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Abstract  

A pairwise preferential interaction model (PPIM), based on Kirkwood-Buff integrals, is 

developed to quantify and characterize the interactions between some of the functional groups 

commonly observed in peptides. The existing experimental data are analyzed to determine the 

preferential interaction parameters for different amino acid and small peptide systems in aqueous 

solutions. The preferential interactions between the different functional groups present in the 

peptides are then isolated and quantified by assuming simple pairwise additivity. The PPIM 

approach provides consistent estimates for the pair interactions between the same functional 

groups obtained from different solute molecules. Furthermore, these interactions appear to be 

chemically intuitive. It is argued that this type of approach can provide valuable information 

concerning specific functional group correlations which could give rise to peptide aggregation. 

 

Keywords Amino acids  Kirkwood-Buff integrals  Pairwise preferential interaction model  

Peptide aggregation  Preferential interactions 
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1 Introduction 

Common diseases such as Alzheimer’s, Parkinson’s, and Huntington’s disease, as well as 

other amyloid and fibril related disorders, are directly linked to the misfolding and subsequent 

aggregation of specific peptides or proteins [1-3].  However, our current understanding of the 

factors that lead to aggregation is poor. An important question is whether one can predict if a 

specific peptide will self-aggregate based on the functional groups present in the molecule? In 

addition, can one even quantify the degree of aggregation at the molecular level? These are very 

simple questions that a variety of researchers would like to be able to answer. Unfortunately, our 

understanding of molecular interactions in complex solvents such as water remains rather limited. 

While several statistical mechanical theories of solutions have been presented and remain 

formally accurate [4-6], there has been slow progress in determining the required integrals which 

form the basis of many of these theories, and extending these theories to understand solution 

mixtures. Hence, it is not currently possible to accurately calculate the self-association behavior 

of a particular peptide in solution. It is clear that a simple general methodology which provides 

(even limited) success in this direction would be welcomed. 

Studies of small peptide aggregation represent an active area in which a general approach for 

predicting the tendencies of different peptides to self-aggregate would also be very useful [7]. 

The aggregation of small peptides should be a function of the properties of the different amino 

acid side chains, as modified by the presence of the solvent. Experimental studies of peptide 

aggregation have led to the characterization of a series of short peptide sequences based on 

longer sequences or fragments of proteins which are known to aggregate [8-10]. It is clear from 

many of these studies that peptide aggregation is not limited to peptides rich in hydrophobic 

residues. Hydrophobic, polar, and highly charged peptides can all display tendencies towards 
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aggregation [8,9]. Hence, studies to design and modify peptide structures in an attempt to 

investigate the aggregation propensity and mechanism generally involve a trial-and-error 

approach [8]. Clearly, an improved understanding of aggregation would help to focus efforts 

towards specific peptide sequences. 

In principle, aggregation or self-association of a solute in a solution mixture results from 

differences in the intermolecular interactions between the solute and solvent molecules. If the 

solute-solute interactions are larger than solute-solvent interactions, self-association is likely to 

occur, and vice versa. Hence, the tendency for aggregation could be predictable, if one can 

determine the difference between the various solute-solute and solute-solvent interactions in a 

quantitative manner. Proteins are large complex molecules. Therefore, it would be more useful to 

quantify the interactions between amino acids, or even between functional groups, rather than to 

deal with the protein as a whole. This assumes that the total interaction between two peptides or 

proteins can be decomposed into a series of interactions between the component functional 

groups. 

The concepts of preferential solvation (PS) and preferential interactions (PI) has been 

developed to help understand solution mixtures [6,11-15]. Kirkwood-Buff (KB) integrals have 

played an important role in quantifying these PIs [13,16-18], especially from computer 

simulations [19-22]. In this work, we use the concept of preferential interactions to investigate 

factors which may lead to peptide aggregation. A pairwise preferential interaction model (PPIM) 

is developed to quantify and characterize the interactions between some of the common 

functional groups observed in peptides and proteins. First, the existing experimental data are 

analyzed to determine preferential interaction parameters for different amino acid and small 
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peptide systems in aqueous solutions. Then, the PIs between function groups on those peptides 

are isolated and quantified using a simple pairwise preferential interaction approach. 

