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Abstract 

Lignocellulosic biomass feedstocks are a sustainable resource required for rapid growth of 

bio-based industries. An integrated approach, including plant breeding, harvesting, handling, and 

conversion to fuels, chemicals and power, is required for the commercial viability of the 

lignocellulosic-based biorefineries. Optimization of conversion processes, including biomass 

pretreatment and hydrolysis, is a challenging task because of the distinct variations in composition 

and structure of biopolymers among biomass types. Efficient fermentation of biomass 

hydrolyzates comprising of different types of sugars is challenging. The purpose of this doctoral 

research was to evaluate and optimize the various processing steps in the entire the biomass value 

chain for efficient production of advanced biofuels and chemicals from diverse biomass 

feedstocks. 

Our results showed that densification of bulky biomass by pelleting to better streamline the 

handling and logistic issues improved pretreatment and hydrolysis efficiencies. Alkali 

pretreatment was significantly more effective than acid pretreatment at same processing conditions 

for grass and hardwood. The ethanol-isopropanol mixture, and glycerol with 0.4% (w/v) sodium 

hydroxide were the promising organic solvent systems for the pretreatment of corn stover (grass), 

and poplar (hardwood), respectively. None of the pretreatment methods used in this study worked 

well for Douglas fir (softwood), which indicates a need to further optimize appropriate processing 

conditions, better solvent and catalyst for effective pretreatment of this biomass. The brown midrib 

(bmr) mutations improved the biomass quality as a feedstock for biochemicals production in some 

sorghum cultivars and bmr types, while adverse effects were observed in others. These results 

indicated that each potential sorghum cultivar should be separately evaluated for each type of bmr 

mutation to develop the best sorghum line as an energy crop. Development of an appropriate 



 

    

biomass processing technology to generate separate cellulose and hemicellulose hydrolyzates is 

required for efficient 2,3-butanediol (BD) fermentation using a non-pathogenic bacterial strain, 

Bacillus licheniformis DSM 8785. This culture is significantly more efficient for BD fermentation 

in single sugar media than Klebsiella oxytoca ATCC 8724. Though K. oxytoca is a better culture 

reported so far for BD fermentation from diverse sugars media, but it is a biosafety level 2 

organism, which limits its commercial potential.  
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Chapter 1 - Introduction: Background and Research Objectives  

 Background    

 Global biofuels and biochemical production scenario 

 Transportation fuels and climate change are topics of keen discussion in both the political 

and scientific communities throughout the world. A gradual decrease in global petroleum 

reservoirs leading to their depletion in near future requires a search for sustainable alternatives to 

fossil fuels to be a high priority. In addition, increasing conflict in most of oil-producing countries 

has further worsened the fuels crisis, particularly for non-oil-producing countries (Mousdale, 

2008). The international energy crises in 1973 quadrupled United States (US) oil prices from $4.50 

to $22.50 per barrel leading to huge damage to the US economy. This forced the US government 

to search for alternative sources of energy, including corn ethanol production (Klein‐

Marcuschamer & Blanch, 2015). Brazil also responded to the energy crises by developing a 

National Alcohol Program, called, “Proalcool” in 1975. Under this program, the Brazilian 

government extensively supported farmers to plant more sugarcane, investors to build more 

distilleries for sugarcane ethanol production, and automakers to design cars to run on 100% ethanol 

(Solomon et al., 2007). US and Brazil are still the main fuel ethanol producers in the world, and 

their major feedstocks are corn and sugarcane, respectively (Guragain et al., 2016). The US interest 

in bioethanol production to supplement gasoline slowly increased from 1980 to 2000, and the rapid 

growth was observed from 2000s as shown in Figure 1.1. Similarly, this trend was observed in 

the rest of the world.  In 2014, 24.6 billion gallons fuel ethanol was produced globally, out of 

which, the US share was 58% of global production. Brazil was the second highest producer (25% 

of global production), followed by Europe (6%), China (3%) and Canada (2%) (Guragain et al., 

2016).  



 

2 

 

US fuel ethanol production in 2014 represented only 4% of the national liquid 

transportation fuel demand, but it consumed almost 30% of total corn grown in US in that year 

(Klein‐Marcuschamer & Blanch, 2015). This production is likely to increase 2.5 times by 2022 to 

meet the new target of current US Renewable Fuels Standards (RFS): 36 billion gallons per year 

(Ge et al. 2011; Kamireddy et al., 2013). Assuming same corn production, and same corn to ethanol 

conversion efficiency, at least 80% of the total US corn production will be required to meet the 

goal provided alternate feedstocks are not utilized. In addition, a number of platform and bulk 

chemicals, including 2,3-butanediol, should be produced from biomass to minimize dependency 

on petroleum-derived products. 2,3-butanediol is an important platform chemical used for the 

production of a number of high-value products, including foods, pharmaceuticals, fuels, polymers, 

and chemicals (Ge et al., 2011). The global demand for 2,3-butanediol is estimated around 32 

million tons per year (Li et al., 2013). These data showed that current approaches to production of 

bio-based fuels and chemicals using food-based feedstocks are inadequate to replace petroleum 

products without affecting the global food supply; lignocellulosic biomass feedstocks are a 

sustainable and low-cost alternative to the current food-based feedstocks.     

Use of abundantly available lignocellulosic biomass for bio-based fuels and chemicals 

production has a number of benefits. First, it helps reduce global food security issues by replacing 

food and feed materials for fuels production. Second, it is available in enough quantity for biofuels 

and biochemicals production to substantially replace petroleum-derived products (Nanda et al., 

2015). Third, it helps to reduce greenhouse gas (GHG) emission if the excess biomass from 

agricultural and forest residues, and the perennial plants grown in degraded croplands are used as 

feedstocks without significant direct or indirect land use change (Fargione et al., 2008). Finally, it 

safeguards our huge investments in ethanol and other biorefinery industries from the shortage of 
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raw materials for these industries. It is because the existing grain and sugarcane-based 

bioprocessing technologies have several similar processing steps with the lignocellulosic-based 

bioprocessing technology. The major difference between these technologies is the release of sugars 

from biomass as shown in Figure 1.2. Therefore, current grain-based biorefineries can switch to 

lignocellulosic-based biorefining with minimum capital investment if appropriate biomass 

preprocessing technologies are developed (Hess et al., 2006).    

 Conversion of lignocellulose biomass to fuels and chemicals 

 

Basically, there are two primary routes for the conversion of lignocellulosic biomass to 

biofuels and biochemicals: (1) biochemical conversion, and (2) thermochemical conversion, as 

shown in Figure 1.3. The biochemical conversion technologies utilize microorganisms or other 

biocatalysts to convert biomass to a number of biofuels and biochemicals, including bioethanol, 

biobutanol, 2,3-butanediol, biodiesel, and biogas. Thermochemical conversion technologies utilize 

heat and chemical catalysts to convert biomass to valuable secondary energy/fuel sources (Chew 

& Doshi, 2011; Menon & Rao, 2012). Each biomass conversion route has a number of inherent 

strengths and weaknesses; the appropriate conversion route is determined by many factors, 

including feedstock types, availability of technology, and energy requirements.  

This doctoral research focuses on biochemical conversion route using fermentation as the 

conversion process to produces biofuels and biochemicals, including bioethanol and 2,3-

butanediol. This route is also called the sugar platform route, in which lignocellulosic biomass is 

deconstructed using appropriate pretreatment method followed by enzymatic hydrolysis to release 

monomer sugars from carbohydrate polymers (cellulose and hemicellulose). The released sugars 

are fermented to desired biofuels or biochemicals using specific microbial culture (Dale & Ong, 
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2012). Integrated biorefinery comprises of four major core sections for the conversion of biomass 

to fuels and chemicals through sugar platform route: feedstocks handling and storage, 

pretreatment, hydrolysis, and fermentation, as shown in Figure 1.4 (Ragauskas et al., 2014a). Each 

section of this biomass conversion process is associated with a number of challenges (Mousdale, 

2008), among them pretreatment is the most energy-intensive single step that incurs 18% of total 

investment for cellulosic ethanol production (Yang & Wyman, 2008). Each section of biomass 

conversion via sugar platform route is briefly discussed below.   

 Biomass handling and storage 

Efficient handling and transportation of lignocellulosic biomass is one of the major 

challenges for current biorefinery industry because of very low bulk density of these feedstocks, 

ranging from 50 to 130 kg/m3, depending on biomass type, particle size and particle density 

(Sokhansanj & Turhollow, 2004). Hess et al. (2006) estimated that average baling and stacking 

cost for wheat and barley straw is around $23 per ton, and transportation cost around $11 per ton. 

It was also estimated that the actual cost would be even higher depending upon a number of factors, 

including transportation distance, local labor cost, and construction cost for handling and storage 

facilities. In addition, state regulation for maximum transport volume also restricts for loading 

transportation vehicle with enough biomass quantity (Hess et al., 2006). Densification of biomass 

in agricultural fields is, therefore, essential to better streamline the handling and logistics issues 

for biofuels and biochemicals production. Biomass pelleting is considered as one of the effective 

way to accomplish this task. The pelleting process resulted in 9 to 12-fold bulk density increase, 

and makes biomass as flowable as grain (Theerarattananoon et al., 2011). This leads to the 

utilization of grain handling equipment and storage facilities existing in current grain-based 

biorefineries to handle and store lignocellulosic biomass as well. Therefore, biomass pelleting 
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process helps in switching current biorefineries from grain-based processing technology to 

lignocellulosic-based processing technology without additional capital investment (Hess et al., 

2003; Hess et al., 2006).  

 Biomass pretreatment 

Efficient conversion of cellulose and hemicellulose of lignocellulosic biomass into 

fermentable sugars depends on effective modification of complex structure of plant cell wall – the 

process called deconstruction or pretreatment. The organization and interactions among the 

structural components of biomass (cellulose, hemicelluloses and lignin) make the plant cell wall 

recalcitrant to biological degradation. Various methods of pretreatment, including biological, 

physical, chemical and physiochemical are available today, and new methods are emerging to 

make the biomass deconstruction process more efficient and cost effective. The pretreatment 

process is reviewed in detail in Chapter 2.     

 Hydrolysis of pretreated biomass 

The depolymerization of carbohydrates polymers, cellulose and hemicellulose, into their 

monomer units is called hydrolysis. Cellulose is a homopolysaccharide composed of glucose units 

linked by β 1,4-glycosidic bonds. The major part of cellulose is a highly crystallized structure, 

with some amorphous regions. In contrast, the hemicellulose is a heteropolymer sugar, which 

predominantly comprises of xylose, and small amount of glucose, mannose, arabinose, and other 

monomer sugars. The hemicellulose has a highly amorphous structure, and hence is easily 

hydrolyzed compared to cellulose (Hu et al., 2008). Depending upon the pretreatment methods 

and processing conditions, the carbohydrate polymers (mainly hemicellulose) is partially 

hydrolyzed during pretreatment process. The remaining hemicellulose and cellulose polymers are 

usually hydrolyzed using hemicellulase and cellulase enzymes, respectively. Synergistic reactions 
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of three type of cellulase enzymes, including endo-β-1, 4-glucanases, exo- β-1, 4-glucanases, and β-

glucosidases, are required for efficient hydrolysis of cellulose polymers. Endo-glucanases randomly 

cut internal amorphous site of cellulose chain, generating oligosaccharides with various chain length. 

Exo-glucanases systematically cut the oligosaccharides chain, generated by endo-glucanases, to 

produce predominately cellobiose, and glucose as the major products. Exo-glucanases can also act 

on microcrystalline cellulose, by peeling cellulose chains from the microcrystalline structure, and 

making them accessible for endo-glucanases enzyme. Therefore, synergy among exo-glucanases 

and endo-glucanases is more important in crystalline region of cellulose compared to amorphous 

region. The β-glucosidases breakdown the cellobioses, generated by exo-glucosidase, into glucose 

units (Lynd et al., 2002; Zhang et al., 2007). The hydrolysis of xylan polymer of hemicellulose is 

accomplished by the group of enzymes, including, endo-1, 4- β-xylanase, β-xylosidase, β-

glucuronidase, α-L-arabinofuranosidase and acetylxylan esterase. Similarly, glucomannan 

polymer of hemicellulose is hydrolyzed by β -mannanase and α-mannosidase cleave glucomannan 

polymer (Kumar et al., 2008).  Currently, robust enzymes cocktail comprising of all required 

enzymes for cellulose and hemicellulose hydrolysis are commercially available, such as Cellic 

CTec2 and Cellic HTec2 enzymes produced by Novozymes, Inc., Franklinton, NC, USA.   

 Fermentation of biomass hydrolyzates  

The sugars released from biomass is finally fermented using specific microbial cultures 

depending upon the product of interest. For example, for the production of 2,3-butanediol, Bacillus 

licheniformis, Klebsiella oxytoca, and Serratia marcescents are some of the important 

microorganisms of interest (Jurchescu et al., 2013). Similarly, Saccharomyces cerevisiae and 

Zymomonas mobilis are utilized for ethanol production (Guragain et al., 2016).    
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Hydrolysis and fermentation are usually carried out separately one after another; such 

process is called Separate Hydrolysis and Fermentation (SHF). In many instances, both hydrolysis 

and fermentation processes are performed simultaneously in the same tank depending upon the 

processing technology and product of interest; such a process is called Simultaneous 

Saccharification and Fermentation (SSF). Many researchers reported that the SSF process is more 

cost effective than SHF. Tomas-Pejo et al. (2008) reported that SSF process for ethanol production 

reduced the production cost by 19% compared to SHF.  

 Global availability of lignocellulosic biomass  

The global biomass production is estimated to be around 146 billion tons per year, and a 

very small part of it is currently being used for biofuels and biochemical production (Chew & 

Doshi, 2011). The estimated global production of four major crops residues - corn stover, rice 

straw, wheat straw, and sorghum stover in 2011 were 1413, 1084, 1056, and 81 million tons, 

respectively.  Forest residues were estimated at 274 million tons in 2011, but are projected as the 

major feedstock for future biorefineries with estimated production of 6 billion tons per year by 

2050. In addition, municipal solid waste is available in very large quantity, and can also be a 

potential feedstock for biorefinery operations; the estimated municipal solid waste in 2011 was 1.3 

billion tons (Kurian et al., 2013). 

The annual lignocellulosic biomass available in US and Canada is about 577 and 561 

million tons, respectively. The large portion of the estimated US biomass was from agricultural 

residues (such as corn stover and wheat straw), and energy crops (such as switchgrass and hybrid 

poplar), whereas forest residues comprise the major portion of Canadian biomass (Gronowska et 

al., 2008). Brazil is the world’s largest sugarcane producer; annual production of around 495 

billion tons; therefore, the sugarcane bagasse is the main lignocellulosic residues in Brazil, which 
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is estimated at 186 million tons annually (Soccol et al., 2010). European Union set a low-carbon 

roadmap to reduce 80% of domestic GHG emission by 2050, taking 1990’s emission as the base 

line. To achieve this goal, Sweden adopted energy crops (Willow) plantation, and targeted to 

replace 50% energy consumption by renewable energy by 2020. Austria produces more than 20 

million tons of lignocellulosic biomass for energy production, and produces nearly 15% of its 

energy using this biomass waste (Nanda et al., 2015). Sub-Saharan Africa has the greatest potential 

for energy crop production because of the availability of land, labor and favorable climatic 

conditions. However, due to lack of proper agricultural development and appropriate national 

energy policies, only a few countries in these territory have exploited the biofuels production 

opportunities (Jumbe et al., 2009). Several hundred million tons of lignocellulosic biomass is 

annually produced in Asian Pacific, including crop residues in China, forest and agriculture 

residues in Korea, Palm tree residues in Malaysia, crops residues and sugarcane bagasse in India, 

and forest residues in Australia (Nanda et al., 2015).    

 Sustainability of biofuels and chemicals production from lignocellulosic biomass 

The lignocellulosic-based biofuels and biochemical industries must address all three 

aspects of sustainability criteria: economic, environmental, and social factors (Ladanai & 

Vinterbäck, 2009). Life cycle assessment (LCA) of biofuels is extensively studied to evaluate their 

sustainability; however, LCA primarily focuses on environmental impact of biofuel with some 

effort for economic aspect, but little attention is given to social aspect. The functional units of LCA 

of biofuels from biomass are net energy balance and greenhouse gas (GHG) emission (Bonin & 

Lal, 2012).  For sustainability of the bioeconomy, the biorefining program and feedstock 

production must be designed with the participation of local and rural communities to address their 

societal needs (Nanda et al., 2015). The major driving factors for growing interest in 
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lignocellulosic-based fuels and chemicals production are energy security, environmental concerns 

because of increasing GHG emission, economic development and job creation in rural areas 

(Ladanai & Vinterbäck, 2009). Currently, crop residues are the major feedstock for lignocellulosic-

based biorefineries. Use of crop residues as energy feedstock is advantageous because of the dual 

use of land for both food and fuel production. However, these biomass feedstocks are only 

seasonally available, and excessive removal of crop residues from farm lands degrade soil quality, 

including soil organic carbon (SOC) pools, water transmission characteristics, soil structural 

stability and soil microbial activity (Blanco-Canqui, 2010). In addition, intensive fertilizer inputs 

in crop land to grow these crops results in increased emissions of nitrous oxide (N2O), a highly 

potent GHG (Evers et al., 2013). Plantation of dedicated energy crops, including perennial warm-

season grasses (such as switchgrass and miscanthus), and short-rotation woody crops (such poplar 

and Douglas fir), are sustainable supplements of crops residues for biorefineries. These energy 

crops require less nitrogen fertilizer, and can be grown in marginal and degraded land to avoid 

land competition for prime agricultural crops (Blanco-Canqui, 2010; Don et al., 2012). 

Despite the hot debate regarding the sustainability of biofuels and biochemicals from 

lignocellulosic biomass, feedstocks availability will not be the key issue if highly efficient 

conversion technology is developed. It is because current global land use to grow biofuels 

feedstocks is only 25 million hectors, which is 0.19% of worlds’ total land area (Ladanai & 

Vinterbäck, 2009). In addition, aquatic plants, such as algae, are another promising feedstock, 

which has the potential of producing 30 times more biofuels and biochemicals than terrestrial 

lignocellulosic biomass feedstocks. The algae plants can be fed with CO2 or NO, and also help to 

reduce GHG concentrations in the atmosphere (Kurian et al., 2013). Therefore, development of 

efficient, cost effective, and environmentally friendly biomass technologies to utilize all 
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components of lignocellulosic biomass to produce fuels, chemical, and power is vital for transition 

of the current fossil-economy to a sustainable bioeconomy (Lopes, 2015). The key for success of 

petroleum industries is their fundamental understanding of high value applications of hydrocarbon 

feedstocks, and development of highly efficient conversion technologies because of their long 

history on research and development. The petroleum-derived chemicals’ market is less than 10% 

of crude oil, but significantly contributes to the overall profitability of petrochemical industries 

(Bozell et al., 2014). A biorefinery concept analogue to that of the petroleum refinery concept must 

be developed and implemented for the sustainable future. Therefore, the smart biorefinery industry 

should focus on high-volume and low-value biofuels production to meet growing energy demand 

and low-volume and high-value bio-based chemicals production for the economic viability of the 

industry.   

A number of high-value platform chemicals can be produced from lignocellulosic biomass, 

which are currently sourced from petroleum. The biomass-derived monomers sugars, including 

glucose, xylose, and arabinose, can be converted into 2-carbon (C2) to 6-carbon (C6) platform 

chemicals through biocatalytic conversion process. Some C2 to C6 platforms chemicals produced 

using microorganisms are listed below; these platform chemicals are used as important feedstocks 

to produce a number of high-value products, including fuels, pharmaceuticals, cosmetics, foods, 

solvents, and polymers (Jang et al., 2012).   

C2: Ethanol, and acetic acid 

C3: Propionic acid, lactic acid, 3-hydroxypropionic acid, isopropanol, 1,2-propanediol, and 

1,3-propanodiol. 

C4: 2,3-Butanediol, 1,4-butanediol, 1-butanol, isobutanol, succinic acid, butyric acid, malic 

acid, fumaric acid, and putrescine   
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C5: Itaconic acid, 3-hydroxyvalerate, 1-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 

xylitol, and cadaverine 

C6: Glucaric acid, anthracitic acid, phenol, catechol  

Among these wide range of platform chemicals, this doctoral research study focuses on 

2,3-butanediol production from lignocellulosic biomass-derived sugars. 2,3-Butaneidiol is a four-

carbon diol, which can be converted into various compounds, and widely used in a number of 

application, including food, fuel, chemical, pharmaceutical , and polymer as shown in Figure 1.5 

(Celińska & Grajek, 2009; Ji et al., 2011; Li et al., 2013; Qi et al., 2014). It exists in three 

stereoisomers: L-(+)-2,3-butanediol (S,S – dextrorotatory form), D-(-)-2,3-butanediol (R,R – 

Levorotatory form), and meso-2,3-butanediol (optically inactive form). A number of microbial 

species, including Klebsiella, Enterobacter, Bacillus and Serratia genera can produce BD from 

different feedstocks. Among them, K. oxytoca, K. pneumoniae, E. aerogenes, B. licheniformis, and 

S. marcescents are the promising microorganisms for efficient BD fermentation (Ji et al., 2011; 

Jurchescu et al., 2013).  

Lignin valorization is another important research area for the sustainability of 

lignocellulosic-based biorefinery industries. Lignin has been considered a low value byproduct, 

and mainly combusted as boiler fuel, despite the great potentiality of the lignin products for a 

number of high-value applications to produce fuels, chemicals, fibers, and polymers (Ragauskas 

et al., 2014a). In addition, the biomass also contains a number of valuable phytochemicals, 

including terpenes and terpenoids, fats and waxes, phenolics, and alkaloids (Beatson, 2011). 

Efficient extraction and isolation of these extractives prior to pretreatment for biomass 

deconstruction, is vital for the sustainability of lignocellulosic-based biorefineries. 
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 Research objectives 

A wide range of lignocellulosic biomass feedstocks are available for the rapidly growing 

biorefinery industries. Sustainable production of biofuels and biochemicals requires an integrated 

approach, including plant breeding, harvesting and handling, and conversion of diverse biomass 

feedstocks to fuels, chemicals and power. Densification of biomass at the agricultural field is 

required to better streamline the handling and logistic issues of bulky feedstocks, such as crop 

residues and perennial grasses. The distinct variation on structure and composition of these 

biomass feedstocks demands separate pretreatment and hydrolysis strategies for each type of 

feedstock. Development of efficient fermentation process for the utilization of biomass-derived 

sugars, comprising glucose, xylose and other monomer sugars, is critical for any biorefinery. 

Therefore, the overall objective of this doctoral research was to evaluate and optimize various 

steps of biomass processing for efficient production of 2,3-butanediol from lignocellulosic-based 

feedstocks. 

Specific objectives of this study are listed below, which are discussed in each chapter of 

this dissertation.    

1. To review and evaluate some promising biomass pretreatment technologies (Chapter 2) 

2. To evaluate effect of biomass densification by pelleting on pretreatment and hydrolysis of 

biomass (Chapter 3) 

3. To develop appropriate biorefining strategies for multiple feedstocks based on acid and alkali 

pretreatment (Chapter 4) 

4. To develop novel biomass pretreatment methods using alkaline organic solvents (Chapter 5) 

5.  To review and evaluate lignin composition and structure of lignin from various bioenergy 

crops (Chapter 6) 
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6. To evaluate lignin-specific sorghum mutants as a potential biomass feedstock for 2,3-

butanediol production (Chapter 7) 

7. To optimize 2,3-butanediol fermentation from biomass-derived sugars using Klebsiella 

oxytoca ATCC 8724 (Chapter 8) 

8. To evaluate Bacillus licheniformis DSM 8785 bacteria for 2,3-butanediol fermentation from 

biomass-derived sugars (Chapter 9)  

9. To provide effective conclusions and to propose future research on biomass processing 

(Chapter 10)      
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Figure 1.1 Fuel ethanol production current and past (Guragain et al., 2016)  
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Figure 1.2 Biofuels and biochemicals production processes from diverse biomass 

feedstocks.  

 

 

 

Figure 1.3 Conversion routes for lignocellulosic biomass feedstocks to bio-based products.  
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Figure 1.4 Integrated biorefinery to produce biofuels and biochemicals through sugar 

platform route.  

 

 

 

 
Figure 1.5 Some important derivatives of 2,3-butanediol, and their potential applications 

(Celińska & Grajek, 2009; Ji et al., 2011; Li et al., 2013; Qi et al., 2014).   
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Chapter 2 - Evaluation of promising lignocellulosic biomass 

pretreatment: A review 

 Abstract 

Deconstruction of complex lignocellulosic biomass structure to overcome its recalcitrant 

nature for enzymatic hydrolysis of carbohydrate polymers is the primary objective of biomass 

pretreatment. It is the central unit operation that significantly affects the efficiency of all 

subsequent steps of bioprocessing of lignocellulosic biomass to produce fuels and chemicals. In 

addition, pretreatment is the most expensive single unit operation in the context of existing biomass 

conversion technologies via sugar platform route. The development of an efficient and cost 

effective biomass pretreatment method is critical for the fractionation of the each component of 

biomass without quality degradation for their high-value applications. Pretreatment methods are 

broadly divided into four major categories based on the mechanism of biomass deconstruction: 

physical, chemical, physico-chemical, and biological pretreatment methods. Optimization of a 

single pretreatment method for all types of feedstock is complicated due to the variations in the 

compositions and structures of lignin, cellulose, and hemicellulose among biomass types. 

Therefore, each type of biomass feedstock must be separately evaluated to design appropriate 

biomass deconstruction strategies. In this review chapter, we evaluated some of the most promising 

biomass pretreatment methods, including their mechanisms, advantages and disadvantages.          

Keywords: Lignocellulosic biomass, cellulose, hemicellulose, lignin, pretreatment.   

 Introduction 

The primary objective of pretreatment process is to deconstruct the complex biomass 

structure comprising lignin, hemicellulose, and cellulose so that each biopolymer can be 
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effectively utilized to produce fuels, chemicals and power. Each step of biomass processing, 

including pretreatment, hydrolysis and fermentation, have many challenges that need to be 

overcome for commercial viability of lignocellulosic-based biorefineries. Among these processes, 

pretreatment is considered the central unit operation, which significantly affect the effectiveness 

of all other subsequent steps of biomass processing (Sousa et al., 2009). Montague et al. (2002) 

estimated that if dilute acid pretreatment is used before enzymatic hydrolysis, the capital 

investment for pretreatment is 17% of the total capital investment ($ 19 million out of $ 113 

million), and incurs the highest investment of a single step of bioethanol production from corn 

stover, other than procurement and installation of Boiler/Turbogenerator. Humbird et al. (2011) 

proposed an improved two-step acid pretreatment with some process modifications, and estimated 

that capital investment for biomass pretreatment is around 13% of total capital investment ($ 30 

million out of $ 232 million). The percentage reduction in capital investment for pretreatment 

compared to the earlier report by Montague et al. (2002) was not due to the significant 

improvement in pretreatment technology, but due to an increase in capital cost for wastewater 

treatment. These results indicated that development of cost effective pretreatment method is vital 

for lignocellulose-based biorefineries. In addition, lignocellulosic-based biorefinery currently 

focuses on cellulose-derived sugars, and the lignin stream is combusted as boiler fuel, which is a 

very low-value application of the energy-rich biopolymer. Lignin comprises 40% of 

lignocellulosic biomass by energy even though it is only 15 to 30% by weight (Laskar et al., 2013). 

Therefore, lignin valorization is critical for the sustainability of biorefining industries, which in 

turn is related to the appropriate pretreatment method to extract good quality biomass lignin 

(Ragauskas et al., 2014a). 
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A number of biomass pretreatment methods are available, including physical, chemical, 

physico-chemical, and biological (Mood et al., 2013); some of them are as follow 

1. Physical methods: Extrusion, ball milling, wet-disc milling, microwave 

pretreatment 

2. Chemical methods: Acid pretreatment, alkali pretreatment, organosolv 

pretreatment, ozonolysis pretreatment 

3. Physico-chemical methods: Steam explosion, ammonia fiber explosion, liquid hot 

water, carbon dioxide explosion, wet oxidation 

4. Biological methods: White-rot fungi, brown-rot fungi, soft-rot fungi 

Some of the promising pretreatment process is briefly discussed below.   

 Extrusion pretreatment 

Extrusion cooking is one of the promising physical pretreatment process of lignocellulosic 

biomass for biofuels and biochemicals production (Zheng & Rehmann, 2014). It is widely used 

process in snack food industries. In this process, material is forced through a die with desired cross-

section profile. When the material passes through the extruder, a number of unit operations, 

including heating, mixing and shearing, take place simultaneously resulting in physical and 

chemical alteration of the material. Finally, the material experiences an abrupt expansion while 

exiting the die (Zhan et al., 2006). The complex networks of biopolymers in lignocellulosic 

biomass is disrupted during extrusion process, thereby making the biomass susceptible for 

enzymatic hydrolysis without production of pretreatment-induced inhibitory compounds for 

subsequent biomass hydrolysis and fermentation (Karunanithy et al., 2008).  

There are two type of extruders: single-screw extruder and twin-screw extruder, with three 

type of screw elements: (a) forward screws elements – transports bulk materials through different 
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pitches and lengths with minimum mixing and shearing effect; (b) kneading screw elements – very 

slowly conveys materials forward with high mixing and shearing effect through different stagger 

angles; and (c) reverse screw elements – pushes material backward with very high mixing and 

shearing effect (Zheng & Rehmann, 2014). Effective biomass pretreatment can be achieved by 

optimizing appropriate screw configuration, including pitches, lengths, stagger angles, positions 

and spaces. A batch-type kneader with combination of twin-screw elements is suitable for biomass 

pretreatment at large scale because of excellent temperature control, very high grinding, mixing 

and shearing forces, high throughputs, and scalability (Lee et al., 2010). In twin-screw extruders, 

two parallel screws with same length are fixed on a stationary barrel. The direction of the screw is 

either co-rotating or counter-rotating. The screw speed (in rpm) and the barrel temperature are the 

main factors to be optimized for a specific extruder and specific material to develop high shearing 

force for achieving maximum extrusion effect (Karunanithy & Muthukumarappan, 2010).  

Poor flow of lignocellulosic material during extrusion process is one of the major 

challenges for extrusion pretreatment of lignocellulosic biomass. This frequently leads to burning 

of the substrate and even blocking of the die during extrusion (Yoo et al., 2011). This problem can 

be overcome by using high moisture content in the material (Lamsal et al., 2010; Yoo et al., 2011), 

2010), by adding processing aid, like starch (Lamsal et al., 2010), or cellulose affinity additives, 

like ethylene glycol, glycerol, and dimethyl sulfoxide (Lee et al., 2009). Alternatively, the biomass 

is soaked with alkali solution (for example, sodium hydroxide) prior to feeding into extruder to 

overcome the poor flow of biomass during extrusion as well as to improve the delignification of 

biomass (Kang et al., 2013; Liu et al., 2013). However, inconsistent results are reported in literature 

for the extrusion pretreatment using cellulose affinity additives. For example, Lee et al. (2009) 

reported 62.4% cellulose conversion to glucose from Douglas fir using ethylene glycol as cellulose 
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affinity additives while the same additives did not help much for soybean hulls as reported by Yoo 

et al. (2011).  

Advantages: 

 Easy process monitoring and control 

 No inhibitory compounds formation due to sugar degradation 

 Adaptability for process modification 

 Continuous and high throughput 

 No need for washing of pretreated biomass if extrusion is carried out without chemical 

addition 

 Can be combined with other methods of pretreatment for better results (Karunanithy, et al., 

2014) 

Disadvantages: 

 Lack of data for economic analysis 

 Energy intensive process  

 Poor flow during continuous processing leading to burning of material (Yoo et al., 2011). 

 Acid pretreatment 

Dilute acid pretreatment is the most extensively studied and widely used lignocellulosic 

biomass pretreatment. In this method biomass is mixed with dilute acid (<4%, v/v) and heated at 

desired time and temperature, ranging from few seconds to several minutes, and 140°C to 215°C, 

respectively (Agbor et al., 2011). Usually sulfuric acid is used; however, other organic acids, like 

formic or maleic acids were also found equally effective (Alvira, et al., 2010). National Renewable 

Energy Laboratory recently designed two-step dilute acid pretreatment method for corn stover to 

minimize sugar degradation during pretreatment (Humbird et al., 2011). In this method, biomass 
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slurry containing 18 mg sulfuric acid/dry g biomass is heated at 158°C for 5 min followed by 

second step heating at 130°C for 20-30 with 4.1 g additional acid/dry g biomass.  

Advantage: 

 High reaction rate to solubilize hemicellulose fraction of biomass thereby making cellulose 

fraction accessible for cellulase enzymes (Agbor et al., 2011; Alvira et al., 2010). 

Therefore, this method of deconstruction can be designed for biomass processing to 

generate separate hemicellulose hydrolyzates (after pretreatment) and cellulose 

hydrolyzates (after enzymatic hydrolysis).  

 Cost saving for xylanase enzymes: Hemicellulose is extensively hydrolyzed during 

pretreatment depending upon the feedstock type and processing conditions; therefore, 

xylanase enzyme is not generally required for hydrolysis (Sousa et al., 2009). 

Disadvantage: 

 Inhibitors production, such as formation of furfural and hydroxymethylfurfural (HMF) 

from sugar degradation resulting in sugar loss as well as additional detoxification cost 

required to make the released sugars fermentable (Hu & Ragauskas, 2012).  

 Need expensive stainless steel vessels due to corrosive nature of acid (Esteghlalian et al., 

1997).  

 Additional cost for alkali to neutralize acid after pretreatment 

 Environmental concern due to excessive use of chemicals 

 Alkali pretreatment 

Alkali pretreatment is another extensively studied and widely used lignocellulosic biomass 

pretreatment. Sodium hydroxide (NaOH), potassium hydroxide (KOH) and ammonium hydroxide 

(NH4OH) are suitable for biomass pretreatment (Alvira et al., 2010). NaOH is considered as the 
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best alkali because it results in higher delignificaiton and deacetylation  (Hu et al., 2008) as well 

as decrease in crystallinity of cellulose due to swelling of residual biomass during pretreatment 

(Alvira et al., 2010). Process is similar to acid pretreatment, but usually at lower temperature.  

Advantage: 

 Effective delignification (Hu et al., 2008) 

 Lower sugar degradation products formation compared to dilute acid pretreatment due to 

the lower processing temperature; possible to pretreat at room temperature using longer 

time  

 Lignin and other extractives can be separated before enzymatic hydrolysis without loss of 

carbohydrate; high possibility of getting reactive lignin for high value application (Ghaffar 

& Fan, 2014).  

Disadvantage: 

 Excessive phenolic compounds due to lignin degradation, which are potential inhibitors for 

enzymatic hydrolysis unless separated prior to enzymatic hydrolysis (Alvira et al., 2010). 

 Additional cost for hemicellulose hydrolytic enzymes in addition to cellulase enzymes 

(Esteghlalian et al., 1997). 

 Additional cost for acid to neutralize alkali after pretreatment 

 Environment concern due to excessive use of chemicals 

 Organosolv pretreatment 

Organosolv pretreatment is one of the promising biomass pretreatment methods, in which 

biomass is mixed with selected organic solvent with or without additional catalysis (acid or alkali), 

and heated for selected time and temperature. Various organic solvents or solvent mixtures can be 

used, including low boiling point solvents, such as ethanol, methanol and acetone, high boiling 
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point solvents, such as glycerol, ethylene glycol and tetrahydrofurfuryl alcohol, and other classes 

of organic solvents, such as   organic acids, phenols, ketones and dimethyl sulfoxide (Zhao et al., 

2009b). Ethanol organosolv pretreatment using acid catalyst is the most widely used method 

among the organosolv pretreatments. It is carried out at 90°C to 120°C for grasses and 155°C to 

220° C for woods with processing time 25 min to 100 min, ethanol concentration 25% to 74% and 

catalyst concentration 0.83% to 1.67% (v/v) (Sousa et al., 2009). Catalyst addition is not required 

if processing temperature is high (>185°C) because organic acids released from biomass act as 

catalyst at that temperature (Duff & Murray, 1996). Organosolv pretreatment almost completely 

removes hemicellulose and extensively removes lignin, thereby leaving digestible cellulose 

residues (Zhao et al., 2009b). Studies on the change in cellulose crystallinity during organosolv 

pretreatment is limited. Ni and Van Heiningen (1997) reported that ethanol-water organosolv 

pretreatment leads to swelling of cellulose, and the effect is inversely related to ethanol 

concentration. Cellulose crystallinity is not an important factor for the digestibility of pretreated 

biomass with low residual lignin content if hydrolysis is carried out for sufficiently long periods 

(Zhu et al., 2008); however, productivity of sugar release is decreased.  

