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CHAPTER 1

INTRODUCTION

1.1 CONCEPT OF DECISION MAKING IN MANAGEMENT

Recently there have been a lot of changes in business organizations

and they have become enormously complex undertakings. The increasing

business strategies and approaches as well as scarce resources have

made them even more complex. During the past couple of decades the

tendency has been for blending mathematics with business administration

resulting in more efficient organization. Similarly the inter-

mediary fields, such as industrial engineering and operations

research have been evolved and developed.

Industrial engineering is concerned with the design, improvement

and installation of integrated systems of men, materials and equipment.

It draws upon specialized knowledge and skill in the mathematical,

physical and social sciences, together with the principles and methods

of engineering analysis and design, to specify, to predict and to

evaluate the results to be obtained from such systems.

With the scarce resources man has recognized their importance and

has been constantly trying to emphasize their best use. The resources

can be of any kind, such as material, energy, manpower, etc.

In the span of a day the administrator has to make a number of decisions.

The selection of one action or sequence of actions from a number of

alternative possible actions is known as a decision. Decision making

in business, in the past, was practiced more as an art than a science.

Increasing costs are associated with decision making. Businesses are

larger; each decision involves a larger outlay of time, money and resources.



Some problems in decision making can be quantified. Objective

solutions optimizing particular goals can be obtained through the

proper application of techniques for the analysis of quantitative data.

Some of these techniques are relatively simple and nonmathematical,

others involve high levels of mathematical proficiency. With the

development of electronic data processing equipment these techniques

are brought to the access of many potential users.

The following list is suggested here because it is short and well

suited to the use of quantitative information as the basis for decision

making (7).

i. Define the problem,

ii. Determine the assumptions and /or limitations which affect

the solution,

iii. Identify the possible courses of action,

iv. Isolate the decision making criteria.

v. Determine and compare the possible outcomes and the

probability of success in reaching the objective for

the various courses of action,

vi. Make the decision (select a course of action),

vii. Implement the decision,

viii. Monitor the results of the decision.

1.2 STATE INCREMENT DYNAMIC PROGRAMMING

It was realized during the period following World War II that

there were a large number of activities which could be classified as

multistage decision processes (5) . It was also found that there was

a shortage in available techniques to solve these problems and those



which existed were not versatile enough. Recognition of these facts

led to the evolution of many new techniques and one of them was dynamic

programming (3) . This was a new approach based on the use of the

functional equation and the principle of optimality. The principle

of optimality can be stated as,

"an optimal policy has a property that whatever the initial
state and initial decisions are, the remaining decisions must
constitute an optimal policy with regard to the state result-
ing from the first decision."

Initially the emphasis was on those processes which were specifically

posed as multistage decision processes. Then all the processes to which

dynamic programming could be applied were considered. In 1955 R. Bellman

and others (7) began a systematic study of the computational feasibility

of dynamic programming. They collected a number of optimization problems

from many different fields and applied their methods in many different

ways.

Despite the attractive features of the standard algorithm (dynamic

programming), its applicability thus far has been limited to relatively

simple cases. This is due to the large computational requirements of

this algorithm. The most severe restriction is generally the high amount

of fast storage memory required to implement the basic calculations.

Another difficulty is the amount of computing time required to obtain

the complete solution. Thus, while dynamic programming is frequently

used as an analytical and conceptual tool, the computational difficulties

associated with the standard algorithm have severely limited its appli-

cation to large scale optimization problems.

Along with other methods to overcome the difficulty of fast storage

memory requirement in dynamic programming, state increment dynamic



programming (16,17,18) is a good substitute. R. E. Larson was the

first to show the application of this new method to the problems which

could be solved by dynamic programming but are likely to face the

'dimensionality difficulty.' This method also is based on Bellman's

'principle of optimality. ' This procedure retains the desirable

properties of the standard algorithm but has a reduced computational

requirements. This procedure always reduces high-speed storage memory

requirement, often by orders of magnitude. In a number of cases a

substantial reduction in computing time can be achieved as well. Thus

state increment dynamic programming represents a significant step in

increasing the range of optimization problems that can be solved with

state-of-the-art computer facilities.

1.3 PURPOSE OF THIS STUDY

Industrial engineers deal with many different varieties of engineer-

ing as well as business problems related to engineering. Decision making

problems are one of the varieties which an industrial engineer should

know 'how to tackle.' There are many ways or techniques to solve these

kinds of problems but an engineer always looks for more efficient

ways.

The purpose of this study is to evaluate the effectiveness of state

increment dynamic programming in solving industrial management problems

which involve nonlinear difference equations.

Other computational procedures, such as gradient technique, second

variation method, and invariant imbedding, etc., could also be used for

solving the problems of this nature, but they will not be discussed here

since they are outside the scope of this study.



5

1.4 HYDRO-DYNAMIC JOURNAL BEARING DESIGN

With the invention of data processing equipment, many fields of

science have changed their manner of problem solution. At the same

time mechanical engineers concerned with designs have also changed

their approach to the design problems.

Mechanical designs used to be based on the standard design equa-

tions and were designed on the idea of 'safe' design. Now, optimization

techniques have improved their approach and helped them to carry out

'safe* and 'economical' designs.

Chapter 2 of this study is concerned with a basic mechanical design,

hydrodynamic journal bearings. Master's research work was started with

this work, and because of insufficient information we were not able to

extend the problem and the work was discontinued.



CHAPTER 2

OPTIMIZATION OF HYDRODYNAMIC JOURNAL BEARING DESIGN

2.1 GENERAL

In these days of automization, automated mechanical designs have

become a fertile field for mechanical engineers. For many years they

have been designing very 'safe' mechanical systems and have been using

design equations in standard forms to arrive at such 'safe' designs.