2 Pairwise Preferential Interaction Model (PPIM) Approach 

2.1 Thermodynamics of Solutions and KB Theory 

The notation used here follows the common definition where the subscripts 1 and 2 refer to 

the primary solvent (usually water) and the solute, respectively. According to statistical 

mechanics, the chemical potential of a species can be expressed as [6]  

    313 ln*ln   RTqRTW
.
      (1) 

Here, q is the internal partition function of the molecule, N is the number of the species, V is the 

volume of the system, ρ=N/V is the number density (or molar concentration), and Λ is the 

thermal de Broglie wavelength of the species. The first term (W) quantifies contributions of the 

interactions between molecules to the chemical potential. Ben-Naim
 
[6] has developed the use of 

the expression μ* = W- RTlnq, referred to as the pseudo-chemical potential. The pseudo-

chemical potential describes the free energy change for transfer of a molecule from a fixed 

position in a vacuum to a fixed position in the solution. 

Kirkwood-Buff theory plays an important role in the development of the current model. 

KB theory is an exact theory of stable solution mixtures containing molecules of any size. The 

theory provides a direct link between the solution structure and the corresponding 

thermodynamics. Expressions for derivatives of the pseudo chemical potential with respect to 

composition are easily obtained in terms of KB integrals (Gij) which are defined by [6,23] 





0

2d]1)([π4 rrrgG VT

ijij

 ,        (2) 
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where gij(r) is the center of mass radial distribution function (rdf) between species i and j.   

Preferential Interactions 

Our aim is to develop a method to analyze the experimental data and a model which can be 

used to quantify and predict peptide aggregation. Here, we present and apply a new approach to 

quantitatively express features of the interactions between functional groups in amino acids. It is 

limited in some aspects (discussed below), but in the absence of other predictive approaches, it 

seems worthy of development. In many respects it is somewhat analogous to, and on the same 

level as, the Chou-Fasman type of approach used to predict secondary structure elements in 

proteins [24]. Using KB theory, it is quite easy to show that for any thermodynamically stable 

mixture of a solute (2) and solvent (1) one can write [6,19]  
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where y2 is the molar activity coefficient of the solute. The above expression reduces to the 

numerator in the limit of infinite dilution of the solute (2). The value of G22 – G21 at infinite 

dilution is the central quantity of interest in this work. We will define this as the preferential 

interaction (PI) between two infinitely dilute solute molecules surrounded by solvent molecules 

  212222 GGP             (4) 

The PI defined here is the same as previous definitions used to investigate preferential solvation 

(PS) [11], except for the infinitely dilute solute restriction. However, it will be used in a different 

manner. The PI at infinite dilution of solute quantifies the affinity between two solute molecules 

in a large excess of solvent (no additional many-body solute interactions present). It results from 

a balance of the pair solute-solute and solute-solvent interactions. A positive value indicates a 

favorable solute-solute interaction which tends towards solute association or aggregation. A 



7 

 

negative value indicates a favorable solvation which tends towards solute hydration and low 

solute self-association. A value of zero indicates a balance of the interactions, i.e., an ideal 

solution. The above expression indicates that if the molar activity coefficient decreases with 

molarity, then the solute must display a tendency towards self-association. The approach 

therefore provides a way to quantify the degree of molecular association. 

 

2.2 Analysis of the Experimental Data 

It is common practice to perform an analysis of the experimental data (solute or water 

activity, partial molar volumes, and isothermal compressibilities) to obtain the composition-

dependent KB integrals and use them to quantify preferential solvation in solutions 

[11,14,25,26]. In principle, we wish to do the same here - but there is a slight problem. We 

require the KB integrals at infinite dilution of the solute (2). Traditionally, obtaining reliable 

values of Gij at low concentrations of i or j has been difficult [25,27]. For instance, the partial 

pressure of a solute above a solute-solvent solution is difficult to determine experimentally at 

low solute concentrations. Consequently, the KB integrals tend to be sensitive to the exact fitting 

procedure used to determine the solute activity. Part of the problem is that the two most common 

fitting equations for the solute activity, the Wilson and Redlich-Kister equations, are largely 

empirical in nature and therefore may not fully capture the physics of the process. Recently, a 

rigorous statistical mechanical approach based on a semi-grand ensemble (open to solute, closed 

to solvent) was presented which can accurately model the molal activity coefficients of 

nonvolatile solutes over large concentration ranges using just one or two parameters [28]. 

