ) than σa, the predicate

well-mapped(symbols(σ′a), collect-sym-locs(σ′a), F) holds. Also it is easy to see that both

heap(collect-sym-locs(σ′a), h′a, hs, F) and pc(φs, φ
′, hs, F, collect-sym-locs(σ′a)) hold. We conclude

that σs ∈ ST aJσ′aK(F) holds. �

Lemma 4. Let σa ∈ Σa and F ∈ Π. For any (δ, i) ∈ F where i is a legal location for δ regarding

to σa, if σ′a ∈ init-sym-loc(σa, δ, i) and σs ∈ ST aJσ′aK(F), then σs ∈ ST aJσaK(F).

Proof. Similar to Lemma 3, the difficult part is to show that

(hs, φs) ∈ HaJ(ha, φ)K(symbols(σa), collect-sym-locs(σa), F).
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We know that (hs, φs) ∈ HaJ(h′a, φ
′)K(symbols(σ′a), collect-sym-locs(σ′a), F). We will proceed by

the definition of Ha. Since σa has one more symbolic location (δ) than σ′a and by i is legal for

δ regarding to σa, the predicate well-mapped(symbols(σa), collect-sym-locs(σa), F) holds. Also it

is easy to see that both heap(collect-sym-locs(σa), ha, hs, F) and

pc(φs, φ, hs, F, collect-sym-locs(σa)) hold. We conclude that σs ∈ ST aJσaK(F) holds. �

Lazier Kripke Structure

For any given method m, we have a set of global variables G and local variables L (ordered from

0..n). We use Kripke structure A = (ΣA, IA,−→A, LA) to model the state-space from the lazier

initialization symbolic executions. The components are defined as follows:

• states, ΣA = Σa ∪ (E × Σa) ∪ (E × Σa).

• initial states,

IA = { (ga, pcinit, la, nil, ha, {T}) | dom(ga) = G ∧ dom(la) = L } ,

and each local and global is initialized as follows: if its type is primitive, a symbolic primi-

tive symbolic is created; otherwise, it is nondeterministically initialized as a fresh symbolic

location or .

• transition relation, a −→A a′ ⇐⇒ a ⇒A a2, a2 ⇒A a3, . . . , an ⇒A a′ for some n ∈ N

with program counters of a, a2, . . . , an are the same and the program counter of a and a′ are

different and the path condition of a′ is satisfiable.

• labels, we do not use this part and thus they are ignored.

Similar to γs, function γa is trivially extended to γ∗a : ΣA → P(ΣS) as

γ∗a(a) =


γa(σa), if a = σa for some σa ∈ Σa;
{ (E, σs) | σs ∈ γa(σa) } , if a = (E, σa) for some σa ∈ Σa;
{ (E, σs) | σs ∈ γa(σa) } , if a = (E, σa) for some σa ∈ Σa.
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Simulation Relations

We introduce a relation R′ between lazier symbolic states ΣA and ΣS as follows:

Definition 4. σs R
′ σa ⇐⇒ σs ∈ γ

∗
a(σa).

Clearly, for all s0 ∈ IS, there exists a a0 ∈ IA such that s0 R
′ a0.

Proposition 5. S CR′ A.

Proof. It is sufficient to show that for all σs, σ
′
s ∈ ΣS, σa ∈ ΣA if σs −→S σ

′
s and σs R

′ σa then

there exists σ′a ∈ A such that σa −→A σ
′
a and σ′s R

′ σ′a. We will proceed with the rule induction

on −→S.

• Rule IF ACMPEQ1-S: Letσs = (gs, pc, ls, i :: j ::ωs, hs, φ). Then i , j andσ′s = (gs, next(pc), ls, ωs, hs, φ).

Suppose σs R
′ σa, we need to show there exists σ′a ∈ A such that σa −→A σ

′
a and

σ′s R
′ σ′a. Since σs R

′ σa, we have σs ∈ γa(σa). WLOG, suppose that σa has the

form of (ga, pc, la, δτ :: δ′τ′ :: ωa, ha, φ
′) for some F with V′JδK(F) = i, V′Jδ′K(F) = j,

and σs ∈ ST aJσaK(F). After taking the IF ACMPEQ3-A rule, we get an invisible state

t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h
′
a, φ

′′) with t1 ∈ init-sym-loc(σa, δ, i). By Lemma 3, we have

σs ∈ ST aJt1K(F). After taking the IF ACMPEQ2-A rule, we get another invisible state t2 =

(g′′a , pc, l′′a , i :: j :: ω′′a , h
′′
a , φ

′′′) with t2 ∈ init-sym-loc(t1, δ
′, j). By Lemma 3, we have σs ∈

ST aJt2K(F). Finally, we take the IF ACMPEQ1-S rule and getσ′a = (g′′a , next(pc), l′′a , ω
′′
a , h

′′
a , φ

′′′).

Now it is sufficient to show that σ′s ∈ γa(σ′a). Clearly sub-fun(g′′a , F) = sub-fun(ga, F) =

gs, sub-fun(l′′a , F) = sub-fun(la, F) = ls, and sub-seq(ω′′a , F) = sub-seq(ωa, F) = ωs by ap-

plying Lemma 1 twice. It remains to show that

(hs, φ) ∈ HaJ(h′′a , φ
′′′)K(symbols(σ′a), collect-sym-locs(σ′a), F). Since symbols(σ′a) = symbols(t2)

and collect-sym-locs(σ′a) = collect-sym-locs(t2) = collect-sym-locs(σa) \ {δ, δ′}, we get

(hs, φ) ∈ HaJ(h′′a , φ
′′′)K(symbols(σ′a), collect-sym-locs(σ′a), F). Therefore, σ′s ∈ γa(σ′a).

• Rule GETFIELD3-S: Supposeσs = (gs, pc, ls, i ::ωs, hs, φ). Thenσ′s = (gs, next(pc), ls,  ::

ωs, h′s, φ) where hs(i) = Y and h′s = hs[i 7→ Y[ fτ 7→ ]]. Suppose σs R
′ σa, we need
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to show there exists σ′a ∈ A such that σa −→A σ
′
a and σ′s R

′ σ′a. Since σs R
′ σa, we

have σs ∈ γa(σa). WLOG, suppose that σa has the form of (ga, pc, la, δτ′ :: ωa, ha, φ
′) for

some F with V′JδK(F) = i and σs ∈ ST aJσaK(F). After taking the GETFIELD1-A rule,

we get an invisible state t = (g′a, pc, l′a, i :: ω′a, h
′
a, φ

′′) with t ∈ init-sym-loc(σa, δ, i). By

Lemma 3, we have σs ∈ ST aJtK(F). Finally, we take the rule GETFIELD3-S and get σ′a =

(g′a, next(pc), l′a,  :: ω′a, h
′
a[i 7→ h′a(i)[ fτ 7→ ]], φ′′). We need to show σ′s ∈ γa(σ′a).

By Lemma 1, sub-fun(g′a, F) = sub-fun(ga, F) = gs, sub-fun(l′a, F) = sub-fun(la, F) = ls, and

sub-seq(ω′a, F) = sub-seq(ωa, F) = ωs hold. It is sufficient to show that (hs[i 7→ hs(i)[ fτ 7→

]], φ) ∈ HaJ(h′a[i 7→ h′a(i)[ fτ 7→ ]], φ′)K(symbols(σ′a), collect-sym-locs(σ′a), F).

Since symbols(σ′a) = symbols(t) and collect-sym-locs(σ′a) = collect-sym-locs(t) = collect-sym-locs(σa\

{δ}), and h′a(i)( f ) = hs(i)( f ) = , (hs[i 7→ hs(i)[ fτ 7→ ]], φ) ∈ HaJ(h′a[i 7→ h′a(i)[ fτ 7→

]], φ′′)K(symbols(σ′a), collect-sym-locs(σ′a), F) by the definition ofHa.

• Rule GETFIELD6-S Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then σ′s = (gs, next(pc), ls, j ::

ωs, h′s, φ
′) where hs(i) = Ym,n and h′s = hs[i 7→ Ym,n[ fτ 7→ j]][ j 7→ Zτ′], φ′ = φ ∪ {τ′ <:

τ} where Zτ′ = new-sym(symbols(σs),m − 1, k) and j < dom hs. Suppose σs R
′ σa, we need

to show there exists σ′a ∈ A such that σa −→A σ
′
a and σ′s R

′ σ′a. Since σs R
′ σa, we have

σs ∈ γa(σa). WLOG, suppose that σa has the form of (ga, pc, la, δτ′ :: ωa, ha, φ
′) for some

F with V′JδK(F) = i and σs ∈ ST aJσaK(F). After taking the GETFIELD1-A rule, we get

an invisible state t = (g′a, pc, l′a, i ::ω′a, h
′
a, φ

′′) with t ∈ init-sym-loc(σa, δ, i). By Lemma 3,

we get σs ∈ ST aJtK(F). Finally, We can take GETFIELD3-S transition rule and get σ′a =

(g′a, next(pc), l′a, δτ :: ω′a, h
′
a[i 7→ h′a(i)[ fτ 7→ δ′′]], φ′′) where δ′′ < collect-sym-locs(t). Let

F′ = F[δ′′ 7→ j]. Since δ′′ is fresh in t, sub-fun(g′a, F
′) = sub-fun(g′a, F) = gs, sub-fun(l′a, F

′) =

sub-fun(l′a, F) = ls, and sub-seq(ω′a, F
′) = sub-seq(ω′a, F) = ωs. It remains to show (hs[i 7→

hs(i)[ fτ 7→ j]][ j 7→ Zτ′], φ∪{τ′ <: τ}) ∈ HaJ(h′a[i 7→ h′a(i)[ fτ 7→ δ′′]], φ′′)K(symbols(σ′a), collect-sym-locs(s′a), F′).

Since we already have (hs, φ) ∈ HaJ(h′a, φ
′′)K(symbols(t), collect-sym-locs(t), F), according

to the definition of Ha function, we only need to consider the extra elements: δ′′, j, and

Z. Since j is not in the domain of hs, j is not in the domain of h′a. So j is not in the do-
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main of h′a[i 7→ h′a(i)[ fτ 7→ δ′′]]. We get well-mapped(collect-sym-locs(t) ∪ {δ′′}, h′a[i 7→

h′a(i)[ f 7→ δ′′]], F′). Since Z = new-sym(symbols(σs),m − 1, k) and F′(δ′′) = j, we have

heap(collect-sym-locs(t) ∪ {δ′′}, h′a[i 7→ h′a(i)[ f 7→ δ]], hs[i 7→ hs(i)[ fτ 7→ j]][ j 7→ Zτ′]).

Since F′ introduce a new entry (δ′′, j) then pc(φ′′, φ ∪ {τ′ <: τ}, hs[i 7→ hs(i)[ fτ 7→ j]][ j 7→

Zτ′], F′, collect-sym-locs(t) ∪ {δ′′}) holds. Thus (hs[i 7→ hs(i)[ fτ 7→ j]][ j 7→ Zτ′], φ ∪ {τ′ <:

τ}) ∈ HaJ(h′a[i 7→ h′a(i)[ fτ 7→ δ]], φ′′)K(symbols(σ′a), collect-sym-locs(σ′a), F′) holds.

�

Next we define a relation.

Definition 5. R′• ⊆ ΣA × P(ΣS), as follows:

σa R
′
• S s ⇐⇒ γ∗a(σa) = S s

Clearly, R′• is left total. Since R′ is right total, then for all σa, if σa R
′
• S s, then S s , ∅.

Furthermore, for any σa ∈ IA and σa R
′
• S s, it is clear that S s ⊆ IS by the definition of γa function.

Proposition 6. A CR′• P(S).

Proof. It is sufficient to show that for all σa ∈ ΣA, S s ∈ P(ΣS) if σa −→A σ
′
a and σa R

′
• S s and

σ′a R
′
• S ′s then S s

•
−→S S ′s.

We will prove by rule induction on transitions, −→A.

• Rule if acmpeq: Suppose, WLOG, σa = (ga, pc, la, δτ :: δ′τ′ ::ωa, ha, φ
′). Then by the defi-

nition of −→A, the rule consists of three lazier symbolic transitions rules: IF ACMPEQ3-A,

IF ACMPEQ2-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking IF ACMPEQ3-A rule,

we get an invisible state t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h
′
a, φ

′′) for some i ∈ Locs and t1 ∈

init-sym-loc(σa, δ, i). Then after taking IF ACMPEQ2-A rule, we get another invisible state

t2 = (g′′a , pc, l′′a , i :: j ::ω′′a , h
′′
a , φ

′′′) for some j ∈ Locs and t2 ∈ init-sym-loc(t2, δ
′, j). WLOG,

suppose i , j (the i = j case is symmetric). Finally, we take IF ACMPEQ1-S rule and get

σ′a = (g′′a , next(pc), l′′a , ω
′′
a , h

′′
a , φ

′′′). Suppose σa R
′
• S s and σ′a R

′
• S ′s. We need to show that
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S s
•
−→S S ′s, that is, for any σ′s ∈ S ′s, there exists some σs ∈ S s such that σs −→S σ

′
s. Sup-

pose σ′s ∈ S ′s, that is, σ′s ∈ γa(s′a). Then σ′s must be in the form of (g′s, next(pc), l′s, ω
′
s, h
′
s, φ)

for some F and σ′s ∈ ST aJσ′aK(F). Define σs = (g′s, next(pc), l′s, i :: j :: ω′s, h
′
s, φ). It is

clear that σs −→S σ
′
s. We only need to show σs ∈ S s, that is, σs ∈ γa(σa). Define

F′ = F[δ 7→ i][δ′ 7→ j]. We will show σs ∈ ST aJσaK(F′). Since δ and δ′ do not appear

in σ′a, thus t2, we have σs ∈ ST aJt2K(F′) by Lemma 2 and property of Ha. By applying

Lemma 4 twice, we get σs ∈ ST aJσaK(F′).

• Rule getfield fτ: Suppose, WLOG, σa = (ga, pc, la, δτ′ ::ωa, ha, φ
′) and τ ∈ Typesrecord.

By the definition of −→A, the transition consists of two lazier rules: GETFIELD1-A and

(GETFIELD2-A, GETFIELD3-A, or GETFIELD1-S). After taking the GETFIELD1-A rule, we

get an invisible state t = (g′a, pc, l′a, i ::ω′a, h
′
a, φ

′′) for some i ∈ Locs and t = init-sym-loc(σa, δ, i).

WLOG, assume that f field is undefined in h′a(i). We take the GETFIELD2-A rule and get

σ′a = (g′a, next(pc), l′a, δ
′
τ ::ω

′
a, h

′
a[i 7→ h′a(i)[ fτ 7→ δ′]], φ′′), where δ′ is fresh in t.

Suppose σa R
′
• S s and σ′a R

′
• S ′s. We need to show that S s

•
−→S S ′s, that is, for any σ′s ∈ S ′s,

there exists some σs ∈ S s such that σs −→S σ
′
s. Suppose σ′s ∈ S ′s, that is, σ′s ∈ γa(σ′a).

Then σ′s must be in the form of (g′s, next(pc), l′s, j ::ω′s, h
′
s, φ) for some F such that F(δ′) = j

and σ′s ∈ ST aJσ′aK(F). Define hs as h′s after following two operations:

1. remove h′s(i)( f ). So the f field of hs(i) becomes undefined.

2. if no symbol in hs has a field points to h′s(i)( f ), then the entry at location h′s(i)( f ) is

removed from hs.

Define φs as satisfying pc(φs, φ
′′, hs, F, collect-sym-locs(t)), so φs ∪ {τ

′′ <: τ} = φ where

Zτ′′ = h′s(F(δ′)). Define σs = (g′s, next(pc), l′s, i :: ω′s, hs, φs). We will first show σs ∈ S s

and then σs −→S σ
′
s. To show σs ∈ S s, it suffices to show σs ∈ ST aJtK(F) (then we

can apply Lemma 4 with F[δ 7→ i]). Now we use the definition of Ha to show (hs, φs) ∈

HaJ(h′a, φ
′′)K(symbols(t), collect-sym-locs(t), F). Since pc predicate obviously holds by con-

struction of φs, it suffices to show the well-mapped and heap predicates. Since h′a has one
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fewer symbolic location (δ′) than h′a[i 7→ h′a(i)[ fτ 7→ δ′]], well-mapped(collect-sym-locs(t), h′a, F)

holds. We will prove the heap predicate by a case analysis according to the freshness of

F(δ′):

– F(δ′) < F(collect-sym-locs(t) ∪ dom h′a: then the entry (F(δ′), h′s(F(δ′)) is removed

from hs. Since heap(collect-sym-locs(σ′a), h′a[i 7→ h′a(i)[ fτ 7→ δ′]], h′s, F) holds and

collect-sym-locs(σ′a) − collect-sym-locs(t) = {δ′}, we have

heap(collect-sym-locs(t), h′a, F) holds.

– otherwise: the entry (F(δ′), h′s(F(δ′)) is not removed from hs by the definition of hs.

We are done because heap(collect-sym-locs(σ′a), h′a[i 7→ h′a(i)[ fτ 7→ δ′]], h′s, F) holds.

So we have proved (hs, φs) ∈ HaJ(ha, φ
′)K(symbols(t), collect-sym-locs(t), F). Thus σs ∈

ST aJtK(F) holds and further, σs ∈ S s. It remains to show that σs −→S σ
′
s. There are two

cases:

– hs(F(δ′)) is not defined: Since σ′a has only δ′ that is not in σa, so h′s(F(δ′)) is a fresh

symbol. We can take the GETFIELD6-S rule and get σs −→S σ
′
s.

– hs(F(δ′)) is defined: By the well-mappedness of ha, hs(F(δ′))() is not defined. So

we can take the GETFIELD4-S rule and get σs −→S σ
′
s.

�

Soundness and Completeness

Proposition 7 (Soundness). Given any symbolic trace s1 −→S s2 −→S · · · −→S sn with s1 ∈ IS,

there is a corresponding lazier symbolic trace a1 −→A a2 −→A · · · −→A an with a1 ∈ IA such

that sk R
′ ak for all 1 ≤ k ≤ n.

Proof. We proceed by mathematical induction on n using Proposition 9. �

Proposition 8 (Completeness). Given any lazier symbolic trace a1 −→A a2 −→A · · · −→A an

with a1 ∈ IA, there is a corresponding symbolic trace s1 −→S s2 −→S · · · −→S sn such that

sk R
′ ak for all 1 ≤ k ≤ n and s1 ∈ IS.
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Proof. It is easy to show that there exists a trace in P(S), S 1
•
−→S S 2

•
−→S · · ·

•
−→S S n such that

ak R• S k for all 1 ≤ k ≤ n by mathematical induction on n using Proposition 6. Since S n , ∅,

we can pick a sn ∈ S n and use the definition of
•
−→S, then get the corresponding symbolic trace

s1 −→S s2 −→S · · · −→S sn. �

5.3.3 Relative Soundness and Completeness of Symbolic Execution with
Lazier# Initialization

Following the outline of Section 5.3.2, we relate SELB in Section 5.2.3 and SELA in Section 5.2.2.

First, we define a function γb which takes a SELB state and returns all the SELA states that

have the same shape and only symbolic references are initialized to either  or symbolic

locations. Then we introduce binary relations between SELA states (power) and SELB states.

Finally, we will prove the relative soundness and completeness of SELB with regard to SELA

intra-procedurely.

Definition of γb

Let us first introduce a definition: The set of all symbolic reference environments

Ξ = {G | G : SymRefs→ (SymLocs ∪ {}) } . (5.2)

Then we define a function: legal-env : Σb → P(Ξ) as

legal-env(σb) = {G ∈ Ξ | G(collect-sym-refs(σb)) ∩ collect-sym-locs(σb) = ∅∧

∀δ̂1 , δ̂2 ∈ collect-sym-refs(σb).G(δ̂1) = G(δ̂2) =⇒ G(δ̂1) = },

where collect-sym-refs collects all the symbolic references in a state.

And ST b : Σb × Ξ→ Σa as

ST bJσbK(G) = (sub-fun(g,G), pc, sub-fun(l,G), sub-seq(ω,G), sub-fun2(h,G), φ),

with binding σb = (g, pc, l, ω, h, φ).
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The definition of γb : Σb → P(Σa) is

γb(σb) =
⋃

∀G∈legal-env(σb)

ST bJσbK(G).

Properties of γb

Lemma 5. Letσb ∈ Σb and G ∈ legal-env(σb). Supposeσa = ST bJσbK(G) andσa = (ga, pc, la, ωa, ha, φa).

For any (δ̂, v) ∈ G, if σ′b = init-sym-ref(σb, δ̂, v), then (ga, pc′, la, ωa, ha, φa) = ST bJσ′bK(G).

Proof. Supposeσb = (gb, pc, lb, ωb, hb, φ). By the definition of init-sym-ref,σ′b = (sub-fun1(gb, δ̂, v), pc′,

sub-fun1(lb, δ̂, v), sub-seq1(ωb, δ̂, v), sub-fun21(hb, δ̂, v), φ). Since σa = ST bJσbK(G), we have ga =

sub-fun(sub-fun1(gb, δ̂, v),G), la = sub-fun(sub-fun1(lb, δ̂, v),G),ωa = sub-seq(sub-seq1(ωb, δ̂, v),G),

and ha = sub-fun2(sub-fun21(hb, δ̂, v)),G), by Lemma 1. We conclude that (ga, pc′, la, ωa, ha, φa) ∈

ST bJσ′bK(G) holds. �

Lemma 6. Let σb = (gb, pc, lb, ωb, φ) ∈ Σb and G ∈ legal-env(σb). For any (δ̂, v) ∈ G, if

σ′b = init-sym-ref(σb, δ̂, v) and (ga, pc′, la, ωa, ha, φ) = ST bJσ′bK(G), then (ga, pc, la, ωa, ha, φ) =

ST bJσbK(G).

Proof. Proof is similar to Lemma 5. �

Lazier# Kripke Structure

For any given method m, we have a set of global variables Globals and local variables Locals

(ordered from 0..n). We use Kripke structure B = (ΣB, IB,−→B, LB) to model the state-space from

the lazier# initialization symbolic executions. The components are defined as follows:

• states, ΣB = Σb ∪ (E × Σb) ∪ (E × Σb).

• initial states,

IB = { (gb, pcinit, lb, nil, hb, {T}) | dom(gb) = Globals ∧ dom(lb) = Locals } ,
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and each local and global is initialized as follows: if its type is primitive, a primitive symbol

is created; otherwise, it is initialized as a fresh symbolic reference. Furthermore, hb is the

empty heap.

• transition relation, b −→B b′ ⇐⇒ b ⇒B b2, b2 ⇒B b3, . . . , bn ⇒B b′ for some n ∈ N

with program counters of b, b2, . . . , bn are the same and the program counters of b and b′ are

different and the path condition of b′ is satisfiable.

• labels, we do not use this part and thus it is ignored.

Similar to γa, function γb is trivially extended to γ∗b : ΣB → P(ΣA) as

γ∗b(b) =


γb(σb), if b = σb for some σb ∈ Σb;
{ (E, σa) | σa ∈ γb(σb) } , if b = (E, σb) for some σb ∈ Σb;
{ (E, σa) | σa ∈ γb(σb) } , if b = (E, σb) for some σb ∈ Σb.

Simulation Relations

We introduce a relation R′′ between lazier# symbolic states ΣB and ΣA as follows:

Definition 6. σa R
′′ σb ⇐⇒ σa ∈ γ

∗
b(σb).

Clearly, for all a0 ∈ IA, there exists a b0 ∈ IB such that a0 R
′′ b0.

Proposition 9. A CR′′ B.

Proof. It is sufficient to show that for all σa, σ
′
a ∈ ΣA, σb ∈ ΣB if σa −→A σ

′
a and σa R

′′ σb then

there exists σ′b ∈ ΣB such that σb −→B σ
′
b and σ′a R

′′ σ′b. We will proceed with the rule induction

on −→A.

• Rule if acmpeq: Suppose, WLOG, σa = (ga, pc, la, δτ :: δ′τ′ ::ωa, ha, φ
′). Then by the defi-

nition of −→A, the rule consists of three lazier symbolic transitions rules: IF ACMPEQ3-A,

IF ACMPEQ2-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking IF ACMPEQ3-A rule,

we get an invisible state t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h
′
a, φ

′′) for some i ∈ Locs and t1 ∈

init-sym-loc(σa, δ, i). Then after taking IF ACMPEQ2-A rule, we get another invisible state
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t2 = (g′′a , pc, l′′a , i :: j ::ω′′a , h
′′
a , φ

′′′) for some j ∈ Locs and t2 ∈ init-sym-loc(t2, δ
′, j). WLOG,

suppose i , j (the i = j case is symmetric). Finally, we take IF ACMPEQ1-S rule and

get σ′a = (g′′a , next(pc), l′′a , ω
′′
a , h

′′
a , φ

′′′). Suppose σa R
′′ σb. We need to show that there

exists any σ′b ∈ ΣB such that σb −→B σ
′
b. WLOG, suppose that σb = (gb, pc, lb, δ̂ :: δ′ ::

ωb, hb, φ). Since σa R
′′ σb, there exists G ∈ legal-env(σb) such that σa = ST bJσbK(G).

Clearly G(δ̂) = δ. We take rule IF ACMEQ3-B and get a state t′0 = init-sym-ref(σb, δ̂, δ)

with stack δ :: δ′ :: sub-seq(ωb, δ̂, δ). By Lemma 5, we get σa R
′′ t′0. Then we take

IF ACMPEQ3-A, IF ACMPEQ2-A, and IF ACMPEQ1-S. We get t′1 = init-sym-loc(t′0, δ, i) af-

ter rule IF ACMPEQ3-A, t′2 = init-sym-loc(t′1, δ
′, j) after rule IF ACMPEQ2-A, and σ′b after

IF ACMPEQ1-S. Since all the rules do not involve any symbolic references, it is clear that

t1 R
′′ t′1, and t2 R

′′ t′2, and finally σ′a R
′′ σ′b.

• Rule getfield fτ: Suppose, WLOG, τ ∈ Typesnon−prim and σa = (ga, pc, la, i :: ωa, ha, φ)

and Ym,n = ha(i) and Y( f ) ↑. Assume that rule GETFIELD2-A is taken. We get σ′a =

(ga, next(pc), la, δ
m−1,k
τ ::ωa, ha[i 7→ Ym,n[ fτ 7→ δm−1,k

τ ]], φ) where δ is fresh. Supposeσa R
′′ σb

and σa = ST bJσbK(G) for some G ∈ legal-env(σb). WLOG, assume σb = (gb, pc, lb, i ::

ωb, hb, φ). Clearly we have Xm,n = hb(i) for some X and X( f ) ↑. After rule GETFIELD2-B,

we get σ′b = (gb, next(pc), lb, δ̂
m−1,k
τ ::ω′, hb[i 7→ Ym,n[ fτ 7→ δ̂m−1,k

τ ]], φ) and δ̂ is fresh in σb. It

is easy to see that G[δ̂ 7→ δ] ∈ legal-env(σ′b). Thus we have σ′a = ST bJσ′aK(G[δ̂ 7→ δ]), that

is, σ′a R
′′ σ′b.

�

Next we define a relation.

Definition 7. R′′• ⊆ ΣB × P(ΣA), as follows:

σb R
′′
• S a ⇐⇒ γ∗b(σb) = S a

Clearly, R′′• is left total. Since R′′ is right total, then for all σb, if σb R
′′
• S a, then S a , ∅.

Furthermore, for any σb ∈ IB and σb R
′′
• S a, it is clear that S a ⊆ IA by the definition of γb

function.
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Proposition 10. B CR′′• P(A).

Proof. It is sufficient to show that for all σb ∈ ΣB, S a ∈ P(ΣA) if σb −→B σ
′
b and σb R

′′
• S a and

σ′b R
′
• S ′a then S a

•
−→A S ′a.

We will prove by rule induction on transitions, −→B.

• Rule if acmpeq: Suppose, WLOG, σb = (gb, pc, lb, δ̂1 :: δ̂2 :: ωb, hb, φ). Then by the def-

inition of −→B, the rule consists of five transitions rules: IF ACMPEQ3-B, IF ACMEQ2-B,

IF ACMPEQ3-A, IF ACMPEQ2-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking the

IF ACMPEQ3-B rule, we get an invisible state t1 = init-sym-ref(σb, δ̂1, δ1) and then IF ACMPEQ2-B

rule, we get t2 = init-sym-ref(t1, δ̂2, δ2). Then by IF ACMPEQ3-A rule, we get t3 and by

IF ACMEQ2-A rule, we arrive at t4 where δ1 and δ2 are fresh. WLOG, suppose we take

IF ACMPEQ1-S rule and get σ′b = (sub-fun1(sub-fun1(gb, δ̂1, δ1), δ̂2, δ2), next(pc),

sub-fun1(sub-fun1(lb, δ̂1, δ1), δ̂2, δ2) , sub-seq1(sub-seq1(ωb, δ̂1, δ1), δ̂2, δ2),

sub-fun21(sub-fun21(hb, δ̂1, δ1), δ̂2, δ2), φ′). Suppose σb R
′
• S a and σ′b R

′
• S ′a. We need

to show that S a
•
−→S S ′a, that is, for any σ′a ∈ S ′a, there exists some σa ∈ S a such that

σa −→A σ
′
a. Suppose σ′a ∈ S ′a, that is, σ′a ∈ γb(σ′b). Then σ′a must be in the form

of (g′a, next(pc), l′a, ω
′
a, h

′
a, φ) for some G and σ′a ∈ ST bJσ′bK(G). Define G′ = G[δ̂1 7→

δ1][δ̂2 7→ δ2]. Clearly G′ ∈ legal-env(σb). Define σa = ST bJσbK(G′). We need to show

that σa −→A σ
′
a. After applying Lemma 5 twice, we get σa = ST bJt2K(G′). Since σa only

differs from t2 by some symbolic references which are not operands of the instruction, σa

can takes exactly the same rules and get σ′a. We conclude that σa −→A σ
′
a.

• Rule getfield fτ: Suppose, WLOG, σb = (gb, pc, lb, δ̂τ′ ::ωb, hb, φ
′) and τ ∈ Typesrecord.

By the definition of−→B, the transition multiple lazier# rules. The first one is GETFIELD1-B.