Organosolv pretreatment using high boiling point alcohols, mostly polyhydroxy alcohols, 

is also gaining attraction because the process can be performed at atmospheric condition. Glycerol 

is one of the most extensively used high boiling point alcohols for the delignification of 

lignocellulosic biomass (Zhao et al., 2009b). Its high boiling point (290°C) favors biomass 

pretreatment at high temperature and atmospheric pressure, called atmospheric aqueous glycerol 

autocatalytic organosolv pretreatment (AAGAOP) (Sun & Chen, 2008). Use of low cost crude 

glycerol, a major byproduct of oleochemical industries, for biomass pretreatment is considered an 

attractive economic route for biofuels and biochemicals production (Guragain et al., 2011). 
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Oleochemical industries produce crude glycerol around 10% of total biodiesel production. High 

value application of crude glycerol for food, pharmaceutical and cosmetic use is economically 

infeasible due to the very expensive purification process (Sun & Chen, 2008). The rapid growth in 

global biodiesel production (Bournay et al., 2005) indicated that crude glycerol will be available 

even in larger quantity at lower cost in future. However, recycling of glycerol is very challenging 

and energy intensive.  

One of the major drawbacks of organosolv pretreatment is loss of hemicellulose in the lignin 

stream, which is hard to recover as fermentable sugars due to presence of a number of inhibitory 

compounds, including phenolics. For the separation of all three major biopolymers (cellulose, 

hemicellulose and lignin) into separate streams, Hongzhang & Liying (2007) proposed a 

combination of steam explosion and ethanol organosolv pretreatment. In this method the biomass 

was first pretreated by steam explosion method to hydrolyze hemicellulose, followed by ethanol 

organosolv pretreatment to extract lignin. The residual cellulose is easily hydrolyzed using 

cellulase enzymes to monomers sugar. However, use of multiple steps results in increase in 

pretreatment cost. Diner & Fan (2012) developed a single step alkaline organosolv pretreatment 

method in which various amount of ammonia (2 to 20% of biomass) was added in biomass slurry 

in organic solvents and heated at desired time and temperature. This process led to extensive 

removal of lignin without significant loss of hemicellulose. The lignin-free carbohydrate polymers 

(cellulose and hemicellulose) was effectively hydrolyzed using enzymes.  

Advantage: 

 Extracted lignin is relatively of high purity, low molecular weight and sulfur free leading 

to high possibility for high value application of lignin (Agbor et al., 2011; Zhao et al., 

2009b) 
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 Very selective pretreatment methods; all three biopolymers – cellulose, hemicellulose and 

lignin can be separated into different streams (Duff & Murray, 1996) 

 It can be combined with other pretreatment processes for effective pretreatment of more 

recalcitrant biomass  

Disadvantage: 

 High cost of solvent: Recycling process is also energy intensive (Alvira et al., 2010). 

Additional solvent is required during washing to avoid lignin precipitation due to washing 

with water; this leads to further increase in solvent recovery cost (Zhao et al., 2009b) 

Formation of inhibitory compounds, such as furfural and HMF, due to sugar degradation 

when acid catalyst is used (Agbor et al., 2011)  

 Residual solvent will be inhibitory for enzymatic hydrolysis and fermentative organisms 

(Sun & Cheng, 2002) 

 Environmental and health concerns due to the use of volatile organic liquids at high 

temperature (Agbor et al., 2011)   

 Ionic liquid pretreatment 

This is relatively new approach for biomass pretreatment, in which whole biomass is dissolved 

in selected ionic liquid and then carbohydrate polymers are precipitated by adding appropriate 

anti-solvents, thereby separating lignins and carbohydrates. Generally water is used as anti-

solvent, but methanol and ethanol can also be used. The regenerated cellulose will have reduced 

crystallinity and hence will be more easily digestible (Mousdale, 2008). Ionic liquids possess the 

capability to form hydrogen bonds with cellulose due to the presences of anions, like chloride, 

acetate, formate, or alkylphosphonate at higher temperatures, leading to dissolution of cellulose 

(Q. Li et al., 2009). During the regeneration process, the water (anti-solvent) competes with ionic 
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liquids to form hydrogen-bonding with cellulose, leading to decrease in the solubility of cellulose 

in ionic liquids, and ultimately results in precipitation (Swatloski et al., 2002). The solvent 

properties of the ionic liquid can be adjusted by changing desired cation and /or anion (Illanes et 

al., 2012; Moniruzzaman et al., 2010). 

Advantage: 

 Ionic liquids are stable up to 300oC and hence have minimum environmental impact due 

to extremely low volatility – green solvent (Mousdale, 2008) 

 Possible to separate each of the biopolymers – cellulose, hemicellulose and lignin 

 Ionic liquid with desirable properties can be synthesized  

Disadvantage: 

 Cost of ionic liquid is still very high 

 Many ionic liquids are toxic to enzyme and fermenting organisms (Zhao et al., 2009a) 

 Cost of recovery is expensive 

 Very difficult to handle biomass slurry with ionic liquid during pretreatment because it 

becomes too viscous with increase in pretreatment temperature beyond 150°C (Guragain 

et al., 2011)  

 Steam explosion pretreatment 

Steam explosion pretreatment is the most extensively studied physiochemical pretreatment 

process. In this process, the ground and preconditioned biomass is treated with saturated steam at 

high temperature (160 -290°C) and high pressure for a few seconds to several minutes before the 

pressure is explosively released (Agbor et al., 2011; Chen et al.,  2005; Sousa et al., 2009). During 

this pretreatment process, hemicellulose is extensively hydrolyzed due to the formation of acetic 
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acid from the released acetyl groups present in the hemicellulose; additionally, water also acts as 

an acid at high temperature and further helps hemicellulose hydrolysis – a process also called 

autohydrolysis (Mosier et al., 2005). The chemical effects of hemicellulose hydrolysis is coupled 

with physical benefit of explosive decompression due to sudden pressure release leading to 

redistribution of lignin polymers as well as its partial removal from the material (Alvira et al., 

2010). This method is more effective in hardwood and herbaceous biomass, but needs addition of 

acid catalyst for effective pretreatment of softwood due to the presence of lower amount of acetyl 

groups in softwood hemicellulose (Agbor et al., 2011; Sun & Cheng, 2002)    

Advantage: 

 No use of chemicals and hence no recycling and environmental cost 

 Relatively less dilution of released hemicellulose 

 High particle size biomass can be used, leading to energy saving for size reduction, which 

is one third of entire pretreatment process (Hamelinck et al., 2005) 

Disadvantage: 

 Incomplete destruction of lignin-carbohydrate complex that may lead to condensation and 

precipitation of soluble lignin and thereby reducing the hydrolysis efficiency of  the 

pretreated biomass (Li & Gellerstedt, 2008)  

 Use of high severity (around 270°C) is the best to enhance cellulose digestibility but it also 

leads to formation of sugar degradation inhibitory compounds – furfural and HMF (Wright, 

1988).  

 Weak acids and phenolic compounds generated during this process are also inhibitory for 

subsequent enzymatic hydrolysis and fermentation; these include acetic acid from acetyl 

groups present in hemicellulose, and formic and levulinic acids produced due to further 
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degradation of furfural and HMF. Phenolic compounds are also formed due to lignin 

breakdown (Alvira et al., 2010).   

 Ammonia fiber explosion pretreatment (AFEX) 

The AFEX method is an alkaline physicochemical pretreatment process. Its processing method 

is similar to steam explosion, but operate at lower temperature. In this process, the biomass is 

mixed with liquid anhydrous ammonia (0.3 to 2 kg/kg dry biomass) maintained at 60 - 90°C and 

at pressure above 3 Mpa for 10 - 60 min. The biomass and ammonia mixture is then heated in a 

closed vessel under pressure to attain target temperature. After holding it for about 5 min at the 

desired temperature, the vent valve is rapidly opened to release pressure explosively (Sousa et al., 

2009; Taherzadeh & Karimi, 2008). The sudden pressure release results in a rapid expansion of 

the ammonia gas leading to swelling and physical disruption of biopolymers as well as reduction 

of celluloase crystallinity. The volatile ammonia gas is recovered for reuse and the dried solid 

biomass is ready for enzymatic hydrolysis (Sendich et al., 2008). The AFEX method is very 

effective for herbaceous crops and agricultural residues, but relatively less effective for woody 

biomass (Wyman et al., 2005). AFEX is also considered as a feasible method for the pretreatment 

of herbaceous biomass to extract protein for animal feed along with sugar generation for biofuels 

production (Bals et al., 2007).  

Advantage: 

 No formation of inhibitory compounds like furfural and HMF from sugar degradation due 

to low temperature operation (Alvira et al., 2010; Taherzadeh & Karimi, 2008) 

 High selectivity for delignification  

 Easy for recycling due to volatile nature of ammonia; 99% ammonia recovery is possible 

 Residual ammonia can serve as a nitrogen source for the organisms during fermentation 



 

30 

 

Disadvantage: 

 Excess water requirement because the phenolic fragments of lignins must be washed to 

avoid inhibition during enzymatic hydrolysis and fermentation (Taherzadeh & Karimi, 

2008) 

 Ammonia recycling is very costly for commercial scale processing (Mosier et al., 2005) 

 Inefficient for high lignin content biomass, such as softwood and newspapers 

 Environmental concern for using this process in commercial scale  

 Liquid hot water (LHW) pretreatment 

Different terminologies are used in literature to describe this process, including solvolysis, 

hydrothermolysis, aqueous fractionation, and aquasolv (Agbor et al., 2011). This process is 

comparable with dilute acid pretreatment without using acid (Taherzadeh & Karimi, 2008). In this 

process, biomass slurry in water is cooked at elevated temperature (160 -240°C) for various time 

periods, depending on biomass type, to solubilize hemicellulose fraction of biomass leading to 

cellulose enriched portion being more accessible for cellulase action (Agbor et al., 2011; Alvira et 

al., 2010). Mechanism of action of this process is similar to steam explosion for hemicellulose 

solubilization. Sometime potassium hydroxide (KOH) is used to control pH from 5 to 7 during 

LHW pretreatment and minimize inhibitory compound formation due to sugar degradation (Mosier 

et al., 2005).  

Advantage: 

 No use of additional chemicals 

 No need to use expensive corrosive-resistant materials for pretreatment reactors 

 Relatively large size particle can be used leading to energy saving for size reduction to fine 

particle. 
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 Possible to recover cellulose and hemicellulose separately 

 Minimum formation of inhibitory compounds due to sugar degradation 

Disadvantage: 

 The xylose stream is of very low concentration and hence needs evaporation of water to 

get appropriate sugar concentration for fermentation – additional cost 

 High cost since high pretreatment temperature is required 

 Not suitable for high lignin content biomass 

 Biological pretreatment  

Biological pretreatment involves use of microorganism to degrade biomass lignin, and make 

carbohydrate polymers susceptible for enzymatic hydrolysis. Among various organisms capable 

of producing enzymes to degrade lignin and carbohydrate polymers of biomass, white-rot, brown-

rot, and soft-rot fungi are important (Zhao et al., 2012), with white-rot being the most effective for 

biomass pretreatment because of their enzymatic efficiency and economy. The brown-rot fungi 

degrade cellulose, whereas white-rot and soft-rot fungi degrade both lignin and cellulose (Agbor 

et al., 2011). The ligninolytic system of white rot fungi primarily consists of lignin peroxidase 

(LiP), manganese peroxidase (MnP) and laccase (Wang et al., 2008).  Lip and MnP are heme 

containing glycoproteins and laccase is a muti-copper oxidase having four copper ions per enzyme 

molecule as metal clusters (Irshad & Asgher, 2013; Y. Kim et al., 2002). The most commonly used 

white rot fungi for lignin-degrading enzyme production is Phynerochaete chrysosporium, which 

produces multiple isoenzymes of lignin peroxidase and manganese peroxidase. Many other white 

rot fungi produce laccase in addition to lignin and manganese peroxidase in varying combination. 

Based on enzyme production patterns, the white rot fungi could be categorized into three groups. 

They are; 
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 Lignin-manganese peroxidase group – P. chrysosporium and Phlebia radiate 

 Manganese peroxidase-laccase groups – Dichomitus squalens and Rigidoporus lignosus  

 Lignin peroxidase-laccase group – Phlebia ochraceofulva and Junghuhnia separabilima 

(Hatakka, 1994) 

Advantages: 

 No inhibitory compounds are produced  

 The process is environmental friendly 

Disadvantages: 

 Very slow process; residence time usually between 10 to 14 days (Agbor et al., 2011) 

 Large space is required to perform the experiment 

 Strict temperature control is required, leading to increased processing cost 

 Cellulose crystallinity could not be reduced during pretreatment (Zhao et al., 2012) 

 Concluding remarks   

 

Each pretreatment method is associated with some advantages as well as disadvantages, 

and hence one method cannot be the best choice for all type of biomass, including grass, hardwood 

and softwood. A distinct variation in biomass composition and structure within same category of 

biomass further complicates the pretreatment optimization process. Fundamental understanding of 

the mechanism of various pretreatment technologies and the composition of biomass feedstocks 

to understand the relationship between biomass composition and pretreatment method is critical 

to develop an appropriate pretreatment method for each type of biomass. In addition, combinations 

of two or more pretreatment method can be a better approach for specific biomass feedstocks to 

overcome the limitations of single pretreatment methods. For example, Karunanithy et al. (2014) 

reported that sequential extrusion and microwave pretreatment is promising for switchgrass and 
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big bluestem. Hongzhang & Liying (2007) proposed a combination of steam explosion and ethanol 

extraction for the fractionation of biopolymers from wheat straw. In this process, the hemicellulose 

sugars, comprising 86% xylose, was recovered using water extraction after steam explosion 

pretreatment, followed by lignin extraction using ethanol organosolv process for residual biomass. 

The cellulose-rich final biomass fraction can be hydrolyzed using cellulase enzymes to generate 

glucose. Similar process for the fractionation of eucalyptus wood was reported by Sun et al. (2014) 

using two-step process comprising hydrothermal pretreatment and alkali pretreatment. We 

proposed a slightly modified method using a three-step pretreatment in Figure 10.1 for the 

fractionation of biomass extractives, hemicellulose hydrolyzate, lignin, and cellulose hydrolyzate. 

However, the increased pretreatment efficiencies due to the combination of more than one 

pretreatment method should weigh against the increased pretreatment cost. Therefore, economic 

assessment and environmental consideration of each pretreatment technology or combination of 

pretreatment technologies is equally critical, in addition to technical evaluation, to design 

appropriate biomass pretreatment strategies.      

Despite dramatic advancement in analytical techniques, complete characterization of 

biopolymers, especially lignin, is still challenging, and our fundamental understanding of the 

actual mechanism of recalcitrance of biomass is still poor. Further research is needed to better 

understand the biomass structure and pretreatment mechanism to develop a novel pretreatment 

method specific to biomass feedstock for high-value applications of each biomass component, 

including extractives, lignin, hemicellulose, and cellulose. 
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Chapter 3 - Effect of biomass densification by pelleting process on 

pretreatment and hydrolysis efficiencies1 

 Abstract 

Densification of bulky forages by pelleting reduces their transportation, handling, and 

storage costs. Because of high shearing force and frictional heating during the pelleting process, it 

is hypothesized that pelleting of lignocellulosic biomass could also partially deconstruct its 

complex structure and facilitate bioethanol production. In this study, pelleted wheat straw, corn 

stover, big bluestem, and sorghum stalks were evaluated for sugar and ethanol production, and 

compared with those of unpelleted biomass. Mass recovery after alkali pretreatment was 14, 11, 

2, and 5% more, respectively, in unpelleted biomass samples. Lignin content reduced significantly 

more in pelleted samples for all types of biomass samples, except sorghum stalks. Volumetric 

productivity of sugar release during enzymatic hydrolysis was 23, 21, 20 and 12% higher, 

respectively, in pelleted forages; ethanol yield on the basis of released sugars did not differ 

significantly between pelleted and unpelleted samples. These results indicate that the pelleting 

process led to better enzymatic hydrolysis of pretreated biomass without affecting the quality of 

sugars for fermentation. However, overall yield of ethanol from the raw biomass was not 

significantly higher in pelleted biomass because of higher mass loss during pretreatment.  In our 

study, we propose a schematic for complete utilization of various byproducts for enhanced 

economic viability.    

                                                 

1Chapter 3 is published as a part of Guragain et al., (2013) Biochemical Engineering Journal, 77, 198-

207.   
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Keywords: lignocellulosic biomass, pelleting, biomass deconstruction, alkali 

pretreatment, enzymatic hydrolysis, ethanol fermentation. 

 Introduction 

Global depletion of fossil fuel due to its excessive utilization poses a great threat of energy 

crises to the future world (Isarankura-Na-Ayudhya et al. 2007). Moreover, rising political conflict 

in the major oil-producing countries makes it difficult for non-oil producing countries to get a 

continuous supply of petroleum products (Balat & Balat, 2009). Bioethanol could be a supplement 

to gasoline, the major transportation fuel. First generation bioethanol production technology is 

now mature; it uses sugar and starchy food materials as feedstock. Furthermore, government 

supports for bioethanol production with subsidies and tax incentives made it economically viable 

in the context of existing petroleum prices (Kim & Dale, 2004; Mousdale, 2008). The major 

obstacles to its continuous future production include scarcity of raw materials to produce 

bioethanol in quantities large enough to meet the high demand for transportation fuel and global 

concern for food security (Demirbas, 2009). Other alternative energy sources such as 

hydroelectricity, solar, wind, and wave energy could fulfill only 4% or less of global energy 

demand by 2030 (Mousdale, 2008); therefore, utilization of lignocellulosic residues for the 

production of bioethanol is envisioned as a sustainable alternative to gasoline because these 

feedstocks are globally available in large quantities and are relatively inexpensive 

(Theerarattananoon et al., 2011). As a result, cellulosic ethanol production is a focus of research 

worldwide (Kim & Dale, 2004; A. Kumar et al., 2009). The United States government also 

prioritized the utilization of cellulosic biomass when it approved the Energy Independence and 

Security Act in 2007. This Act mandated production of 21 billion gallons of second-generation 
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biofuels by 2022 and stipulated that 16 billion gallons must be derived from lignocellulosic 

feedstocks (Dadi et al., 2007).  

Exploitation of lignocellulosic biomass for commercial production of biofuel and bio-

based chemicals faces a number of challenges (Mousdale, 2008). Development of effective 

biomass pretreatment (Sousa et al., 2009; Ren et al., 2009; Shi et al., 2009; Tomas-Pejo et al., 

2008) and handling and storage of bulky feedstocks (Rijal et al., 2012; Theerarattananoon et al., 

2011) are the major bottlenecks. Pretreatment is the process of disrupting the lignin-carbohydrate 

complex of plant cell walls to overcome the recalcitrance of biomass for enzymatic hydrolysis of 

carbohydrate polymers. The recalcitrance of biomass is due to the presence of a strong lignin layer 

barrier in the plant cell wall (Hu et al., 2008; Rijal et al., 2012; Zhao et al., 2009a). In addition, the 

cost of enzymes for hydrolysis of cellulose and hemicellulose (Brijwani et al., 2010) as well as the 

quality of sugars produced after hydrolysis (Sousa et al., 2009; Hu et al., 2008; H. Zhao et al., 

2009a) are key impediments for the utilization of biomass at biorefineries. The latter problems 

could be addressed to a large extent by developing efficient and economically viable pretreatment 

methods. An ideal pretreatment process improves hydrolysis yield of sugars without affecting the 

quality of sugars for subsequent operations (Guragain et al., 2011; Q. Li et al., 2009). 

Handling and transportation equipment available for biorefineries to utilize baled or ground 

biomass is severely limited due to biomass’s low bulk density. An economic analysis report from 

Hess et al. (2006) for wheat and barley straw showed baling and stacking cost around $23 ton-1 

and transportation cost of $11 ton-1. These costs could be even higher depending on the 

transportation distance and labor, and construction costs for handling and storage facilities. One 

of the best alternatives to overcome these problems is densification of the light biomass by 

pelleting. Pelleting increases the bulk density of forages by 9- to 12-fold and makes them flowable 
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like grain (Rijal et al., 2012; Theerarattananoon et al., 2011), leading to significant reduction of 

transportation, handling, and storage costs. Pelleting also helps overcome the limitation of 

transportation of light biomass, because transportation regulations do not allow the transportation 

of any materials beyond the mandatory legal volume. Moreover, it encourages current grain-

processing biorefineries to shift from grains to lignocellulosic feedstocks, because they could use 

their existing grain handling and storage facilities for pelleted biomass without additional capital 

investment (Hess et al., 2003; Hess et al., 2006).    

High shearing force can be developed during the pelleting process by using an 

appropriately sized die in the pellet mill coupled with high temperature due to frictional heating. 

Therefore, the mechanism of mechanical and thermal processing of biomass in pelleting is similar 

to extrusion (Larsson et al., 2012). Because extrusion of lignocellulosic biomass disrupts its lignin-

carbohydrate complex, it is considered one of the promising physical methods of biomass 

pretreatment for bioethanol production (De Vrije et al., 2002; Karunanithy et al., 2008; Zhan et 

al., 2006); therefore, it can be hypothesized that the pelleting process could also partially 

deconstruct the complex structure of lignocellulosic biomass. This can lead to some beneficial 

effects on subsequent steps of bioethanol production; however, the effect of biomass pelleting on 

various steps of bioethanol production, including pretreatment, hydrolysis, and fermentation, have 

not been investigated so far. Therefore, this study attempted to evaluate the effect of pelleting on 

various stages of bioethanol production using wheat straw, corn stover, big bluestem, and sorghum 

stalks, as feedstocks. Pelleted and unpelleted samples of each biomass type were ground to a 

specific particle size, pretreated by an alkali pretreatment method, and hydrolyzed using optimum 

concentration of cellulase complex and endoxylanase enzymes; released sugars were fermented 

using Saccharomyces cerevisiae. Effectiveness of the pelleting process was evaluated by 



 

38 

 

comparing pelleted and unpelleted biomass in terms of compositional change and mass recovery 

after alkali pretreatment, enzymatic hydrolysis yield of sugars, and fermentation yield of ethanol.   

 Materials and methods 

 Materials 

The big bluestem was kindly donated by Star Seed in Beloit, Kansas, in the form of square 

bales (1.8 m × 1.2 m × 1.8 m) in January 2009. Wheat straw, corn stover, and photoperiod-sensitive 

sorghum stalks (Cultivar ‘PS 1990’, Sorghum Partners, New Deal, Texas) were harvested by the 

Kansas State University Agronomy Farm in 2008 and 2009. Wheat straw and corn stover were 

obtained in the form of square bales (1.8 m × 1.2 m × 1.8 m), and sorghum stalks was in the form 

of a round bale (1.83 m diameter). Particle size reduction of biomass was carried out in two steps. 

The baled forages were first chopped to approximately 20-cm length with a tub grinder (Model 

Haybuster H-1150 series, DaraTech Industries International Inc., Jamestown, ND). The chopped 

biomass samples were further ground in a hammer mill with a 3.2-mm screen opening (Model 18-

7-300, Schuttle-Buffalo Hammer mill, Buffalo, NY). The ground samples were packed in sealed 

paper bags and stored at room temperature until further processing (Theerarattananoon et al., 

2011).   

Cellulase complex (Cellic CTec 2) and Endoxylanase (Cellic HTec 2) enzymes were 

procured from Novozymes Inc., USA. The Saccharomyces cerevisiae available at the 

Bioprocessing and Renewable Energy Laboratory of Kansas State University was first revived, 

then sub-cultured in yeast extract peptone dextrose (YPD) agar media. This yeast was used 

throughout the experiments.  
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 Pelleting of biomass 

Initial moisture contents of wheat straw, corn stover, big bluestem, and sorghum stalks 

were 7.38, 7.89, 7.45, and 9.05%, respectively. Moisture contents of all forages were increased to 

approximately 17% before feeding them into the pellet mill. Tap water was sprayed at a 

predetermined flow rate on the ground biomasses and mixed in a custom-built ribbon mixer. The 

water was used in place of steam to increase moisture content of forages to simulate on-farm pellet 

processing, where a boiler would not be available. Conditioned biomass samples were then fed 

into a pellet mill [California Pellet Mill (CPM) Master model series 2000, CPM Co., San 

Francisco, CA] using 6.35 mm × 44.45 mm die size. The exit temperature of biomass, which was 

fed at room temperature, was increased to 74 to 820C. Forced air was passed through the hot-

pelleted biomass until it cooled to room temperature. The pelleted biomass samples were packed 

in sealed plastic bags and stored at room temperature until further processing (Theerarattananoon 

et al., 2011). 

 Pretreatment of biomass 

Both pelleted and unpelleted biomass samples were ground with a Thomas-Wiley 

Laboratory Mill (Model 4) with a 1-mm sieve. Then, the specific sizes (177μm to 841μm) of these 

samples were separated by sieving the ground biomass samples in a shaker (W.S. Tyler, Model - 

RX 29, Serial - 25225, Year of Manufacture - 2005) using two sieves of size 20 Mesh (841μm) 

and 80 Mesh (177 μm). The size range was chosen based on the particle size required for 

composition analysis without further size separation (Sluiter et al., 2007); more than 90% of 

original ground material met the desired size range in all types of biomass. Alkali pretreatment of 

ground samples was carried out by mixing 30 g biomass in 300 ml 1% (W/V) sodium hydroxide. 

Biomass slurries were then autoclaved at 121oC for 30 min. Pretreated samples were then 
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transferred onto the 200-mesh (74 μ m) sieve and washed with distilled water until the filtrate was 

clear and neutral to litmus paper. Residues were squeezed in muslin cloth and spread on trays. The 

samples were allowed to dry on the trays at room temperature for about 48 h until moisture content 

decreased to less than 10% (Figure 3.1). Weight of samples was taken before and after 

pretreatment to find percentage mass recovery during pretreatment. Dry samples were then packed 

in air-tight plastic bags.  

 Enzymatic hydrolysis  

 Optimization of biocatalysis  

Optimum enzyme loading was determined by taking three different concentrations of 

enzymes: 1.5, 3.0, and 6.0% of pretreated biomass (W/W). Cellic CTec2 and Cellic HTec2 were 

taken in the ratio of 9:1 for each concentration as recommended by the enzyme supplier 

(Novozymes, Inc., USA). One gram of each sample and 10 ml citrate buffer (0.05 M, pH 4.8) were 

added to a 125-ml conical flask, and the calculated amount of enzymes was added for each 

concentration of enzyme loading. The flasks were incubated in a shaker at 50oC and 150 rpm for 

72 h. Samples (500 μl) were drawn every 12 h from each flask to measure hydrolysis yield of 

sugars. Total yield of glucose and xylose was measured to evaluate the optimum enzymes 

concentration.  

 Hydrolysis of pretreated biomass 

 Enzymes loading of 6% was found optimal for the comparative analysis of different 

forages, as explained in section 2.4.1; therefore, the pretreated biomass samples were hydrolyzed 

using 5.4% Cellic CTec2 and 0.6% Cellic HTec2 enzymes. Solid loading was used at 5% with 2 

g biomass in 40 ml citrate buffer in 125-ml flasks. The hydrolysis slurries then were incubated in 

a shaker at 50oC and 150 rpm for 48 h. A 500-μl sample was drawn from each sample at 14 and 
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24 h, and the hydrolysis was stopped after 48 h by boiling the flasks in a water bath for 15 min. 

Yield of total sugars (glucose and xylose) was measured for all samples at 14, 24, and 48 h of 

hydrolysis. The supernatants of the final hydrolyzates were separated by centrifuging at 13,000 

rpm (maximum g-force 20,400×g) for 15 min with a Sorvall Superspeed Angle Rotors (SS-34) 

centrifuge and preserved in a freezer at -20oC until fermentation. 

 Fermentation 

 Inoculum preparation 

The stock culture of Saccharomyces cerevisiae preserved at -80oC at the Bioprocessing 

and Renewable Energy Laboratory at Kansas State University was first revived in YPD media that 

contained 20 g/l glucose, 20 g/l peptone, and 10 g/l yeast extract. The revived culture was then 

sub-cultured in YPD agar plate and refrigerated to use throughout the experiments. To prepare the 

inoculum, 50 ml YPD media was taken in a 250-ml flask and autoclaved 121oC for 15 min. One 

loop of the culture from the agar plate was aseptically inoculated into the flask and incubated at 

30 oC and 150 rpm for 24 h. The prepared inoculum was directly added to the fermentation medium 

at the rate of 10% (V/V) of fermentation medium (Guragain et al., 2011).  

 Fermentation of hydrolyzates 

Two milliliters of supplementary nutrition solution and 25 ml of biomass hydrolysates were 

taken in 125-ml flasks. The nutrition solution was prepared in a citrate buffer so that when 2 ml 

solution was added to 25 ml hydrolyzates and 3 ml inoculum, the final medium would contain 10 

g/l yeast extract, 5 g/l NH4Cl, 1 g/L MgSO4 .7H2O, and 2 g/l KH2PO4. Control flasks also were 

prepared by taking the same volume of synthetic medium containing 28 mg/ml glucose and 12 

mg/ml xylose instead of biomass hydrolyzates. All the flasks were autoclaved at 121oC for 15 min, 

and 3 ml inoculum was aseptically added to each flask. These flasks were then incubated in a 
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shaker at 30oC and 150 rpm for 24 h. Samples were drawn at 0, 6, 10, 15, and 24 h of fermentation 

to measure ethanol yield and sugar consumption (Guragain et al., 2011). 

 Analytical procedures 

Moisture content of the raw and pretreated samples was determined with an electric 

moisture meter (IR35M-00015V1, Denver Instrument GmbH, Goettingen, Germany). Extractives, 

acid-soluble lignin, acid-insoluble lignin, glucan, and xylan were determined by following the 

protocol NREL/TP-510-42618 and NREL/TP-510-42619 (Sluiter et al., 2007; Sluiter et al., 2005). 

Glucose, xylose, and ethanol were measured using an HPLC instrument (Shimadzu Corporation, 

Japan) equipped with an LC-20AB pump, an SIL-20 AC auto sampler, an SPD-M 20A photodiode 

array detector, and a Phenomenex RPM-Monosaccharide Pb+ column (300 × 7.8 mm). Deionized 

water (prepared using Millipore, cat No – ZRQSVP030) was degassed by sonication (Ultrasonic 

cleaner, Fisher Scientific, Model FS 60) and used as mobile phase at a flow rate of 0.6 ml min−1. 

The column oven and refractive index detector (RID-10A) were maintained at 80 °C and 65 °C, 

respectively. All experiments were carried out in triplicate and the data were statistically analyzed 

for least significant difference (LSD) using JMP software (SAS Inc., Cary, North Carolina). 

 Results and Discussion 

 Mass recovery after alkali pretreatment 

Weights of biomass samples and their moisture contents were measured before and after 

alkali pretreatment to find the loss of mass from pretreatment and washing. Mass recovery was 

then calculated as the percentage of original mass. Figure 3.2 shows that unpelleted samples of 

wheat straw, corn stover, big bluestem, and sorghum stalks had 14, 11, 2, and 5% more mass 

recovery, respectively, than pelleted biomass samples. These differences in mass recovery between 

pelleted and unpelleted samples were statistically significant at the 95% confidence level in all 
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biomass types, except in big bluestem. These differences in total mass loss during pretreatment led 

to statistically equal ethanol yield in pelleted and unpelleted biomass samples (see section “Overall 

mass balance”) even though hydrolysis efficiency was better in pelleted biomass samples (see 

section “Enzymatic hydrolysis”). Variation of mass recovery among these samples was less in 

unpelleted samples than in pelleted samples.  

 Composition of raw and pretreated biomass 

Table 3.1 shows that a significant amount of lignin was removed during alkali pretreatment 

in all types of biomass, which led to increased glucan and xylan content. The lignin content in 

these data is a sum of acid-soluble and acid-insoluble lignin. The change in glucan and xylan 

content was also due to loss of extractives during pretreatment (Figure 3.3). Lignin content of raw 

samples varied significantly among different types of biomass, but it was not significantly different 

between pelleted and unpelleted samples of the same biomass type at 95% confidence level. 

However, lignin content in pelleted samples was significantly lower than in unpelleted samples 

after alkali pretreatment in some biomass samples, indicating better delignification in pelleted 

samples. This effect was more significant in wheat straw and corn stover samples. Unpelleted 

wheat straw and corn stover had 19 and 24% more lignin, respectively, than pelleted samples after 

alkali pretreatment, but there was no significant difference in lignin content between pelleted and 

unpelleted samples for big bluestem and sorghum stalks. These data also show that the highest 

percentage of delignification was achieved in sorghum stalks and lowest in wheat straw. The lignin 

content of unpelleted sorghum stalks decreased from 26.2% to 8.1% during pretreatment and from 

21.5% to 10.0% in unpelleted wheat straw samples. A similar trend was found for pelleted samples. 

Glucan and xylan contents did not differ significantly between pelleted and unpelleted samples 
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before or after pretreatment in all biomass types, except for glucan content in sorghum stalks after 

pretreatment.  

Water-soluble extractives of biomass was determined by extracting the sample in distilled 

water using a Soxhlet extraction set (Wilmad LabGlass, Vineland, New Jersey, USA) for 8 to 12 

h, until the siphoned solvent was clear. Similarly, alcohol-soluble extractives were determined 

using 95% ethanol as an extraction solvent. The total extractives were then calculated as the sum 

of water-soluble and alcohol-soluble extractives; these extractives are non-structural components 

of biomass, including non-structural sugars, nitrogenous materials, chlorophyll, and waxes, among 

other minor components (Sluiter et al., 2007). Figure 3.3 shows that alkali pretreatment removed 

a significant amount of extractives from biomass. The percentage removal of these extractives 

varied from biomass to biomass. The highest proportion was removed in the sorghum stalks sample 

and was similar to delignification during pretreatment; however, for biomass samples other than 

sorghum stalks, total extractives content did not differ between pelleted and unpelleted biomasses 

in both raw and pretreated samples. This showed that difference in total mass loss between pelleted 

and unpelleted biomasses during pretreatment (Figure 3.2) were due to the difference in loss of 

structural carbohydrates and lignin.      

 Two important conclusions can be drawn from the compositional analysis of raw and 

pretreated samples and mass recovery during pretreatment. First, higher delignification and total 

mass loss in pelleted samples compared with unpelleted samples during alkali pretreatment 

indicate that the pelleting process led to partial deconstruction of lignocellulosic biomass. This 

result occurred because high shearing and mixing force coupled with heat development due to 

friction during the pelleting process disrupted the biomass structure (Theerarattananoon et al., 

2012). However, the effect of pelleting differed significantly from biomass to biomass. Second, 
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alkali pretreatment was comparatively more effective for the removal of lignin and extractives in 

sorghum stalks than in other biomasses, thereby offsetting the positive effect of the pelleting 

process to improve the delignification of this forage during pretreatment. This shows that the 

maximum beneficial effect of the pelleting process could be realized in biomasses in which the 

selected pretreatment method is comparatively less effective for delignification. Because the 

effectiveness of a pretreatment method varies from biomass to biomass (Guragain et al., 2011; 

Mishima et al., 2008), the pelleting process must be separately optimized for each biomass type 

depending on the best pretreatment method for the specific biomass; however, comparative study 

of different pretreatment methods and pelleting conditions to evaluate the combined effect of 

pelleting and pretreatment on the delignification of biomass to improve enzymatic hydrolysis is 

outside the scope of this study.  

 Enzymatic hydrolysis of pretreated biomass 

Initial experiments were carried out to optimize enzyme loading for the hydrolysis of 

pretreated biomass. An alkali-pretreated unpelleted wheat straw sample was hydrolyzed using 

three different loadings of an enzyme mixture containing Cellic CTec2 and Cellic HTec2 in the 

ratio of 9:1. The enzyme concentration of 6% (w/w) of pretreated biomass was found to be the 

optimal enzyme loading to maximize hydrolysis yield of total sugars (data not shown). For the 

comparative study of the unpelleted and pelleted biomass samples, this enzyme loading was taken 

for the hydrolysis of all biomass types without further individual optimization.  

Figure 3.4 shows that the reaction rate of enzyme kinetics was significantly higher in 

pelleted biomass compared with unpelleted samples during the initial period of hydrolysis in all 

types of biomass. The yield of total sugars (glucose and xylose) increased linearly with hydrolysis 

time until 14 h, but no significant increment occurred thereafter. This result indicated that the first 



 

46 

 

14 h was the fastest reaction rate period of the enzymatic hydrolysis; therefore, the volumetric 

productivity of the enzyme kinetics was calculated for this period and expressed as gram of total 

sugars produced per liter per hour. Moreover, during optimization of enzyme loading, total sugars 

yield was almost constant after 48 h of hydrolysis until 72 h. The flattened curves of all types 

biomass after 14 h of hydrolysis in Figure 3.4 also indicate the same result; that is, sugars yield 

would not increase after 48 h. Therefore, maximum hydrolysis yield of total sugars was calculated 

after 48 h of hydrolysis.  