In the original approach by Roesgen et al., either the molal or molar activity coefficient 

was fitted using ratios of polynomials in the solute activity (a) [28,29]. Here, the approach is 
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extended to simultaneously fit both the molal and molar activity coefficient data. This requires 

the corresponding density data. The derivations are quite straightforward, but too long to present 

here. The final result for the solute molality (m2) and solute molarity (c2) after including terms up 

to a
2
 is given by 
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where the molality scale solute activity (a = γ2m2) has been used in both cases, and d0 is the 

density of the pure solvent. At this level, the fitting equations involve four unknowns (A1, A2, V1, 

and V2). The major advantage of this approach is that one can fit both activity coefficients over a 

large range of compositions with just four parameters, one of which (A1) appears in both 

expressions. As the molar and molal concentrations are related through the solution density, this 

is equivalent to fitting one of the activity coefficients and the density simultaneously. Further 

analysis of the limiting values of the activity derivatives and comparison with Eq. 5 indicate that 

the PI value required for this work is then given by 

 1

1

1022 )(2 VAdP            (6) 

The above fitting procedure involves an expression for the concentration in terms of the activity 

instead of the normal situation of activity (coefficient) in terms of concentration. While this is 

somewhat unusual, it is a perfectly valid approach to fit the experimental data. If required, the 

above equations can be used to express the molal activity coefficient in terms of the molality via 

solutions to a quadratic equation in γ2 [29]. This is not necessary here. We will see that the above 

approach produces excellent results. This is important, as it provides significant confidence in 

the resulting KB integrals, including those evaluated at low solute concentrations. 
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3 Results 

Using KB theory and analyzing the experimental data, one can obtain the preferential 

interaction between two solute molecules at infinite dilution thus providing fundamental 

information on the degree of molecular association. In this section, the existing experimental 

data on activity coefficients and densities [15,30-33] are analyzed in order to isolate a series of 

P22’s. Our initial investigations have focused on NMA (N-methylacetamide) and a series of small 

amino acids and peptides. In the zwitterionic form, the amino acids are nonvolatile, while NMA 

is a solid at 298 K and a good model for the peptide functional group.  

Figure 1 provides an example of the quality of fits one can obtain using the above fitting 

equations. The molal activity and densities are very well reproduced. In comparison, the original 

activity data alone for Gly (glycine) was fitted to an expression involving 4 terms and 4 

unknowns [30]. The corresponding parameters and resulting PIs are presented in Table 1. It can 

be seen that the PI values are positive for all of the systems presented here. This indicates a 

tendency towards aggregation of the solutes at low solute concentrations. The aggregation of the 

Glyn peptides increases with n for reasons which will become clear shortly. 

 

3.1 Decomposition of the Preferential Interactions 

While the previous results are interesting in themselves, we wish to take this a step further 

and develop a model which can be used to rationalize the available data and eventually make 

predictions. To do this, we need to be able to decompose the PI between two solute molecules 

into a combination of effects from the different functional groups present in the molecule. Our 

approach is to investigate the simplest model possible and then develop the model as it is applied 

to more systems, where the possibility of (hopefully) small corrections may be required.  The 
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basic assumption of the model proposed here is that the preferential interaction between a pair of 

solute molecules can be decomposed into a series of pairwise preferential interactions between 

the different chemical groups present in the solutes. This type of approach has been used before 

for enthalpies of mixing [34], second cross virial coefficients [35], Gibbs free energy of 

hydration [36], and phase equilibria and excess properties of complex mixtures [37]. But to our 

knowledge it has not been used for the decomposition of preferential interactions. The groups 

involve the usual chemical functionalities such as hydroxyl, amide, carbonyl, etc. as well as 

hydrocarbon-based “interactions” such as those between methyl groups (Me-Me). Hence, the 

pairwise preferential interaction model (PPIM) expresses the total PI between two solute 

molecules (i and j) at infinite dilution as 

  
a b

abij pP          (7) 

where the sum is over all functional groups (a) on molecule i and all functional groups (b) on 

molecule j. The pab’s then have to be determined. This represents one of the main objectives of 

the current work. As there are far fewer functional groups than potential solutes, the PPIM model 

can then be used to predict the degree of molecular association between a variety of different 

solutes in solution. In the next section, we present evidence that this simple model appears to be 

reasonable. 