WLOG, assume that the invisible state after GETFIELD1-B is t1 = (sub-fun1(gb, δ̂, δ), pc,

sub-fun1(lb, δ̂, δ), sub-seq1(ωb, δ̂, δ), sub-fun21(hb, δ̂, δ), φ) for some fresh δ. Then rule GETFIELD1-A

is taken and get an invisible state t2 = (g2, pc, l2, ω2, h2, φ2) = init-sym-loc(t, δ, i) for some

i ∈ Locs. WLOG, assume that f field is undefined in h2(i). We take the GETFIELD2-B rule

and get σ′b = (g2, next(pc), l2, δ̂
′
τ ::ω2, h2[i 7→ h2(i)[ fτ 7→ δ̂′]], φ2), where δ̂′ is fresh in t2.
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Suppose σb R
′′
• S a and σ′b R

′′
• S ′a. We need to show that S a

•
−→A S ′a, that is, for any

σ′a ∈ S ′a, there exists some σa ∈ S a such that σa −→A σ
′
a. Suppose σ′a ∈ S ′a, that is,

σ′a ∈ γb(σ′b). Then σ′a must be in the form of (g′a, next(pc), l′a, δ
′ ::ω′a, h

′
a, φ) for some G such

that G(δ̂′) = δ′ and σ′a ∈ ST bJσ′bK(G). Define G′ = G[δ̂ 7→ δ]. Clearly G′ ∈ legal-env(σb).

Let σa = ST bJσbK(G′). Using Lemma 5, we get σa = ST bJt1K(G′). Since t1 only has more

symbolic references than σa, rule GETFIELD1-A is applicable and get s′2. Since δ̂′ is fresh

in t2 and G(δ̂′) = δ′, δ′ is fresh in s′2. Therefore, we can apply GETFIELD2-A and get σ′a.

We conclude that σa −→A σ
′
a.

�

Soundness and Completeness

Proposition 11 (Soundness). Given any lazier symbolic trace a1 −→A a2 −→A · · · −→A an with

a1 ∈ IA, there is a corresponding lazier# symbolic trace b1 −→B b2 −→B · · · −→B bn with b1 ∈ IB

such that ak R
′′ bk for all 1 ≤ k ≤ n.

Proof. We proceed by mathematical induction on n using Proposition 9. �

Proposition 12 (Completeness). Given any lazier# symbolic trace b1 −→B b2 −→B · · · −→B bn

with b1 ∈ IB, there is a corresponding symbolic trace a1 −→A a2 −→A · · · −→A an such that

ak R
′′ bk for all 1 ≤ k ≤ n and a1 ∈ IA.

Proof. It is easy to show that there exists a trace in P(A), S 1
•
−→A S 2

•
−→A · · ·

•
−→A S n such that

bk R
′′
• S k for all 1 ≤ k ≤ n by mathematical induction on n using Proposition 10. Since S n , ∅,

we can pick an an ∈ S n and use the definition of
•
−→A, then get the corresponding lazier symbolic

trace a1 −→A a2 −→A · · · −→A an. �
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Chapter 6

KUnit

In this chapter, we describe an analysis feedback extension, KUnit, for Kiasan. Section 6.1

presents the basics of generating and concretizing effective input states. Section 6.2 presents

the JUnit test case generation, object graph visualization, and mock object generation for open

systems.

Acknowledgments

This chapter is based on a paper titled “ Kiasan/KUnit: Automatic Test Case Generation and Anal-

ysis Feedback for Open Object-oriented Systems” by Xianghua Deng, Robby, and John Hatcliff

to appear in the Proceeding of Testing: Academic & Industrial Conference Practice And Research

Techniques (TAIC PART) 2007 [24].

6.1 Foundations for KUnit

First we discuss the mathematical aspect of path coverage. Given a program P, we define a

relation ∼: i1 ∼ i2 for inputs i1 and i2 if and only if P will execute the same path, which has the

same sequence of program counters, with inputs i1 and i2. This is well-defined because we only

deal with sequential programs here. Intuitively, if i1 and i2 can not be differentiated by P, then

i1 ∼ i2. Clearly, ∼ is an equivalence relation. This equivalence relation ∼ partitions the input

space. Since there is an one-to-one mapping between inputs and concrete traces, we can reason
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Figure 6.1: Lazier# Backtrack States

in term of traces instead of inputs. By the soundness of Kiasan, we know each concrete trace has

a corresponding symbolic execution trace. Thus all the partitions are covered by the symbolic

execution traces. Since we are only concerned with path coverage, it suffices to pick one trace

from each partition of the input space by ∼. Thus for each symbolic trace, it suffices to generate a

corresponding concrete trace.

As discussed above, to generate test cases, we need to concretize the input configuration for

each symbolic path. This is not straightforward to do when using a lazy initialization algorithm

because the initial symbolic state does not yet have sufficient heap information (recall that heap

structure is discovered in an on-demand basis); one needs to reconstruct the heap structure at a

method (unit) entry (pre-state) by using the information along the path to the method’s exit points

(post-states). This suggests that it might be possible to work backward from a post-state to the

initial state. Fortunately, Kiasan is implemented on top of the extensible Bogor model checking

framework [54] that provides a backtracking capability for “reverse” execution. However, the

backtracking facility cannot be used as is; otherwise, one would get exactly the same initial state

that the algorithm begins with.

We have formalized (and proved its consistency with Kiasan’s algorithms) a modified reverse

execution algorithm for KUnit that, given a path, produces a corresponding symbolic pre-state

with sufficient heap information for concretization. In addition, we have formalized KUnit’s con-

cretization algorithm for producing a concrete state that refines a given symbolic pre-state. This

section presents the intuition behind KUnit’s algorithms. KUnit’s formal semantics, consistency,

and refinement proofs are presented in Chapter 7. In the next two sections, we describe the two

main steps in our approach: (1) constructing effective input states that preserve materialized heap
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structures by using a modified backtracking algorithm, and (2) concretizing the effective input

states into concrete input states.

6.1.1 Constructing the effective symbolic input state

Intuitively, for any symbolic execution trace s1 ⇒ · · · ⇒ sn, we can give the path condition at the

end state sn to a constraint solver and get an instance of assignments of scalar values to primitive

symbols. As mentioned above, we work backward from the end of each path and propagate

the heap materialization to the initial state to obtain what we will call the effective initial state.

Destructive updates to the heap complicate this further, however, these are naturally handled using

the infrastructure of the backtracking facility employed in Bogor. To illustrate why a modified

approach to backtracking is needed, consider that when using the normal backtracking approach,

one would undo the materialization that resulted from lazy initialization and restore the current

state to the pre-state of a transition. Since our goal is to propagate backward the materialization,

we keep the lazily initialized heap objects intact in the undo step and do not “de-materialize”

them. In addition, we keep the state’s path condition intact. Although the path condition includes

symbols (and their associated constraints) that are not mapped by variables at the input state, the

symbols do not harm the process of concretizing values (one can remove the irrelevant symbols

using transitive dependence information to determine if they are required for reasoning about

variables at the input state). For example, consider Figure 6.1 that illustrates the construction of

swap’s expanded symbolic input state from State 1121′ which is the same as 1121. From 1121′,

the algorithm backtracks to 112′, then to 11′, and finally to 1′. Notice that when backtracking

the first three statements of swap, we do not de-materialize lazily initialized objects. In addition,

notice that State s′ in Figure 6.1 refines State s in Figure 3.4 for s ∈ {1, 11, 112}.

6.1.2 Concretizing the effective symbolic input state

As mentioned above, when concretizing the effective symbolic input state, we use a constraint

solver to get non-heap related value instantiations. For concretizing the remaining symbolic heap

structures, there are four possible symbolic forms present in the state: (1) un-initialized fields, (2)
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Figure 6.2: Red-Black Tree put Pre-/Post-states

symbolic locations, (3) symbolic references, and (4) symbolic objects. For uninitialized fields, we

use default values according to the field’s type. For each symbolic location/reference/object, we

use a fresh object whose type satisfies the type constraints in the path condition of the state, and

all of its fields are set to default values according to the fields’ types. Note that this strategy works

well with contract specifications because Kiasan embeds executable and effective (e.g., invariants

transformed as parts of pre-/post-conditions) contracts along with the code [23]. That is, if a field

is unconstrained even under the specified contracts, then using any value is fine. For the swap

example, the symbolic objects n0 and n1 are concretized as Node objects. The uninitialized fields

n0.next and n1.next are concretized with the  value, and the symbolic values ē0 and ē1 become

fresh java.lang.Objects.

6.2 Test Cases and Object Graphs

6.2.1 Generating JUnit Test Cases

KUnit generates JUnit test cases using the concretization algorithm described in the previous sec-

tion. Following the Design-by-Contract (DBC) methodology [46], each test case has the following
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structure:

assume effective pre−condition

invoke the method being tested

assert effective post−condition.

APIs. The assume uses post-order traversal of the heap to set up the input state. For each edge

from o1 to o2 with label f (field), we use o1. f = o2. Since we use post-order, o2 will be visited

before o1. The assert uses pre-order traversal of the heap to assert the equivalence of the current

state and the input state. For each edge from o1 to o2 with label f (field), if o2 has not been

seen before, we use o2 = o1. f ; otherwise, we use assertEquals(o1. f , o2) where assertEquals is a

built-in method for asserting two arguments are equal in JUnit. The input and output states are

built using Java reflection. While using reflection produces hard-to-read code, one can address

this by adopting the JUnit-Objects [1] approach that uses XML descriptors to describe objects to

be created.

6.2.2 Visualizing Effects using Object Graphs

To accompany each generated JUnit test case, KUnit visualizes a method’s behavior by producing

object graphs of the method’s pre-/post-states. This is useful to provide a quick view of each of

the test cases. It is interesting to note that as a consequence of the lazier# algorithm , the object

graphs are focused on the heap objects that are accessed by Kiasan (this is in contrast to [14] that

generates heap structures whose parts may not be accessed). Figure 6.2 presents a pre-/post-state

pair for one test case of a put operation in the java.util.TreeMap red-black tree implementation. As

can be observed, the value fields in the two entry objects at the pre-state are missing. We choose

not to show such fields that are not accessed by the method (the JUnit test case input state has

those fields’ values equal to , or default values in general). We believe this visualization has

wide applicability for code inspection and understanding. For example, one can use this feature to

try to understand the behavior of a fragment of “legacy” code by having KUnit quickly generate a

variety of input/output pairs (which can be viewed as use cases of the code fragment). This is also
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public class Node<E> {
private Node<E> next ;

private @NonNull E data ;

public Node( @NonNull E data ) {
th is . data = data ;

}

/∗@requires acycl icOnNext ( ) && . . . ;
@ensures sor ted ( c )
&& elements ( ) . equals (\ o ld ( elements ( ) ) ) ; @∗ /

public void s o r t ( @NonNull Comparator<E> c ) {
. . . c . compare ( . . . ) . . .

}

}

public inter face Comparator<E> {
. . .

/ / @ensures \ r e s u l t >0 | | r e s u l t ==0 | | \ r e s u l t <0;
@Pure i n t compare (E e1 , E e2 ) ; / / t r a n s i t i v e

}

(a) List Sort Example

public class Sor tTest extends TestCase {

i n t index = 2;

public void t e s t S o r t ( ) throws Except ion {

Comparator c = new Comparator ( ) {
public i n t compare ( Object o1 , Object o2 ) {

index −−; . . .
switch ( index ) {

case 1: return c1 ( this , o1 , o2 ) ;
case 0: return c0 ( this , o1 , o2 ) ;
defaul t : throw new Er ro r ( ) ;

}

} . . .
} ;
/ / b u i l d i npu t s ta t e using r e f l e c t i o n
/ / c a l l s o r t w i th c on inpu t s ta t e
/ / check post−c o nd i t i on
. . .

}

. . .
s t a t i c i n t c0 ( Comparator c , Object o1 , Object o2 )
{ return −10; }

}

(b) Generated Test

Figure 6.3: A List Sort and Generated Test with Mock Object (excerpts)

useful for understanding how a given contract constrains the input states of a method (e.g., helpful

when drafting contracts).

6.2.3 Closing Open Systems using Mock Objects

To generate test cases for open systems, one also needs to generate method implementations re-

quired to close the unit. For example, we need to generate an implementation of the Comparator

interface passed as an argument to the sort method in Figure 6.3(a). This essentially amounts to

generating mock objects.

In our approach, we generate mock objects by following the DBC methodology. Thus, each

mock method m has the following basic structure:

assert m’s effective pre−condition

assume m’s effective post−condition

That is, the assume part simulates the effect of the mock method. For example, considering

compare’s contract in Figure 6.3(a), we can initially design a mock object by simply having a
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method body that non-deterministically returns a negative, zero, or a positive integer.

However, one complicating factor when generating mock objects is that mock methods may be

called multiple times using different calling contexts (even within a single test case). Thus, one has

to summarize the behavior of the mock method for all the contexts. To address this, we leverage

information about the sequence of method invocations from the symbolic execution path to create

mock methods. That is, we remember the order of when a mock method is invoked, and we use

the ordering number to index a behavior that simulates the effect of that particular invocation.

We store the behavior of each invocation in a separate helper method. The overall mock method

behavior is then memoized [47] by indexing the invocation to the helper methods. For example,

Figure 6.3 illustrates a test case generated for the sort method in Figure 3.1. In this case, there

are two objects in the input state, thus, there are two compare invocations. One is inside sort

and another one is in its postcondition (i.e., sorted). For each invocation, KUnit creates a helper

method such as c0 (which returns -10, illustrating that in the last invocation, compare determines

that the first argument is less than the second). Thus, the behavior of the Comparator c is spread

to the helper methods c0 and c1 (not shown). To keep track of the ordering, we use an indexing

counter, which decides which helper method should be invoked as implemented in the compare

method in Figure 6.3(b).

Note that since compare is a pure method, we do not need to simulate side-effects using

reflection. In general, side-effects are simulated using the same strategy used to build the input

state, however, we do not need to rebuild the entire state. It is enough to construct parts of the state

that are affected according to the specified contracts. Without contracts, KUnit assumes that there

is no side-effect (i.e., best case). However, fresh symbolic (scalar/reference) values are used for

return values (i.e., worst case). In short, KUnit’s soundness is relative to user-supplied contracts.

The indexing strategy for memoizing behavior works well for demonstrating the paths ex-

plored by symbolic execution. We believe this approach already provides significant automation

for developers as well as providing incentive to adopt the DBC methodology. That is, by using

contracts instead of writing numerous test cases manually (which is labor intensive and difficult to
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get good coverage with), one can benefit from Kiasan’s strong static checking, and KUnit’s effec-

tive visualization and automatic test case generation. Moreover, contracts can serve as a formal

basis for documentation purposes instead of using often ambiguous natural language descriptions.

Ideally, however, one would like to generate mock method behavior based on the context. That

is, instead of memoizing the result value of each invocation, one would prefer to decide the result

value based on the context. For example, instead of returning -10 in c0, one would prefer to

decide the return value based on o1 and o2. This would make the test case insensitive to method

invocation orderings, thus, it opens the possibility of reusing test cases when the method being

analyzed (e.g., sort) is modified (e.g., when the sequence of mock method invocations maybe

altered).

In the context of open systems with incomplete computation structures and weak contracts

such as the one for compare that does not specify the relationship between return values/side-

effects and its contexts, this cannot easily be done. One can employ a heuristic strategy, for

example, using Integer objects when creating the input state of sort and leveraging the natural

orderings of Integers when creating an implementation of compare. However, the problem in

general is difficult (i.e., heuristics can only be applied to a known set of interfaces), and we believe

it is still a challenging research issue in open object-oriented systems. Even in practice, it is still

hard to determine which test cases become stale after code modification, let alone generating test

cases that are impervious to code modification.

In short, we believe that our approach serves the purpose for generating test cases. If invoca-

tion orderings are changed, the test cases may fail, but we encourage users to leverage contracts

to statically re-check the modified code. The generated test cases themselves are evidence and

provide feedback that our static analysis performs as it is supposed to (even when it does not

find errors). We believe that our approach can be improved by employing heuristics strategy for

commonly used interfaces, while further investigations are needed to address the general problem.
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Chapter 7

Formalization of KUnit

In this chapter, we formalize the test input generation algorithms of KUnit and prove the path

coverage of KUnit algorithms. Similar to the soundness and completeness proofs of Kiasan, the

proofs have three parts: the first part is for the symbolic execution with lazy initialization shown

in Section 7.1; the second part is for the symbolic execution with lazier initialization presented

in Section 7.2; the last part is for the symbolic execution with lazier# initialization discussed in

Section 7.3. Each part takes a similar procedure: first we define inverse (backtracking) rules for

symbolic operational semantics rules; then we define a default concretization function; finally the

input generation algorithm and the path coverage proof are given.

7.1 Input Generation Formalization for Symbolic Execution
with Lazy Initialization

7.1.1 Backtracking Rules for Symbolic Execution with Lazy Initialization

Backtracking rules are the inverses of transition rules ⇒S (suppose we take one path at a time).

Then after any transition σ1 ⇒S σ2, we can apply the corresponding backtracking rule which

takes σ2 and returns σ1. The simple way to achieve the backtracking functionality is to save the

old state σ1. But this is inefficient in practice, since there is usually few changes from σ1 to

σ2. Instead, only the changes (δ) are stored in practice. For simplicity, we just take the simple

approach and define backtracking rules as (Σs × Σs) ⇒−1
S
Σs. Specifically, assume σ1 ⇒S σ2 by
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rule FOO-S, then its backtracking rule FOO-S-BACK is 〈σ1, σ2〉 ⇒
−1
S
σ1.

In order to generate concrete test inputs, we modify two kinds of backtracking rules:

1. rules that involve lazy initialization, such as getfield and iaload. The lazy initialized

fields/indexes are kept in the return state.

2. rules that add new constraints into path condition. The added constraints are kept in the

return state.

Formally, each backtracking rule is in the format of

premises

〈σ1, σ2〉 ⇒
−1
S
σ3
,

where σ1, σ2, σ3 ∈ ΣS. We call σ1 the first state; σ2 the second state; σ3 the return state.

Figure 7.1 presents the backtracking rules:

• rule IADD-S-BACK is the corresponding backtracking rule for IADD-S. The IADD-S-BACK

replaces the top element of the stack of the second state with the two top elements of the

stack of the first state; and returns the changed second state. It can be seen as popping the

result of addition and pushing the two operands to the stack.

• rules IF ICMPLT-S-T-BACK and IF ICMPLT-S-F-BACK are the corresponding backtracking

rules for IF ICMLT-S. There are two backtracking rules because rule IF ICMLT-S has two

possible end states depending on whether the true branch or false branch is taken. So when

the top element is less than the the element below it in the stack of the first state (condition

is true), IF ICMPLT-S-T-BACK applies and returns the second state (except the programming

counter using the first state) with two operands on the top of the first state being pushed onto

the stack of the second state. Otherwise, rule IF ICMPLT-S-F-BACK applies.

• rule NEW-S-BACK is the corresponding backtracking rule for NEW-S. The backtracking rule

removes the newly created heap entry indexed by the top of the stack of the second state.
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We use the bindings, σ = (g, pc, l, ω, h, φ) and σ′ = (g′, pc′, l′, ω′, h′, φ′), for all the backtracking
rules.

IADD-S-BACK
code(pc) = iadd ω = v1 ::v2 ::ω1 ω′ = v′ ::ω2 pc′ = next(pc)

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, v1 ::v2 ::ω2, h′, φ′)

IF ICMPLT-S-T-BACK

code(pc) = if icmplt pc1

ω = v1 ::v2 ::ω1 v2 < v1 ∈ φ
′ pc′ = pc1

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, v1 ::v2 ::ω′, h′, φ′)

IF ICMPLT-S-F-BACK

code(pc) = if icmplt pc1

ω = v1 ::v2 ::ω1 v2 ≮ v1 ∈ φ
′ pc′ = next(pc)

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, v1 ::v2 ::ω′, h′, φ′)

NEW-S-BACK
code(pc) = new τ ω′ = i′ ::ω2 pc′ = next(pc)

〈σ,σ′〉 ⇒−1
S

(g′, pc, l, ω2, h′ \ {(i′, h′(i′))}, φ′)

GETFIELD-S-BACK

code(pc) = getfield fτ
ω = i ::ω1 pc′ = next(pc) ω′ = v′ ::ω2

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, i ::ω2, h′, φ′)

GETFIELD-S-E-BACK

code(pc) = getfield fτ ω =  ::ω1

σ′ = NullPointerException , (g′, pc′, l′, ω′, h′, φ′)

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′,  ::ω′, h′, φ′)

PUTFIELD-S-BACK1

code(pc) = putfield f
ω = v :: i ::ω1 pc′ = next(pc) h′(i)( f ) = v h(i)( f ) ↓

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, v :: i ::ω′, h′[i 7→ h′(i)[ f 7→ h(i)( f )]], φ′)

PUTFIELD-S-BACK2

code(pc) = putfield f
ω = v :: i ::ω1 pc′ = next(pc) h′(i)( f ) = v h(i)( f ) ↑

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, ω′, h′[i 7→ h′(i) \ {( f , h′(i)( f ))}], φ′)

PUTFIELD-S-E-BACK

code(pc) = putfield f ω = v :: ::ω1

σ′ = NullPointerException , (g′, pc′, l′, ω′, h′, φ′)

〈σ,σ′〉 ⇒−1
S

(g′, pc, l′, v :: ::ω′, h′, φ′)

Figure 7.1: Backtracking Rules for Symbolic Execution with Lazy Initialization
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• rule GETFIELD-S-BACK is the corresponding backtracking rule for rules GETFIELD[1..6]-S.

This is because we preserve the results of lazy initialization.

• rule GETFILED-S-E-BACK is the corresponding backtracking rule for GETFIELD7-S which

throws a NullPointerException.

• rules PUTFIELD-S-BACK1 and PUTFIELD-S-BACK2 are the corresponding backtracking

rules for the rule PUTFIELD1-S. Both backtracking rules undo the writing to a field by

rule PUTFIELD1-S. When the field is defined in the first state, PUTFIELD-S-BACK1 applies;

otherwise, PUTFIELD-S-BACK2 applies.

• rule PUTFIELD-S-E-BACK is the corresponding backtracking rule for PUTFIELD2-S.

Lemma 7. For any σ1 −→S σ2, there exists some state σ3 such that 〈σ1, σ2〉 ⇒
−1
S
σ3, and we

have σ3 −→S σ2 and the transition rule is not one of the rules that involve lazy initialization (such

as GETFIELD3-S, GETFIELD4-S, GETFIELD5-S, GETFIELD6-S, etc.).

Proof. We will proceed with rule induction on operational semantic rules of SEL, −→S (we only

present representative rules):

• Rule IADD-S, assume that σ1 = (gs, pc, ls, v1 ::v2 ::ωs, hs, φ). Then σ2 = (gs, next(pc), ls,Z ::

ωs, hs, φ ∪ {Z = v1 + v2}) where Z is fresh. After applying rule IADD-S-BACK, we get

σ3 = (gs, pc, ls, v1 ::v2 ::ωs, hs, φ ∪ {Z = v1 + v2}). Clearly, σ3 −→S σ2 by rule IADD-S. For

any E,T that satisfy φ∪{Z = v1+v2}, we haveVsJv1K(T, E)+VsJv2K(T, E) = VsJZK(T, E).

The other components of σ2 and σ3 are the same.

• Rule IF ICMLT-S, let σ1 = (gs, pc, ls, v1 :: v2 :: ωs, hs, φ). WLOG, assume that the false

branch is taken. Then σ2 = (gs, next(pc), ls, ωs, hs, φ ∪ {v2 ≥ v1}). After applying the

IF ICMLT-F-S-BACK rule, we get σ3 = (gs, pc, ls, v1 :: v2 :: ωs, hs, φ ∪ {v2 ≥ v1}). Clearly,

σ3 −→S σ2 by rule IF ICMLT-S (the true branch is infeasible).
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• Rule NEW-S, let σ1 = (gs, pc, ls, ωs, hs, φ). Then σ2 = (gs, next(pc), ls, i :: ωs, hs[i 7→

new-obj(symbols(σ1), τ)], φ) where i is fresh in hs. After applying the rule NEW-S-BACK,

we get σ3 = (gs, pc, ls, ωs, hs, φ) = σ1. Clearly, σ3 −→S σ2.

• Rule GETFIELD3-S, let σ1 = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i) and

σ2 = (gs, next(pc), ls,  ::ωs, h′s, φ) where h′s = hs[i 7→ hs(i)[ fτ 7→ ]]. After applying

rule GETFIELD-S-BACK, we get σ3 = (gs, pc, ls, i ::ωs, h′s, φ). Clearly σ3 −→S σ2 by rule

GETFIELD1-S.

• Rule GETFIELD6-S, σ1 = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i) and σ2 =

(gs, next(pc), ls, j ::ωs, h′s, φ
′) where hs(i) = Ym,n, h′s = hs[i 7→ Ym,n[ fτ 7→ j]][ j 7→ Zτ′], φ′ =

φ ∪ {τ′ <: τ} for Zτ′ = new-sym(symbols(σs),m − 1, k) and j < dom hs. After applying rule

GETFIELD-S-BACK, we get σ3 = (gs, pc, ls, i :: ωs, h′s, φ
′). Clearly σ3 −→S σ2 by rule

GETFIELD1-S.

�

We can have an even stronger property of the backtracking rules:

Lemma 8. Given backtracking rule 〈σ1, σ2〉 ⇒
−1
S
σ3 for some state σ1, σ2, σ3. Then σ3 −→S σ2

and the transition rule is not one of the rules that involve lazy initialization (such as GETFIELD3-S,

GETFIELD4-S, GETFIELD5-S, GETFIELD6-S, etc.).

Proof. It can be shown by using rule induction of⇒−1
S

. �

7.1.2 Default Concretization Function for Symbolic Execution with Lazy
Initialization

First, we define a default concretization function default-concr : Γ × Env × ΣS → ΣC. The goal

of default-concr is to generate a default concrete state for a SEL state given E and T satisfying

the path condition of the SEL state. Intuitively, the concrete state is generated by substituting

symbolic values with E and all the undefined fields are initialized with default values.
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Then we introduce some semantic functions to facilitate the definition of default-concr. Od

maps a symbolic object/array into a concrete object or array. Hd maps a symbolic heap into a

concrete heap by mapping each symbol in its range to a concrete object using Od.

Od :Symbolsnon−prim → ((Γ × Env)→ Symbolsnon−prim);

Hd :Heapss → ((Γ × Env)→ Heapsc).

Here are the definitions (e is the identity permutation of locations):

• the Od function:

OdJXτK(T, E) = X′τ′ ,

where τ′ = sub(τ,T ) and if τ′ ∈ Typesrecord: for all fτ′′ ∈ fields(τ′),

X′( fτ′′) =

VsJX( f )K(E, e) if X( f )↓
default(τ′′) otherwise

if τ′ ∈ Typesarray: X′() = VsJX()K(E, e)∧∀ι ∈ acc-idx(X).X′(VsJιK(E, e)) = VsJX(ι)K(E, e)

and ∀(0 ≤ m < X′() ∧ m <
{
VsJιK(E, e) | ι ∈ acc-idx(X)

}
).

X′(m) =

X() if X()↓
default(τ′′) otherwise

where τ′′ is the element type of τ′.

• theHd function:

HdJhsK(T, E) = hc

where

dom hs = dom hc ∧ ∀(i, X) ∈ hs.(i,OdJXK(T, E)) ∈ hc.

Finally the default-concr function:

dc(T, E, (g, pc, l, ω, h, φ)) = (sub-fun(sub-fun(g, E), e), pc,

sub-fun(sub-fun(l, E), e), sub-seq(sub-seq(ω, E), e),HdJhK(T, E),T).
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default-concr(T, E, s) =


dc(T, E, σs) if s = σs;
(E, dc(T, E, σs)) if s = (E, σs);
(E, dc(T, E, σs)) if s = (E, σs).

It is easy to show that for all E,T that satisfy the path condition, φ of σs, default-concr(T, E, σs) ∈

γs(σs).

Lemma 9. Suppose σ1 −→S σ2 and the transition rule is not one of the lazy initialization rules.

For any E,T satisfy φ2 of σ2, default-concr(T, E, σ1) −→C default-concr(T, E, σ2)

Proof. Proceed by rule induction on −→S. �

7.1.3 Input Generation Algorithm and Proof

Given any trace s1 −→S s2 −→S · · · sn −→S sn+1. Define a sequence of states s′i for 1 ≤ i ≤ n + 1

as

s′n+1 = sn+1,〈
sn, s′n+1

〉
⇒−1
S

s′n,
...〈

s2, s′3
〉
⇒−1
S

s′2,〈
s1, s′2

〉
⇒−1
S

s′1.

The applicability of backtracking rules is shown by Lemma 12. Then we apply the default con-

cretization function for s′i , where 1 ≤ i ≤ n + 1 for any E,T � φn+1 with φn+1 is the path condition

of sn+1. And we get c1 = default-concr(T, E, s′1), . . . , cn+1 = default-concr(T, E, s′n+1).

Proposition 13. c1 −→C c2 · · · −→C cn+1 and ci ∈ γs(si) for all 1 ≤ i ≤ n + 1;

To prove this main theorem, we need one additional definition and some lemmas.

Definition 8. Relation ≺S: ΣS × ΣS as s1 ≺S s2 if and only if s1 is similar to s2 except that there

may be some fields of symbolic objects/arrays in s1 are defined but not in s2.
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Precisely, s1 ≺S s2 for s1 = (g1, pc1, l1, ω1, h1, φ1) and s2 = (g2, pc2, l2, ω2, h2, φ2) if and only if

g1 = g2 ∧ pc1 = pc2 ∧ l1 = l2 ∧ ω1 = ω2 ∧ refineheap(pc1, h1, h2) ∧ φ1 ⊇ φ2,

where refineheap(pc1, h1, h2) if and only if following conditions hold

1. dom h2 ⊆ dom h1;

2. for all i ∈ dom h2.(∀ι.h2(i)(ι) ↓ =⇒ (h1(i)(ι) ↓ ∧h2(i)(ι) = h1(i)(ι))∧

h2(i)() ↓ ⇐⇒ h1(i)() ↓;

3. code(pc1) = getfield f =⇒ ω2 = i ::ω′2 ∧ h1(i)( f ) ↓ 1;

4. for all i ∈ dom h1 \ dom h2. h1(i)() ↑ ∧∀ι ∈ acc-idx(h1(i)).non-concrete(h1, i, ι);

5. for all i ∈ dom h2. for all ι.(h1(i)(ι) ↓) ∧ (h2(i)(ι) ↑) =⇒ non-concrete(h1, i, ι),

where

non-concrete(h1, i, ι) ≡ h1(i)(ι) = j for some j ∈ Locs implies h1( j)() ↑ .

