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Abstract 

The primary objective of this research is to achieve automatic evaluation of the efficiency of using 

Trichogramma bourarachae for biological control of Cadra (=Ephestia) cautella by calculating 

the rate of parasitization. Cadra cautella is a moth feeding as a larva on dried fruit as well as stored 

nuts, seeds, and other warehouse foodstuffs. It attacks dates from ripening stages while on tree, 

throughout storage, and until consumption. These attacks cause significant qualitative and 

quantitative damages, which negatively affect dates’ marketability, resulting in economic losses. 

To achieve this research goal, tasks were accomplished by developing image processing 

algorithms for detecting, identifying, and differentiating between three Cadra cautella egg 

categories based on the success of Trichogramma parasitization against them. The egg categories 

were parasitized (black and dark red), fertile (unhatched yellow), and hatched (white) eggs. Color, 

intensity, and shape information was obtained from digital images of Cadra eggs after they were 

subjected to Trichogramma parasitization and used to develop detection algorithms. Two image 

processing methods were developed. The first method included segmentation and extractions of 

color and morphological features followed by watershed delineation, and is referred to as the 

“Watershed Method” (WT). The second method utilized the Hough Transformation to find circular 

objects followed by convolution filtering, and is referred to as the “Hough Transform Method” 

(HT). The algorithms were developed based on 2 images and then tested on more than 40 images. 

The WT and the HT methods achieved correct classification rates (CCRs) of parasitized eggs of 

92% and 96%, respectively. Their CCRs of yellow eggs were 48% and 94%, respectively, while 

for white eggs the CCRs were 42% and 73%. Both methods performed satisfactorily in detecting 

the parasitized eggs, but the HT outperformed the WT in detecting the unparasitized eggs. The 

developed detection methods will enable automatic evaluation of biological control of Cadra 



 

  

(=Ephestia) cautella using Trichogramma bourarachae. Moreover, with few adjustments these 

methods can be used in similar applications such as detecting plant diseases in terms of presence 

of insects or their eggs.  
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Chapter 1 - Introduction 

 Background 

The date palm (Phoenix dactylifera L.) is the prevalent fruit crop in the Kingdom of Saudi Arabia 

(KSA). As a result, the KSA is the world's second largest producer of dates, supplying 17.6% of 

the world market (Siddiq and Greiby 2014). Current date production in the KSA is approximately 

1 million tons annually. 

 

Dates encounter serious economic losses in both quantity and quality caused by warehouse insects. 

Among the insects attacking stored products is the date moth Cadra cautella. E. cautella 

(Lepidoptera: Pyralidae), which is a common cosmopolitan pest in most of the temperate world as 

well as in warmer areas. It causes damages to dry fruits, stored grains, and their products (Boshra, 

2007; Arbogast and Chini, 2005). One biological control method includes releasing parasitoid 

wasps of the genus Trichogramma Westwood into a stored-product environment (Schoeller and 

Flinn, 2000; Steidle et al., 2001). Skilled technicians then measure the performance of 

Trichogramma for biological control by visually counting the numbers of parasitized (black and 

dark red), fertile (unhatched yellow), and hatched (white) eggs in the sample. Visual detection and 

counting of eggs, however, is tedious, laborious and time consuming.  

 

One of the most popular approaches for identifying and calculating each egg category is to use 

image processing technologies. Images of biologically controlled Cadra egg samples are captured 

by a digital camera. Color and shape information is then extracted from the images for counting 

each categories’ eggs. Universal methods for automatic identification of circular objects could be 

used in many other fields such as fruits counting, bakery products counting. Furthermore, the 
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accuracy for counting circular objects could be improved by modifying corresponding objects’ 

size and color parameters for specific applications. 

 

 Objectives 

The primary objective of this research was to automatically evaluate the efficiency of biological 

control of Cadra cautella using Trichogramma. In this study, image processing algorithms were 

developed to identify and differentiate egg categories based on the success of Trichogramma 

parasitization against egg categories. These egg categories are: 

1) Parasitized eggs (black and dark red), 

2) Fertile (unhatched) eggs (yellow), 

3) Hatched eggs (white). 

This research also included the following specific objectives: 

1) Establish a database of digital color images of Cadra eggs after being subjected to 

Trichogramma parasitization for eight days. 

2) Extract features that characterize the parasitized and unparasitized Cadra eggs based on 

color and shape information in egg images. 

3) Design, develop, and test algorithms for segmentation, noise removal, separation of 

touching eggs, classification, recognition, and counting of parasitized Cadra eggs in digital 

images. 

 

 Thesis outline 

The rest of the thesis is organized as follows. Chapter 2 includes the background knowledge 

of insect control, biological control and machine vision. Chapter 3 describes the procedure to 
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acquire images. Chapter 4 contains implementation details of the Hough transform (HT) algorithm, 

and Chapter 5 introduces implementation details of the watershed transformation (WT) approach. 

The performance of these two methods is listed in Chapter 6. Chapter 7 concludes the entire work 

and recommends future work. 
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Chapter 2 - Literature Review 

This chapter is comprised of three parts. The first part describes the related work in general insect 

control methods. The next part describes the work related to the biological control methods. The 

last part introduces machine vision application in automatic classification, inspection, and 

counting. 

 

 General insect control methods 

 

Insect control has become increasingly essential because insects post a threat to the productivity, 

health, and well-being of humans, livestock, companion animals, and wild life (Brogdon and 

McAllister 1998). Disease vectors such as ticks, lice, mosquitoes, and bugs, which directly impact 

public health, are of public health importance and are of increasing concern to the general 

population, particularly in third world countries (Gubler, 1998; Gubler, 2002). According to the 

American College of Allergy, Asthma, and Immunology, more than 2 million Americans are 

allergic to stinging insects, more than 500,000 people enter hospital emergency rooms every year 

suffering from insect stings, and 40-150 people die annually as a result of insect stings. Insect and 

mites are also a serious threat to food crops, causing estimated 20% loss of stored grain annually 

(Haubruge et al., 1997). Even with current insect control technology, insects destroy over 30% of 

the world’s food crops every year (Boyer et al., 2012). Haines-Young et al. (2000) estimates at 

least a yearly loss of 100 billion US dollar caused by insects in the world.  

 

Although the global population is currently 6.5 billion, the US Census Bureau projects a worldwide 

population of over 9.2 billion by 2050, more than a 40% increase (Miyasaka et al., 2006). The 
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increasing world population creates growing demands for crop production, resulting in utilization 

of almost all available fertile land. Improving insect control technology is one way to produce high 

quality of agricultural products in increasing quantities. 

 

Most specific insect control methods can be classified as cultural control, physical control, 

mechanical control, biological control, chemical control or host resistance (Mahr and Ridgway, 

1993).  

 

Cultural control involves modification of standard farm practices to avoid pests or to make the 

environment less favorable for the pests (Mahr and Ridgway, 1993). At present, most successful 

cultural control projects are based on a combination of cultural control and biological control, with 

moderate use of chemical pesticides (Bajwa and Kogan, 2004). Sanitation ensures that the area 

contains no plants or materials that may harbor pests. One example is cleaning of farm equipment 

that may spread pests from field to field (Mahr & Ridgway, 1993). Cultural control against tomato 

late blight was evaluated by Tumwine, Frinking, and Jeger (2002) in six field experiments over 

three years. They compared tomato growth, production and the numbers of diseased leaves 

between standard sanitation treatment and no treatment in each experiment. They found that blight 

incidence and severity were greatly reduced by sanitation. In addition, field crops such as alfalfa, 

soybean, corn, and small grains are planted in parallel strips to create a diverse habitat that is 

favorable for insects’ natural enemies and less favorable for most pest insects (Mahr and Ridgway, 

1993). Crop rotation replaces a crop that is susceptible to a serious pest with another crop that is 

not susceptible, on a rotating basis. For example, Yamada (2001) studied crop rotation with sweet 

corn to address plant diseases caused by fungi or bacteria. He introduced sweet corn cultivation 
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into taro fields to control nematodes which severely damaged taro roots. A carefully considered 

time of planting also helps avoid some pest problems.  

 

Physical control applies physical practices to prevent insect pests from reaching their hosts. 

Physical controls can be classified as passive (e.g., trenches, fences, organic mulch, particle films, 

inert dusts, and oils), active (e.g., mechanical, polishing, pneumatic, impact, and thermal), and 

miscellaneous (e.g., cold storage, heated air, flaming, hot-water immersion) (Vincent et al., 2003). 

Boiteau tested the control of potato virus in seed potato by combining border crops and mineral 

oil sprays. After three years of field tests, they found that combining border and oil provided the 

best reduction in potato virus and the combination worked better than using crop borders or oil 

sprays separately (Boiteau et al., 2009). Commercial traps can also be used for control, such as 

food-baited traps for ants (de Carvalho Moretti et al., 2013). 

 

Mechanical control directly removes or kills pests. Although mechanical control is a rapid and 

effective method, most are only suited for small acute pest problems. However, mechanical control 

has minimal impact on the natural environment and can be used in conjunction with biological 

control in integrated pest management (Mahr and Ridgway, 1993). Hand-picking can be used for 

large or brightly colored pests such as Japanese beetles or slugs, and snails (Hart and Rhonda, 

1994). A strong cold water spray drives mites away from gardens, green houses, and house plants, 

or even kills mites (Rogers, 2000). 

 

Biological control is a bioeffector method that controls pests using living organisms (Stiling, 

1992). Additional details are included in the future sections. 
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Chemical control utilizes chemicals to kill or inhibit insect pests’ feeding, mating, or other 

essential behaviors. Current chemical control methods are based on the use of insecticides (Boyer 

et al., 2012). Chemicals used in this method are natural or synthetic materials; carbon dioxide, 

fumigants, organochlorines, organophosphates, and pyrethroids are commonly used for stored-

product insect control (Boyer et al., 2012). Chemical control is highly effective with relatively low 

cost, and its effects are generally predictable and reliable. However, chemical control exhibits 

biological activity against many lifeforms, thereby affecting non-target organisms. Chemical 

controls also present various levels of hazard to humans, and most chemicals are highly toxic to 

beneficial insects. Another problem of chemical control is that pests often develop resistance to 

insecticides. Capucho et al. (2013) developed a new strategy to control coffee leaf rust through the 

application of triazole fungicides in soil. A contact insecticides was found to control the redbay 

ambrosia beetle which is a wood-boring insect and a threat to the avocado in southeastern U.S. 