Frequently these designs, although reliable, are costly to produce.

These higher costs of 'safe' designs are mainly due to high material

costs, high labor costs and high processing costs. If suitable opti-

mization procedures be used to evaluate such designs, it may result in

cost savings. Since an optimization procedure can evaluate many criteria,

the saving would not be at the risk of the quality.

As indicated in the previous chapter the master's research work

was started with a goal of optimizing some kind of mechanical design

using an appropriate optimization technique. The literature survey

included a large number of mechanical designs such as cold rolling

process, gear trains, hydrodynamic journal bearings, other varieties

of bearings, etc.

The design of a hydrodynamic journal bearing is of key importance

since it is a basic part in rotating machinery. In the last decade

many researchers have tried to optimize different journal bearings.

Each design is different because it depends on many factors such as

operating conditions and behavior of the parent system of which it is

a part, etc.

Mechanical design is a multi-phase process requiring constant

decision making on the part of the designer. As engineering design



has matured so have the guidelines and methods that the designer has

at his disposal to help him in his choice. Drawing from his experience

the engineer is able to define variables, a design objective, and a

set of constraints that must be met in order that the design be a

workable solution. Thus by developing corresponding equations a design

problem can be stated in a suitable form of mathematical programming.

The basis of hydrodynamic journal bearing design is the solution

of Reynold's equation. Raimondi and Boyd (25) of the Westinghouse

Research Laboratories gave the solution in terms of performance char-

acteristic curves. The series of three papers gave performance curves

for different assumptions made in each of them. All of them discuss

the journal bearing with the load at the center. The first paper

discusses the journal bearing with length-to-diameter ratio of one,

constant oil viscosity and no film rupture. The second paper in the

series discusses the centrally loaded bearing with length-to-diameter

ratio of 1/2 and 1/4. A problem illustrating the L/D ratio on journal

misalignment shows that the shortest bearing is not necessarily the

one capable of tolerating the maximum misalignment. The third paper

discusses the bearing which accounts for the film rupture and perform-

ance curves for different L/D ratios.

Seireg and Ezzat (26) presented an automated system for the selection

of the length, clearance and lubricant viscosity which optimize the per-

formance of hydrodynamic journal bearings under specified values or

range of loads and speeds. The authors derived equations from the

curves given by Raimondi and Boyd (25). A curve fitting technique was

used to arrive at the functional equations. This paper discussed



optimization of bearings based on competitive objectives of reducing

the bearing temperature and at the same time reducing the oil flow.

The optimization technique used here was gradient search.

2.2 PROBLEM FORMULATION

The usual design procedure requires mathematical formulation of

the problem under consideration as an optimal programming problem.

The policy can be as follows;

1. Defining the system variables and the decision parameters,

ii. Stating equality or inequality constraints imposed on the

design,

iii. Defining the expressions relating different parameters

governing the system behavior,

iv. Developing the search technique best suited for the problem

under consideration.

2.2.1 System Parameters

The main independent parameters for the problem under consideration

are

(D, L, C), (y), (W, N). S

where

D journal diameter, inches

L bearing length, inches

C radial clearance, inches

y - lubricant average viscosity, Reyn

W - bearing load

N journal rotational speed, rps

S Sommerfeld number (defined on page 11)



These parameters, as grouped, describe the bearing geometry, oil

characteristics, and load specifications, respectively. In journal

bearing design the parameters, D, N and W are assumed to be known.

Hence, the design parameters left are, L/D, C, u. Figure 2.1 shows

the relationships.

Now the constraints on the design parameters are defined as

follows;

K - h *min

t < t
max maxn

P - Prmax rmaxn

> " Mmin

L. iLf L
min max

where, h_ - minimum oil film thickness, inch

t maximum oil film temperature, °F
max

p * maximum oil film pressure, psi.

These constraints are dictated by the quality of machining, the char-

acteristics of the material-lubricant pair, and available space.

2.2.2 Governing Equations

The governing equations are derived from the curves given by

Raimondi and Boyd (25) in their papers. A curve fitting technique

is used to derive the equations (26). They are used for the calcula-

tions of the temperature rise, maximum oil film pressure, oil flow,

frictional loss, etc. For example
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Fig. 2.1 Bearing Geometry.
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for S 1 0.5

and 0.25 i L/D i 0.5

we have n q77

h
Q

- 1.585- C (L/D)
' 913

(S)
0.655(L/D)°-

9

Kt . 0.5 . W ..0.695/(L/D)°-
139

Lt
o 374

(

S

'

P
max

0.76 (L/D)
' 62

(S)
' 24

M^- 0.128 (L/D)
' 048

(S)
' 1

(L/D)
' 47

f(R/c) ._12A^ (s)
0.62/(L/D)°-

1035

(L/D)
' 41

Similarly, other equations for different ranges of (L/D) and S

are the same in structure but have different values of the constants.

Here S is known as Sommerfeld number and is defined as

S - (R/C)
2
*j, where R - |.

The rest of the mathematical relationships between the design variables

for different values of constants are given in the Appendix A.

2.2.3 Design Criterion

The designer should develop a design criterion which accurately

describes the designer's objectives. In the bearing design problem

many criteria can be envisioned. Some of them can be stated as follows.

Minimizing the maximum temperature rise in the bearing, minimizing the

oil flow required for accurate lubrication, minimizing the frictional

loss, etc. The objective can be composed of the multitude of the above

mentioned factors.
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2.3 COMPETING OBJECTIVE FUNCTIONS IN OPTIMIZATION

A competing objective function is the one in which the components

are dependent on each other and by decreasing one we have to increase

the other and the overall objective may be to optimize the sum of the

both at a time. For example, in the bearing design problem we want

to decrease the rise in bearing temperature along with the decrease in

oil flow in the bearing. Now for minimizing bearing temperature rise

we have to increase oil flow, but our objective also consists of minimiz-

ing the oil flow in the bearing. Hence we have to compromise at some

stage by weighing the relative importance. There are various methods

to accomplish this.