Clearly, γs(s1) ⊆ γs(s2).

Lemma 10. Suppose σ1 −→S σ2. Let σ3 be the outcome of backtracking from σ2, that is,

〈σ1, σ2〉 ⇒
−1
S
σ3. Then σ3 ≺S σ1.

Proof. This can be shown easily by rule induction on −→S. �

Lemma 11. Suppose we have σ4 ≺S σ2 and σ1 −→S σ2. Let σ3 be the outcome of backtracking

from σ4, that is, 〈σ1, σ4〉 ⇒
−1
S
σ3. Then σ3 ≺S σ1.

Proof. We will prove by rule induction of SEL semantics rules: −→S. We will use the default

bindings: σ1 = (g1, pc1, l1, ω1, h1, φ1), σ2 = (g2, pc2, l2, ω2, h2, φ2), σ3 = (g3, pc3, l3, ω3, h3, φ3),

and σ4 = (g4, pc4, l4, ω4, h4, φ4).
1Similar properties should hold for iaload and aaload. For the purpose of simpler presentation, it is not listed.
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• Rule IADD-S: Since σ1 ⇒S σ2 by rule IADD-S, we know ω1 = v1 :: v2 ::ω′1, code(pc1) =

iadd, ω2 = v′ ::ω′1, pc2 = next(pc1), g1 = g2, l1 = l2, h1 = h2, and φ1 ⊆ φ2. Since σ4 ≺S σ2,

we have g4 = g2, pc2 = pc4, l4 = l2, ω2 = ω4, refineheap(pc4, h4, h2), φ2 ⊆ φ4. By rule

IADD-S-BACK, we get σ3 = (g4, pc1, l4, v1 :: v2 ::ω′4, h4, φ4), where ω4 = v4 ::ω′4. Then we

get g3 = g4 = g2 = g1, pc3 = pc1, l3 = l4 = l2 = l1, refineheap(pc3, h3, h1), φ1 ⊆ φ2 ⊆ φ4 =

φ3. Thus we conclude that σ3 ≺S σ1.

• Rule IF ICMPLT-S: WLOG, assume that false branch is taken. Similar to the IADD-S-

BACK case.

• Rule NEW-S: The proof of g3 = g1, pc3 = pc1, ω3 = ω1, and φ1 ⊆ φ3 is similar to

the IADD-S case. The interesting part is to show that refineheap(pc3, h3, h1). We know

refineheap(pc4, h4, h2), h3 = h4 \ {(i′, h4(i′))} and h1 = h2 \ {(i′, h2(i′))}. First of all, we

need to show that σ3 is a well-defined SEL state, that is, i′ is not referred in σ3. Since

g3 = g4 = g2 = g1 and i′ is fresh inσ1, g3 does not refer to i′. Similarly, l3 andω3 do not refer

to i′. Since refineheap(pc4, h4, h2), h4 \ {(i′, h4(i′))} does not refer to i′ by Properties 4 and 5

of refineheap. Thusσ3 is well-defined SEL state. Then it is clear that refineheap(pc3, h3, h1).

Thus we conclude σ3 ≺S σ1.

• Rule GETFIELD2-S: Similar to the Rule NEW-S case, the interesting part is to show that

refineheap(pc3, h3, h1). Suppose ω1 = i :: ω′1 and code(pc1) = getfield f . Then

h2(i)( f ) ↓. By σ4 ≺S σ2, h4(i)( f ) ↓. Using the GETFIELD-S-BACK rule, we get h4 = h3,

in particular, h3(i)( f ) ↓. Thus we get refineheap(pc3, h3, h1). The other GETFIEDx-S rules

are similar.

• Rule PUTFIELD1-S: Again, the interesting part is to show refineheap(pc3, h3, h1). Suppose

code(pc1) = putfield f , ω1 = v :: i ::ω′1, and h1( f ) ↑. From PUTFIELD1-S rule, we know

h2(i)( f ) = v. Since σ4 ≺S σ2, h4(i)( f ) = v and v can not point to dom h4 \ dom h2. Then we

arrive at refineheap(pc3, h3, h1).

�
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Lemma 12. s′i ≺S si for all 1 ≤ i ≤ n + 1.

Proof. Since sn+1 = s′n+1, we get s′n ≺S sn by Lemma 10. Then by induction: going backward with

Lemma 11 for inductive step. �

Lemma 13. s′1 −→S s′2 −→S · · · −→S s′n+1.

Proof. It suffices to show for all 1 ≤ i ≤ n, s′i −→S s′i+1. Since
〈
si, s′i+1

〉
⇒−1
S

s′i , we have

s′i −→S s′i+1 by Lemma 8. �

Finally the proof of main theorem, Proposition 13:

Proof. By Lemma 12, we know the transition rule, s′i −→S s′i+1, is not one of the lazy ini-

tialization rules. Then by Lemma 13 and Lemma 9, we get ci = default-concr(T, E, s′i) −→C

default-concr(T, E, si+1) = ci+1 for all 1 ≤ i ≤ n. Since ci ∈ γs(s′i) ⊆ γs(si), we have ci ∈ γs(si) for

all 1 ≤ i ≤ n + 1. �

Using the soundness of SEL, we know that each path is covered by some symbolic trace. Since

for each symbolic trace, we generate a concrete trace which covers the path, we have achieved

complete path coverage.

7.2 Input Generation Formalization for Symbolic Execution
with Lazier Initialization

7.2.1 Backtracking Rules for Symbolic Execution with Lazier Initialization

The backtracking rule FOO-A-BACK for rule FOO is defined as ΣA×ΣA ⇒−1
A
ΣA. We modify the

standard lazier backtracking rules as follows: if a symbolic location is initialized, the initialization

is kept in the return state. For example, the IF ACMPEQ2-A and IF ACMPEQ3-A rules have the

same backtracking rule IF ACMPEQ-A-BACK. The GETFIELD1-A-BACK is the backtracking rule

for the GETFIELD1-A rule. The backtrack rule for rule GETFIELD2-A is GETFIELD-S-BACK. The

other backtracking rules are the same as the backtracking rules in the symbolic execution with

lazy initialization shown in Section 7.1.1.
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We use the bindings, σ = (g, pc, l, ω, h, φ) and σ′ = (g′, pc′, l′, ω′, h′, φ′), for all the backtrack-

ing rules.

IF ACMPEQ-A-BACK
code(pc) = if acmpeq pc1 pc = pc′

〈σ,σ′〉 ⇒−1
A σ

′

GETFIELD1-A-BACK
code(pc) = getfield fτ pc = pc′

〈σ,σ′〉 ⇒−1
A σ

′

Since each −→A transition may consist of multiple ⇒a transitions, the backtracking of −→A

will start from the last one and proceed backward. Suppose that σ −→A σ′ consists of n + 1 tran-

sitions σ ⇒A σ1, σ2 ⇒A σ2, . . . , and σn ⇒A σ
′ in⇒a. We know that the first n transitions just

initialize symbolic locations and only the last transition does the real computation. By the back-

tracking rules of lazier symbolic execution, each initialization of symbolic location will backtrack

to the second input state (〈a, a′〉 ⇒−1
A

a′). Thus the net effect of backtracking σ −→A σ′ from σ′

is the same as the just backtracking the last⇒A rule from σ′, that is, 〈σn, σ
′〉 ⇒−1

A
σ′′.

Lemma 14. For any a1 −→A a2, after backtracking from a3 we get an input state a′1 (by possible

several backtracks). Then a′1 −→A a3 must hold. Further, a′1 −→A a3 and the transition rule is

not one of those involving lazy/lazier initialization2.

Proof. We proceed by the rule induction on the transition of −→A. If the last ⇒A transition in

a1 −→A a2 is t ⇒S a2 for some state t. Then we know that 〈t, a2〉 ⇒
−1
S

a′1. Use Lemma 7, we get

a′1 ⇒S a2 and the transition rule is not one of those involving lazy initialization. Otherwise, the

last transition rule can only be IFNULL-A, IFNONNULL-A, or GETFIELD2-A. It is easy to show

that the conclusion holds. Thus a′1 −→A a2 holds and the transition does not involve lazier/lazy

initialization. �

7.2.2 Default Concretization Function for Symbolic Execution with Lazier
Initialization

We now define a default concretization function default-sym : Π×ΣA → ΣS as default-sym(F, σa) =

σs withσs ∈ ST aJσaK(F) for some F satisfies default-sym-map(F, σa). And default-sym-map(F, σa)
2Lazy initialization refers to getfield and the field is not defined. Lazier initialization refers to initialize symbolic

location to location.
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if and only if

• ∀δ ∈ collect-sym-locs(σa).F(δ) < dom ha;

• ∀δ1, δ2 ∈ collect-sym-locs(σa).F(δ1) = F(δ2) =⇒ δ1 = δ2.

The idea is to create a new symbolic object for each symbolic location and add constraints to the

path condition accordingly. It is obvious that default-sym(F, σa) ∈ γa(σa).

Lemma 15. Suppose a1 −→A a2 and the transition rule does not involve lazy/lazier initialization.

Then default-sym(F, a1) −→S default-sym(F, a2) for some F such that default-sym-map(F, a2) and

the transition does not involve lazy initialization.

Proof. We proceed with the rule induction on −→Laziest. �

7.2.3 Input Generation Algorithm for Symbolic Execution with Lazier Ini-
tialization and Proof

Given any trace a1 −→A a2 −→A · · · an −→A an+1. Suppose ti ⇒A ai+1 is the last⇒A transition

in ai −→A ai+1 for all 1 ≤ i ≤ n. Define a sequence of states a′i for 1 ≤ i ≤ n + 1 as

a′n+1 = an+1〈
tn, a′n+1

〉
⇒−1
A a′n,

...〈
t2, a′3

〉
⇒−1
A a′2,〈

t1, a′2
〉
⇒−1
A a′1.

The applicability of backtracking rules is shown by Lemma 17. Then we apply the default con-

cretization function for a′i , where 1 ≤ i ≤ n+1 for some F which satisfies default-sym-map(F, an+1).

And we get s1 = default-sym(F, a′1), . . . , sn+1 = default-sym(F, a′n+1).

Proposition 14. 1. s1 −→S s2 · · · −→S sn+1 and si ∈ γa(ai) for all 1 ≤ i ≤ n + 1;

2. default-concr(T, E, s1) −→C default-concr(T, E, s2) · · · −→C default-concr(T, E, sn+1) for some

T, E satisfy the path condition of sn+1.
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To prove this main theorem, we need an additional definition and some lemmas.

Definition 9. Relation ≺A: ΣA × ΣA as a1 ≺A a2 iff a1 is similar to a2 except that there are some

fields of symbolic objects/arrays in a1 are defined but not in a2 and some of symbolic locations are

initialized in a1 but not in a2.

Precisely, a1 ≺A a2 for a1 = (g1, pc1, l1, ω1, h1, φ1) and a2 = (g2, pc2, l2, ω2, h2, φ2) if and only

if following conditions hold

1. There exists some sequence of (δ1, i1), . . . , (δm, im) for some m ≥ 0 where each ii is a legal

value for δi regarding to a2 and let t1 = init-sym-loc(a2, δ1, i1), t2 = init-sym-loc(t1, δ2, i2),

. . . , tm = init-sym-loc(tm−1, δm, im). Suppose tm = (gtm, pc1, ltm, ωtm, htm, φtm), we have gtm =

g1, pc1 = pc2, l1 = ltm, ω1 = ωtm, φtm ⊆ φ1, and refineheap(pc1, htm, h1).

2. If code(pc1) accesses heap, then the operands (in top of stack) a1 can not be symbolic

locations. For example, if code(pc2) = getfield f then ω1 = i ::ω′1 for some i ∈ Locs.

It is clear that γa(a1) ⊆ γa(a2).

Lemma 16. Suppose we have

1. σ4 ≺A σ2 or

2. σ4 = σ2

and σ1 −→A σ2. Let σ3 be the outcome of backtracking from σ4. Then σ3 ≺A σ1.

Proof. WLOG, we assume that σ4 ≺A σ2. We will prove by the rule induction of lazier semantics

transitions: −→A. We will use bindings: σ1 = (g1, pc1, l1, ω1, h1, φ1), σ2 = (g2, pc2, l2, ω2, h2, φ2), σ3 =

(g3, pc3, l3, ω3, h3, φ3), and σ4 = (g4, pc4, l4, ω4, h4, φ4).

• Rule IADD: Since σ1 ⇒A σ2 by rule IADD-S, we know ω1 = v1 :: v2 :: ω′1, code(pc1) =

iadd, ω2 = v′ ::ω′1, pc2 = next(pc1), g1 = g2, l1 = l2, h1 = h2, and φ1 ⊆ φ2. Since σ4 ≺A σ2

and the top element of ω4 is a type of integer, we get σ3 ≺A σ1.
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• Rule IF ACMPEQ: WLOG, assume that σ1 ⇒A t1 by rule IF ACMEQ2-A; then t1 ⇒A t2

by rule IF ACMEQ3-A; finally t2 ⇒A σ2 by rule IF ACMEQ1-S. Then ω1 = δ
′ :: δ′′ ::ω′1 for

some δ′, δ′′, and ω′1. Suppose the stack of t2 is ωt2 = i :: j ::ω′t2 . Since σ4 ≺A σ2, there exists

some sequence of (δi, ii) satisfies condition 1. We can just append (δ′, i) and (δ′′, j) in front

of the sequence (δi, ii) for σ3 and σ1. By the backtracking rules IF ACMEQ-A-BACK and

IF ACMPEQ-S-F-BACK, we get σ3 ≺A σ1.

• Rule GETFIELD f : WLOG, assume that σ1 ⇒A t by rule GETFIELD1-A and t ⇒A σ2 by

rule GETFIELD2-S. Then ω1 = δ ::ω′1 for some δ and ω′1 and the stack of t, ωt = i ::ω′t . Since

σ4 ≺A σ2, there exists some sequence (δi, ii) satisfies condition 1. We can just append (δ, i)

in front of sequence (δi, ii) for σ3 and σ1. By the backtracking rules GETFIELD1-A-BACK

and GETFIELD-S-BACK, we get σ3 ≺A σ1.

�

Lemma 17. a′i ≺A ai for all 1 ≤ i ≤ n + 1.

Proof. Since an+1 = a′n+1, we have a′n ≺A an by case (2) of Lemma 16. Then by induction: going

backward with case (1) of Lemma 16 for inductive step. �

Lemma 18. a′1 −→A a′2 −→A · · · −→A a′n+1. Further, all the rules are⇒S and not involving lazy

initialization.

Proof. It suffices to show for all 1 ≤ i ≤ n, a′i −→A a′i+1. Since a′i ≺A ai, a′i+1 ≺A ai+1, and

ai −→A ai+1, we have a′i −→A a′i+1. By the definition of ≺A, we know that all the transitions rules

are⇒S and not involving lazy initialization. �

Finally the proof of main theorem, Proposition 14:

Proof. By Lemma 18 and Lemma 15, we get si = default-sym(F, a′i) −→S default-sym(F, a′i+1) =

si+1 for all 1 ≤ i ≤ n. Since si ∈ γa(a′i) ⊆ γa(ai), we get si ∈ γa(ai) for all 1 ≤ i ≤ n + 1.
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Since a′i ⇒A a′i+1 does not involve lazy initialization, si ⇒S si+1 does not involve lazy ini-

tialization. By Lemma 9, we have default-concr(T, E, s1) −→C default-concr(T, E, s2) · · · −→C

default-concr(T, E, sn+1) for some T, E satisfying the path condition of sn+1. �

Since default-concr(T, E, si) ∈ γs(si) and si ∈ γa(ai), default-concr(T, E, si) ∈
⋃

s∈γa(a) γs(s).

Therefore, for any lazier symbolic trace a1 −→A a2 · · · −→A an, we generate a corresponding

concrete trace c1 −→C c2 · · · −→C cn and ci ∈ γs(γa(ai)) for all 1 ≤ i ≤ n. Using the soundness

result of SELA, we get complete path coverage.

7.3 Input Generation Formalization for Symbolic Execution
with Lazier# Initialization

7.3.1 Backtracking Rules for Symbolic Execution with Laziest# Initializa-
tion

The backtracking rule FOO-B-BACK for rule FOO is defined as ΣB ×ΣB ⇒−1
B
ΣB. We modify the

standard lazier# backtracking rules as follows: if a symbolic reference is initialized, the initializa-

tion is kept in the return state. For example, the IF ACMPEQ2-B and IF ACMPEQ3-B rules have the

same backtracking rule IF ACMPEQ-A-BACK. The GETFIELD1-A-BACK is the backtracking rule

for the GETFIELD1-B rule. The backtracking rule for rule GETFIELD2-B is GETFIELD-S-BACK.

The other backtracking rules are the same as the backtracking rules in the symbolic execution with

lazy/lazier# initialization shown in Section 7.1.1 and Section 7.3.1.

Since each −→B transition may consist of multiple ⇒B transitions, the backtracking of −→B

will start from the last one and proceed backward. Suppose that σ −→B σ′ consists of n + 1

transitions σ ⇒B σ1, σ2 ⇒B σ2, . . . , and σn ⇒B σ
′ in ⇒b. We know that the first n transitions

just initialize symbolic locations/references and only the last transition does the real computa-

tion. By the backtracking rules of lazier# symbolic execution, each initialization of symbolic

location/reference will backtrack to the second input state (〈b, b′〉 ⇒−1
B

b′). Thus the net effect of

backtracking σ −→B σ′ from σ′ is the same as the just backtracking the last ⇒B rule from σ′,

that is, 〈σn, σ
′〉 ⇒−1

B
σ′′.
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Lemma 19. For any b1 −→B b2, after backtracking from b2, we get an input state b′1 (possible

by several backtracks). Then b′1 ⇒B b2 must hold. Further, the transition rule is not one of those

involving lazy initialization.

Proof. Suppose the last⇒B transition in b1 −→B b2 is t ⇒B b2 for some state t. Then we know

that 〈t, b2〉 ⇒
−1
B

b′1. We can use the rule induction on the instruction and get b′1 ⇒S b2 and the

transition rule is not one of those involving lazy initialization. Thus b′1 −→B b2 holds. �

7.3.2 Default Concretization Function for Symbolic Execution with Lazier#
Initialization

We now define a default concretization function default-lazier : Ξ×ΣB → ΣA as default-lazier(G, σb) =

σa withσa ∈ ST bJσbK(G) for some G satisfies default-symref-map(G, σb). And default-symref-map(G, σb)

if and only if ∀δ̂ ∈ collect-sym-refs(σb).G(δ̂) = . The idea is to set each symbolic reference to

.

Lemma 20. Suppose b1 −→B b2 and b1 ⇒B b2 the transition rule does not involve lazy initializa-

tion. Then default-lazier(G, b1) −→S default-lazier(G, b2) for some G such that default-symref-map(G, b2).

Proof. Proof by the rule induction on −→B. �

7.3.3 Input Generation Algorithm for Symbolic Execution with Lazier# Ini-
tialization and Proof

Given any trace b1 −→B b2 −→B · · · bn −→B bn+1. Suppose ti ⇒A bi+1 is the last⇒B transition in

bi −→B bi+1 for all 1 ≤ i ≤ n. Define a sequence of states b′i for 1 ≤ i ≤ n + 1 as

b′n+1 = bn+1〈
tn, b′n+1

〉
⇒−1
A b′n,

...〈
t2, b′3

〉
⇒−1
A b′2,〈

t1, b′2
〉
⇒−1
A b′1.
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The applicability of backtracking rules is shown by Lemma 22. Then we apply the default con-

cretization function for b′i , where 1 ≤ i ≤ n+1 for some G which satisfies default-symref-map(G, bn+1).

And we define a1 = default-lazier(G, b′1), . . . , an+1 = default-lazier(G, b′n+1). Define s1 = default-sym(F, a1),

. . . , sn+1 = default-sym(F, an+1) where F satisfies default-sym-map(F, an+1).

Proposition 15. 1. a1 −→A a2 · · · −→A an+1.

2. s1 −→S s2 · · · −→S sn+1 and si ∈ γa(ai) for all 1 ≤ i ≤ n + 1;

3. default-concr(T, E, s1) −→C default-concr(T, E, s2) · · · −→C default-concr(T, E, sn+1) for some

T, E satisfy the path condition of sn+1.

To prove this main theorem, we need an additional definition and some lemmas.

Definition 10. Relation ≺B: ΣB × ΣB as b1 ≺B b2 iff b1 is similar to b2 except that there are some

fields of symbolic objects/arrays in b1 are defined but not in b2; some of symbolic locations are

initialized in b1 but not in b2; some of symbolic references are initialized in b1 but not in b2.

Precisely, b1 ≺B b2 for b1 = (g1, pc1, l1, ω1, h1, φ1) and b2 = (g2, pc2, l2, ω2, h2, φ2) if and only

if following conditions hold

1. There exists a subset of symbolic references, psr ⊆ SymRefs and a state t = ST bJb2K(G |psr)

such that G ∈ legal-env(b2). Further, there exists some sequence of (δ1, i1), . . . , (δm, im) for

some m ≥ 0 where each ii is a legal value for δi regarding to t and let t1 = init-sym-loc(t, δ1, i1),

t2 = init-sym-loc(t1, δ2, i2), . . . , tm = init-sym-loc(tm−1, δm, im). Suppose tm = (gtm, pc1, ltm, ωtm, htm, φtm),

we have gtm = g1, pc1 = pc2, l1 = ltm, ω1 = ωtm, φtm ⊆ φ1, and refineheap(pc1, htm, h1).

2. If code(pc1) accesses heap, then the operand (in top of stack) b1 can not be a symbolic

location or symbolic reference. For example, if code(pc2) = getfield f then ω1 = i ::ω′1

for some i ∈ Locs.

It is clear that γb(b1) ⊆ γb(a2).

Lemma 21. Suppose we have
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1. σ4 ≺B σ2 or

2. σ4 = σ2

and σ1 −→B σ2. Let σ3 be the outcome of backtracking from σ4. Then σ3 ≺B σ1.

Proof. WLOG, we assume that σ4 ≺B σ2. We will prove by the rule induction on lazier# seman-

tics transitions: −→B. We will use bindings: σ1 = (g1, pc1, l1, ω1, h1, φ1), σ2 = (g2, pc2, l2, ω2, h2, φ2), σ3 =

(g3, pc3, l3, ω3, h3, φ3), and σ4 = (g4, pc4, l4, ω4, h4, φ4).

• Rule IADD: Since σ1 ⇒A σ2 by rule IADD-S, we know ω1 = v1 :: v2 :: ω′1, code(pc1) =

iadd, ω2 = v′ ::ω′1, pc2 = next(pc1), g1 = g2, l1 = l2, h1 = h2, and φ1 ⊆ φ2. Since σ4 ≺B σ2

and the top element of ω4 is a type of integer, we get σ3 ≺B σ1.

• Rule IF ACMPEQ: WLOG, assume that σ1 ⇒B t1 by rule IF ACMEQ2-B; then t1 ⇒B

t2 by rule IF ACMEQ3-B; then t3 ⇒B t4 by rule IF ACMEQ2-A; then t4 ⇒B t5 by rule

IF ACMEQ3-A; finally t5 ⇒B σ2 by rule IF ACMEQ1-S. Then ω1 = δ̂
′ :: δ̂′′ :: ω′1 for

some δ̂′, δ̂′′, and ω′1. Suppose the stack of t3 is ωt3 = δ
′ :: δ′′ :: ω′t3 and the stack of t5 is

ωt5 = i :: j ::ω′t5 . Since σ4 ≺B σ2, there exist psr, G, and some sequence of (δi, ii) satisfy

condition 1. We can just let psr′ = psr∪{δ̂′, δ̂′′} and G′ = G[δ̂′ 7→ δ′][δ̂′′ 7→ δ′′] and append

(δ′, i) and (δ′′, j) in front of the sequence (δi, ii) for σ3 and σ1. By the backtracking rules

IF ACMEQ-A-BACK and IF ACMPEQ-S-F-BACK, we get σ3 ≺B σ1.

• Rule GETFIELD f : WLOG, assume that σ1 ⇒B t1 by rule GETFIELD1-B and t1 ⇒B t3 and

t2 ⇒ σ2 by rule GETFIELD2-S. Then ω1 = δ̂ :: ω′1 for some δ̂ and ω′1 and the stack of t1,

ωt1 = δ :: ω′t1 and the stack of t2, ωt2 = i :: ω′t2 . Since σ4 ≺B σ2, there exist psr, G, and

some sequence (δi, ii) satisfy condition 1. We can let psr′ = psr ∪ {δ̂}, G′ = G[δ̂ 7→ δ],

and append (δ, i) in front of the sequence (δi, ii) for σ3 and σ1. By the backtracking rules

GETFIELD1-A-BACK and GETFIELD-S-BACK, we get σ3 ≺B σ1.

�
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Lemma 22. b′i ≺B bi for all 1 ≤ i ≤ n + 1.

Proof. Since bn+1 = b′n+1, we have b′n ≺B bn by case (2) of Lemma 21. Then by induction: going

backward with case (1) of Lemma 21 for inductive step. �

Lemma 23. b′1 −→B b′2 −→B · · · −→B b′n+1. Further, each transition consists of just one⇒B and

does not involve lazy initialization.

Proof. It suffices to show for all 1 ≤ i ≤ n, b′i −→B b′i+1. Since b′i ≺B bi, b′i+1 ≺B bi+1, and

bi −→B bi+1, we have b′i −→B b′i+1. By the definition of ≺B, we know that all the transition rules

are one step and do not involve lazy initialization. �

Finally the proof of main theorem, Proposition 15:

Proof. By Lemma 23 and Lemma 20, we get ai = default-lazier(G, b′i) −→A default-lazier(G, b′i+1) =

ai+1 for all 1 ≤ i ≤ n. Further, si = default-sym(G, ai) −→S default-sym(G, ai+1). Since si ∈ γa(ai)

and ai ∈ γb(b′i) ⊆ γb(bi), we get si ∈ γb(γa(ai)) for all 1 ≤ i ≤ n + 1. Since b′i ⇒B b′i+1 does not

involve lazy initialization, si ⇒S si+1 does not involve lazy initialization. By Lemma 9, we have

default-concr(T, E, s1) −→C default-concr(T, E, s2) · · · −→C default-concr(T, E, sn+1) for some

T, E satisfying the path condition of sn+1. �

Since default-concr(T, E, si) ∈ γs(si) and si ∈ γa(ai), default-concr(T, E, si) ∈
⋃

a∈γb(bi)
⋃

s∈γa(a) γs(s).

Therefore, for any lazier# symbolic trace b1 −→B b2 · · · −→B bn, we generate a corresponding

concrete trace c1 −→C c2 · · · −→C cn and ci ∈ γs(γa(γb(bi))) for all 1 ≤ i ≤ n. Using the soundness

result of SELB, we get the complete path coverage.
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Chapter 8

Examples

This chapter presents several examples to illustrate the Kiasan/KUnit approach. The examples

include insertion sort, binary search tree, and red-black tree. For each example, we just exam one

method: sort for insertion sort, insert for binary search tree, and remove for red-black tree. For

each method, we present the source code and together with the Kiasan specification. Then we give

the Kiasan result (numbers of pre/post-states ) and KUnit result: pre/post-state graphs and JUnit

test for one trace. Detailed data such as timing and number of states is presented in Chapter 9.

8.1 Insertion Sort

Insertion sort is a simple sort algorithm that has the time complexity of O(n2). The implementation

of insertion sort is taken from a data structure textbook [63]. We will first present the integer

version of insertion sort as shown in Figure 8.1. The method to be checked is insertionSort

(lines 3-11). Lines 1-2 are the specification for insertionSort. Essentially, the specification

states that the precondition of the method is that the input array a is non-null and the postcondition

is that a is sorted. The postcondition is specified by a method isSorted (lines 12-19) which

returns true if and only if the input array is ascending.

From this example, we can see that Kiasan specification uses Annotation from Java 1.5 and the

precondition and postcondition are legal Java expressions which can include method calls. Kiasan

requires that the method calls or expressions in the specification be observably pure, that is, no

visible effect to the user observable states.
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1 @Assertion ( value = { @Case( pre = ” a != n u l l ” ,
2 post = ” i sSor ted ( a ) ” ) } )
3 public void i n s e r t i o n S o r t ( i n t [ ] a ) {
4 i n t j ;
5 for ( i n t p = 1; p < a . leng th ; p++ ) {
6 i n t tmp = a [ p ] ;
7 for ( j = p ; j > 0 && tmp<a [ j − 1 ] ; j −− )
8 a [ j ] = a [ j − 1 ] ;
9 a [ j ] = tmp ;

10 }

11 }

12 private boolean i sSor ted ( i n t [ ] a ) {
13 for ( i n t i =0; i <a . length −1; i ++) {
14 i f ( a [ i ]>a [ i +1 ] ) {
15 return fa lse ;
16 }

17 }

18 return true ;
19 }

Figure 8.1: Insertion Sort Method (Integer) with Kiasan Specification

Figure 8.2 shows the implementation of insertion sort for Comparables. In order to check

this method, we need to specify that permuting the elements of the input array does not affect the

results of comparisons between array elements. This is done by using regions. The named regions

are initially disjointed memory areas. Region.arrayReg(a,0,1) at line 2 specifies that array a

is in region 0 and its elements are in region 1. Region 1 does not have access to region 0 but region

0 can reach region 1. The comparisons are happened in region 1 and the updates are in region 0.

So Kiasan can conclude the comparison results in the method body are preserved when evaluating

the postcondition.

8.1.1 Results

Table 8.1 shows the Kiasan analysis result for insertion sort. k denotes the resource-bound. For

all of the examples, we did not need to use loop bounding. Pre, B-Post, and A-Post denote the number

of states at M’s entry, before executing M’s postcondition, and after executing M’s postcondition

respectively.

As can be expected, the number of A-Post follows the formula
∑k

i=0 i! in the Comparable version.

This holds because for any array with n elements, there are possible n! orderings (permutations).