(Peña et al., 2011). The use of chemical method should only be undertaken after careful 

consideration if the benefits outweigh the disadvantages. 

 

Host resistance pertains to plants’ ability to resist damaging insect invasions. Plants have physical 

and chemical adaptations that allow them to repel, tolerate, or kill pests. For example, the 

International Potato Center (CIP) have tried for several years to develop potato varieties that have 

high levels of resistance to potato late blight problem (Forbes, 2012). Some plants use their 

physical appearance as an insect deterrent, such as plants with hair that covers their leaves (Mahr 

and Ridgway, 1993). 
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 Biological control methods 

 

Biological control is the regulation of plant and animal numbers by natural enemies (Stiling, 1992). 

Biological control was first introduced by Harry S. Smith in 1919. He used this word to signify 

the use of natural enemies to control insect pests (Huffaker, 1976). Although biological control 

relies on predation, parasitism, herbivory, or other natural mechanisms, it also requires an active 

human management role. Biological control does not kill pests; instead it prevents pests from 

causing harm to plants. The scope of application in biological control has expanded from the use 

of entomophagous insects to control insect pests to the use of a whole range of organisms to control 

insects, mites, snails, and even plants as diverse as algae, fungi, and herbs (Huffaker, 1976). 

Biological control strategies can be categorized as importation (also called classical biological 

control), augmentation, and conservation.  Importation biological control involves importation, 

screening, and release of natural enemies to permanently establish effective natural enemies in 

new areas. This method is typically applied to nonnative pests that have no natural enemies to 

control their population in native lands, or pests that are not adequately controlled by existing 

natural enemies. Augmentation biological control involves the supplemental release of natural 

enemies of the target pest. Conservation biological control provides resources for natural enemies 

and protects them from adverse conditions via farming and gardening practices that benefit all 

natural enemies (Mahr and Ridgway, 1993). 

 

The use of insecticides and other chemical treatments against pests implies the risk of adverse 

ecological, toxicological, and economic effects (Youssef et al., 2004). Compared to chemical 
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control, biological control is advantageous because it does not harm humans, plants, or native wild 

life. Biological control also offers self-perpetuation at little or no cost following the initial effort 

(Huffaker, 1976). An alternative biological control method to synthetic chemical insecticides for 

combating Cadra (=Ephestia) cautella is to release parasitoid wasps of the genus Trichogramma 

Westwood into the stored-product environment (Schoeller and Flinn, 2000; Steidle et al., 2001). 

Trichogramma are extremely tiny wasps in the family Trichogrammatidae and they exist naturally 

in almost every terrestrial habitat and some aquatic habitats as well. These wasps lay their eggs 

into the C. cautella eggs, thus killing the eggs and preventing their development. Trichogramma 

species are the most frequently used natural enemies for the control of lepidopteran pests of fruits 

and cereals in the field (Li, 1994). Worldwide, egg parasitoids of the genus Trichogramma 

(Hymenoptera: Trichogrammatidae) have been successfully utilized for biological control of 

several Lepidopteran pests. Because of their low host specificity, Trichogramma can be mass 

reared easily in large numbers and on different natural and factitious hosts (Oezder and Kara 2010). 

More than 150 different species of Trichogramma are known from various biotopes (Pino, 1999). 

Nine species of Trichogramma are reared in private or government owned insectaries around the 

world and released annually on an estimated 80 million acres of agricultural crops and forests in 

30 countries (Li, 1994; Olkowski and Zhang, 1990). 

 

In Germany and Austria, the control of the Indian meal moth, Plodia interpunctella (Huebner) and 

the Mediterranean flour moth Cadra kuehniella (Zeller) in food processing facilities is achieved 

by releasing large quantities of Trichogramma evanescens Westwood using the inundative release 

strategy (Schoeller, 2001). They parasitize insect eggs, especially eggs of moths and butterflies. 

Some of the most important caterpillar pests of field crops, forests, and fruit and nut trees are 
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attacked by Trichogramma wasp. In Canada, Trichogramma species are commonly reared and 

used to control field and glass house insect pests (Schoeller and Fields, 2002). One of the major 

considerations in the design of an augmentative biological control program using egg-parasitoids 

is the selection of the parasitoid species or strain, which is in turn determined by its performance 

in the field (Hegazi, et al., 2005). 

 

However, this method also has limitations. For example, the host develops virtually undetectable 

resistance to introduced natural enemies, a situation that can only be remedied by introducing new 

natural enemies. In addition, the results of biological control are difficult to predict and can only 

be known after greatly expanded research over a long period. Research seeking a biological control 

solution consistently demands scientific and technical staff, funds, and time, and the final solution 

cannot be guaranteed in advance. These disadvantages are due to complexity of the nature and lack 

of information about the natural relationships among the host, the pest, and the natural enemies of 

the pests (Mahr and Ridgway, 1993). 

 

Evaluation of the effects of biological control methods is another difficult task. Up to date, proper 

evaluation methods have not yet been established. Suitable evaluation methods should identify the 

advantages and disadvantages of existing natural enemies, confirm the need for new enemies, and 

verify manipulation of the environment or natural enemies in order to make resident species more 

effective. Effective evaluation methods should also provide insights into the principles of 

population ecology relating to the interplay of biotic and abiotic factors and demonstrate the 

effectiveness of natural enemies to ensure continued support for biological control research and 

development. Biologically-controlled insects and natural enemies must also be sampled, typically 
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by visually searching and counting samples but this technique is time-consuming, and insects 

develop rapidly and change appearance. Therefore, machine vision is commonly applied to solve 

this problem. Another common approach is the determination of relative density from such as 

tissue damage, feeding sign, or frass (Huffaker, 2012). 

 

 

 Machine vision 

 

Machine vision technology and methods provide imaging-based automatic inspection and 

analysis, robot guidance, and process control in industry. Machine vision initially obtains the 

image of an object and then processes it with computer for specific applications. Features such as 

size, color, and shape are used to discriminate between objects and non-objects. A machine vision 

system acquires and analyzes images, recognizes certain features or objects within the image, and 

exploits and imposes environmental constraints (Awcock and Thomas, 1995).  

 

Many valuable machine vision systems have been designed to perform automatic counting of 

specific object types. The usual procedure for object counting starts with segmenting the objects 

from the background using various thresholding techniques. Bachar et al. (1997) successfully 

counted pollens on stigmas in 1997 by transferring the original image into a red-scale image in 

order to establish a good contrast between the pollen grain and the background. Pearson et al. 

(2002) counted the number of pink bollworm eggs on oviposition pads using histogram features 

of grayscale images of the pads. They utilized a thresholding image to discern dyed eggs from the 

background and particle areas to count eggs. Barbedo (2014) developed an imaging system for 
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counting white flies on soybean leaves. He applied different color models to separate objects from 

the image. However, changing light conditions caused difficulties in image analysis. Choi et al. 

(2013) designed an image processing algorithm to accurately estimate fruit count. This algorithm 

included normalization of intensity, citrus fruit detection by a logistic classifier, and least square 

circle fitting. 
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Chapter 3 - Materials 

This chapter introduces the procedure of acquiring images. 

 Rearing of Cadra cautella 

In this study Cadra cautella was successfully reared in laboratory cultures on a standard diet 

consisting of one-half  part crushed date fruit, one part barley, one and one-half parts of broiler 

feed and one and one-half parts layer feed  (by weight), as described by Al-Azab, (2007). The 

sterilized diet was mixed with 400 ml of glycerol. Newly emerged male and female adults were 

paired in a wooden cage with screened sides. A piece of white paper was put under this cage to 

collect eggs. Eggs that fell through the wire mesh were collected in open dishes, and then 15 mg 

eggs of E. cautella were checked under the microscope to remove any impurities or deformed 

eggs. The E. cautella eggs were transferred into one-liter glass jar containing 200 gm of the 

previously mentioned sterilized diet. The glass jar was covered with a layer of cheesecloth and 

placed in an incubator with 50-60 % relative humidity, at 29 ±1o C with 12 light photoperiod. 

 

 Rearing of Trichogramma bourarachae 

Two species of Trichogramma, namely Trichogramma bourarachae and T. cordubensis 

(Hymenoptera: Trichogrammatidae), were reared in the lab. The first species is arrhenotokous, 

producing both females and males through parthenogensis reproduction while the second species 

produces only females (Thelytokous). These two species are known to be adapted for harsh arid 

and semi-arid conditions. Two cycles of rearing both Trichogramma and Cadra were carried out 

so far. Only Trichogramma bourarachae was used in all experiments and the other species was 

used as backup because these tiny wasps are very sensitive and require special handling during 

mass production. Colonies of Trichogramma bourarachae used in this study were brought from 
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Egypt. The parasitoids were reared on Cadra cautella (Lepidoptera: Pyralidae) eggs under 

laboratory conditions. The eggs of Cadra were obtained as described above. The method used for 

parasitization of Cadra eggs by T. bourarachae was that used by Roriz et al., 2006, with slight 

modifications. Females of T. bourarachae were isolated in small glass tubes (6 cm in length and 

1 cm in diameter) containing cards with eggs of Cadra. Egg cards were exposed to the parasitoids' 

females for 24 h. At the end of the parasitization period, Trichogramma parasitoids were removed 

from the glass tubes and the parasitized eggs of Cadra on the cards were kept under the same 

laboratory conditions for the development of the parasitoids. The cards with parasitized Cadra 

eggs that turned black after 7 days were taken and used for image acquisition. 

 

 Image acquisition and analysis 

RGB color digital images of Cadra eggs after subjection to parasitization by Trichogramma were 

captured using a DIGI Optika camera mounted on an Optika Tri Zoom Stereoscope with a 

magnification of 16.5x. The experiment was conducted under laboratory conditions at the 

Agriculture and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, KSA. 