Table 3.2 shows that both productivity of enzymatic hydrolysis and maximum total sugars 

yield were significantly higher at 95% confidence level in pelleted samples compared with 

unpelleted samples in all types of biomass, except maximum sugars yield in sorghum stalks. The 

incremental productivity of enzymatic hydrolysis due to pelleting of biomass was almost double 

the incremental maximum sugars yield in all types of biomasses. Because productivity is the vital 

indicator in industrial application (Oberoi et al., 2010), the effect of the pelleting process is a highly 

significant factor for improving enzymatic hydrolysis yield of sugars from pretreated biomass. 

However, similar to effects on the delignification of biomass during pretreatment as discussed in 

section 3.2, pelleting effects varied significantly from biomass to biomass. The highest effect was 

observed in wheat straw, with 23.1% more productivity and 13.1% more maximum sugars yield 

in the pelleted sample than in the unpelleted sample. The lowest effect was found in sorghum 

stalks, in which productivity increased by 11.6% due to pelleting but the increase in maximum 

sugars yield was not statistically significant at 95% confidence level. These data also show that 

the highest delignification of biomass may not necessarily result in the highest enzymatic 

hydrolysis yield on the same biomass. As discussed in earlier section on the composition of 

biomass, the highest percentage of delignification was achieved in sorghum stalks, whereas the 
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highest productivity as well as maximum sugars yield was observed in corn stover. This is because 

enzymatic hydrolysis yield of sugars depends on the number of substrate-related factors in addition 

to total lignin content. Some of the important factors are degree of crystallinity and polymerization 

of cellulose, composition of biomass (Zhao et al., 2009a), type of lignin, and extent of side-chain 

branching of hemicellulose (Sousa et al., 2009). 

 Fermentation of hydrolyzates 

Optimization of fermentation time was first conducted for all biomass types. The 

hydrolyzates were separated after enzymatic hydrolysis by centrifugation at 13,000 rpm 

(maximum g-force 20,400×g). One loop of S. cerevisiae culture was inoculated in 50 ml YPD 

media and incubated in a shaker at 30oC for 24 h to prepare the inoculum. Three milliliters 

inoculum was added to 27 ml sterile hydrolyzates containing the required concentration of 

supplementary nutrients other than the carbon source in 125-ml flask. The flasks were then 

incubated in shaker at 30oC for 24 h. Five hundred microliter samples were drawn at 0, 6, 10, 15, 

and 24 h of fermentation to measure sugars and ethanol, but analysis of samples beyond 10 h was 

not carried out because no additional sugar consumption occurred from 6 to 10 h (Figure 3.5). 

Glucose was consumed almost completely at 6 h of fermentation, and ethanol production reached 

the highest level at that time for the unpelleted wheat straw sample. The yeast culture could not 

utilize xylose, and ethanol concentration started to reduce after 6 h, probably due to consumption 

of ethanol by microbes in the absence of other consumable carbon sources (Guragain et al., 2011). 

A similar pattern of sugar consumption and ethanol production curves were found for other 

biomass samples (figures not shown); therefore, 6 h of fermentation time was selected as optimum 

for the comparative study of all biomass samples in subsequent experiments.   
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Ethanol yield in the samples was expressed as the percentage of ethanol yield in the control. 

The control samples were prepared by taking 28 mg/ml glucose and 12 mg/ml xylose in 

fermentation media, which was approximately equal to the average concentration of each sugar in 

the biomass hydrolyzates. Supplementary nutrients were added in the same concentration in 

samples and controls. Table 3.3 shows that variation of ethanol yields among different types of 

biomass were statistically significant at 95% confidence level for some biomass types; however, 

ethanol yield of pelleted and unpelleted samples of the same type of biomass did not differ 

significantly. Similarly, volumetric productivity of ethanol fermentation was calculated for 

optimum fermentation time (6 h) and expressed as gram of ethanol produced per liter per hour. 

The productivity of ethanol from the biomass hydrolyzates was more than 1 in all samples, ranging 

from 1.4 to 1.7 gram per liter per hour, but differences in productivity among the different types 

of biomass samples were not statistically significant at the 95% confidence level, and neither were 

the differences between pelleted and unpelleted samples. Therefore the pelleting process did not 

have any effect on the quality of sugars produced after enzymatic hydrolysis of biomass.  

 Overall mass balance and proposed processes for the utilization of byproducts 

In contrast to Tables 3.2 and Table 3.3, Table 3.4 indicates that overall ethanol yields on 

the basis of raw biomass were not significantly different between pelleted and unpelleted samples 

for all types of biomass; this is because of the loss of a significantly higher amount of biomass 

during pretreatment in pelleted samples than in unpelleted samples. The overall yield of ethanol 

was only 13 to 15 g per 100 g raw biomass due to losses and incomplete utilization of its various 

components in the following bioprocessing steps.  
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1. Loss of biomass during washing of pretreated sample (total mass in liquid fraction): - 

it accounted for 40% to 50% of initial biomass, which contained 38% to 50% lignin 

and remaining mainly hydrolyzed cellulose and hemicellulose.  

2. Loss of biomass after hydrolysis of pretreated sample (Residue 1): - it contained mainly 

lignin and unhydrolyzed cellulose and hemicellulose. 

3. Loss of xylose present in hydrolyzates: - it is because S. cerevisiae, the yeast used in 

this experiment, could not utilize xylose. 

4. Loss of biomass in the form of carbon dioxide during fermentation: - 0.96 g carbon 

dioxide per g ethanol is produced (using reaction stoichiometry).    

Adoption of appropriate technologies to utilize byproducts/wastes can minimize these 

losses and make bioprocessing of lignocellulosic residue economically viable, as proposed in 

Figure 3.6. The liquid fraction of the pretreated biomass contains a significant amount of 

hydrolyzed carbohydrate polymers, which can be a very good source for the production of single-

cell protein for animal feed or enzyme production. Residue thereafter (Residue 2) mainly contains 

lignin that can be used for power generation. Similarly, the residue after hydrolysis of the 

pretreated sample (Residue 1) contains lignin and unhydrolyzed carbohydrate polymers, which 

also can be used for power generation. The xylose present in the hydrolyzates can be fermented to 

ethanol using xylose fermenting organisms such as genetically engineered S. cerevisiae and 

Zymomonas mobilise (Zhang & Lynd, 2010).  

The ethanol fermentation process leads to production of a nearly saturated stream of carbon 

dioxide (Xu et al., 2010). Using reaction stoichiometry from glucose to ethanol and carbon dioxide, 

carbon dioxide is produced at the rate of 96% of ethanol on a mass basis. Such gas needs only 

dehydration and compression for purification. The total cost of capture of carbon dioxide is, 
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therefore, approximately $6 to $12 per ton carbon dioxide, which is much less than its total cost 

of production from the most modern coal-fired power plants (Dahowski & Dooley, 2008). 

Therefore, the carbon dioxide produced from ethanol fermentation plants is a potential alternative 

to other conventional sources such as anhydrous ammonia. The majority of carbon dioxide 

traditionally is used in food processing, carbonated beverages, and preservatives markets; 

however, the pure carbon dioxide from ethanol fermentation can be used in production of fuels, 

chemicals, and polymers, as well as in enhanced oil recovery industry (Xu et al., 2010). 

If the byproducts of this experiment were utilized for the production of valuable products 

as proposed in Figure 3.6, benefits of the pelleting process could be enhanced for overall 

production of desired products from the same quantity of raw biomass, because pelleted samples 

contained a significantly higher amount of hydrolyzed sugars in the liquid fraction of the pretreated 

biomass, whereas the unpelleted samples contained a higher amount of unhydrolyzed carbohydrate 

polymers in the residue after hydrolysis of pretreated samples (Residue 1) for all types of biomass. 

The former residue is much easier to utilize for production of desirable products. If the proposed 

processes in Figure 3.6 are not economically feasible in the context of existing technologies in 

biorefineries, the pelleting process would remain beneficial for ethanol production from forages. 

On the one hand, enzymes consumed for hydrolysis of pretreated biomass samples were 

significantly less in pelleted samples than unpelleted samples because of a lesser amount of 

pretreated biomass in pelleted samples, but ultimate ethanol production was equal in pelleted and 

unpelleted samples. On the other hand, pelleted biomasses could need milder pretreatment 

conditions than unpelleted biomasses to achieve similar mass loss during pretreatment and thereby 

similar enzymatic hydrolysis yield of sugars and fermentation yield of ethanol. Therefore, the 
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former option would reduce enzyme cost, whereas the latter would reduce cost of pretreatment, 

both of which are major costs of cellulosic ethanol production.  

 Conclusions 

Pelleting of forages led to better delignification of biomass during alkali pretreatment; 

however, mass recovery after pretreatment was significantly lower in pelleted samples than in 

unpelleted samples. Volumetric productivity of sugars release during enzymatic hydrolysis of 

pretreated biomass was 23, 21, 20, and 12% higher in pelleted samples than in unpelleted samples 

for wheat straw, corn stover, big bluestem, and sorghum stalks, respectively. These results indicate 

that the complex structure of lignocellulosic biomass was partially disrupted during pelleting 

process and thereby made alkali-pretreated biomass samples more susceptible to hydrolytic 

enzyme activities in pelleted samples than in unpelleted samples. Moreover, the pelleting process 

did not negatively affect the quality of released sugars for fermentation. Nevertheless, the effect 

of pelleting was significantly different among different types of biomass; therefore, each biomass 

must be optimized separately to obtain maximum benefit of the pelleting process to reduce the cost 

of ethanol production from lignocellulosic residues. However, overall yield of ethanol from the 

raw biomass was not significantly higher in pelleted biomasses than unpelleted biomasses because 

of the higher amount of mass loss during pretreatment in pelleted samples. Our study showed that 

pelleted biomass needed less enzyme than unpelleted biomass to obtain the same amount of 

ethanol production from the same amount of feedstock. Development of appropriate processing 

technology is crucial to utilize valuable byproducts produced at different stages of bioethanol 

production to make the bioethanol industry economically viable and to maximize the benefits of 

the pelleting process.  
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Figure 3.1 Pelleted and unpelleted wheat straw samples. (A) Unpelleted raw biomass, (B) 

unpelleted biomass after grinding, (C) unpelleted biomass after pretreatment, (a) pelleted raw 

biomass, (b) pelleted biomass after grinding, and (c) pelleted biomass after pretreatment. 
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Figure 3.2 Mass recovery after alkali pretreatment. Recovery was calculated as the percentage 

(W/W) of raw biomass after autoclaving 30 g biomass in 300 ml 1% (W/W) NaOH at 121 oC for 

30 min. Data are average values of triplicate experiments, and error bars represent sample standard 

deviation. 
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Table 3.1 Composition of raw and pretreated biomass. 

Type of biomass 

Glucan Xylan Lignin 

Raw Pretreated Raw Pretreated Raw Pretreated 

Wheat 

straw 

Unpelleted 48.2±1.9a 51.3±0.7ad 25.3±1.8a 29.7±0.5a 21.5±0.4a 10.0±0.2ac 

Pelleted 46.5±1.8a 52.6±1.0ae 24.1±1.6a 29.5±0.3a 21.6±0.7a 8.4±0.2b 

Corn 

stover 

Unpelleted 49.6±1.9a 53.9±1.0bef 25.1±0.7a 29.7±1.2a 23.7±0.2b 10.3±0.4a 

Pelleted 46.9±0.7a 55.1±0.3b 23.8±0.1a 29.0±0.6a 23.2±0.4b 8.3±0.3b 

Big 

bluestem 

Unpelleted 35.6±2.7b 49.6±0.7cd 20.2±1.7b 32.4±2.6b 21.9±1.1a 9.7±0.3cd 

Pelleted 35.4±2.1b 48.2±0.6c 20.0±1.1b 33.1±1.7b 22.4±0.6a 9.5±0.1d 

Sorghum 

stalk 

Unpelleted 41.1±2.7c 52.8±0.7af 23.9±1.3a 27.6±1.2a 26.2±0.6c 8.1±0.4b 

Pelleted 39.5±0.2c 48.5±2.1c 23.3± 0.9a 28.9±1.0a 25.6±0.6c 8.1±0.2b 

Data are average values of triplicate experiment ± sample standard deviation. 

Values with the same letters, in superscripts, within the same column are not significantly different 

from each at the P<0.05 level. 
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Figure 3.3 Extractives content in biomass. (a) Raw biomass and (b) pretreated biomass. 

Extractives are the sum of water-soluble and alcohol (95% ethanol)-soluble material extracted in 

Soxhlet apparatus for 10 to 12 h. Data are average values of triplicate experiments, and error bars 

represent sample standard deviation. 
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Figure 3.4 Sugar yield during hydrolysis of pretreated biomass. (a) Wheat straw, (b) corn 

stover, (c) big bluestem, and (d) sorghum stalks. Hydrolysis was carried out at 50oC with 2% solid 

loading in citrate buffer with enzyme loading of 6% of solid. Data are average values of triplicate 

experiments, and error bars represent sample standard deviation. 
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Table 3.2 Volumetric productivity and maximum enzymatic hydrolysis yields of total 

sugars 

Type of sample 
 Productivity٭

(g/l/h) 

Increase in 

productivity 

due to 

pelleting (%) 

 Maximum٭٭

sugar yield (g/g 

pretreated 

biomass) 

Increase in 

maximum sugar 

yield due to 

pelleting (%) 

Wheat 

straw 

Unpelleted 2.03 ± 0.03a 
23.1 

0.78 ± 0.04 a 
13.1 

Pelleted 2.50 ± 0.02b 0.88 ± 0.02 b 

Corn 

stover 

Unpelleted 2.48 ± 0.04b 
22.9 

0.81 ± 0.01 ad 
8.7 

Pelleted 2.99 ± 0.04c 0.88 ± 0.03 b 

Big 

bluestem 

Unpelleted 2.08 ± 0.02a 
19.8 

0.71 ± 0.01 c 
10.7 

Pelleted 2.49 ± 0.13b 0.79 ± 0.04 a 

Sorghum 

stalk 

Unpelleted 2.41  ± 0.06b 
11.6 

0.80 ± 0.01 ad 
5.2 

Pelleted 2.69 ± 0.08d 0.84 ± 0.01 bd 

 Productivity was measured for first 14 h of hydrolysis and expressed as gram of total sugar٭

produced per liter per hour.  

 Maximum hydrolysis yield of total sugar (glucose and xylose) was measured after 48 h of٭٭

hydrolysis. 

Hydrolysis was carried out at 50oC with 2% solid loading in citrate buffer with enzyme loading of 

6% of solid. Data are average values of triplicate experiment ± sample standard deviation. Values 

with the same letters, in superscripts, within the same column are not significantly different from 

each at the P<0.05 level. 
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Figure 3.5 Fermentation of hydrolyzates of unpelleted wheat straw using Saccharomyces 

cerevisiae. Data are average values of triplicate experiments, and error bars represent sample 

standard deviation. 
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Table 3.3 Ethanol yield and volumetric productivity during fermentation of biomass 

hydrolyzed using S. cerevisiae 

Type of biomass ٭Ethanol yield (%) ٭٭Productivity (g/l/h) 

Wheat straw 

Unpelleted 93 ± 9ab 1.41 ± 0.16a 

Pelleted 88 ± 7a 1.66 ± 0.12a 

Corn stover 

Unpelleted 91 ± 7ab 1.51 ± 0.07a 

Pelleted 87 ± 3a 1.65 ± 0.04a 

Big bluestem 

Unpelleted 95 ± 5ab 1.59 ± 0.21a 

Pelleted 99 ± 4b 1.73 ± 0.20a 

Sorghum stalk 

Unpelleted 100 ± 2b 1.65 ± 0.08a 

Pelleted 100 ± 5b 1.71 ± 0.37a 

 Ethanol yield was gram of ethanol produced per gram glucose consumed and expressed as the٭

percentage of ethanol yield in the control, the sample containing pure glucose and xylose. 

 Productivity was measured for first 6 h of  fermentation at 30 oC and expressed as gram of٭٭

ethanol produced per liter per hour.  

 Data are average values of triplicate experiment ± sample standard deviation. Values with the 

same letters, in superscripts, within the same column are not significantly different from each at 

the P<0.05 level. 
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Table 3.4 Overall mass balance during biomass processing, on the basis of 100 g initial raw 

biomass 

Type of biomass 

Initial 

mass 

(lignin)  

(g)  

Pretreated 

mass 

(lignin)  

(g)  

Total mass  

(lignin)  in 

*liquid 

fraction (g) 

Hydrolyzed 

sugars Residue 

1** 

 (g) 

Ethanol 

(g) Glucose 

(g) 

Xylose 

(g) 

Wheat 

straw 

Unpelleted 100 (21) 58 (6) 42 (16) 31 15 18  13ab 

Pelleted 100 (22) 50 (4)  50 (17) 32 13 11   13a 

Corn 

stover 

Unpelleted 100 (24) 60 (6) 40 (17) 35 14 16  14bc 

Pelleted 100 (23) 54 (4) 46 (19) 34 13 11   13abc 

Big 

bluestem 

Unpelleted 100 (22) 61 (6) 39 (16) 31 13 22   14abc 

Pelleted 100 (22) 60 (6) 40 (17) 34 14 18 15c 

Sorghum 

stalk 

Unpelleted 100 (26) 56 (4) 44 (22) 31 13 16   13abc 

Pelleted 100 (26) 53 (4) 47 (21) 31 13 13   14abc 

*Liquid fraction is the filtrate during washing of pretreated biomass. 

**Residue 1 is the mass left after hydrolysis of pretreated biomass, which principally contained 

lignin and unhydrolyzed cellulose and hemicellulose. It was calculated using following formula. 

Residue 1 = Pretreated mass – (glucose in hydrolyzates × 0.9 + Xylose in hydrolyzates × 0.88) 

Values with the same letters, in superscripts, within the same column are not significantly different 

from each at the P<0.05 level. 
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Figure 3.6 Schematic diagram for complete utilization of lignocellulosic biomass. 

*Proposed process to utilize byproducts. 

**Products obtained from the proposed process. 

SCP = Single-cell protein 

CO2 = Carbon dioxide gas  
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Chapter 4 - Appropriate biorefining strategies for multiple 

feedstocks based on acid and alkali pretreatment  

 Abstract 

 Efficient utilization of a wide range of feedstocks requires appropriate biorefining 

strategies based on pretreatment methods. This study showed that alkali pretreatment was 

significantly more effective than acid pretreatment at identical processing conditions for grass and 

hardwood biomass samples; but, both methods were ineffective for softwood biomass. Separate 

glucose and xylose streams can be obtained for efficient fermentation from acid-pretreated 

biomass; nevertheless, need for more severe processing conditions to achieve effective 

pretreatment necessitates an additional detoxification step. High sugars concentration (10.6%, 

w/v) in hydrolyzates was obtained from alkali-pretreated biomass using optimum solids loading 

of 17.5% (w/v), which opens up an opportunity to produce high concentrations of biofuels and 

biochemicals in fermentation broth at reduced downstream processing costs. We propose a 

schematic for innovative biorefining strategies based on established pretreatment methods for 

different types of feedstocks. This information is very pertinent for choosing the appropriate 

processing methods and for setting up large-scale biorefineries utilizing multiple feedstocks. 

Keywords: Lignocellulosic biomass; pretreatment; hydrolysis; fermentation. 

 Introduction  

The rapid increase in global biofuel and biochemicals production in the last decade is 

considered as an important achievement for energy security and climate change mitigation. United 

State (US) bioethanol production increased from 3 billion gallons in 2003 to 13 billion gallons in 

2013, which accounted for 57% of global production (Guragain et al., 2016). US bioethanol 
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industries consumed 30% of national corn grown in 2013 to produce 13 billion gallons of ethanol, 

which represented approximately 4% of national transportation fuel demands. The nation has set 

its goal of producing 36 billion gallons of transportation fuel per year from renewable resources 

by 2022 (Klein‐Marcuschamer & Blanch, 2015). Assuming the same corn production, and the 

same conversion efficiency from corn to ethanol, more than 80% of US corn will be consumed to 

meet its goal of producing 36 billion gallons of transportation fuel by 2022 if alternative feedstocks 

are not exploited. In addition, a number of platform and bulk chemicals should be produced via 

sustainable alternative routes, including from biomass feedstocks, to minimize dependency on 

petroleum-derived products. About 80% of current global power consumption is sourced from 

petroleum (Dale & Ong, 2012). The world’s finite petroleum resources have been rapidly depleting 

due to increased energy consumption, especially in developing countries. Still, power consumption 

per capita in most developing countries is much less than United Nations Human Development 

Index (HDI) standards: 4 kilowatt per capita. In order to achieve this power consumption for 7 

billion world population, about 28 terawatt total power is required, which is almost double the 

current global power consumption of 15 terawatt (Dale & Ong, 2012). Exploitation of abundantly 

available lignocellulosic biomass for fuels and chemicals production is one of the promising 

alternatives to address a number of these global issues, including energy security, environmental 

concerns, and rural economic development (Ragauskas et al., 2014a).  

Use of lignocellulosic biomass for biofuels and biochemicals production is associated with a 

number of opportunities as well as challenges. The beauty of the lignocellulosic biomass is its 

unique components, including carbohydrate polymers (cellulose and hemicellulose), lignin, and 

extractives, which can be used for a wide range of biofuels and biochemicals production (Beatson, 

2011; Werpy et al., 2004). Primarily, there are two routes for biofuels production from 
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lignocellulosic biomass: (1) thermochemical platform – use of heat and chemical catalysts to 

produce fuels, and (2) sugar platform – a biochemical process to release sugars from biomass, 

which are subsequently converted to fuels and chemicals using microbial and/or chemical catalysts 

(Dale & Ong, 2012). This study focused on a sugar platform route, which is comprised of four 

major core sections: feedstock handling and storage, pretreatment, enzymatic hydrolysis, and sugar 

fermentation to desired biofuels and biochemicals (Cheng & Timilsina, 2011; Zhang et al., 2015). 

Each section in this route is associated with a number of challenges, but the greatest challenge is 

the need for an effective pretreatment process prior to hydrolysis of carbohydrate polymers to 

separate the strong outer lignin layer (Guragain et al., 2011; Tomas-Pejo et al., 2008); the 

pretreatment is the most challenging step for the thermochemical platform route as well (Dale & 

Ong, 2012). The biomass pretreatment methods are broadly classified into biological, physical, 

chemical and physico-chemical process (Sarkar et al. 2012). Dilute acid and alkali are the most 

extensively studied chemical pretreatment methods. Cellulose in lignocellulosic biomass will be 

accessible for cellulase enzyme after acid pretreatment due to hydrolysis of hemicellulose whereas 

it happens after alkali pretreatment due to removal of the lignin polymer (Leu & Zhu, 2013). The 

huge variations in composition and structure of biopolymers among different types of feedstocks 

(Guragain et al., 2015) further complicated the optimization of pretreatment process; therefore, 

pretreatment processes must be separately optimized for each biomass feedstock.    

Currently, crops residues, such as sorghum stalks and corn stover, are the most widely used 

feedstocks in lignocellulosic-based biorefineries. Dual use of land for both food and fuel is the 

main advantage of using crop residues as energy feedstocks. However, these feedstocks are only 

seasonally available. Besides, excessive removal of crop residues from farm lands and intensive 

fertilizer use to grow these crops degrade soil quality and increase greenhouse gas emission. In 
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addition, the cultivation of a monoculture crop in the large area for biofuels and biochemicals 

production deteriorates the local biodiversity (Mathews, 2009). Crop rotation, and planting 

dedicated energy crops are sustainable approaches to maintain soil quality and supply sufficient 

amount of feedstocks for energy industries; some of dedicated energy crops include perennial 

warm-seasons grasses (such as switchgrass and miscanthus), and short-rotation woody crops (such 

poplar and Douglas fir) (Blanco-Canqui, 2010; Fazio & Barbanti, 2014; Mola-Yudego et al., 

2014). Therefore, modern biorefineries must be capable of utilizing a wide range of biomass 

resources to operate their plants at full capacity throughout the year, and separate biorefining 

strategies must be developed for each type of feedstock. Studies comparing biorefining strategies 

for different types of biomass feedstocks based on pretreatment methods is limited. In this study, 

three crops resides (sorghum stalks, brm sorghum stalks, and corn stover), one perennial  grass 

(switchgrass), one hardwood (poplar), and one softwood (Douglas fir) were compared for acid and 

alkali pretreatment at the same pretreatment severity, including acid/alkali concentration, solids 

loading, time, and processing temperature. Pretreatment effectiveness was evaluated based on the 

sugars released during enzymatic hydrolysis of pretreated biomass, and inhibitory compounds 

produced and sugar lost during pretreatment. In addition, solids loading during enzymatic 

hydrolysis was optimized to get high sugars concentration in hydrolyzates for efficient 

fermentation and thereby reduced product recovery cost. Finally, a schematic for biorefining 

strategies based on acid and alkali pretreatment methods was proposed for different types of 

biomass feedstocks.  
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 Materials and methods 

 Materials 

Switchgrass, bmr (brown midrib) sorghum stalks (bmr12 mutant of forage sorghum, 

GW8528) and corn stover was obtained from the Kansas State University Agronomy Farm 

(Manhattan, Kansas). Regular sorghum stalks (the ground biomass) was obtained from Mesa 

Reduction Engineering & Processing Inc. (Auburn, New York); the sorghum was cultivated in 

Texas A&M University (College Station, Texas).  Chopped (2 to 5 cm long) wild type poplar 

sample was provided by Edenspace, Inc. (Manhattan, Kansas). Ground Douglas fir sample was 

kindly provided by Dr. Michael Wolcott, Washington State University (Pullman, Washington). 

Novozymes, Inc. (Franklinton, North Carolina) provided Cellic CTec2 and Cellic HTec2 enzymes 

for biomass hydrolysis.   

 Sample preparation  

The biomass samples were first chopped into 5 to 10 cm long pieces, and then ground using a 

Thomas-Wiley Laboratory Mill (Model 4) fitted with a 2-mm sieve. The ground biomass samples 

were sieved in a shaker (W.S. Tyler, Model – RX 29, Serial – 25225) fitted with two sieves with 

size 20 mesh (841 µm) and 80 mesh (177 µm) to get a specific particle size. The sorghum stalks 

and Douglas fir samples were directly sieved to get the same cut size because these samples were 

received in ground form. The size range of biomass was chosen based on the particle size required 

for biomass composition analysis without further size separation (Sluiter et al., 2007). The 

prepared samples were packed in sealed paper bags and stored at room temperature until further 

processing. 
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 Optimization of biomass pretreatment  

One sample from each type of the biomass samples (grass, hardwood and softwood) were 

selected for the optimization of alkali pretreatment; the selected samples were sorghum stalks 

(grass), poplar (hardwood) and Douglas fir (softwood). Wang et al. (2010) reported that 0.75% 

(w/v) sodium hydroxide (NaOH) solution at 121ºC is the optimum for the pretreatment of Coastal 

Bermuda grass, whereas Cao et al. (2012) reported that 2% (w/v) NaOH solution at 121ºC is 

effective for the pretreatment of sweet sorghum stalks. Seven different NaOH concentrations, from 

0.5% to 2.0% (w/v), were taken for the optimization of sorghum stalks pretreatment. Higher NaOH 

concentration is required for the pretreatment of woody biomass (Rawat et al., 2013; Salehian et 

al., 2013); five different NaOH concentrations, from 1% to 8% (w/v), and from 2% to 10% (w/v), 

were taken for the pretreatment of poplar and Douglas fir, respectively. Twenty grams of ground 

biomass sample was mixed with 200 ml alkali solution for each concentration in a 500-ml 

Erlenmeyer flask and autoclaved at 121°C for 30 min. The biomass slurry was then filtered using 

a 200-mesh (74 μm) sieve. Approximately 15 ml filtrate was collected to measure sugars and 

inhibitors produced during pretreatment, and solids residue was washed with excess distilled water 

until the filtrate was clear and neutral to litmus paper. The pretreated samples were then dried 

overnight at 45°C and hydrolyzed as explained in section 2.5. The released sugars were measured 

to determine the optimum alkali concentration for pretreatment of each type of biomass.  

 Pretreatment of biomass 

The optimum NaOH concentrations for pretreatment of sorghum and poplar were 1% and 2% 

(w/v), respectively; however, alkali pretreatment at 121ºC using upto10% (w/v) alkali 

concentration did not work well for Douglas fir (section 3.2).  Therefore, 1% alkali concentration 

was used for the pretreatment of grasses (switchgrass, sorghum stalks, bmr sorghum stalks and 
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corn stover) and 2% alkali concentration was used for hardwood (poplar). Acid pretreatment was 

carried out by taking sulfuric acid (H2SO4) concentration equal to the optimized alkali 

concentration for each type of biomass, without separate optimization. However, our preliminary 

work on wheat straw pretreatment using 1% H2SO4 (v/v) at 121ºC for 30 min did not work well – 

total sugars released during enzymatic hydrolysis of pretreated wheat straw was less than 10% of 

biomass (unpublished data). Therefore, acid pretreatment for grasses were carried out at 140ºC for 

40 min using 1% H2SO4 (Lloyd & Wyman, 2005) for the comparison of acid and alkali 

pretreatment. For softwood (Douglas fir), no significant improvement on hydrolysis efficiency was 

observed by increasing NaOH concentration from 2 to 10% (w/v) (section 3.2); therefore, 2% 

H2SO4 (v/v) and 2% NaOH (w/v) concentrations were used for the comparative evaluation of acid 

and alkali pretreatments, respectively, for Douglas fir. Twenty grams of ground biomass sample 

was mixed with 200 ml alkali/acid solution at the selected concentration in a 500-ml Erlenmeyer 

flask and pretreated at selected time and temperature, washed and dried as explained in section 

2.3. Parr Pressure Reactor (Model 4523) was used for the pretreatment at 140ºC, and autoclave 

was used for the pretreatment at 121ºC.   

 Hydrolysis of pretreated biomass 

Two grams of pretreated biomass was mixed with 40 ml citrate buffer (4.8 pH and 0.05 M) in 

a 125-ml conical flask with a screw cap, and 94 µl and 10 µl Cellic CTec2 and Cellic HTec2 

enzymes, respectively, were added in each flask. The flasks were incubated in a temperature-

controlled shaker (Innova 4300, New Brunswick Scientific, New Jersey, USA) at 50oC and 150 

rpm for 48 h. About 500 μl samples were drawn at 12, 24, and 48 h of hydrolysis from each flask 

to measure released monomer sugars. The final hydrolyzates were separated by centrifuging the 
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biomass slurry at 13,000 rpm (maximum g-force 20,400×g) for 15 min (Guragain et al., 2013), 

and used to produce biochemicals (2,3-butanediol); the fermentation data is not reported here.    

 Analytical procedures 

An electric moisture meter (IR35M-00015V1, Denver Instrument GmbH, Goettingen, 

Germany) was used for moisture content determination in raw and pretreated biomass. The NREL 

standard protocols (Sluiter et al., 2005; Sluiter et al., 2007) were followed for biomass composition 

analysis, including extractives, lignin, glucan, xylan, and arabinan. Monomer sugars, including 

glucose, xylose, sucrose fructose, and arabinose were measured using High Performance Liquid 

Chromatography (HPLC). The HPLC instrument (Shimadzu Corporation, Japan) was equipped 

with an LC-20AB pump, an SIL-20 AC auto sampler, an SPD-M 20A photodiode array detector, 

and a Phenomenex RCM-Monosaccharide Ca+ column (300 × 7.8 mm). Flow rate of mobile phase 

(deionized water) was 0.6 ml min−1. The column oven and refractive index detector (RID-10A) 

were maintained at 80°C and 65°C, respectively. The pretreatment-induced inhibitors, like 

hydroxymethylfurfural (HMF), furfural, acetic acid, lactic acid, and formic acid, were measure 

using ROA organic acid column (300 × 7.8 mm)., both RID and PDA (Photodiode Array)-UV 

detectors were used in the same HPLC system. A 0.005 N sulfuric acid in deionized water was 

used as mobile phase at the rate of 1.0 ml min-1.    

  A modified Folin-Ciocalteu Reagent (FCR) method (Amendola et al., 2012) was used for 

the determination of total phenolics. The FCR method modification was done to draw standard 

curves because the initial experiments showed that the standard curve using only one phenolic 

(gallic acid) did not work well for the samples containing two or more phenolics. A standard curve 

using five phenolics was found to be a good estimation of total phenolics in samples containing 

known concentration of several phenolic compounds; the five phenolics used for standard mixtures 
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were vanillic acid, catechol, gallic acid, guaiacol and vanillin. The method in brief: 0.1 ml sample 

(neutralized and diluted, if required) was mixed with 5 ml FCR in a 15-ml centrifuge tube, and 

mixed for 5 min. A 3.5 ml sodium carbonate solution (11.5%, w/v) was added and mixed well. A 

similar process was followed for blank preparation using 0.1 ml deionized water instead of the 

sample. The mixture was incubated at 40°C for 1 h, then cooled to room temperature and the 

absorbance was taken at 745 nm. Concentration of total phenolics was determined using the 

previously drawn standard curve.  

All the experiments were performed in triplicates, and data were statistically analyzed for 

significance test. The least significant difference (LSD) test was carried out at 95% confidence 

level (P < 0.05) using JMP software (SAS Institute Inc., Cary, North Carolina, United States).  

 Results and Discussion 

 Composition of biomass 

Figure 4.1 shows that composition of biomass feedstocks significantly varied not only among 

softwood (Douglas fir), hardwood (poplar) and grass, but also among different grasses: 

switchgrass, sorghum stalks, bmr sorghum stalks and corn stover. Douglas fir had the highest 

lignin content (29% of biomass), followed by poplar (21%) and sorghum stalks (20%). The lowest 

lignin was found in bmr sorghum stalks (10%), indicating that the bmr mutation led to around 50% 

reduction in lignin content in sorghum biomass; however, the wild type sorghum used in this 

experiment was not the same parent line into which the bmr gene was introduced. Poplar had the 

highest glucan content (40%) followed by Douglas fir (37%) and switchgrass (35%). The highest 

total carbohydrate (glucan + xylan) content was found in switchgrass (64%) because of the highest 

amount of xylan (29%) in this biomass. Sorghum stalks and corn stover had statistically equal 

amounts of glucan (around 30%) and xylan (around 19%), but it was not true for lignin and 
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extractives contents in these biomass samples. The bmr sorghum stalks had the lowest amount of 

carbohydrate (46%), in addition to the lowest lignin content, but it had exceptionally high amount 

of extractives (40%). The biomass extractives were not characterized for this bmr sorghum sample; 

however, our earlier research (manuscript in review) showed that around 50% of bmr sorghum 

extractives were non-structural sugars (sucrose, glucose and fructose). These non-structural sugars 

can be extracted in hot water prior to biomass pretreatment and used as fermentable sugars, and 

the remaining biomass can be pretreated using a relatively less energy-intensive pretreatment 

method. This indicated that bmr sorghum stalks could be the most promising feedstock for biofuels 

and biochemicals production because of the possibility of getting maximum amount of fermentable 

sugars from this biomass with reduced pretreatment cost. The extractives components in woody 

biomass was very low compared to the grasses.            

 Optimization of alkali concentration for biomass pretreatment  

Sorghum stalks: - Increasing NaOH concentration for pretreatment from 0.5% to 1.25% (w/v) 

resulted in a gradual increase in sugar released during hydrolysis from 54% to 75% of pretreated 

biomass weight, but beyond 1.25% of NaOH conferred no additional benefits (Figure 4.2a). On 

the other hand, the increase in NaOH concentration during pretreatment resulted in an increase in 

biomass loss as a result of delignification as well as partial hemicellulose hydrolysis. Total mass 

loss during pretreatment was 45%, 48%, 52%, 55%, and 56% of raw biomass using 0.5%, 0.75%, 

1.0%, 1.25%, and 1.5 % of NaOH concentrations, respectively. This led to decreased overall sugar 

yield from biomass at higher NaOH concentration. Based on the raw biomass weight, the highest 

sugar yield (36% of biomass) was obtained from the sample pretreated with 1.0% NaOH. Biomass 

pretreatments were also performed at higher NaOH concentrations (1.75% and 2.0%). However, 

data are shown here only up to 1.5% because total sugars yield (gram per gram biomass) during 
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hydrolysis were statistically equal at 95% confidence level for all biomass samples pretreated with 

1.5%, 1.75%, and 2.0% of NaOH concentrations for both pretreated and raw biomass weight basis. 

Total sugars loss, and phenolics, acetic acid and formic acid formation during pretreatment 

gradually increased by increasing NaOH concentration; however, hydromethylfurfural (HMF) and 

furfural were produced less than 0.01% of biomass for all NaOH concentrations (unpublished 

data). This results showed that 1% NaOH (w/v) was the optimum alkali concentration for the 

pretreatment of sorghum to achieve maximize sugar release during hydrolysis, and minimize the 

sugar loss and inhibitors formation during pretreatment. The 1% (w/v) NaOH concentration was 

taken as the optimum for the pretreatment of other grass samples as well, including switchgrass, 

bmr sorghum and corn stover, without optimization for each biomass.  