In our k-bounded symbolic executions, the state-space for k = i includes cases for k < i.
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1 @Assertion ( value =
2 { @Case( pre = ” Region . arrayReg ( a , 0 , 1 ) && noNullElement ( a ) ” ,
3 post = ” i sSor ted ( a ) ” ) } )
4 public s t a t i c void i n s e r t i o n S o r t ( Comparable [ ] a ) {
5 i n t j ;
6
7 for ( i n t p = 1; p < a . leng th ; p++ ) {
8 Comparable tmp = a [ p ] ;
9 for ( j = p ; j > 0 && tmp . compareTo ( a [ j − 1 ] ) < 0; j −− )

10 a [ j ] = a [ j − 1 ] ;
11 a [ j ] = tmp ;
12 }

13 }

14 private boolean noNullElement ( Object [ ] a ) {
15 for ( i n t i =0; i <a . leng th ; i ++) {
16 i f ( a [ i ]== nul l )
17 return fa lse ;
18 }

19 return true ;
20 }

21
22 private boolean i sSor ted ( Comparable [ ] a ) {
23 for ( i n t i =0; i <a . length −1; i ++) {
24 i f ( a [ i ] . compareTo ( a [ i +1])>0) {
25 return fa lse ;
26 }

27 return true ;
28 }

Figure 8.2: Insertion Sort Method (Comparable) with Kiasan Specification

Example k Pre B-Post A-Post
integer version 1 1 1 1

2 1 3 3
3 1 9 9
4 1 33 33

Comparable Version 1 2 2 2
2 3 4 4
3 4 10 10
4 5 34 34

Table 8.1: Kiasan Result for Insertion Sort
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In the case for the integer version, the formula is
∑k

i=1 i! because the cases of k = 1 and k = 0

are represented by one symbolic execution path. This happens because the precondition for the

Comparable version requires that all elements of the array are non-null, thus, the precondition

expands the array elements up to the bound. In the integer version, there is no constraint on

the elements of the array in the precondition, thus, both arrays with zero and one element are

not expanded into different execution paths. This also causes Pre numbers of the integer and

Comparable version to be different.

As shown in Chapter 6, KUnit generates pre/post-state heap graphs and a JUnit test case for

each trace. So for k = 3, KUnit generates total 9 test cases and pre/post-state graphs for the

integer version. Figure 8.3 shows the pre and post-states for one trace and Figure 8.4 shows the

corresponding JUnit code. Figure 8.5 shows the corresponding comparable version of JUnit test

case code generated by KUnit. Furthermore, for k = 2, KUnit shows that the insertion sort code

reaches 100% branch coverage.

(a) pre-state (b) post-state

Figure 8.3: KUnit Output for Insertion Sort (Excerpt)

8.2 Binary Search Tree

Binary search tree is a special kind of binary tree with an additional key in each node and those

keys have following ordering properties:

• keys are from a total ordered set;

• all the keys in the left subtree of a node are less than the node’s key;
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import j u n i t . framework . ∗ ;
import java . lang . r e f l e c t . F i e l d ;
public class I n se r t i onSo r tTes t8 extends TestCase {

s t a t i c i n t INDEX=0;
public s t a t i c j u n i t . framework . Test s u i t e ( ) {

return new TestSu i te ( I nse r t i onSo r tTes t8 . class ) ; }

public void t e s t I n s e r t i o n S o r t ( ) throws Except ion {
Class c lazz in te lemen t$Sor t = Class . forName ( ” in te lement . Sor t ” ) ;
i n te lement . Sor t t h i s ;
in te lement . Sor t s o r t 0 =nul l ;
s o r t 0 = ( in te lement . Sor t ) c lazz in te lemen t$Sor t . newInstance ( ) ;
t h i s = s o r t 0 ;
i n t [ ] a ;
i n t [ ] i n t 0 =nul l ;
i n t 0 =new i n t [ 3 ] ;
i n t 0 [2]= −10;
i n t 0 [1 ]= −9;
i n t 0 [0 ]= −8;
a= i n t 0 ;
t h i s . i n s e r t i o n S o r t ( a ) ;
asser tEquals ( t h i s , s o r t 0 ) ;
asser tEquals ( a , i n t 0 ) ;
asser tEquals ( i n t 0 [ 2 ] , −8 ) ;
asser tEquals ( i n t 0 [ 1 ] , −9 ) ;
asser tEquals ( i n t 0 [0 ] , −10 ) ;
asser tEquals ( i n t 0 . length , 3 ) ;

}

}

Figure 8.4: KUnit Generated JUnit Test Case for One Trace
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import j u n i t . framework . ∗ ;
import java . lang . r e f l e c t . F i e l d ;
public class I n se r t i onSo r tTes t9 extends TestCase {

s t a t i c i n t INDEX = 5;
public s t a t i c j u n i t . framework . Test s u i t e ( ) {

return new TestSu i te ( I nse r t i onSo r tTes t9 . class ) ; }
s t a t i c i n t i n t e r f a c e C a l l 1 ( Comparable a0 , Object a1 ) { return −10;}
s t a t i c i n t i n t e r f a c e C a l l 2 ( Comparable a0 , Object a1 ) { return −10;}
s t a t i c i n t i n t e r f a c e C a l l 3 ( Comparable a0 , Object a1 ) { return −10;}
s t a t i c i n t i n t e r f a c e C a l l 0 ( Comparable a0 , Object a1 ) { return −10;}
s t a t i c i n t i n t e r f a c e C a l l 4 ( Comparable a0 , Object a1 ) { return −10;}
public void t e s t I n s e r t i o n S o r t ( ) throws Except ion {

Class clazzcomparable$Sort = Class . forName ( ” comparable . Sor t ” ) ;
Class clazzjava$lang$Comparable = Class . forName ( ” Comparable ” ) ;
java . lang . Comparable comparable 2 = new java . lang . Comparable ( ) {

public i n t compareTo ( java . lang . Object arg1 ) {
INDEX−−;
switch ( INDEX) {
case 2: return i n t e r f a c e C a l l 2 ( this , arg1 ) ;
case 1: return i n t e r f a c e C a l l 1 ( this , arg1 ) ;
case 3: return i n t e r f a c e C a l l 3 ( this , arg1 ) ;
defaul t : throw new Er ro r ( ) ; }

}

} ;
java . lang . Comparable comparable 1 =new java . lang . Comparable ( ) {

public i n t compareTo ( java . lang . Object arg1 ) {
INDEX−−;
switch ( INDEX) {
case 4: return i n t e r f a c e C a l l 4 ( this , arg1 ) ;
case 0: return i n t e r f a c e C a l l 0 ( this , arg1 ) ;
defaul t : throw new Er ro r ( ) ;
}

}

} ;
comparable . Sor t t h i s , s o r t 0 = nul l ;
t h i s = s o r t 0 =( comparable . Sor t ) c lazzcomparable$Sort . newInstance ( ) ;
java . lang . Comparable [ ] a , comparable 0 = new Comparable [ 3 ] ;
comparable 0 [ 2 ] = comparable 2 ;
comparable 0 [ 1 ] = comparable 1 ;
comparable 0 =( Comparable ) clazzjava$lang$Comparable . newInstance ( ) ;
comparable 0 [ 0 ] = comparable 0 ;
a = comparable 0 ;
t h i s . i n s e r t i o n S o r t ( a ) ;
asser tEquals ( t h i s , s o r t 0 ) ;
asser tEquals ( a , comparable 0 ) ;
asser tEquals ( comparable 0 [ 2 ] , comparable 0 ) ;
asser tEquals ( comparable 0 [ 1 ] , comparable 1 ) ;
asser tEquals ( comparable 0 [ 0 ] , comparable 2 ) ;
asser tEquals ( comparable 0 . length , 3 ) ;

}

}

Figure 8.5: KUnit Generated JUnit Test Case for One Trace(Comparable)
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boolean repOK ( BinaryNode t ) {
return repOK ( t ,new Range ( ) ) ;

}

boolean repOK ( BinaryNode t , Range range ) {
i f ( t == nul l ) {

return true ;
}

i f ( ! range . inRange ( t . element ) ) {
return fa lse ;

}

boolean r e t = true ;
r e t =repOK ( t . l e f t , range . setUpper ( t . element ) ) ;
r e t = r e t &&

repOK ( t . r i g h t , range . setLower ( t . element ) ) ;
return r e t ;

}

Figure 8.6: Binary Search Tree Invariant Specification

@Assertion ( value = { @Case( pre = ” ( repOK ( roo t ) ) ” ,
post = ” repOK ( roo t ) ” ) } )

public void i n s e r t ( i n t x ) {
r oo t = i n s e r t ( x , r oo t ) ;

}

private BinaryNode i n s e r t ( i n t x , BinaryNode t ) {
i f ( t == nul l )

t = new BinaryNode ( x , null , nul l ) ;
else i f ( x < t . element )

t . l e f t = i n s e r t ( x , t . l e f t ) ;
else i f ( x> t . element )

t . r i g h t = i n s e r t ( x , t . r i g h t ) ;
else

; / / Dup l i ca te ; do noth ing
return t ;

}

Figure 8.7: Binary Search Tree Insert Method

• all the keys in the right subtree of a node are greater than the node’s key.

We take a binary search tree implementation from [63]. Figure 8.6 shows the invariant of bi-

nary search tree. For each node, there is a range (an upper bound and lower bound) that associates

with the node. The repOK checks recursively that the element in the node is in the range. Thus the

invariant basically checks the ordering of the keys in the tree. Furthermore, this ordering implies

that the structure must be acyclic, otherwise the ordering property is violated.

Figure 8.7 shows the insertmethod of binary search tree. The specification is just the invari-

ant.
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Figure 8.8 shows part of insert method for binary search trees with object elements and a

Comparator for enforcing the total order. In addition to the invariant, the specification contains

region specification to facilitate the checking of the invariant. The region specification shows that

there are two user specified regions: 0 and 1. The root is in region 0 and parameter x is in region

1. The field accesses of BinaryNode from region 0 through fields left,right end up in region

0 but accesses through field element arrive in region 1. In short, the tree structure is in region 0

and the tree elements and the element to be inserted are in region 1.

@Assertion ( value = { @Case(
pre = ” Region . setObjReg ( t h i s . root , 0 ) && Region . setObjReg ( x , 1 ) &&
Region . setFldReg ( \ ” comparator . BinaryNode \ ” , \ ” l e f t \ ” , 0 , 0 ) &&
Region . setFldReg ( \ ” comparator . BinaryNode \ ” , \ ” r i g h t \ ” , 0 , 0 ) &&
Region . setFldReg ( \ ” comparator . BinaryNode \ ” , \ ” element \ ” , 0 , 1 ) &&
t h i s . comparator != n u l l && ( repOK ( roo t ) ) ” ,
post = ” repOK ( roo t ) ” ) } )
public void i n s e r t ( @NonNull T x ) {

r oo t = i n s e r t ( x , r oo t ) ;
}

Figure 8.8: Binary Search Tree Insert Method (Comparator)

8.2.1 Results

Table 8.2 shows the Kiasan result for the insert method of binary search tree. All the machine

settings and table arrangements are the same as the insertion sort example. For any k, we are

checking essentially all the non-isomorphic binary search trees with height less than k since the

wrapper object has bound k and the root has the bound k − 1. For each k, the number of pre-states

equals to the number of non-isomorphic binary search trees with height less than k. The number

of post-state equals to (BS Tn × Z)/R′ as shown in Section 4.2. The numbers of pre/post-states

are optimal in the sense that they match the minimal numbers of cases of theoretical calculation

shown in Section 4.2.

Figure 8.9 shows the pre and post-states for one path with k = 2. Figures 8.10 and 8.11 show

the generated JUnit code for the path that corresponds to 8.9. The generated object version JUnit

test case is shown in Figures 8.12 and 8.13. Furthermore, that for k = 2, the insert method of

binary search tree reaches 100% branch coverage.
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Example k Pre B-Post A-Post
1 2 4 4

insert 2 5 21 21
(int) 3 26 236 236

1 2 4 4
insert 2 5 21 21
(Comparator) 3 26 236 236

Table 8.2: Kiasan Results for Binary Search Insert Method

(a) pre-state (b) post-state

Figure 8.9: KUnit Output for Binary Search Tree Insert (Excerpt)
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import j u n i t . framework . ∗ ;
import java . lang . r e f l e c t . F i e l d ;
public class I nse r tTes t4 extends TestCase {

s t a t i c i n t INDEX = 0;
public s t a t i c j u n i t . framework . Test s u i t e ( ) {

return new TestSu i te ( Inse r tTes t4 . class ) ; }
public void t e s t I n s e r t ( ) throws Except ion {

Class c lazz intkey$BinaryNode = Class . forName ( ” i n t k e y . BinaryNode ” ) ;
Class c lazz in tkey$BinarySearchTree = Class . forName ( ” i n t k e y . BinarySearchTree ” ) ;
i n t k e y . BinarySearchTree t h i s ;
i n t k e y . BinarySearchTree binarySearchTree 0 = nul l ;
b inarySearchTree 0 = ( i n t k e y . BinarySearchTree ) c lazz in tkey$BinarySearchTree . newInstance ( ) ;
i n t k e y . BinaryNode binaryNode 1 binaryNode 1 = ( i n t k e y . BinaryNode ) c lazz intkey$BinaryNode .

newInstance ( ) ;
i n t k e y . BinaryNode binaryNode 4 = ( i n t k e y . BinaryNode ) c lazz intkey$BinaryNode . newInstance ( ) ;
/ / binaryNode 4 . r i g h t = n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ;
f . se t ( binaryNode 4 , nul l ) ;
break ;

}

}

/ / binaryNode 4 . l e f t = n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
f . se t ( binaryNode 4 , nul l ) ;
break ;

}

}

/ / binaryNode 4 . element=−8;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ;
f . s e t I n t ( binaryNode 4 , −8);
break ;

}

}

/ / binaryNode 1 . r i g h t =binaryNode 4 ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ;
f . se t ( binaryNode 1 , binaryNode 4 ) ;
break ;

}

}

/ / binaryNode 1 . l e f t = n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
f . se t ( binaryNode 1 , nul l ) ;
break ;

}

}

/ / binaryNode 1 . element=−9;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ;
f . s e t I n t ( binaryNode 1 , −9);
break ;

} }

Figure 8.10: KUnit Generated JUnit Test Case for Insert
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/ / b inarySearchTree 0 . roo t =binaryNode 1 ;
for ( F i e l d f : c lazz in tkey$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” roo t ” ) ) {
f . se tAccess ib le ( true ) ;
f . se t ( binarySearchTree 0 , binaryNode 1 ) ;
break ; } }

t h i s = binarySearchTree 0 ; i n t x = −10; t h i s . i n s e r t ( x ) ;
asser tEquals ( t h i s , b inarySearchTree 0 ) ;
/ / b inarySearchTree 0 . roo t ==binaryNode 1 ;
for ( F i e l d f : c lazz in tkey$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” roo t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( binaryNode 1 , f . get ( b inarySearchTree 0 ) ) ; break ; } }

/ / binaryNode 1 . r i g h t ==binaryNode 4 ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( binaryNode 4 , f . get ( binaryNode 1 ) ) ; break ; } }

/ / binaryNode 4 . r i g h t == n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( null , f . get ( binaryNode 4 ) ) ; break ; } }

/ / binaryNode 4 . l e f t == n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( null , f . get ( binaryNode 4 ) ) ; break ; } }

/ / binaryNode 4 . element==−8;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals (−8 , f . g e t I n t ( binaryNode 4 ) ) ; break ; } }

i n t k e y . BinaryNode binaryNode 5 = nul l ;
/ / binaryNode 5=binaryNode 1 . l e f t ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
binaryNode 5 = ( i n t k e y . BinaryNode ) f . get ( binaryNode 1 ) ; break ; } }

/ / binaryNode 5 . element==−10;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals (−10 , f . g e t I n t ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 5 . l e f t == n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( null , f . get ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 5 . r i g h t == n u l l ;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( null , f . get ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 1 . element==−9;
for ( F i e l d f : c lazz in tkey$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals (−9 , f . g e t I n t ( binaryNode 1 ) ) ; break ; } }

asser tEquals ( x , −10); } }

Figure 8.11: KUnit Generated JUnit Test Case for Insert (Continue)
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import j u n i t . framework . ∗ ;
import java . lang . r e f l e c t . F i e l d ;
public class I nse r tTes t4 extends TestCase { s t a t i c i n t INDEX = 4;

public s t a t i c j u n i t . framework . Test s u i t e ( ) {
return new TestSu i te ( Inse r tTes t4 . class ) ; }

s t a t i c i n t i n t e r f a c e C a l l 0 ( java . u t i l . Comparator arg0 , Object arg1 , Object arg2 ) { return 1; }
s t a t i c i n t i n t e r f a c e C a l l 1 ( java . u t i l . Comparator arg0 , Object arg1 , Object arg2 ) { return −10; }
s t a t i c i n t i n t e r f a c e C a l l 2 ( java . u t i l . Comparator arg0 , Object arg1 , Object arg2 ) { return −10; }
s t a t i c i n t i n t e r f a c e C a l l 3 ( java . u t i l . Comparator arg0 , Object arg1 , Object arg2 ) { return 1; }
public void t e s t I n s e r t ( ) throws Except ion {

Class c lazz java$ lang$Objec t = Class . forName ( ” java . lang . Object ” ) ;
Class c lazz java$ut i l $Compara to r = Class . forName ( ” java . u t i l . Comparator ” ) ;
Class clazzcomparator$BinaryNode = Class . forName ( ” comparator . BinaryNode ” ) ;
Class clazzcomparator$BinarySearchTree = Class . forName ( ” comparator . BinarySearchTree ” ) ;
java . u t i l . Comparator comparator 0 = new java . u t i l . Comparator ( ) {

public i n t compare ( java . lang . Object arg1 , java . lang . Object arg2 ) {
INDEX−−;
switch ( INDEX) {
case 2:

return i n t e r f a c e C a l l 2 ( this , arg1 , arg2 ) ;
case 1:

return i n t e r f a c e C a l l 1 ( this , arg1 , arg2 ) ;
case 3:

return i n t e r f a c e C a l l 3 ( this , arg1 , arg2 ) ;
case 0:

return i n t e r f a c e C a l l 0 ( this , arg1 , arg2 ) ;
defaul t :

throw new Er ro r ( ) ; } } } ;
comparator . BinarySearchTree t h i s ;
comparator . BinarySearchTree binarySearchTree 0 = nul l ;
b inarySearchTree 0 = ( comparator . BinarySearchTree ) clazzcomparator$BinarySearchTree . newInstance ( ) ;
comparator . BinaryNode binaryNode 1 = nul l ;
binaryNode 1 = ( comparator . BinaryNode ) clazzcomparator$BinaryNode

. newInstance ( ) ;
comparator . BinaryNode binaryNode 4 = nul l ;
binaryNode 4 = ( comparator . BinaryNode ) clazzcomparator$BinaryNode

. newInstance ( ) ;
/ / binaryNode 4 . r i g h t = n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 4 , nul l ) ; break ; } }

/ / binaryNode 4 . l e f t = n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 4 , nul l ) ; break ; } }

java . lang . Object ob jec t 2 = ( java . lang . Object ) c lazz java$ lang$Objec t . newInstance ( ) ;
/ / binaryNode 4 . element= ob jec t 2 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 4 , ob jec t 2 ) ; break ; } }

/ / binaryNode 1 . r i g h t =binaryNode 4 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 1 , binaryNode 4 ) ; break ; } }

/ / binaryNode 1 . l e f t = n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 1 , nul l ) ; break ; } }

Object ob jec t 1 ob jec t 1 = c lazz java$ lang$Objec t . newInstance ( ) ;
/ / binaryNode 1 . element= ob jec t 1 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binaryNode 1 , ob jec t 1 ) ; break ; } }

Figure 8.12: KUnit Generated JUnit Test Case for Object Version Insert
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/ / b inarySearchTree 0 . roo t =binaryNode 1 ;
for ( F i e l d f : c lazzcomparator$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” roo t ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binarySearchTree 0 , binaryNode 1 ) ; break ; } }

/ / b inarySearchTree 0 . comparator=comparator 0 ;
for ( F i e l d f : c lazzcomparator$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” comparator ” ) ) {
f . se tAccess ib le ( true ) ; f . se t ( binarySearchTree 0 , comparator 0 ) ; break ; } }

t h i s = binarySearchTree 0 ;
java . lang . Object x ;
java . lang . Object ob jec t 0 = nul l ;
ob jec t 0 = ( java . lang . Object ) c lazz java$ lang$Objec t . newInstance ( ) ;
x = ob jec t 0 ;
t h i s . i n s e r t ( x ) ;
asser tEquals ( t h i s , b inarySearchTree 0 ) ;
/ / b inarySearchTree 0 . roo t ==binaryNode 1 ;
for ( F i e l d f : c lazzcomparator$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” roo t ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( binaryNode 1 , f . get ( b inarySearchTree 0 ) ) ; break ; } }

/ / binaryNode 1 . r i g h t ==binaryNode 4 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( binaryNode 4 , f . get ( binaryNode 1 ) ) ; break ; } }

/ / binaryNode 4 . r i g h t == n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( null , f . get ( binaryNode 4 ) ) ; break ; } }

/ / binaryNode 4 . l e f t == n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ;
asser tEquals ( null , f . get ( binaryNode 4 ) ) ; break ; } }

/ / binaryNode 4 . element== ob jec t 2 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( ob jec t 2 , f . get ( binaryNode 4 ) ) ; break ; } }

comparator . BinaryNode binaryNode 5 = nul l ;
/ / binaryNode 5=binaryNode 1 . l e f t ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ; binaryNode 5 = ( comparator . BinaryNode ) f . get ( binaryNode 1 ) ; break ; } }

/ / binaryNode 5 . element== ob jec t 0 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( ob jec t 0 , f . get ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 5 . l e f t == n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” l e f t ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( null , f . get ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 5 . r i g h t == n u l l ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” r i g h t ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( null , f . get ( binaryNode 5 ) ) ; break ; } }

/ / binaryNode 1 . element== ob jec t 1 ;
for ( F i e l d f : clazzcomparator$BinaryNode . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” element ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( ob jec t 1 , f . get ( binaryNode 1 ) ) ; break ; } }

/ / b inarySearchTree 0 . comparator==comparator 0 ;
for ( F i e l d f : c lazzcomparator$BinarySearchTree . getDec laredF ie lds ( ) ) {

i f ( f . getName ( ) . equals ( ” comparator ” ) ) {
f . se tAccess ib le ( true ) ; asser tEquals ( comparator 0 , f . get ( b inarySearchTree 0 ) ) ; break ; } }

asser tEquals ( x , ob jec t 0 ) ; } }

Figure 8.13: KUnit Generated JUnit Test Case for Object Version Insert (Continue)
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8.3 Red-black Tree

Red-black tree is a special type of binary search tree with an additional field “color” in each

node. The color of each node can be either black or red (hence the name red-black tree). The

constraints on the colors of nodes make red-black a self balancing tree whose search/insert/remove

methods have time complexity of O(log n). In addition to be a binary search tree, red-black tree

has following constraints:

• each node is either red or black;

• the root is black;

• leaves (s) are black;

• both children of each red node are black;

• every path from the root to a leaf contains the same number of black nodes (black height is

defined as the number of internal black nodes in a path from the root to a leaf).

Figure 8.14 shows an example of red-black tree with black height 2. The red-black implementation

Figure 8.14: A Red-black Tree Example

is taken from JDK1.5 library, java.util.TreeMap. Figure 8.15 shows the tree node code with

invariant method consistency. The invariant method consistency has following components:

• method wellConnected enforces that the parent fields are connected correctly. The source

code is shown in Figure 8.16;
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• method redConsistency enforces that the children of a red node have to be black. The

source code is shown in Figure 8.17;

• method blackConsistency shown in Figure 8.18 returns true if and only if the current

node is black and the black height property holds;

• method ordered shown in Figure 8.19 enforces the order property, that is, the keys in the

left subtree of a node are less than the key of the node and the keys in the right subtree of a

node are greater than the key of the node.

private s t a t i c f i n a l boolean RED = fa lse ;

private s t a t i c f i n a l boolean BLACK = true ;

s t a t i c public class Entry<V> {
i n t key ;
V value ;
Entry<V> l e f t = nul l ;
Entry<V> r i g h t = nul l ;
Entry<V> parent ;
public boolean cons is tency ( ) {

return wellConnected ( nul l ) && redConsistency ( )
&& blackConsistency ( ) && ordered ( ) ;

}

}

Figure 8.15: Red-black Tree Node

public boolean wellConnected ( Entry<V> expectedParent ) {
boolean ok = true ;
i f ( expectedParent != parent ) {

return fa lse ;
}

i f ( r i g h t != nul l ) {
ok = ok && r i g h t . wellConnected ( th is ) ;

}

i f ( l e f t != nul l ) {
ok = ok && l e f t . wellConnected ( th is ) ;

}

i f ( r i g h t == l e f t && r i g h t != nul l && l e f t != nul l ) {
return fa lse ;

}

return ok ;
}

Figure 8.16: Method wellConnected
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/∗ ∗
∗ Returns t rue i f no red node i n subtree has red c h i l d r e n
∗ /

protected boolean redConsistency ( ) {
boolean r e t = true ;
i f ( co l o r == RED && ( ( l e f t != nul l && l e f t . co l o r == RED)

| | ( r i g h t != nul l && r i g h t . co l o r == RED) ) )
return fa lse ;

i f ( l e f t != nul l ) {
r e t = r e t && l e f t . redConsistency ( ) ;

}

i f ( r i g h t != nul l ) {
r e t = r e t && r i g h t . redConsistency ( ) ;

}

return r e t ;
}

Figure 8.17: Method redConsistency

protected boolean blackConsistency ( ) {
i f ( co l o r != BLACK) { / / r oo t must be black

return fa lse ;
}

/ / the number o f b lack nodes on way to any l e a f must be same
i f ( ! cons i s ten t l yB lackHe igh t ( b lackHeight ( ) ) ) {

return fa lse ;
}

return true ;
}

/∗ ∗
∗ Returns the black he igh t o f t h i s subtree .
∗ /

protected i n t blackHeight ( ) {
i n t r e t = 0 ;
i f ( co l o r == BLACK) {

r e t = 1 ;
}

i f ( l e f t != nul l ) {
r e t += l e f t . b lackHeight ( ) ;

}

return r e t ;
}

protected boolean cons i s ten t l yB lackHe igh t ( i n t he igh t ) {
boolean r e t = true ;
i f ( co l o r == BLACK)

height −−;
i f ( l e f t == nul l ) {

r e t = r e t && ( he igh t == 0 ) ;
} else {

r e t = r e t && ( l e f t . cons i s ten t l yB lackHe igh t ( he igh t ) ) ;
}

i f ( r i g h t == nul l ) {
r e t = r e t && ( he igh t == 0 ) ;

} else {

r e t = r e t && ( r i g h t . cons i s ten t l yB lackHe igh t ( he igh t ) ) ;
}

return r e t ;
}

Figure 8.18: Method blackConsistency
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boolean ordered ( ) {
return ordered ( this ,new Range ( ) ) ;

}

boolean ordered ( Entry<V> t , Range range ) {
i f ( t == nul l ) {

return true ;
}

i f ( ! range . inRange ( t . key ) ) {
return fa lse ;

}

boolean r e t = true ;
r e t = r e t && ordered ( t . l e f t , range . setUpper ( t . key ) ) ;
r e t = r e t && ordered ( t . r i g h t , range . setLower ( t . key ) ) ;
return r e t ;

}

Figure 8.19: Method ordered

The removemethod of TreeMap (integer version) is shown in Figure 8.20. The pre/postcondi-

tions essentially enforce the invariant root.consistency(). Figure 8.21 shows the correspond-

ing object version of the remove method. The specification for the object version includes region

specification to help the invariant checking. Similar to binary search tree, the region specification

essentially specifies that the tree structure is in region 0 and the keys are in region 1 and values are

in region 2. Region 0 can access regions 1 and 2 but regions 1 and 2 can not access region 0.

@Assertion ( value = { @Case( pre = ” ( roo t == n u l l | | r oo t . cons is tency () )&&
s ize== rea lS i ze ( ) ” , post = ” ( roo t == n u l l | | r oo t . cons is tency () )&&
s ize== rea lS i ze ( ) ” ) } )

public V remove ( i n t key ) {
Entry<V> p = getEnt ry ( key ) ;
i f ( p == nul l )

return nul l ;

V oldValue = p . value ;
de le teEn t ry ( p ) ;
return oldValue ;

}

Figure 8.20: Remove Method of Integer Version TreeMap

8.3.1 Results

Table 8.3 shows the Kiasan result for the remove method of red-black tree. All the machine

settings and table arrangements are the same as the insertion sort example. Similar to binary search

tree, for each k, we essentially check all the red-black tree with height less than k. Therefore, the
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@Assertion ( value = { @Case(
pre = ” ( Region . setObjReg ( t h i s . root , 0 ) &&

Region . setFldReg ( \ ” comparator . TreeMap$Entry \ ” , \ ” l e f t \ ” , 0 , 0 ) &&
Region . setFldReg ( \ ” comparator . TreeMap$Entry \ ” , \ ” r i g h t \ ” , 0 , 0 ) &&
Region . setFldReg ( \ ” comparator . TreeMap$Entry \ ” , \ ” parent \ ” , 0 , 0 ) &&
Region . setFldReg ( \ ” comparator . TreeMap$Entry \ ” , \ ” key \ ” , 0 , 1 ) &&
Region . setObjReg ( key , 1 ) && Region . setFldReg ( \ ” comparator . TreeMap$Entry \ ” , \ ” value \ ” ,0 ,2)&&
comparator != n u l l && ( roo t == n u l l | | r oo t . cons is tency ( comparator ) ) )&&
( s ize== rea lS i ze ( ) ) ” ,

post = ” ( roo t == n u l l | | r oo t . cons is tency ( comparator ) ) ” ) } )
public V remove ( @NonNull Object key ) {

Entry<K, V> p = getEnt ry ( key ) ;
i f ( p == nul l )

return nul l ;

V oldValue = p . value ;
de le teEn t ry ( p ) ;
return oldValue ;

}

Figure 8.21: Remove Method of Object Version TreeMap

Example k Pre B-Post A-Post States Time
1 2 5 5 1.4k 0:00.9/0:00.1

remove() 2 6 43 43 34.7k 0:07.3/0:04.2
(int) 3 31 579 579 1M 5:25.9/4:17.5

1 2 5 5 1.9k 0:00.9/0:00.1
remove() 2 6 43 43 40k 0:08.3/0:04.7
(Comparator) 3 31 579 579 1.3M 6:01.5/4:40.5

Table 8.3: Kiasan Result for Red-black Tree Remove Method

number of pre-states with k corresponds to the number of non-isomorphic red-black trees with

height less than k. The number of post-states equals to (RBTn × Z)/R′ as shown in Section 4.3.