To further illustrate the current model, let us consider a solute molecule which contains 

two functional groups a and b. Both groups on each molecule interact with each other and 

therefore contribute to the total PI at infinite dilution. In the PPIM model, it is assumed that the 

solute-to-solute interaction at infinite dilution can be written as a combination of the group 

interactions such that G22–G21 = paa + pbb + 2pab. The values of paa and pbb can be obtained from 

the results for a solute where only one of the groups (a or b) is present. The value of pab 
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corresponds to the preferential interaction between two different groups and can in general be 

obtained via the decomposition process involving the data for many solutes (see later). We note 

that there is no explicit dependence of the pair interaction on the distance between the different 

groups on the solute molecules in the PPIM approach. This is because the KB integrals quantify 

changes in the molecular distributions over all distances as indicated in Eq. 2. However, it is to 

be expected that the pair interactions will have a limited range, the extent of which remains to be 

determined. 

 

3.2 Evaluation of Group Contributions 

The PIs presented in Table 1 can be used to evaluate the required group contributions. This is 

illustrated in Table 2, where we have indicated the number and type of the group interactions for 

each pair of solute molecules. By manipulation of the data, one can extract the individual pab 

values which are also presented in Table 2. There are several features of the resulting data which 

are encouraging and important. First, comparison of the pab value for the peptide group obtained 

from a separate analysis of the Glyn peptides and NMA indicate essentially the same result of 59 

cm
3
·mol

-1
. As these correspond to two totally different types of solute systems, it is satisfying 

that the same result is obtained in both cases. A consistent result for the peptide-to-amino acid 

termini (PQ) is also obtained from two different decompositions. Inclusion of the Ala-Gly (and 

Gly-Ala) data provided estimates for the PI between a methyl group and the two charged termini 

(MQ) as well as the MM and MP interactions. Again, consistent results were obtained for the MP 

interaction using the same data but from two different routes. Some differences were observed 

between the Ala-Gly and Gly-Ala results. However, these differences were relatively small (<10 
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%) and hence, to a first approximation, the sequence dependence effect appears to be minor for 

short peptides and will therefore be neglected in the present studies. 

 

4   Discussion 

The PPIM has several advantages. First, it is very simple. Second, the PIs include both short-

range and long-range contributions to changes in the solution distributions. Hence, both the 

effects of direct molecular interactions (such as hydrogen bonds) and the consequences of the 

packing of solvent molecules around the solutes are included in the model. The latter is 

traditionally very difficult to determine. Third, the use of the PIs ensures that one focuses on 

effects that lead to changes in the pseudo-chemical potential, i.e., that result solely from 

intermolecular interactions [38]. Fourth, by performing a simultaneous fit of the activity and 

density data using a rigorous statistical mechanical theory, one ensures accurate experimental 

data are obtained at low solute concentrations for the determination of the PIs. 

One of the disadvantages of the model is that, in its present form, it is restricted to infinitely 

dilute solute molecules. Obviously, at finite solute concentrations, the solute-solute interactions 

are modified by the presence of other solute molecules. This will change the values of G22–G21. 

In addition, the solutes cannot be ionic in nature. For ions, the distribution at low solute 

concentrations is dominated by the electroneutrality constraint [26,39,40] and is therefore 

independent of the character of the ionic species involved. Furthermore, the current model does 

not distinguish between different peptide sequences with the same composition of amino acids, 

such as Gly-Ala and Ala-Gly, or between chiral molecules. As one of the potential applications 

of the PPIM is to understand peptide aggregation, this could present a problem. However, the 

experimentally observed activity coefficients of Gly-Ala and Ala-Gly are very similar [32], and 
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hence the corresponding pab’s do not differ significantly. An additional complication arises as the 

peptides increase in size. There is no distance dependence associated with the pab’s and hence the 

results are independent of the peptide register displayed during aggregate formation. The initial 

work presented here merely attempts to elucidate possible pair interactions which display a high 

propensity for aggregation. How this leads to specific peptide structures remains a far more 

challenging problem. Finally, the present analysis is restricted to that of nonvolatile solutes in 

water, primarily due to the fitting procedure. This does not mean that the model is not applicable 

to other solvents or to molecules which are volatile. Once the pab for a particular group has been 

determined, it can be used for any solute in that particular solvent. It is the determination of the 

pab’s from representative molecules which requires the use of a fitting equation valid only for 

nonvolatile solutes. In summary, while there are some restrictions, we feel the model has 

significant promise, and due to the many potential applications deserves to be developed further. 