Poplar: - Figure 4.2b shows that increasing NaOH concentration for pretreatment from 1% 

to 2% (w/v) resulted in an increase in sugar release during hydrolysis from 52% to 58% of 

pretreated biomass, but increase beyond 2% led to decreased sugar yield. Total biomass loss during 

pretreatment was equal in both 1% and 2% NaOH pretreatment (27% of raw biomass), but 

pretreatments with 4%, 6%, and 8% NaOH resulted in 32%, 37%, and 39% of biomass loss, 

respectively. Such increased biomass loss with increase in NaOH concentration led to further 

reduced sugars yield based on raw biomass weight at higher NaOH concentrations. The highest 

sugar yield during hydrolysis was obtained with 2% NaOH pretreatment in both pretreated biomass 

weight basis (58% of pretreated biomass) and raw biomass weight basis (43% of raw biomass). 

Similar to sorghum stalks, total sugar loss and phenolics, acetic acid and formic acid formation 

during pretreatment gradually increased by increasing NaOH concentration; however, HMF and 

furfural were produced less than 0.01% of biomass for all NaOH concentrations (unpublished 
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data). Based on these results, 2% NaOH (w/v) was considered as the optimum alkali concentration 

for the pretreatment of poplar.  

Douglas fir: - Figure 4.2c shows that sugars yield during hydrolysis of alkali pretreated 

Douglas fir was very low (<5% of pretreated biomass) even at 10% (w/v) NaOH concentration. 

These results indicated that aqueous alkali pretreatment at 121°C is not effective for the 

deconstruction of softwood biomass.  

 Comparison of alkali and acid pretreatment  

Figure 4.3 shows that alkali pretreatment led to much higher total sugars yield during 

enzymatic hydrolysis of pretreated biomass than acid pretreatment at the same pretreatment 

conditions; acid pretreatment in grasses was carried out even at higher temperature and longer time 

(140°C for 40 min) compared with alkali pretreatment (121°C for 30 min). The effectiveness of 

each pretreatment method significantly varied among the biomass samples. Based on the pretreated 

biomass weight (Figure 4.3a), the highest sugar release during hydrolysis was obtained from corn 

stover (83%), followed by bmr sorghum stalks (78%), sorghum stalks (75%), switchgrass (65%), 

and poplar (58%) for alkali pretreatment. Acid pretreatment was the most effective for switchgrass 

and bmr sorghum stalks, followed by sorghum stalks, corn stover and poplar. Both acid and alkali 

pretreatment methods at the conditions used in this experiment did not work for Douglas fir; total 

sugars released during hydrolysis of pretreated Douglas fir was less than 5% of biomass.  

Various biomass components were removed during pretreatment depending upon the 

pretreatment method and biomass types, leading to a significant reduction in total sugar yield based 

on raw biomass weight than that of pretreated biomass weight. Alkali and acid pretreatment 

significantly remove lignin and hemicellulose, respectively, from lignocellulosic biomass (Leu & 
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Zhu, 2013). In addition, most of the biomass extractives are removed during pretreatment. Total 

mass loss with different biomass feedstocks differed significantly in both pretreatment methods. 

Total mass loss from switchgrass, sorghum stalks, bmr sorghum stalks, corn stover, poplar and 

Douglas fir during alkali pretreatment was 38%, 42%, 58%, 50%, 26%, and 22%, respectively, 

and 54%, 39%, 68%, 54%, 26%, and 21%, respectively, during acid pretreatment. Such variation 

on biomass loss during pretreatment among different type of biomass samples led to significant 

variation on relative sugar yield when the raw biomass (Figure 4.3b) and pretreated biomass 

(Figure 4.3a) were used as base materials for sugar yield calculation. The greatest change on the 

relative sugars yield among these biomass samples was observed in bmr sorghum stalks and 

poplar. Total sugar yield from alkali pretreated bmr sorghum stalks was 34% more than poplar 

based on pretreated biomass weight, but it was 24% less than poplar based on raw biomass weight. 

Similarly, total sugar yield from acid pretreated bmr sorghum stalks was 85% more than poplar 

based on pretreated biomass weight, but it was 19% less than poplar based on raw biomass weight. 

Such changes on relative sugar yields based on pretreated and raw biomass weight was as a result 

of higher proportion of extractives in brm sorghum stalks (40%) than poplar (5%), and thereby 

leading to the higher mass loss during pretreatment in brm sorghum stalks than poplar . If the non-

structural sugars present in bmr sorghum stalks was extracted prior to pretreatment and added to 

the total sugars yield, the sugars yield from bmr sorghum stalks should be higher than poplar in 

raw biomass weight basis. Therefore, non-structural sugars recovery prior to pretreatment is vital 

for the biomass with high extractives content, like bmr sorghum stalks.   

Alkali pretreatment results in effective delignification of lignocellulosic biomass leading to 

increased accessibility of enzyme for hydrolysis of carbohydrate polymers; therefore, it is 

generally considered that biomass with lower lignin content can be more effectively hydrolyzed 
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after alkali pretreatment (Alvira et al., 2010). In this study, a weak negative correlation (R2 = 0.15) 

between lignin content in raw biomass in extractive-free basis and sugars released during 

hydrolysis of pretreated biomass was observed. For example, switchgrass and corn stover had 

statistically equal (at 95% confidence level) lignin content both in gross composition as well as 

extractive-free basis; but total sugars released during hydrolysis of alkali pretreated corn stover 

was 28% more than that of switchgrass (Figure 4.3a). Similarly, the bmr sorghum stalks had the 

lowest amount of lignin content, but hydrolysis efficiency of this biomass after alkali pretreatment 

was less than that of corn stover. These results indicated that low lignin content in biomass does 

not necessarily improve hydrolysis efficiency of alkali pretreated biomass (Guragain et al., 2014). 

In fact, the composition and structure of lignin as well as crystallinity of cellulose also affect sugar 

yield (Chang & Holtzapple, 2000; Wen et al., 2013). Lignin is a heterogeneous polyphenolic 

polymer containing three types of monomer units: p-hydroxyphenyl (H), guaiacyl (G), and 

syringyl (S). These lignin units are linked by carbon-carbon, ester, or ether linkages (Guragain et 

al., 2015). In addition, lignin in herbaceous plant also contains a considerable amount of p-

coumarate and ferulate monomers, which significantly affect the type of linkages in lignin 

monomers (Pu et al., 2011). The pretreatment efficiency is better for biomass containing higher 

S/G ratio, and higher amount of ester and ether inter-unit linkages in biomass lignin, whereas high 

carbon-carbon linkages decrease pretreatment efficiency (Studer et al., 2011). Additionally, 

variation in crystallinity of cellulose among biomass types could be another significant factor that 

led to unequal sugars released during hydrolysis of pretreated biomass (Chang & Holtzapple, 

2000).  

The efficiency of acid pretreatment (Figure 4.3a) had a good positive correlation (R2 = 0.86) 

with xylan content in raw biomass on an extractive-free basis. Xylan content on extractive-free 
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basis in switchgrass, sorghum stalks, bmr sorghum stalks, corn stover, and poplar were 34%, 21%, 

32%, 25%, and 23%, respectively, and total sugars released during hydrolysis of pretreated 

biomass was 40%, 26%, 40%, 24%, and 22%, respectively. This indicated that biomass with higher 

xylan content on an extractive-free basis is more favorable for dilute acid pretreatment, and the 

variation in the xylan structure for various biomass types is less than that for lignin structure. 

However, the acid pretreatment of poplar was carried out at higher acid concentration, lower 

temperature, and less time than other biomass samples: 121°C for 30 min with 2% (v/v) H2SO4 for 

poplar and 140°C for 40 min with 1% (v/v) H2SO4 for other biomass samples. The correlation 

would be even stronger (R2 = 0.97) for the biomass samples other than sorghum stalks. The slight 

deviation of results in some biomass, including sorghum stalks, might be due to the variation on 

the slow and fast reaction portion in xylan as well as reactivity of acetyl group present in the xylan 

polymer. It is postulated that the xylan polymer has two zones, called fast and slow reactive zones, 

due to the physical accessibility of a portion of the xylan polymer to the hydrolytic reagent, but 

not due to gross difference in their chemical structure (Hu & Ragauskas, 2012). Higher 

pretreatment temperature (>200ºC) is required for the biomass with high proportion of slow 

reactive zone to depolymerize xylan in acid pretreatment. In addition, accessibility of acetyl groups 

present in xylan polymers to the hydrolytic reagent significantly affects subsequent reactions. The 

hydrolyzed acetyl group becomes an in situ source of acetic acid and thereby helps further 

depolymerization of xylan polymers, but if the acetyl esters covalently linked to the xylan 

backbone are released as esterified xylo-oligosaccharides, it will be a stronger inhibitor to cellulase 

enzyme than pure xylo-oligosaccharides due to the steric hindrances of the acetyl groups (Hu & 

Ragauskas, 2012).        
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 Sugar loss and inhibitory compounds produced during pretreatment  

Depending on the pretreatment method and the severity of the process, biomass hemicellulose 

is partially hydrolyzed to monomer sugars and acetic acid; the sugars can be further degraded to a 

number of toxic compounds, including furfural, HMF, levulinic acid, and formic acid. In addition, 

various degradation products of lignin, including phenolic compounds, are also formed during 

pretreatment (Siqueira & Reginatto, 2015). These compounds are considered as toxins because 

they inhibit sugar-fermenting microbes (Feldman et al., 2015). 

 Table 4.1 shows that acid pretreatment resulted in much higher total sugar loss during 

pretreatment in all biomass samples than alkali pretreatment due to hydrolysis of hemicellulose. 

Alkali pretreatment produced significantly higher amounts of phenolics than acid pretreatment in 

all biomass samples, except corn stover, due to the degradation of biomass lignin. No specific 

trend was observed between acid and alkali pretreatment among these biomass samples for acetic 

acid production, that is, acid pretreatment produced higher acetic acid levels than alkali 

pretreatment in some biomass samples, but the opposite was true for others. This was because the 

acetic acid is produced from acyle/acetyl group present in both hemicellulose and lignin. Biomass 

lignin is partially acylated at γ-carbon of lignin monomer and linked to hemicellulose backbone; 

the proportion of acylated lignin varies from biomass to biomass (Guragain et al., 2015). Alkali 

pretreatment of poplar produced exceptionally very high amounts of acetic acid (12.2% of 

biomass), in which sugar released was only 3.4% of biomass, formic acid production was 3.1 % 

of biomass, and very low HMF and furfural (less than 0.01% of biomass). This result shows that 

only a small portion of hemicellulose was hydrolyzed during pretreatment of poplar and hence the 

major proportion of the acetic acid was produced due to the deacetylation of lignin, indicating that 

the poplar lignin was more extensively acylated/acetylated compared to other biomass samples. 
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This result was consistent with the fact that acetylation predominantly occurs at syringyl lignin 

units (Del Río et al., 2007), and the poplar has higher proportion of syringyl units; S/G ratio is as 

high as 3 (Studer et al., 2011), indicating high acylation/acetylation in poplar lignin.  Formic acid 

was 0.3 to 2.4% of biomass; similar to acetic acid, no specific trend was observed between acid 

and alkali pretreatment among these biomass samples for formic acid production.  

Small amounts of HMF and furfural (0.3% to 2.1% of biomass) were produced in acid 

pretreatment of grass samples, in which pretreatment was carried out at 140ºC using 1% (v/v) 

H2SO4. Very low amounts of these toxins (less than 0.01% of biomass) were produced in the 

remaining pretreatment methods, including acid pretreatment at 121ºC using 2% (v/v) H2SO4 

(poplar and Douglas fir) and alkali pretreatment at 121ºC using 1% (w/v) NaOH (all grass samples) 

or 2% (w/v) NaOH (poplar and Douglas fir) did not significantly degrade sugars to HMF and 

furfural. 

 Comparison of potassium hydroxide and sodium hydroxide for alkali pretreatment 

NaOH is the most extensively used alkali for biomass pretreatment, but potassium hydroxide 

(KOH) was also reported as an effective alkali for the pretreatment of  grasses, such as switchgrass 

and rice straw (Ong et al., 2010; Sharma et al., 2013). Above results (Figure 4.3) showed that 

alkali pretreatment was better than acid pretreatment to maximize sugar release during hydrolysis; 

our next objective was to compare the effectiveness of two alkalis - NaOH and KOH, for biomass 

pretreatment using sorghum stalks as a feedstock. Figure 4.4a shows that equal molar (0.25 M) 

concentration of NaOH alone or mixture of NaOH and KOH were significantly more effective 

than KOH alone to release sugars from pretreated sorghum stalks. NaOH also led to production of 

higher amount of toxic materials and more sugar loss during pretreatment (Figure 4.4b). However, 

total sugars loss was very low (2.3% of biomass at the most) and the phenolics, the major inhibitory 
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compound produced during pretreatment, can be separated from pretreated biomass by filtration 

and used for high value applications (Kleinert & Barth, 2008). Mixture of NaOH and KOH at 

0.125 M concentration each was as effective as NaOH alone at 0.25 M concentration, but NaOH 

alone is preferred over the mixture because a higher amount of KOH is required than NaOH to get 

the same molar concentration, leading to higher cost of alkali.  

 Optimization of solids loading during hydrolysis  

Alkali pretreatment using NaOH was found promising to maximize sugar release during 

hydrolysis of pretreated biomass. Nonetheless, all above results were based on biomass hydrolysis 

using 5% (w/v) solids loading; the maximum total sugars in hydrolyzates was around 4% or 40 

g/L. In order to reduce downstream processing cost, maximum possible concentration of product 

of interest is desired in the fermentation broth, which in turn requires higher sugars concentration 

in hydrolyzates. In a separate study, we found that 90 g/L total sugars is optimum to maximize 

yield (g per g sugars) and concentration (g/L) of 2,3-butanediol in fermentation broth using 

Klebsiella oxytoca (unpublished data). 2,3-butanediol is a valuable platform chemical used for 

production of a number of high value products, including methyl ethyl ketone, synthetic rubber 

and plastic, antifreeze, drugs, cosmetics, and food additives ((Ji et al., 2011; L. Li et al., 2013). 

Figure 4.5 shows that by increasing solids loading in hydrolysis from 5% to 17.5% (w/v), the total 

sugar concentration in hydrolyzates increased from 37 g/L to 106 g/L, but sugars yields reduced 

from 73% to 60% (w/w) of pretreated biomass. The increase beyond 17.5% solids loading led to 

a further decrease in sugars yield without increase in sugar concentration in hydrolyzates. 

Therefore, 17.5% solids loading in hydrolysis is the optimum to maximize sugar concentration in 

biomass hydrolyzates. Based on the optimum sugars concentration for 2,3-butanediol production 

using Klebsiella oxytoca (90 g/L), the 15% solids loading in hydrolysis is the best option; 15% 
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solids loading produced 94 g/L total sugar in hydrolyzates with sugars yield of 63% of pretreated 

biomass.    

 Development of appropriate biorefining strategies for acid and alkali pretreatments  

The biorefinery concept is analogous to the current petroleum-refinery concept, in which 

biomass conversion processes are integrated to utilize all biomass components for their high value 

applications to produce fuels, chemicals, and power in a similar way that multiple fuels and 

products are produced from petroleum (Menon & Rao, 2012). Current lignocellulosic-based 

biorefineries have focused on sugars derived from carbohydrate polymers. Lignin has been 

considered as a low value byproduct, and meanly combusted as boiler fuel, despite the great 

potential of the lignin products for a number of high-value applications to produce fuels, 

chemicals, fibers, and polymers (Kong et al., 2013; Ragauskas et al., 2014a). In addition to primary 

plant’s metabolites (cellulose, hemicelluloses and lignin) and non-structural sugars (sucrose, 

glucose, and fructose), biomass also contains a number of valuable phytochemicals (plant’s 

secondary metabolites), including terpenes and terpenoids, fats and waxes, phenolics, and 

alkaloids (Beatson, 2011). Efficient extraction and isolation of these extractives, and utilization of 

lignin for higher value applications is vital for the commercial viability of lignocellulosic-based 

biorefineries.     

Figure 4.6 shows a schematic diagram for the development of appropriate biorefining 

strategies based on the feedstock type for acid and alkali pretreatment methods. Some biomass 

such as bmr sorghum contains around 15 to 25% non-structural sugars, including sucrose, glucose, 

and fructose. These sugars must be extracted from biomass before pretreatment otherwise the 

sugars can be degraded into furan derivatives during pretreatment. In addition, other inhibitory 

compounds produced during pretreatment, including phenolics, render the sugars present in the 



 

81 

 

pretreatment slurry useful as fermentable sugars. However, this process is not necessary for 

biomass with trace amounts of non-structural sugars such as poplar. In addition, appropriate 

extraction and isolation processes are to be developed for the extraction of valuable 

phytochemicals from biomass feedstock prior to biomass pretreatment.  

After extraction of non-structural sugars and high value extractives, separate strategies should 

be used for the utilization of all biomass components using acid and alkali pretreatments. This 

study showed that acid pretreatment is much less efficient than alkali pretreatment under identical 

processing conditions. However, appropriate acid concentration and pretreatment temperature can 

be used to maximize hemicellulose hydrolysis during pretreatment and cellulose hydrolysis in 

subsequent enzymatic process (Lloyd & Wyman, 2005) for biomass feedstock containing high 

hemicellulose content and moderate amounts of lignin. The hemicellulose hydrolyzates obtained 

after acid pretreatment must be detoxified to get rid of pretreatment-induced inhibitory compounds 

to generate a clean sugar stream for fermentation, which incurs an additional processing cost. 

However, such process offers an opportunity of getting separate glucose and xylose streams for 

efficient fermentation because the bacteria with capability of utilizing both glucose and xylose 

sugars (such as Klebsiella oxytoca) have reduced fermentation efficiency in mixed sugar media 

compared to single sugar media. Such reduction was because of the catabolic repression of xylose 

utilization until the glucose is completely depleted in mixed sugars medium (Ji et al., 2011). In 

addition, residual solids after hydrolysis of acid pretreated biomass contains intact biomass lignin, 

which can be used for high value composite material production (Ragauskas et al., 2014a).  In the 

alkali pretreatment process, the biomass lignin is depolymerized to smaller lignin units, which can 

be extracted and used for production of high value phenolic compounds (Kleinert & Barth, 2008). 
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The carbohydrate-rich pretreated biomass is then enzymatically hydrolyzed to produce clean 

sugars for biofuels and biochemicals production.  

 Conclusions   

Effectiveness of acid and alkali pretreatment differed significantly among different 

biomass types, which indicates that an appropriate pretreatment process must be optimized for 

each biomass feedstock. Acid process requires harsher conditions compared to alkali for effective 

pretreatment; however, acid process can generate separate glucose and xylose streams for efficient 

sugar utilization during fermentation. Our study indicated that 17.5% (w/v) solids loading during 

hydrolysis of alkali pretreated biomass is optimum to maximize sugars concentration in 

hydrolyzates; the high sugars concentration (10.6%, w/v) obtained at this loading is advantageous 

to achieve high product titer and productivity for any bioprocess with concomitant reduced 

downstream processing costs. We finally proposed a schematic for innovative biorefining 

strategies for different types of biomass based on acid and alkali pretreatment methods for the 

sustainable bioprocessing of multiple feedstocks. 
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Table 4.1 Sugar loss and inhibitors production during acid and alkali pretreatment 

Biomass 

types 
Catalyst 

Total sugars and inhibitors production (%, g/g biomass)  

Sugars Phenolics Acetic acid Formic acid HMF Furfural 

Douglas 

fir 

Alkali 0.4 ± 0.0g 3.5 ± 0.1b 3.1 ± 0.0def 2.2 ± 0.0b < 0.01 < 0.01 

Acid 12.2 ± 0.9d 0.1 ± 0.0I 1.5 ± 0.1f 0.3 ± 0.0e < 0.01 < 0.01 

Poplar 

Alkali 3.4 ± 0.2ef 1.8 ± 0.3e 12.2 ± 2.8a 3.1 ± 1.1a < 0.01 < 0.01 

Acid 12.6 ± 0.6cd 0.4 ± 0.0h 4.5 ± 0.1bcd 2.4 ± 0.2b < 0.01 < 0.01 

Switch-

grass 

Alkali 1.4 ± 0.1fg 3.0 ± 0.1c 4.5 ± 0.5bcd 0.5 ± 0.0de < 0.01 < 0.01 

Acid 24.5 ± 2.7a 0.5 ± 0.1h 4.5 ± 0.6bcd 1.0 ± 0.2cd 0.2 ± 0.0c 2.1 ± 0.2 

Sorghu

m Stalk 

Alkali 1.4 ± 0.7fg 3.9 ± 0.2a 3.7 ± 0.1cdef 0.5 ± 0.0de < 0.01 < 0.01 

Acid 17.1 ± 0.9b 1.3 ± 0.1f 2.3 ± 0.1def 0.3 ± 0.0e 0.1 ± 0.0c 0.3 ± 0.0 

bmr 

Sorghum 

stalk 

Alkali 14.7 ± 2.4bc 2.9 ± 0.4c 4.1 ± 0.6cde 0.5 ± 0.1de < 0.01 < 0.01 

Acid 25.2 ± 2.8a 1.1 ± 0.1g 6.0 ± 0.7bc 1.4 ± 0.3c 2.0 ± 0.4a 1.0 ± 0.2 

Corn 

stover 

Alkali 5.1 ± 1.4e 1.8 ± 0.1f 1.9 ± 0.5ef 0.3 ± 0.1e < 0.01 < 0.01 

Acid 25.7 ± 0.2a 2.5 ± 0.1d 6.6 ± 0.1b 2.2 ± 0.1b 1.2 ± 0.0b 1.5 ± 0.0 

HFM = Hydroxymethylfurfural. Acid pretreatment was carried out at 121°c for 30 min with 10% 

solid loading in 2% (v/v) sulfuric acid (H2SO4) for Douglas fir and poplar, and at 140°c for 40 

min with 10% solid loading in 1% (v/v) H2SO4 for remaining biomass samples, and alkali 

pretreatment at 121°c for 30 min with 10% solid loading in 1% (w/v) sodium hydroxide. Data are 

average values of triplicate experiments ± sample standard deviation.  Values with the same 

letters, in superscripts, within the same column are not significantly different from each other at 

the P < 0.05 level.  
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Figure 4.1 Composition of various biomass feedstocks. bmr = brown midrib sorghum mutant. 

Extractives = sum of water-soluble and 95% ethanol-soluble extractives. Data are average values 

of triplicate experiments, and error bars represent sample standard deviation. 

  



 

85 

 

 

 

Figure 4.2 Total sugars released during hydrolysis of pretreated biomass at various 

concentration of sodium hydroxide (NaOH). Pretreatment was carried out at 121°C for 30 min 

with 10% (w/v) solid loading in NaOH solution, followed by hydrolysis at 50°C for 48 h with 5% 

(w/v) solid loading in citrate buffer (4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of 

solid. Data are average values of triplicate experiments, and error bars represent sample standard 

deviation 
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(a) 

 
(b) 

 

Figure 4.3 Comparison of acid and alkali pretreatment for various biomass feedstocks in 

terms of total sugars yield during enzymatic hydrolysis – (a) Based on pretreated biomass 

weight and (b) based on raw biomass weight. Acid pretreatment was carried out at 121°C for 30 

min with 10% solid loading in 2% (v/v) sulfuric acid (H2SO4) for woody biomass (Douglas fir and 

poplar), and at 140°c for 40 min with 10% solid loading in 1% (v/v) H2SO4 for grasses 

(switchgrass, sorghum stalks, bmr sorghum stalks, and corn stover). Alkali pretreatment was 

carried out at 121°C for 30 min with 10% solid loading using 1 and 2% (w/v) sodium hydroxide 

for grasses and woody biomass respectively. Hydrolysis was carried out at 50°C with 5% solid 

loading in citrate buffer (4.8 pH and 0.05 M) with enzyme loading of 6% (w/w) of solid for all 
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samples. Data are average values of triplicate experiments, and error bars represent sample 

standard deviation.  

            

(a)                                                                                (b)  

Figure 4.4 Comparative evaluation of potassium hydroxide (KOH) and sodium hydroxide 

(NaOH) pretreatment for sorghum stalks in terms of (a) total sugars yield during enzymatic 

hydrolysis and (b) Sugar lost and inhibitors produced during pretreatment. Pretreatment was 

carried out at 121°c for 30 with 10% solid loading using 0.25 M for single alkali or 0.125 M each 

for mixed alkali.  Hydrolysis was carried out at 50°C with 5% solid loading in citrate buffer (4.8 

pH and 0.05 M) with enzyme loading of 6% (w/v) of solid. Data are average values of triplicate 

experiments, and error bars represent sample standard deviation.   
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Figure 4.5 Evaluation of hydrolysis efficiency of pretreated sorghum stalks at various solid 

loading. Pretreatment was carried out at 121°c for 30 with 10% solid loading using 1% (w/v) 

sodium hydroxide, and hydrolysis was carried out at 50°C with 2% solid loading in citrate buffer 

with enzyme loading of 6% of solid. Data are average values of triplicate experiments, and error 

bars represent sample standard deviation.  
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Figure 4.6 Schematic diagram of appropriate biorefining strategies using acid and alkali 

pretreatment  
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Chapter 5 - Novel biomass pretreatment using alkaline organic 

solvents: A green approach for biomass fractionation, and 2,3-

butanediol production  

 Abstract 

 Valorization of each component of lignocellulosic biomass is critical for sustainability of 

biorefinery industries. Current biorefineries are confined to ethanol-centric processes, and focus 

only on the carbohydrate-derived sugar using energy-intensive pretreatment methods, leading to 

deteriorated liquid quality for high value applications. Organosolv fractionation is an effective 

method to improve hydrolysis efficiency of cellulose, and extract a good quality lignin stream; 

however, hemicellulose recovery is challenging if an acid catalyst is used. An alkali catalyst in the 

organosolv process, therefore, could be a promising alternative approach. We evaluated various 

organic solvents (glycerol, 2,3-butanediol, dimethyl sulfoxide, ethanol, butanol, isopropanol, 

acetonitrile, and water) for pretreatment of different biomass feedstocks, including corn stover 

(grass), poplar (hardwood) and Douglas fir (softwood) using sodium hydroxide as a catalyst.   

Results showed that an ethanol and isopropanol mixture led to 18% more sugar released per gram 

of biomass than the control (conventional aqueous alkali pretreatment) for corn stover; a mixture 

of ethanol, butanol and water was the next most effective solvent. For pretreatment of poplar 

biomass, glycerol and 2,3-butaneidol were the most efficient solvents; glycerol pretreatment  offers 

further process improvement opportunities. The organic solvents used in this experiment were not 

effective for Douglas fir. The quality of released sugar were statistically equal to that of synthetic 

sugar for 2,3-butanediol fermentation using Klebsiella oxytoca. This study opened up a promising 
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route for high value application for all biomass components. Further research is needed to 

characterize the extracted lignin for quality evaluation.  

Keywords: Organosolv, catalyst, pretreatment, fermentation, organic solvent 

 Introduction 

 Rapid growth in fuel ethanol production in last decade (Guragain et al., 2016) indicates 

that non-food-based materials, including lignocellulosic residues, must be utilized to meet the huge 

feedstock demand for biorefineries. Lignocellulosic biomass feedstocks are a sustainable resources 

for biofuels and biochemicals production to replace their petroleum-derived counterparts (Casler 

et al., 2009; Hu & Ragauskas, 2012). Development of integrated biorefineries is critical for the 

commercial viability of biorefining industries (Bozell et al., 2014). The recently developed 

biorefinery concept is analogous to that of petroleum-refinery concept, in which biomass 

conversion processes are integrated to utilize all biomass components to produce fuels, chemicals, 

and power, in a similar way to how multiple fuels and products are produced from petroleum 

(Menon & Rao, 2012). Lignocellulosic biomass is mainly composed of lignin (15 to 30%) and 

carbohydrates (50 to 70%) that include cellulose, hemicellulose, and other non-structural sugars. 

In addition, the biomass contains valuable secondary metabolites, such as phenolics, alkaloids, 

terpenes, terpenoids, fats and waxes. All of the components of biomass can be converted to high 

value products through various bioprocessing routes (Beatson, 2011; Werpy et al., 2004). 

Therefore, the robust biorefinery industry should focus on high-volume, low-value biofuel 

production to meet growing energy demand and low-volume, high-value bio-based chemicals 

production for the economic viability of the industry (Bozell et al., 2014). The petroleum-derived 
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chemicals market is less than 10% of crude oil consumption, but significantly contributes toward 

the overall profitability of petrochemical industries (Bozell et al., 2014; Marshall, 2007).   

Current lignocellulosic-based biorefineries are overwhelmingly confined to the release of 

sugar from carbohydrate polymers for ethanol production. The default biomass conversion process 

is the use of energy-intensive biomass deconstruction processes to make carbohydrate polymers 

susceptible for enzymatic hydrolysis to monomer sugars, which are then fermented to ethanol 

(Guragain et al., 2014). The strong lignin barrier in lignocellulosic biomass is considered a major 

obstacle, making the biomass deconstruction process expensive (Hu & Ragauskas, 2012; Tomas-

Pejo et al., 2008).  Biomass lignin is, therefore, recognized only for its negative impact on 

biochemical conversion (Dien et al., 2009; Sattler et al., 2012), and little attention is given to the 

quality of extracted lignin because the lignin stream is usually combusted as boiler fuel, despite its 

great potential for applications in bulk and specialty chemical production (Yuan et al., 2011a). The 

carbon to oxygen ratio in lignin is almost double that found in carbohydrates (about 2:1 in lignin 

and 1:1 in carbohydrates); therefore, lignin comprises 40% of lignocellulosic biomass energy even 

though it is only 15 to 30% by weight (Laskar et al., 2013). Lignin valorization is a daunting 

challenge as well as a great opportunity for design of a profitable lignocellulosic-based biorefinery. 

The distinct variation of composition and structure of lignin among different biomass types 

(Guragain et al., 2015) further complicates the lignin valorization process. In addition, extraction 

of a number of valuable biomass extractives prior to delignification is equally important. A 

schematic representation of the conventional ethanol-centric lignocellulosic-based process and a 

new concept of biorefinery is illustrated in Figure 5.1.    

Lignin valorization is critical for the sustainability of biorefining industries; however, it 

cannot be done at the expense of effective carbohydrate polymer utilization (Ragauskas et al., 
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2014a). Thus, appropriate pretreatment methods must be developed to extract high quality lignin 

with improved hydrolysis efficiency of the residual carbohydrate polymers. Organosolv 

pretreatment is considered one of the promising methods to achieve this goal. Lignin extracted 

using the organosolv process is sulfur-free, rich in functional components, including phenolics, 

relatively more homogeneous, and includes minimum contamination of residual carbohydrate 

(Bozell et al., 2014; Ragauskas et al., 2014a). In the organosolv pretreatment method, biomass is 

mixed in selected organic solvents, with or without catalysts (acid or alkali) addition, and heated 

for selected time and temperature. A diverse range of organic solvents can be used in this process. 

These include low boiling point solvents, such as ethanol, methanol and acetone; and high boiling 

point solvents, such as glycerol, ethylene glycol and tetrahydrofurfuryl alcohol. Other classes of 

organic solvents, such as   organic acids, phenols, ketones and dimethyl sulfoxide can also be used 

(Thring et al., 1990; Zhao et al., 2009b). Ethanol organosolv pretreatment using acid catalyst is the 

most widely used method among the organosolv pretreatments (Sousa et al., 2009). Such a process 

almost completely removes hemicellulose and extensively removes lignin from biomass, thereby 

leaving digestible cellulose residues (Zhao et al., 2009b). Organosolv pretreatment using high 

boiling point alcohols, mostly polyhydroxy alcohols, is also gaining attention since the process 

can be performed at atmospheric conditions (Sun & Chen, 2008). Use of low cost crude glycerol, 

a major byproduct of oleochemical industries, for biomass pretreatment is also considered an 

attractive economic route for biofuels and biochemical production (Guragain et al., 2011). 

Oleochemical industries produce crude glycerol at a rate of around 10% of total biodiesel 

production. The purification process to recover high quality glycerol from such crude glycerol is 

very expensive, and therefore, economically infeasible to use in food, pharmaceutical and cosmetic 

applications (Sun & Chen, 2008). 
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One of the major drawbacks of organosolv pretreatment using an acid catalyst is loss of 

hemicellulose in the lignin stream. The hydrolyzed hemicellulose from the lignin stream is hard to 

recover as fermentable sugar due to the presence of a number of inhibitory compounds, including 

phenolics. Diner & Fan (2012) proposed an alkaline organosolv pretreatment method using 

ammonia (2 to 20% of biomass) as catalyst and ethanol (40 % to 70% in water) as solvent. This 

process led to extensive removal of lignin without significant loss of hemicellulose. The lignin-

free carbohydrate polymers (cellulose and hemicellulose) were effectively hydrolyzed using 

enzymes. However, high cost for ammonia recovery (Mosier et al., 2005) and environmental issues 

for using ammonia in commercial scale production are the main concerns for using ammonia as 

the catalyst. Therefore, an alkaline organic solvent using sodium hydroxide (NaOH) catalyst could 

be a promising alternative approach. The delignification mechanism in organosolv pretreatment 

involves breakage of β-O-4 inter-unit linkages in lignin, and lignin-carbohydrate bonds followed 

by lignin solubilization in organic solvents (Ragauskas et al., 2014a); the process could be further 

improved by NaOH addition (Alvira et al., 2010). In addition, during acid-catalyzed delignification 

process, the simultaneous lignin repolymerization reaction by lignin-lignin condensation is 

induced due to the formation of new carbon-carbon linkages between side chain (especially β-

position) of one lignin unit with aromatic ring (especially 5- or 6-position) with another lignin  unit 

(Balakshin et al., 2003).  The lignin condensation results in formation of low-reactive lignin for 

potential high value applications and reduced hydrolysis efficiency of residual carbohydrate 

polymers (Li & Gellerstedt, 2008). The addition of NaOH (0.2%, w/v) or 2-naphthol (0.16%, w/v) 

significantly reduces lignin-lignin condensation by reacting with lignin side chains of 

depolymerized lignin units and forming  stable low molecular lignin units; such changes are 
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beneficial for lignin valorization as the extracted lignin will contain  homogeneous lignin 

oligomers (Li & Gellerstedt, 2008).  

In this study, various organic solvents, including glycerol, 2,3-butanediol, dimethyl 

sulfoxide, ethanol, butanol, isopropanol, and acetonitrile, were assessed for the effective 

pretreatment of different types of biomass feedstocks, including corn stover (grass), poplar 

(hardwood) and Douglas fir (softwood), using NaOH as the catalyst. The objectives of this 

research were to test the hypotheses: (a) alkaline organic solvent pretreatment is effective to 

improve hydrolysis efficiency of pretreated biomass; (b) biomass type significantly affects the 

effectiveness of alkaline organic solvent pretreatment; and (c) the quality of released sugar during 

hydrolysis of pretreated biomass is good for biofuel and biochemical production. The quality of 

biomass hydrolyzates was evaluated and compared with synthetic sugar solutions for 2,3-

butanediol fermentation using Klebsiella oxytoca bacteria. 2,3-butanediol is an important platform 

chemical possessing diverse industrial applications for the production of a number of high-value 

products, including foods, pharmaceuticals, fuel, rubber, and chemicals (Xin et al., 2015).   

 Materials and methods 

 Materials 

Three different types of biomass representing grass (corn stover), hardwood (poplar) and 

softwood (Douglas fir) were used in this study. These biomass samples were obtained from the 

Kansas State University Agronomy Farm (Manhattan, Kansas), Edenspace Inc. (Manhattan, 

Kansas), and Dr. Michael Wolcott, Washington State University (Pullman, Washington), 

respectively.  Novozymes, Inc., Franklinton, North Carolina provided Cellic CTec2 and Cellic 

HTec2 enzymes for biomass hydrolysis.  Klebsiella oxytoca ATCC 8724 was obtained from 
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American Type Culture Collection (Manassas, Virginia, USA). The culture was revived in nutrient 

broth medium, and stock culture tubes were prepared in 15% glycerol media comprising 0.5 ml  

each of revived culture and 30% (v/v) sterilized glycerol. The stock cultures were stored at -80°C 

until used for inoculum preparation.  Organic solvents, including dimethyl sulfoxide (DMSO), 2,3-

butanediol, glycerol, ethanol, butanol, isopropanol, and acetonitrile, were procured from Thermo 

Fisher Scientific and were used as received. 

 Biomass sample preparation  

Corn stover and poplar samples were ground using a Thomas-Wiley Laboratory Mill 

(Model 4) fitted with a 2-mm sieve. The ground biomass samples were sieved in a shaker (W.S. 

Tyler, Model – RX 29, Serial – 25225) fitted with two sieves, size 20 mesh (841 µm) and 80 mesh 

(177 µm) to get a specific particle size range (177 µm to 841 µm). The Douglas fir samples were 

directly sieved to get the same particle size because these samples were received in ground form. 

The size range of biomass was chosen based on the particle size required for biomass composition 

analysis without further size separation (Sluiter et al., 2007). The ground samples were packed in 

sealed paper bags and stored at room temperature until further processing. 