The numbers of pre/post-states are optimal in the sense that they match the minimal numbers of

cases of theoretical calculation shown in Section 4.3.

The KUnit results including coverage report for red-black tree are presented in Chapter 9.
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Chapter 9

Experiments

This chapter presents a comprehensive experimental study for Kiasan/KUnit and comparisons

with similar tools such as jCUTE and JPF. Section 9.1 shows the examples used in the study and

Kiasan/KUnit results. Section 9.2 presents the java.util.TreeMap coverage report. Compar-

isons to jCUTE and JPF are presented in Sections 9.3 and 9.4 respectively.

Acknowledgments

This chapter presents a complete experimental study that has been partly published in two papers:

first titled titled “Towards A Case-Optimal Symbolic Execution Algorithm for Analyzing Strong

Properties of Object-Oriented Programs” by Xianghua Deng, Robby, and John Hatcliff to appear

in the Proceedings of the 5th IEEE International Conference on Software Engineering and For-

mal Methods [25]; second title “ Kiasan/KUnit: Automatic Test Case Generation and Analysis

Feedback for Open Object-oriented Systems” by Xianghua Deng, Robby, and John Hatcliff to

appear in the Proceeding of Testing: Academic & Industrial Conference Practice And Research

Techniques (TAIC PART) 2007 [24].

9.1 Examples and Results

To evaluate the effectiveness of Kiasan/KUnit, we have performed a comparative study on twenty

three examples. The examples are
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• ABS, an absolute value method;

• AvlTree, an AVL tree implementation taken from the data structure textbook [63];

• DoubleLinkedList, a double listed list implementation taken from java.util.LinkedList;

• GC, the marking phase of the mark and sweep garbage collection algorithm; It is adapted

from a TVLA [42] example.

• TC, a triangle classification;

• StackAr, an array implementation of stack taken from the data structure textbook [63];

• AP, an array partition example which partitions an array into two parts: all elements in one

part are less than or equal to the pivot and elements in the other part are greater than the

pivot; The example is taken from [6] which is taken from [8].

• BinaryHeap, a binary heap example taken from the data structure textbook [63];

• StackLi, a list implementation of stack taken from the data structure textbook [63];

• Sort, a sorting example that contains insertion sort and shell sort and is taken from the data

structure textbook [63];

• BinarySearchTree, a binary search tree example taken from the data structure textbook [63];

• LinkedList, a merge example which takes two sorted linked lists and merges them together;

• TreeMap, a red-black tree implementation taken from JDK 1.5 library, java.util.TreeMap;

• DisjSetsFast, a fast disjoint set implementation taken from the data structure textbook [63];

• AP(I), the integer version of array partition;

• BinaryHeap(I), the integer version of the binary heap example;

• LL(I), the integer version of the merge example;
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• Sort(I), the integer version of the sorting example.

• AvlTree(I), the integer version of AVL tree example;

• BinarySearchTree(I), the integer version of the binary search tree example;

• TreeMap(I), the integer version of the red-black tree example;

• DisjSets, an original disjoint set implementation taken from the data structure textbook [63];

• Vector, the vector implementation taken from JDK 1.4 library, java.util.Vector.

The total example collection contains about 150 (public and helper) methods. For each module

considered, the methodology that we followed includes writing a single invariant (repOK) that

characterizes the correctness of the data structure representation. Using the invariant information,

our approach guarantees that all generated tests have test inputs that satisfy the invariant, and the

output of each test is automatically checked against the invariant. Additional lightweight contract

information for reference non--ness was also used. Our approach generates tests for the public

methods of each class. Private helper methods are covered in the path exploration and coverage

goals, but only as they are invoked from public methods. Test cases are not generated directly for

private helper methods because the class invariant sometimes does not hold at the pre/post-states

of private methods (as these are intended to work at intermediate private states in which the data

structure invariant does not hold).

Tables 9.1, 9.2, and 9.3 show the the experiment results with lazier# initialization. For com-

parison purpose, we also list the results for lazier initialization (9.4, 9.5, and 9.6) and lazy initial-

ization (9.7, 9.8, and 9.9).

All the experiments are conducted in a 2.4GHz Opteron Linux workstation with 512MB Java

heap. Recall that Kiasan performs a per-method compositional analysis (similar to ESC/Java),

and moreover, a bound of k = 2 is almost always sufficient for achieving 100% feasible branch

coverage. So the results indicate the feasibility of Kiasan in actual development for code similar

to these examples.
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
B

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

ABS abs 1 2 60 2/2=100% 8/8=100% 0.2s 0.0s 0.1s 0.0s 0.4s

A
vl

Tr
ee

find 1 4 1864 10/10=100% 60/60=100% 1.4s 0.0s 0.3s 0.2s 1.2s
2 21 18800 10/10=100% 60/60=100% 9.3s 2.5s 1.5s 0.7s 3.4s
3 190 351798 10/10=100% 60/60=100% 3.8m 3.0m 18.6s 1.7s 24.9s

findMax 1 2 1132 7/8=87% 38/42=90% 0.8s 0.2s 0.1s 0.0s 0.6s
2 5 7127 8/8=100% 41/42=97% 3.7s 0.8s 0.4s 0.0s 1.1s
3 20 85445 8/8=100% 41/42=97% 57.3s 46.7s 2.5s 0.6s 3.9s

findMin 1 2 1132 7/8=87% 38/42=90% 0.8s 0.2s 0.1s 0.0s 0.4s
2 5 7127 8/8=100% 41/42=97% 3.9s 1.4s 0.3s 0.1s 1.6s
3 20 85445 8/8=100% 41/42=97% 59.9s 49.4s 2.1s 1.0s 3.4s

insert 1 4 3053 12/18=66% 119/160=74% 1.3s 0.1s 0.2s 0.1s 0.9s
2 21 25702 18/18=100% 270/270=100% 8.8s 2.5s 1.5s 0.2s 3.4s
3 190 422049 18/18=100% 270/270=100% 4.1m 3.2m 24.1s 1.3s 27.1s

D
ou

bl
eL

in
ke

dL
is

t

addBefore 1 1 364 1/1=100% 31/31=100% 0.3s 0.0s 0.1s 0.0s 0.2s
2 1 608 1/1=100% 31/31=100% 0.5s 0.0s 0.1s 0.1s 0.2s
3 1 914 1/1=100% 31/31=100% 0.6s 0.1s 0.1s 0.0s 0.4s

clear 1 1 223 1/1=100% 19/19=100% 0.3s 0.0s 0.1s 0.0s 0.2s
2 2 507 1/1=100% 19/19=100% 0.6s 0.0s 0.1s 0.0s 0.2s
3 3 832 1/1=100% 19/19=100% 1.0s 0.1s 0.2s 0.1s 0.6s

indexOf 1 2 373 4/10=40% 28/49=57% 0.3s 0.0s 0.1s 0.0s 0.5s
2 6 1130 10/10=100% 49/49=100% 1.2s 0.5s 0.1s 0.0s 1.9s
3 16 3139 10/10=100% 49/49=100% 3.9s 1.3s 0.4s 0.1s 2.5s

lastIndexOf 1 2 374 4/10=40% 29/50=58% 0.6s 0.0s 0.1s 0.1s 0.4s
2 6 1132 10/10=100% 50/50=100% 1.2s 0.2s 0.3s 0.0s 1.6s
3 14 2783 10/10=100% 50/50=100% 2.6s 0.7s 0.6s 0.2s 2.7s

remove 1 2 371 4/10=40% 26/53=49% 0.7s 0.0s 0.1s 0.0s 0.3s
2 6 1100 11/12=91% 81/86=94% 1.8s 0.4s 0.4s 0.0s 1.0s
3 16 3039 11/12=91% 81/86=94% 3.1s 0.2s 1.5s 0.2s 3.0s

removeLast 1 1 152 1/2=50% 21/46=45% 0.3s 0.1s 0.0s 0.0s 0.0s
2 2 453 2/2=100% 46/46=100% 0.6s 0.1s 0.1s 0.0s 0.2s
3 3 839 2/2=100% 46/46=100% 0.8s 0.1s 0.1s 0.0s 0.4s

toArray 1 1 162 1/2=50% 18/27=66% 0.3s 0.0s 0.1s 0.1s 0.0s
2 2 399 2/2=100% 27/27=100% 0.5s 0.1s 0.1s 0.0s 0.2s
3 3 691 2/2=100% 27/27=100% 0.8s 0.2s 0.1s 0.0s 0.5s

GC Mark 1 306 222149 12/12=100% 64/64=100% 44.8s 2.2s 10.8s 1.3s 59.6s
TC classify 1 15 404 16/16=100% 54/54=100% 1.7s 0.2s 0.5s 0.5s 2.4s

S
ta

ck
A

r

pop 1 2 104 4/4=100% 32/32=100% 0.4s 0.0s 0.1s 0.1s 0.4s
2 2 104 4/4=100% 32/32=100% 0.3s 0.1s 0.1s 0.1s 0.3s
3 2 104 4/4=100% 32/32=100% 0.3s 0.0s 0.1s 0.1s 0.3s

push 1 2 120 4/4=100% 36/36=100% 0.4s 0.1s 0.1s 0.1s 0.2s
2 2 120 4/4=100% 36/36=100% 0.3s 0.0s 0.1s 0.0s 0.3s
3 2 120 4/4=100% 36/36=100% 0.3s 0.0s 0.1s 0.1s 0.2s

A
P

partition 1 1 150 1/10=10% 18/68=26% 0.3s 0.0s 0.1s 0.0s 0.3s
2 3 389 9/10=90% 50/68=73% 0.8s 0.3s 0.1s 0.1s 0.5s
3 7 1006 10/10=100% 68/68=100% 1.9s 0.6s 0.5s 0.2s 1.8s

B
in

ar
yH

ea
p deleteMin 1 2 288 6/14=42% 71/120=59% 0.7s 0.1s 0.3s 0.0s 0.4s

2 3 488 6/14=42% 71/120=59% 1.0s 0.1s 0.1s 0.0s 0.5s
3 5 890 10/14=71% 101/120=84% 1.9s 0.7s 0.6s 0.1s 0.8s
4 8 1585 13/14=92% 117/120=97% 3.2s 1.7s 0.5s 0.0s 1.7s

insert 1 3 336 8/8=100% 65/69=94% 0.9s 0.1s 0.1s 0.1s 0.2s
2 6 650 8/8=100% 69/69=100% 1.5s 0.4s 0.2s 0.0s 1.1s
3 9 1098 8/8=100% 69/69=100% 2.3s 1.0s 0.4s 0.3s 1.7s
4 13 1853 8/8=100% 69/69=100% 4.4s 1.9s 0.4s 0.4s 1.8s

S
or

t

insertionSort 1 2 178 1/6=16% 9/44=20% 0.5s 0.0s 0.1s 0.2s 0.4s
2 4 376 6/6=100% 44/44=100% 0.8s 0.3s 0.1s 0.0s 1.2s
3 10 1088 6/6=100% 44/44=100% 2.7s 1.7s 0.3s 0.0s 1.4s

shellsort 1 2 180 1/8=12% 10/61=16% 0.4s 0.0s 0.1s 0.0s 0.3s
2 4 406 8/8=100% 61/61=100% 1.0s 0.2s 0.1s 0.1s 0.6s
3 10 1192 8/8=100% 61/61=100% 3.2s 1.4s 0.4s 0.0s 1.4s

Table 9.1: Lazier# Experiment Data (1); s – seconds; m – minutes
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
B

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

B
in

ar
yS

ea
rc

hT
re

e
find 1 4 1162 8/8=100% 65/65=100% 1.2s 0.0s 0.2s 0.4s 0.6s

2 21 10443 8/8=100% 65/65=100% 6.5s 1.0s 1.1s 0.6s 3.1s
3 236 212296 8/8=100% 65/65=100% 1.7m 1.1m 12.0s 1.5s 33.9s

findMax 1 2 689 5/6=83% 29/32=90% 0.7s 0.0s 0.2s 0.0s 0.5s
2 5 3719 6/6=100% 32/32=100% 2.3s 0.4s 0.2s 0.1s 0.9s
3 26 43215 6/6=100% 32/32=100% 27.0s 20.2s 1.3s 0.4s 4.0s

findMin 1 2 688 5/6=83% 30/37=81% 0.6s 0.0s 0.1s 0.1s 0.5s
2 5 3729 6/6=100% 37/37=100% 2.2s 0.3s 0.2s 0.2s 1.4s
3 26 43400 6/6=100% 37/37=100% 27.0s 19.4s 1.3s 0.6s 4.4s

insert 1 4 1621 6/6=100% 63/63=100% 1.7s 0.1s 0.3s 0.1s 1.0s
2 21 12551 6/6=100% 63/63=100% 6.2s 1.7s 1.0s 0.1s 4.9s
3 236 234595 6/6=100% 63/63=100% 1.8m 1.2m 13.4s 1.3s 31.6s

remove 1 4 1001 8/12=66% 68/95=71% 1.0s 0.0s 0.1s 0.2s 1.3s
2 21 9254 14/16=87% 104/113=92% 7.3s 3.4s 1.2s 0.1s 3.1s
3 236 197738 15/16=93% 111/113=98% 1.6m 1.0m 12.0s 1.4s 35.4s

Tr
ee

M
ap

get 1 4 1199 9/10=90% 60/67=89% 1.2s 0.6s 0.2s 0.0s 0.7s
2 28 17440 9/10=90% 60/67=89% 8.4s 3.3s 0.8s 0.2s 6.4s
3 331 470913 9/10=90% 60/67=89% 2.3m 1.5m 13.9s 1.3s 50.8s

lastKey 1 2 657 5/6=83% 32/35=91% 0.5s 0.1s 0.2s 0.0s 0.2s
2 6 7614 6/6=100% 35/35=100% 2.8s 0.5s 0.3s 0.1s 1.3s
3 31 204738 6/6=100% 35/35=100% 27.8s 16.5s 1.1s 0.3s 5.2s

put 1 4 1871 12/32=37% 133/371=35% 1.2s 0.2s 0.2s 0.0s 0.7s
2 28 22872 40/52=76% 470/500=94% 8.6s 2.7s 1.1s 0.7s 4.9s
3 331 530005 42/52=80% 478/500=95% 2.2m 1.3m 15.9s 1.8s 58.0s

remove 1 4 1110 13/34=38% 105/216=48% 1.0s 0.2s 0.2s 0.1s 0.8s
2 28 17081 45/74=60% 347/586=59% 7.2s 2.6s 1.1s 0.3s 6.2s
3 331 472985 70/86=81% 640/684=93% 2.2m 1.4m 14.8s 1.5s 52.6s

D
is

jS
et

sF
as

t Find 1 1 281 1/2=50% 14/28=50% 0.4s 0.1s 0.1s 0.0s 0.3s
2 7 1268 2/2=100% 28/28=100% 2.4s 1.1s 0.4s 0.1s 1.3s
3 55 6485 2/2=100% 28/28=100% 13.1s 6.7s 2.3s 0.2s 8.0s

union 2 6 1643 6/6=100% 62/62=100% 2.5s 1.2s 0.4s 0.0s 1.1s
3 60 10096 6/6=100% 62/62=100% 17.7s 12.2s 3.0s 0.1s 9.4s

A
P

(I) partition 1 1 103 3/10=30% 27/62=43% 0.4s 0.1s 0.1s 0.0s 0.1s
2 3 252 9/10=90% 44/62=70% 0.6s 0.2s 0.1s 0.0s 0.5s
3 7 691 10/10=100% 62/62=100% 1.5s 0.5s 0.2s 0.0s 0.7s

B
in

ar
yH

ea
p(

I)

deleteMin 1 2 246 6/14=42% 71/114=62% 0.6s 0.2s 0.1s 0.1s 0.3s
2 3 406 6/14=42% 71/114=62% 0.8s 0.3s 0.1s 0.0s 0.5s
3 5 727 10/14=71% 98/114=85% 1.3s 0.5s 0.1s 0.1s 1.0s
4 8 1287 13/14=92% 111/114=97% 1.6s 0.5s 0.2s 0.1s 1.8s

findMin 1 2 190 4/4=100% 21/21=100% 0.3s 0.1s 0.1s 0.0s 0.4s
2 3 328 4/4=100% 21/21=100% 0.6s 0.1s 0.1s 0.0s 0.4s
3 4 513 4/4=100% 21/21=100% 1.0s 0.3s 0.1s 0.1s 0.9s

insert 1 2 205 6/6=100% 49/53=92% 0.7s 0.1s 0.1s 0.1s 0.2s
2 5 479 6/6=100% 53/53=100% 1.1s 0.3s 0.1s 0.2s 0.6s
3 8 836 6/6=100% 53/53=100% 1.7s 0.4s 0.2s 0.2s 0.8s
4 12 1446 6/6=100% 53/53=100% 3.1s 0.9s 0.4s 0.5s 1.9s

LL
(I)

merge 1 1 424 3/10=30% 29/72=40% 0.4s 0.0s 0.1s 0.0s 0.2s
2 5 1973 10/10=100% 72/72=100% 1.6s 0.2s 0.2s 0.2s 1.0s
3 19 9284 10/10=100% 72/72=100% 3.6s 1.0s 0.5s 0.1s 5.0s

S
or

t(I
)

insertionSort 1 1 88 3/6=50% 25/41=60% 0.3s 0.0s 0.1s 0.1s 0.2s
2 3 218 6/6=100% 41/41=100% 0.5s 0.2s 0.1s 0.0s 0.5s
3 9 770 6/6=100% 41/41=100% 1.7s 0.6s 0.2s 0.0s 1.8s

shellsort 1 1 98 4/8=50% 35/58=60% 0.3s 0.1s 0.1s 0.0s 0.1s
2 3 246 8/8=100% 58/58=100% 0.9s 0.4s 0.1s 0.0s 0.2s
3 9 828 8/8=100% 58/58=100% 2.7s 1.4s 0.3s 0.1s 1.0s

S
ta

ck
Li

pop 1 2 189 4/4=100% 25/25=100% 0.3s 0.0s 0.0s 0.1s 0.1s
2 3 377 4/4=100% 25/25=100% 0.4s 0.0s 0.1s 0.0s 0.4s
3 4 662 4/4=100% 25/25=100% 0.7s 0.1s 0.1s 0.1s 0.6s

push 1 2 374 1/1=100% 10/10=100% 0.5s 0.0s 0.1s 0.1s 0.3s
2 3 687 1/1=100% 10/10=100% 1.0s 0.0s 0.1s 0.1s 0.4s
3 4 1119 1/1=100% 10/10=100% 1.1s 0.0s 0.3s 0.0s 0.7s

Table 9.2: Lazier# Experiment Data (2); s – seconds; m – minutes

141



Class k Test Cases Branch Bytecode Total CVC ⇒−1
B

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

A
vl

Tr
ee

(I)
find 1 4 1438 10/10=100% 54/54=100% 1.4s 0.1s 0.4s 0.0s 0.9s

2 21 14101 10/10=100% 54/54=100% 5.5s 1.0s 0.9s 0.2s 4.1s
3 190 256694 10/10=100% 54/54=100% 50.0s 17.2s 10.6s 0.9s 33.3s

findMax 1 2 933 4/4=100% 27/27=100% 0.7s 0.0s 0.2s 0.0s 0.4s
2 5 5890 4/4=100% 27/27=100% 2.1s 0.4s 0.3s 0.0s 2.1s
3 20 72006 4/4=100% 27/27=100% 12.8s 5.7s 1.1s 0.5s 4.2s

insert 1 4 2343 12/18=66% 113/148=76% 1.5s 0.0s 0.4s 0.0s 0.7s
2 21 19682 18/18=100% 234/234=100% 6.2s 2.1s 0.8s 0.1s 3.7s
3 190 315704 18/18=100% 234/234=100% 56.2s 20.5s 13.5s 0.7s 32.5s

B
in

ar
yS

ea
rc

hT
re

e(
I)

find 1 4 1044 1/1=100% 12/12=100% 0.8s 0.0s 0.1s 0.0s 1.1s
2 21 10016 1/1=100% 12/12=100% 4.1s 0.7s 0.7s 0.2s 4.6s
3 236 207937 1/1=100% 12/12=100% 48.1s 14.8s 7.6s 0.9s 43.7s

findMax 1 2 601 3/4=75% 21/24=87% 0.7s 0.0s 0.1s 0.2s 0.3s
2 5 3432 4/4=100% 24/24=100% 2.0s 0.1s 0.3s 0.1s 1.1s
3 26 39950 4/4=100% 24/24=100% 9.8s 4.0s 0.8s 0.3s 4.7s

findMin 1 2 600 3/4=75% 22/29=75% 0.4s 0.1s 0.1s 0.0s 0.4s
2 5 3442 4/4=100% 29/29=100% 2.6s 0.1s 0.2s 0.1s 0.8s
3 26 40135 4/4=100% 29/29=100% 10.1s 3.6s 1.0s 0.2s 4.8s

insert 1 4 1516 6/6=100% 53/53=100% 1.5s 0.0s 0.3s 0.0s 0.5s
2 21 12173 6/6=100% 53/53=100% 5.3s 0.9s 0.8s 0.1s 4.2s
3 236 230681 6/6=100% 53/53=100% 50.5s 17.4s 11.2s 1.5s 43.1s

remove 1 4 884 8/12=66% 58/85=68% 0.9s 0.1s 0.1s 0.1s 0.9s
2 21 8824 14/16=87% 94/103=91% 5.2s 0.6s 0.9s 0.2s 3.7s
3 236 193182 15/16=93% 101/103=98% 46.7s 15.8s 8.8s 0.6s 43.2s

Tr
ee

M
ap

(I)

get 1 4 740 8/8=100% 44/44=100% 0.8s 0.1s 0.1s 0.0s 0.6s
2 28 8205 8/8=100% 44/44=100% 6.6s 2.1s 1.9s 0.1s 6.1s
3 331 212319 8/8=100% 44/44=100% 1.3m 28.1s 25.4s 1.1s 1.1m

lastKey 1 2 610 5/6=83% 32/35=91% 0.6s 0.0s 0.1s 0.1s 0.8s
2 6 7211 6/6=100% 35/35=100% 3.5s 0.5s 0.3s 0.0s 1.0s
3 31 201663 6/6=100% 35/35=100% 29.3s 17.6s 1.1s 0.6s 4.2s

put 1 4 2781 15/34=44% 135/366=36% 1.5s 0.1s 0.2s 0.0s 1.0s
2 28 35344 43/54=79% 472/495=95% 9.2s 2.4s 1.5s 0.3s 5.3s
3 331 813226 45/54=83% 480/495=96% 2.5m 1.2m 19.9s 2.0s 47.7s

remove 1 4 1542 12/32=37% 89/193=46% 1.3s 0.4s 0.2s 0.1s 0.9s
2 28 27324 44/72=61% 331/563=58% 8.4s 3.6s 1.2s 0.2s 4.9s
3 331 752174 69/84=82% 624/661=94% 2.3m 1.2m 19.8s 1.4s 48.5s

D
is

jS
et

s

Find 1 1 266 1/2=50% 14/23=60% 0.5s 0.3s 0.1s 0.0s 0.0s
2 7 1223 2/2=100% 23/23=100% 2.1s 0.7s 0.6s 0.0s 1.2s
3 55 6301 2/2=100% 23/23=100% 11.8s 7.2s 2.1s 0.2s 7.3s

union 2 2 1294 2/2=100% 23/23=100% 1.6s 0.6s 0.1s 0.0s 0.4s
3 20 6938 2/2=100% 23/23=100% 8.3s 4.6s 1.2s 0.1s 2.4s

LL

merge 1 1 732 3/10=30% 29/76=38% 1.6s 0.1s 1.2s 0.0s 0.3s
2 5 3631 10/10=100% 76/76=100% 2.2s 0.0s 0.4s 0.1s 2.2s
3 19 17754 10/10=100% 76/76=100% 7.4s 1.1s 1.2s 0.6s 3.4s

Ve
ct

or

add 1 3 354 8/8=100% 77/77=100% 0.7s 0.3s 0.1s 0.0s 0.1s
2 5 472 8/8=100% 77/77=100% 1.5s 0.6s 0.1s 0.3s 0.6s
3 7 590 8/8=100% 77/77=100% 1.5s 0.7s 0.2s 0.1s 1.1s

ensureCapacity 1 9 610 8/8=100% 62/62=100% 1.4s 0.2s 0.2s 0.4s 1.9s
2 13 826 8/8=100% 62/62=100% 2.0s 0.7s 0.2s 0.1s 2.6s
3 17 1042 8/8=100% 62/62=100% 3.5s 2.1s 0.3s 0.3s 2.4s

indexOf 1 6 438 10/10=100% 41/41=100% 1.2s 0.5s 0.1s 0.0s 1.2s
2 7 486 10/10=100% 41/41=100% 1.3s 0.7s 0.2s 0.0s 1.2s
3 7 486 10/10=100% 41/41=100% 0.8s 0.2s 0.2s 0.1s 1.6s

insertElementAt 1 3 469 11/12=91% 105/112=93% 1.2s 0.3s 0.1s 0.1s 0.3s
2 8 836 11/12=91% 106/112=94% 1.2s 0.5s 0.2s 0.1s 1.8s
3 15 1389 11/12=91% 106/112=94% 4.1s 1.8s 0.7s 0.1s 2.0s

lastIndexOf 1 7 445 12/12=100% 48/48=100% 1.0s 0.5s 0.1s 0.1s 1.0s
2 17 975 12/12=100% 48/48=100% 2.0s 0.6s 0.4s 0.4s 3.0s
3 39 2141 12/12=100% 48/48=100% 6.2s 1.7s 2.7s 0.2s 5.4s

removeElementAt 1 3 197 7/8=87% 70/71=98% 0.7s 0.3s 0.1s 0.1s 0.3s
2 4 257 8/8=100% 71/71=100% 0.8s 0.2s 0.1s 0.0s 0.4s
3 5 318 8/8=100% 71/71=100% 1.0s 0.2s 0.2s 0.0s 1.0s

Table 9.3: Lazier# Experiment Data (3); s – seconds; m – minutes
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
A

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

ABS abs 1 2 60 2/2=100% 8/8=100% 0.2s 0.0s 0.1s 0.1s 0.3s

A
vl

Tr
ee

find 1 4 2420 10/10=100% 60/60=100% 1.3s 0.1s 0.3s 0.1s 1.4s
2 21 23807 10/10=100% 60/60=100% 7.8s 2.3s 1.6s 0.3s 3.9s
3 190 459718 10/10=100% 60/60=100% 2.8m 2.0m 22.6s 1.1s 23.5s

findMax 1 2 1457 7/8=87% 38/42=90% 0.9s 0.0s 0.2s 0.2s 0.8s
2 5 8733 8/8=100% 41/42=97% 2.5s 0.4s 0.4s 0.0s 1.6s
3 20 107574 8/8=100% 41/42=97% 20.7s 10.6s 2.2s 0.4s 2.5s

findMin 1 2 1457 7/8=87% 38/42=90% 1.0s 0.0s 0.2s 0.1s 0.8s
2 5 8733 8/8=100% 41/42=97% 2.9s 0.3s 0.3s 0.1s 1.1s
3 20 107574 8/8=100% 41/42=97% 20.4s 10.3s 2.1s 0.4s 2.7s

insert 1 4 3841 12/18=66% 119/160=74% 2.0s 0.1s 0.5s 0.1s 1.4s
2 21 31905 18/18=100% 270/270=100% 7.3s 2.0s 1.4s 0.4s 4.4s
3 190 542929 18/18=100% 270/270=100% 3.2m 2.2m 26.4s 1.3s 22.8s

D
ou

bl
eL

in
ke

dL
is

t

addBefore 1 2 1010 1/1=100% 31/31=100% 0.7s 0.0s 0.1s 0.0s 0.5s
2 6 2922 1/1=100% 31/31=100% 1.8s 0.2s 0.2s 0.1s 1.3s
3 12 5846 1/1=100% 31/31=100% 2.6s 0.8s 0.3s 0.1s 4.2s

clear 1 1 226 1/1=100% 19/19=100% 0.2s 0.0s 0.1s 0.0s 0.0s
2 2 513 1/1=100% 19/19=100% 0.6s 0.2s 0.1s 0.0s 0.4s
3 3 841 1/1=100% 19/19=100% 0.8s 0.0s 0.1s 0.1s 0.5s

indexOf 1 2 668 4/10=40% 28/49=57% 0.7s 0.3s 0.1s 0.0s 0.2s
2 6 1650 10/10=100% 49/49=100% 1.6s 0.3s 0.2s 0.0s 1.5s
3 16 3937 10/10=100% 49/49=100% 2.8s 0.2s 0.4s 0.2s 3.7s

lastIndexOf 1 2 670 4/10=40% 29/50=58% 0.4s 0.0s 0.1s 0.0s 0.3s
2 6 1654 10/10=100% 50/50=100% 2.0s 0.1s 0.3s 0.3s 0.9s
3 14 3583 10/10=100% 50/50=100% 4.1s 1.3s 0.3s 0.2s 2.4s

remove 1 2 664 4/10=40% 26/53=49% 0.9s 0.1s 0.1s 0.1s 0.5s
2 6 1616 11/12=91% 81/86=94% 2.1s 0.1s 0.2s 0.3s 1.2s
3 16 3831 11/12=91% 81/86=94% 4.0s 0.2s 0.6s 0.6s 3.2s

removeLast 1 2 180 1/2=50% 21/46=45% 0.3s 0.0s 0.1s 0.0s 0.2s
2 4 597 2/2=100% 46/46=100% 1.0s 0.1s 0.2s 0.1s 0.4s
3 6 1143 2/2=100% 46/46=100% 1.1s 0.1s 0.1s 0.1s 1.0s

toArray 1 1 165 1/2=50% 18/27=66% 0.2s 0.0s 0.1s 0.0s 0.2s
2 3 437 2/2=100% 27/27=100% 0.6s 0.0s 0.1s 0.1s 0.8s
3 7 842 2/2=100% 27/27=100% 1.0s 0.1s 0.2s 0.2s 1.5s