One approach to multiple objective problem does not include any

formal optimization. It requires that the designer have sound knowledge

about the problem. In this the designer selects a candidate design and

uses a computer to do the analysis required to determine the behavior

of the design. Then interactively the design is altered by the designer

until a 'fair' compromise design is obtained. This selected design is

not necessarily optimum, and the designer has a little insight in the

sacrifice of one objective for the improvement of the other.

Another approach uses an optimization algorithm to find the 'best'

design variable changes to determine a new estimate for the optimum

design. This interactive procedure continues until a 'good' design is

found. In this approach the designer participates directly in optimiza-

tion process and as a result he obtains further understanding of the

problem. The optimization procedure directs the designer continually

towards optimum design. Sometimes, the designer's bias may prevent

considerations of all possible compromises between the objectives.
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Another approach is simply to consider all but one multiple

objectives as constraints and one as objective. Thus it reduces the

multiple objective problem to the single objective one. This approach

requires difficult decisions regarding the selection of constraints

and constraint values.

One more approach to multiple objective problem involves the

selection of an optimum linear combination F of the objectives. The

function F can be defined as

F - f
x
(u) + w

2
f
2
(u) + ... + w

n
f
n
(u).

The selection of the best weighing factor w, depends on many different

factors and also on the particular type of problem. This particular

type of approach has the advantage of considering only optimum designs

but it may be difficult and/or expensive to determine the best weighing

factors.

2.4 SEARCH METHOD

The choice of search method adopted for the automated design should

be very careful. It should suit the design domain and the criterion

under consideration. Due to the complex structure of the design domain

in the case of bearing design, Che search method should also allow for

starting points which may violate the constraints. Seireg and Ezzat (26)

and Bartel and Marks (2) have used the gradient search technique for the

solution of the problem. But Eason and Fenton (10) suggested that

pattern search and simplex search are better than the gradient tech-

niques using secant derivate approximation. Hence, we chose simplex

pattern search (11,23,28) for the solution of the optimum bearing design.
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After repeating the problem stated before we wanted to extend the

static problem to dynamic one. But it was found difficult to do that.

The reason was the unavailability of a complete analytical solution

to the Reynold's equation. The analytical form was needed for the

extension of the problem. Even very early papers from the thirties

and forties had only numerical solutions to the Reynold's equation,

either in the form of tables or curves. Seireg and Ezzat (26) arriv-

ed at algebraic relationships which were found by curve fitting

techniques', but they also have constants in the form of absolute values

and hence it would not be advisable to use these relationships without

completely knowing them.
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CHAPTER 3

STATE INCREMENT DYNAMIC PROGRAMMING

3.1 GENERAL

One of the most important optimization techniques developed in

last three decades is Bellman's dynamic programming (3,4,5). It is

capable of solving, at least in principle, many important and difficult

optimization problems irrespective of their nature, linear or non-

linear. However, because of the extremely large high speed memory

requirement, only relatively simple problems have been solved on

existing computers. It has been found by experience that the method

works satisfactorily until the problem has three state variables. For

more than three state variables it is not a very accurate method and

sometimes memory overflow occurs. Bellman calls this difficulty 'the

curse of dimensionality.

'

After realizing the dimensionality difficulty in dynamic program-

ming many other numerical methods have been developed. Some of them

can be listed as (21)

,

i. polynomial approximation

ii. lagrange multiplier

iii. state increment dynamic programming

iv. differential dynamic programming

v. quasilinearization (19), etc.

The first two of them trade off computer time for the high speed memory

requirement. Quasilinearization linearizes the function iteratively

using the Newton-Raphson method. The advantage of this method is that

one gets rid of the control variables; hence is easy to solve. Also,

the method has quadratic convergence whenever the problem converges.
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State increment dynamic programming essentially reduces the high speed

memory requirement in the problem. The way in which this is achieved

will be explained in this chapter. Many times it takes more time than

dynamic programming but in some cases reduction in computation time

has been also observed. In a particular case reduction from 10 storage

locations to 100 storage locations has been obtained (15).

R. E. Larson (15,16,17,18) is the inventor of state increment

dynamic programming. While working at Stanford Research Institute in

mid-sixties he developed this method and published many papers and a

book showing method and its applications.

State increment dynamic programming is based on the 'principle of

optimality' given by Bellman. As previously stated, "an optimal

policy has the property that, whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy

with respect to the state resulting from the first decision."

The difference between the conventional dynamic programming developed

by Bellman (3) and the state increment dynamic programming by Larson (15)

is in the choice of the time interval over which a given control is

applied. Conventional dynamic programming uses a fixed time interval

whereas state increment dynamic programming determines the time interval

as the minimum time required for at least one of the state variables to

change by one increment. As a result of the choice of time interval, the

next state after applying the control will lie on the surface of an

n-dimensional hypercube centered at the given point and with length

Z (Ax.) along the i state variable axis. This property is used to reduce the

fast memory requirement. The entire state-time (X-t) space is partitioned

into several blocks. Each block covers some increment along each state
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and a longer interval along the time axis. Then the optimal value of

the variables is calculated for one block at a time, and not for the

entire state space as in the standard dynamic programming algorithm.

3.2 PROBLEM FORMULATION

The optimization problem to which the state increment dynamic

programming procedure is applied is most conveniently formulated in

the continuous case over the interval t. 5 t S t
f

. Hence, the system

equation becomes a set of nonlinear time varying differential equations.

x-f_(x,u,t) (3.1)

where x_ « state vector in n dimensions

u control vector in q dimensions

£ - stage variable, usually time

f_ n dimensional vector functional.