It can certainly provide the first-order effect of group pair interactions on the association process. 

We also note that the signs estimated by the model are consistent with those intuitively 

expected from simple physical chemistry arguments. For instance, it is expected that the 

interaction between a methyl group and both the charged group (MQ) and the peptide group 

(MP) would be unfavorable from a desolvation perspective. This is indicated by the negative 

values of pab. In contrast, the positive value of pab for the MM interaction indicates significant 

self-association, which is in agreement with a simple picture of the hydrophobic effect. The 

weaker self-association of the peptide group is not unrealistic, although it is difficult to predict 

the exact balance between self-association and solvation. This, of course, is precisely what 

makes the present model so attractive. The positive value for PP indicates a tendency for the 
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peptide group to self-associate. The implications of this for protein folding or peptide 

aggregation are unclear but deserve further study. 

The relatively large PI between the peptide and charged groups appears to be just as 

favorable as the MM self-association. In unrelated simulation studies, we have observed 

significant similar interactions between Ser hydroxyl groups and the charged C terminus of small 

peptides [41]. The data in Table 2 suggest that the reason for the increased self-association or 

aggregation of the Glyn peptides with increasing n lies in the fact that all the group interactions 

are positive and thus promote self-association, with the dominant effect occurring for the PQ 

interaction. The self-association of Ala is lower than that of Gly as the additional methyl group 

introduces MQ interactions which are unfavorable, presumably due to the effect of the methyl 

groups on the solvation of the charged groups. Finally, the positive value for pab between methyl 

groups is in agreement with the estimates provided previously by analysis of hydrocarbon 

aggregation in water [27]. 

Comparison of the present results with known experimental data concerning peptide 

aggregation is also informative. Several studies have indicated that peptide aggregation is 

favored for sequences which contain sheet forming residues, often hydrophobic in character, and 

that oppositely charged residues also play a significant role [8,42,43]. The influence of charged 

groups has also been observed in computer simulations [44]. However, the role of charged 

residues appears to be quite involved as several studies have proposed that charge groups often 

flank aggregation prone sequences in order to prevent aggregation [45,46]. In the latter case the 

charges are usually both positive. The results shown in Table 2 suggest that charge groups can 

promote association between peptides by favorable charge-charge and charge-peptide 

interactions. This clearly supports a significant role for charged groups in promoting peptide 
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aggregation. We note that our definition of the pairwise preferential interaction for QQ is related 

to interactions between oppositely charged groups. Clearly, sequences flanked by similar 

(positively) charged residues will tend to repel and hence decrease the tendency for aggregation 

[46]. 

 

5   Conclusion 

In summary, the interactions between different groups present on a solute have been 

quantified using the simple pairwise preferential interaction model. In practice, the PPIM 

provides consistent estimates for the same pair interactions obtained from different solute 

molecules, and interactions which are chemically intuitive. The model suggests a role for PQ and 

MM interactions in peptide aggregation which should be experimentally testable. A relatively 

limited set of systems and hence a limited number of pairwise interactions have been elucidated 

here. Furthermore, the model is limited to infinitely dilute solute interactions, although this 

approximation should be most relevant for biological systems which typically involve very low 

solute concentrations. Clearly, further study is needed to generalize the model. To some extent 

the limited set of solutes studied here reflects an absence of activity data for many of the amino 

acids or other model compounds in the literature. Nevertheless, we feel that the above analysis is 

promising and provides valuable insights into the role of different functional groups in the 

aggregation of small peptides. 

 

 

 



16 

 

Acknowledgment 

The project described was supported by Grant Number R01GM079277 from the National 

Institute of General Medical Sciences. The content is solely the responsibility of the authors and 

does not necessarily represent the official views of the National Institute of General Medical 

Sciences or the National Institutes of Health.  