GC Mark 1 306 222575 12/12=100% 64/64=100% 40.6s 2.0s 8.5s 1.4s 1.2m
TC classify 1 15 404 16/16=100% 54/54=100% 1.6s 0.3s 0.5s 0.3s 2.7s

S
ta

ck
A

r

pop 1 2 105 4/4=100% 32/32=100% 0.4s 0.1s 0.1s 0.1s 0.1s
2 2 105 4/4=100% 32/32=100% 0.3s 0.1s 0.1s 0.0s 0.3s
3 2 105 4/4=100% 32/32=100% 0.4s 0.0s 0.1s 0.1s 0.2s

push 1 4 238 4/4=100% 36/36=100% 0.3s 0.1s 0.1s 0.0s 0.8s
2 4 238 4/4=100% 36/36=100% 0.3s 0.1s 0.1s 0.0s 0.4s
3 4 238 4/4=100% 36/36=100% 1.0s 0.4s 0.1s 0.1s 0.3s

A
P

partition 1 1 152 1/10=10% 18/68=26% 0.5s 0.0s 0.1s 0.2s 0.0s
2 3 392 9/10=90% 50/68=73% 0.9s 0.2s 0.3s 0.0s 0.6s
3 7 1010 10/10=100% 68/68=100% 2.3s 0.8s 0.3s 0.0s 1.1s

B
in

ar
yH

ea
p deleteMin 1 2 290 6/14=42% 71/120=59% 0.7s 0.1s 0.1s 0.2s 0.2s

2 3 491 6/14=42% 71/120=59% 0.9s 0.4s 0.1s 0.1s 0.5s
3 5 894 10/14=71% 101/120=84% 1.7s 0.6s 0.1s 0.0s 0.8s
4 8 1590 13/14=92% 117/120=97% 3.3s 1.7s 0.3s 0.2s 1.2s

insert 1 3 349 8/8=100% 65/69=94% 0.7s 0.1s 0.1s 0.0s 0.2s
2 6 664 8/8=100% 69/69=100% 1.8s 0.4s 0.2s 0.1s 0.7s
3 9 1113 8/8=100% 69/69=100% 2.7s 0.9s 0.4s 0.2s 1.3s
4 13 1869 8/8=100% 69/69=100% 3.8s 1.8s 0.5s 0.2s 2.0s

S
or

t

insertionSort 1 2 190 1/6=16% 9/44=20% 0.4s 0.0s 0.1s 0.0s 0.4s
2 4 389 6/6=100% 44/44=100% 1.0s 0.1s 0.2s 0.0s 0.6s
3 10 1102 6/6=100% 44/44=100% 2.8s 1.2s 0.3s 0.3s 1.9s

shellsort 1 2 192 1/8=12% 10/61=16% 0.3s 0.1s 0.1s 0.0s 0.4s
2 4 419 8/8=100% 61/61=100% 1.1s 0.3s 0.1s 0.0s 0.7s
3 10 1206 8/8=100% 61/61=100% 3.1s 1.1s 0.5s 0.1s 1.9s

Table 9.4: Lazier Experiment Data (1); s – seconds; m – minutes
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
A

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

B
in

ar
yS

ea
rc

hT
re

e
find 1 12 4301 8/8=100% 65/65=100% 3.2s 0.9s 0.5s 0.2s 3.1s

2 98 57292 8/8=100% 65/65=100% 19.6s 7.4s 3.8s 0.6s 18.9s
3 1788 1808683 8/8=100% 65/65=100% 25.3m 12.8m 9.4m 8.8s 3.7m

findMax 1 3 1430 5/6=83% 29/32=90% 0.9s 0.0s 0.1s 0.0s 0.7s
2 13 12821 6/6=100% 32/32=100% 6.1s 0.9s 0.5s 0.2s 3.1s
3 131 258323 6/6=100% 32/32=100% 2.8m 2.4m 6.7s 1.0s 17.6s

findMin 1 3 1428 5/6=83% 30/37=81% 1.2s 0.0s 0.2s 0.1s 0.6s
2 13 12858 6/6=100% 37/37=100% 5.0s 1.0s 0.8s 0.4s 2.4s
3 131 259404 6/6=100% 37/37=100% 2.8m 2.4m 7.6s 1.0s 18.2s

insert 1 12 5521 6/6=100% 63/63=100% 3.0s 0.2s 0.5s 0.1s 2.5s
2 94 63931 6/6=100% 63/63=100% 19.1s 8.2s 3.2s 0.9s 18.7s
3 1668 1855571 6/6=100% 63/63=100% 27.3m 13.2m 10.6m 7.5s 3.5m

remove 1 12 3693 8/12=66% 68/95=71% 2.5s 0.1s 0.4s 0.2s 2.7s
2 94 49422 14/16=87% 104/113=92% 18.6s 7.7s 2.8s 1.1s 17.4s
3 1668 1599087 15/16=93% 111/113=98% 20.7m 11.2m 7.0m 6.6s 3.7m

LL

merge 1 1 1007 3/10=30% 29/76=38% 0.6s 0.0s 0.1s 0.0s 0.2s
2 6 3931 10/10=100% 76/76=100% 2.4s 0.1s 0.3s 0.1s 1.6s
3 30 18122 10/10=100% 76/76=100% 9.1s 2.5s 2.2s 0.6s 6.5s

Tr
ee

M
ap

get 1 6 2009 9/10=90% 60/67=89% 1.8s 0.3s 0.2s 0.0s 1.2s
2 40 27489 9/10=90% 60/67=89% 9.6s 3.4s 1.4s 0.5s 11.4s
3 482 774545 9/10=90% 60/67=89% 3.5m 2.3m 20.5s 2.7s 1.4m

lastKey 1 2 664 5/6=83% 32/35=91% 0.6s 0.1s 0.1s 0.1s 0.3s
2 6 7658 6/6=100% 35/35=100% 3.1s 0.5s 0.6s 0.3s 1.6s
3 31 205430 6/6=100% 35/35=100% 29.4s 17.0s 1.0s 0.3s 4.4s

put 1 10 4125 12/32=37% 133/371=35% 2.4s 0.1s 0.6s 0.2s 1.5s
2 78 54221 40/52=76% 470/500=94% 17.0s 9.2s 2.3s 0.5s 16.9s
3 1978 2676863 42/52=80% 478/500=95% 13.7m 7.8m 2.6m 7.2s 6.0m

remove 1 5 1721 13/34=38% 105/216=48% 1.9s 0.1s 0.3s 0.5s 1.0s
2 43 37832 45/74=60% 347/586=59% 12.7s 5.7s 2.3s 0.4s 8.2s
3 579 1166311 70/86=81% 640/684=93% 8.8m 6.2m 1.4m 2.8s 1.2m

D
is

jS
et

sF
as

t Find 1 1 282 1/2=50% 14/28=50% 0.4s 0.1s 0.1s 0.0s 0.3s
2 7 1269 2/2=100% 28/28=100% 1.9s 1.1s 0.2s 0.0s 1.4s
3 55 6486 2/2=100% 28/28=100% 11.2s 5.8s 2.6s 0.2s 8.8s

union 2 6 1644 6/6=100% 62/62=100% 2.9s 1.1s 0.3s 0.0s 1.0s
3 60 10097 6/6=100% 62/62=100% 17.9s 12.4s 2.5s 0.2s 9.9s

A
P

(I) partition 1 1 112 3/10=30% 35/91=38% 0.4s 0.1s 0.1s 0.0s 0.3s
2 3 289 9/10=90% 67/91=73% 0.8s 0.1s 0.2s 0.0s 0.5s
3 7 811 10/10=100% 91/91=100% 1.2s 0.2s 0.1s 0.0s 1.6s

B
in

ar
yH

ea
p(

I) deleteMin 1 2 247 6/14=42% 71/114=62% 0.5s 0.1s 0.1s 0.0s 0.3s
2 3 407 6/14=42% 71/114=62% 0.7s 0.1s 0.1s 0.0s 0.5s
3 5 728 10/14=71% 98/114=85% 0.9s 0.2s 0.1s 0.1s 1.0s
4 8 1288 13/14=92% 111/114=97% 1.8s 0.6s 0.2s 0.1s 1.4s

insert 1 2 206 6/6=100% 49/53=92% 0.4s 0.1s 0.1s 0.0s 0.5s
2 5 480 6/6=100% 53/53=100% 0.9s 0.3s 0.2s 0.1s 1.0s
3 8 837 6/6=100% 53/53=100% 1.4s 0.4s 0.2s 0.1s 1.8s
4 12 1447 6/6=100% 53/53=100% 2.8s 0.8s 0.4s 0.2s 1.6s

LL
(I)

merge 1 1 498 3/10=30% 29/72=40% 0.4s 0.0s 0.1s 0.1s 0.2s
2 6 2072 10/10=100% 72/72=100% 1.7s 0.4s 0.2s 0.0s 1.9s
3 30 9497 10/10=100% 72/72=100% 7.5s 3.8s 1.0s 0.2s 4.8s

S
or

t(I
)

insertionSort 1 1 88 3/6=50% 25/41=60% 0.4s 0.2s 0.1s 0.0s 0.0s
2 3 218 6/6=100% 41/41=100% 0.6s 0.1s 0.1s 0.0s 0.5s
3 9 770 6/6=100% 41/41=100% 1.9s 1.0s 0.4s 0.0s 1.2s

shellsort 1 1 98 4/8=50% 35/58=60% 0.3s 0.1s 0.1s 0.0s 0.1s
2 3 246 8/8=100% 58/58=100% 0.8s 0.5s 0.1s 0.0s 0.4s
3 9 828 8/8=100% 58/58=100% 2.3s 1.3s 0.3s 0.0s 1.2s

D
is

jS
et

s

Find 1 1 267 1/2=50% 14/23=60% 0.4s 0.1s 0.1s 0.0s 0.6s
2 7 1224 2/2=100% 23/23=100% 1.8s 0.8s 0.2s 0.0s 1.2s
3 55 6302 2/2=100% 23/23=100% 10.1s 4.6s 2.1s 0.2s 9.4s

union 2 2 1295 2/2=100% 23/23=100% 1.5s 0.8s 0.1s 0.0s 0.5s
3 20 6939 2/2=100% 23/23=100% 7.8s 4.7s 0.9s 0.0s 2.8s

Table 9.5: Lazier Experiment Data (2); s – seconds; m – minutes
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
A

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

A
vl

Tr
ee

(I)
find 1 4 1555 10/10=100% 54/54=100% 1.2s 0.2s 0.2s 0.0s 1.2s

2 21 14534 10/10=100% 54/54=100% 6.4s 1.4s 1.1s 0.2s 4.2s
3 190 259485 10/10=100% 54/54=100% 52.4s 20.9s 8.7s 0.7s 30.1s

findMax 1 2 1050 4/4=100% 27/27=100% 0.6s 0.0s 0.1s 0.1s 0.6s
2 5 6323 4/4=100% 27/27=100% 2.1s 0.2s 0.4s 0.2s 1.7s
3 20 74797 4/4=100% 27/27=100% 12.6s 5.4s 1.2s 0.1s 3.3s

findMin 1 2 1050 7/8=87% 38/42=90% 0.6s 0.0s 0.1s 0.1s 0.5s
2 5 6323 8/8=100% 41/42=97% 2.4s 0.2s 0.2s 0.0s 1.3s
3 20 74797 8/8=100% 41/42=97% 13.8s 6.9s 1.2s 0.2s 2.5s

insert 1 4 2460 12/18=66% 113/148=76% 1.3s 0.0s 0.4s 0.2s 0.6s
2 21 20115 18/18=100% 234/234=100% 5.6s 0.8s 1.2s 0.3s 4.9s
3 190 318495 18/18=100% 234/234=100% 56.6s 20.5s 11.0s 0.7s 31.2s

B
in

ar
yS

ea
rc

hT
re

e(
I)

find 1 4 1165 1/1=100% 12/12=100% 1.2s 0.0s 0.3s 0.0s 0.5s
2 21 10453 1/1=100% 12/12=100% 4.5s 0.9s 0.7s 0.1s 3.6s
3 236 210732 1/1=100% 12/12=100% 51.3s 18.7s 10.0s 1.8s 41.3s

findMax 1 2 722 3/4=75% 21/24=87% 0.6s 0.0s 0.1s 0.0s 0.4s
2 5 3869 4/4=100% 24/24=100% 1.8s 0.2s 0.2s 0.1s 1.4s
3 26 42745 4/4=100% 24/24=100% 10.3s 5.2s 0.7s 0.1s 4.3s

findMin 1 2 721 3/4=75% 22/29=75% 0.5s 0.0s 0.1s 0.1s 0.3s
2 5 3879 4/4=100% 29/29=100% 1.7s 0.1s 0.2s 0.1s 1.0s
3 26 42930 4/4=100% 29/29=100% 9.7s 4.0s 0.8s 0.1s 4.2s

insert 1 4 1637 6/6=100% 53/53=100% 1.5s 0.0s 0.5s 0.1s 0.8s
2 21 12610 6/6=100% 53/53=100% 5.5s 0.8s 0.6s 0.4s 4.0s
3 236 233476 6/6=100% 53/53=100% 53.1s 21.4s 7.9s 1.0s 41.5s

remove 1 4 1005 8/12=66% 58/85=68% 1.1s 0.0s 0.3s 0.1s 1.0s
2 21 9261 14/16=87% 94/103=91% 4.8s 0.7s 1.1s 0.2s 3.5s
3 236 195977 15/16=93% 101/103=98% 48.5s 17.4s 9.5s 1.6s 41.3s

Tr
ee

M
ap

(I)

get 1 5 698 8/8=100% 44/44=100% 0.9s 0.0s 0.4s 0.0s 1.3s
2 39 8083 8/8=100% 44/44=100% 6.3s 1.3s 2.9s 0.1s 7.0s
3 739 286729 8/8=100% 44/44=100% 2.3m 45.2s 1.0m 3.0s 3.0m

lastKey 1 2 615 5/6=83% 32/35=91% 0.8s 0.5s 0.1s 0.0s 0.4s
2 6 7243 6/6=100% 35/35=100% 3.1s 0.5s 0.3s 0.2s 1.2s
3 81 522702 6/6=100% 35/35=100% 1.4m 56.0s 3.4s 0.5s 9.0s

put 1 10 6137 15/34=44% 135/366=36% 3.0s 0.1s 0.6s 0.0s 2.0s
2 78 86567 43/54=79% 472/495=95% 19.3s 6.3s 2.8s 0.4s 15.0s
3 1481 3308886 45/54=83% 480/495=96% 11.2m 5.9m 1.8m 4.2s 3.9m

remove 1 5 1623 12/32=37% 89/193=46% 1.4s 0.2s 0.3s 0.1s 0.8s
2 43 37462 44/72=61% 331/563=58% 8.8s 1.8s 1.8s 0.5s 9.0s
3 905 1895267 69/84=82% 624/661=94% 5.9m 3.0m 1.0m 2.8s 2.4m

S
ta

ck
Li

pop 1 2 196 4/4=100% 25/25=100% 0.2s 0.0s 0.1s 0.0s 0.8s
2 3 387 4/4=100% 25/25=100% 0.7s 0.0s 0.1s 0.4s 0.3s
3 4 675 4/4=100% 25/25=100% 0.8s 0.0s 0.1s 0.0s 0.4s

push 1 4 758 1/1=100% 10/10=100% 1.0s 0.0s 0.2s 0.0s 0.8s
2 6 1390 1/1=100% 10/10=100% 1.4s 0.0s 0.1s 0.0s 1.4s
3 8 2260 1/1=100% 10/10=100% 1.9s 0.0s 0.2s 0.0s 1.5s

Ve
ct

or

add 1 6 818 8/8=100% 77/77=100% 1.5s 0.6s 0.1s 0.0s 1.2s
2 14 1514 8/8=100% 77/77=100% 4.0s 2.7s 0.3s 0.0s 2.0s
3 30 2906 8/8=100% 77/77=100% 7.1s 4.3s 0.9s 0.2s 4.6s

ensureCapacity 1 13 831 8/8=100% 62/62=100% 2.4s 1.1s 0.2s 0.1s 2.2s
2 29 1703 8/8=100% 62/62=100% 5.7s 2.0s 0.8s 0.9s 4.4s
3 61 3447 8/8=100% 62/62=100% 9.5s 2.8s 3.3s 0.8s 10.3s

indexOf 1 6 588 10/10=100% 41/41=100% 2.8s 0.3s 0.3s 0.9s 0.8s
2 16 1135 10/10=100% 41/41=100% 2.7s 1.0s 0.5s 0.2s 3.0s
3 38 2339 10/10=100% 41/41=100% 6.3s 1.7s 1.0s 1.2s 8.1s

insertElementAt 1 6 1131 11/12=91% 105/112=93% 2.0s 0.8s 0.2s 0.1s 1.2s
2 26 3175 11/12=91% 106/112=94% 6.2s 3.3s 0.7s 0.5s 4.1s
3 78 9235 11/12=91% 106/112=94% 18.1s 12.6s 2.0s 0.3s 12.2s

lastIndexOf 1 8 608 12/12=100% 48/48=100% 0.9s 0.2s 0.1s 0.0s 1.1s
2 18 1141 12/12=100% 48/48=100% 2.2s 0.5s 0.5s 0.2s 3.2s
3 40 2313 12/12=100% 48/48=100% 5.1s 1.9s 1.1s 0.3s 7.1s

removeElementAt 1 3 200 7/8=87% 70/71=98% 0.6s 0.1s 0.1s 0.0s 0.4s
2 5 320 8/8=100% 71/71=100% 0.6s 0.2s 0.1s 0.0s 1.0s
3 9 566 8/8=100% 71/71=100% 1.4s 0.6s 0.2s 0.1s 1.7s

Table 9.6: Lazier Experiment Data (3); s – seconds; m – minutes
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
S

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

ABS abs 1 2 60 2/2=100% 8/8=100% 0.6s 0.1s 0.3s 0.0s 0.3s

A
vl

Tr
ee

find 1 5 3271 10/10=100% 60/60=100% 1.5s 0.4s 0.3s 0.0s 1.4s
2 29 48244 10/10=100% 60/60=100% 11.5s 2.8s 2.4s 0.2s 4.2s
3 275 10944306 10/10=100% 60/60=100% 2.0h 1.1h 17.4m 2.1s 59.3s

findMax 1 2 1457 7/8=87% 38/42=90% 1.6s 0.7s 0.3s 0.1s 0.2s
2 5 12738 8/8=100% 41/42=97% 3.7s 0.6s 0.4s 0.0s 1.2s
3 20 2395408 8/8=100% 41/42=97% 8.2m 5.5m 12.5s 1.1s 3.6s

findMin 1 2 1457 7/8=87% 38/42=90% 1.3s 0.0s 0.3s 0.2s 0.5s
2 5 12738 8/8=100% 41/42=97% 5.0s 1.9s 0.4s 0.0s 1.7s
3 20 2395408 8/8=100% 41/42=97% 8.3m 5.6m 14.1s 0.8s 2.9s

insert 1 5 4719 12/18=66% 119/160=74% 3.0s 0.3s 0.5s 0.4s 1.1s
2 29 56832 18/18=100% 270/270=100% 12.3s 4.5s 1.8s 0.2s 7.3s
3 275 11036507 18/18=100% 270/270=100% 2.4h 1.4h 18.3m 5.5s 58.5s

D
ou

bl
eL

in
ke

dL
is

t

addBefore 1 8 6178 1/1=100% 31/31=100% 2.8s 0.6s 0.2s 0.1s 1.6s
2 24 34918 1/1=100% 31/31=100% 9.7s 4.2s 0.8s 0.4s 3.6s
3 40 99182 1/1=100% 31/31=100% 15.8s 7.5s 0.7s 0.2s 6.9s

clear 1 1 226 1/1=100% 19/19=100% 0.3s 0.0s 0.1s 0.0s 0.1s
2 3 1194 1/1=100% 19/19=100% 1.0s 0.1s 0.1s 0.0s 0.4s
3 4 2798 1/1=100% 19/19=100% 1.5s 0.2s 0.1s 0.0s 0.9s

indexOf 1 2 668 4/10=40% 28/49=57% 0.6s 0.0s 0.1s 0.0s 0.2s
2 19 5214 10/10=100% 49/49=100% 3.3s 0.6s 0.4s 0.3s 4.1s
3 51 15709 10/10=100% 49/49=100% 12.0s 3.4s 3.2s 1.9s 7.4s

lastIndexOf 1 2 670 4/10=40% 29/50=58% 0.8s 0.4s 0.1s 0.0s 0.4s
2 19 5214 10/10=100% 50/50=100% 2.8s 0.6s 0.7s 0.1s 4.5s
3 51 15693 10/10=100% 50/50=100% 9.4s 2.2s 3.4s 0.3s 8.6s

remove 1 2 664 4/10=40% 26/53=49% 0.8s 0.1s 0.1s 0.0s 0.2s
2 19 5105 11/12=91% 81/86=94% 4.3s 0.3s 0.5s 0.2s 2.8s
3 51 15422 11/12=91% 81/86=94% 11.4s 1.5s 4.3s 0.3s 8.5s

removeLast 1 2 278 1/2=50% 21/46=45% 0.6s 0.1s 0.1s 0.0s 0.0s
2 6 1677 2/2=100% 46/46=100% 1.1s 0.1s 0.1s 0.0s 1.0s
3 8 3759 2/2=100% 46/46=100% 2.8s 1.1s 0.3s 0.0s 1.5s

toArray 1 1 165 1/2=50% 18/27=66% 0.2s 0.0s 0.1s 0.0s 0.1s
2 30 1973 2/2=100% 27/27=100% 4.9s 2.0s 1.0s 0.7s 5.8s
3 351 14484 2/2=100% 27/27=100% 24.6s 6.4s 3.8s 1.6s 1.6m

GC Mark 1 306 226510 12/12=100% 64/64=100% 46.2s 2.1s 12.0s 2.0s 59.6s
TC classify 1 15 404 16/16=100% 54/54=100% 1.7s 0.6s 0.8s 0.0s 2.2s

S
ta

ck
A

r

pop 1 2 105 4/4=100% 32/32=100% 0.4s 0.0s 0.1s 0.1s 0.3s
2 2 105 4/4=100% 32/32=100% 0.3s 0.0s 0.1s 0.0s 0.1s
3 2 105 4/4=100% 32/32=100% 0.5s 0.1s 0.3s 0.0s 0.4s

push 1 4 250 4/4=100% 36/36=100% 0.6s 0.4s 0.1s 0.0s 0.5s
2 4 250 4/4=100% 36/36=100% 0.7s 0.1s 0.1s 0.1s 0.8s
3 4 250 4/4=100% 36/36=100% 0.8s 0.1s 0.1s 0.1s 0.4s

A
P

partition 1 1 152 1/10=10% 18/68=26% 0.3s 0.0s 0.1s 0.0s 0.1s
2 4 533 9/10=90% 50/68=73% 1.0s 0.4s 0.1s 0.0s 0.8s
3 15 2340 10/10=100% 68/68=100% 4.0s 1.4s 0.4s 0.1s 2.6s

B
in

ar
yH

ea
p deleteMin 1 2 290 6/14=42% 71/120=59% 0.5s 0.1s 0.1s 0.0s 0.4s

2 4 670 6/14=42% 71/120=59% 1.1s 0.4s 0.1s 0.1s 0.4s
3 11 2327 10/14=71% 101/120=84% 4.0s 2.0s 0.4s 0.3s 1.9s
4 37 9816 13/14=92% 117/120=97% 13.5s 8.7s 1.5s 0.1s 5.0s

insert 1 4 458 8/8=100% 65/69=94% 1.0s 0.5s 0.1s 0.0s 0.5s
2 12 1470 8/8=100% 69/69=100% 2.6s 0.9s 0.5s 0.0s 1.1s
3 34 5388 8/8=100% 69/69=100% 7.3s 3.2s 1.3s 0.1s 3.1s
4 113 22909 8/8=100% 69/69=100% 29.9s 19.9s 3.0s 1.2s 9.0s

S
or

t

insertionSort 1 2 190 1/6=16% 9/44=20% 0.4s 0.1s 0.1s 0.0s 0.3s
2 5 506 6/6=100% 44/44=100% 1.1s 0.3s 0.1s 0.0s 1.0s
3 19 2427 6/6=100% 44/44=100% 5.3s 3.0s 1.0s 0.3s 2.8s

shellsort 1 2 192 1/8=12% 10/61=16% 0.4s 0.1s 0.1s 0.0s 0.5s
2 5 553 8/8=100% 61/61=100% 1.6s 0.6s 0.3s 0.0s 0.8s
3 19 2674 8/8=100% 61/61=100% 6.7s 3.3s 1.1s 0.1s 3.2s

Table 9.7: Lazy Experiment Data (1); s – seconds; m – minutes; h – hours
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
S

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

B
in

ar
yS

ea
rc

hT
re

e
find 1 13 4890 8/8=100% 65/65=100% 3.2s 0.3s 1.0s 0.2s 2.0s

2 126 89819 8/8=100% 65/65=100% 29.4s 10.9s 5.8s 0.5s 20.8s
3 2873 3822839 8/8=100% 65/65=100% 1.8h 42.5m 50.2m 16.8s 9.5m

findMax 1 3 1430 5/6=83% 29/32=90% 1.1s 0.1s 0.1s 0.0s 0.4s
2 13 14851 6/6=100% 32/32=100% 5.0s 1.6s 0.6s 0.1s 2.3s
3 131 331374 6/6=100% 32/32=100% 3.5m 3.0m 8.4s 1.0s 16.9s

findMin 1 3 1428 5/6=83% 30/37=81% 1.3s 0.1s 0.5s 0.1s 1.1s
2 13 14888 6/6=100% 37/37=100% 4.8s 1.7s 0.4s 0.1s 3.1s
3 131 332455 6/6=100% 37/37=100% 3.8m 3.1m 9.5s 2.0s 16.3s

insert 1 13 6097 6/6=100% 63/63=100% 3.9s 0.9s 0.3s 0.0s 2.1s
2 112 91691 6/6=100% 63/63=100% 27.4s 9.5s 4.0s 0.7s 20.2s
3 2161 3349343 6/6=100% 63/63=100% 1.4h 39.1m 34.2m 16.3s 6.7m

remove 1 13 4146 8/12=66% 68/95=71% 4.4s 1.2s 0.7s 1.2s 1.4s
2 112 74896 14/16=87% 104/113=92% 26.5s 12.8s 3.7s 0.4s 20.4s
3 2161 3031511 15/16=93% 111/113=98% 1.2h 35.1m 27.2m 15.0s 5.9m

LL

merge 1 1 1007 3/10=30% 29/76=38% 0.9s 0.0s 0.1s 0.0s 0.2s
2 6 4707 10/10=100% 76/76=100% 3.1s 0.6s 0.4s 0.3s 3.6s
3 63 63932 10/10=100% 76/76=100% 16.3s 3.5s 3.0s 0.4s 13.5s

Tr
ee

M
ap

get 1 8 4309 9/10=90% 60/67=89% 4.8s 3.0s 0.6s 0.0s 1.5s
2 62 85601 9/10=90% 60/67=89% 21.4s 8.5s 4.6s 0.8s 11.1s
3 782 20707094 9/10=90% 60/67=89% 8.8h 5.0h 1.8h 13.0s 3.6m

lastKey 1 2 1219 5/6=83% 32/35=91% 0.9s 0.1s 0.1s 0.0s 0.5s
2 6 15680 6/6=100% 35/35=100% 8.4s 3.5s 0.5s 0.2s 0.9s
3 31 3524450 6/6=100% 35/35=100% 27.7m 21.5m 40.5s 0.2s 4.3s

put 1 16 9951 12/32=37% 133/371=35% 4.6s 1.1s 1.0s 0.2s 3.2s
2 144 181493 40/52=76% 470/500=94% 43.8s 18.7s 8.2s 1.0s 27.5s
3 N/A N/A N/A N/A >24h N/A N/A N/A N/A

remove 1 7 2247 13/34=38% 105/216=48% 1.8s 0.1s 0.3s 0.1s 1.4s
2 73 74892 45/74=60% 347/586=59% 20.6s 7.9s 4.3s 0.2s 12.8s
3 1075 17631620 70/86=81% 640/684=93% 7.5h 3.7h 2.3h 14.3s 4.7m

D
is

jS
et

sF
as

t Find 1 1 282 1/2=50% 14/28=50% 0.7s 0.1s 0.1s 0.0s 0.0s
2 7 1269 2/2=100% 28/28=100% 2.7s 1.5s 0.3s 0.0s 1.1s
3 55 6486 2/2=100% 28/28=100% 13.9s 7.6s 2.5s 0.9s 6.2s

union 2 6 1644 6/6=100% 62/62=100% 2.7s 1.6s 0.3s 0.1s 1.1s
3 60 10097 6/6=100% 62/62=100% 16.7s 11.1s 1.4s 0.5s 9.0s

A
P

(I) partition 1 1 104 3/10=30% 27/62=43% 0.2s 0.0s 0.1s 0.0s 0.1s
2 3 253 9/10=90% 44/62=70% 0.7s 0.3s 0.2s 0.0s 0.6s
3 7 692 10/10=100% 62/62=100% 1.6s 0.4s 0.1s 0.0s 0.7s

B
in

ar
yH

ea
p(

I) deleteMin 1 2 247 6/14=42% 71/114=62% 0.5s 0.1s 0.1s 0.0s 0.6s
2 3 407 6/14=42% 71/114=62% 1.1s 0.2s 0.1s 0.1s 0.3s
3 5 728 10/14=71% 98/114=85% 1.3s 0.5s 0.2s 0.1s 0.8s
4 8 1288 13/14=92% 111/114=97% 2.2s 1.5s 0.2s 0.0s 1.5s

insert 1 2 206 6/6=100% 49/53=92% 0.5s 0.1s 0.1s 0.0s 0.5s
2 5 480 6/6=100% 53/53=100% 1.5s 0.7s 0.2s 0.2s 0.3s
3 8 837 6/6=100% 53/53=100% 1.9s 0.8s 0.3s 0.0s 0.9s
4 12 1447 6/6=100% 53/53=100% 2.8s 0.9s 0.5s 0.3s 1.5s