The performance criterion to be minimized is a cost function denoted by

J. It consists of the sum of an integral with respect to a scalar

function of state variables, control variables, and stage variables

and a scalar function depending on the final state and the final stage.

Thus t
f

J - l *[x(o), u(o),o)]do + *[x(t ), t
f ] (3.2)

i

where t. - initial stage (time)

t
f

final stage (time)

a - dummy variable for stage

J cost function

I loss function; cost function per unit time

<J/
final value term in cost function.
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Constraints are on both state and control variables of the form

x e X(t)

u £ U(t) (3.3)

where

X(t) set of allowable states of the time t

U(t) set of the admissible controls at state x

and time t.

Assumption ; it is assumed that u(t), t . 1 t * t,, is piecewise constant

over intervals of length 6t. In order to implement the procedure on

a digital computer the set of differential equations is approximated

by a set of difference equations.

Thus, x(t+At) - x(t) + fjx(t), u(t), t]6t (3.4)

and the change in performance criterion over the interval from t to

(t + 6t) is approximated by

f
t

*[x(o), u(a),o] da

- 4[x(t), u(t), t]«t (3.5)

Again, if fit were fixed to a value At then the computation could

be done by the conventional dynamic programming method, but it is not the

case here. 6t is determined by computations and is the basic element

of state increment dynamic programming.

The functional equation can be derived from the cost function

based on Bellman's principle of optimality and can be stated as

I(x,t) - Min {£[x,u,t]«t + I[x + f (x.u.t) t,6t +6t]} (3.6)
ueU

~



19

3.3 CONSTRAINTS AND QUANTIZATION

The constraints are restricted to a set of admissible states X

and a set of admissible controls U. For example, inequality constraints

of the form $(x, t) - can be used to bound the state variables

8~ 5 x
t

i 8*
, for i - 1,2, ..., n. (3.7)

Inequality constraints of the type, $(x, u, t) - 0, can be used to

restrict the control variables

a" i u, 1 a . , for j - 1, 2, .... q. (3.8)

The quantities 8. and 8. can vary with t, while the quantities a. and

+
a . can vary with x and t.

Within the allowable range, each state variable x. is quantized

into a finite number of values, N . . It is convenient to assume the

quantization in constant increments, Ax.. The result is

where

and

X
i " 8

i
+ j

i
Ax

i
(3 ' 9)

j . 1, 2, ..., N

.

N
i
&x

±
- 8 - 8~ for i - 1,2, .... n.

The set of state vectors for which each component has the form of

Eq. 3.9 is called the set of quantized admissible states, X.

Although the control variables can be quantized in a similar

manner, it is necessary only that there be a finite number of admiss-

ible controls. The set of admissible controls, U, can be given as
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0- {u
(1)

, u
(2)

u
(o)

} (3.10)

The choice of u e U depends on the problem under consideration.

3.4 DETERMINATION OF THE TIME INTERVAL St

In state increment dynamic programming the time control for com-

putation of the optimal control (At) may or may not be fixed depending

on the nature of the problem. But the interval <5t varies with the

control applied. The interval 5t is determined as the minimum time

interval required for any one of the n state variables to change by one

increment. For example, if Ax. is the increment in the i state

variable and if control _u is applied, then

5t -
Mi

? { , .

i
-rf) (3.11)

i«l,2,...,n |f
i (2E» u.»t)|

where f.(x,u_, t) is the i component of f_(x,u_,t), the system differ-

ential equation vector.

Expression of 6t as in Equation (3.11) is the basic equation in

state increment dynamic programming. This also shows that the next

state lies only Ax. from the original one. Also, for the iteration of the

minimum cost function, only the value at these quantized states at Ax.

from original state need be stored. And this is the property

which reduces the fast memory requirement by a considerable amount.

3.5 BLOCK CONCEPT

The significant amount of reduction in high speed memory require-

ment can be achieved by processing the data so as to obtain the maximum

utilization of the reduction for a single calculation. This is done

by computations in units called blocks.
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Blocks are defined by partitioning the n+1 dimensional space Into

rectangular subunlts. Each block covers an increment w along the

x - axis and AT along the time-axis. A particular block can be denoted

by the largest value of the coordinates that are contained within the

block. Figure 3.1 shows the block for a problem with two state vari-

ables. For an n state variable problem the block can be denoted as

This block contains the values of t and x such that

(j -l) AT < t - t
i

<
j Q

AT

and

where

(j^l) w
t

Ax
±

1 x
±

- &" 5 j 2
w
±

Ax
±

(3.12)

Jq ™ 1» 2 J_

J " AT * e
£

" C
i

j. 1, Z, • • • » Jj

J
±
v^ Ax

i
- &

±
- &

±

1 1, 2, .. . , n.

For a two dimensional (n«2) problem each block is a three dimensional

rectangular solid, as shown in Figure 3.1, which has two axes for the

stage variable.

3.6 COMPUTATIONS WITHIN THE BLOCK

The computational procedure assumes that the next state is within

the block under process. In the general case the time interval is
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divided into smaller increments At. The set of quantized times are

determined as

t - t
Q
+ (j -l) At + SAt (3.13)

where

s » 0, 1, 2, ...» S

and

S At - AT

Typical values of S range between 5 and 15. Then the optimal control

is computed at each quantized state xeX for each quantized stage t

(k)
as given in Equation (3.13). Then each admissible control II £ U is

applied. Over each control the time over which it is applied is deter-

mined as in Eq. (3.11) as

««w -£.a -<l V !>• «•">
f
1
(x,u v

,t)

With this state and time the optimal cost function

I(x
(k

>, t + 6t
(k)

)

is computed by interpolation in (n-1) state variables and time using

previously calculated values at quantized state and times t+At,

t+2At, .... If the control is such that none of the state variables

change, i.e., if f_(x, u
(k)

, t) - 0, then x
(k)

- x and 5t
(k)

is set

equal to At. The resulting next states for a one-dimensional example

are shown in Figure 3.2, where

„ , (1) (2) (3) (4) (5),
U - {u , u , u , u x

, u }

values of optimal cost function are known at the points indicated by

small circles.
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Once the optimal cost is found out for each of the next states,

(k)
the cost of each control over time 6t is found by evaluating the

cost function per unit time

t(x, u°°, t).