17 

 

References 

 

 1.  C. A. Ross, M. A. Poirier, Nature Medicine 10, S10-S17 (2004) 

 2.  C. Hetz, C. Soto, Cell. Mol. Life Sci. 60, 133 (2003) 

 3.  F. E. Cohen, J. W. Kelly, Nature 426, 905 (2003) 

 4.  D. A. McQuarrie,  Statistical Mechanics (Harper & Row, New York, 1976) 

 5.  T. L. Hill,  Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960) 

 6.  A. Ben-Naim,  Statistical Thermodynamics for Chemists and Biochemists (Plenum Press, 

New York, 1992) 

 7.  D. Thirumalai, D. K. Klimov, R. I. Dima, Curr. Opin. Struct. Biol. 13, 146 (2003) 

 8.  L. Tjernberg, W. Hosia, N. Bark, J. Thyberg, J. Johansson, J. Biol. Chem. 277, 43243 

(2002) 

 9.  M. F. Perutz, B. J. Pope, D. Owen, E. E. Wanker, E. Scherzinger, Proc. Natl. Acad. Sci. 

USA 99, 5596 (2002) 

 10.  C. Wurth, N. K. Guimard, M. H. Hecht, J. Mol. Biol. 319, 1279 (2002) 

 11.  A. Ben-Naim, Cell Biophys. 12, 255 (1988) 

 12.  Y. Marcus, J. Chem. Soc. Fara. Trans. 86, 2215 (1990) 

 13.  E. Matteoli G. A. Mansoori,  Fluctuation Theory of Mixtures (Taylor & Francis, New York, 

1990) 

 14.  E. Matteoli, L. Lepori, J. Chem. Soc. Fara. Trans. 91, 431 (1995) 

 15.  J. Zielkiewicz, Phys. Chem. Chem. Phys. 2, 2925 (2000) 

 16.  P. E. Smith, Biophys. J. 91, 849 (2006) 

 17.  I. L. Shulgin, E. Ruckenstein, J. Phys. Chem. B 111, 3990 (2007) 

 18.  S. Shimizu, C. L. Boon, J. Chem. Phys. 121, 9147 (2004) 

 19.  R. Chitra, P. E. Smith, J. Phys. Chem. B 105, 11513 (2001) 

 20.  M. Aburi, P. E. Smith, J. Phys. Chem. B 108, 7382 (2004) 

 21.  B. M. Baynes, B. L. Trout, J. Phys. Chem. B 107, 14058 (2003) 

 22.  M. Kang, P. E. Smith, Fluid Phase Equil. 256, 14 (2007) 



18 

 

 23.  J. G. Kirkwood, F. P. Buff, J. Chem. Phys. , 774 (1951) 

 24.  P. Y. Chou, G. D. Fasman, Trends Biochem. Sci. 2, 128 (1977) 

 25.  E. Matteoli, L. Lepori, J. Chem. Phys. 80, 2856 (1984) 

 26.  R. Chitra, P. E. Smith, J. Phys. Chem. B 106, 1491 (2002) 

 27.  H. Q. Liu, E. Ruckenstein, J. Phys. Chem. B 102, 1005 (1998) 

 28.  J. Rosgen, B. M. Pettitt, J. Perkyns, D. W. Bolen, J. Phys. Chem. B 108, 2048 (2004) 

 29.  J. Rosgen, B. M. Pettitt, D. W. Bolen, Biochemistry 43, 14472 (2004) 

 30.  E. R. B. Smith, P. K. Smith, J. Biol. Chem. 117, 209 (1937) 

 31.  H. Kuramochi, H. Noritomi, D. Hoshino, K. Nagahama, J. Chem. Eng. Data 42, 470 (1997) 

 32.  E. R. B. Smith, P. K. Smith, J. Biol. Chem. 135, 273 (1940) 

 33.  J. Zielkiewicz, International DATA Series Selected Data on Mixtures Series A 28, 299 

(2000) 

 34.  J. J. Savage, R. H. Wood, J. Soln. Chem. 5, 733 (1976) 

 35.  A. V. Plyasunov, E. L. Shock, R. H. Wood, J. Chem. Eng. Data 48, 1463 (2003) 

 36.  J. Sedlbauer, P. Jakubu, Ind. Eng. Chem. Res. 47, 5048 (2008) 

 37.  J. Gmehling, Pure App. Chem. 75, 875 (2003) 

 38.  P. E. Smith, R. M. Mazo, J. Phys. Chem. B 112, 7875 (2008) 

 39.  K. E. Newman, Chem. Soc. Rev. 23, 31 (1994) 

 40.  P. G. Kusalik, G. N. Patey, J. Chem. Phys. 86, 5110 (1987) 

 41.  H. X. Lei, P. E. Smith, Biophys. J. 85, 3513 (2003) 

 42.  M. L. de la Paz, K. Goldie, J. Zurdo, E. Lacroix, C. M. Dobson, A. Hoenger, L. Serrano, 

Proc. Natl. Acad. Sci. USA 99, 16052 (2002) 