All images were acquired under the same imaging conditions (i.e. same background, resolution 

[3200×2400 pixels], and working distance [11.5 cm] (Figure 3.1)). The Matlab Mathworks 

software was used for digital image processing and analysis.  
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Figure 3.1 The experimental setup. 
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Chapter 4 - Image processing - the Hough Transformation method 

 

This chapter explains the general principles of Hough transformation and details of the Hough 

transformation detection program in this study, including identification of dark-colored and light-

colored cells, and the method to combine the detected cells and count the eggs in different 

categories.  

 

 General principle of Hough transformation 

Paul Hough invented the Hough transform (HT) method in 1962 (Fokkinga, 2011). The classic HT 

was to identify lines in the image, although it has evolved to find imperfect instances of many 

other objects, such as circles or ellipses, within a certain class of shapes by a voting procedure. 

The HT used in this study was the circle Hough Transform (CHT), a specialization of Hough 

transform that detects circles. CHT is robust in the presence of noise, occlusion and varying 

illumination. 

 

All HT algorithms contains the following steps: 

 

1. Accumulator array computation. 

Foreground pixels of high gradient are candidate pixels that are allowed to cast votes in the 

accumulator array. In the classic CHT algorithm, each candidate pixel casts votes around the 

candidate pixel forming a full circle with a fixed radius (The MATLAB function of “imfindcircles” 

– “find circles using circular Hough transform”. (MATLAB, 2016)). Figure 4.1a shows one 
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candidate pixel lying on an actual circle (solid circle) and the classical CHT voting pattern (dashed 

circle) for this candidate pixel.  

 

                          (a)                                                (b) 

Figure 4.1 Classic CHT voting pattern. 

 

2. Center estimation 

Votes of candidate pixels belonging to an image circle tend to accumulate at the accumulator array 

bin corresponding to the circle's center. Therefore, circle centers are estimated by detecting peaks 

in the accumulator array. Figure 4.1b shows the candidate pixels (solid dots) lying on an actual 

circle (solid circle), and their voting patterns (dashed circles) which coincide at the center of the 

actual circle. 

 

3. Radius estimation 

If one accumulator array is used for more than one radius value, as is commonly done in CHT 

algorithms, radii of the detected circles must be estimated as a separate step. 
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 Hough transformation method 

The HT image processing method was used in this study to find circular objects in the image.  

Selection of this method was based on the fact that all the eggs, regardless of their color, had a 

circular shape in the images, and the radii of these circles are similar. A built-in function in Matlab 

called imfindcircles was applied to find circles using circular Hough transformation. This function 

was used in two different ways. Dark-colored eggs could be directly detected in original RGB 

image by CHT while light-colored cells required a more extensive preprocessing before CHT 

application. After finding all circular objects in the image, detected cells were combined, and 

repeated cells were removed. The remaining cells were classified into different egg categories 

based on the color database of digital color images of Cadra eggs. 

A flowchart of this method is shown in Figure 4.2. 
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Figure 4.2 Flowchart of the HT algorithm 
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 Finding dark-colored cells 

The Hough Transformation function imfindcircles in Matlab was applied to identify dark-colored 

circular objects in the image. The function call for imfindcircles was 

[𝑐𝑒𝑛𝑡𝑒𝑟𝑠, 𝑟𝑎𝑑𝑖𝑖]

= 𝑖𝑚𝑓𝑖𝑛𝑑𝑐𝑖𝑟𝑐𝑙𝑒𝑠(𝐴, 𝑟𝑎𝑑𝑖𝑢𝑠𝑅𝑎𝑛𝑔𝑒,′ 𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦′,′ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦′,′ 𝑀𝑒𝑡ℎ𝑜𝑑′,′ 𝐸𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑′) 

Parameters for the function call included range of radius, sensitivity, and edge threshold. Figure 

4.3 shows cell diameters of the dark-colored cells in section of the original image. Because cell 

diameters of a majority of the dark-colored cells were between 140 - 240 pixels, the radius range 

used in function call was 70 - 120 pixels.  

 

Figure 4.3 Cell diameter measurement. 

 

The parameter “object polarity” indicates whether circular objects are brighter or darker than the 

background. “Dark” was specified to find circular objects that were darker than the background in 

the images.  
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The sensitivity factor refers to CHT accumulator array sensitivity, ranging from 0 to 1. A higher 

sensitivity value detects more circular objects. Although high sensitivity values detect weak and 

partially obscured circles, they also increase the risk of false detection. Sensitivity values from 

0.93 to 0.98 were tested in increments 0.05 to determine the best sensitivity value that detected the 

most eggs with least false detections. A sensitivity value of 0.965 was then selected in our program. 

Figures 4.4 - 4.6 show circular objects detected with sensitivities of 0.93, 0.965, and 0.98, 

respectively, with identical radius range, computation method, and edge gradient. 

 

 

Figure 4.4 Dark-colored cells with sensitivity of 0.93. 
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Figure 4.5 Dark-colored cells with sensitivity of 0.965. 

 

Figure 4.6 Dark-colored cells with sensitivity of 0.98. 

 

The parameter “method” determines the method to compute the accumulator array. Two methods 

- phase-coding (default) and two-stage – are available. We used the two-stage method in this 

program. Both methods share common computational steps, but they also have unique features. 

The common computational steps include the following. 
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1. Use of two-dimensional (2-D) accumulator array: 

The classic HT requires a three-dimensional (3-D) array to store votes for multiple radii, resulting 

in large storage requirements and long processing times. The phase-coding and two-stage methods 

use a single 2-D accumulator array for all radii.  

 

2. Use of edge pixels 

Memory requirements and computational speed are strongly governed by the number of candidate 

pixels. In order to limit the number of candidate pixels, both methods perform thresholding on the 

gradient magnitude of the input image so that only pixels of high gradient are included in tallying 

votes. 

 

3. Use of edge orientation information: 

Performance of both methods can also be optimized by restricting the number of bins available to 

candidate pixels. This is accomplished by utilizing locally available edge information in order to 

permit voting only in a limited interval along the direction of the gradient. 

 

Despite their similarities, phase-coding and two-stage approaches differ in circle radii. 

 

The two-stage method uses estimated circle centers and image information to explicitly estimate 

the radii. This technique is based on computing radial histograms. Phase-coding, on the other hand, 

uses complex values in the accumulator array, and the radius information is encoded in the phase 

of array entries. Votes cast by the edge pixels contain information about possible center locations 

and the radius of the circle associated with the center location. Unlike the two-stage method in 
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which radii must be estimated explicitly using radial histograms, the phase-coding method 

estimates the radii by simply decoding phase information from the estimated center location in the 

accumulator array (Yuen, Princen, Illingworth, & Kittler, 1990). 

 

Another difference between these two methods is on the computational load. Although the two-

stage method requires additional radius estimation, the overall computational load is typically 

lower than the phase-coding method, especially over a large radius range. 

 

The “edge gradient threshold” parameter refers to the contrast between a pixel and its neighboring 

pixels to identify edge pixels in the image. The edge threshold ranges from 0 to 1. An edge 

threshold value of 0 indicates a zero gradient, and 1 the maximum gradient. A high threshold value 

detects fewer circles because circles with less distinct edges were ignored. Additional circular 

objects would be detected with a low threshold value. In this study, threshold values from 0.07 to 

0.03 in decrements of 0.01 were tested, and 0.05 was finally. Figures 4.7 - 4.9 show circular objects 

detected with edge gradient thresholds of 0.07, 0.05, and 0.03, respectively, with identical radius 

range, computation method, and sensitivity settings. 
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Figure 4.7 Dark-colored cells detected with edge gradient threshold of 0.07. 

 

Figure 4.8 Dark-colored cells detected with edge gradient threshold of 0.05. 



 

26 

 

Figure 4.9 Dark-colored cells detected with edge gradient threshold of 0.03. 

 

Using properly selected parameters (radius range, object polarity, sensitivity, and edge threshold), 

the CHT function imfindcircles in Matlab identified a majority of dark-colored, circular objects in 

the image, as shown in Figure 4.8. 

 

 Finding light-colored cells 

The HT algorithm had difficulty finding circular objects with color and intensity similar to the 

background. Because the CHT algorithm was set to find candidate pixels on an actual circle edge 

based on the contrast between circular objects and the background, identifying of light-colored 

cells on a white background was difficult. To do this, a more extensive preprocessing was 

performed. The preprocessing started with a morphological opening operation (Figure 4.10). Then 

a complete second-order polynomial surface model was established to unify the intensities of the 

background pixels in the image. The second-order polynomial equation is: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥2 + 𝑒𝑦2 + 𝑓𝑥𝑦 
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In order to derive the six coefficients of the model, six background pixels in the image need to be 

selected for calculation. To avoid manual selection of the six background pixels, average 

intensities of six 128 × 128 pixel sample areas in the image - four at the corners, one that contains 

the pixel with highest intensity in the image, and one more randomly selected area – were used. 

The 128 × 128 sample area was larger than the area of a circular cell. Thus, even if a sample area 

contained non-background pixels, the average intensity was still a reasonably good representation 

of the background intensity within the area. Figure 4.10 shows an original egg image after the 

morphological opening operation. Figure 4.11 shows the six sample areas in the images selected 

for intensity adjustment. Figure 4.12 gives 3-D surface plot displaying the intensity distribution of 

the image before intensity adjustment, Figure 4.13 shows the intensity-adjusted image, and Figure 

4.14 gives the 3-D surface plot displaying the intensity distribution after the intensity justification. 

 

Figure 4.10 Original RGB image after image opening. 
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Figure 4.11 Original intensity image with six sample areas for intensity adjustment. 

 

Figure 4.12 3D surface plot of original image intensity. 
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Figure 4.13 Intensity adjusted image. 

 

Figure 4.14 3D surface plot of corrected image intensity. 

 

The light-colored cells parts were usually identified by intensity thresholding based on the original 

color image. The intensity ranges from 0 to 255. A pixel with zero intensity is displayed as black, 

and a pixel with 255 intensity is displayed as white. Statistical analysis indicated that intensity 

values of light-colored cells were typically between 80 and 150, thereby eliminating black cell 
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pixels, dark red cell pixels, dark yellow cell pixels, and bright background pixels. Furthermore, 

white cells on RGB images were rich in red color, and the background has a strong blue 

component. Therefore, the difference between red and blue and between red and green frames 

were used.  