The optimal cost and optimal control at x,t are then calculated by

using the principle of optimality. The result is

Kx.t) - £2k U(x,u
(k)

,t)6t
(k)

+ T(x
(k)

, t + 6t
(k)

}, (3.16)

k - arg £t2t## . ik
. U(x,u

(k
\t)6t

(k)
+ T(x

(k)
,t * 6t

(k)
>, (3.17)

G(x,t) - u
(k)

.

3.7 INTERBLOCK TRANSITION

This can be divided into two parts. One is the transition into

previously processed blocks, and the other transition is into previously

not processed blocks.

The simplest case of the previously computed block transition is

the one in which the boundary is common between the two blocks. In

this case there is no need to find new optimal points on the boundary.

However minimum costs at these states are stored in the high speed

memory and then they are used in interpolation formulae for minimum

costs at next state. The storage of these values allows transition

from the block currently being computed to the previously computed

block. As long as the values of minimum costs on such a boundary are

available, transitions of this type to previously computed blocks can

be made without constraint.
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In a system to which state increment dynamic programming is applied

there is generally some prior knowledge about the behavior of optimal

trajectories. The knowledge of direction of the optimal trejectory is

called the perferred direction of motion. Then according to the pre-

ferred direction the order of processing of the blocks is determined.

The processing order is inverse of the preferred direction to achieve

the transition to previously computed block. This helps in saving a

significant amount of computational time.

The second of the interblock transitions is the transition to

blocks not previously computed. The simplest technique is to exclude

all controls which result in such a transition during the computation

of a block, but to consider such a transition after both the blocks

have been computed. Therefore it will be clear that in the case of

computation of boundary, the controls which take the next state in the

block that is not yet computed are not allowed. However, when the

later block has been computed such controls are applied at the boundary

at the least value of t within the block. Then the minimum costs are

found for all points, the points on the boundary as well as the points

within the later block. If one of these costs is less than the existing

cost then it replaces that cost and becomes the new minimum cost, and

the corresponding control becomes optimal control.

A more accurate procedure for allowing these transitions is to

extrapolate the minimum cost function into the not yet computed block.

In general, extrapolation procedures are less accurate than interpol-

ation procedures. However, the extension of state by extrapolation is at

most Ax. in the x. direction and hence the error is strictly bounded.
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Moreover at every At interval along t, the minimum costs are recomputed

along the boundary and that does not allow the error to accumulate due

to extrapolation.

If extrapolation does not provide adequate results, then the

recomputation of the results along the boundary can be done. In this

case the optimal control and the minimum cost along the boundary are

recomputed when the block in which the extension was made is processed.

In general, the increase in computing time and high speed memory re-

quirement are not worth the slight increase in accuracy.

A better alternative is to precompute some results in order to know

the preferred direction of motion. If this is done then fewer of the

optimal trejectories will go in the non-preferred directions and hence

the results of extrapolation procedure will be used less often in

computing minimum cost.
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CHAPTER 4

AN ADVERTISEMENT PROBLEM

The computational aspects of the state increment dynamic program-

ming will be discussed in this chapter. The problem used to illustrate

the method is the one of inventory and advertisement system with two

state variables and one control variable.

A.l DEVELOPMENT OF THE MODEL

A diffusion model for advertisement was originally developed by

Teichroew (29). The model discussed here is an extension of his model.

Consider a particular sales system where in a group of people, only

certain members possess a particular piece of information. The group

size, i.e. the number of people in the group, is assumed to be constant.

Also, the diffusion of information occurs only through personal contact.

The number of 'contacts' made by an 'average' person in an arbitrary

unit of time and is given as a contact coefficient. It is assumed the same

for all the people in the group. A contactee receives the information

only if he/she does not already have it; otherwise the contact is wasted

as far as increasing the number of informed persons is concerned.

Let Q(0) • Q~ number of informed persons at time t .

.

N total number of people in group

C contact coefficient, the number of contacts

made by one informed person per unit of time

Q(t) number of informed persons at time t.

Therefore ^*jj— - the fraction of informed persons at time t, and

1 -
jj— " the fraction of uninformed persons at time t.
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The contacts made during a time interval dt can be given by

C Q(t) dt.
c

^

The increase in the total number of informed people during short time

interval At is found by multiplying the number of contacts by the

proportion of the uninformed persons because an increase in the in-

formed persons can be caused only by the proportion of the uninformed

people of the group. Therefore

dQ(t) - C
c

Q(t) dt (1 - SM)

and

mi .
Cc Q(t) (1L M£i) \ (4.i)

Suppose the company thinks that it can influence the number of

contacts by spending money on advertising and that the rate of

contacts by each informed person can be increased by an amount A per

unit time, then

^M . [c
c
+ A(t)] Q(t)(l - ^-) . (4.2)

If each informed person purchases C units of company's product and

the sales at the time t can be denoted by S(t), then

S(t) - C
q

Q(t) (4.3)

For simplifying, if C can be taken to be unity, then

S(t) - Q(t) (4.4)

Substituting S(t) for Q(t) in Equation 4.2, we have

4|M - [C
c
+ A(t)] S(t)(l - -^O . (4.5)
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The rate of change of the company's inventory is given by

*$*' P(t) - S(t) (4.6)

where P(t) production by time t. The production rate is assumed

to be a linear function of time and can be given by

P(t) - a + b t (4.7)

where a and b are constants.

