THESIS The Application of Fourier-Transform Infrared Spectroscopy (FTIR) in Harmful Algal Bloom Characterization

Gabriel Kenne Candidate, MPH July 2013

Overview

- 1. Harmful Algal Blooms
 - Environmental and Public Health Impacts

2. Characterization Methods

- 3. Fourier-Transform Infrared Spectroscopy
 - Practical use in HAB characterization

Harmful Algal Blooms (HABs)

- Cyanobacteria (blue-green algae)
 - Microcystis
 - Anabaena
 - Aphanizomenon
 - Planktothrix
 - Cylindrospermopsis
 - Oscillatoria

Microcystishttp://www-cyanosite.bio.purdue.edu/images/lgimages/microcy12.jpg

Anabaena
http://www-cyanosite.bio.purdue.edu/images/lgimages/anabva.jpg

Planktothrix
http://wwwcyanosite.bio.purdue.edu/images/lgimages/plank2.jpg

Oscillatoria
http://wwwcyanosite.bio.purdue.edu/images/lgimages/PRINCEP2.JPG

Harmful Algal Blooms (HABs)

- Surface Blooms
 - Green/Blue-Green in color
 - Paint on water surface
- Benthic Blooms
 - Brown/Orange

http://gallery.usgs.gov/images/06_30_2010/hLc5FSq11Y_06_30_2010/large/Cyanobacteria_22.jpg

- Not limited to standing water bodies:
 - Lakes, Ponds, & Rivers

http://www.michigannow.org/2013/03/27/maddening-algae-on-lake-erie/

Cyanotoxins

Cyanotoxin	Basic Structure	Туре	Genera
			Microcystin
microcystins			Anabaena
	cyclic peptides	hepatotoxin	Oscillatoria
			Planktothris
			Nostoc
anatoxin-a			Anabaena
	alkaloid	neurotoxin	Oscillatoria
			Aphanizomenon
			Cylindrospermopsis
anatoxin-a(s)			Anabaena
		neurotoxin	Oscillatoria
	guanidinium methyl phosphate ester		Aphanizomenon
			Cylindrospermopsis
			Anabaena
saxitoxin	tricyclic carbamate alkaloids	neurotoxin	Aphanizomenon
			Cylindrospermopsis
cylindrospermopsin			Cylindrospermopsis
	tricyclic alkaloids	cytotoxic	Aphanizomenon
	-		Úmezaka
			Rhadiopsis

HABs – Public Health Significance

- Human and Animal Illness
- Animal Mortality
 - Companion
 - Livestock
- Environmental Impact
 - Lake/Pond Ecosystems
- Economic Impact
 - Recreational water use
 - Livestock

http://toxics.usgs.gov/photo_gallery/photos/emer_cont/cyanobac/DeadFish_BinderLakel A_7_l.ipg

Bloom Characterization

Cyanobacteria

Cyanotoxin

http://www.cyanobacteria-platform.com/cyanotoxins.html

Current Characterization Methods

- Microscopy
- Bioassays
- ELISA
- Protein Phosphatase Inhibition Assay
- PCR
- HPLC
- LC/MS

Using FTIR to Classify Potentially Toxic Cyanobacteria

Fourier-Transform Infrared Spectroscopy

Sacksteder, C. and B. A. Barry (2001). "Fourier Transform Infrared Spectroscopy: A Molecular Approach to and Organismal Question." Journal of Phycology 37: 198.

Methods

- Samples from KSU
 Vet. Diagnostic Lab
- Dried overnight
- Scanned 3x each
 - Bruker Alpha-P
 - Nicolet 6700

Methods

- Data Tables
 - OMNIC Software (Nicolet 6700)
 - OPUS Software (Bruker Alpha-P)
 - Normalized to Amide I Band (Band 7)
- Data Analysis
- 1. Spectral Observations
- 2. Default Algorithm Screening
- 3. Principle Component Cluster Analysis
- 4. Dendrograms

1. Spectral Observations

2. Default Software Algorithms

Single-Genera Samples:

- OPUS
 - 29 of 31 samples correctly classified <u>as cyanobacteria</u> <u>or not cyanobacteria*</u>
 - 0.9355
- OMNIC
 - 28 of 31 samples correctly classified
 - 0.9032

All Samples: (includes mixed samples)

- OPUS
 - 36 of 43 samples correctly classified
 - 0.8372

- OMNIC
 - 35 of 43 samples correctly classified
 - 0.8140

^{*}Classification of specific cyanobacterial genera was more variable and less successful

3. Principle Component Cluster Analysis

- MatLab 7.7.0
- Single-Genera Samples Normalized Peak 1-12 Data
- Poor quality samples excluded based on raw Amide I band height
 - OPUS: ≤ 0.060
 - OMNIC ≤ 0.100
- 113 OMNIC Spectra
- 91 OPUS Spectra

OMNIC Principle Component Cluster Analysis

OPUS Principle Component Cluster Analysis

4. Dendrograms

- MatLab 7.7.0
- Calculated using Average Euclidian Distance:
 - Average Spectra
 - All Samples
 - 1 Spectrum/Sample