𝐼𝑅𝐺 = 𝑅 − 𝐺 

𝐼𝑅𝐵 = 𝑅 − 𝐵 

After intensity was adjusted, the original color image was binarized via thresholding on colors (IRG 

and IRB) and adjusted intensity. The returning binary image contained only light-colored cell 

pixels. Figure 4.15 shows the binary image after thresholding. 

 

 

Figure 4.15 Original binary image with light-colored cells. 

 

The thresholding operation created holes in the image (Figure 4.15). The built-in function imfill in 

Matlab was used to fill the holes, as shown in Figure 4.16. This operation was followed by a 

morphological opening operation (function imopen in Matlab) with a disk-shaped structuring 

element to eliminate discrete small noise parts in the binary image. These procedures separated 



 

31 

light-colored cells from the image background and created smooth boundaries of light-colored 

cells, as shown in Figure 4.17. 

 

 

Figure 4.16 Binary image after filling holes. 

 

Figure 4.17 Light-colored cells detected via intensity correction, thresholding, and 

morphological filtering. 

 

Following preprocessing, CHT was performed on the resulting binary image to identify circular 

objects. The parameters used in the function call included the cell diameter range of 70 - 140 
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pixels, ‘ObjectPolarity’ of ‘bright’, and sensitivity of 0.985. This high sensitivity value was used 

because the binary image contained a minimum amount of noise. Thus, the risk of false detection 

was not significant. However, the high sensitivity value increased the risk of potentially detecting 

one circular object several times. To avoid this type of error, center distances between detected 

circular objects were calculated. If the distance between the centers of two detected circular objects 

was shorter than the minimum cell diameter, one of the two objects was deleted. Deleted cells 

were removed from the array of detected cells. Figure 4.18 shows detected circular objects after 

applying HT on the resulting binary image. Figure 4.19 shows remaining circular objects after the 

duplicate cells were removed. Figure 4.20 overlaps the detected circular objects on the original 

RGB image. 

 

 

Figure 4.18 Detected circular objects after HT. 
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Figure 4.19 Detected circular objects after HT and after removing duplicated cells. 

 

Figure 4.20 Detected circular objects on original RGB image. 

 

 Combining, classifying and counting detected cells 

After the centers of dark- and light- colored cells were detected, they were merged into a single 

image (Figure 4.21). Distances between the cells were then checked. If the distance between two 

adjacent cells was shorter than the minimum cell diameter, one of the cells was deleted. Deleted 
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cells were removed from the array of detected cells (Figure 4.22), and all remaining cells were 

subjected to a classification procedure based on their adjusted intensity and color attributes.  

 

 

Figure 4.21 Combination of light and dark-colored circle detection results. 

 

Figure 4.22 Removing duplicated cells. 

 

After observing RGB values of cell center color, adjusted intensity (IC) and IRG were sufficient to 

classify cell categories. The red and blue values and adjusted intensity values of cell centers were 
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found from the original RGB and the corrected intensity images. Counts for all categories were 

updated based on classification results. To visualize the classification results, all detected eggs 

were plotted in their respective colors in an image with white background, as shown in Figure 

4.23. In general, the image processing procedure correctly detected and classified most eggs. 

 

 

Figure 4.23 Dark-colored (black/red), yellow, and white eggs detected by the HT method. 

 

The developed Hough transform Matlab program was tested on another image (Figure 4.24). 

Figure 4.25 and 4.26 give the detection results of dark and light-colored cells. Figure 4.27 displays 

all detected cells after they were combined. Figure 4.28 shows the detected eggs plotted in their 

respective colors on a white background. 
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Figure 4.24 The original cell image. 

 

Figure 4.25 Dark-colored cells detected using HT. 
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Figure 4.26 Detected light-colored cells. 

 

Figure 4.27 Detected cells. 
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Figure 4.28 Black/red, yellow, and white eggs detected by the HT program. 
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Chapter 5 - The Watershed Transformation Method 

 

In 2014, Dr. Xin Pan worked on this project using the Watershed Transformation method in image 

processing and wrote the Matlab program in several sections. (Pan and Zhang, 2014). The author 

integrated these sections and made major modifications to improve the program. This chapter 

describes algorithms used in the integrated and improved program. 

 

The integrated program includes three major steps: finding black/red cells, finding yellow cells, 

and finding white cells. 

 

 General principle of Watershed Method 

When a simple thresholding method (such as edge detection, thresholding, or region growing) is 

insufficient for segmentation of connected cells, extended methods, such as the watershed 

segmentation method, should be explored. The basic idea of the watershed segmentation method 

is simple, as the following analogy illustrates. Suppose that a hole is punched at the point with the 

minimum elevation within a catchment basin, then the entire topography in the basin would be 

gradually flooded from below when water rises through the holes. If dams are built to prevent the 

merging of rising waters from adjacent catchment basins, the flood will eventually reach a stage 

when only the tops of the dams are visible above the water. These visible tops can be considered 

the watershed divide lines. (Gonzalez and Woods, 2002). 

 

This concept can be more clearly demonstrated through an example shown in Figure 5.1. Figure 

5.1 (a) is an original grayscale image, for which we want to delineate the regions based on the 
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“watershed” boundaries, Figure 5.1 (b) is the topographic expression of the image, with higher 

intensities representing higher elevations. Obviously, two “catchment basins” can be seen in the 

image and they are enclosed by dams with heights greater than the highest mountains within the 

basins.  Suppose that water is flooded from the bottom of each catchment basin and is risen at a 

constant rate, as shown as light gray in Figure 5.1(c). As the water continuously rises, it will 

eventually overflow from the left catchment basin into the right catchment basin (figure 5.1 (d)). 

At this time, a short dam (consisting of single pixels) is built to prevent water overflowing. As the 

water further rises, longer dams are built between the two catchment basins and between the basins 

and outside background to hold the water within the basins, as shown in Figure 5.1 (e). This process 

will not stop until the water level reaches the maximum height of the entire topography – the 

maximum intensity within the image. At that time, complete watershed lines at one-pixel width 

would have been built, hence completing the watershed delineation (Figure 5.1 (f)) (Gonzalez and 

Woods, 2002). 

 

     

                 (a) Original grayscale image                                     (b) Topographic surface 
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         (c) Overflowing before dam built          (d) A short dam built between two catchment basin. 

      

                      (e) Longer dams                                              (f) Final watershed lines results. 

Figure 5.1 Basic steps of watershed segmentation (Gonzalez & Woods, 2002). 
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 The watershed method 

In this study, the watershed method was used to segment eggs of different categories. The overall 

flowchart of the WT program to detect, classify, and count egg categories is shown in Figure 5.2. 

The program identified and counted black and dark red cells (parasitized eggs), yellow cells 

(unparasitized unhatched eggs), and white cells (unparasitized hatched eggs) separately. 
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Figure 5.2 Flowchart of the WT algorithm. 
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 Counting black/red (parasitized) eggs 

In this study, the image was initially converted from RGB (Red, Green, Blue) to HIS (Hue, 

Saturation, Intensity) color space in the following steps. 

1. Represent the RGB image in the range [0,1] 

2. Find HSI components 

𝜃 = cos−1{

1
2

[(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)1 2⁄ ]
} 

3. 𝐻(𝐻𝑢𝑒) = {
𝜃                    𝐼𝑓 𝐵 ≤ 𝐺
360 − 𝜃       𝐼𝑓 𝐵 > 𝐺

 

4. 𝑆(𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = 1 −
3

(𝑅+𝐺+𝐵)
[min (𝑅, 𝐺, 𝐵)] 

5. 𝐼(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) =
1

3
(𝑅 + 𝐺 + 𝐵) 

The original RGB image is shown in Figure 5.3. Figure 5.4 and 5.5 shows the Hue and the Intensity 

in grayscale image.  

 

Figure 5.3 Original RGB image. 
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Figure 5.4 The Hue image frame in grayscale. 

 

Figure 5.5 The intensity image frame in gray scale. 

 

For dark and yellow cells, the hue image frame was first used to identify the region of interest 

(ROI) by removing non-egg background from the HSI image. The resulting binary image was then 
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filtered through “Filter 1”, which contained the following steps: (1) binarizing the hue frame using 

a threshold value of 0.274. This step eliminated most background areas, as shown in Figure 5.6. 

(2) Area opening to eliminate isolated noise. (Figure 5.7). (3) Filling holes to restore egg pixels 

lost during thresholding (Figure 5.8). (4) Morphological dilation using a disk shaped structuring 

element to further restore lost egg pixels (Figure 5.9). Figure 5.10 shows the intensity frame of the 

HSI image after most of the background was removed. It can be seen that, while most background 

was removed, areas containing the cells were retained. 

 

 

Figure 5.6 Binary image after thresholding on hue. 
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Figure 5.7 Binary image after area opening. 

 

Figure 5.8 Binary image after area opening, hole filling. 
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Figure 5.9 Binary image after area opening, hole filling and dilation. 

 

Figure 5.10 Intensity image after background removal. 

 

The background-removed intensity image frame was then further processed using “Filter 2”. As 

the first step, yellow/white cells were removed through thresholding. The threshold used was 0.275 

on a 0-1 scale. The remaining steps in “Filter 2” included (1) hole filling using the Matlab function 

of imfill to recover black/red cell pixels lost during the thresholding operation, (2) morphological 

opening to remove discrete noise, and (3) morphological dilation with a disk-shaped structuring 
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element. Figure 5.11 displays black/dark red cells obtained through thresholding on background-

removed intensity image frame. Figure 5.12 shows the resulting binary image for the black/red 

cells that is ready for the watershed analysis. 

 

 

Figure 5.11 Black/dark red cells obtained through thresholding on background-removed 

intensity image frame. 

 

Figure 5.12 Binary image for black/red cells after thresholding and morphological filtering. 