The objective can be defined at this stage. The management desires

to maximize profit. In this problem the profit is

Profit Sales revenue - Inventory carrying cost - Advertisement cost.

In mathematical form it can be written as

J - /
f
[C S(t) - C

T
(I - I(t))

2
- C.S(t) A

2
(t)]dt (4.8)

u l m A

where J - net total profit

C sales revenue

I capacity of storage of inventory

C
T

inventory carrying cost

C. - advertisement cost
A

We have explained and derived the mathematical model in differ-

ential form. But here we are solving the problem by using state Increment

dynamic programming, which requires discrete form of the problem. There-

fore we shall transform the above differential equations into difference

equations.
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The system variables are inventory at time t and sales by time t.

In difference equations they can be given as

I(t + At) - I(t) + [P(t) - S(t)] At (4.9)

and

S(t + At) - S(t) + S(t)[C
c
+ A(t)][l - SJ&-] (4.10)

By inspection of the equation 4.10 one can see that if it be

kept in the same form then S(t + At) will be greater than N at one

stage. This cannot be allowed. Therefore a little modification is

S(t)
done in it. The term (1 —-1-) has been replaced by the term

(1 —- -) . The new equation is
N

S(t + At) - S(t) + S(t) [C
c
+ A(t)][l -

S(t + At
>

]

- S(t) + [C + A(t)] S(t)
C

- [C
c
+ A(t)] S(t) • S(t + At)

C + A(t)
S(t + At) [1 + {-2—- } • S(t) • At]

- S(t) [1 + {C
c
+ A(t)}]

S(t) [1 + {C + A(t)} At]

s« (t + At) chrm— <*•">

1 + S(t){-£-^ } • At

Now we have to change the profit function into difference equation

form. The result is

(n+D At

/ [c S(t) - Cjtt^ - I(t)T - C
A

S(t) A*(t)] • dt
nAt

- [c S(t) - C
x
(I
a

- I(t))
2

- C
A

S(t) A
2
(t)]At

- Ux, u(t), t) dt (4.12)
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which is a current stage profit equation in terms of state and control

variables. The complete functional equation for state increment dynamic

programming can be written as

I(x, t) - Min U(x, u(t), t) 5t

ueU

+ I[x + f (x, u(t), t) fit, t + 6t]}. (4.13)

4.2 DEFINITION OF PROBLEM

The goal is to maximize

Kx, t) -
*JU

U(x, u(t), t) • 6t + I[x + f(x, u(t), t)

+ I[x + f (x, u(t), t) 6t, t + 6t]}

and

H(x, u(t), t) • 5t

- [c • S(t) + C_ (I - I(t))
2

- C. S(t) A
2
(t)] «t (4.14)

l m A

subject to

P(t) - a + bt (4.15)

I(t + At) - I(t) + [P(t) - S(t)] 5t (4.16)

and

S(t) [1 + {C + A(t)} At]

s- (t + At) c-TTiT) ' (4 ' 17)

1 + S(t) (-^-^ } • At

4.2.1 Numerical Aspects

In order to solve this problem the constants were assumed to have

following values
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a 70 N - 150

b - 100 1 - 50

Ci" 2
6i"

C -

Ca"

20

0.5

C
f

- 1

C -
c

0.15

Initial conditions are:

1(0) - 20

S(0) - 20

The maximum amount of advertising at any time has been restricted to a

value of 6. This means that A(t) 1 6. This is the constraint on the

control variable.

4.3 SOLUTION BY STATE INCREMENT DYMAMIC PROGRAMMING

From the problem solution by quasilinearization (27), it is known

that the value of both the state variables, x(t) and S(t) respectively,

increase with the time. Hence this will be the preferred direction of

motion for them.

Using the block concept, we have three dimensional block of

Ax X S X AT. The time interval

AT - t
f

- t
Q

- 1,

is divided into ten equal parts giving

At - 0.1.

Since the preferred direction of motion of x(t) and s(t) is such

as to increase with time, we shall first process the blocks with the

largest values of x, s and t. First of all, in this block, x and s
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are kept constant, and optimal function values for all ten time incre-

ments are found out. Then x is kept constant and s is lowered by one

increment and then optimal function values are found for each stage

(time interval) . Then x is lowered by one increment and above procedure

is repeated. This goes on till the optimal function is evaluated for

all values of x, s, and t.

As shown in Figure 4.1, the adjacent block will have a common

boundary with the original one. The just-counted optimum values at

the original block boundary will become the initial values for the new

block. These values will be used to find the optimum values of the

next block.

4.4 PROCEDURE FOR OBTAINING STARTING VALUES FOR THE FIRST BLOCK

To get good accuracy by state increment dynamic programming, the

average value of the time interval 6t required to change any of the

states by one increment should be close to At. If it is large or small

compared to At the accuracy is decreased because of inaccurate approx-

imations due to the interpolations or extrapolations performed. In

Ax Ax
other words — - -r- - 1. Such a condition when Ax is small is illus-

trated in Figure 4.2.

In this figure the optimum values at points p. and p. are known.

The optimum value at point pQ
is to be found from these two values.

Since Ax is very small, nAx will be increased by one increment to

(n+l)Ax on application of control z for a very short time interval St.

As a result the point p. is at a far distance from points p 1
and p„.

This will result in an inaccurate optimal value of p, based on extra-

polation.
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Fig. 4.2 Order Of Processing The Blocks.
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Since the state variable increases with time the width of time

block wAx is taken equal to Ax and hence w 1.