 Biomass pretreatment  

  The optimized aqueous alkali pretreatment was used as the control pretreatment experiment 

for comparative evaluation of effectiveness of various alkaline organic solvent pretreatment 

methods. Our earlier research (Guragain et al., 2013) showed that 1% (w/v) sodium hydroxide 

(NaOH) pretreatment using 10% solids loading (30 g biomass in 300 ml alkali solution) at 121°C 

for 30 min was effective for the pretreatment of grasses, including corn stover. These pretreatment 

conditions were taken as the optimum control pretreatment method for corn stover. For poplar 
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biomass pretreatment, NaOH concentration was optimized keeping all other parameters same as 

that for corn stover pretreatment. Rawat et al. (2013) reported that 2.8% NaOH concentration using 

biomass to alkali solution ratio of 1:8 at 94°C for 60 min was optimum for poplar biomass 

pretreatment. Five different NaOH concentrations ranging from 1% to 6% (w/v) were used for the 

optimization study of poplar biomass pretreatment. A 20 g ground biomass sample (dry weight 

basis) was mixed with 200 ml alkali solution for each concentration in 500-ml flask, and 

autoclaved at 121°C for 30 min.  The biomass slurry was allowed to cool to room temperature and 

filtered using a 200-mesh (74 μm) sieve. The residual solids were washed with excess distilled 

water until the filtrate was clear and neutral to litmus paper.  Pretreated samples were then dried 

overnight at 45°C and hydrolyzed as explained below (“Biomass hydrolysis” sub-section).  The 

released sugar content was measured to determine optimum NaOH concentration required for 

poplar biomass pretreatment.  Optimized control pretreatment conditions for poplar were also used 

as the control for Douglas fir biomass pretreatment.    

The alkaline organic solvent pretreatment process was optimized for processing 

temperature (75 to 170°C) and catalyst (NaOH) concentration (0 to 0.4%, w/v) using corn stover 

as feedstock. The maximum pretreatment temperature of 170°C was selected for high boiling point 

(bp) solvents (DMSO: bp- 189°C, Glycerol: bp- 290°C, and 2,3-butanediol: bp- 177°C),  to 

perform the process at atmospheric pressure. Among the low boiling point solvents, ethanol (bp- 

78°C) pretreatment was evaluated at 75°C and 170°C (under pressure). A 20 g ground biomass 

sample (dry weight basis) was mixed with 200 ml organic solvent with calculated amount of NaOH 

in 500-ml two-neck flask; NaOH was first dissolved in 1 ml water before mixing with the organic 

solvent. A condenser was inserted into one neck of the flask, and a thermometer was inserted into 

the other neck.  The flasks were refluxed for two hours using a heater (Electrothermal House, 
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Rochford, Great Britain, Model: EMEA30500/CEX1) to achieve desired temperature. Magnetic 

stirrer was used to stir the sample during heating. For the ethanol pretreatment at 170°C, the sample 

was heated in a Parr Pressure Reactor (Model 4523).  After heating the biomass slurry for desired 

time and temperature, it was washed, dried and hydrolyzed following the same processes used for 

the control pretreatment. The same pretreatment conditions optimized for ethanol were used for 

all other low boiling solvents, including acetonitrile, isopropanol, butanol, and water. The 

optimized conditions used for corn stover were also used for poplar and Douglas fir and no separate 

optimizations were performed for those biomass samples. 

Finally, all the biomass samples were pretreated using control as well as alkaline organic 

solvent methods at optimized conditions. The optimized conditions for different biomass 

feedstocks and pretreatment solvents are summarized in Table 5.1.  Pretreated biomass was used 

for enzymatic hydrolysis after washing with excess water and drying overnight at 45°C. 

 Biomass hydrolysis   

Two grams of pretreated biomass was mixed with 40 ml citrate buffer (4.8 pH and 0.05 M) 

in a 125-ml conical flask with a screw cap, and 94 µl and 10 µl Cellic CTec2 and Cellic HTec2 

enzymes, respectively, were added to each flask. The flasks were incubated in an incubator -shaker 

(Innova 4300, New Brunswick Scientific, New Jersey, USA) at 50°C and 150 rpm. Samples of 

approximately 500 μl were drawn every 12 h, for 71 h, from each flask to measure released 

monomer sugars. The final hydrolyzates were separated by centrifuging the biomass slurry at 

13,000 rpm (maximum g-force 20,400×g) for 15 min and stored -20° C until used for fermentation 

(Guragain et al., 2013).  
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 Fermentation of biomass hydrolyzates 

The growth curve for Klebsiella oxytoca bacteria in shake-flask fermentation showed that 

the culture has a very slow growth (lag phase) for the first 4 hours, followed by exponential growth 

(log phase) between 4 to 10 hours, and finally very slow or almost no growth after 10 hours 

(unpublished data). Therefore, 7 h incubation was considered the optimum time for inoculum 

preparation. To prepare inoculum, 0.3 ml stock culture was added to 100 ml sterilized nutrient 

broth medium in a 1000-ml flask and incubated in a temperature-controlled shaker (Innova 4300, 

New Brunswick Scientific, NJ, USA) at 37°C and 200 rpm for 7 h.  

Initial fermentation experiments were carried out using synthetic sugar solutions with 

different concentration of glucose and xylose to study sugar utilization and 2,3-butanediol 

production efficiency of the culture, K. oxytoca. Then, the biomass hydrolyzates prepared from 

different biomass feedstocks and pretreatment methods were evaluated for fermentability of the 

biomass-derived sugar. Fermentation media was prepared by adding 2 ml filter sterilized 

(Millipore, 0.22µm) concentrated nutrient solution to 16 ml sterilized (autoclaved at 121°C for 15 

min) biomass hydrolyzates (or sugar solution) in 250-ml flasks. The nutrient solution was prepared 

10 times more concentrated than the recommended concentration for each nutrient. The 

recommended nutrients (per liter): 2 g monopotassium phosphate, 10.5 g dipotassium phosphate, 

3.3 g diammonium phosphate, 6.6 g ammonium sulfate, 0.25 g magnesium sulfate heptahydrate, 

0.05 g ferrous sulfate heptahydrate, 0.001 g zinc sulfate heptahydrate, 0.001 g  manganese (II) 

sulfate monohydrate, 0.01 g calcium chloride dihydrate, and 0.05 g ethylenediaminetetraacetic 

acid (Jansen et al., 1984). Control sample containing glucose, xylose and arabinose in the 

concentration similar to biomass hydrolyzates (the average concentration of biomass hydrolyzates) 

was also prepared along with biomass hydrolyzates. Freshly prepared 2 ml inoculum was added to 
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each flask and incubated at 37°C and 200 rpm.  About 500 μl samples were drawn at different time 

intervals from each flask to measure residual sugar and 2,3-butanediol produced until almost all 

sugars were consumed.  

 Analytical methods 

Monomer sugars (glucose, xylose and arabinose), and fermentation products/byproducts 

including, 2,3-butanediol, acetoin, and glycerol were measured using HPLC. The HPLC 

instrument (Shimadzu Corporation, Japan) was equipped with an LC-20AB pump, an SIL-20 AC 

auto sampler, an SPD-M 20A photodiode array detector, and a Phenomenex RCM-

Monosaccharide Ca+ column (300 × 7.8 mm). Flow rate of mobile phase (deionized water) was 

0.6 ml min−1. The column oven and refractive index detector (RID-10A) were maintained at 80°C 

and 65°C, respectively. Other fermentation byproducts, such as acetic acid, lactic acid, formic acid, 

and ethanol, were measure using ROA organic acid column (150 × 7.8 mm), using both RID and 

PDA (Photodiode Array)-UV detectors for the analysis. A 0.005 N sulfuric acid in deionized water 

was used as mobile phase with the same flow rate of 0.6 ml/min 

 Statistical method 

All experiments, including pretreatment, hydrolysis and fermentation, were carried out in 

triplicate. The data were statistically analyzed by the least significant difference (LSD) test at 95% 

confidence level (P < 0.05) using JMP software (SAS Institute Inc., Cary, North Carolina, United 

States).     
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 Results and discussion 

 Composition of biomass 

Figure 5.2 shows that the chemical composition of the three biomass samples: corn stover 

(grass), poplar (hardwood) and Douglas fir (softwood), were significantly different from one 

another.  Poplar had the highest total carbohydrate polymers (40.2% glucan, 22.0% xylan and 3.8% 

arabinan), followed by Douglas fir (36.9% glucan, 22.4% xylan and 2.2% arabinan), and corn 

stover (30.3% glucan, 19.1% xylan and 3.2% arabinan). Douglas fir had the highest lignin content 

(29.0%), which was 1.4 and 1.9 times more than the poplar and corn stover, respectively.  Corn 

stover contained an exceptionally high amount of extractives (22.1%) compared to woody biomass 

samples (poplar: 4.8% and Douglas fir: 3.8%).  Extractives were the sum of water-soluble and 

alcohol (95%)-soluble extractives; corn stover had 18.9% water soluble extractives and 3.2% 

alcohol soluble extractives. The water-soluble extractives include non-structural sugars, 

nitrogenous material and other inorganic materials. Alcohol-soluble extractives include waxes, 

chlorophylls and other minor components (Sluiter et al., 2005). The extractives were not 

characterized in this study; however, our previous study on grass samples showed that 

approximately 50% of water soluble extractives were non-structural sugars, including glucose, 

sucrose and fructose (unpublished data). This study showed that the corn stover could have as high 

as 10% non-structural sugars, hence separate strategies are required to recover these sugars prior 

to pretreatment. Presence of a number of pretreatment-induced inhibitory compounds in the 

pretreatment liquid limits use of these sugars as fermentable sugars unless an appropriate 

detoxification process is used (Chandel et al., 2013). If non-structural sugars in corn stover were 

also included in this study, total carbohydrate in all biomass samples would be 62 to 67%, 

indicating fairly equal amount of total carbohydrates. 
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 Optimization of pretreatment methods 

Aqueous alkali pretreatment was used as control in this study to evaluate the effectiveness 

of alkaline organic solvent pretreatment. Figure 5.3 shows that 2% (w/v) sodium hydroxide 

(NaOH) pretreatment resulted in the highest sugar yield per gram raw poplar biomass during 

enzymatic hydrolysis. The lower NaOH concentration (1%, w/v) led to incomplete hydrolysis of 

carbohydrate polymers due to higher amount of residual lignin in the pretreated biomass. The 

higher NaOH concentration (3%, w/v or more) led to sugar loss during pretreatment due to partial 

hydrolysis of carbohydrate polymers (especially hemicellulose), and thereby reduced overall sugar 

yield per gram raw biomass; 6% (w/v) NaOH led to the least overall sugar yield. Therefore, 2% 

(w/v) NaOH was the optimum alkali concentration for poplar biomass pretreatment at 121°C for 

30 min using 10% (w/v) solids loading. Same pretreatment conditions were used as optimum for 

Douglas fir. For corn stover, 1% (w/v) NaOH concentration at the same processing conditions was 

taken as optimum based on our earlier research (Guragain et al., 2013).   

For the optimization of alkaline organic solvent pretreatment, dimethyl sulfoxide (DMSO) 

solvent was initially evaluated for processing temperatures between 80°C to 170°C, and NaOH 

concentration 0 to 0.4% (w/v) while using corn stover as feedstock. Figure 5.4 shows that the 

DMSO pretreatment at 80°C with NaOH up to 0.4% was not effective and total sugar released was 

only 15.4 g/g pretreated biomass. Pretreatment at 125°C using 0.4% (w/v) NaOH significantly 

improved saccharification efficiency leading to total sugar released of 51.2 g/g pretreated biomass; 

however, the yield was much lower than control pretreatment  (81.7 g/g pretreated biomass). Total 

sugar yield for DMSO pretreatment at 170°C without addition of NaOH was 39.1 g/g pretreated 

biomass; the yield gradually increased with increase in NaOH concentration. The highest total 

sugar yield (89.7 g/g pretreated biomass) was obtained using 0.4% NaOH concentration  at 170°C, 
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which is the only condition we achieved in this study for DMSO pretreatment that led to sugar 

being released more than control; all other pretreatment conditions were much less efficient than  

control pretreatment. Two other high boiling point solvents (glycerol and 2,3-butanediol) were 

also evaluated for  pretreatment of corn stover at 170°C using 0 and 0.4% (w/v) NaOH 

concentration.  Results showed that 2,3-butanediol pretreatment without alkali addition did not 

work effectively, and total sugar released was only 15.5 g/g pretreated biomass,  but the sugar 

yield was increased to 73.8 g/g for the biomass pretreated with 0.4% alkali addition. Similarly, for 

glycerol pretreatment, 0.4% alkali addition led to double the sugar released compared to without 

alkali addition. Therefore, 170°C pretreatment temperature and 0.4% NaOH concentration were 

taken as optimum for all high boiling point solvents, including DMSO, 2,3-butanediol and 

glycerol. Glycerol has a much higher boiling point (290°C) and hence pretreatment could be 

carried out at higher temperature for atmospheric pressure processing; however, in this study, for 

comparison of pretreatment efficiency of organic solvents, the maximum processing temperature 

of high boiling point solvents was set at 170°C based on the boiling point of 2,3-butanediol 

(177°C).  

Among the various low boiling point organic solvents, ethanol’s pretreatment efficiency 

was evaluated at 75°C (refluxed at atmospheric pressure) and 170°C (heated in a Pressure 

Reactor); ethanol is the most common solvent for organosolv pretreatment (Zhao et al., 2009b). 

Ethanol pretreatment was carried out without NaOH and with 0.4% (w/v) NaOH for both 

temperatures; however, pretreatment without NaOH addition led to very low sugar released (less 

than 0.20 g/g pretreated biomass) and hence was not reported here.  The 0.4% NaOH addition in 

ethanol pretreatment at 75°C led to sugar release of 0.61 g/g pretreated biomass, which is slightly 

more than sugar released in pretreatment at 170°C using same NaOH concentration; however the 
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difference in sugar yields was not statistically significant at 95% confidence level. Therefore, 75°C 

pretreatment temperature with 0.4% NaOH concentration was considered as the optimum 

pretreatment condition for ethanol. Same pretreatment condition was considered as optimum for 

all other low boiling point solvents, including isopropanol, butanol, acetonitrile and water, without 

further optimization for each of these solvents. 

 Comparison of organic solvents for the pretreatment of corn stover 

The scatter plots in Figure 5.5 shows that alkaline DMSO pretreatment led to the highest 

total sugar yield per gram pretreated biomass, and it is the only pretreatment solvent that released 

significantly more sugar yield than control. Acetonitrile was the least efficient pretreatment 

solvent, followed by butanol. Ethanol, water, E:IP (mixture of ethanol and isopropanol) and E:A:W 

(mixture of ethanol, acetonitrile, and water) led to statistically equal amounts of sugar released at 

95% confidence level. Similarly, 2,3-butanediol, glycerol and E:B:W (mixture of ethanol, butanol, 

and water) were statistically equal in solvent efficiency. The mixture of ethanol, butanol and water 

was significantly more effective than each of the solvents alone, which indicated that each alcohol 

selectively breaks different linkages in lignin polymers and hence the mixture of alcohols is more 

efficient than any single alcohol (Küçük, 2005). Addition of water helped change polarity of 

solvent mixture, and thereby might have beneficial effect on solvent properties and the solubility 

of lignin oligomers.  Additionally, the mixture of ethanol, butanol and water was significantly 

more efficient than the mixture of ethanol, acetonitrile, and water, indicating that butanol addition 

in an ethanol and water mixture led to a better pretreatment solvent compared to that of acetonitrile 

addition. This is consistent with results of butanol and acetonitrile’s pretreatment efficiency as a 

single solvent. Pretreatment efficiency of equal mixtures of ethanol and water, and butanol and 

water were also evaluated; but these solvent mixtures were less efficient than single solvents to 
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improve hydrolysis efficiency (data not shown here). These variations on the results might also be 

due to variation of polarity of this solvent leading to more desirable polarity in one solvent mixture 

than the other; the relative polarities of water, acetonitrile, ethanol, butanol, and isopropanol are 

9.0, 5.8, 5.2, 4.0, and 3.9, respectively.      

Mass loss during pretreatment significantly differed among alkaline organic solvents and 

control methods, which led to different total sugar yield based on raw biomass weight (Figure 5.5 

- vertical bars) compared to pretreated biomass weight (Figure 5.5 - scatter plots). The mass loss 

during pretreatment includes extractives, degraded lignin and hydrolyzed carbohydrate polymers 

(cellulose and hemicellulose). Figure 5.5 (scatter plots) shows that the DMSO pretreatment was 

the best method based on sugar yield per gram pretreated biomass, but it was not true based on 

sugar yield per gram raw biomass, as shown in Figure 5.5 (vertical bar). The reduced yield based 

on raw biomass weight was because of 64.3% total mass loss during DMSO pretreatment, 

indicating that a significant amount of carbohydrate polymers were hydrolyzed during 

pretreatment. Based on the raw biomass weight, equal mixtures of ethanol and isopropanol (E:IP) 

was the best solvent, which led to sugar yield of 49.8 g/g raw biomass; the mass loss during 

pretreatment was 21.6% in this solvent.  Alkaline solvents 2,3-butanediol, ethanol,  and E:A:W 

were not significantly different than control for sugar yield during enzymatic hydrolysis based on 

raw biomass weight, but this was not true based on pretreated biomass weight. These results 

indicated a significantly lower biomass loss in these organic solvents during pretreatment 

compared to control. 

The sugar released during pretreatment cannot be used as fermentable sugar for biofuels 

and biochemicals production due to the presence of a number of inhibitory compounds in the 

pretreatment liquid. Therefore, sugar yield based on raw biomass weight is more relevant to 
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calculate amount of sugar obtained from a specific amount of biomass. However, if an appropriate 

sugar recovery and detoxification method is developed to recover good quality sugar from 

pretreatment liquid, sugars released during both pretreatment and hydrolysis would be fermentable 

sugar. In such situation, sugar yield based on pretreated biomass weight is more relevant because 

this reflects hydrolysis efficiency of the pretreated biomass.         

 Comparison of organic solvents for the pretreatment of poplar 

Figure 5.6 (scatter plot) shows that all higher boiling point solvents were significantly 

more efficient than control, and all lower boiling point solvents or solvent mixtures were 

significantly less efficient than control for poplar biomass pretreatment. Total sugar yield based 

on pretreated biomass weight in glycerol, 2,3-butanediol and DMSO pretreatment were 18, 12 and 

6% more than control pretreatment, respectively. Similar to corn stover, acetonitrile was the least 

efficient solvent. The mixture of ethanol, butanol and water was not significantly more efficient 

than each solvent alone; the solvent mixture was significantly more efficient than any solvent alone 

in corn stover pretreatment.   

Similar to corn stover, variation on mass loss during pretreatment among different 

pretreatment solvents resulted in different sugar yield based on raw biomass weight (Figure 5.6 - 

vertical bars) compared to pretreated biomass weight (Figure 5.6 - scatter plots). However, the 

change in relative efficiency of different pretreatment solvents based on pretreated biomass and 

raw biomass weight for poplar biomass was not the same as that determined for corn stover 

biomass. For corn stover, DMSO was the best solvent based on pretreated biomass weight, and 

mixture of ethanol and isopropanol was the best solvent based on raw biomass weight; but glycerol 

was the best solvent for poplar based on both pretreated biomass and raw biomass weight, followed 

by 2,3-butanediol. Total sugar yield based on raw biomass weight was statistically equal for 
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glycerol and control for poplar; however, glycerol is the more promising pretreatment solvent for 

poplar for several reasons. First, the total sugar yield was 18% more than control based on 

pretreated biomass weight. Second, five times less NaOH was used in glycerol pretreatment than 

control; NaOH concentration in control and organic solvents were 2% and 0.4% (w/v), respectively 

(Table 5.1). Third, autoclave conditions were used for control method whereas the sample was 

heated at atmospheric pressure in glycerol method. Finally, the glycerol pretreatment can be further 

improved by processing at higher temperature and atmospheric pressure; current experiment was 

carried out at 170°C while boiling point of glycerol is 290°C. Our previous experiments (Guragain 

et al., 2011) showed that glycerol pretreatment at 230°C without NaOH addition was efficient for 

the pretreatment of wheat straw and water hyacinth, an aquatic plant. The use of low boiling point 

solvents (ethanol, butanol, isopropanol, and acetonitrile) is not beneficial for the pretreatment of 

poplar because sugar yield in these solvents was statistically equal to that of water for both 

pretreated biomass and raw biomass weight basis.  

 Comparison of organic solvents for pretreatment of Douglas fir 

Figure 5.7 shows that none of the alkaline organic solvent pretreatment methods worked 

well for Douglas fir, including control. Sugar yields were less than 8% (w/w) in all methods for 

pretreated as well as raw biomass weight basis. Pretreatment using all organic solvents used for 

corn stover and poplar were evaluated for Douglas fir, but none of these solvents were effective 

(data not shown here). Additionally, the control pretreatment was carried out using up to 10% 

(w/v) NaOH at the same pretreatment conditions, but could not find any significant improvement 

in pretreatment efficiency. These results showed that both aqueous alkali and alkaline organic 

solvent methods at the conditions used in this study did not work for softwood. Further research is 
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required using better solvents and catalysts or more severe pretreatment conditions (higher 

temperature and longer time) to identify an effective combination for Douglas fir pretreatment.  

Above results showed that the effectiveness of alkaline organic solvent pretreatment 

methods depend on both solvent type as well as biomass type. Therefore, each type of biomass 

must be separately evaluated to find the best pretreatment solvent specific to the biomass. In this 

study, mixture of ethanol and isopropanol was found promising for corn stover (grass) whereas 

glycerol was promising for poplar (hardwood) for improved hydrolysis efficiency of pretreated 

biomass. Further research is required to characterize the structure of extracted lignin to evaluate 

its quality for high value applications.      

 Evaluation of quality of released sugar for 2,3-butanediol fermentation   

Initial experiments were carried out for 2,3-butanediol fermentation using Klebsiella 

oxytoca in synthetic sugar media containing different concentration of glucose and xylose: the 

major sugars in biomass hydrolyzates. Figure 5.8 shows that the K. oxytoca is capable of utilizing 

both glucose and xylose; however, it preferably utilizes glucose first, followed by xylose. The lack 

of simultaneous utilization of glucose and xylose was because of the catabolic hindrance of xylose 

utilization in the media until complete depletion of glucose - the process is called carbon catabolite 

repression (Ji et al., 2011). The 2,3-butanediol yield in the media with total sugar concentration of 

25 g/L, 60 g/L and 90 g/L were 0.20 g/g, 0.35 g/g and 0.38 g/g sugar, respectively; theoretical 

maximum 2,3-butanediol yield is 0.50 g/g sugar (Jansen et al., 1984). These results indicated that 

at lower sugar concentration, a significantly larger portion of sugar was used for bacterial cell 

growth and byproduct formation. This was because at the initial stage of fermentation using K. 

oxytoca, maximum bacterial cell growth and organic acids (lactic and acetic acid) formation took 

place, and 2,3-butanadiol formation initiated only after pH of the fermentation medium dropped 
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below 6 (unpublished data).  Therefore, higher total sugar concentrations in fermentation media is 

beneficial for 2,3-butaneidol fermentation; but, the 2,3-butanediol productivity significantly 

decreased at sugar concentration beyond 90 g/L (unpublished data). 

Biomass hydrolyzates prepared from different biomass type and pretreatment methods 

were evaluated for fermentability of the biomass-derived sugar to produce 2,3-butanediol using K. 

oxytoca. Control sample was prepared using synthetic sugar solution containing glucose, xylose 

and arabinose with the concentration similar to that in biomass hydrolyzates (the average 

concentration of biomass hydrolyzates). Figure 5.9 shows that DMSO pretreated corn stover 

hydrolyzates yielded significantly higher 2,3-butanediol (0.33 g/g sugar) than control (0.28 g/g 

sugar), and mixture of ethanol and isopropanol pretreated poplar hydrolyzates yielded significantly 

lower 2,3-butanediol (0.24 g/g sugar) than control at 95% confidence level. This difference in 2,3-

butaneiol yields was due to the difference in initial sugar concentration in these hydrolyzates. All 

other biomass hydrolyzates did not differ from control for 2,3-butanediol yield at 95% confidence 

level. The 2,3-butanediol yield was very low in all biomass hydrolyzates and control: 0.24 g/g to 

0.33 g/g sugar, which is 48% to 66% of theoretical maximum yield. This lower yield was consistent 

with synthetic sugar fermentation (Figure 5.8), which was because of lower total sugar 

concentration in biomass hydrolyzates, and a significant portion of sugar was used for cell growth 

and byproduct formation.  Further research work is needed to evaluate the quality of biomass 

hydrolyzates with high solids loading during enzymatic hydrolysis to release high sugar 

concentration in hydrolyzates and thereby improve 2,3-butanediol yield per gram total sugar. In 

addition, such a process is beneficial to reduce downstream processing cost because of high 2,3-

butanediol titer in fermentation broth.  



 

110 

 

 Conclusions  

A mixture of ethanol and isopropanol with sodium hydroxide catalyst was a promising 

pretreatment solvent for corn stover, followed by mixture of ethanol, butanol and water solvent. 

Glycerol was the most promising solvent for poplar biomass pretreatment. None of the solvents 

used in this study were effective for Douglas fir pretreatment under process conditions evaluated. 

These results indicated that effectiveness of alkaline organic solvent pretreatment depend on both 

solvent and biomass type. The quality of biomass-derived sugar was statistically equal to synthetic 

sugar for 2,3-butanediol fermentation using Klebsiella oxytoca; but high sugar concentrations in 

biomass hydrolyzates is required to improve 2,3-butaneidol yield. This study opened up a new 

route for biomass fractionation for the valorization of each biomass component. Further research 

on the characterization of extracted lignin structure is required to evaluate the lignin quality for 

high value applications. 
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Figure 5.1 A schematic representation of conventional ethanol-centric lignocellulosic-based 

process and new concept of biorefinery.   
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Figure 5.2 Composition of biomass feedstocks 
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Table 5.1 Optimized pretreatment conditons for different biomass and pretreatment 

Biomass Pretreatment solvent 

Pretreatment conditions 

Temp. 

(°C)  

NaOH conc. 

(%, w/v) 
Process 

Corn 
stover  

Control* 121 1.0 Autoclaved 

High boiling point solvents** 170 0.4 Reflx. atm.  

Low boiling point solvents*** 75 - 80 0.4 Reflx. atm. 

Poplar and 
Douglas fir  

Control* 121 2.0 Autoclaved 

High boiling point solvents** 170 0.4 Reflx. atm.  

Low boiling point solvents*** 75 - 80 0.4 Reflx. atm. 

Temp. = temperature, NaOH = sodium hydroxide, conc. = concentration 

*Control = aqueous alkali 

**High boiling point solvents = Dimethyl sulfoxide, glycerol, and 2,3-butanediol 

***Low boiling point solvents = Ethanol, isopropanol, butanol, acetonitrile, water, and mixture 

of these solvents 

Reflx. atm. = Refluxed at atmospheric pressure 
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Figure 5.3 Total sugars released during hydrolysis of pretreated poplar biomass at various 

concentration of sodium hydroxide (NaOH). Pretreatment was carried out at 121°C for 30 min 

with 10% (w/v) solid loading in NaOH solution, followed by hydrolysis at 50°C for 48 h with 5% 

(w/v) solid loading in citrate buffer (4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of 

solid. Data are average values of triplicate experiments, and error bars represent sample standard 

deviation  
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Figure 5.4 Total sugars released during hydrolysis of pretreated corn stover biomass. 

Pretreatment was carried out in various organic solvent with different concentration of sodium 

hydroxide (NaOH) and processing temperature using 10% solid loading. Hydrolysis was carried 

out at 50°C for 48 h with 5% (w/v) solid loading in citrate buffer (4.8 pH and 0.05 M) using 

enzyme loading of 6% (w/w) of solid. Data are average values of triplicate experiments, and error 

bars represent sample standard deviation  
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Figure 5.5 Total sugars released during hydrolysis of pretreated corn stover biomass using 

various organic solvents. DMSO = Dimethyl sulfoxide, E:IP = equal mixture, by volume, of 

ethanol and isopropanol, E:B:W = equal mixture, by volume, of ethanol, butanol and water, E:A:W 

= equal mixture, by volume, of ethanol, acetonitrile and water, Control = 1% (w/v) sodium 

hydroxide (NaOH). Pretreatment was carried out by reflexing at 170°C for DMSO, 2,3-butanediol 

and glycerol, and at 75 to 80°C for rest of solvents using biomass to solvent ratio  1:10 (w/v) and 

0.4% (w/v) NaOH. Control pretreatment was carried out in autoclave at 121°C for 30 min using 

same biomass to solvent ratio. Hydrolysis was carried out at 50°C for 48 h with 5% (w/v) solids 

loading in citrate buffer (4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of solid. Data are 

average values of triplicate experiments, and error bars represent sample standard deviation.      
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Figure 5.6 Total sugars released during hydrolysis of pretreated poplar biomass using 

various organic solvents. DMSO = Dimethyl sulfoxide, E:IP = equal mixture, by volume, of 

ethanol and isopropanol, E:B:W = equal mixture, by volume, of ethanol, butanol and water, E:A:W 

= equal mixture, by volume, of ethanol, acetonitrile and water, Control = 2% (w/v) sodium 

hydroxide (NaOH). Pretreatment was carried out by reflexing at 170°C for DMSO, 2,3-butanediol 

and glycerol, and at 75 to 80°C for rest of solvents using biomass to solvent ratio  1:10 (w/v) and 

0.4% (w/v) NaOH. Control pretreatment was carried out in autoclave at 121°C for 30 min using 

same biomass to solvent ratio. Hydrolysis was carried out at 50°C for 48 h with 5% (w/v) solids 

loading in citrate buffer (4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of solid. Data are 

average values of triplicate experiments, and error bars represent sample standard deviation.      
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Figure 5.7 Total sugars released during hydrolysis of pretreated Douglas fir biomass using 

various organic solvents. DMSO = Dimethyl sulfoxide, E = Ethanol, IO= Isopropanol, B = 

Butanol, W = Water, and A = Acetonitrile. Pretreatment was carried out by reflexing at 170°C for 

DMSO, 2,3-butnediol and glycerol, and at 75 to 80°C for rest of solvents using biomass to solvent 

ratio  1:10 (w/v); 0.4% (w/v) sodium hydroxide was added in all solvents. Control pretreatment 

was carried out in autoclave at 121°C for 30 min using same ratio of biomass to 2% (w/v) NaOH 

solution. Hydrolysis was carried out at 50°C for 48 h with 5% (w/v) solids loading in citrate buffer 

(4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of solid. Data are average values of 

triplicate experiments, and error bars represent sample standard deviation.     
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Figure 5.8 2,3-Butanediol fermentation using various concertation of synthetic sugars 

solutions. Fermentation was carried out at 37°C and 200 rpm using Klebsiella oxytoca ATCC 

8724. Data are average values of triplicate experiments, and error bars represent sample standard 

deviation.     
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Figure 5.9 2,3-Butanediol fermentation using biomass hydrolyzates from different feedstocks 

pretreated by various alkaline organic solvents. Solvents: 1 = dimethyl sulfoxide, 2= 2,3-

butanediol, 3= Glycerol, 4 = ethanol, 5 =  equal mixture (by volume) of ethanol, butanol and water, 

6 = equal mixture (by volume) of ethanol and isopropanol. Fermentation was carried out at 37°C 

and 200 rpm using Klebsiella oxytoca ATCC 8724. Data are average values of triplicate 

experiments, and error bars represent sample standard deviation.     
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Chapter 6 - Lignin composition and structure of various bioenergy 

Crops: A review2 

 Abstract    

Lignin provides structural support, a mechanical barrier against microbial infestation and 

facilitates movement of water inside plant systems. It is the second most abundant natural polymer 

in the terrestrial environment and possesses unique routes for the production of bulk and specialty 

chemicals with aromatic/phenolic skeletons. The commercial applications of lignin are limited and 

it is often recognized for its negative impact on the biochemical conversion of lignocellulosic 

biomass to fuels and chemicals. Understanding of the structure of lignin monomers and their 

interactions among themselves, as well as with carbohydrate polymers in biomass, is vital for the 

development of innovative biomass deconstruction processes and thereby valorization of all 

biopolymers of lignocellulosic residues, including lignin. In this paper, we review the major energy 

crops and their lignin structure, as well as the recent developments in biomass lignin 

characterization, with special focus on 1D and 2D Nuclear Magnetic Resonance (NMR) 

techniques.  

Keywords:  Lignin, Bioenergy crops, Nuclear Magnetic Resonance, Lignin isolation, Inter-unit 

linkages 

 Introduction 

Lignin is the second most abundant natural polymer in the terrestrial environment (Davin 

& Lewis, 2005; Martínez et al., 2008). It provides structural support, and a mechanical barrier 

against microbial infestation. Lignin accelerates water movement within plant systems (Wagner et 

                                                 

2 Chapter 6 is published as a part of Guragain et al. (2015) Natural Product Communications, 10 (1), 201-208.  
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al., 2011). However, the lignins of bioenergy crops are often recognized for their negative impact 

in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Current 

biorefineries focus primarily on the cellulose and hemicellulose-derived sugars using energy-

intensive pretreatment methods to remove lignins (Guragain et al., 2011). Such extremely severe 

pretreatment processes lead to considerable modification of the native lignin structure and, 

therefore, loss of potential for economic value-addition to the lignin. The extracted lignin stream 

is usually treated as low-value byproducts and burned as fuel, despite its great number of potential 

high-value applications (Yuan et al., 2011a). 

The unique structure and composition along with abundant availability of lignin presents 

opportunities for the production of bulk and specialty chemicals. Lignin is the only viable 

renewable resource with an aromatic/phenolic skeleton for the production of high value aromatic 

compounds, including benzene, xylene, and cyclohexane, among many others. In addition, lignin 

is envisioned as a potential resource for the production of high value macromolecules, such as 

carbon fibers, polymer modifiers, adhesives, and resins (Yuan et al., 2011a; Zakzeski et al., 2010). 

Similarly, other products derived from lignin include mixed alcohols, dimethyl ether, green diesel, 

bio-oil, and naphthenic/aromatic/oxygenated fuel additives (Yuan et al., 2011a). 

The major roadblock to utilize biomass lignin for high-value application is the recovery of 

a high quality lignin stream during biochemical conversion of lignocellulosic biomass (Yuan et 

al., 2011a). The heterogeneous structure of lignin (Yuan et al., 2011a), as well as variation in its 

composition between plant species (Grabber et al., 2004) and environmental conditions (Boerjan 

et al., 2003) further complicate the process. Effectiveness of the pretreatment process depends on 

both amount and structural composition of lignin in the feedstock (Guragain et al., 2014; Guragain 

et al., 2013; Wen et al., 2013). Therefore, a comprehensive understanding of lignin and evaluation 
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of its structural changes during pretreatment processes is critical for mapping out potential 

conversion processes for commercial viability of biorefineries due to additional benefits from 

lignin-based high value co-products (Wen et al., 2013). 

The analytical methods for the characterization of lignin are broadly classified as 

destructive and nondestructive methods. The most common destructive methods include 

derivatization followed by reductive cleavage (DFRC), thioacidolysis, and nitrobenzene oxidation. 

The nondestructive methods include UV spectroscopy, Interference microscopy, Fourier 

Transform Infra-Red (FTIR) spectroscopy, Raman spectroscopy, and Nuclear Magnetic 

Resonance (NMR) techniques (Wen et al., 2013). Among these methods, two-dimensional (2D) 

NMR spectroscopy is the most powerful tool for complete characterization of lignin biomass (Pu 

et al., 2011; Wen et al., 2013). The inverse detection NMR techniques, such as two-dimensional 

heteronuclear single quantum coherence (13C-1H 2D-HSQC) spectroscopy further improve the 

sensitivity and hence are most widely used for structural characterization of lignin. However, 

comprehensive published work on the lignin structure of bioenergy crops is scanty so far. 

The objective of this paper is to present an up-to-date compendium of the published 

literature on major energy crops and their lignin structure, as well as the recent development in 

analytical methods for the characterization of lignin, with special focus on Nuclear Magnetic 

Resonance (NMR) techniques. We hope that the paper will be a milestone for future research to 

evaluate structural changes of lignin in bioenergy plants during pretreatment, and thereby to 

develop an innovative biomass pretreatment method for the valorization of all biopolymers of 

lignocellulosic residues, including lignin. 
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 Energy crops:  

It is projected that the future demand for biomass will be significantly increased because 

of global focus on bio-economy. Therefore, availability of energy crops to meet the demand as 

well as their implications on soil and the environment is gaining an unprecedented interest globally 

(Blanco-Canqui, 2010). At present, lignocellulosic feedstock for production of biofuels and bio-

based chemicals is mainly derived from crop residues, such as corn stover and wheat straw. 