LL
(I)

merge 1 1 755 3/10=30% 26/69=37% 0.8s 0.4s 0.1s 0.0s 0.3s
2 5 3211 10/10=100% 69/69=100% 1.9s 0.1s 0.6s 0.0s 2.2s
3 19 13689 10/10=100% 69/69=100% 6.6s 1.6s 1.1s 0.4s 3.5s

S
or

t(I
)

insertionSort 1 1 88 3/6=50% 25/41=60% 0.5s 0.3s 0.1s 0.0s 0.0s
2 3 218 6/6=100% 41/41=100% 0.5s 0.2s 0.2s 0.0s 0.4s
3 9 770 6/6=100% 41/41=100% 1.5s 0.8s 0.2s 0.0s 1.6s

shellsort 1 1 98 4/8=50% 35/58=60% 0.7s 0.1s 0.3s 0.0s 0.3s
2 3 246 8/8=100% 58/58=100% 1.3s 1.0s 0.1s 0.0s 0.4s
3 9 828 8/8=100% 58/58=100% 2.8s 2.0s 0.3s 0.0s 1.0s

D
is

jS
et

s

Find 1 1 267 1/2=50% 14/23=60% 0.4s 0.1s 0.1s 0.0s 0.2s
2 7 1224 2/2=100% 23/23=100% 2.0s 0.6s 0.3s 0.3s 0.8s
3 55 6302 2/2=100% 23/23=100% 9.0s 5.2s 1.0s 0.1s 9.7s

union 2 2 1295 2/2=100% 23/23=100% 1.5s 0.7s 0.1s 0.1s 0.4s
3 20 6939 2/2=100% 23/23=100% 8.6s 5.5s 0.9s 0.1s 2.9s

Table 9.8: Lazy Experiment Data (2); s – seconds; m – minutes; h – hours
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Class k Test Cases Branch Bytecode Total CVC ⇒−1
S

& JUnit GraphViz
Method Generated States Coverage Coverage (-dot) Lite POOC Gen. dot (+)

A
vl

Tr
ee

(I)
find 1 4 1555 10/10=100% 54/54=100% 1.2s 0.1s 0.2s 0.0s 0.8s

2 21 15118 10/10=100% 54/54=100% 5.7s 1.7s 0.7s 0.1s 3.3s
3 190 270115 10/10=100% 54/54=100% 53.9s 18.1s 12.6s 0.5s 29.3s

findMax 1 2 1050 4/4=100% 27/27=100% 0.7s 0.0s 0.1s 0.0s 0.7s
2 5 6907 4/4=100% 27/27=100% 3.3s 1.3s 0.5s 0.0s 0.4s
3 20 85427 4/4=100% 27/27=100% 15.5s 8.3s 1.1s 0.5s 2.4s

findMin 1 2 1050 7/8=87% 38/42=90% 0.6s 0.0s 0.1s 0.0s 0.5s
2 5 6907 8/8=100% 41/42=97% 2.1s 0.4s 0.2s 0.0s 1.5s
3 20 85427 8/8=100% 41/42=97% 14.8s 6.8s 1.1s 0.1s 2.0s

insert 1 4 2460 12/18=66% 113/148=76% 2.9s 0.0s 2.2s 0.0s 0.6s
2 21 20699 18/18=100% 234/234=100% 7.4s 3.4s 0.8s 0.1s 3.9s
3 190 329125 18/18=100% 234/234=100% 55.7s 18.8s 10.9s 0.8s 34.9s

B
in

ar
yS

ea
rc

hT
re

e(
I)

find 1 4 1165 1/1=100% 12/12=100% 1.2s 0.0s 0.3s 0.1s 0.8s
2 21 11037 1/1=100% 12/12=100% 4.9s 1.1s 0.9s 0.1s 3.5s
3 236 221356 1/1=100% 12/12=100% 50.1s 16.9s 8.7s 0.8s 43.9s

findMax 1 2 722 3/4=75% 21/24=87% 0.5s 0.0s 0.1s 0.1s 0.4s
2 5 4453 4/4=100% 24/24=100% 2.3s 0.3s 0.2s 0.0s 0.5s
3 26 53369 4/4=100% 24/24=100% 11.1s 5.3s 0.9s 0.1s 4.3s

findMin 1 2 721 3/4=75% 22/29=75% 0.7s 0.0s 0.1s 0.0s 0.4s
2 5 4463 4/4=100% 29/29=100% 2.0s 0.5s 0.2s 0.0s 0.8s
3 26 53554 4/4=100% 29/29=100% 11.8s 5.2s 1.0s 0.1s 4.0s

insert 1 4 1637 6/6=100% 53/53=100% 1.1s 0.2s 0.2s 0.2s 0.7s
2 21 13194 6/6=100% 53/53=100% 4.5s 0.7s 0.7s 0.1s 3.8s
3 236 244100 6/6=100% 53/53=100% 54.5s 20.5s 8.7s 0.7s 41.4s

remove 1 4 1005 8/12=66% 58/85=68% 1.0s 0.4s 0.1s 0.0s 0.5s
2 21 9845 14/16=87% 94/103=91% 4.6s 0.7s 0.9s 0.3s 5.3s
3 236 206601 15/16=93% 101/103=98% 41.3s 14.2s 9.0s 0.9s 51.8s

Tr
ee

M
ap

(I)

get 1 6 769 8/8=100% 44/44=100% 3.1s 2.5s 0.2s 0.0s 1.1s
2 71 9310 8/8=100% 44/44=100% 7.4s 2.9s 2.1s 0.3s 17.9s
3 3863 577272 8/8=100% 44/44=100% 8.7m 3.0m 4.4m 15.4s 18.9m

lastKey 1 2 615 5/6=83% 32/35=91% 0.8s 0.0s 0.4s 0.0s 0.0s
2 6 7800 6/6=100% 35/35=100% 3.6s 1.3s 0.3s 0.7s 0.9s
3 42 305573 6/6=100% 35/35=100% 43.4s 27.7s 1.6s 0.3s 5.3s

put 1 13 7287 15/34=44% 135/366=36% 3.1s 0.8s 0.3s 0.1s 2.5s
2 153 146035 43/54=79% 472/495=95% 27.1s 8.0s 5.4s 0.5s 36.9s
3 5650 10876344 45/54=83% 480/495=96% 41.1m 22.2m 7.1m 17.0s 15.6m

remove 1 6 1699 12/32=37% 89/193=46% 1.5s 0.5s 0.2s 0.2s 1.2s
2 121 96554 44/72=61% 331/563=58% 23.0s 6.0s 6.5s 0.3s 25.5s
3 4495 7900852 69/84=82% 624/661=94% 28.4m 14.3m 5.4m 11.1s 13.2m

S
ta

ck
Li

pop 1 2 196 4/4=100% 25/25=100% 0.2s 0.0s 0.0s 0.0s 0.3s
2 3 425 4/4=100% 25/25=100% 0.7s 0.0s 0.1s 0.2s 0.4s
3 4 770 4/4=100% 25/25=100% 1.0s 0.0s 0.4s 0.0s 0.6s

push 1 4 758 1/1=100% 10/10=100% 1.0s 0.0s 0.2s 0.1s 1.0s
2 6 1466 1/1=100% 10/10=100% 1.3s 0.0s 0.2s 0.2s 1.2s
3 8 2450 1/1=100% 10/10=100% 2.3s 0.4s 0.2s 0.0s 1.3s

Ve
ct

or

add 1 6 986 8/8=100% 77/77=100% 2.4s 1.0s 0.3s 0.0s 1.8s
2 20 2932 8/8=100% 77/77=100% 7.4s 4.2s 0.6s 0.3s 3.0s
3 74 10990 8/8=100% 77/77=100% 22.9s 15.8s 1.5s 0.4s 9.7s

ensureCapacity 1 17 1051 8/8=100% 62/62=100% 3.3s 1.1s 0.5s 0.5s 3.8s
2 57 3239 8/8=100% 62/62=100% 6.6s 2.3s 0.9s 0.1s 12.9s
3 205 11339 8/8=100% 62/62=100% 20.1s 9.5s 5.4s 0.5s 46.4s

indexOf 1 7 644 10/10=100% 41/41=100% 1.2s 0.2s 0.2s 0.1s 1.4s
2 17 1195 10/10=100% 41/41=100% 3.2s 0.5s 0.5s 0.6s 3.3s
3 44 2686 10/10=100% 41/41=100% 6.0s 2.5s 1.1s 0.4s 9.3s

insertElementAt 1 6 1425 11/12=91% 105/112=93% 3.6s 2.0s 0.1s 0.0s 1.0s
2 41 6874 11/12=91% 106/112=94% 14.4s 10.1s 1.1s 0.2s 5.5s
3 210 41077 11/12=91% 106/112=94% 1.6m 1.3m 6.9s 0.5s 27.3s

lastIndexOf 1 9 662 12/12=100% 48/48=100% 0.8s 0.2s 0.1s 0.1s 1.3s
2 19 1199 12/12=100% 48/48=100% 2.8s 0.8s 0.8s 0.2s 4.1s
3 46 2650 12/12=100% 48/48=100% 8.5s 3.6s 1.1s 0.6s 5.6s

removeElementAt 1 3 202 7/8=87% 70/71=98% 0.9s 0.6s 0.1s 0.0s 0.2s
2 6 382 8/8=100% 71/71=100% 1.4s 0.2s 0.4s 0.0s 0.7s
3 16 999 8/8=100% 71/71=100% 3.5s 0.7s 1.1s 0.5s 3.5s

Table 9.9: Lazy Experiment Data (3); s – seconds; m – minutes; h – hours
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For each lazy/lazier/lazier# result table, the columns in the table report on the size of k, num-

ber of test cases generated, bytecode-level branch and instruction coverage, total running time

(excluding time for generating object graph visualizations) followed by a breakdown of this time

into time spent in the CVC Lite theorem prover [11], time to run the concretization algorithm

(reverse execution ⇒−1 and POOC [57]), and time to form the JUnit tests. Finally, the last col-

umn gives the additional time not included in the total time column to generate the object graph

visualizations. In general, lazier# is better than lazier which in turn is better than lazy in terms

of smaller numbers of states, smaller numbers of cases, and shorter total running/theorem prover

times. However, there are some anomalies in running time and theorem prover time comparison.

For example, all AvlTree methods with k = 3, the lazier# takes more total running time and theo-

rem prover time than lazier. This is because (for reasons unknown to us) the underlying theorem

prover, CVC Lite [11], takes more time under the lazier# initialization algorithm for this example

(even though lazier# invokes the theorem prover fewer times). If we examine the difference be-

tween total time and theorem prover time which is actual running time of the algorithms, it follows

the general trend: lazier# is shorter than lazier.

We will discuss the important columns such as number of test cases, coverage, timing as

follows:

• Number of test cases Given our case analysis in Chapter 4, we are most interested in the

number of cases explored. We have three observations about the numbers of cases:

Observation 1: for some examples, such as AVL tree, the numbers of cases are the same for

lazier and lazier#. This is because in the example,  is not allowed for tree elements and

this confirms our previous observation that lazier initialization is optimal for non- data.

Observation 2: for lazier#, the numbers of cases of binary search tree, AVL tree, and red-

black tree insertion match exactly with the numbers calculated by the combinatorics tech-

nique discussed in Chapter 4 – thus establishing that the algorithm is case-optimal for these

examples (which are the most complicated ones in our example pool).

Observation 3: all the numbers of cases for search/insert/remove operations are the same
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for each tree (binary search tree, AVL tree, red-black tree) under the lazier# algorithm. This

is because the search/insert/remove operations that involve finding the position for the ele-

ment first and rest operations (inserting or removing tree node and then re-balance the tree)

are deterministic. So the calculations for insertion are applicable to the search and remove

operations.

• Coverage Levels: As expected, the cost of analysis and number of test cases grow expo-

nentially as k increases. Thus, we were encouraged (and somewhat surprised) to find out

that a value of k = 2 was sufficient for achieving 100% branch coverage in almost all cases,

and k = 3 was required to get the highest levels of coverage for only the treeMap and

BinaryHeap examples. We have confirmed and documented in Section 9.2 that almost all

cases in which 100% branch coverage is not achieved represent pathological cases of infea-

sible branches/dead code. Only for TreeMap did we encounter feasible branches (2 for put,

3 for remove) that were not covered at k = 3.

• Computation Cost: The java.util.TreeMap example is the most complex from our

study. The two most complicated methods of this example required 2.2 minutes in both

cases for k = 3. The total running time for a vast majority of the methods is under a few

seconds. When considering future work, it is important to note that typically one half to

two thirds of the time is spent in the theorem prover. There are significant opportunities for

optimizations (e.g., caching results across theorem proving calls), but these will require us

to work with the developers of CVC Lite to design a new collection of top-level APIs.

• Size of Test Suite: As noted earlier, the data clearly indicates exponential growth in the

number of tests as k increases. In most cases, the running time to generate all tests for a

k-bound that yields 100% feasible branch coverage is under 10 seconds.

Note that our numbers of tests are what results from considering all heap configurations

within the k bound – not the number of tests required to achieve 100% branch coverage.

In some situations, test cases beyond what are necessary to achieve 100% branch coverage
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are generated. It is relatively easy to modify Kiasan/KUnit so that it avoids exploring a

path after branch coverage has been achieved. We are implementing this modification for

the purpose of measuring the number of test cases beyond those required for 100% branch

coverage.

• Annotation Burden: The size of the required invariant methods is relatively small com-

pared to the overall size of the classes. For instance, in our most complicated example

(TreeMap), the invariant is 74 non-comment source statements (NCSS) while the total

NCSS is 414 (invariant is 17.87% of total). Across all of our examples, the invariant is

typically 10-18% of the entire class NCSS. It is worth noting that from a single invariant,

one is able to obtain a huge benefit in the form of automatically generated test suites. We be-

lieve the disparity between the effort required to write an invariant and the effort required to

write tests manually (which iteratively trying to achieve a coverage) is so great as to render

negligible any complaints about the effort required to provide the invariant annotations.

9.2 TreeMap Coverage

The class java.util.TreeMap from Java 1.5 library is a red-black tree implementation. We tested

two most important methods from the class: put (inserting an element into the tree) and remove

(deleting an element from the tree) using KUnit. For k = 3, KUnit reports a branch coverage of

40/52 for the put method and 70/86 for the remove method.

So for testing of the remove method, there are 16 uncovered branches. We organize the

uncovered branches according to the feasibility as follows.

• Inherent infeasible paths, 6: one path in each of setColor, parentOf, rightOf, and

leftOf methods and two paths in deleteEntry method. The setColor method shown

in Figure 9.1 has a test of null-ness of the argument at line 2 which is always true. The

setColor method is private and only called from fixAfterInsertion, shown in Fig-

ure 9.3, and fixAfterDeletion, shown in Figure 9.4, methods. The calling contexts al-
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ways guarantee that the argument is non-null. The same is for the parentOf, rightOf,

and leftOf methods.

For method deleteEntry shown in Figure 9.5, the conditional at line 39 is alway true

because line 33 has already done the test; similarly, the conditional at line 42 is always true

because of the conditional at line 40.

• Infeasible paths due to specification, 1: the compare method tests the null-ness of the field

comparator at line 5 of Figure 9.2. And we put comparator!=null in the specification

for both methods.

• Infeasible paths due to context, 6. All 6 paths are in successormethod shown in Figure 9.6.

In our testing of remove, the successor method is only called from deleteEntry at line

8 with an argument that has both left and right children. So as shown in Figure 9.6, the

conditional at lines 5 is alway false and the conditional at line 7 is alway true. Furthermore,

lines 13-29 are unreachable code which contains 4 branches. So there are total 6 infeasible

branches due to context.

• Feasible paths, 3: one in each of rotateRight, rotateLeft, and deleteEntry meth-

ods.

For testing of the put method, there are 10 uncovered branches. We organize the uncovered

branches according to the feasibility as follows.

• Inherent infeasible paths, 7: one path in each of setColor, parentOf, rightOf, and

leftOf methods and three paths in fixAfterInsertion method. The reason for the in-

feasible paths in setColor, parentOf, rightOf, and leftOf methods is the same as

explained above.

The three infeasible paths in fixAfterInsertion shown in Figure 9.3 are more involved

and related to the loop invariant of the main loop in the method body.
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Method fixAfterInsertion is a helper function that is called from put after a node is

inserted in the red-black tree. The inserted node x is colored RED as shown in line 2. The

goal of this method is to adjust the tree after insertion to satisfy the red-black tree invariants.

The only red-black tree invariant that the new tree could violate is “all children of a RED

node have to be BLACK” because the parent node of the inserted node could be RED too.

KUnit reports (and we confirmed) that this method contains three infeasible paths related

to the loop invariant. The main loop from line 4 to line 40 deals with the case that node x

is RED and its parent is also RED. Part of the loop invariant is that x!=null and the color

of x is RED. To see that is the case, first, x is non- and RED before entering the loop;

second, inside the loop, x is either unchanged or moved up the tree to the grandparent of x

which can not be  because the parent of x is RED and the root of the tree is BLACK

and further x is colored with RED. Thus, x!=null at line 4 and the conditional at line 19

are always true. Symmetrically, the conditional at line 36 is always true.

• Infeasible paths due to specification, 1: the compare method tests the null-ness of field

comparator and we put “comparator!=null” in the specification for both methods.

• Feasible paths, 2: one in each of rotateRight and rotateLeft methods.

The uncovered branches in rotateRight and rotateLeft methods are different in testings

of remove and put methods. In summary, for all the feasible branches, there is only one in

deleteEntry not covered by KUnit.

1 private s t a t i c <K, V> void setCo lor ( Entry<K, V> p , boolean c ) {
2 i f ( p != nul l )
3 p . co lo r = c ;
4 }

Figure 9.1: Method setColor
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1 /∗ ∗
2 ∗ Compares two keys using the c o r r e c t comparison method f o r t h i s TreeMap .
3 ∗ /
4 private i n t compare (K k1 , K k2 ) {
5 return ( comparator == nul l ? ( ( Comparable< /∗−∗ /K>) k1 ) . compareTo ( k2 )
6 : comparator . compare ( ( K) k1 , (K) k2 ) ) ;
7 }

Figure 9.2: Method compare

1 private void f i x A f t e r I n s e r t i o n ( Entry<K, V> x ) {
2 x . co l o r = RED;
3
4 while ( x != nul l && x != roo t && x . parent . co l o r == RED) {
5 i f ( parentOf ( x ) == l e f t O f ( parentOf ( parentOf ( x ) ) ) ) {
6 Entry<K, V> y = r i g h t O f ( parentOf ( parentOf ( x ) ) ) ;
7 i f ( co lo rOf ( y ) == RED) {
8 setCo lor ( parentOf ( x ) , BLACK ) ;
9 setCo lor ( y , BLACK ) ;

10 setCo lor ( parentOf ( parentOf ( x ) ) , RED) ;
11 x = parentOf ( parentOf ( x ) ) ;
12 } else {

13 i f ( x == r i g h t O f ( parentOf ( x ) ) ) {
14 x = parentOf ( x ) ;
15 r o t a t e L e f t ( x ) ;
16 }

17 setCo lor ( parentOf ( x ) , BLACK ) ; / / bug seeded
18 setCo lor ( parentOf ( parentOf ( x ) ) , RED) ;
19 i f ( parentOf ( parentOf ( x ) ) != nul l )
20 r o t a t e R i g h t ( parentOf ( parentOf ( x ) ) ) ;
21 }

22 } else {

23 Entry<K, V> y = l e f t O f ( parentOf ( parentOf ( x ) ) ) ;
24 i f ( co lo rOf ( y ) == RED) {
25 setCo lor ( parentOf ( x ) , BLACK ) ;
26 setCo lor ( y , BLACK ) ;
27 setCo lor ( parentOf ( parentOf ( x ) ) , RED) ;
28 x = parentOf ( parentOf ( x ) ) ;
29 } else {

30 i f ( x == l e f t O f ( parentOf ( x ) ) ) {
31 x = parentOf ( x ) ;
32 r o t a t e R i g h t ( x ) ;
33 }

34 setCo lor ( parentOf ( x ) , BLACK ) ;
35 setCo lor ( parentOf ( parentOf ( x ) ) , RED) ;
36 i f ( parentOf ( parentOf ( x ) ) != nul l )
37 r o t a t e L e f t ( parentOf ( parentOf ( x ) ) ) ;
38 }

39 }

40 }

41 r oo t . co l o r = BLACK;
42 }

Figure 9.3: Method fixAfterInsertion
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1 private void f i x A f t e r D e l e t i o n ( Entry<K, V> x ) {
2 while ( x != roo t && co lo rOf ( x ) == BLACK) {
3 i f ( x == l e f t O f ( parentOf ( x ) ) ) {
4 Entry<K, V> s ib = r i g h t O f ( parentOf ( x ) ) ;
5 i f ( co lo rOf ( s ib ) == RED) {
6 setCo lor ( s ib , BLACK ) ;
7 setCo lor ( parentOf ( x ) , RED) ;
8 r o t a t e L e f t ( parentOf ( x ) ) ;
9 s ib = r i g h t O f ( parentOf ( x ) ) ;

10 }

11 i f ( co lo rOf ( l e f t O f ( s ib ) ) == BLACK
12 && co lo rOf ( r i g h t O f ( s ib ) ) == BLACK) {
13 setCo lor ( s ib , RED) ;
14 x = parentOf ( x ) ;
15 } else {

16 i f ( co lo rOf ( r i g h t O f ( s ib ) ) == BLACK) {
17 setCo lor ( l e f t O f ( s ib ) , BLACK ) ;
18 setCo lor ( s ib , RED) ;
19 r o t a t e R i g h t ( s ib ) ;
20 s ib = r i g h t O f ( parentOf ( x ) ) ;
21 }

22 setCo lor ( s ib , co lo rOf ( parentOf ( x ) ) ) ;
23 setCo lor ( parentOf ( x ) , BLACK ) ;
24 setCo lor ( r i g h t O f ( s ib ) , BLACK ) ;
25 r o t a t e L e f t ( parentOf ( x ) ) ;
26 x = roo t ;
27 }

28 } else { / / symmetric
29 Entry<K, V> s ib = l e f t O f ( parentOf ( x ) ) ;
30 i f ( co lo rOf ( s ib ) == RED) {
31 setCo lor ( s ib , BLACK ) ;
32 setCo lor ( parentOf ( x ) , RED) ;
33 r o t a t e R i g h t ( parentOf ( x ) ) ;
34 s ib = l e f t O f ( parentOf ( x ) ) ;
35 }

36 i f ( co lo rOf ( r i g h t O f ( s ib ) ) == BLACK
37 && co lo rOf ( l e f t O f ( s ib ) ) == BLACK) {
38 setCo lor ( s ib , RED) ;
39 x = parentOf ( x ) ;
40 } else {

41 i f ( co lo rOf ( l e f t O f ( s ib ) ) == BLACK) {
42 setCo lor ( r i g h t O f ( s ib ) , BLACK ) ;
43 setCo lor ( s ib , RED) ;
44 r o t a t e L e f t ( s ib ) ;
45 s ib = l e f t O f ( parentOf ( x ) ) ;
46 }

47 setCo lor ( s ib , co lo rOf ( parentOf ( x ) ) ) ;
48 setCo lor ( parentOf ( x ) , BLACK ) ;
49 setCo lor ( l e f t O f ( s ib ) , BLACK ) ;
50 r o t a t e R i g h t ( parentOf ( x ) ) ;
51 x = roo t ;
52 }

53 }

54 }

55 setCo lor ( x , BLACK ) ;
56 }

Figure 9.4: Method fixAfterDeletion
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1 private void de le teEn t ry (
2 Entry<K, V> p ) {
3 decrementSize ( ) ;
4
5 / / I f s t r i c t l y i n t e r n a l , copy successor ’ s element to p and then make p
6 / / po i n t to successor .
7 i f ( p . l e f t != nul l && p . r i g h t != nul l ) {
8 Entry<K, V> s = successor ( p ) ;
9 p . key = s . key ;

10 p . value = s . value ;
11 p = s ;
12 } / / p has 2 c h i l d r e n
13
14 / / S t a r t f i x u p a t replacement node , i f i t e x i s t s .
15 Entry<K, V> replacement = ( p . l e f t != nul l ? p . l e f t : p . r i g h t ) ;
16
17 i f ( replacement != nul l ) {
18 / / L ink replacement to parent
19 replacement . parent = p . parent ;
20 i f ( p . parent == nul l )
21 r oo t = replacement ;
22 else i f ( p == p . parent . l e f t )
23 p . parent . l e f t = replacement ;
24 else
25 p . parent . r i g h t = replacement ;
26
27 / / Nu l l out l i n k s so they are OK to use by f i x A f t e r D e l e t i o n .
28 p . l e f t = p . r i g h t = p . parent = nul l ;
29
30 / / F ix replacement
31 i f ( p . co l o r == BLACK)
32 f i x A f t e r D e l e t i o n ( replacement ) ;
33 } else i f ( p . parent == nul l ) { / / r e t u r n i f we are the only node .
34 r oo t = nul l ;
35 } else { / / No c h i l d r e n . Use s e l f as phantom replacement and u n l i n k .
36 i f ( p . co l o r == BLACK)
37 f i x A f t e r D e l e t i o n ( p ) ;
38
39 i f ( p . parent != nul l ) {
40 i f ( p == p . parent . l e f t )
41 p . parent . l e f t = nul l ;
42 else i f ( p == p . parent . r i g h t )
43 p . parent . r i g h t = nul l ;
44 p . parent = nul l ;
45 }

46 }

47 }

Figure 9.5: Method deleteEntry
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Class Method d Time Branch Paths Test
Coverage Iterations Cases

AvlTree
find 10 5.9s 10/10=100% 738 13
findMax 10 15s 8/8=100% 30 11
findMin 10 14s 4/4=100% 30 11
insert 27 1h 1m 12/18=67% 6848 -

BinaryHeap
deleteMin X X X X X
insert X X X X X

BinarySearchTree
insert 8 7s 6/6=100% 18 9
remove 17 2.5m 15/16=100% 321 11

DisjSets
find X X X X X
union X X X X X

DisjSetsFast
find X X X X X
union X X X X X

DoubleLinkedList
addBefore 600 1h 4m 0/1=0% 2064 -
indexOf 1000 1h 24m 0/10=0% 2593 -
remove 1000 1h 34m 0/10=0% 2593 -
clear 1000 58m 0/1=0% 1199 -
lastIndexOf 1000 1h 34m 0/10=0% 2596 -
toArray 1000 57m 0/2=0% 1199 -

java.util.TreeMap
lastKey 25 1h 22m 5/6=83% 9077 -
remove 25 1h 23m 16/86=19% 9079 -
put 25 1h 22m 15/52=29% 9079 -

java.util.Vector

add X X X X X
ensureCapacity X X X X X
indexOf X X X X X
insertElementAt X X X X X
lastIndexOf X X X X X
removeElementAt X X X X X

Stack Array
push X X X X X
pop X X X X X

Stack List
push 1000 1h 26m 0/1=0% 3902 -
pop 3 2s 2/2=100% 2 2

Sort
insertionSort X X X X X
shellsort X X X X X

GC Mark 19 51s 12/12=100% 107 10
IntLinkedList merge 29 32s 10/10=100% 17 15
ABS abs 3 3s 2/2=100% 5 3
TriangleClassification classify 5 5s 3/16=19% 8 4
ArrayPartition partition X X X X X

Table 9.10: jCUTE Data
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1 /∗ ∗
2 ∗ Returns the successor o f the s p e c i f i e d Entry , or n u l l i f no such .
3 ∗ /
4 private Entry<K, V> successor ( Entry<K, V> t ) {
5 i f ( t == nul l )
6 return nul l ;
7 else i f ( t . r i g h t != nul l ) {
8 Entry<K, V> p = t . r i g h t ;
9 while ( p . l e f t != nul l )

10 p = p . l e f t ;
11 return p ;
12 } else {

13 Entry<K, V> p = t . parent ;
14 Entry<K, V> ch = t ;
15 while ( p != nul l && ch == p . r i g h t ) {
16 ch = p ;
17 p = p . parent ;
18 }

19 return p ;
20 }

21 }

Figure 9.6: Method successor

9.3 Comparison to jCUTE [59]

9.3.1 Experiment Methodology

Recall that a theme of the Kiasan approach is controlling the scope and cost of the analysis via the

k-bound on the length of reference chains. In contrast, jCUTE aims to achieve as high degree of

branch coverage as possible with the cost and scope of the analysis controlled by a depth bound.

One interesting point of the comparison between the Kiasan and jCUTE is to consider the amount

of branch coverage (and the performance in achieving that coverage) that the respective tools can

achieve on different examples. In the Kiasan examples, we highlighted the bound value required

for achieving 100% branch coverage, and in cases where 100% coverage could not be achieved,

we reported the coverage achieved.

We conduct jCUTE experiments in an analogous way driven by the desire to maximize cov-

erage. In particular, we try to find the minimal depth bound required to achieve 100% branch

coverage. In cases where 100% is not achieved, we attempt to determine that amount of coverage

that can be achieved in roughly one hour. In jCUTE it is possible to constraint the number of

“iterations” of the algorithm (equivalent to the number of paths explored). For simplicity, we do
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not constrain the number of iterations, that is, we set the depth and let jCUTE run to finish. The

experiment data is recorded if any of following conditions is true:

• reached desired branch coverage (100% coverage of feasible branches);

• depth reached 1000;

• run time more than one hour;

• jCUTE error occurred (as the TriangleClassification example).

Table 9.10 displays the results of the experiments. jCUTE currently does not handle arrays of

variable size (situations where the size of array is not known statically). This means that jCUTE

can not process a number of the examples used in our experiments. These situations are indicated

in Table 9.10 with the symbol X.

9.3.2 Summary of jCUTE Performance

1. AVL Tree: jCUTE performance is comparable to Kiasan on methods find, findMax, and

findMin. For each of these cases, Kiasan results are actually better, but still within the same

order of magnitude. For example, for find, Kiasan achieves 100% branch coverage on k = 1

in 1.8s (compared to 5.9s for jCUTE) and generates 4 tests instead of 13. For findMax,

Kiasan achieves 100% branch coverage on k = 2 in 2.7s (compared to 15s for jCUTE) and

generates 5 tests instead of 11.