Conclusions

- The success of FTIR in classifying cyanobacteria from environmental samples demonstrates its usefulness in HAB characterization.
 - Sample Quality
 - In conjunction with toxin detection methods

- 1. Screening Tool
- 2. Diagnostics

Future Research

- Sample quality limitations
- Specific Genera
- Using dried samples for toxin identification

MPH FIELD EXPERIENCE: KDHE

Spatial and Temporal Analysis of Kansas Childhood Blood Lead Levels: 2006-2011

Field Experience

- Kansas Department of Environmental Health
 - Bureau ofEnvironmental Health(BEH)
 - Environmental Public Health Tracking (EPHT)
 - Henri Menager

Purpose

- CDC recommends a targeted screening program to prevent childhood lead exposures
 - State Funding Cut in Aug. 2012
 - Systematic Tracking of Elevated Blood-Lead Levels and Remediation (STELLAR)
- Using data from the STELLAR database, identify spatial and demographic "high risk" target zones in the state of Kansas for the Healthy Homes and Lead Hazard Prevention Program (HHLHPP)

Methods

- Data Acquisition:
 - STELLAR
 - Jan. 1, 2006 Dec. 31, 2011
 - 0-72 months old
 - 219,090 blood lead tests
 - Address entry/correction
 - 171,122 valid addresses (78.1%)
 - 8,804 addresses corrected
 - 179,926 total addresses used in spatial analysis (82.1%)
 - 17.9% with no usable address information

Methods

- ArcMap:
 - Data Layers:
 - Census Tract Demographics Data
 - population data by race and age
 - household income
 - percentage individuals below the poverty level
 - Blood Lead Tests
 - Cases of Lead Poisoning

Childhood Blood Lead Poisoning

- Case (Confirmed Elevated Blood Lead)
 - ≥ 10µg/dL lead present in a <u>venous blood draw</u>, or
 - ≥ 10µg/dL lead present in <u>TWO</u> capillary blood draws
 - Must be within <u>90 days</u> of each other to be a case

Observations

- 1. Screening Rates per Year*
- 2. Case Distribution by Year
- 3. Cases in High Poverty Regions
- 4. Demographic Target Zones

^{*}Rates based on county birth cohorts to calculate all children 0-72 months old during the calendar year.

1. Statewide Screening Rates/Year

2. Case Distribution by Year

3. Cases found in High Poverty Regions (384)

16.52% of all cases were found in areas with >14.7% of individuals living in poverty

4.Race & Ethnicity

All Tests	2006	2007	2008	2009	2010	2011	2006-2011 Total
White	7835	6950	2967	1570	1125	845	21292
Black	1591	1447	693	400	239	178	4548
Asian/Pacific Islander	59	85	27	20	16	10	217
Native American	48	37	10	6	3	0	104
Multiracial	4	3	o	0	1	0	8
Unknown	22429	26043	32898	36529	37099	37923	192921
Hispanic	1556	1681	853	399	375	253	5117
Non-Hispanic	2734	3210	1417	705	421	256	8743
Other	2	0	1	0	0	0	3
Unknown	27674	29374	34324	37421	37687	38447	204927
State Total	31966	34565	36595	38525	38483	38956	219090

% of All Tests	2006	2007	2008	2009	2010	2011	2006-2011 Total
White	24.510%	20.107%	8.108%	4.075%	2.923%	2.169%	9.718%
Black	4.977%	4.186%	1.894%	1.038%	0.621%	0.457%	2.076%
Asian/Pacific Islander	0.185%	0.246%	0.074%	0.052%	0.042%	0.026%	0.099%
Native American	0.150%	0.107%	0.027%	0.016%	0.008%	0.000%	0.047%
Multiracial	0.013%	0.009%	0.000%	0.000%	0.003%	0.000%	0.004%
Unknown	70.165%	75.345%	89.898%	94.819%	96.404%	97.348%	88.056%
Hispanic	4.868%	4.863%	2.331%	1.036%	0.974%	0.649%	2.336%
Non-Hispanic	8.553%	9.287%	3.872%	1.830%	1.094%	0.657%	3.991%
Other	0.006%	0.000%	0.003%	0.000%	0.000%	0.000%	0.001%
Unknown	86.573%	84.982%	93.794%	97.134%	97.932%	98.693%	93.536%

Limitations

- Spatial and Demographic Data
- Lack of tools and data to correlate target zones limit the value of the spatial analysis.
 - Spatial analysis tools in ArcMap
 - Accurate Housing Age Data*
 - Lead Industries
 - Medicaid Data*

Conclusions

- Quality data is necessary to represent the realworld implications of environmental lead exposure, and crucial to identifying potential target zones for prevention measures.
- Interventions at the physician, laboratory, and data entry level should be made to explain the importance of this data and its necessity for targeted analyses.

Acknowledgements and Program Influences

Individuals

- Dr. Deon van der Merwe
- Dr. Thu Annelise Nguyen
- Dr. Shawn Hutchinson
- Henri Menager
- Lori Blevins
- Ali Mahdi
- Dr. Justin Kastner

Coursework/Organizations

- Toxicology Coursework
- Geographic Information Systems
- Epidemiology

Frontier Program

Thank You

www.newswise.com/images/uploads/2006/08/23/fullsize/microcystis_shake.jpg;