Figure 4.1 shows in simplified manner the order of processing

the blocks.

The computer program in FORTRAN language with a sample printout

is shown in Appendix A. It was solved on the ITEL AS/5 computer. The

flow chart for the state increment dynamic programming is also shown

in Appendix B.

The results for the initial condition were interpolated manually

and are given in Table 1. The plots of the results for each visuali-

zation are also given in Figures 4. 3-4. 7.

4.5 RESULTS

The optimal profit in this problem was J 891.00 and the optimal

initial and final values are

1(0) - 20

S(0) - 20

A(0) - 6.0

1(1) - 50.0

S(l) - 123.22

A(l) - 0.0

From Table 1 we can see the advantage of using state increment

dynamic programming. Since we are using the principle of optimality

we get the optimal values of each stage for all parameters. Thia is

done by dividing the solution space into a number of grid points and

evaluating optimal values at each grid point where at least one of the

state variables changes its state.
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The problem was solved on ITEL AS/5 computing facility at Kansas

State University on WATFIV compiler. It took about 3.79 min. to get

the overall results.

4.6 DISCUSSION

From Table 1 and Figures 4.3 to 4.7 we can see that the different

parameters increase with the time and so does the profit.

The production rate, being a linear function of time, increases

with the time, while other parameters like inventory and sales also

increase with the time. The amount of advertisement decreases with

time and eventually becomes zero. Since the sales increase with time

and advertisement decrease with time, the profit, as would be expected,

should increase with the time. This easily can be visualized from the

plots in above mentioned figures. Also the production is a linear func-

tion of time and hence should be maximum at the final stage which would

give the maximum profit.

As has been mentioned before the problem with the same model has

been solved by P. Shah (26). The optimization technique he used was

quasilinearization. Therefore the best way to evaluate the state

increment dynamic programming would be to compare our results with his.

Since the constants used here are different, we can not expect the

same results as his. But the trend of the optimal values for different

stages can be compared. It is found that his results and ours match

very well and follow the same pattern. The quasilinearization took

about 3.72 minutes to get the completely converged solution. State

increment dynamic programming took 3.79 minutes to get the complete

solution.
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The great advantage with SIDP is that we got optimal values of

objective function at all grid points in the solution space. Thus if

one is interested in seeing the optimal values at different stages or

states, can get directly from tables. This is helpful in case of

constraint changes on stage and state variables. One does not need

to go through the whole tedious procedure again and again. Thus little

increase in computing cost can be justified.

The same kind of results with probably a little more accuracy

could be obtained by the standard dynamic programming algorithm. But

the 'dimensionality' difficulty restricts the application. For example

66 fast memories are required for this problem when solved by SIDP while

1200 fast memories would be required for solution by standard algorithm.

As for accuracy, we do not claim that the results are the most

accurate ones by this method. The reason is the average time interval

over which control is applied should be about the same order of magnitude

as the fixed time interval to get very accurate results. But the time

interval over which the control is applied is divided by the state vari-

ables and the control variables. If one of the state variable changes

much more rapidly than the other, then the time interval for the appli-

cation of the control for that particular variable will be the least

and hence it will go on changing all the time. This keeps the other

state variables unchanged, and the problem moves in a plane rather than

space. This brings in accuracy in the results due to interpolations.

Moreover SIDP is a fairly new method. There have not been very

much researches on it nor computational experiences. Some of the

assumptions make its use restrictive. One of them is mentioned above
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while the other one is movement of the objective in the preferred

direction. We do not have any answers for the consequences of moving

in non-preferred direction.

In spite of these restrictions, SIDP still is a versatile method

and can be used very successfully where the standard algorithm does

not work very well. It has extremely good potential and more develop-

ment can make it very powerful technique.
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APPENDIX A

Mathematical expressions for journal bearing operative characteristics:

1. S < 0.15

i) 0.25 < L/D < 0.5

h
Q

- 1.585 C(L/D)°-
913

(S)
0.655(L/D)

- 0922

At - V,-4
P (S)

'^/(L/D) - 139

(L/D)
U * J/*

2- -0.76 (L/D)
' 62

(S)
' 24

P
max

^ - 0.128(L/D)°'
048

(S)°-
1(L/D >

0,47

+ (R/C) -_12
S

6
(S)

0.62/(L/D)°-
1035

(L/D)
-*1

ii) 0.5 £ L/D i 1

h
Q

- 1.84C (L/D)
1 * 13

(S)
0.731(L/D)°-

252

At--^3

rT,P(S)
- 56/(L/D)0

* 302

(L/D)
' 62

f--0.76 (L/D)
' 62

(S)
0.294(L/D)

- 292

max

SgSl- 0.128 (L/D)
' 048

(S)
0.06/(L/D)

- 212

f(R/c) -_11^8 (S)
0.62/(L/D)°-

1035

(L/D)
0,503



49

2. Si 0.15

i) 0.25 5 £ < 0.5

h
Q

- 1.035 C (L/D)°-
673

(S)
0.33/(L/D)°-

2

a. 0.695 ,_,0.875(L/D)°-
042

At " 0~214 (S)

(L/D)
U,Zi4

P
-0.76 (L/D)

' 62
(S)

' 24

P
max

^-0.128 (L/D)°-
048

(S)
- 1(L/D >°*

47

f(R/L) -
16 ' 85

318
(S
)0»^^)0t087

(L/D)
* 318

ii) 0.5 5 L/D < 1

h
Q

- 0.95 C (L/D)
' 556

(S)°-
375

A . 0.695 ,_,0.875(L/D)
- 042

At " (T21A
(S)