 

1

3

1

1



 

50 

The first step of the watershed delineation was to convert the binary image for black/red cells into 

a distance image, in which each pixel was assigned a value that represented its distance to the 

nearest background pixel. The values were then scaled and inverted to gray scales, with 255 

representing zero distance and 0 representing the longest distance detected, as shown in Figure 

5.13. The watershed delineation was then applied to this distance image using the Matlab built-in 

function of watershed (MATLAB, 2016). The resulting watershed boundaries are shown in Figure 

5.14. These boundary lines were then applied to the binary image for black/red cells to isolate the 

cells (Figure 5.15). A labeling procedure using Matlab function regionprops was then performed 

on the image to number the “watersheds” and measure their properties – area and center position. 

To remove duplicate “watersheds”, distances between the “watersheds” were checked. If the 

distance between two adjacent “watersheds” was less than the minimum radius of the eggs, the 

two “watersheds” were combined and the array of the “watersheds” was updated accordingly. The 

final result of the labeling operation can be displayed with a useful visualization technique using 

a color scheme, as shown in Figure 5.16. The centers of the resulting “watersheds” were identified 

as the base for counting. Distances between the resulting cells were then checked. If the distance 

between two adjacent cells was less than the radius of the kernel, one of the cells was deleted. 

Deleted cells were then removed from the array of resulting objects. Figure 5.17 shows detected 

parasitized eggs with marked centers. This included eggs on the edge of the image with only a part 

visible and eggs touching each other in the image. 
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Figure 5.13 Distance transform of the complement of the binary image. 

 

Figure 5.14 Watershed lines. 
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Figure 5.15 Binary image segmented by watershed lines. 

 

 

Figure 5.16 Displaying the labeled areas using a color scheme. 
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Figure 5.17 Black/red cells with centers marked via watershed delineation, labeling, and 

distance analysis. 

 

 Counting yellow eggs (unparasitized unhatched) 

After the black/red eggs were identified, they were removed from the background-removed binary 

image (Figure 5.10), leaving only yellow cells, white cells, and pixels with similar colors (figure 

5.18). The resulting image was then filtered using “Filter 3” to narrow down possible areas that 

may contain yellow cells. “Filter 3” contains the following steps: (1) Binarization by intensity. 

Pixels with intensity values between 70 and 100 were considered potential yellow cell pixels. 

Figure 5.19 shows the resulting binary image. (2) Area opening to eliminate isolated noise. . (3) 

Hole filling to recover pixels lost during thresholding operation. (4) Erosion and dilation with a 

disk-shaped element.  

 

After “Filter 3”, watershed delineation and labeling operations were performed on the image.  

Figure 5.20 displays the three “watersheds” that represent the yellow cells. Yellow eggs were 

watershed image
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finally identified by examining the areas of labeled regions and distances between the centers of 

potential cells (Figure 5.21). 

 

 

Figure 5.18 Intensity image after black/red cells and background pixels removed. 

 

Figure 5.19 Original binary image for yellow cells. 
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Figure 5.20 Potential yellow cell areas segmented from the image. 

 

 

Figure 5.21 Yellow eggs extracted via watershed delineation, labeling, and area/distance 

analysis. 

 

 Counting white eggs (unparasitized hatched) 

Among the three egg categories, the white eggs (unparasitized hatched eggs) were the most 

difficult objects to identify. This was mainly due to the similarity in color and intensity between 

white eggs and the background and the uneven illumination within the image. To solve this 

watershed image
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problem, image intensity was adjusted using a second-order polynomial surface model as 

described in the section on detecting light-colored cells using the HT method. After the intensity 

adjustment, black/red cells, yellow cells, and background pixels detected in previous steps were 

removed from the adjusted intensity image, leaving only white cells and pixels with similar colors 

(Figure 5.22). Pixels representing the white cells were identified through thresholding using H 

(hue) and adjusted intensity. White eggs were finally identified after area opening, hole filling, and 

morphological opening, as shown in Figure 5.2 as “Filter 4”. A labeling analysis returned centers 

of white eggs and areas of labeled region. Large labeled regions were divided into multiple eggs 

based on the area of the region. After a statistical analysis, we noticed that a single egg area usually 

contained 14,000 - 40,000 pixels. Thus, a labeled area of less than 14,000 pixels was considered 

no white cell and was eliminated. A labeled area with 14,000 - 40,000 pixels was considered as 

one white cell, whereas a labeled area with more than 40,000 pixels was assumed to contain more 

than one white cell.  In this case, the number of pixels in the labeled are was divided by 40,000, 

and the quotient was then rounded to the nearest integer as the detected number of white cells in 

the region. Figure 5.23 shows the numbers of detected white eggs in each of the labeled region. 
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Figure 5.22 Adjusted intensity image after removal of black/red and yellow cells and 

background pixels. 

 

Figure 5.23 White eggs detected after labeling. 

 

Figures 5.24 compares the original image with the complete classification results using the 

watershed method with detected black/red, yellow, white eggs, and the background shown in 

black, brown, gray, and white colors 
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Figure 5.24 Comparison between the original image and the final classification result by 

the WT method. 

 

The Watershed method was tested on another image. The results of major steps are shown in 

following figures:  Figure 5.25 shows the original RGB image. Figure 5.26, 5.27 and 5.28 give the 

detection results for black/red, yellow, and white eggs. Figure 5.29 shows the final results with 

detected black/red, yellow, white eggs, and the background shown in black, brown, gray, and white 

colors, respectively 
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Figure 5.25 The original RGB image. 

 

Figure 5.26 Black/red cells with centers marked through watershed delineation, labeling, 

and distance analysis. 

watershed image
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Figure 5.27 Yellow eggs extracted through watershed delineation, labeling, and 

area/distance analysis. 

 

Figure 5.28 White eggs detected after labeling. 

watershed image
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Figure 5.29 Dark-colored (black/red), yellow, and white eggs detected in another image by 

WT method. 
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Chapter 6 - Results and Discussion 

 

The performances of Hough transformation and watershed delineation methods are evaluated and 

compared in this chapter. 

 

 Performance comparison between WT and HT 

Because visual counting can be tedious, laborious, inaccurate, and time-consuming, this study 

developed algorithms to automatically count eggs in different categories for evaluation of the 

effectiveness of biological control. To evaluate the performance of these algorithms, correct 

classification rates (CCRs) for individual egg categories and misclassification rates (MCRs) were 

calculated.  

 

Three classification rates are defined as (1) percentage of black/red eggs classified by the program 

in total number of actual black/red eggs in the image, (2) percentage of yellow eggs classified by 

the program in total number of actual yellow eggs in the image, and (3) percentage of white eggs 

classified by the program in total number of actual white eggs in the image. Accompanying these 

classification rates were misclassification rates across different egg categories. The actual number 

of three types of eggs were manually counted by the author in each image – an extremely 

exhausting and tedious endeavor! 

 

Four additional types of misclassification rates were defined. They are (1) percentage of black/red 

eggs misclassified from background in total number of black/red eggs detected, (2) percentage of 

yellow eggs misclassified from background in total number of yellow eggs detected, (3) percentage 
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of white eggs misclassified from background in total number of white eggs detected, and (4) 

percentage of all eggs misclassified from background in total number of eggs detected (Choi, Lee, 

and Ehsani, 2013). 

 

The HT and WT algorithms were tested in 40 images. The classification and misclassification rates 

are summarized in Tables 6-1 and 6-2.  

 

Table 6-1 Classification and misclassification rates of Cadra (=Ephestia) eggs by the HT 

algorithm. 

 

Actual eggs 

Classified to  

Total Black Yellow White Background 

Black 1251 96.0% 23 1.8% 1 0.0% 28 2.1% 1303 100% 

Yellow 3 0.7% 395 93.6% 13 3.1% 11 2.6% 422 100% 

White 1 0.2% 15 2.8% 391 72.7% 131 24.3% 538 100% 

Background 38 2.9%1 35 7.5%2 99 19.6%3 N/A 172 7.1%4 

 

1: Percentage of black/red eggs misclassified from background in total number of black/red eggs detected.  

2: Percentage of yellow eggs misclassified from background in total number of yellow eggs detected.  

3: Percentage of white eggs misclassified from background in total number of white eggs detected. 

4. Percentage of all eggs misclassified from background in total number of eggs detected.  

 

Table 6-2 Classification and misclassification rates of Cadra (=Ephestia) eggs by the WT 

algorithm. 

 

Actual eggs 

Classified to  

Total Black Yellow White Background 

Black 1196 91.8% 10 0.8% 0 0% 97 7.4% 1303 100% 

Yellow 111 26.3% 203 48.1% 3 0.7% 105 24.9% 422 100% 

White 5 0.9% 33 6.1% 226 42.0% 274 50.9% 538 100% 

Background 389 22.8%1 108 30.5%2 95 29.3%3 N/A 592 20.7%4 

 



 

64 

1: Percentage of black/red eggs misclassified from background in total number of black/red eggs detected.  

2: Percentage of yellow eggs misclassified from background in total number of yellow eggs detected.  

3: Percentage of white eggs misclassified from background in total number of white eggs detected. 

4: Percentage of all eggs misclassified from background in total number of eggs detected.  

 

From these tables, it can be seen that both the WT and HT methods performed satisfactorily in 

detecting the parasitized Cadra eggs. The CCRs of parasitized eggs for the WT and the HT were 

91.8% and 96.0%, respectively. For the detection of yellow unparasitized unhatched Cadra eggs, 

the HT outperformed the WT with CCRs of 93.6% and 48.1%, respectively. The CCRs for white 

eggs detected by the WT and the HT were 42.0% and 72.7%, respectively. Although the HT 

performed better than the WT in detecting white eggs, neither method provided completely 

satisfactory results, probably because that the white Cadra eggs do not possess unique color 

characteristics, especially when compared with the background. Upon hatching, some 

unparasitized Cadea eggs became creamy white while others became more transparent and almost 

colorless, which appeared very similar to the background. Uneven illumination probably worsened 

the situation even further.  

 

The ability of the algorithms to detect all eggs in the images without missed eggs was analyzed. 