However, excessive removal of crop residues can adversely affect soil quality, including soil 

organic carbon (SOC) pools, water transmission characteristics, soil structural stability and soil 

microbial activity (Evers et al., 2013). Moreover, intensive fertilizer inputs into the farming of 

these crops lead to increase in emissions of nitrous oxide (N2O), a potent greenhouse gas (GHG) 

(Mathews, 2009). Nitrous oxide and methane have 298 and 25 times, respectively, more potential 

than carbon dioxide (CO2) for global warming (Don et al., 2012). Therefore, all of these gases 

must be taken into consideration while evaluating the effect of bioenergy in climate change. In 

contrast, the dedicated energy crops, including perennial warm-seasons grasses (WSGs) and short-

rotation woody crops, (SRWCs) possess a number of benefits over annual crop residues to reduce 

adverse effects on soil quality and environment. Therefore, these crops could be sustainable 

alternatives of lignocellulosic feedstock for energy industries in the long run (Blanco-Canqui, 

2010). The WSGs such as switchgrass (Panicum virgatum), miscanthus (Miscanthus spp.) and big 

bluestem (Andropogon gerardii), and SRWC such as poplar (Populus species), eucalyptus 

(Eucalyptus species) and willow (Salix species) need low-maintenance, reduce net GHGs 

emissions, grow rapidly and present high mass yields, reduce water and wind erosion, and 

sequester SOC. These plants emit much less N2O as compared with annual crops due to lower 

requirement for nitrogen fertilizer. Moreover, the dedicated bioenergy crops can grow in marginal, 
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degraded, and abandoned lands to avoid competition for land for prime agricultural crops (Blanco-

Canqui, 2010; Don et al., 2012; Evers et al., 2013).  

Millions of hectares of potential arable land are available in sub-Saharan Africa, South and 

Central America, and many other parts of the world which are not presently under cultivation. 

These lands could be used for the production of dedicated bioenergy crops (Mathews, 2009). We 

also need to rethink the concept of marginal land for the cultivation of dedicated energy crops; the 

marginal land is not only the area with low soil fertility for grain production, but also the arable 

land not suitable for food and fodder production due to safety reasons. For example, land near 

industrial plants, high traffic highways and municipal waste dumping areas could be very fertile 

for plant growth, but food and fodder cannot be grown in these lands; plantations of appropriate 

dedicated energy crops could possibly be the best option. Therefore, appropriate regulatory 

guidelines must be set up for crop rotations and straw cutting height for annual crops, and planting 

of dedicated energy crops must be promoted simultaneously in appropriate lands to ensure soil 

quality and environmental conditions. If these strategies are effectively implemented, bioenergy 

production will be seen as complementary to food and feed production by resolving the widespread 

fear of food and fuel conflict (Ceotto & Candilo, 2011; Mathews, 2009). However, in-depth 

localized research is needed for the selection of appropriate plant species for agronomic 

management practices that maximize yields and at the same time reduce the pretreatment and other 

bioprocessing costs (Zegada-Lizarazu et al., 2010). 

 Lignin biosynthesis and structure  

Unlike hemicellulose and cellulose, lignin lacks stereo-regularity (Martinez et al., 2004; 

Ralph et al., 2004). It is a heterogeneous polyphenolic biopolymer of plant cell walls formed by 

the radical polymerization of three p-hydroxycinnamyl alcohol precursors, called monolignols, 
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and related compounds (Martínez et al., 2008; Pu et al., 2011; Ralph et al., 2004). Three 

monolignols are p-coumaryl (4-hydroxycinnamyl) alcohol (1), coniferyl (4-hydroxy-3-

methoxycinnamyl) alcohol (2), and sinapyl (3,5-dimethoxy-4-hydroxycinnamyl) alcohol (3). 

These monolignols give rise to p-hydroxyphenyl (H) lignin units (4), guiacyl (G) lignin units (5) 

and syringyl (S) lignin units (6), respectively, (Figure 6.1), linked by several types of carbon-

carbon or ether bonds(Del Río et al., 2012; Martínez et al., 2008). 

Monolignols biosynthesis consists of several intermediate metabolism steps through a long 

sequence of reactions. Broadly, the whole biosynthesis process is divided into three pathways that 

occur one after another, as shown in Figure 6.2.  

a. Shikimate pathway: produce phenylalanine starting from phosphoenolpyruvate and erythrose 

4-phosphate.  

b. Phenylpropanoid pathway: series of metabolic reactions to convert phenylalanine to 

cinnamoyl CoAs, the precursors of phenolic compounds. 

c. Monolignol specific pathway: series of metabolic reactions to convert cinnamoyl CoAs to 

different monolignols (Castellanos-Hernandez et al., 2011; Vanholme et al., 2013). 

Significant progress has been achieved to understand lignin chemistry and biosynthesis. 

However, characterization of many enzymes and reactions in the lignin biosynthetic pathway is 

still not completed and new discoveries are still ongoing, indicating the need for revision of current 

lignin biosynthesis pathway models (Fraser & Chapple, 2011; Vanholme et al., 2013).  

In addition to H, S and G monolignol units, grass lignin structure also contains the p-

hydroxycinnamates: p-coumarates (7)    and ferulates (8) (Figure 6.3). Most of the p-coumarates 

are acylated at the γ-position of the lignin side chain, whereas ferulates acylate cell wall 

polysaccharides and participate in both polysaccharide−polysaccharide and lignin−polysaccharide 
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cross-coupling reactions (Del Río et al., 2012). Similarly, the monolignols, especially S-units, are 

also acylated up to 60% in non-woody lignins (9) (Del Río et al., 2012; Martínez et al., 2008). 

After the biosynthesis of the monolignols, they are transported to the cell wall; the mechanism of 

transport is still not clearly understood. Then, the lignin polymerization occurs via oxidative 

radical coupling between two phenoxy radicals at specific positions, corresponding to their 

resonant forms leading to different ether and carbon-carbon linkages. The major inter-unit linkages 

of lignin monomers are β-O-4: arylglycerol-β-ether dimer (10, 11), β-5: phenylcoumaran (12), β–

β’: resinols (13), (α, β)-diaryl ether (14), 5-5’/4-O-β’: dibenzodioxin (15) and β–1’: spirodienone 

(16), as shown in Figure 6.4 (Vanholme et al. 2010; Wen et al., 2013). Finally, the lignin 

deposition takes place, especially during secondary thickening of the cell wall. There are three 

layers in the secondary cell wall: outer, middle and inner layers. In general, the majority of lignins 

deposit on the secondary cell wall after cellulose and hemicellulose deposition in the inner layer 

(Boerjan et al., 2003). The lignin monomers form covalent linkages with xylose molecules of the 

hemicellulose polymer; there are three possible linkages between lignin and hemicellulose: ester 

(17), ether (18) and glycosidic (19), as shown in Figure 6.5 (Bussemaker & Zhang, 2013). 

 Some major bioenergy crops and their lignin structure 

The total lignin content and proportion of various monomer units of lignin in cell walls 

vary among plant species, as well as due to the environmental conditions where the plants are 

grown (Boerjan et al., 2003; Grabber et al., 2004; Yuan et al., 2013). Typically, softwood, 

hardwood and grasses contain 27 – 33%, 18 – 25% and 17 – 24% lignin (on dry weight basis), 

respectively (Laskar et al., 2013). The hardwood lignin contains S and G units in various 

proportions, softwood lignins contain mainly G units with small amount of H units, and grass 

lignin contains all three units (Del Río et al., 2012). The H units in grasses are the lowest among 
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the three lignin units, but their proportion is much higher than in hardwood and softwood (Yan, 

Hu, Pu, Charles Brummer, & Ragauskas, 2010). Here we briefly discuss the three types of 

bioenergy crops: annual crops (wheat straw and corn stover), perennial warm-season grasses 

(switchgrass and miscanthus), and short-rotation woody crops (poplar) and their lignin structure.  

 Wheat straw  

Wheat straw is one of the most widely available and relatively inexpensive feedstocks for 

advanced biofuels and biochemical production (Talebnia et al., 2010). Wheat is cultivated in more 

than 115 countries and it is one of the world’s major crops. China is the worlds’ largest wheat 

producer with 18% of the total global production; however, Ireland has the highest yield of wheat 

production, 7.7 million kg per hectare (Kim & Dale, 2004). It is estimated that 1.3 to 1.4 kg wheat 

straw is produced per kg wheat grain (Del Río et al., 2012), therefore, an annual production of 

around 680 billion kg wheat (an estimation in 2011) would make available more than 900 billion 

kg wheat straw each year. A large portion of the wheat straw produced annually is inefficiently 

utilized by burning (Del Río et al., 2012), leading to the production of notorious gases like CO and 

N2O in air (Blanco-Canqui, 2010). Depending on the soil quality and crop rotation, a fraction of 

the wheat straw must be left on the field to maintain soil organic matter (Kim & Dale, 2004). 

According to an estimate, at least 430 billion kg wheat straw is globally available each year for 

biofuels and chemicals production that can produce about 120 billion liters of bioethanol plus 

698x1015 J steam by burning the residual material (Talebnia et al., 2010); higher value application 

of lignin residues would be an additional benefit. 

Similar to other grass lignin, wheat straw lignin also contains all three types of monolignol 

units (H, G and S) in significant amounts; however, the proportions of these subunits are reported 

differently in various publications (Buranov & Mazza, 2008; Del Río et al., 2012). The recent 
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report by (Del Río et al., 2012) seems relatively more accurate because they investigated the lignin 

structure by a combination of various analytical techniques and resolved a number of interfering 

and unassigned signals due to various compounds, including p-hydroxycinnamates (p-coumarates 

and ferulates) and the flavone tricin. The authors reported a strong predominance of G unit; the 

ratio of H, G and S was 6:64:30. Wheat straw lignin is partially acylated (about 10%) at the γ-

position of the side chain carbon, predominately with acetate and very rarely with p-coumarate. In 

contrast to other grasses in which acylation has been found mainly in the S unit of lignin, the 

acylation of wheat straw lignin was much higher in the G unit (12%) than the S unit (1%) (Buranov 

& Mazza, 2008; Del Río et al., 2012). The main inter-unit linkage of wheat straw lignin is β-O-4’ 

ether linkages (about 75%), followed by pheylcoumarans (about 11%) and very small amount of 

other linkages, including resinols, dibenzodioxoncins, α, β-daryl ether, and spirodienones (Del Río 

et al., 2012; Xu et al., 2006). Del Río et al. (2012) also reported for the first time that the flavone 

tricin is present in wheat straw lignin; it is etherified with G units of the lignin. Zeng et al. (2013) 

reported up to 8.0 units of tricin in wheat straw lignin per aromatic ring. 

 Corn stover 

Corn stover is one of the major agricultural residues for biofuels and biochemical 

production. About 520 billion Kg of dry corn is produced each year globally; the USA alone 

produces 40% of it. Assuming 1 kg corn stover per kg of corn grain (on dry basis) and that 60% 

of the corn stover must be left on the field to maintain soil organic matter, more than 200 billion 

Kg dry corn stover is available per year globally for bio-based chemicals production (Kim & Dale, 

2004).  

Corn stover lignin contains all three types of monolignol units, as well as significant 

amounts of p-coumarate and ferulate. The β–O-4’ is the major inter-unit linkages, followed by β-
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5’, β-β’ and β-1’ linkages (Fox & McDonald, 2010; Lei Mingliu et al., 2013; M. Li et al., 2012; 

Min et al., 2014). Li et al. (2012) reported an S/G ratio of 1.31 for hybrid corn stover, whereas it 

was only 0.24 for inbred brown midrib corn stover. Min et al. (Min et al., 2014) most recently used 

2D 1H-13C HSQC NMR and alkaline nitrobenzene oxidation to characterize corn stover lignin. 

They reported that various fractions of the plants, including stem, cob and leaf, significantly varied 

in proportion of monolignol units; however, the proportion of inter-unit linkages was reported to 

be fairly similar. The ratio of S:G:H was 13:10:2, 15:10:5 and 7:10:3 in stem, cob and leaf, 

respectively. The inter-unit linkages β –O-4’, β-5’, β-β’ and β-1’ formed 60%, 27%, 10%, and 3%, 

respectively in the stem. The percentages of these linkages were very similar in cob and leaf. p-

Coumarate and ferulate were reported significantly lower in leaf than in stem and cobs; 8%, 9% 

and 3% of total lignin in stem, cob and leaf, respectively (Min et al., 2014).  

 Switchgrass  

Switchgrass (Panicum virgatum L.) is a warm-season perennial C4 grass found throughout 

North America and Europe. It is considered as one of the potential dedicated energy crops because 

of its number of desirable characteristics: high productivity (13.5 to 17.9 Mg ha-1), low nutrient 

requirements, efficient water utilization, excellent resistance to pests and diseases, low production 

cost and adaption to marginal lands. The extensive root system of switchgrass also helps reduce 

soil erosion and increase sequestration of soil organic carbon (Bransby et al., 2002; Samson & 

Omielan, 1992). Switchgrass removes nitrogen and phosphorus from agricultural runoff. It can be 

used for surface water quality improvement as well (David & Ragauskas, 2010; McLaughlin et 

al., 2002). Hu et al. (Hu et al., 2010) found that the S/G ratio in lignin from four different cultivars 

of switchgrass (Alamo, Kanlow, GA992 and GA993) was comparable; but it varied significantly 

among leaves, internodes and nodes of the plant. The average S/G ratio was 0.68, 0.60 and 0.46 in 
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internodes, nodes and leaves, respectively; the average value for the whole plant was 0.52. The 

cultivar GA992 is an intercross between Alamo and Kanlow, and the cultivar GA993 is derived 

from Alamo by recurrent selection (David & Ragauskas, 2010). The average acetyl group in these 

four cultivars of switchgrass was 0.16 per aromatic ring and the average ratio of three monolignol 

units (G:S:H) was 42:32:26. The GSH complex lignin polymer also contains 0.20 ferulic acid and 

p-coumaric acid per aromatic ring on average (Yan et al., 2010). A different ratio of monolignol 

units (G:S:H  51:41:8) was reported for Alamo switchgrass by other researchers (Yuan et al., 

2011b). Significant variation in the S/G ratio was reported in Alamo switchgrass lignin under 

different growth environments: 0.48, 0.40 and 0.46 for plants grown under field, growth chamber 

and greenhouse conditions (Mann et al., 2009). The major inter-unit linkage in switchgrass is the 

β-O-4 aryl ether linkage with trace amounts of other linkages, including resinol (β- β’), 

phenylcoumarin (β-5’), and spirodienone (β-1’) unit (David & Ragauskas, 2010; Samuel et al., 

2010).   

 Miscanthus   

The genus Miscanthus belongs to the Poaceae family and comprises about 15 species of 

perennial grasses. This genus is originally from tropical and subtropical regions of Africa and 

South Asia; however, different species are found in temperate zones of Asia as well (Villaverde et 

al., 2010). These grasses are considered as dedicated energy crops because of their fast growth, 

resistance to disease, high productivity, and a long productive life of at least 10 to 15 years 

(Villaverde et al., 2009). Since these grasses have C4 photosynthetic metabolism, they have a high 

carbon dioxide fixation rate and lower requirements of water and nitrogen than other C3 plants 

(Hage et al., 2009). Among the various species of Miscanthus, the hybrid species between M. 

sinensis and M. sacchariflorus, called Miscanthus x giganteus (MxG), is the most extensively 
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studied as a potential feedstock for fuel and chemical production. Miscanthus x giganteus can grow 

more than 3.5 m in a single growth season, producing about 25 tons of biomass per hectare 

(Villaverde et al., 2010). 

Milled wood lignin (MWL) of MxG contains a high proportion of β-O-4’ ether linkages 

(up to 93% of all linkages and 0.41 linkages per aromatic ring) and a small proportion of condensed 

linkages: 4% resinol (β-β’), 3% phenylcoumaran (β-5’) and less than 0.5% spirodienone (β-1’) 

(Hage et al., 2009; Villaverde et al., 2009). It was estimated that 46% of γ-carbon are acylated with 

a p-coumarate and/or acetate group (Villaverde et al., 2009). The high acylation at Cγ is considered 

one of the main reasons for the low proportion of double tetrahydrofuran rings from resinol, 

because a β-β homo-coupling of nonacetylated monolignols is required to form the resinol (22), as 

shown in Scheme 5 (Del Río et al., 2007). The MxG predominately contains guaiacyl (G) 

monolignol units followed by syringyl (S) units and small amount of hydroxyphenyl (H) units, 

with a ratio of G, S and H of 54:44:4 (Hage et al., 2009).  

 Poplar  

The genus Populus, a native to the northern hemisphere, comprises up to 35 species with 

considerable genetic diversity within the genus. The genus has a number of common names, such 

as poplar, cottonwood and aspen. The hybrid poplars are the fastest-growing plants in North 

America and hence considered as a potential feedstock for the production of biofuels, pulp and 

paper, as well as a number of other bio-based products. These are classified as short-rotation 

woody crops and cultivated in economically marginal croplands. The breeding to produce hybrid 

poplars generally focuses on five species: Populus balsamifera (balsam poplar), P. deltoids 

(eastern cottonwood), P. trichocarpa (western black cottonwood), P. nigra (European black 

poplar) and P. maximowiczii (Asian black poplar); the first three species are native to North 
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America. The productivity of hybrid poplar is estimated to be 14 Mg ha-1year-1, which is 

comparable with the productivity of swithchgrass, but higher than corn stover (8.4 Mg ha-1year-1) 

and wheat straw (6 Mg ha-1year-1) (Sannigrahi et al., 2010). A wide variation in the S/G ratio of 

poplars is reported ranging from 0.7 to 2.2; however, the majority of reports are in the range of 1.3 

to 2.2 (Sannigrahi et al., 2010). Bose et al., (2009) reported a linear inverse relation (R2 = 0.85) 

between S/G ratio and total lignin content in 13 poplar species: a S/G ratio from 1.01 to 1.68 and 

corresponding lignin content from 28 to 16.5%. The poplar lignin contains only trace amounts of 

H units; Robinson and Mansfield (2009) reported an average S:G:H ratio of 104 hybrid poplars as 

68:32:0.02. The main interunit linkages in MWL of P. tomentosa Carr. were reported as β-O-4’ 

aryl ether (83.2%), followed by β-β’ resinol (12.7%), β-5’ phenylcoumaran (2.6%) and β-1’ 

spirodienones (1.4%) (Yuan et al., 2011a; Yuan et al., 2011b).  

 A brief history on lignin chemistry and technology 

Anselme Payen, a chemical manufacturer in France, first discovered cellulose and lignin in 1838 

as separate components of wood (McCarthy & Islam, 1999). Thousands of scientific papers and 

patents, and hundreds of books have been published concerning the chemistry of lignin to date. 

Several analytical techniques have been developed to characterize lignin biomass. Extensive 

investigation was performed concerning the structure and properties of wood lignin in the 20th 

century due to rapid development of paper production from wood. Since the early 1990s, 

investigation of the lignin of herbaceous crops has also increased dramatically due to the growing 

interest in biofuel and biobased chemicals from lignocellulosic residues (Buranov & Mazza, 2008; 

Wen et al., 2013).  
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McCarthy and Islam (McCarthy & Islam, 1999) divided the history of the development of 

scientific literature and technology in lignin into seven arbitrary periods starting from its discovery 

in 1838 to 1998.   

1838 to 1874: The existence of lignin in biomass was established and the sulfite-pulping 

process was developed and patented for the production of cellulose fibers from wood by dissolving 

lignin in hot aqueous sulfurous acid solution. The aromatic nature of lignin was assumed from the 

research during this period (McCarthy & Islam, 1999).  

1875 to1899: Based on the elemental analysis at that time, the structure of lignin was 

assumed to be related to coniferyl aldehyde. The Kraft pulping process was developed and patented 

for delignification of wood using a hot aqueous solution of sodium hydroxide and sodium sulfide 

(McCarthy & Islam, 1999).  

1900 to 1924: Lignin structural studies were undertaken extensively. Elemental and 

functional group (C, H, O and OCH3) analysis of lignin showed that it is made up of coniferyl 

alcohol type units bonded together by ester linkages. An analytical method to determine Klason 

lignin was developed during this time. Industrial application of sulfite and Kraft pulping processes 

were started (McCarthy & Islam, 1999). Two ethanol plants were established during World War I 

that used wood saccharification. The ethanol yield of these plants was up to 20 gallons per ton dry 

sawdust; however, these plants were not financially successful and closed after a few years 

(Tomlinson, 1948).  

1925 to 1949: Substantial results confirmed the aromatic nature as well as the 

phenylpropane skeleton of lignin. The research areas were expanded to biosynthesis and 

biodegradation studies on lignin; preparation of synthetic lignins in vitro was also initiated 

(McCarthy & Islam, 1999).  
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1950 to 1974: New analytical tools and procedures like acidolysis, mild hydrolysis, and 

permanganate oxidation were developed and several existing methodologies were improved to 

understand the linkages between lignin units and, thereby, lignin structure. Spectroscopy 

procedures (like UV absorbance) were popular during the 1950s for lignin analysis. The 

thioacidolysis procedure developed during the 1960s also helped to identify further the lignin 

structure. Industrial production of lignin products was initiated during this time (McCarthy & 

Islam, 1999). Characterization of lignin using 1D 1H NMR and 13C NMR was initiated in 1964 

and 1974, respectively (Ludemann & Nimz, 1974a; Ludemann & Nimz, 1974b; Ludwig et al., 

1964; McCarthy & Islam, 1999; Ralph & Landucci, 2010).  

1975 to 1989: During this period, studies on lignin structure were continued to confirm the 

earlier accepted concepts. NMR spectroscopy was extensively used in this regard; 19F-NMR and 

31P-NMR studies were also initiated to investigate and confirm lignin structure. Delignification 

and bleaching technology significantly improved; anthraquinone was started to be added to 

improve the alkaline pulping process. Significant research focus was given to find new uses of 

industrial lignin (Holton & Chapman, 1977; McCarthy & Islam, 1999).  

1990 to 1998: Significant advances were made during this time in lignin chemistry and 

biosynthesis. Several studies in this field evidenced that lignin formation is a defined ordered 

process rather than a random one. Gene manipulation became possible giving rise to engineered 

plants with reduced lignin content to increase cellulose content (McCarthy & Islam, 1999).  
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 Recent development in lignin biomass characterization by 1D and 2D NMR 

spectroscopy  

Over the last two decades, several analytical techniques have been advanced for the 

characterization of lignin chemically and structurally, including its functional groups, monolignol 

ratio and inter-unit linkages (Lu & Ralph, 2011; Mansfield et al., 2012; Pu et al., 2011; Ralph & 

Landucci, 2010; Wen et al., 2013). Recently characterization of lignin by analyzing its molecular 

fragments after selective chemical treatment in destructive methods have been displaced and/or 

supplemented by nondestructive methods (Lu & Ralph, 2011; Pu et al., 2011). Nuclear magnetic 

resonance (NMR) spectroscopy has been widely used as a non-destructive technique in structural 

characterization as well as in the study of the structural transformation of lignin polymers. This 

methodology has provided structural and quantitative analysis of the sub-structural motifs within 

the overall polymer. Recent advances in NMR methodology, particularly inverse detection 

techniques and two dimensional heteronuclear correlation spectroscopy, along with availability of 

cryogenic NMR probes, have facilitated structural analysis of lignin in isolated and whole cell wall 

states (in situ) (Kim et al., 2008; Kim & Ralph, 2010; Lu & Ralph, 2011; Mansfield et al., 2012; 

Ralph & Landucci, 2010; Wen et al., 2013). Furthermore, the two dimensional heteronuclear single 

quantum coherence (2D 13C-1H HSQC) experiments using inverse detection methodology not only 

solved the problem of proton signals overlapping, but also have improved the signal to noise 

sensitivity by a factor of 31.6 (Wen et al., 2013) These developments have reduced the long 

acquisition times of previously used natural abundance 1D carbon detected NMR experiments in 

lignin characterization, making possible the acquisition of 2D 13C-1H HSQC spectra of adequate 

quality for most analysis, from whole cell walls in less than 20 minutes (Kim & Ralph, 2010).  
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2D 13C-1H HSQC NMR experiments have been successfully performed for evaluating the 

lignin structure of different cultivars and determining structural changes during pretreatments of 

switchgrasses (Samuel et al., 2010; Samuel et al., 2011; Yan et al., 2010). The carbon chemical 

shift (57-61 ppm) assignment for the Cγ resonance from β-O-4 ether linkages without a Cα=O 

group suggested a significant amount (0.42 per aromatic ring on average) of ether linkage in 

switchgrass lignin (Mann et al., 2009; Samuel et al., 2010). Samuel et al. (2010) used 2D NMR 

methodology to understand the effect of pretreatment on switchgrass lignin structure. 13C NMR 

analysis of the ball milled lignin before and after dilute acid pretreatment suggested that guaiacyl 

and syringyl units were the main components of switchgrass lignin with limited amounts of p-

hydroxyphenyl, which was also confirmed by 2D 13C-1H HSQC NMR experiments. The 

pretreatment caused the syringyl units to decrease by 10% while guaiacyl units increased by 7%, 

as reported by the quantitative 1D 13C NMR studies. However, 2D 13C-1H HSQC correlation peaks 

did not find any difference between the inter unit linkages despite decreases in the syringyl units. 

Overall, ball milled lignin β-O-4 linkages decreased by 36% due to the sulfuric acid pretreatment. 

Bozell et al. (2011) also confirmed that acid pretreatment decreased the β-O-4 linkages.  

2D NMR methodology has also been extensively used to elucidate the mechanism of lignin 

breakdown during biomass pretreatment (Pu et al., 2011). Hage et al. (2009) characterized milled 

wood lignin (MWL) and ethanol organosolv lignin (EOL) from Miscanthus using quantitative 13C 

NMR and 31P NMR to study the mechanism of lignin breakdown during organosolv pretreatment. 

Zeng et al. (2013) recently developed a new combinatorial approach for structural analysis of 

wheat straw lignin by correlating quantitative 1D 13C NMR and 2D 13C-1H HSQC experimental 

results. In this technique, well dispersed NMR spectra of 2D 13C-1H HSQC serves as an internal 

standard to measure the integral values obtained from the quantitative 1D 13C-NMR spectra. In 
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this approach it is assumed that the level of aromatic and aliphatic resonance intensities for various 

lignin structures in 2D 13C-1H HSQC spectra and quantitative 1D 13C NMR spectra are comparable 

and compatible with each other (Del Río et al., 2012; Hage et al., 2009). These studies also showed 

that the carbon and proton NMR resonances of various lignin inter-unit linkages significantly differ 

from each other. These authors showed that the chemical shift values (δC/δH ppm) of various inter-

unit linkages in the 2D 13C-1H HSQC spectra obtained for wheat straw lignin significantly differ 

from each other (Table 6.1). Furthermore the relative abundance of these inter-unit linkages was 

expressed as the quantitative number of each structure per aromatic ring by taking the integral 

value of the carbon chemical resonances at 102.0-160.0 ppm in the quantitative 1D 13C NMR as 

reference. The carbon signals resonating in the range of 82.5-88.0 ppm includes ether linkages (β-

O-4) as well as other carbon-carbon linkages (β-5 and β- β’) and its integral value was 0.45 per 

aromatic ring in MWL. On the other hand, the carbon signal resonating in the range of 53.0-54.0 

ppm includes only carbon-carbon linkages; its integral value was 0.04 per aromatic ring MWL. 

These results suggested that the MWL lignin contained large amounts of β-O-4 structure (0.41 per 

aromatic ring), which was reduced by more than 50% in EOL, indicating the extensive cleavage 

of ether linkages during organosolv pretreatment. Additionally, the integral values of the peaks for 

acetate carbonyl [OC(=O)CH3] at 171 ppm and for cinnamaldehyde carbonyl (Ar-CH=CH-CHO) 

at 194 ppm were observed as 0.02 and 0.06 per aromatic ring, respectively, in MWL, but these 

NMR peaks were absent in EOL indicating complete hydrolysis of acetate and cinnamaldehyde 

groups during organosolv pretreatment due to the presence of acid catalyst. Moreover, 

significantly higher amount of aromatic carbon-carbon linkage (C-C) signals resonating in the 

range of 124.0-142.0 ppm and lower amount of aromatic C-H signal resonating in the range of 
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102.0-124.0 ppm in EOL than MWL indicated re-polymerization by a lignin-lignin condensation 

reaction (Li & Gellerstedt, 2008).  

In 31P NMR studies, both MWL and EOL samples were phosphitylated with 2-chloro-

4,4,5,5-tetramethyl-1,2,3-dioxaphospholane (TMDP) and analyzed by quantitative 31P NMR, 

using cyclohexanol as an internal standard. Using TMDP, hydroxyl groups from aliphatic, 

phenolic and carboxylic acid groups are phosphorylated with NMR active 31P nuclei (Pu et al., 

2011). Concentration of the hydroxyl functional group (mmol g-1) in the sample was calculated 

based on OH content of the internal standard and the integral peak area. The number of functional 

groups per C9 unit of lignin monomer was calculated taking elemental analysis data of the samples. 

These results indicated that phenolic carbon resonance (136.0 – 144.0 ppm) intensity increased 

from 0.28 per C9 in MWL to 0.50 per C9 in EOL, indicating scission of β-O-4 linkages during 

organosolv pretreatment. Carboxylic acid resonance at 134.0 – 135.7 ppm also increased from 0.02 

to 0.04 per C9, indicating cleavage of some ester bonds. However, when OH groups from each 

type of monolignin unit were separately analyzed, p-hydroxyphenyl carbon resonance at 137.2 – 

138.1 ppm gave contrary results; that is, they remained almost equal in MWL and EOL. This 

showed that formation of p-hydroxyphenyl OH due to cleavage of β-O-4 bonds was compensated 

by hydrolysis of p-coumaryl ester residues. Additionally, aliphatic OH at 145.5 – 150.0 ppm 

reduced from 0.67 to 0.19 per C9, probably due to acid-catalyzed elimination reaction.  

NMR data have also been used to quantify lignin composition (notably, the syringyl: 

guaiacyl: p-hydroxyphenyl ratio) in isolated as well as in situ forms from lignocellulosic materials. 

Thus NMR profiling has provided the best tool for the detailed structural study of lignin bioenergy 

crops (Ragauskas et al., 2014). Chemometric analysis using 2D 13C-1H NMR finger print region 
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of lignocellulosic samples has allowed a secondary screening for selecting biomass lines and for 

optimizing biomass processing and conversion efficiencies (Samuel et al., 2011).  

 Isolation of lignin biomass for NMR analysis 

Isolation of native lignin from plant cell walls prior to NMR analysis is a crucial step for 

structural characterization of the lignin biomass, and in recent years there have been major 

advances in lignin biomass solvation for solution-state NMR studies (Holton & Chapman, 1977; 

Ralph & Landucci, 2010). Several isolation methods have been developed over the past decades; 

milled wood lignin (MWL) and cellulolytic enzyme lignin (CEL) are the most representing 

methods (Wen et al., 2013). The lignin is extracted in aqueous dioxane (96%) from ball-milled 

wood using the MWL method, while cellulolytic enzymes are used to remove most of the 

carbohydrate polymers before extracting lignin with aqueous dioxane in CEL (Holtman et al., 

2004). Wu & Argyropoulos (2003) proposed further improvement in the lignin isolation technique, 

which is called the enzymatic/acidolysis lignin (EAL) method. In this, the residual carbohydrate 

after cellulolytic enzyme treatment is removed by acidified dioxane. Recently, in-situ 

characterization of lignin became possible due to new developments in high-resolution NMR 

instrumentation coupled with suitable gelling or dissolution solvents (Ralph & Landucci, 2010; 

Wen et al., 2013). Lu and Ralph (2003) have characterized the whole plant cell wall components 

without lignin fractionation/isolation using a solution-state 2D 13C-1H HSQC NMR methodology. 

They developed a two solvent system of dimethyl sulfoxide (DMSO) and either 

tetrabutylammonium fluoride (TBAF) or N-methylimidazole (NMI) to dissolve balled-milled 

plant cell walls, followed by acetylation using acetic anhydride making the sample fully soluble in 

NMR solvents like either chloroform or DMSO leading to intact lignin structure analysis. The 

dissolution process was later modified for characterization of the whole plant cell wall without 
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derivatization (acetylation) using different solvent systems, such as deuterated DMSO and NMI 

(4:1, v/v) (Yelle et al., 2008), deuterated DMSO (Kim et al., 2008) or deuterated DMSO and 

pyridine (4:1, v/v) (Kim and Ralph, 2010); these development in the solvent systems led to the 

determination of natural acylation in lignin. Now, it is possible to monitor in situ structural changes 

on different components of lignocellulosic biomass, including lignin, during pretreatment and 

hydrolysis stages of biomass processing for the production of fuels and chemicals by NMR 

spectroscopy (Wen et al., 2013). Furthermore, analysis of the generated NMR data is currently 

aided by the availability of the NMR Database of Lignin and Cell Wall Model Compounds (Huang, 

Singh, & Ragauskas, 2011; Marita et al., 1999; Rahimi et al., 2013; Ralph & Landucci, 2010; S. 

Ralph et al., 2004), which provides a cross platform unified source for the 1H and 13C chemical 

shift assignments of lignin model compounds.  

 Future out-look  

Utilization of the lignin component of biomass has several daunting challenges as well as 

great opportunities for the commercial success of modern integrated biorefineries. Lignin is the 

major contributor to biomass recalcitrance, thereby resulting in higher costs for lignocellulosic 

biomass conversion to fuels and chemicals. At the same time, lignin is the 

most abundantly available resource to produce several high value specialty chemicals with 

pertinent aromatic skeletons. Globally, several studies are focused on the development of novel 

biomass deconstruction methods as well as valorization of the underutilized lignin stream. 

However, future efforts need to be dedicated to elucidate the complex structure and uncertain 

reactivity of the lignin polymer, and development of experimental techniques that would allow 

detailed and high-throughput analysis of lignin samples in the industrial setting. In our review, we 

have specifically highlighted the lignin structure characterization of important bioenergy 
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feedstocks, which will provide the necessary theoretical framework for bioprocess engineers to 

design broad-spectrum biorefineries. 1D 13C NMR and 2D 13C-1H HSQC NMR methodology is 

envisioned as one of the most potential approaches to achieve this goal due to the recent 

development in instrumentation, sample preparation and the compendium of structural information 

currently available for the characterization of lignin biomass. Therefore, these methods will be 

extensively applied by researchers involved in biomass conversion to advanced fuels and 

chemicals in the future. 
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Figure 6.1 Monolignin units of lignin biomass (Martinez et al., 2008). 
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Figure 6.2 The main monolignol biosynthetic pathways; Shikimate pathway followed by 

phenylpropanoid pathway (shaded part) and monolignol-specific pathway. PAL= 

phenylalanine ammonia-lyase, C4H= cinnamate 4-hydroxylase, 4CL= 4-coumarate: CoA ligase, 

HCT= p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase, C3H= p-

coumarate 3-hydroxylase, CCoAOMT= caffeoyl-CoA O-methyltransferase, CCR= cinnamoyl-

CoA reductase, F5H= ferulate 5-hydroxylase, COMT= caffic acid O-methyltransferase, CAD= 

cinnamyl alcohol dehydrogenase (Fraser & Chapple, 2011; Vanholme et al., 2010). 
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Figure 6.3 Acylated monomers of grass lignin (Martinez et al., 2008; Del Rio et al., 2012).  
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Figure 6.4 Major inter-unit linkages of plant lignin (Del Rio et al., 2012).  
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Figure 6.5 Lignin-carbohydrate linkages in lignocellulosic biomass (Bissemaker and Zhang, 

2013).  

 

 

 

 

Table 6.1 Quantitative analysis of inter-unit linkages in milled wood lignin (MWL) isolated 

from wheat straw lignin (Zeng et al., 2013) 

Inter-unit linkages 
Observed chemical shift in HSQC  

(δC / δH ppm) 

Quantity (per100 

aromatic ring) 

Arylglycerol-β-ether dimer (β-O-4) 
Cross-peaks: 71.1/4.74 (71.8/ 4.8) 

and 82.7 / 5.1 
29.8 

Phenylcoumaran (β -5) Cross-peaks: 85.9/5.5 and 53.0/3.4 5.4 

Resinols (β - β') Cross-peaks: 84.8/4.7 and 53.5/3.1 1.3 

α, β-Diaryl ether 79.6 / 5.5 0.5 

Dibenzodioxin (5-5'/4-O β') 83.4 / 4.9 0.2 

Spirodienone (β – 1) 85.5 / 3.8 0.4 

 



 

148 

 

Chapter 7 - Evaluation of lignin-specific sorghum mutants as a 

potential biomass feedstock for biochemical production 

 Abstract 

Background: Sorghum is a model energy crop because of its high photosynthetic 

efficiency, abiotic stress tolerance, and wide applications as a food, feed and fuel. The brown 

midrib (bmr) sorghum mutation leads to an alteration of biomass lignin composition, and thereby 

possesses better forage digestibility for livestock. The bmr sorghum mutants could provide a 

benefit for biofuels production as well. In this study, three sorghum cultivars [Atlas, Early Hegari 

(EH), and Kansas Collier (KC)] and two bmr mutants (bmr6 and bmr12) of each cultivar were 

evaluated and compared for grain and biomass yield, biomass composition, and 2,3-butanediol (an 

important platform chemical) production from biomass. Results: The agronomic data showed that 

the bmr mutation led to increased grain yield and decreased biomass yield in EH, whereas the 

opposite was true for KC. The biomass composition indicated that bmr mutants had 10 to 25% and 

2 to 9% less lignin and carbohydrate contents, respectively, and 24 to 93% more non-structural 

sugars than their parents in all sorghum cultivars, except EH bmr12. The total fermentable sugars 

obtained from hydrolysis of pretreated biomass and water extraction of raw biomass prior to 

pretreatment was 22 to 36% more in bmr mutants than in parents for Atlas and KC, but not for EH. 