(L/D)
U*^

1 S^S

/--0.55 (L/D)
' 1535

(s)
' 083'^

max

212
^k- 0.128 (L/D)

- 048
(S)°-

06/ ""»

f(Wc>—^jj- (S)
- 922

'
L/D'°-°

87

(L/D)
0,1 ^ 7



50

APPENDIX B

// EXEC WATrlV
//SYSIN 0D *
SJ03 ,TIM5*(5, ),PAGES=250

DIMENSION S8(5l,5L )»SP(51,5l)
0X = 5
0R = 5
0A=,2
OT=.l
NT=10
NX = 2L
NA = 3l
NR = 30
PI=50
AN=150.2
48*70
3 = 100
C=2
•^20
CI*. 15
CA=0.5
XMAX=100
PR5S=-933S88
•\JRR=NR + 1

NXX=NX+l
UM<=WJ*0 •

N8:.0C'<=0
MS=NT

100 FORMAT (IHl, 'STAGE NO TIME X(N-l) RCN-1) X(N
I P(N) P(N) A(N) PROFIT 1

)

101 F0P..M4T (IH ,5X»I2t8(4X»F7.2) J

102 -ORM^r ( IH , 'BLOCK NO = ',13)
PRINT 100
00 7 1 K=i,51
00 7L L=l,5i
SBK,L)=0

71 SP(K,L>=0
00 10 <X=L,NX
X^,NX-<X
x=x*ox
00 U <R=l»NR
}=NRR-KR
IR = R
R=R*DR
r=i
^AB+B^M r-OT )

^Bl DC.<=NBI CCK + L

OR INT 102»NBI.0C<
00 2 5 <A=1,NA
a=<a-i
A=A*OA
<n = X + { P-* M!OT
ROa(R*{ l. + (C + A )*0T ) )/( l.+R*<C + A)*DT/AN)
Ii= (X0.f.r..00l )G0 TO 25
SMI=W»(R*r-( PI-X )=»*?*(-. I -C A* A** 2 *R )*0T
li= ( S'iEW.i.r.PRES ) GO TO 25
PR5S=SN£W
A 4 = 4
XX = XO
RR =RO

- 25 CONTINUE
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80

42

90
91

51

22

81

43

11

31

IF (LI
LIN6N0
PRINT
PRINT
LIN5NC1
SPfMSt
PR6S=-
NS=NS-
r*NS*o
P=AR+B
00 22
A=KA-l
4= 4*0

A

U = P-R
l
c (U.

06i. rx =
oo ro
OELTXs
OELTRa
f? (06
06LT=0
06LR=0
XO = X-M
RO=(R*
Sl*(R*
Ri = SB(
R2=SR(
S2=R1-
SN6W=S
GO TO
06) r=o
06L*=0
xn=x-i-(
ROa{R*
Sl = { **
Xl*SP(
X2 = S=>(
S?sXi-
SNEWsS
IFiSNc
^R6S=S
AA = A
XX = XO
RR =RO
COM TIN
IF (LI
LINENG
PRINT
PRINT
LIN6N0
SPINS,
fF(NS.
oo ro
r=i
NS=NT
p«es«-
CONTIN
00 31
00 31
SRILNS

N6N0.LT.45) GO TO 80
=
100
10i,NS. T t X,R,XX,RR,P,AA,PRES
=LIN6N0+l
[R )=PR6S
988888
I
T

*(T-DT)
<A=l,NA

60
AR
91
99
AR
IT
EL
6!

(l

NS
NS
(R
l +
52
6!
PI

(1

..0 ) GO TO 90
S(DX/(P-R) )

q
S(
X.
rx
T*
R )

.+-
{=>

+ 1
+•?

i -

S2

OR/ (R*(C+4)*( l.-(R+OR)/AN) )

)

GT.06LTR ) GO TO 51

R*(OA )*( l.-R/AN)
#0T
(OA )*0T ) )/{ l.+R*(C +A)*DT/AN)
I-X )**2*Cl-CA*A**?*R)*0ELr
t IR )+(SR(MS+l. IR+D-SflCNS + 1* IR) )*06I.R/0R
IR ) + (SR(NS + 2»IR + l )-SB(NS-*-2.TR) )*OSLR/DR

R2 )*(06LT-0T )/0T

US
N6N0.LT. '+5 ) GO TO 8i
=0
100
10UNS.r f X,R,XX,RR,P,^A,PR6S
t.INENG+1
IR )-PR6S
LE. I ) GO TO 43
42

983888
06
LNS=1, NT
l.R=l ,NR
»LR ) = SP(LNS,LR )
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r=i
NS =NT
OR-ES =-983888

. 10 CONTINUE
STOP
END

SENTRY
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ABSTRACT

The importance of quantitative techniques in decision making

emphasizes the need of efficient techniques as a tool for solving manage-

ment problems. The most difficult are the boundary value problems with

nonlinear differential and/or difference equations. The non-linearity

in the system equations does not allow the application of superposition

principle.

One of the most important techniques developed in recent years

for the solution of optimization problems is R. Bellman's dynamic program-

ming. This technique solves at least in principle a large number of

important optimization problems. However, because of extremely large

amount of fast storage memory requirement, called by Bellman "curse of

dimensionality", only relatively simple problems can be solved on exist-

ing computers.

State increment dynamic programming, developed in 1965 by R. E.

Larson, requires considerably less fast-access memory but it still retains

the general applicability and other desirable features of the standard

algorithm.

In this thesis first a brief introduction and computational pro-

cedure of state increment dynamic programming are given. Then its

application to advertisement production problem with two state variables

and a control variable is duscussed in detail.

The production planning with consideration of advertisement provides

a good base of comparison of this method with others used to solve the

problems with same model in the past. The advantages and disadvantages

of state increment dynamic programming have been highlighted.