However, the performance diverges significantly for the insert method. jCUTE obtains

only 12/18 branch coverage (compared to 18/18 for Kiasan), and runs for over one hour

(compared to 8.9s for k = 2 for Kiasan – the point at which 18/18 coverage was reached).

2. Binary Heap, jCUTE can not handle this example with dynamically sized arrays so no data

is reported.

3. Binary Search Tree, jCUTE was executed for methods insert and remove. jCUTE perfor-

mance is comparable to Kiasan on all methods. Kiasan is almost better on all the data. For
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example, for insert, Kiasan takes 2.1s (compared to 7s for jCUTE) to reach 100% branch

coverage with k = 1 and generates 6 (compared to 9 for jCUTE) test cases. For remove,

Kiasan achieves 15/16 branch coverage in 1.5m (compared to 2.5m for jCUTE) with k = 3

and generates 236 (compared to 11 for jCUTE) test cases. However, jCUTE explores 321

paths to achieve this coverage.

4. Disjoint Set (Original/Fast), jCUTE can not handle these two examples with dynamically

sized arrays so no data is reported.

5. Double Linked List is taken from java.util.LinkedList. jCUTE executed for methods ad-

dBefore, indexOf, remove, clear, and lastIndexOf. In all the example, Kiasan does much

better than jCUTE: jCUTE spent more than or about one hour for each method but the cov-

erage is 0%. We are currently corresponding with jCUTE creators to determine why jCUTE

is not able to make any progress on this example.

6. TreeMap, jCUTE executed for methods lastKey, remove, and put. Kiasan performs signifi-

cantly better than jCUTE. For example, for remove, Kiasan achieves 69/84 branch coverage

in 5m 51s with k = 3 while jCUTE takes more than one hour to reach 16/84 coverage. The

other two method comparisons are similar.

7. Vector, jCUTE can not handle this example with dynamically sized arrays so no data is

reported.

8. Stack Array Implementation, jCUTE can not handle this example with dynamically sized

arrays so no data is reported.

9. Stack List Implementation, jCUTE executed for methods push and pop. For pop, jCUTE’s

performance is comparable with Kiasan. Kiasan achieves 2/2 branch coverage with 0.5s

(compared to 2s for jCUTE) with k = 1 and generates 2 (the same as jCUTE does) test

cases.
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However, for push, jCUTE performs much worse: after more than one hour without cov-

ering any of the tested code while Kiasan uses 1.4s to achieve 100% branch coverage with

k = 1.

10. Sort, jCUTE can not handle this example with dynamically sized arrays so no data is re-

ported.

11. GC, jCUTE executed for method Mark. jCUTE performs better than Kiasan but still within

the same order of magnitude. jCUTE achieves 100% branch coverage with 51s (compared

to 1m 51.9s for Kiasan) and generates 10 (compared to 306 for Kiasan) test cases.

12. IntLinkedList, jCUTE executed for method merge. Kiasan and jCUTE are comparable in

merge method. Kiasan takes 12.4s to achieve 100% branch coverage (compared to 32s for

jCUTE) with k = 3 and generates 30 (compared to 15 for jCUTE) test cases.

13. ABS, jCUTE executed for method abs. jCUTE and Kiasan performance are similar. Kiasan

is actually better but within same magnitude. Kiasan achieves 100% branch coverage in

0.5s (compared to 3s for jCUTE) and generates 2 (compared to 3 for jCUTE) test cases.

14. TriangleClassification, jCUTE executed for method classify. jCUTE can not handle this
example and throws 4 internal errors. All the errors are the same and the error message is
listed as follows:

Error in Thread[main,5,main] null

java.lang.ArrayIndexOutOfBoundsException: 1

at cute.concolic.a.g.a(ArithmeticExpression.java:91)

at cute.concolic.a.g.a(ArithmeticExpression.java:128)

at cute.concolic.b.b.a(ComputationStack.java:273)

at cute.concolic.b.c.a(ComputationStacks.java:94)

at cute.concolic.Call.branchPos(Call.java:299)

at TriangleClassification.classify(TriangleClassification.java:42)

at TriangleClassification.main(TriangleClassification.java:59)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)

at cute.RunOnce.main(RunOnce.java:242)
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15. Array Partition, jCUTE can not handle this example with dynamically sized arrays so no

data is reported.

9.4 Comparison to JPF [37]

Direct comparison to JPF is non-trivial for several reasons. First, to run JPF’s symbolic execution,

one must hand-instrument programs to incorporate the symbolic execution functionality which

makes large case studies like the ones that we have carried out infeasible. (Recent work by Anand

et. al. [5] provides an automated transformation for JPF, but that tool component has not been

released yet.) Moreover, JPF does not actually generate test cases at this point (it only emits infor-

mation about symbolic states). To enable a direct comparison between the underlying algorithmic

strategies in both tools, we have implemented the “lazy initialization” approach of JPF originally

introduced in [37]. Having corresponded closely with NASA Ames personnel, we are confident

that our implementation of lazy initialization reflects the strategy implemented in JPF. Given the

underlying lazy initialization algorithm, we then had to decide which bounding strategy to use:

should we choose the JPF depth-bounded strategy or KUnit’s k-bounded strategy? Because one of

our primary objectives is to demonstrate the benefits of our lazier# initialization approach over lazy

initialization, we wanted to focus on exactly that factor in the experiments. Thus, we implemented

a k-bounding strategy for lazy initialization (removing the additional k-bounding/depth-bounding

factor) and the results are shown in Tables 9.7, 9.8, and 9.9. In general, lazier# produces signifi-

cantly smaller state-spaces (and thus significantly smaller test suites as reflected in the Test Cases

column). In the most complex examples, lazier# gives several orders of magnitude reduction in

time to generate test suites, e.g., reducing time required to achieve the highest levels of coverage

from over 24 hours down to 2.2 minutes for TreeMap.put. The reductions grow exponentially as

k increases.
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Chapter 10

Related Work

In this chapter, we present related work organized by the following categories: model check-

ing (Section 10.1), abstract interpretation (Section 10.2), enumerative methods (Section 10.3),

deductive methods (Section 10.4), symbolic execution (Section 10.5), and traditional testing (Sec-

tion 10.6). Note that many tools and approaches are combinations of two or more techniques; we

discuss each tool under its main technique. The classification is certainly biased and only reflects

the author’s view.

10.1 Model Checking

Model checking [17] is a technique that given a model M of a system and a property P to be

checked, it systematically enumerates all the states of M to check whether P is satisfied. Model

checking has its initial successes in checking hardware systems. Then it is applied to software

specification and protocols [35]. Recently, model checking is applied to Java: JPF [15] and Ban-

dera [19]. The initial version of Bandera translates Java source code into multiple input languages

of backend model checkers such as Spin [35]. The new Bandera [54] uses Bogor as its backend.

JPF has a customized Java VM which can model check Java bytecode directly.

The advantages of model checking are:

• it can check deep semantic properties such as temporal properties;

• it can reason about multithreaded programs and detect problems due to intricate interleav-
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ings of threads;

• it naturally produces error traces.

However, due to its exhaustive nature, it has following disadvantages:

• it requires huge space to store visited states because the number of states usually is at least

exponential with respect to the size of the grogram; The problem is being referred to as the

state explosion problem.

• it requires closed systems to get finite models, M; For open systems, user has to close the

systems first in order to apply miodel checking.

• the model M may not have exact the same behavior as the system; if M is an over-approximation

of the system, it may report spurious errors; if M is an under-approximation of the system

and no error is found, it is not conclusive.

For model checking systems in different domains, new model checkers such as Bogor [54] have

been built with extensibility. In Bogor, new language constructs can be added as first-class lan-

guage constructs to extend the input language, and core modules can be customized to leverage

domain specific behaviors. Bogor has been used to model check a real-time event channel of

avionics systems [22] and publisher/subscriber systems [9] recently. Following the successes of

Bogor, XRT [32], an extensible model checking framework for .NET systems, is introduced by

Microsoft Research.

Kiasan is built on top of the Bogor model checking framework. It can be viewed as a stateless

(no state is stored) search technique. Compared with the stateful (visited states are stored) model

checking, Kiasan may take more time because it may visit a state multiple times while stateful

model checking avoids the revisiting by storing the visited states. Thus, Kiasan trades off space

against time.
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10.2 Abstract Interpretation

Abstract interpretation [20] is a foundational framework for deriving and proving correctness of

static analysis. While many analyses including model checking and symbolic execution1 can be

viewed as abstract interpretation, we only discuss scalar data abstraction (SLAM [7]) and heap

abstraction (TVLA [42]) in this section.

SLAM [7] The scalar data abstraction used in SLAM is predicate abstraction which abstracts

all the scalar data into boolean predicates. For example, three integer variables x, y, z in a program

may be abstracted into two predicates x > y and x + y < z. Then the program is conservatively

transformed into a boolean program that only manipulates the boolean variables which correspond

to the boolean predicates. Thus, the state-space of the program is greatly reduced. Similarly to

Kiasan, SLAM is a forward and path-sensitive analysis based on a model checking engine. It can

verify temporal safety properties and simple assertions in sequential C programs. SLAM has been

successfully applied to Windows device drivers. It computes an over-approximate behavior of the

program and uses iterative refinement to discover more predicates. Although the whole process is

automatic, termination is not guaranteed. In contrast, Kiasan computes an under-approximation

and termination is guaranteed by the k-bound. Furthermore, SLAM is not targeted towards strong

properties that Kiasan is designed for.

TVLA [42] TVLA is a shape analyzer which can verify programs that manipulate the heap. It

is a flow sensitive but not path-sensitive analysis. In contrast, Kiasan is a path-sensitive (and flow

sensitive) analysis. TVLA uses a technique called heap abstraction which abstracts a potentially

infinite heap graph into a finite one where sets of nodes that are indistinguishable by the prop-

erties are grouped into summary nodes. More specifically, TVLA works at the representation of

first order logic with transitive closure. It uses an extension of 2-value logic where 0 represents

false and 1 represents true, 3-value logic with the introduction of 1/2 (unknown) to represent sum-

1In fact, the soundness and completeness proofs of Kiasan are based on abstract interpretation.
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mary nodes. The lazy/lazier/lazier# initialization algorithms used in Kiasan can also be viewed

as heap abstraction techniques where the symbolic objects/locations/references are the summary

nodes. Similarly to lazy initialization, TVLA materializes a summary node, which is called focus

in TVLA, when performing operations on it. To terminate the analysis, TVLA includes a blur

[42] operation which merges heap shapes after the focus operation whereas the lazy/lazier/lazier#

initialization algorithms never do. Thus, the lazy/lazier/lazier# initialization is more precise but

at the cost of non-termination. And Kiasan has to use k-bound (and sometime loop bounding) to

guarantee termination.

The main advantage of TVLA is that it can verify heap manipulating programs because it com-

putes an over-approximation of the state. However, the over-approximation may introduce false

alarms. The main disadvantage of TVLA is that, in general, user is required to provide instrumen-

tation predicates to facilitate the verification. However, there is some progress [52, 44] towards

automatic instrumentation predicate discovery. On the contrary, Kiasan trades full soundness with

automation. That is, Kiasan is unsound (under-approximation) due to the k-bound but is fully

automatic. User can gain more confidence by using larger k which will have higher computation

cost. Future work on Kiasan includes incorporating new developments in heap abstraction and

making Kiasan more expressive without sacrificing the automation.

10.3 Enumerative Methods

In this section, we discuss several tools that limit the scope of analysis.

Alloy [36] uses a specification language that consists of first order logic with relations and has

an automatic analyzer which is based on boolean satisfiability (SAT) solving to generate instances

that satisfy the specification. Since in general, the first order logic is undecidable, Alloy bounds the

scope of the analysis to make the analysis decidable. The strategy that Alloy used to limit the scope

is very similar to Kiasan’s k-bound technique. It also introduces unsoundness because there may

be errors that need larger bounds to be exposed. That is, Alloy is also an under-approximation.
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Similarly to Kiasan, the bound can be adjusted by the user and increased to gain higher levels

of confidence by using more computation resources. In contrast to Kiasan, Alloy is not lazy by

setting the size of universe, thus may generate larger instances than necessary. Another difference

is that Alloy’s input language is first order logic with relations which may be more difficult for

programmers to write than the Java specification and code in Kiasan.

TestEra [45] uses Alloy to test Java programs, specifically, to generate test inputs using precon-

ditions and check postconditions. The translations from Alloy to Java (for test inputs) and Java to

Alloy (for end states) are done manually.

TestEra uses a similar idea as Kiasan in checking programs, that is, it assumes the precondition

to generate inputs, runs the program, and asserts the postcondition. However Kiasan does all those

three steps in Java and is fully automatic while TestEra involves manual translations between Java

source code and the Alloy input language.

Korat [14] can generate non-isomorphic heap structures for black-box testing in a given bound.

Similarly to Kiasan/KUnit, Korat works at the level of Java source code and JML specification.

Although we have only presented KUnit in generating white-box test cases, KUnit can also be

used to generate black-box test cases by just symbolically executing the precondition. Korat uses

a finitization technique which in essence bounds the number of nodes in the heap compared to

Kiasan’s longest-reference-chain bound. Korat generates all possible inputs and then uses the

precondition to prune illegal ones. It observes that when some fields of the precondition are

not accessed, the non-accessed parts are irrelevant for the partial structures; and incorporates the

knowledge as an optimization. This optimization can be seen as a crude approximation of lazy

initialization. Furthermore, Korat focuses on generating heap structures only but not primitive

data in the structures.
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10.4 Deductive Methods

Most deductive method approaches are based on Hoare logic [34]. In this section, we give an

overview of representative tools and approaches of deductive methods: ESC/Java, LOOP, Sepa-

ration Logic, KeY, and PALE.

ESC/Java [26, 18, 10] is an automatic tool that supports lightweight JML contracts and can

check open systems. Kiasan differs from ESC/Java in two important aspects: analysis technique

and heap representation.

For analysis technique, ESC/Java uses the weakest precondition calculus which is a backward

and flow sensitive but path-insensitive analysis. One problem with such approach is that it is

difficult to generate counterexamples for contract violations (i.e., test cases illustrating violations).

Recent work [21] tries to address this issue by processing ESC/Java failed proof attempts, and

then running programs with random inputs to check whether the warnings are false alarms (if not,

it found a test case). This seems to work well for scalar data, however it does not work with

heap intensive programs and contracts (since ESC/Java itself targets at lightweight properties). In

contrast, since Kiasan uses a forward and path-sensitive analysis, KUnit can generate a concrete

input and a JUnit test case for each error (such as postcondition violations, uncaught exceptions).

We believe that Kiasan/KUnit provides an alternative solution for contract-based static checking

that is able to reason about strong heap-oriented properties, while the work presented in this thesis

takes us further in term of analysis feedback compared to [21].

For heap representation, ESC/Java uses a logical representation of the heap. Due to limitations

of the underlying theorem prover on reasoning about the heap graph, ESC/Java cannot handle

strong heap properties. Kiasan maintains an explicit representation of the heap structure and

logical relations only for primitive data which allow Kiasan to check strong properties. However,

Kiasan’s explicit representation incurs a heavy cost on enumerating all possible aliasings. Further

study is still needed to compare the different representations of the heap.
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LOOP [61] can also verify JML specification in Java source code in PVS [50]. Compared to

Kiasan, LOOP also has a rigorous foundation: it has formalized the JML and Java semantics

in PVS. The semantics is based on Hoare logic and the weakest precondition calculus and has

been proved sound in PVS. LOOP translates JML specification together with Java source code

into PVS [50] proof obligations which are Hoare triples. There are two main differences between

LOOP and Kiasan: automation and representation level that user works on. First, the proving of

translated PVS obligations in LOOP is manual, thus, labor intensive. In contrast, Kiasan is fully

automatic but cannot do full verification – it does only bounded verification. Second, LOOP user

has to prove the obligations in the PVS level which requires a lot of PVS expertise. Although

Kiasan works at JVM bytecode level, user only needs to write code and specification in Java

because Kiasan is automatic and the analysis result is given as graphs and JUnit test.

Separation Logic [53] is an extension of Hoare logic to reason about programs that manipulate

heap. To concisely specify heap structures, it introduces two operators, separation conjunction and

separation implication, and associated rules to reason about them. Separation conjunction is used

to indicate that sub-formulae hold in separated parts of heap and likewise separation implication.

The initial analyses in using separation logic are all manual. Recent development, Smallfoot [13],

makes an initial step to automate separation logic by using a symbolic execution technique.

KeY [12] uses a dynamic logic and symbolic execution to verify programs in Java Card, a strict

subset of Java language for smart cards and embedded systems. The specification language can

be Object Constraint Language (OCL) or JML. KeY translates specification and Java source code

into proof obligations in the dynamic logic which is an extension of Hoare logic. The semantics of

OCL and Java Card is formalized in the dynamic logic. Similar to Kiasan, KeY is a forward and

path-sensitive analysis. However, it differs in two important aspects from Kiasan: state represen-

tation and automation. KeY has a pure logical representation of the state in contrast to Kiasan’s

hybrid representation: heap is concrete and the path condition which constraints the primitive

symbols is logical. KeY is not fully automatic: it requires user to provide loop invariants whereas
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Kiasan uses k-bound to achieve full automation without requiring loop invariants (which are ofter

difficult to obtain for object-oriented programs) at the price of introducing unsoundness.

PALE [48] is a framework to verify program behaviors that manipulate the heap. It translates

a given program annotated by graph types into weak monadic second-order logic formulae, then

uses the underlying decision procedure MONA [33] to verify them. The graph types are heap

structures with tree backbones. To achieve automation, PALE requires the user to annotate loop

invariants. Contrary to Kiasan, PALE is sound (an over-approximation). However PALE cannot

reason about the integer type. Thus PALE cannot express any properties that involving integers,

for example, a part of red-black tree property: all paths from the root to a leaf node contain the

same number of black nodes.

10.5 Symbolic Execution

Besides JPF symbolic execution[37, 62], there are other tools and approaches using symbolic

execution: CUTE, Unit Meister, and Symstra.

JPF [37, 62] We have compared Kiasan/KUnit approach with JPF approach in many places of

this thesis. Here we just give a summary of the differences in two parts. The first part is the

comparison between Kiasan with JPF symbolic execution[37]:

• Kiasan introduces two improved core algorithms for handling objects in symbolic execution:

the lazier and lazier# initialization algorithms which are shown significant improvements

over the original lazy initialization algorithm in [37];

• Kiasan can reason about open systems;

• Kiasan supports compositional reasoning;

• Kiasan uses a longest-reference-chain bounding strategy in contrast to to JPF’s search depth

bound or symbolic object size bound;
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• JPF [37] symbolically executes the method body and the precondition is only used for prun-

ing infeasible paths. In order to use the precondition, JPF has to reconstruct the lazily ini-

tialized pre-state by using a mapping. Kiasan directly executes precondition first to generate

pre-states and then checks the method body. In short, Kiasan only executes the precondition

once and does not have to reconstruct the pre-state each time that lazy initialization occurs

as JPF does;

• Kiasan is fully automatic while JPF requires manual instrumentation. However, recent work

[5] for JPF provides an automatic translation that makes progress towards removing manual

instrumentation.

The second part is the comparison between KUnit with JPF test input generation [62]:

• KUnit uses lazier# initialization algorithm which is a significant improvement over the lazy

initialization used in [62] in terms of the number of test cases generated; The lazier# algo-

rithm has been rigorously demonstrated to generate the optimal numbers of test cases for

several complex data structures.

• KUnit uses modified backtracking rules for symbolic execution to generate test inputs;

• KUnit’s input generation algorithm has been formalized and proved sound;

• KUnit can generate interface mock objects for open systems which are not considered in the

JPF work;

• KUnit generates visualization of heap graphs and reports coverage metrics.

CUTE There is an interesting line of work starting with [29] that uses simultaneous symbolic

and concrete executions focusing on non-heap-intensive C programs. A recent extension [28]

provides a compositional approach in which method behaviors are summarized as pre/postcondi-

tions. Building on [29], CUTE [59] is a branch coverage driven approach for unit testing. More

specifically, CUTE uses concrete execution for testing and symbolic execution to guide concrete
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execution to cover branches. KUnit maintains a precise visible part of heap while CUTE uses

constraints to maintain the relations of heap nodes. KUnit has a theoretical proof of its path

coverage modulo k-bound while CUTE may miss paths due to incomplete consideration of alias-

ings. Finally, KUnit can generate mock objects for open systems. We believe the approaches are

complementary; that is, Kiasan/KUnit’s systematic exploration of all heap configurations under

a bound is suitable for heap intensive programs, and the concolic approach can be used to han-

dle complex arithmetic constraints and native library calls (although this causes unsoundness).

Further study is needed to compare the use of pre/postconditions in our work with that of [28].

Unit Meister [60] Unit Meister from Microsoft can also generate test cases from Parameterized

unit tests (PUTs) for .NET assemblies. PUTs are just wrappers of the methods to be tested and

their specifications. Based on symbolic execution, Unit Meister does a forward and path-sensitive

analysis as Kiasan. However, Unit Meister’s symbolic states are different from Kiasan’s in four

ways. First, it includes function symbols for compositional checking whereas Kiasan only allows

primitive symbols and compositional checking is done by using the specification. Second, it

uses an algebraic representation of the heap in contrast to Kiasan’s concrete heap representation.

Third, while Kiasan is fully automatic, depending on the theorem prover and constraint solver,

Unit Meister may require user to supply domains for heap nodes. Last difference is the bounding

strategy: Unit Meister uses a loop bound compared with Kiasan’s preference on the bounding

based on longest-reference-chain .

Symstra [65] is another symbolic execution tool for generating minimal sequences of public

method calls to test a class. Symstra uses symbolic primitive values, concrete heap structures,

and state subsumption to generate non-isomorphic end states. In KUnit, primitive data and heap

structures are all symbolic. Furthermore, KUnit does not have state subsumption. The reason that

it is not done in Kiasan/KUnit is that it is hard to compare heaps with symbolic nodes. Another

difference is that KUnit generates pre-states by preconditions and invariants; while Symstra uses

sequences of public method calls. Thus Symstra generates a subset of possible valid pre-states.
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Depending on the quality of preconditions and invariants, KUnit may generate a superset/subset

of all possible valid pre-states. However, since KUnit gives useful feedback, user can modify

preconditions or invariants to make them more precise.

10.6 Testing

Traditional testing [49] is the most common used technique for software quality assurance. The

advantages of testing are:

• flexible, it can be used to test any property as long as user can write a test case;

• low barrier to entry, it does not require a lot of training because most programmers are

familiar with the practice.

The disadvantages of testing are:

• inconclusive, testing can only find bugs but not verify programs;

• expensive, 50% of development time and cost [49] are spent on testing;

• hard to ensure the quality of test cases since they are written by developers and may contain

errors;

• hard to quantify the functional coverage due to lack of functional metrics.

There are two testing strategies: black-box testing and white-box testing. Black-box testing is

only based on specification without inspection of the implementation. White-box testing (glass-

box in some literatures) allows the examination of the code. In black-box testing, the criterion is

exhaustive input testing[49] which in general is impossible. So techniques such as equivalence

partition (partitioning the input spaces and testing each partition), boundary-value analysis (writ-

ing testing input around the boundary values) etc. are used to guide test case writing. In white-box

testing, the ultimate goal is to have exhaustive path coverage. Due to the infinite number of paths

in most programs, branch and statement coverages are proposed to approximate the path coverage.
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KUnit can be used for black-box testing in the following way: generating inputs by symbolically

executing the precondition and using the postcondition as the oracle. If the formal specification is

present, KUnit approach can be seen as a formalized method for black-box testing techniques such

as equivalence partition, boundary value analysis by partitioning the input space by the path that

the input corresponds to. Furthermore, KUnit guarantees a heap coverage which is a functional

metric. For white-box testing, KUnit guarantees the path coverage within the k bound. In connec-

tion to traditional coverages such as statement and branch coverage, KUnit gives such coverage

reports and our experiment shows that for small k (k = 2), almost all our examples reach nearly

100% feasible branch coverage.

In general, traditional testing is based on informal specification while KUnit requires formal

specification which can be seen as a drawback. However, considering the amount of effort spent

in writing test cases, we believe that KUnit has a right trade-off on benefits and efforts.
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Chapter 11

Conclusion

We have presented Kiasan, an alternative technique to reason about open systems based on sym-

bolic execution that is able to check strong heap properties. We have implemented Kiasan on top

of the Bogor framework. Methodologically, we envision our tool being used similarly to frame-

works like ESC/Java [26]. For example, a user can start checking a method (even compositionally)

without any annotation and receive error feedback from the tool.

We have proposed two consecutively improved algorithms, lazier and lazier# initialization,

over the original lazy initialization algorithm presented in [37]. We have provided operational se-

mantics for symbolic executions with lazy/lazier/lazier# initialization algorithms and the concrete

execution on JVM. Then we have shown that symbolic executions with lazy/lazier/lazier# initial-

izations are relatively sound and complete. We have presented a case counting method to quantify

heap coverage for their evaluation. We have demonstrated the lazier initialization algorithm and

the early lazy initialization algorithm from [37] are sub-optimal on some complex data structures

such as the red-black tree implementation in java.util.TreeMap. We have also shown that the

lazier# algorithm is optimal on those data structures with respect to the counting method. We

have also presented empirical case studies to demonstrate the effectiveness of lazier# initialization

algorithm compared to the lazy and the lazier initialization algorithms.

We have presented, KUnit, a framework built on the Kiasan symbolic execution engine for

unit test case generation, input/output object graph visualization, and mock object generation.

Our efforts have highlighted the concept and utility of guaranteeing complete coverage of heap
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configurations up to bounds on the length of reference chains in data structures. This strength-

ens previous testing approaches by guaranteeing full soundness (no errors will be missed) for any

data whose size lies within the supplied Kiasan k-bound. Using a broad range of heap-intensive

examples, we have shown that our approach can achieve 100% feasible branch coverage (improv-

ing on related techniques) by using only small heap configurations and with minimal number of

generated tests (again, improving on previous approaches by reducing number of tests generated).

From another viewpoint, these capabilities add significant values to Kiasan as a contract checking

tool because they dramatically improve upon the quality of feedback provided by error traces and

counterexample information in other tools for ESC/Java [21].
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Robby, and Hongjun Zheng. Bandera : Extracting finite-state models from Java source code.

In Proceedings of the 22nd International Conference on Software Engineering, jun 2000.

178



[20] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Conference Record of the

Fourth Annual ACM Symposium on Principles of Programming Languages, pages 238–252,

1977.

[21] Christoph Csallner and Yannis Smaragdakis. Check ’n’ Crash: Combining static checking

and testing. In Proc. 27th International Conference on Software Engineering, pages 422–

431. ACM Press, May 2005.

[22] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, Georg Jung, and Robby. Model-checking

middleware-based event-driven real-time embedded software. In Proceedings of the 1st In-

ternational Symposium on Formal Methods for Components and Objects (SOFMFCAB), nov

2002.

[23] Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execu-

tion for checking strong heap properties of open systems. In 21st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 157–166, 2006.

[24] Xianghua Deng, Robby, and John Hatcliff. Kiasan/KUnit: Automatic test case generation

and analysis feedback for open object-oriented systems. In Testing: Academic and Industrial

Conference – Practice and Research Techniques, 2007. To appear.

[25] Xianghua Deng, Robby, and John Hatcliff. Towards a case-optimal symbolic execution

algorithm for analyzing strong properties of object-oriented programs. In Proceedings of the

5th IEEE International Conference on Software Engineering and Formal Methods, 2007.

[26] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for Java. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 234–245, 2002.

179



[27] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. Mock roles, objects. In John M.

Vlissides and Douglas C. Schmidt, editors, OOPSLA Companion, pages 236–246. ACM,

2004.

[28] Patrice Godefroid. Compositional dynamic test generation. In Proceedings of ACM Sym-

posium on Principles of Programming Languages, volume 42, pages 47–54. ACM Press,

2007.

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random

testing. In ACM SIGPLAN 2005 Conference on Programming Language Design and Imple-

mentation (PLDI), pages 213–223. ACM Press, 2005.

[30] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Reading,

Massachusetts: Addison-Wesley, 2 edition, 1994.

[31] Daniel H. Greene and Donald E. Knuth. Mathematics for the Analysis of Algorithms.
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Appendix A

Kripke Structures

The presentation in this appendix is adapted from [58], and it is provided here for a quick refer-

ence.

Definition 11 (Kripke Structure). A Kripke structure is a quadruple, K = (ΣK , IK ,−→K , LK ),

where ΣK is a set of states, IK is a set of initial states that IK ⊆ ΣK , −→K⊆ ΣK × ΣK is the

transition relation (finite image), and LK : ΣK → P(Atom) associates a set of atomic properties,

∀s ∈ ΣK and LK (s) ⊆ Atom.

Definition 12 (Simulation Relation on Kripke Structures). For Kripke structures C = (ΣC, IC,−→C

, LC) and S = (ΣS, IS,−→S, LS), a binary relation, R ⊆ ΣC × ΣS, is a simulation of C by S,

written C �R S, if ∀c ∈ ΣC, s ∈ ΣS.c R s ∧ c −→ c′ =⇒ ∃s′ ∈ ΣS.s −→ s′ ∧ c′ R s′ and

∀c0 ∈ IC.∃s0 ∈ IS.c0 R s0.

Definition 13 (Left-/Right-total Simulation Relations). A binary relation, R ⊆ S × T, is left total

if ∀s ∈ S .∃t ∈ T.s R t. The relation is right total if ∀t ∈ T.∃s ∈ S .s R t.

Definition 14 (Power Kripke Structure). For a Kripke structure, K = (ΣK , IK ,−→K , LK ), the

power kripke structure P(K) = (P(ΣK ),P(IK ),
•
−→K , LP(K)), where ∀S , S ′ ⊆ ΣK .S

•
−→K S ′ if

and only if for every s′ ∈ S ′, there exists some s ∈ S such that s −→K s′ and LP(K)(S ) =

∩ { LK (s) | s ∈ S }.
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Appendix B

Lazy, Lazier, and Lazier# Swap States

B.1 Lazy Swap States
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Figure B.1: Swap–Lazy States (1)
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Figure B.2: Swap–Lazy States (2)
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Figure B.3: Swap–Lazier States

B.2 Lazier Swap States

B.3 Lazier# States

n̂0

n̂1

this

n

(a) 1

n0

n̂1

ē0
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Figure B.4: Swap–Lazier# States
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