This analysis was achieved by comparing the number of missed eggs to the number of eggs counted 

manually by humans. Missed eggs were eggs that existed in the image but were not detected by 

the program. In the tables, missed eggs are shown as actual eggs in the image that are classified to 

background by the program. The WT and HT methods performed satisfactorily in detecting 

parasitized Cadra eggs - the WT and HT missed 7.4% and 2.1% of parasitized eggs, respectively. 

For the yellow eggs, the HT outperformed the WT by missing 2.6% and 24.9% of the actual yellow 
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eggs, respectively. The rates for white eggs were 50.9% and 24.3% for the WT and HT, 

respectively. The HT performed better than the WT, but neither method provided completely 

satisfactory results. This was the consequence of the creamy or colorless appearance of the white 

eggs 

 

The abilities of the algorithms to avoid false detection are also studied. False detection occurred 

when the program incorrectly recognized a segment of the background as eggs. The false detection 

rate of HT (2.9%) was much lower than that of WT (22.8%) in detecting parasitized Cadra eggs. 

The HT method also performed better than the WT in detecting yellow eggs. False detection rates 

of the WT and HT were 30.5% and 7.5%, respectively. Although neither algorithms performed 

well in false detection rate for white cells, the HT method still performed better than the WT. The 

false detection rates for white cells by the WT and HT were 29.3% and 19.6%, respectively.  

 

Probably the most important measure of the performance of the algorithms is their abilities to 

classify eggs into correct categories. This was examined by comparing the number of wrongly 

classified eggs against the number of manually counted eggs. It can be seen that both methods did 

well for parasitized Cadra (black/red) eggs, but the WT performed slightly better than the HT. The 

HT performed much better than the WT in classifying yellow eggs. The WT misclassified 26.3% 

of actual yellow eggs to the black category, while the HT only misclassified 0.71%. Similarly, the 

WT misclassified 0.7% of actual yellow eggs to the white category, while the rate for HT was only 

3.08%. Both methods performed satisfactorily in detecting white eggs. 
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The HT method outperformed the WT method in egg detection mainly because the WT method 

depends heavily on color and intensity information whereas the HT method emphasizes on shape 

(geometric features) information of the objects. When differences in color or intensity were not 

significant, using shape features may have strengthened the power of detection. 
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Chapter 7 - Conclusions and Future Work 

 

This study established a database of color digital images of parasitized Cadra eggs; extracted 

features that characterize parasitized and unparasitized Cadra eggs; developed algorithms for 

segmenting objects from the background; removing image noise; identifying and separating 

touching eggs; recognizing, classifying, and counting parasitized and unparasitized Cadra eggs; 

and determined the rate of parasitization. Two image processing methods were developed to detect 

parasitized and unparasitized eggs: One method was based on the Watershed delineation algorithm 

and the other method used the circular Hough transformation. Although both methods 

satisfactorily detected and counted the number of parasitized eggs and the rate of parasitization, 

the HT method outperformed the WT method in the correct classification rates of all three egg 

categories. The rates of parasitization as detected by the WT and HT methods were 53% and 55%, 

respectively, whereas the actual parasitization rate was 57.6%. The CCR for recognizing 

parasitized eggs by the WT and HT methods were 91.8% and 96.0%, respectively. The developed 

detection methods will enable automatic evaluation of biological control of Cadra (=Ephestia) 

cautella using Trichogramma bourarachae.  

 

Detection program performance could be improved with improved image quality. The algorithms 

developed in this study required many steps to resolve the problems caused by uneven illumination 

and the similarity in color between unparasitized hatched eggs and the background. These 

difficulties can be greatly lessened by proper design of the illumination and replacement of the 

background with colors clearly distinguishable from the three types of eggs.  
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Appendix A - Hough transform program 

clear; 
rgbBF=imread('FILE0045.jpg');  %Read image 
[centers,radii]=imfindcircles(rgbBF,[70 

120],'ObjectPolarity','dark','Sensitivity',0.965,'Method','twostage','EdgeThr

eshold',0.05);  %Hough Transfer find circles 
figure(1),imshow(rgbBF);        
h=viscircles(centers,radii); %draw circles 
centerdx=round(centers(:,2)); % dark cell center 
centerdy=round(centers(:,1)); 
rgbOPEN = imopen(rgbBF,strel('disk',11)); 
rgbCLOSE = imclose(rgbOPEN,strel('disk',11)); 
RBF=rgbCLOSE(:,:,1); 
GBF=rgbCLOSE(:,:,2); 
BBF=rgbCLOSE(:,:,3); 
r=im2double(RBF)*255; 
b=im2double(BBF)*255; 
g=im2double(GBF)*255; 
rb=r-b; 
rg=r-g; 
gb=g-b; 
IntensityBF=RBF/3+GBF/3+BBF/3; 
IntensityBF=double(IntensityBF); 
h=ones(5,5)/25; 
rgbfilter=imfilter(IntensityBF,h); 
px=1:1:2400; 
py=1:1:3200; 
[pX,pY] = meshgrid(py,px); 
[maxInt] = max(rgbfilter(:)); 
[positionx1, positiony1] = ind2sub(size(rgbfilter),find(rgbfilter==maxInt)); 
x1=round(mean(positionx1)); 
y1=round(mean(positiony1)); 
x2=1200; 
y2=50; 
max_2=70;%IntensityBF(x2,y2); 
I1=mean(mean(rgbfilter(3:150,3:150))); 
I2=mean(mean(rgbfilter(2270:2398,3:170))); 
I3=mean(mean(rgbfilter(2270:2398,3070:3198))); 
I4=mean(mean(rgbfilter(3:170,3070:3198))); 
positionx=[1 2400 2400 1 x1 x2]; 
positiony=[1 1 3500 3500 y1 y2]; 
intensity=[I1 I2 I3 I4 maxInt  max_2]; 
m1=[positionx;positiony]; 
m1=m1'; 
n1=intensity'; 
ST=regstats(n1,m1,'quadratic'); 
A0=ST.tstat.beta(1); 
A1=ST.tstat.beta(2); 
A2=ST.tstat.beta(3); 
A3=ST.tstat.beta(4); 
A4=ST.tstat.beta(5); 
A5=ST.tstat.beta(6); 
[Y,X] = meshgrid(py,px); 
Z=A0+A1.*X+A2.*Y+A3.*X.*Y+A4.*X.*X+A5.*Y.*Y; 
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B=max(max(Z))./Z; 
Intensity_rgb=B.*IntensityBF; 
Intensity_show=uint8(round(Intensity_rgb)); 
%imtool(Intensity_show) 
Gray=zeros(2400,3200); 
for i=1:2400 
    for j=1:3200 
        if Intensity_show(i,j)>80 && Intensity_show(i,j)<150 
            if rb(i,j)>5 
                if rg(i,j)>5 
                    if rb(i,j)>0 
                Gray(i,j)=1; 
                    end 
                end 
            end 
        end 
    end 
end 
% figure(4),imshow(Gray); 
fill=imfill(Gray,'holes');  
bw=imopen(fill,strel('disk',35)); 
% figure(5),imshow(bw); 
[centersw,radiiw]=imfindcircles(bw,[70 

150],'ObjectPolarity','bright','Sensitivity',0.985,'Method','twostage','EdgeT

hreshold',0.05);  %Hough Transfer find circles 
figure(2),imshow(bw);        
h=viscircles(centersw,radiiw); 
simwx=round(centersw(:,2)); % dark cell center 
simwy=round(centersw(:,1)); 
for i=1:size(simwx,1) 
for  j=i+1:size(simwx,1) 
center_distw(i,j)=sqrt((simwx(i)-simwx(j))^2+(simwy(i)-simwy(j))^2); 
center_distw(j,i)=center_distw(i,j); 
end 
end 
center_rec=center_distw; 
index=1; 
i=1; 
j=1; 
while(index==1) 
            if center_distw(i,j)<150 && center_distw(i,j)>0 
                simwx(j,:)=[]; 
                simwy(j,:)=[]; 
                center_distw=[]; 
              for m=1:size(simwx,1) 
                  for  n=m:size(simwy,1)  
                     center_distw(m,n)=sqrt((simwx(m)-simwx(n))^2+(simwy(m)-

simwy(n))^2); 
                     center_distw(n,m)=center_distw(m,n); 
                     index_1=1; 
                     i=1; 
                     j=1; 
                  end 
              end 
            end 
            if i+1<=size(center_distw,1) 
                if j+1<=size(center_distw,2) 
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                    i=i; 
                    j=j+1; 
                else 
                    j=1; 
                    i=i+1; 
                end 
            else 
                index=0; 
            end 

             

  
end 
sim=[simwy simwx]; 
%figure(3),imshow(rgbOPEN); 
h=viscircles(sim,radii(1:size(sim))); 
x=[centerdx;simwx]; 
y=[centerdy;simwy]; 
color=rgbCLOSE(x(:),y(:),:); %put cell information together 
for i=1:size(x) 
    cartoon_rgb(x(i),y(i),1)=color(i,1); 
    cartoon_rgb(x(i),y(i),2)=color(i,2); 
    cartoon_rgb(x(i),y(i),3)=color(i,3); 
end 
radius = 80; 
circ_mask = double(getnhood(strel('ball',radius,radius,0))); 
cartoon_rgb = imfilter(cartoon_rgb,circ_mask,'conv'); % convolution 
%figure(4),imshow(cartoon_rgb); 
simx=x; 
simy=y; 
for i=1:size(simx,1) 
    for  j=i+1:size(simx,1)  
        center_dist(i,j)=sqrt((simx(i)-simx(j))^2+(simy(i)-simy(j))^2); 
        center_dist(j,i)=center_dist(i,j); 
    end 
end 
center_rec_all=center_dist; 
index_all=1; 
i=1; 
j=1; 
while(index_all==1) 
            if center_dist(i,j)<100 && center_dist(i,j)>0 
                simx(j,:)=[]; 
                simy(j,:)=[]; 
                center_dist=[]; 
              for m=1:size(simx,1) 
                  for  n=m:size(simy,1)  
                     center_dist(m,n)=sqrt((simx(m)-simx(n))^2+(simy(m)-

simy(n))^2); 
                     center_dist(n,m)=center_dist(m,n); 
                     index_1=1; 
                     i=1; 
                     j=1; 
                  end 
              end 
            end 
            if i+1<=size(center_dist,1) 
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                if j+1<=size(center_dist,2) 
                    i=i; 
                    j=j+1; 
                else 
                    j=1; 
                    i=i+1; 
                end 
            else 
                index_all=0; 
            end 