The quality of biomass sugars from all sorghum lines was not significantly different than synthetic 

sugars for 2,3-butanediol production using Bacillus licheniformis DSM 8785. Conclusions: The 

bmr6 mutation in KC background produced the most promising feedstock, among the six evaluated 

sorghum bmr mutants, for 2,3-butanediol production without significant decrease in grain yield. 

The bmr12 mutation in KC and bmr6 and bmr12 mutation in Atlas background also led to 

improvement on feedstock quality for biofuels production, but the bmr mutation had an adverse 
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effect in EH background. This indicated that the genetic background of the parent cultivar as well 

as type of bmr mutation significantly affect the biomass quality as a feedstock for biochemical 

production. Alkali pretreatment led to release of high quality sugars from all sorghum cultivars for 

2,3-butanediol production using Bacillus licheniformis, and the sugar quality was unaffected by 

sorghum cultivar and bmr mutation type.   

Keywords: bmr, biomass composition, pretreatment, fermentation, 2,3-butanediol, platform 

chemical 

 Background  

In 2013, 23.4 billion gallons of bioethanol was produced globally from maize, sugarcane 

and other food materials (Guragain et al., 2016). United States (US) alone produced 13.3 billion 

gallons ethanol, which consumed 30% of US maize (Klein‐Marcuschamer & Blanch, 2015). The 

US Renewable Fuels Standards (RFS2) set a goal of producing 36 billion gallons of transportation 

fuel per year from renewable resources by 2022 (Kamireddy et al., 2013). In addition, a number 

of platform and bulk chemicals, including 2,3-butanediol, should be produced via biological routes 

to minimize dependency on petroleum-derived products. 2,3-butanediol is an important platform 

chemical for the production of number of high-value products, including foods, pharmaceuticals, 

fuels, polymers, and chemicals (Celińska & Grajek, 2009; Ge et al., 2011; Qi et al., 2014). The 

global demand for 2,3-butanediol is estimated around 32 million tons per year (Li et al., 2013). 

Current approaches to production of bio-based fuels and chemicals are inadequate to replace 

petroleum products without affecting global food supply. Therefore, abundantly available 

lignocellulosic biomass must be exploited for bio-based fuels and chemicals production (Solomon 

et al., 2007).  
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The major roadblock to the utilization of lignocellulosic biomass is the need for an energy-

intensive pretreatment process prior to hydrolysis of carbohydrate polymers because of the 

presence of a strong outer lignin layer (Guragain et al., 2011; Tomas-Pejo et al., 2008). Lignin is 

a heterogeneous polyphenolic polymer made up of three types of monomers, p-hydroxyphenyl 

(H), guaiacyl (G), and syringyl (S), that are linked by carbon-carbon, ester, or ether linkages. Grass 

lignin also contains a considerable amount of p-coumarate and ferulate monomers (Guragain et 

al., 2015). In addition to total lignin content, composition of lignin monomers and inter-unit 

linkages also affect biomass pretreatment efficiency. Higher S/G ratio, ester and ether linkages 

improve pretreatment efficiency, whereas high carbon-carbon linkages decrease it (Studer et al., 

2011). 

Sorghum is considered a model energy crop because of its high photosynthetic efficiency, 

abiotic stress tolerance, and wide applications as a food, feed, and fuel. It can be cultivated on 

degraded lands or infertile soils that are unfavorable for other crops, including maize (Vanholme 

et al., 2013). The brown midrib (bmr) mutation of sorghum leads to decreased lignin content and 

altered lignin composition (Vanholme et al., 2013). Phenotypically, the presence of the bmr 

gene(s) is characterized by brown coloration in mid-leaf veins in the sorghum plant (Sattler et al., 

2010). Among various known bmr mutants, bmr6, bmr12, and bmr18 are agronomically 

acceptable in sorghum (Kamireddy et al., 2013). Allelic genes bmr12 and bmr18 decrease caffeic 

acid o-methyl transferase (COMT) activity, and bmr6 decreases cinnamyl alcohol dehydrogenase 

(CAD) activity (Oliver et al., 2005). As shown in Figure 7.1, the COMT enzyme is responsible 

for a methyl group addition to 5-hydroxy-conferylaldehyde; therefore, a decrease in the enzyme 

activity leads to a decrease in syringyl (S) and accumulation of the 5-hydroxy guaiacyl monomer. 

The CAD enzyme is responsible for a decrease in each cinnamyl aldehyde and its corresponding 
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cinnamyl alcohol at the final step of monolignol biosynthesis. Therefore, decreased CAD enzyme 

activity leads to decreases in all three lignin monomers (H-, G- and S-lignin) (Sattler et al., 2010).  

The bmr mutation of sorghum possesses better forage digestibility for livestock (Srinivasa 

et al., 2012); therefore, it can also be a promising feedstock for biofuels and biochemicals 

production. However, our previous study (Guragain et al., 2014) showed that biomass with lower 

lignin content does not necessarily have better bioethanol production efficiency. This indicated 

that the effect of bmr mutation to improve biomass susceptibility for digestion could be attributed 

to the genetic background of the plant, and hence selection of an optimal genotype for the bmr 

mutation is vital to develop a superior feedstock for biofuels and biochemicals production (Feltus 

& Vandenbrink, 2012). In addition, the altered lignin biosynthesis pathways in engineered plants 

frequently results in dwarfing and thereby leads to an unacceptable biomass yield penalty 

(Bonawitz & Chapple, 2013). Studies comparing biofuels and biochemicals production efficiency 

from bmr sorghum mutants and their parent cultivars are limited; to date no work has been done 

investigating platform chemicals biosynthesis, such as 2,3-butanediol. A number of bacteria, 

including Klebsiella, Enterobacter, and Bacilli genera, produce 2,3-butanediol from different 

sugar sources. Klebsiella sp. is an efficient bacteria to produce 2,3-butanediol from a broad 

substrate spectrum, but it is considered a pathogenic (biosafety level 2) microorganism (Jiang et 

al., 2015).  Bacillus licheniformis DSM 8785 is another efficient bacteria to produce 2,3-butanediol 

in high concentration from glucose, and is labelled as nonpathogenic (biosafety level 1) bacterial 

strain (Jurchescu et al., 2013). In addition, this bacterial strain has not be evaluated so far for 2,3-

butanediol production from biomass derived sugars.  

In this study, three sorghum cultivars (Atlas, Early Hegari [EH], and Kansas Collier [KC]) 

and two bmr mutants (bmr6 and bmr12) of each cultivar were evaluated and compared for 
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agronomic traits, and bioprocessing efficiency to produce 2,3-butanediol from stover using 

Bacillus licheniformis DSM 8785. The objective of this study was to test the hypothesis that the 

bmr mutation significantly changes sorghum biomass composition and leads to better-quality 

feedstock for second-generation biochemicals production using a robust microbial culture, 

Bacilluls licheniformis. Figure 7.2 shows the schematic representation of this study from sorghum 

cultivation to 2,3-butanediol production using sorghum stover as feedstock.  

 Material and Methods  

 Sorghum cultivation and field study 

The forage/grain sorghum cultivars Atlas, Early Hegari (EH), and Kansas Collier (KC) 

were introgressed with two bmr alleles (bmr6 and bmr12) at USDA-ARS, Lincoln, Nebraska, 

USA. The wild types and bmr alleles introgressed lines were evaluated in a randomized complete 

block design with two replications after the rainy season (October) in 2012 at the International 

Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Patancheru, Telangana, India. 

Each cultivar was planted in two 2-m-long rows using recommended spacing and fertilizer. The 

total rainfall and average daily temperature during the crop growth period were 762 mm and 26°C, 

respectively. Various agronomic traits were measured during field study, including days to 50% 

flowering period, plant height (m), fresh stalk yield (t/ha), stover yield (t/ha), and grain yield (t/ha).     

 Biomass preparation 

A 200-g sample of dried and chopped (3 to 6 mm long) stover for all bmr mutants and their 

wild-type sorghum cultivars were brought from ICRISAT to Bioprocessing and Renewable Energy 

Laboratory, Kansas State University (KSU), Kansas. The samples were ground using a Thomas-

Wiley Laboratory Mill (Model 4) fitted with a 2-mm sieve. The ground biomass samples were 
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further separated to obtain a specific particle size by sieving in a shaker (W.S. Tyler, Model – RX 

29, Serial – 25225) fitted with two sieves of size 20 mesh (841 µm) and 80 mesh (177 µm). The 

size range of biomass was chosen based on the particle size required for biomass composition 

analysis without further size separation (Sluiter et al., 2007). Around 2 kg bmr12 mutant of forage 

sorghum (GW8528) stalk was also ground and sieved to get the same biomass size. This sorghum 

cultivar was grown at the field plot of the Kansas State University Department of Biological and 

Agricultural Engineering, and the biomass sample was used to optimize the pretreatment 

processes.  

 Biomass pretreatment  

The pretreatment process was first optimized to maximize sugar release from biomass. 

Preliminary experiments were carried out to compare acid pretreatment using 1% (v/v) sulfuric 

acid and 10% solids loading at 140°C for 40 min, and alkali pretreatment using 1% (w/v) sodium 

hydroxide (NaOH) and 10% solids loading at 121°C for 30 min. The results showed that alkali-

pretreated biomass released almost three times more total sugars during enzymatic hydrolysis than 

acid-pretreated biomass. Then, optimum NaOH concentration for biomass pretreatment was 

determined by evaluating five different concentrations of NaOH solutions, 0.5, 0.75, 1.0, 1.25 and 

1.5% (w/v). A 10-g ground biomass sample was mixed with 100 ml alkali solution for each 

concentration in a 500-ml Erlenmeyer flask and autoclaved at 121°C for 30 min. The biomass 

slurry was then filtered using a 200-mesh (74 μm) sieve. Approximately 15 ml filtrate was 

collected to measure sugars and inhibitors produced during pretreatment, and the solid residue was 

washed with excess distilled water until the filtrate was clear and neutral to litmus paper. The 

pretreated samples were then dried overnight at 45°C and hydrolyzed as explained in the following 

section. Released sugars were measured to determine the optimum alkali concentration for 
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pretreatment. Finally, the same process was followed for the pretreatment of all sorghum samples 

using the optimized alkali concentration. 

 Enzymatic hydrolysis of pretreated biomass 

Pretreated biomass (2 g) was mixed with 40 ml citrate buffer (4.8 pH and 0.05 M) in a 125-

ml conical flask with a screw cap. Cellic CTec2 and Cellic HTec2 enzymes (Novozymes, Inc., 

Franklinton, NC, USA) were added at the rate of 5.4 and 0.6% (w/w), respectively, of biomass and 

incubated in a shaker at 50oC and 150 rpm. 500 μl samples were drawn at different time intervals 

from each flask to measure released monomer sugars. Hydrolyzates were separated by centrifuging 

the biomass slurry at 13,000 rpm (maximum g-force 20,400×g) for 15 min.   

 Fermentation of hydrolyzate 

The Bacillus licheniformis DMS8785 culture was procured from Leibniz Institute 

DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. The 

culture was revived in nutrient broth and preserved in 15% glycerol media comprising 0.5 ml for 

each revived culture and 30% glycerol in 1.5-ml culture tubes. To prepare inoculum, 1 ml stock 

culture was aseptically added into 80 ml sterilized (121oC for 15 min) nutrient broth in a 1000-ml 

Erlenmeyer flask and incubated at 30oC and 200 rpm for 15 h. For fermentation, a 2 ml filter-

sterilized supplement nutrient was aseptically added into the 16 ml sterilized (121oC for 15 min) 

biomass hydrolyzate in 125-ml flasks. The supplement nutrient solution was prepared in the 

concentration so that when 2 ml of concentrated solution was added to make 20 ml total 

fermentation media, the final concentration would be as follow. Micronutrients (per liter): 5 g yeast 

extract, 5 g bacto tryptone, 7 g dipotassium phosphate, 5.5 g monopotassium phosphate, 1 g 

ammonium sulfate, 0.25 g magnesium sulfate heptahydrate, 0.12 g sodium molybdate dihydrate, 
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0.021 g calcium chloride dihydrate, 0.029 g cobalt nitrate hexahydrate, and 0.039 g ferrous 

ammonium sulfate hexahydrate. Trace elements (per liter): 0.002 g nicotinic acid, 0.000172 g 

sodium selenite, 0.000037 g Nickel (II) chloride hexahydrate, 0.005 g manganese chloride 

tetrahydrate, 0.001 g Boric acid, 0.000172 g aluminum potassium sulfate dodecohydrate,  0.00001 

g1 Copper(II) chloride dihydrate, and 0.00554 g disodium ethylenediaminetetraacetate (Jurchescu 

et al., 2013). Control flasks were also prepared by using the same volume of synthetic medium 

containing 25 g/L glucose and 12 g/L xylose instead of biomass hydrolyzate. Freshly prepared 2 

ml inoculum was added into each flask and incubated in a shaker at 30oC and 200 rpm for 20 h. 

Samples were collected at 0, 12 and 20 h of fermentation to measure products and residual sugars.  

 Analytical procedures 

Biomass moisture was determined using an electric moisture meter (IR35M-00015V1, 

Denver Instrument GmbH, Goettingen, Germany). Extractives, lignin, glucan, xylan, and arabinan 

were measured using standard protocols (Sluiter et al., 2005; Sluiter et al., 2007). Sugars (glucose, 

xylose, sucrose, fructose and arabinose), 2,3-butanediol, glycerol, acetoin, and ethanol were 

measured using an HPLC instrument (Shimadzu Corporation, Japan) equipped with an LC-20AB 

pump, an SIL-20 AC auto sampler, an SPD-M 20A photodiode array detector, and a Phenomenex 

RCM-Monosaccharide Ca+ column (300 × 7.8 mm). Deionized water was used as mobile phase at 

a flow rate of 0.6 mL min−1. The column oven and refractive index detector (RID-10A) were 

maintained at 80°C and 65°C, respectively (Guragain et al., 2013). To measure HMF, furfural, 

acetic acid, lactic acid and formic acid, an ROA organic acid column (300 × 7.8 mm) and both 

RID and PDA (Photodiode Array)-UV detectors were used in the same HPLC system.  

Total phenolics were determined using a modified Folin-Ciocalteu Reagent (FCR) method 

(Amendola et al., 2012). In brief, a 0.1 ml sample (neutralized and diluted, if required) was mixed 
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with 5 ml FCR in a 15-ml centrifuge tube. After mixing for approximately 5 min, 3.5 ml 11.5% 

(w/v) sodium carbonate solution was added and mixed well. A blank was prepared using 0.1 ml 

deionized water instead of the sample. The mixture was incubated at 40°C for 1 h, and absorbance 

was taken at 745 nm. Concentration of total phenolics was determined using a standard curve. The 

initial experiment showed that the standard curve using only one phenolic (gallic acid) did not 

work well for samples containing two or more phenolics. Therefore, a standard curve was prepared 

by taking several concentrations of a mixture of five different phenolics: vanillic acid, catechol, 

gallic acid, guaiacol and vanillin.  

All experiments were carried out in triplicate, and data were statistically analyzed for least 

significant difference (LSD) at 95% confidence level (P < 0.05) using JMP software (SAS Institute 

Inc., Cary, NC, USA).     

 Results and discussion 

 Agronomic data 

Table 7.1 shows that days to 50% flowering in bmr6 mutants from all backgrounds were 

longer (61, 84 and 84 days in EH, Atlas and KC mutants respectively) than in wild parents (53, 75 

and 73 in EH, Atlas and KC, respectively). The mutants from EH and Atlas backgrounds exhibited 

small decreases in height (1.2 m and 2.0 m on average), but mutants from the KC background had 

significantly more plant height (2.2 m). A similar trend was observed in fresh stalk yield and stover 

yield. Atlas wild-type recorded the highest fresh stalk yield and stover yield (22.1 t/ha and 6 t/ha) 

followed by Atlas and KC mutants. These results indicate that the effects of the bmr mutation on 

agronomic traits depends on the parent sorghum lines in which the mutation is introduced [15]; 

therefore, each sorghum cultivar must be evaluated separately to select the promising bmr sorghum 
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lines that lead to increase in stover yield without significant decrease in grain yield and increase 

in flowering time (Rao et al., 2010).  

 Composition of raw biomass 

The composition of raw biomass samples was determined for total lignin, carbohydrate 

polymers (glucan, xylan and arabinan) and extractives (sum of water-soluble and alcohol-soluble 

extractives) contents. Table 7.2 shows that lignin content of bmr mutants was 10 to 25% lower 

than in parent cultivars, except EH bmr12. The highest decrease (25%) was observed in EH bmr6 

and Atlas bmr12, and the lowest decrease (10%) was in Atlas bmr6. EH bmr12 had 12% more 

lignin than its parent line, perhaps because of excessive production of the 5-hydroxy guiacyl lignin 

monomer, which surpassed the decrease in syringyl-lignin monomer with introgression of the 

bmr12 gene in EH; bmr12 mutation decreases activities of COMT enzymes, leading to a decrease 

in syringyl-lignin monomer and an elevation of 5-hydroxy guiacyl lignin monomer synthesis in 

plants (Sattler et al., 2010). Glucan and xylan content decreased in all bmr mutants compared with 

their parents, except EH bmr12, but change in arabinan content was not statistically significant at 

the 95% confidence level. Total carbohydrate polymers decreased by 4% in EH bmr6, by 9% in 

both bmr mutants of Atlas, and by 9 and 2% in KC bmr6 and KC bmr12, respectively, compared 

with their parent cultivars. But the carbohydrate polymers increased by 10% in EH bmr12 

compared to its parent cultivar. Total extractives content increased by 6 to 35% in all bmr mutants 

compared with their parents, except EH bmr12, in which a decrease of 36% was observed. The 

highest increase in extractives content (35%) compared with the parent cultivar was observed in 

Atlas bmr6, followed by a 31% increase in Atlas bmr12, a 15% increase in KC bmr6, a 12% 

increase in EH bmr6, and a 6% increase in KC bmr12.    
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Figure 7.3 shows that water-soluble extractives accounted for almost 90% of total 

extractives, and the remaining was alcohol-soluble extractives. The water-soluble extractives 

include non-structural sugars, nitrogenous material and other inorganic materials. Alcohol-soluble 

extractives include waxes, chlorophylls and other minor components (Sluiter et al., 2005). Sucrose, 

glucose and fructose were the major non-structural sugars in water-soluble extractives, accounting 

for more than 50% of total extractives except in EH bmr12. The highest amount of non-structural 

sugars (28% of biomass) was found in KC bmr6, and the lowest (3% of biomass) in EH bmr12. 

The bmr mutation led to an increase in non-structural sugars by 86 and 93% compared with the 

parent in Atlas bmr6 and Atlas bmr12, respectively. Similarly, KC bmr12 and KC bmr6 had 58 

and 66%, respectively, more non-structural sugars than the parent plant. EH bmr6 had 24% more 

non-structural sugars than its parents; however, EH bmr12 led to a decrease in non-structural 

sugars by 82%. 

Biomass composition results showed that bmr mutation led to significant alterations of 

biomass composition, and the effect considerably depends on the parent line in which the mutation 

is introduced as well as type of mutation. In addition, sorghum stover contains a huge amount of 

non-structural sugars, which is further elevated in bmr mutants. Achieving additional benefits from 

bmr mutation requires these non-structural sugars to be extracted with hot water prior to biomass 

pretreatment because if left in biomass, presence of a number of inhibitory compounds results in 

the sugars released in pretreatment slurry useless as fermentable sugars for microbes. 

Alternatively, juice can be extracted from fresh stalks immediately after harvesting crops to 

recover a maximum proportion of non-structural sugars, and later combined with biomass 

hydrolyzate for biofuel production.                 
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 Optimization of biomass pretreatment 

Effectiveness of dilute acid and alkali at same concentration were first compared for the 

pretreatment of bmr sorghum. The results (not shown here) showed that alkali pretreatment led to 

significantly higher sugar yield than acid pretreatment after enzymatic hydrolysis. As a 

consequence, the alkali (Sodium hydroxide - NaOH) concentration was optimized for biomass 

pretreatment at 121°C for 30 min with 10% solid loading. Figure 7.4 shows that by increasing 

NaOH concentration for pretreatment from 0.5% to 1.5% (w/v) resulted in a gradual decrease in 

solid mass recovery after pretreatment from 58% to 39%. On the other hand, increasing NaOH 

concentration from 0.5% to 1.25% increased sugars release from 38% to 86% of pretreated 

biomass after enzymatic hydrolysis, but increases beyond 1.25% NaOH concentration conferred 

no additional benefit. Based on raw biomass weight, the maximum total sugar yield (36 g/g raw 

biomass) was obtained from 1.25% NaOH pretreated biomass, which was taken as the optimum 

alkali concentration for the comparative evaluation of various sorghum genotypes. 

 Mass recovery after pretreatment and composition of pretreated biomass 

Table 7.3 shows that the solids mass recovery during alkali pretreatment varied from 39% 

(KC bmr6) to 55% (EH bmr12). The KC bmr mutants had significantly lower mass recovery than 

their parent, but it was statistically equal to Atlas bmr mutants and their parents. Glucan, xylan and 

arabinan content in pretreated biomass (Table 7.3) were almost double that in the raw biomass 

(Table 7.2) for all sorghum lines because of removal of a large proportion of extractives and lignin 

during pretreatment. However, the percentage carbohydrate increase due to pretreatment was not 

equal in these sorghum lines, which indicates that loss of biomass components during pretreatment 

varied significantly among sorghum lines. For example, EH bmr12 had 10% more total 

carbohydrate than its parent in raw biomass but 3% less than its parent in pretreated biomass; 
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opposite results were observed for Atlas bmr6 and its parent line. Decreases in lignin content in 

pretreated biomass compared with raw biomass seemed very low or even negative in some samples 

because most of the biomass samples contained more than 30% extractives, which were almost 

completely removed during pretreatment. This led to increased lignin content in some pretreated 

biomass despite partial delignification. For example, lignin content in EH bmr6 was 9.3% and 

12.9% in raw and pretreated samples, respectively, even though 37% of raw biomass lignin was 

removed during pretreatment. Similarly, lignin content in both raw and pretreated KC bmr6 was 

9.2%, whereas 62% of raw biomass lignin was removed during pretreatment. Maximum 

delignification (around 70% of raw biomass lignin) was observed in EH, Atlas and Atlas bmr6. 

Pretreated biomass had almost five times less total extractives content than raw biomass in all 

sorghum lines, indicating that 80 to 90% of extractives were removed during alkali pretreatment.     

 Sugar loss and inhibitory compounds produced during pretreatment  

During biomass pretreatment, hemicellulose is partially hydrolyzed to monomer sugars, 

and a number of toxic compounds, including phenolics, acetic acid, formic acid, 

hydroxymethylfurfural (HMF) and furfural, are produced as a result of depolymerization of lignin 

and degradation of released sugars. These compounds are considered toxins because they inhibit 

sugar-fermenting microbes (Feldman et al., 2015). Table 7.4 shows that total sugar release during 

pretreatment was 2.5 to 17.3% of raw biomass, which is close to the non-structural sugars content 

(Figure 7.3). This result indicates that hemicellulose was not hydrolyzed significantly during 

pretreatment. Higher acetic acid production (3.1 to 4.5% of raw biomass) compared with phenolics 

(2.6 to 3.6% of raw biomass) and minimum hydrolysis of hemicellulose indicate that sorghum 

lignin is extensively acylated; biomass lignin is partially acylated at γ-carbon of lignin monomer 

(Guragain et al., 2015; Martínez et al., 2008). Formic acid was produced at 0.4 to 0.7% of raw 
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biomass. Degradation of xylose and arabinose produces furfural, and further degradation of 

furfural produces formic acid (Jönsson et al., 2013). HMF and furfural were also measured in all 

biomass samples, but their values were very low (less than 0.01% of raw biomass), and hence are 

not reported here. These low values show that 1.25% NaOH pretreatment did not significantly 

degrade sugars to HMF, and the small amount of furfural produced during this process almost 

completely further degraded to formic acid. 

 Hydrolysis of pretreated biomass 

Total sugar yield based on raw biomass was 19, 16 and 14% more in bmr12 of EH, Atlas 

and KC, respectively, than in their parents, whereas the bmr6 mutants did not yield a significantly 

higher amount of total sugar than their parents (Figure 7.5). Based on total carbohydrate content 

in raw biomass, total sugar yield was 8 to 27% more in bmr mutants than in their parents. In EH 

background, total sugar yield in bmr6 based on total carbohydrate in raw biomass was significantly 

more than bmr12 at 95% confidence level, but opposite was true based on total raw biomass 

weight, which was due to higher carbohydrate loss in bmr6 during pretreatment process. In Atlas 

background, bmr12 had significantly higher total sugars yield than bmr6 based on both raw 

biomass weight as well as total carbohydrate content. In KC background, both bmr mutants had 

statistically equal total sugar yield. These results indicated that bmr mutation led to an increase in 

the hydrolysis efficiency of biomass; however, the effects varied significantly among biomass 

types as well as bmr types.  

 Fermentation of biomass hydrolyzate 

Figure 7.6 shows that 2,3-butanediol yield per gram of sugars consumed during 

fermentation was not significantly different among biomass hydrolyzates and the control at a 95% 
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confidence level. This result indicates that quality of released sugars does not vary among sorghum 

cultivars and their bmr mutants, and are comparable with the quality of synthetic sugars for 2,3-

butanediol production using Bacillus licheniformis. Average 2,3-butanediol yield was very low 

(around 0.3 g per g sugars consumed), however, in all samples because of the production of a 

significant amount of byproducts, including acetic acid, glycerol, lactic acid, and ethanol (data not 

reported); theoretical maximum yield is 0.50 g 2,3-butanediol per g glucose (Jurchescu et al., 

2013). Fermentation parameters, including pH, aeration and agitation, must be optimized to 

minimize byproduct formation to funnel maximum carbon from sugars to 2,3-butanediol (Celińska 

& Grajek, 2009).  

 Overall mass balance from sorghum stover to fermentable sugars  

Overall mass balances from raw biomass to total fermentable sugars (sum of total sugars released 

by hydrolysis of pretreated biomass and non-structural sugars obtained from water extraction of 

raw biomass) are shown in Figure 7.7. The EH bmr12 mutant yielded the highest total sugars (0.41 

g/g raw biomass) from hydrolysis; however, it had the lowest total fermentable sugars because of 

a very low amount of non-structural sugars (0.03 g/g raw biomass). Total fermentable sugars yield 

in the EH bmr6 mutant is 12% more than in its parent, but it was 12% less than parent cultivar for 

the EH bmr12 mutant. In addition, the stover yield in both EH bmr mutants was almost four times 

less than their parent (Table 7.1), indicating that bmr mutation of EH sorghum is not a good 

approach to produce feedstock for biofuels production. On the other hand, total fermentable sugars 

in Atlas bmr12 and KC bmr12 mutants were 36 and 30%, respectively, more than their parents; 

Atlas bmr6 and KC bmr6 mutants yielded 22 and 27%, respectively, more than the parents. Stover 

yield in KC bmr6 and KC bmr12 mutants had 33 and 58%, respectively, more than their parent 

cultivar (Table 7.1). In addition, the grain yield in KC bmr6 was not significantly different than 
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its parent cultivar, but KC bmr12 had lower grain yield than its parent. Atlas bmr mutants had 

lower stover yield than their parents; however, their yields were much better than EH bmr mutants. 

Overall, introgression of bmr6 gene into KC cultivar led to the most promising feedstock among 

the tested sorghum lines for second-generation biofuels and biochemical production without 

significant decrease in grain yield. Introgression of bmr12 gene in KC and bmr6 and bmr12 genes 

in Atlas also led to improved feedstock quality for biofuels and chemicals production, but the bmr 

mutation in EH had an adverse effect.     

 Conclusions 

The bmr mutation in sorghum cultivars significantly affected their flowering time, grain and stover 

yields as well as composition of biomass. These effects led to improvement on quality of biomass 

for platform chemicals, like 2,3-butanediol production in some cultivar and bmr types, while an 

adverse effect was observed in others. Introgression of bmr6 gene into KC cultivar led to the most 

promising feedstock among the tested sorghum lines for second-generation biofuels and 

biochemicals production without significant decrease in grain yield. Introgression of bmr12 gene 

into KC, and bmr6 and bmr12 genes into Atlas also led to improvement on feedstock quality, but 

it has an adverse effect in EH cultivar. These results indicated a significant interaction effect 

between the bmr gene and the genetic background of the sorghum lines into which the bmr gene 

is introduced. Therefore, each sorghum line must be evaluated separately to select the promising 

sorghum cultivars for biofuels and biochemicals production. In addition, the quality of released 

sugars from alkali pretreated biomass is unaffected by cultivar and bmr mutation types, and the 

sugars quality was as good as synthetic sugars for 2,3-butanediol production using a robust 

microbial culture, like Bacillus licheniformis. 
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Table 7.1 Agronomic data of different sorghum genotypes 

Genotypes 
50% 

flowering 

time (day) 

Plant height 

(m) 

Fresh stalk 

yield (t/ha) 

Stover 

yield 

(t/ha) 

Grain yield 

(t/ha) 

Early Hegari (EH) 53 ± 1.4d 1.2 ± 0.0d 9.8 ± 0.6d 4.0 ± 0.3de 1.3 ± 0.1c 

EH bmr6  61 ± 4.2c 1.2 ± 0.2d 5.0 ± 0.6e 1.1 ± 0.1f 3.1 ± 0.6b 

EH bmr12  59 ± 0.7c  1.3 ± 0.1d 5.4 ± 0.6e 1.1 ± 0.1f 1.5 ± 0.0c 

Atlas (AT) 75 ± 0.7b 2.3 ± 0.1a 22.1 ± 2.8a 6.0 ± 0.6b 4.8 ± 0.8a 

AT bmr6  84 ±  0.0a 2.0 ± 0.1abc 18.9 ± 0.8b 4.8 ± 0.1c 4.1 ± 0.4a 

AT bmr12  75 ±  0.7b 1.9 ± 0.0bc 16.4 ± 0.6c 3.9 ± 0.3e 1.7 ± 0.0c 

Kansas Collier (KC) 73 ± 0.0b 1.8 ± 0.1c 10.6 ± 0.2d 4.5 ± 0.1cd 1.7 ± 0.4c 

KC bmr6  84 ± 0.7a 2.2 ± 0.1ab 18.9 ± 0.1b 6.0 ± 0.1b 1.6 ± 0.1c 

KC bmr12  85 ± 1.4a 2.0 ± 0.4abc 16.1 ± 0.3c 7.1 ± 0.1a 0.3 ± 0.1d 

bmr = brown midrib sorghum mutant. Data are average values of triplicate experiments ± sample 

standard deviation. Values with the same letters, in superscripts, within the same column are not 

significantly different from each other at the P<0.05 level. 

 

 

Table 7.2 Raw biomass composition of different sorghum genotypes 

Genotypes Composition (%, g / g biomass) 

Glucan 

 

Xylan 

 

Arabinan 

 

Lignin 

 

Extractives 

 
Early Hegari (EH) 25.4 ± 0.5cd 15.4 ± 0.4b 2.0 ± 0.6a 12.5 ± 0.7cd 35.4 ± 1.1b 

EH bmr6  25.3 ± 1.1cd 13.8 ± 1.3d 1.9 ± 0.8a 9.3 ± 0.5g 39.7 ± 0.3a 

EH bmr12  27.1 ± 1.3ab 18.0 ± 0.9a 2.0 ± 0.1a 13.9 ± 0.1ab 22.8 ± 0.9d 

Atlas (AT) 28.5 ± 0.4 a 15.8 ± 0.7b 2.0 ± 0.7a 14.3 ± 1.3a 26.8 ± 2.8c 

AT bmr6  26.2 ± 0.6bc 13.7 ± 0.5d 2.2 ± 0.3a 12.9 ± 0.9bc 36.1 ± 1.5b 

AT bmr12  25.0 ± 0.8cd 15.2 ± 0.6bc 2.1 ±  0.6a 10.8 ± 0.1ef 35.1 ± 2.4b 

Kansas Collier (KC) 24.5 ± 0.9de 15.2 ± 0.4bc 1.5 ± 0.4a 11.5 ± 0.4de 33.8 ± 0.2b 

KC bmr6  21.8 ± 1.6f 14.1 ± 0.5cd 1.4 ± 0.2a 9.2 ± 0.4g 38.9 ± 1.1a 

KC bmr12  23.2 ± 0.6ef 15.8 ± 1.0b 1.5 ± 0.1a 9.6 ± 0.7fg 35.9 ± 0.1b 

bmr = brown midrib sorghum mutant. Data are average values of triplicate experiments ± sample 

standard deviation.  Values with the same letters, in superscripts, within the same column are not 

significantly different from each other at the P<0.05 level. 
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Table 7.3 Mass recovery after pretreatment and composition of pretreated biomass 

Sorghum 

genotype 

Mass 

recovery 

(%, g/g) 

biomass) 

Biomass composition (%, g/g biomass) 

Glucan Xylan Arabinan Lignin Extractive 

Early Hegari (EH) 44.6 ± 2.0b 48.8 ± 2.2abc 29.8 ± 1.2a 2.7 ± 0.2abcd 8.0 ± 0.2g 6.2 ± 0.6e 

EH bmr6  45.2 ± 1.0b 45.1 ± 2.0d 25.9 ± 0.3c 2.1 ± 0.1d 12.9 ± 0.3a 7.7 ± 0.1cd 

EH bmr12  55.3 ± 0.6a 46.9 ± 1.2bcd 29.3 ± 1.9ab 2.4 ± 0.1abcd 8.5 ± 0.3fg 7.5 ± 0.7d 

Atlas (AT) 44.7 ± 2.4b 49.4 ± 1.9ab 27.1 ± 0.6bc 2.8 ± 0.6abc 9.7 ± 0.4cd 7.1 ± 0.5d 

AT bmr6  42.8 ± 0.8bc 51.2 ± 0.9a 27.3 ± 1.1bc 3.0 ± 0.8a 8.5 ± 0.3fg 7.4 ± 0.4d 

AT bmr12  45.0 ± 2.4b 46.4 ± 1.0cd 28.3 ± 1.7abc 2.5 ± 0.5abcd 11.7 ± 0.7b 8.5 ± 0.6bc 

Kansas Collier (KC) 44.4 ± 1.2b 47.1 ± 1.0bcd 28.8 ± 1.3ab 2.9 ± 0.4ab 10.2 ± 0.5c 9.2 ± 0.4b 

KC bmr6  38.7 ± 1.8d 46.2 ± 0.4d 27.9 ± 2.7abc 2.3 ± 0.1bcd 9.2 ± 0.6de 11.0 ± 0.4a 

KC bmr12  41.5 ± 1.3c 46.8 ± 2.1bcd 28.7 ± 0.9ab 2.2 ± 0.1cd 8.8 ± 0.2ef 11.1 ± 0.8a 

bmr = brown midrib sorghum mutant. Data are average values of triplicate experiments ± sample 

standard deviation. Values with the same letters, in superscripts, within the same column are not 

significantly different from each other at the P<0.05 level. 