 43.  F. Chiti, M. Stefani, N. Taddei, G. Ramponi, C. M. Dobson, Nature 424, 805 (2003) 

 44.  H. H. Tsai, D. Zanuy, N. Haspel, K. Gunasekaran, B. Y. Ma, C. J. Tsai, R. Nussinov, 

Biophys. J. 87, 146 (2004) 

 45.  F. Rousseau, L. Serrano, J. W. H. Schymkowitz, J. Mol. Biol. 355, 1037 (2006) 



19 

 

 46.  F. Rousseau, J. Schymkowitz, L. Serrano, Curr. Opin. Struct. Biol. 16, 118 (2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 

 

Table 1  Fitting parameters obtained for Eq. 5 

  

Solute (2) Abbrev. Molal 

activity range 

 A1 

mol·kg
-1

 

A2 

kg·mol
-1

 

V1 

L·mol
-1

 

V2 

L·mol
-1

 

P22
∞
 

cm
3
·mol

-1
 

NMA N 0.5-2.1 56.82 -0.101 -0.020 -0.134 55 

Gly G 0.1-3.3 6.83 0.075 0.118 0.174 176 

Gly2 G2 0.2-1.7 2.70 0.164 0.241 0.330 502 

Gly3 G3 0.1-0.3 1.68 0.129 0.240 0.372 955 

Ala A 0.1-1.4 18.43 0.0 0.073 0.0 36 

Ala2 A2 0.2-1.0 2.89 0.555 0.651 0.0 43 

AlaGly AG 0.2-1.0 2.09 0.463 0.814 0.0 147 

GlyAla GA 0.2-1.0 2.57 0.366 0.673 0.0 108 

 

Errors in the final PIs are estimated as <10 %. Several parameters adopted values close to zero 

during the fitting procedure. In this case, the fit was repeated with these values set at zero. All 

the experimental peptide data refer to racemic mixtures taken from the literature [15,30-33]. 
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Table 2  Decomposition of the PIs observed between molecules into group contributions  

Solute Number of Group Pairs  

 PP QQ PQ MQ MP MM  

N 1       

G  1      

G2 1 1 2     

G3 4 1 4     

A  1  2  1  

A2 1 1 2 4 4 4  

AG 1 1 2 2 2 1  

GA 1 1 2 2 2 1  

 Group pab (cm
3
·mol

-1
) Source 

 55      N 

 63      ½ (G3-2G2+G) 

  176     G 

   135    ½ (G2-G-N) 

   144    ½ (G3-G2-3N) 

     -112  ½ (AG-A-PP-2PQ) 

      130 ½ (A2-AG-A+QQ-2MP) 

    -135   ½ (A-QQ-MM) 

    -137   ½ (AG-QQ-PP-2PQ-2MP-MM) 

     -131  ½ (GA-A-PP-2PQ) 

      169 ½ (A2-GA-A+QQ-2MP) 

    -155   ½ (A-QQ-MM) 

    -157   ½ (GA-QQ-PP-2PQ-2MP-MM) 

Average 59 176 140 -146 -122 149  

σ 6 - 6 20 13 28  

 

Solute abbreviations are given in Table 1. Group abbreviations are peptide (P), charge (Q) and 

methyl (M). The QQ group interaction includes all combinations between two zwitterions (i.e. 

two +/-, one +/+, one -/- interaction). The PQ interaction is a combination of the P+ and P- 

interactions (and similarly for MQ). Estimates for the standard deviation (σ) were based on the 

variation in values obtained from different sources. Additional errors will arise between different 

experimental activity datasets [25]. 
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Fig. 1  Experimental data at 298 K and 0.1 MPa for the molal activity coefficients (2), solution 

density ( in g·cm
-3

) and the resulting preferential interactions (P22

 in cm

3
·mol

-1
) for a series of 

Glyn peptides as a function of peptide molality (m2). The symbols indicate raw experimental data, 

while the solid lines are the corresponding fits after using Eq. 5 and the parameters presented in 

Table 1. Gly (X), Gly2 (O), and Gly3 (*). All PIs are positive indicating a tendency for self-

association, which decreases as the solute concentration increases 
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