             

  
end 
sim_all=[simx simy]; 
color_all=rgbBF(simx(:),simy(:),:);  
figure(5),imshow(rgbBF); 
sim_show=[simy simx]; 
radii_show=50*ones(size(simx)); 
h=viscircles(sim_show,radii_show); 
M=13; 
for u=1:size(color_all,1) 
    r1=simx(u); 
    r2=simy(u); 
    if r1-M>0 
        w1=r1-M; 
    else 
        w1=1; 
    end 
    if r1+M<2401 
        w2=r1+M; 
    else 
        w2=2400; 
    end 
    if r2-M>0 
        w3=r2-M; 
    else 
        w3=1; 
    end 
    if r2+M<3201 
        w4=r2+M; 
    else 
        w4=3200; 
    end 
%     color_mean(u,:)=rgbBF(r1,r2,:); 
    color_mean(u,:)=round(mean(mean(rgbBF(w1:w2,w3:w4,:)))); 
    Int(u,1)=round(mean(mean(Intensity_rgb(w1:w2,w3:w4)))); 
end 
m=1;                %seperate black,red,yellow,white cells 
n=1; 
p=1; 
k=1; 
black=[]; 
black_color=[]; 
red=[]; 
red_color=[]; 
yellow=[]; 
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yellow_color=[]; 
white=[]; 
white_color=[]; 
t=[]; 
R=im2double(color_mean(:,1)); 
G=im2double(color_mean(:,2)); 
B=im2double(color_mean(:,3)); 
for i=1:size(simx) 
       if Int(i)<86 
           if color_mean(i,1)-color_mean(i,3)<27 
           black(m,1)=simx(i); 
           black(m,2)=simy(i); 
           black_color(m,:)=color_mean(i,:); 
           black(m,3)=i; 
           m=m+1; 
           end 
       end 
      W1=and(color_mean(i,1)-color_mean(i,3)<41,Int(i)>100); 

  
       if  W1==1 
                      white(k,1)=simx(i); 
                      white(k,2)=simy(i); 
                      white_color(k,:)=color_mean(i,:); 
                      white(k,3)=i; 
                      k=k+1; 
       end 

        
                     Y1=and(color_mean(i,1)-color_mean(i,3)>40,Int(i)>100); 
              Y2=and(color_mean(i,1)-color_mean(i,3)>26,Int(i)<101); 
              Y=or(Y1,Y2);    
              if Y==1 
                      yellow(p,1)=simx(i); 
                      yellow(p,2)=simy(i); 
                      yellow_color(p,:)=color_mean(i,:); 
                      yellow(p,3)=i; 
                      p=p+1; 
              end 
end 
countblack=size(black,1); %count 
countyellow=size(yellow,1); 
countwhite=size(white,1); 
pic_rgb=zeros(size(rgbBF),class(rgbBF)); 
for i=1:size(black,1) 
    pic_rgb(black(i,1),black(i,2),1)=1;    %show same group cells with same 

color 
    pic_rgb(black(i,1),black(i,2),2)=0; 
    pic_rgb(black(i,1),black(i,2),3)=0; 
end 

  

  
for i=1:size(white,1) 
    pic_rgb(white(i,1),white(i,2),1)=125; 
    pic_rgb(white(i,1),white(i,2),2)=125; 
    pic_rgb(white(i,1),white(i,2),3)=125; 
end 
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for i=1:size(yellow,1) 
    pic_rgb(yellow(i,1),yellow(i,2),1)=131; 
    pic_rgb(yellow(i,1),yellow(i,2),2)=101; 
    pic_rgb(yellow(i,1),yellow(i,2),3)=0; 
end 

  

  
radius = 80; 
pic_rgb = imfilter(pic_rgb,circ_mask,'conv');%convolution 
[aa,bb]=find(pic_rgb(:,:,1)==0); 
pic=pic_rgb;    %change black backgroung to white background 
for i=1:size(aa,1)   
   pic(aa(i),bb(i),1)=255; 
   pic(aa(i),bb(i),2)=255; 
   pic(aa(i),bb(i),3)=255; 
end 
figure(6),imshow(pic); 
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Appendix B - Watershed method program 

clear; 
 rgb=imread('FILE0045.jpg');  %RGB TO HSI 
 rgbBF=rgb; 
 rgbOPEN = imopen(rgbBF,strel('disk',11)); 
rgbCLOSE = imclose(rgbOPEN,strel('disk',11)); 
RBF=rgbCLOSE(:,:,1); 
GBF=rgbCLOSE(:,:,2); 
BBF=rgbCLOSE(:,:,3); 
r=im2double(RBF)*255; 
b=im2double(BBF)*255; 
g=im2double(GBF)*255; 
rb=r-b; 
rg=r-g; 
gb=g-b; 
IntensityBF=RBF/3+GBF/3+BBF/3; 
IntensityBF=double(IntensityBF); 
h=ones(5,5)/25; 
rgbfilter=imfilter(IntensityBF,h); 
px=1:1:2400; 
py=1:1:3200; 
[pX,pY] = meshgrid(py,px); 
[maxInt] = max(rgbfilter(:)); 
[positionx1, positiony1] = ind2sub(size(rgbfilter),find(rgbfilter==maxInt)); 
x1=round(mean(positionx1)); 
y1=round(mean(positiony1)); 
x2=1200; 
y2=50; 
max_2=70;%IntensityBF(x2,y2); 
I1=mean(mean(rgbfilter(3:150,3:150))); 
I2=mean(mean(rgbfilter(2270:2398,3:170))); 
I3=mean(mean(rgbfilter(2270:2398,3070:3198))); 
I4=mean(mean(rgbfilter(3:170,3070:3198))); 
positionx=[1 2400 2400 1 x1 x2]; 
positiony=[1 1 3500 3500 y1 y2]; 
intensity=[I1 I2 I3 I4 maxInt  max_2]; 
m1=[positionx;positiony]; 
m1=m1'; 
n1=intensity'; 
ST=regstats(n1,m1,'quadratic'); 
A0=ST.tstat.beta(1); 
A1=ST.tstat.beta(2); 
A2=ST.tstat.beta(3); 
A3=ST.tstat.beta(4); 
A4=ST.tstat.beta(5); 
A5=ST.tstat.beta(6); 
[Y,X] = meshgrid(py,px); 
Z=A0+A1.*X+A2.*Y+A3.*X.*Y+A4.*X.*X+A5.*Y.*Y; 
B=max(max(Z))./Z; 
Intensity_rgb=B.*IntensityBF; 
Intensity_show=uint8(round(Intensity_rgb)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
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 J=imadjust(rgb,[0.10 0.10  0.10 ; 0.667 0.667 0.667],[0 0 0; .9 .9 .9 ],0.5) 

; 
%figure(1),imshow(J); 
I=double(J)/255; 
R=I(:,:,1); 
G=I(:,:,2); 
B=I(:,:,3); 
numi=1/2*((R-G)+(R-B)); 
denom=((R-G).^2+((R-B).*(G-B))).^0.5; 
H=acosd(numi./(denom+0.000001)); 
H(B>G)=360-H(B>G); 
H=H/360; 
S=1- (3./(sum(I,3)+0.000001)).*min(I,[],3); 
I=Intensity_rgb/255; 
HSI=zeros(size(rgb)); 
HSI(:,:,1)=H; 
HSI(:,:,2)=S; 
HSI(:,:,3)=I; 
imwrite(HSI,'FILE0045En.jpg'); 
imwrite(H,'FILE0045EnH.jpg'); 
imwrite(S,'FILE0045EnS.jpg'); 
imwrite(I,'FILE0045EnI.jpg'); 
% Complete ROI in HSI space 
hsi=imread('FILE0045En.jpg'); 
hsi_h=imread('FILE0045EnH.jpg'); 
hsi_s=imread('FILE0045EnS.jpg'); 
hsi_i=imread('FILE0045EnI.jpg'); 
[width,height]=size(hsi_h); 
Ih=hsi_h; 
BWH=im2bw(Ih,0.274);   % grayscale image to binary image 
BWHC=~BWH;                 % reverse black and white   
I3=bwareaopen(BWHC,100);  %remove samll objects from binary image 
I2 = imfill(I3,'holes'); % fill image regions and holes 
I3=imdilate(I2,strel('disk',10));% se=strel('disk',10);      
[aa,bb]=find(I3==1);   %save white pixel position 
 save ROIaabb20130424 aa bb  

  
[width,height,dimension]=size(hsi); 
ROI1=255*ones(width,height,3,class(hsi)); 
for i=1:size(aa,1) 

     
   ROI1(aa(i),bb(i),1)=hsi_h(aa(i),bb(i)); 
   ROI1(aa(i),bb(i),2)=hsi_s(aa(i),bb(i)); 
   ROI1(aa(i),bb(i),3)=hsi_i(aa(i),bb(i)); 
end 
ROI0=zeros(width,height,3,class(hsi));  
for i=1:size(aa,1) 

     
   ROI0(aa(i),bb(i),1)=hsi(aa(i),bb(i),1); 
   ROI0(aa(i),bb(i),2)=hsi(aa(i),bb(i),2); 
   ROI0(aa(i),bb(i),3)=hsi(aa(i),bb(i),3); 
end 
Ir2=ROI1(:,:,3);%Ir=filteredimage(:,:,1); 
Threr=.275; %  0.59610.690.9% 
 BWr=im2bw(Ir2,Threr); 
  BWr=~BWr; 
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  BWr1=imfill(BWr,'holes'); 
 BW3=imerode(BWr1,strel('disk',8)); 
 BWr1=imdilate(BW3,strel('disk',8)); 
 BW5=imdilate(BWr1,strel('disk',40)); 
h1=ones(13,13)/169; 
BW6=imfilter(BW5,h1); 
h2=ones(9,9)/81; 
BW2=imfilter(BW6,h2); 
% figure(2),imshow(BW2); 
 D       = -bwdist(~BW2,'euclidean');% 'cityblock', 'chessboard', 'quasi-

euclidean', or 'euclidean' 
 D(~BW2)  =-Inf;% min(D(:)); %best value to reduce the effect of local minima 
 D       = imhmin(D,2,8);% 2% is the height threshold for suppressing shallow  
  L = watershed(D,8); 
 figure(2), imshow(rgb), title('watershed image'); 
 ssL = regionprops(L, 'all'); 

  
 for i=1:size(ssL,1) 
     ssLCentroid1(i)=ssL(i).Centroid(1); 
     ssLCentroid2(i)=ssL(i).Centroid(2); 
     ssLArea(i)=ssL(i).Area; 
     ssLDiameter(i)=ssL(i).EquivDiameter; 
 end 

  
 for i=1:size(ssL,1) 
    for  j=i+1:size(ssL,1) 
        ssLDistance(i,j)=sqrt((ssLCentroid1(i)-

ssLCentroid1(j))^2+(ssLCentroid2(i)-ssLCentroid2(j))^2); 
        ssLDistance(j,i)=ssLDistance(i,j); 
    end 
 end 

  
 [ssLY,ssLI]=sort(ssLDistance); 
 minssLY=100; %mean(ssLY(2,:),2); 
hold on; 
count=0; 
 for i=1:size(ssL,1) 
     if (BW2(floor(ssLCentroid2(i)),floor(ssLCentroid1(i)))==1) 
             if ssLY(2,i)<minssLY 

              
             j=ssLI(2,i); 
             X=[ssLCentroid1(i),ssLCentroid1(j)]; 
             Y=[ssLCentroid2(i),ssLCentroid2(j)]; 
             plot(X,Y,'g>'); 

              
             count=count+1; 
             ssLNC1(i)=mean(X); 
             ssLNC2(i)=mean(Y); 

              
             ssLNC1(j)=0; 
             ssLNC2(j)=0; 

              

  
           else 
             ssLNC1(i)=ssLCentroid1(i); 
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             ssLNC2(i)=ssLCentroid2(i); 
             end 

            
          ssLNC1(j)=0;   
       ssLNC2(j)=0;    
     else 
          ssLNC1(i)=0;   
       ssLNC2(i)=0; 
     end 

     

    
 end 

  
 hold on; 
 for j=1:size(ssL,1) 
  for i=1:4 
        x20(j,i)=ssLNC1(j)+1*cos(i*0.5*pi); 
        y20(j,i)=ssLNC2(j)+1*sin(i*0.5*pi); 
  end 
   plot(x20(j,:),y20(j,:),'r*'); 
 end 
i=1; 
countRe=0; 
for j=1:size(ssLNC1,2) 
    if (ssLNC1(j)==0) 
        countRe=countRe+1; 
tb(i,1)=j; 
i=i+1; 
    end 
end 

  
countBlack=size(ssLNC1,2)-countRe; 

  
% count yellow eggs 
[aa,bb]=find(BW2==1); 
for i=1:size(aa,1) 

      
     ROI1(aa(i),bb(i),1)=255; 
     ROI1(aa(i),bb(i),2)=255; 
     ROI1(aa(i),bb(i),3)=255; 
end 
RedCellImage=ROI1; 
 imwrite(ROI1, 'RedCellImage.jpg'); 
RedCell=imread('RedCellImage.jpg'); 

  
Ib=RedCell(:,:,3); 
%imtool(Ib) 
Threb1=70; 
[mmb,nnb]=size(Ib); 
for i=1:mmb 
   for j=1:nnb 
       if(Ib(i,j)<Threb1) 
   BWb1(i,j)=1; 
       else 
           BWb1(i,j)=0; 
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       end 

        
   end 
end 
Threb2=100; 
[mmb,nnb]=size(Ib); 
for i=1:mmb 
   for j=1:nnb 
       if(Ib(i,j)<Threb2) 
            BWb2(i,j)=1; 
       else 
           BWb2(i,j)=0; 
       end 

        
    end 
end 
BWMR=BWb2-BWb1; 
BWMR1=bwareaopen(BWMR,100);  %remove samll objects from binary image 
BWMRfill=imfill(BWMR,'holes'); 
Red1=imerode(BWMRfill,strel('disk',25)); 
 Red2=imdilate(Red1,strel('disk',100)); 
BWMRL=bwlabel(Red2,4); 
ssLBW = regionprops(BWMRL, 'all'); 
D       = -bwdist(~Red2,'euclidean');% 'cityblock', 'chessboard', 'quasi-

euclidean', or 'euclidean' 
 D(~Red2)  =-Inf;% min(D(:)); %best value to reduce the effect of local 

minima 
 D       = imhmin(D,2,8);% 2% is the height threshold for suppressing shallow  
  L = watershed(D,8); 
 figure(3), imshow(rgb), title('watershed image'); 
 ssL = regionprops(L, 'all'); 
 hold on 
 countYellow=0; 
 for i=1:size(ssL,1)%1 
     ssLCentroid1y(i)=ssL(i).Centroid(1); 
     ssLCentroid2y(i)=ssL(i).Centroid(2); 
      ssLArea(i)=ssL(i).Area; 
     ssLDiameter(i)=ssL(i).EquivDiameter; 
     if (BWMRL(floor(ssLCentroid2y(i)),floor(ssLCentroid1y(i)))>=1) 
          plot(ssLCentroid1y(i),ssLCentroid2y(i),'g*'); 
          countYellow=countYellow+1; 
     end 

     
 end 
 WhiteMere=RedCell; 
%  [aaR,bbR]=find(BWMRL>=1); 
%   for i=1:size(aaR,1) 
%        WhiteMere(aaR(i),bbR(i),1)=255; 
%         WhiteMere(aaR(i),bbR(i),2)=255; 
%          WhiteMere(aaR(i),bbR(i),3)=255; 
%   end 
  imwrite(WhiteMere, 'white20130606.jpg'); 
  [m,n,o]=size(WhiteMere); 
  whitebinary=zeros(m,n); 
for i=1:m 
    for j=1:n 
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        if WhiteMere(i,j,1)<50 
            if WhiteMere(i,j,3)>110 
                whitebinary(i,j)=1; 
            end 
        end 
    end 
end 
%imtool(whitebinary); 
whiteopen=bwareaopen(whitebinary,100); 
whitefill=imfill(whiteopen,'holes'); 

  
 BWB1=imerode(whitefill,strel('disk',20)); % to eliminate the bordering of 

black and red cells. 
  BWB2=imdilate(BWB1,strel('disk',20)); 
BWBFill=imfill(BWB2,'holes'); 
BWMWL=bwlabel(BWBFill); 
ssLBWW = regionprops(BWMWL, 'all'); 
for i=1:size(ssLBWW,1) 
     ssLBWWCentroid(i,1)=ssLBWW(i).Centroid(1); 
     ssLBWWCentroid(i,2)=ssLBWW(i).Centroid(2); 
     ssLBWWCentroid(i,3)=ssLBWW(i).Area; 
end 
countWhite=0; 
for i=1:size(ssLBWW,1) 
    if ssLBWW(i).Area>40000 
         countWhite=countWhite+ceil(ssLBWW(i).Area/40000) ;         
    else 
        if ssLBWW(i).Area>14000 
         countWhite=countWhite+1; 
        end 
    end 
end 
if (size(ssLBWWCentroid,1)~=0) 
for m=size(ssLBWWCentroid,1):-1:1 
    if ssLBWWCentroid(m,3)<14000 
        ssLBWWCentroid(m,:)=[]; 
    end 
end 
end 
for m=1:size(ssLBWWCentroid,1) 
    if ssLBWWCentroid(m,3)<40000 
        ssLBWWCentroid(m,4)=1; 
    else 
        ssLBWWCentroid(m,4)=ceil(ssLBWWCentroid(m,3)/40000); 
    end 
end 
pic_rgb=zeros(size(rgb),class(rgb)); 
for i=1:size(x20,1) 
    pic_rgb(round(y20(i,1))+1,round(x20(i,1))+1,1)=1;    %show same group 

cells with same color 
    pic_rgb(round(y20(i,1))+1,round(x20(i,1))+1,2)=0; 
    pic_rgb(round(y20(i,1))+1,round(x20(i,1))+1,3)=0; 
end           
for i=1:size(ssLCentroid1y,2) 
    pic_rgb(round(ssLCentroid2y(1,i))+1,round(ssLCentroid1y(1,i))+1,1)=131; 
    pic_rgb(round(ssLCentroid2y(1,i))+1,round(ssLCentroid1y(1,i))+1,2)=101; 
    pic_rgb(round(ssLCentroid2y(1,i))+1,round(ssLCentroid1y(1,i))+1,3)=0; 
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end 
for i=1:size(ssLBWWCentroid,1) 
    pic_rgb(round(ssLBWWCentroid(i,2))+1,round(ssLBWWCentroid(i,1))+1,1)=131; 
    pic_rgb(round(ssLBWWCentroid(i,2))+1,round(ssLBWWCentroid(i,1))+1,2)=131; 
    pic_rgb(round(ssLBWWCentroid(i,2))+1,round(ssLBWWCentroid(i,1))+1,3)=131; 
end 
countBlack=countBlack+1 
countYellow=size(ssLCentroid1y,2) 
countWhite 
radius = 80; 
circ_mask = double(getnhood(strel('ball',radius,radius,0))); 
pic_rgb = imfilter(pic_rgb,circ_mask,'conv');%convolution 
[aa,bb]=find(pic_rgb(:,:,1)==0); 
pic=pic_rgb;    %change black backgroung to white background 
for i=1:size(aa,1)   
   pic(aa(i),bb(i),1)=255; 
   pic(aa(i),bb(i),2)=255; 
   pic(aa(i),bb(i),3)=255; 
end 
figure(4),imshow(pic); 
hold on 
plot(round(ssLBWWCentroid(:,1)),round(ssLBWWCentroid(:,2)),'gx'); 
n=num2str(ssLBWWCentroid(:,4),'%5.0f'); 
text(ssLBWWCentroid(:,1),ssLBWWCentroid(:,2),n); 

 

 

 