 

 

Table 7.4 Sugars and inhibitory compounds released during pretreatment 

Phenotypes Released compounds (%, g/g biomass) 

Total sugars Phenolics Acetic acid Formic acid 

Early Hegari (EH) 16.6 ± 0.8a 3.6 ± 0.3a 4.5 ± 0.3a 0.68 ± 0.03ab 

EH bmr6  14.7 ± 2.0a 3.3 ± 0.4ab 3.2 ± 0.4b 0.51 ± 0.04cd 

EH bmr12  2.5 ± 0.1c 3.6 ± 0.1a 4.1 ± 0.0ab 0.42 ± 0.01d 

Atlas (AT) 6.6 ± 0.8b 3.3 ± 0.2ab 3.1 ± 0.4b 0.58 ± 0.06bc 

AT bmr6  14.4 ± 2.7a 3.2 ± 0.4ab 3.5 ± 0.6b 0.68 ± 0.10ab 

AT bmr12  10.3 ± 4.1b 3.0 ± 0.3bc 3.3 ± 1.4b 0.67 ± 0.22b 

Kansas Collier (KC) 8.3 ± 0.6b 3.0 ± 0.1bc 4.6 ± 0.4a 0.85 ± 0.07a 

KC bmr6  17.3 ± 3.1a 2.6 ± 0.2c 3.4 ± 0.6b 0.69 ± 0.11ab 

KC bmr12  15.6 ± 1.5a 2.6 ± 0.2c 3.9 ± 0.3ab 0.71 ± 0.02ab 

bmr = brown midrib sorghum mutant. Data are average values of triplicate experiments ± 

sample standard deviation. Values with the same letters, in superscripts, within the same column 

are not significantly different from each other at the P<0.05 level. 
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Figure 7.1 Monolignols biosynthetic pathways in plants. COMT= Caffeic acid O-

methyltransferase, CAD= Cinnamyl alcohol dehydrogenase (Sattler et al., 2010). 
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Figure 7.2 Schematic representation of 2,3-butanediol production from sorghum stover  
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Figure 7.3 Biomass extractives. EH = Early Hegari, AT = Atlas, KC = Kansas Collier, bmr = 

brown midrib sorghum mutant. Total extractives is sum of water-soluble extractives and alcohol 

(95% ethanol)-soluble extractives. Non-structural sugars are the sugars extracted from biomass in 

water. All the extractions were done using Soxhlet extraction set. Data are average values of 

triplicate experiments, and error bars represent sample standard deviation.  
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Figure 7.4 Optimization of sodium hydroxide (NaOH) concentration for bmr sorghum 

pretreatment. Pretreatment was carried out at 121°C for 30 min using 0.5 to 1.5% (w/v) NaOH 

with 10% (w/v) solid loading, followed by hydrolysis at 50°C for 48 h with 5% (w/v) solid loading 

in citrate buffer (4.8 pH and 0.05 M) using enzyme loading of 6% (w/w) of solid. Data are average 

values of triplicate experiments, and error bars represent sample standard deviation.    
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Figure 7.5 Total sugars released during hydrolysis of pretreated biomass. EH = Early Hegari, 

AT = Atlas, KC = Kansas Collier, bmr = brown midrib sorghum mutant. Hydrolysis was carried 

out at 50°C for 48 h with 5% (w/v) biomass loading in citrate buffer (4.8 pH and 0.05 M) using 

enzyme loading of 6% (w/w) of biomass. Data are average values of triplicate experiments, and 

error bars represent sample standard deviation.   
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Figure 7.6 2,3-Butanediol fermentation from biomass hydrolyzate. EH = Early Hegari, AT = 

Atlas, KC = Kansas Collier, bmr = brown midrib sorghum mutant, control = synthetic sugars 

solution with similar concentration of hydrolyzate. Fermentation was carried out at 30°C and 200 

rpm for 12 h using Bacillus licheniformis DSM 8785. Data are average values of triplicate 

experiments, and error bars represent sample standard deviation.     
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Figure 7.7 Overall mass balance from sorghum stover to total fermentable sugars. EH = Early 

Hegari, AT = Atlas, KC = Kansas Collier, bmr = brown midrib sorghum mutant. Data are average 

values of triplicate experiments ± sample standard deviation. 
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Chapter 8 - Optimization of 2,3-butanediol fermentation using 

Klebsiella oxytoca ATCC 8724 from biomass-derived sugars  

 Abstract 

2,3-butanediol (BD) is a valuable platform chemical with a number of industrial 

applications. Biomass-derived sugars is a sustainable feedstock for BD production. High BD titer 

is critical to reduce downstream processing cost. In this study, we evaluated both synthetic sugars 

and biomass-derived sugars for efficient BD fermentation in batch and fed-batch fermentation 

processes at shake-flask (50 ml working volume) and 7-L bioreactor (5 L working volume) using 

Klebsiella oxytoca ATCC 8724. The results showed that the culture can utilize both glucose and 

xylose, with BD productivity using the glucose medium was almost twice as well compared to the 

xylose medium. The mixed sugars medium (with glucose and xylose in 2:1 ratio) was less efficient 

compared to the xylose medium because of the catabolic repression from glucose, leading to 

reduced substrate uptake rate. Biomass-derived sugars were as efficient as synthetic sugars at 

lower total sugar concentrations (2.5%, w/v), but not at higher total sugar concentrations (9%, w/v) 

unless the biomass hydrolyzates were detoxified to remove acetic acid and other inhibitory 

compounds. The concentration of these toxins was not enough to adversely affect the xylose 

utilization in biomass hydrolyzate with lower sugar concentration. One vvm aeration without pH 

control at 37°C and 200 rpm represented the optimum conditions for BD fermentation with 7% 

(w/v) initial glucose concentration in a 7-L bioreactor. A BD titer of 91 g/L was obtained using  

fed-batch process in glucose medium. BD productivity gradually decreased upon each subsequent 

feeding due to the reduced substrate uptake rate; therefore, two feedings was optimum resulting in 

a final BD titer, yield and productivity of 80 g/L , 0.47 g/g glucose, and 0.79 gL-1h-1, respectively. 

Fed-batch fermentation using the xylose medium was also beneficial to increase BD titer. 
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However, mixed sugars medium was not appropriate for fed-batch fermentation; feeding 

additional sugars before complete utilization of xylose resulted in utilization of only glucose, 

leaving xylose untouched, whereas sugar feeding after complete utilization of xylose resulted in 

very limited glucose and no additional xylose utilization. These results showed that the 

development of appropriate biomass processing technology to obtain separate cellulose and 

hemicellulose hydrolyzates is beneficial for efficient BD fermentation.   

Keywords: 2,3-butanediol, Klebsiella oxytoca, fed-batch fermentation, biomass 

hydrolyzate    

 Introduction 

2,3-butanediol (BD) is a valuable platform chemical with considerable potential for the 

chemical industry. The worldwide demand for BD is estimated around 32 million tons per year (Li 

et al., 2013). The production of 2,3-butanediol (BD) via microbial bioprocessing from resources 

such as plant-based biomass holds much promise for renewable BD. Though, one of the challenges 

with utilizing biomass feedstocks is the efficient utilization of hemicellulose-derived 

monosaccharides including xylose. Development of improved microbial bioprocessing 

technologies to produce BD from biomass holds opportunity to improve the feasibility of BD as a 

platform chemical for food, fuel, chemical, pharmaceutical, and polymer markets as shown in 

Figure 8.1 (Celińska & Grajek, 2009; Ji et al., 2011; Li et al., 2013; Qi et al., 2014).  

BD is a four-carbon alcohol that exists in three stereoisomers: L-(+)-BD (S,S – 

dextrorotatory form), D-(-)-BD (R,R – Levorotatory form), and meso-BD (optically inactive 

form). Microbial production of BD has more than 100 years of history. Industrial BD production 

started in 1933. The huge demand for 1.3-butadiene during World War II intensified research on 
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BD production to use as feedstock for the production of 1,3-butadiene. However, the availability 

of a cheaper petroleum-derived alternative replaced BD for 1,3-butandiene production after the 

War. The energy crisis in the 1970s resulted in revival of BD production using microbial 

bioprocessing (Ji et al., 2011). A number of microbial species, including Klebsiella, Enterobacter, 

Bacillus and Serratia genera can produce BD from different feedstocks. Among them, K. oxytoca, 

K. pneumoniae, E. aerogenes, B. licheniformis, and S. marcescents are the most promising 

microorganisms for efficient BD fermentation (Ji et al., 2011; Jurchescu et al., 2013). These 

microorganisms produce BD in a mixed acid fermentation process with several intermediate 

compounds; a number of other end-products are also synthesized depending on the type of 

microorganisms and fermentation conditions, as shown in Figure 8.2 (Celińska & Grajek, 2009; 

Han et al., 2013; Jansen et al., 1984).  For example, most of the BD producing microorganisms are 

facultative anaerobes, which obtain energy from both respiration and fermentation pathways. The 

acetate production pathway is predominant in oxygen-saturated, aerobic environments. Under 

anaerobic conditions, lactate will be the major product while intermediate levels of oxygen favor 

BD, ethanol and acetoin production. A number of other operating parameters, including pH, 

temperature, and substrate concentration also significantly affect the formation of metabolites 

(Celińska & Grajek, 2009). In addition, the type of microorganism determines the production of 

different stereoisomers of BD; for example, K. oxytoca produces a racemic mixture of L-(+)-BD 

and meso-BD. Similarly, B. lechiniformis produces a racemic mixture of D-(-)-BD and meso-BD, 

and S. marcescens produces optically pure meso-BD (Ji et al., 2011).   

For the sustainable production of bio-based fuels and chemicals, abundantly available 

lignocellulosic biomass feedstocks must be used. Fermentable monosaccharides derived from 

hydrolyzed biomass polysaccharides (hemicellulose and cellulose) include a mixture of glucose 
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and xylose; therefore, the capability of BD producing organisms to utilize both sugars is critical. 

K. oxytoca is a highly efficient BD fermenting microorganism capable of using a wide range of 

biomass feedstocks, including glucose and xylose (Cheng et al., 2010). In addition, high BD titer 

is desirable in fermentation broth to reduce downstream processing. However, batch fermentation 

is limited due to substrate inhibition from the high initial sugar concentration needed to achieve 

high BD titer. Instead, fed-batch fermentation is more appropriate to achieve the desired high titer 

without substrate inhibition. Thus, the objective of this study was to optimize the fermentation 

conditions for Klebsiella oxytoca ATCC 8724 to produce BD from both synthetic and biomass-

derived sugars using fed-batch fermentation to produce high BD titer and productivity.  

 Materials and methods 

 Microorganisms 

Klebsiella oxytoca ATCC 8724 obtained from American Type Culture Collection 

(Manassas, Virginia, USA) was used in this experiment. The culture was revived in nutrient broth 

medium, and several stock culture tubes were prepared comprising 0.5 ml for each revived culture 

and 30% (v/v) sterilized glycerol. The stock culture tubes were stored at -80°C until used for 

inoculum preparation.  

 Preparation of biomass hydrolyzate  

Switchgrass samples obtained from the Kansas State University Agronomy Farm in 

Manhattan, Kansas were ground to less than 1 mm size using a Thomas-Wiley Laboratory Mill 

(Model 4). Sorghum stalks was obtained from Texas A&M University, College Station, Texas, 

and ground by Mesa Reduction Engineering & Processing Inc., Auburn, New York.  The ground 

biomass samples were mixed with 1.25% (w/v) sodium hydroxide (NaOH) solution with 1:10 ratio 

(40 g biomass in 400 ml alkali solution) in 500-ml flask, and autoclaved at 121°C for 30 min. The 
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biomass slurry was filtered and washed with excess water, and dried overnight at 45°C. The 

pretreated biomass was mixed with citrate buffer (4.8 pH and 0.05M) at two different solids 

loading: 12% (24 g biomass in 200 ml buffer) and 4% (8 g biomass in 200 ml buffer) in 500-ml 

flask with a screw cap. Cellulases (Cellic CTec2) and hemicellulases (Cellic HTec2) enzymes 

provided by Novozymes, Inc., Franklinton, North Carolina were used for biomass hydrolysis at 

the rate of 6% (w/w) of biomass with 10:1 ratio of CTec2:HTec2. The biomass slurry was 

incubated in a temperature-controlled shaker (Innova 4300, New Brunswick Scientific, New 

Jersey, USA) at 50°C and 125 rpm for 48 h. The liquid hydrolyzate was finally separated by 

centrifuging the biomass slurry at 13,000 rpm (maximum g-force 20,400×g) for 15 min and stored 

at -20°C until used for BD fermentation. 

Concentrated wood (poplar) hydrolysates were obtained from Technology Holding LLC 

(Salt Lake City, Utah, USA), which contained 415 g/L of glucose and 132 g/L of xylose. The 

hydrolysates were diluted to a final total sugars concentration of 8% to 9% (w/v); similar to the 

total sugar concentration of sorghum stalk hydrolysates prepared using a 12% (w/w) solids loading 

during hydrolysis. .     

 Inoculum preparation  

Inoculum preparation was performed by adding 0.3 ml stock culture to 100 ml sterilized 

(at 121°C for 15 min) nutrient broth medium in 1000-ml flask and incubated in a temperature-

controlled shaker (Innova 4300, New Brunswick Scientific, NJ, USA) at 37°C and 200 rpm. The 

inoculum was removed after 7 h of incubation (corresponding to the exponential growth or log 

phase) and aseptically added to the fermentation medium at the rate of 5% (v/v) of total 

fermentation medium volume.  
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 Fermentation  

 Shake-flask 

Shake-flask fermentations were carried out in 500-ml flasks with a 50 ml working volume. 

The medium for shake-flask fermentations was prepared using different concentrations of 

synthetic sugars (glucose, xylose or mixed sugars) or biomass hydrolyzate supplemented with 

recommended nutrients: 2 gL-1 monopotassium phosphate, 10.5 gL-1 dipotassium phosphate, 3.3 

gL-1 diammonium phosphate, 6.6 gL-1 ammonium sulfate, 0.25 gL-1 magnesium sulfate 

heptahydrate, 0.05 gL-1 ferrous sulfate heptahydrate, 0.001 gL-1 zinc sulfate heptahydrate, 0.001 

gL-1 manganese (II) sulfate monohydrate, 0.01 gL-1 calcium chloride dehydrate, 0.05 g L-1 

ethylenediaminetetraacetic acid (Jansen et al., 1984). The sugar solutions and biomass 

hydrolyzates were autoclaved at 121°C for 15 min in the 500-ml flasks. Once cooled, a 10x 

concentrated nutrient solution was filter sterilized (0.22 µm, Millipore) and added aseptically 

(10%, v/v) to each flask. The freshly prepared inoculum was added to each flask and incubated in 

temperature-controlled shaker at 37°C and 200 rpm. 0.5 ml sub-samples were obtained over the 

course of fermentation to measure the products and residual sugars. Filter sterilized concentrated 

sugar solutions were used as feeding medium for fed-batch fermentation.   

 Bioreactor scale-up 

The optimal fermentation medium determined from the batch-flask study was scaled up to 

a 7-L bioreactor (Bioflo 110, New Brunswick Scientific Inc., Enfield, Connecticut, USA) with a 

5-L working volume. The fermenter with 3,750 ml sugar solution containing sugars in the amount 

sufficient to make the desired sugars concentration in final 5 L fermentation medium were 

autoclaved at 121°C for 30 min. Three autoclavable sample bottles were fitted with the fermenter 

before autoclaving: one bottle contained 10% (w/v) sodium hydroxide solution, another contained 
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antifoam and a third was used to pump sterilized nutrient solution and inoculum. One liter solution 

with required nutrients in the amount sufficient for 5 L fermentation medium was filter sterilized 

(Millipore, 0.22 µm) and pumped into the sterilized fermenter. The fermentation process was 

optimized for pH and aeration when operating parameter were set at 200 rpm agitation and 37°C 

temperature to maximize BD concentration, yield per gram sugars, and productivity. Around 10 

ml samples were drawn periodically to measure biomass growth, products formation and sugars 

consumption. Filter sterilized concentrated sugar solutions were added at appropriate time interval 

to carry out the fed-batch fermentation process.  

 Analytical methods 

Monosaccharides (glucose, and xylose), and fermentation products/byproducts including, 

BD, acetoin, and glycerol were measured using High Performance Liquid Chromatography 

(HPLC). The HPLC instrument (Shimadzu Corporation, Japan) was equipped with an LC-20AB 

pump, an SIL-20 AC auto sampler, an SPD-M 20A photodiode array detector, and a Phenomenex 

RCM-Monosaccharide Ca+ column (300 × 7.8 mm). Flow rate of mobile phase (deionized water) 

was 0.6 ml min−1. The column oven and refractive index detector (RID-10A) were maintained at 

80°C and 65°C, respectively. Other fermentation byproducts, such as acetic acid, lactic acid, 

formic acid, and ethanol, were measure using ROA organic acid column (150 × 7.8 mm); both 

RID and PDA (Photodiode Array)-UV detectors were used in the same HPLC system. A 0.005 N 

sulfuric acid in deionized water was used as mobile phase with a flow rate of 0.6 ml min-1. 

 Statistical methods 

All shake-flask fermentations were performed in triplicate and fermentations performed in 

the bioreactor were performed in duplicate. The data were statistically analyzed for the least 
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significant difference (LSD) test at 95% confidence level (P < 0.05) using JMP software (SAS 

Institute Inc., Cary, North Carolina, United States).     

 Results and discussion 

 Optimization of sugar concentration  

Glucose, xylose and mixed sugars media were evaluated separately to determine the 

optimum sugar concentration for BD fermentation. Four different concentrations of sugar solutions 

were taken in these experiments for each type of medium: 3%, 5%, 7%, and 9% (w/v) for glucose 

and xylose media, and 6%, 9%, 12%, and 15% (w/v) for mixed sugars medium. Figure 8.3(a) 

shows that the final BD concentration increased with an increase in the initial glucose 

concentration of the fermentation medium from 3% to 9%. BD yield and productivity also 

increased with an increase in initial glucose concentration in fermentation medium from 3% to 

7%; however, 7% and 9% did not differ significantly. BD yield at 9% initial glucose concentration 

was 0.43 g/g glucose, and productivity (at 36 h) was 1.10 gL-1h-1. This result showed that 9% initial 

glucose concentration is optimum for batch fermentation based on the highest BD concentration 

in final fermentation broth. In case of fed-batch process, 7% initial glucose concentration can be 

taken as the optimum because of initial slower glucose uptake rate until first 12 h of fermentation 

with 9% glucose medium compared to 7% glucose medium.    

Similar to glucose media, BD yield and productivity increased as the initial xylose 

concentration increased from 3% to 7% in xylose medium as shown in Figure 8.3(b), but the 

productivity significantly decreased at 9% initial xylose concentration due to a long lag phase 

(12h). BD yield and productivity (at 36 h) at 7% xylose medium were 0.36 g/g xylose consumed 

and 0.64 gL-1h-1, respectively. Based on these data, 7% xylose concentration was optimum for BD 

fermentation using xylose medium.   
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Above results show that K. oxytoca ATCC 8724 can consume both glucose and xylose to 

produce BD; however, substrate uptake rate and, therefore, BD formation rate was almost double 

in glucose medium vs xylose medium. Because of slower BD formation rate in xylose medium, a 

higher proportion of sugar was utilized for cell maintenance, thereby reducing BD yield per gram 

of substrate compared to glucose media: 0.43 g/g in 7% glucose medium and 0.36 g/g in xylose 

medium. The similarity between glucose and xylose was the increase in BD yield with an increase 

in sugar concentration until the optimum sugar concentration was reached. BD yields at 3%, 5% 

and 7% sugar concentration were 0.33 g/g, 0.37 g/g, and 0.43 g/g, respectively, in glucose medium, 

and 0.27 g/g, 0.33 g/g, and 0.36 g/g, respectively, in xylose medium. This was because a higher 

proportion of sugar was used for cell maintenance, and therefore a lower proportion of sugar was 

used for product formation at suboptimal sugar concentrations compared to optimum sugar 

concentration.    

After separate optimization of glucose and xylose media, a mixed sugar medium containing 

mixture of glucose and xylose was evaluated for BD production. Our previous studies (Guragain 

et al., 2014; Guragain et al., 2013) showed that biomass hydrolysates comprised of approximately 

a 2:1 ratio of glucose and xylose. Therefore, mixed sugar media containing a 2:1 ratio of glucose 

and xylose were prepared at different total sugar concentrations and tested for the optimal mixed 

sugar concentration. Figure 8.3(c) shows that K. oxytoca ATCC 8724 rapidly consumed glucose 

at first, and the xylose was consumed only after glucose was depleted in the medium at total sugars 

concentrations of 6% and 9% (w/v). This was not true for higher total sugars concentration (12% 

and 15%), in which the glucose consumption was very slow, and no xylose was consumed until 

91 h of fermentation. The BD yield at 6% and 9% total sugars were equal (0.35 g/g), but the 

productivity was slightly higher at 9% total sugars (0.50 gL-1h-1 at 60 h fermentation) than 6% total 
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sugars (0.47 gL-1h-1
 at 48 h fermentation). Additionally, the final BD concentration was also 

significantly higher at 9% total sugars; therefore, 9% was the optimum total sugars concentration 

for BD fermentation using mixed sugar medium.    

The BD productivity at optimum sugar concentration (7% for glucose and xylose, and 9% 

for mixed sugars) was 2.3 and 1.3 times higher in glucose and xylose medium, respectively than 

for mixed sugars medium. The lowest productivity in mixed sugar media was due to a slower 

substrate uptake rate as well as diauxic growth. This is most likely due to the glucose catabolite 

repression resulting in hindered xylose uptake (Ji et al., 2011). The substrate utilization in optimum 

mixed sugars medium (9% total sugars) can be divided into two phases: a first phase from 0 to 24 

h in which glucose was utilized, and a second phase from 24 to 60 h characterized by xylose 

consumption. The BD productivity during the first phase was 0.79 gL-1h-1, 28% lower than BD 

productivity using only glucose with a similar total sugar concentration (9% glucose). This may 

indicate that xylose also inhibits the rate of glucose uptake reducing BD productivity in the mixed 

sugar fermentation. The BD productivity during the second phase of the mixed sugar fermentation 

(24 to 60 h) was 0.30 gL-1h-1, which was not significantly different than the BD productivity at 3% 

xylose media; however, it was significantly less than the productivity at the optimum initial xylose 

concentration (0.55 gL-1h-1 at 7% initial xylose concentration).   

Above results indicate that mixed sugar fermentation is significantly less efficient 

compared to using a single sugar source (glucose or xylose) for the production of BD using K. 

oxytoca ATCC 8724. The inability of K. oxytoca to simultaneously utilize glucose and xylose was 

the major problem for the reduced BD productivity in mixed sugar media. To overcome this, K. 

oxytoca was grown for multiple generations to evoke nutrient adaptation by sub-culturing five 

times in 7% xylose containing media. The inoculum was prepared after the fifth sub-culture and 
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used for a mixed sugars fermentation with total sugars 9% and 12%. Unfortunately, no significant 

change in substrate uptake and product formation rate was observed using this technique (data not 

reported).     

         Comparison of biomass hydrolyzate with synthetic sugar for BD fermentation  

The total sugar concentration in biomass hydrolyzates prepared with 4% and 12% (w/v) 

solids loading during hydrolysis of alkali pretreated biomass (sorghum stalks and switchgrass) was 

approximately 2.5% and 9% (w/v), respectively. The concentrated wood (poplar) hydrolysates 

were diluted to achieve a total sugar concentration of 9%. The pH of all hydrolyzates was adjusted 

to 6.9±0.1 using concentrated NaOH solution. Two sugar solutions with a total sugar concentration 

of 2.5% and 9% (w/v) of glucose and xylose (approximately 2:1 ratio) were taken as control media.  

Figure 8.4(a) shows that glucose and xylose utilization, and BD formation rates were not 

significantly different between the controls and biomass hydrolyzates at the lower sugar 

concentration (2.5 % total sugar); both glucose and xylose was completely utilized in all media. 

Similar results were achieved for the 9% total sugars control and wood hydrolyzate, but not for 

sorghum hydrolyzate, as shown in Figure 8.4(b). For the sorghum hydrolyzate containing higher 

total sugars, an initial lag phase of ~6 h was observed prior to glucose utilization; xylose was not 

consumed at all even after depletion of glucose in the fermentation medium. One possibility for 

this observation is the presence of acetic acid that was detected at a concentration of 3 g/L in the 

sorghum hydrolysates. Acetic acid is a known microbial inhibitor produced during hydrolysis of 

hemicellulose polymer (Hu & Ragauskas, 2012). The acetic acid was produced at a low 

concentration (less than 0.5 g/L) in hydrolyzate containing lower total sugars (2.5%, w/v), which 

did not significantly affect xylose uptake. Acetic acid was present in low concentrations (less than 

0.5 g/L) in wood hydrolyzate because the supplier (Technology Holding LLC) claimed that a 
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detoxification step was used to remove potential inhibitory compounds. These results show that 

detoxification of inhibitory compounds, including acetic acid, is essential for K. oxytoca ATCC 

8724 BD fermentation using optimum total sugar concentration (9%) in biomass hydrolyzate. 

 Fed-batch fermentation in shake flask 

The K. oxytoca ATCC 8724 was capable of utilizing both glucose and xylose sugars, but 

BD production was more efficient in glucose medium. The final BD titer at the optimum initial 

sugar concentration was only 28.2 g/L and 23.1 g/L for glucose and xylose, respectively; higher 

BD titer is desired to reduce downstream processing cost. Fed-batch fermentation in shake flasks 

was carried out for both glucose and xylose media by feeding sterilized concentrated sugar solution 

over the fermentation process time. Figure 8.5a shows that BD concentration gradually increased 

up to the fourth glucose feeding. BD yield per gram of sugar consumed was fairly constant, but 

the productivity gradually decreased as the fed-batch proceeded because of reduced substrate 

uptake rate, indicating a trade-off between BD titer and productivity. No significant amount of 

glucose was consumed after 148 h in the fourth feeding and, hence, data is not shown here. The 

final BD titer reached 91.6 gL-1 in 148 h of fermentation, for which productivity was 0.62 gL-1h-1. 

Based on these results, two feedings with 71 h of fermentation time is considered optimum, which 

generated the highest BD yield (0.42 g/g glucose consumed, 84% of theoretical maximum) and a 

good productivity (0.91 gL-1h-1).  

The fed-batch results using xylose medium, Figure 8.5b, was less effective compared to 

the glucose medium. A lower BD titer was achieved because xylose consumption halted after the 

second feeding. Therefore, only one feeding was chosen as the optimum for xylose media, in which 

final BD titer was 32.8 g/L, with a BD yield and productivity of 0.36 g/g and 0.46 gL-1h-1, 

respectively.  
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The fed-batch fermentation in shake-flasks was performed for wood hydrolyzate with 9% 

(w/v) total sugars and control, but not for sorghum hydrolyzate because xylose was not utilized in 

this medium. As shown in Figure 8.6, feeding a concentrated sugars solution or wood hydrolyzate 

was performed after 36 h. Glucose was almost completely consumed in both the control and wood 

hydrolyzate in 24 h of fermentation, but only a limited amount of xylose was consumed prior to 

feeding; xylose was not consumed at all after feeding. Final BD titer was significantly higher in 

wood hydrolyzate compared to the control because of the higher concentration of initial glucose 

in wood hydrolyzate; however, BD yield per gram of sugar consumed were not significantly 

different between wood hydrolyzate and control media.  Results showed that the culture does not 

consume xylose if sugars are fed prior to the complete consumption of initial sugars in the medium. 

The fed-batch experiments were repeated by feeding concentrated sugar solution (or wood 

hydrolyzate) after complete utilization of both glucose and xylose (at 72 h of fermentation). In 

such experiments, neither glucose nor xylose was consumed at all after feeding, and, hence, the 

final BD titer was not increased (data not shown here). These results indicate that fed-batch 

fermentation using K. oxytoca ATCC 8724 is beneficial to achieve higher BD titer only for the 

fermentation media containing a single sugar, but not with mixed sugars; glucose is more efficient 

than xylose in the single sugar medium. Therefore, appropriate bioprocessing strategies must be 

developed for lignocellulosic biomass to obtained separate streams of glucose and xylose, that is, 

cellulose must be separated from hemicellulose (or hemicellulose hydrolyzate) prior to its 

hydrolysis. This can be achieved using acid pretreatment, in which hemicellulose is hydrolyzed 

during pretreatment, and residual cellulose is separated from hemicellulose hydrolyzate, and then 

hydrolyzed using cellulase enzymes (Lloyd & Wyman, 2005).         
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 Scale-up of 2,3-butanediol fermentation process  

The shake-flask fermentations showed that 7 to 9% glucose media lead to maximum BD 

production using K. oxytoca ATCC8724. The fermentation process was scaled-up to a 5-L working 

volume bioreactor to allow better control over pH, aeration, agitation, dissolved oxygen level, and 

temperature to further improve BD production. Since pH and aeration are the major factors to be 

considered for efficient BD fermentation (Ji et al., 2009; Wong et al., 2014), multiple fermentations 

were performed to optimize pH and aeration, while maintaining a constant agitation of 200 rpm 

and temperature of 37°C.   

The first fermentation was carried out by controlling the pH at 6.8 ± 0.2 using sterilized 

10% sodium hydroxide (NaOH) and aeration with sterile air at 1 vvm. Figure 8.7 shows that the 

fermentation at controlled pH led to a low production of BD even after 91 h and two fed-batch 

steps; final BD titer was 29.1 g/L, and yield was 0.17 g/g glucose consumed. However, glucose 

was efficiently utilized to produce other products (lactic acid, acetic acid, and ethanol) during this 

fermentation process; a total of 110.6 g/L products were produced with a total product yield of 

0.63 g/g glucose consumed. Lactic acid (73.6 g/L) made up more than two-thirds of the total 

product, followed by BD (29.1 g/L), acetic acid (5.4 g/L), and ethanol (2.5 g/L). Interestingly, the 

lactic acid was of very high optical purity: 99.98% D-lactic acid. This shows that K. oxytoca ATCC 

8724 is a promising lactic acid producing organism under a specific fermentation regime. Optically 

pure lactic acid is another important platform chemical used to produce a number of high-value 

products, including poly-lactic acid (Zhang & Vadlani, 2013). Further research is required to 

optimize the fermentation process to maximize lactic acid yield and productivity using this culture, 

which was outside the scope of this research.   
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A second fermentation was carried out without pH control and aeration, which resulted in 

very low glucose uptake and cell biomass growth. A small amount of BD (less than 20 g/L), lactic 

acid, and ethanol were produced (data not shown here). A third fermentation was carried out 

without pH control and with the two-stage aeration scheme which supplied 1vvm aeration for first 

8 h of fermentation (until optical density of the fermentation broth reached >2.0) to facilitate 

maximum cell biomass yield, followed by 0.33 vvm aeration to facilitate BD production (Ji et al., 

2009). Figure 8.8 shows that the initial pH of the fermentation medium gradually decreased from 

7.0 to 5.3 due to production of organic acids, such as lactic acid and acetic acid, and, interestingly, 

remained almost constant at 5.3 throughout the fermentation. During the first stage, a majority of 

glucose was utilized for cell growth and organic acid production; BD production started after 6 h 

of fermentation characterized by rapid glucose utilization. BD yield per gram glucose consumed 

remained constant over the entire fermentation; even after feeding. However, productivity 

significantly decreased due to slow glucose utilization, and thereby slow BD formation after 

glucose feeding was started. Additionally, BD and total product formation showed similar trends 

after the first feeding indicated that BD was the major product being formed during the later stages 

of fermentation. Cell biomass production (multiplication of bacterial cells) remained constant 

around 0.02 g/g until the final feeding in which cell biomass yield per gram glucose decreased to 

0.016 g/g. A third feeding was performed at 121 h of fermentation, but little to no glucose uptake 

was observed (data not shown). Maximum BD titer achieved from this fermentation was 65.2 g/L.  

A fourth fermentation was carried out with constant aeration and without pH control. 

Figure 8.9 shows that BD yield significantly increased reaching 0.47 g/g glucose consumed; 94% 

of the theoretical maximum yield (Jansen et al., 1984). The higher BD yield was due to a lower 

formation of byproducts, and thereby leading to smaller difference between BD yield and total 
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product yield compared to the previous experiment (Figure 8.8). The cellular growth was rapid 

during the first 22 h of fermentation, and the total cell mass concentration remained constant 

thereafter. This lead to a significant decrease in biomass yield per gram glucose consumed in 

subsequent stages of fermentation. In addition, BD productivity significantly decreased in each 

subsequent feeding process because of the reduced substrate uptake rate. The BD productivity and 

yield decreased by 23% and 9%, respectively, from the second to the third feeding, during which 

BD titer increased by only 4%, indicating that the third feeding was not beneficial. Therefore, two 

feedings was optimum for this fermentation; two feedings produced a final BD titer of 79.4 g/L, 

yield of 0.47 g/g glucose consumed, and productivity of 0.79 gL-1h-1. The final BD titer and 

productivity for two feedings in 7-L bioreactor (Figure 8.9) was similar to the third feeding in the 

shake-flask fermentation (Figure 8.5a); however, BD yield in 7-L fermenter was significantly 

higher than the shake-flask fermentation.  

 Comparison of glucose and xylose media for BD fermentation in 7-L bioreactor 

Previous fermentations performed using the 7-L bioreactor (mentioned earlier) determined 

that 1 vvm aeration without pH control at 37°C and 200 rpm were the optimal conditions for BD 

fermentation using a 7% (w/v) initial sugar concentration. Glucose and xylose media were 

separately evaluated and compared for BD fermentation in 7-L bioreactor at the optimized 

condition. Figure 8.10 shows that both BD yield and productivity were significantly greater in 

glucose medium compared to xylose medium, but total product yields were not significantly 

different indicating that a higher amount of byproduct formation occurred using the xylose media. 

In xylose medium, acetoin was the major byproduct (5.1 g/L1), followed by acetic acid (3.1 g/L) 

and a small amount of lactic acid and ethanol; whereas, lactic acid (4.5 g/L) was the major 

byproduct with small amount of acetoin, acetic acid, and ethanol in the glucose medium. Cell 
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biomass yield per gram of sugar consumed was significantly higher using the xylose medium 

compared to the glucose medium due to a longer fermentation time and a slower but continuous 

biomass growth. However, maximum specific growth rate (µmax) was significantly greater using 

the glucose medium compared to the xylose medium; µmax for glucose and xylose medium were 

2.08 h-1and 1.0 h-1, respectively. 

Use of 7-L bioreactor with a 5 L working volume resulted in higher BD yield, but lower 

productivity in both glucose and xylose medium at 7% initial sugar concentration as compared to 

shake-flask with 50 ml working volume. In glucose medium, BD yields were 0.47 g/g and 0.43 

g/g glucose consumed, and productivities were 0.91 gL-1h-1 and 1.03 gL-1h-1 in bioreactor and 

shake-flask fermentation, respectively. Similarly, in xylose medium, BD yields were 0.43 g/g and 

0.36 g/g xylose consumed, and productivities were 0.55 gL-1h-1 and 0.64 gL-1h-1 in bioreactor and 

shake-flask fermentation, respectively. This indicated that there is an opportunity to improve the 

fermentation process to achieve a higher BD productivity and yield at bioreactor level.                

 Conclusions  

Glucose was the best medium for 2,3-butanediol (BD) fermentation using Klebsiella 

oxytoca ATCC 8724, followed by xylose, and the mixed sugar was the least efficient medium in 

terms of BD concentration, yield, and productivity. Biomass-derived sugars are as efficient as 

synthetic sugars at low (2.5%, w/v) total sugars concentration; however, higher total sugar 

concentration in biomass hydrolyzate resulted in a simultaneous increase in the concentration of 

inhibitory compounds, including acetic acid, and thereby hindering xylose utilization. The xylose 

utilization rate using detoxified biomass hydrolyzate with high total sugars (8%, w/v) was similar 

to the synthetic sugars solution, indicating that detoxification of biomass hydrolyzate is vital for 

BD fermentation. At the optimized fermentation conditions, high BD titer (91g/l) was obtained in 
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a fed-batch process using glucose medium; however, fed-batch with mixed sugars was not 

beneficial. Development of an appropriate biomass processing technology capable of separating 

the different sugar streams would be highly valuable for efficient BD fermentation. 
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Figure 8.1 Some important derivatives of 2,3-butanediol, and their potential applications (Qi 

et al., 2014; Li et al., 2013; Ji et al., 2011; Celinska and Grajek, et al., 2009). 
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Figure 8.2 Different metabolic routes of glucose and xylose metabolism during 2,3-buanediol 

fermentation (Han et al., 2012; Celinska and Grajek et al., 2009; Jansen et al., 1984).   
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Figure 8.3  2,3-butanediol fermentation in shake-flasks with Klebsiella oxytoca ATCC 8724 

using glucose, xylose and mixed sugars media with different initial sugars concentrations. 

Fermentation was carried out in 500-ml flask with 50 ml working volume at 37°C and 200 rpm. 

Data are average values of triplicate experiments, and error bars represent sample standard 

deviation. 
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Figure 8.4  2,3-butanediol fermentation in shake-flasks with Klebsiella oxytoca ATCC 8724 

using various media and different initial sugars concentrations. Control = Synthetic sugars 

solution containing glucose and xylose. Fermentation was carried out in 500-ml flask with 50 ml 

working volume at 37°C and 200 rpm. Data are average values of triplicate experiments, and error 

bars represent sample standard deviation. 
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Figure 8.5 Fed-batch process for 2,3-butanediol fermentation in shake flask using Klebsiella 

oxytoca ATCC 8724 in glucose and xylose media. Fermentation was carried out in 500-ml flask 

with 50 ml working volume at 37°C and 200 rpm. Data are average values of triplicate 

experiments, and error bars represent sample standard deviation.    
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Figure 8.6 Fed-batch process for 2,3-butanediol fermentation in shake flask using Klebsiella 

oxytoca ATCC 8724 in biomass hydrolyzate and control media. Control = Synthetic sugars 

solution containing glucose and xylose. Fermentation was carried out in 500-ml flask with 50 ml 

working volume at 37°C and 200 rpm. Data are average values of triplicate experiments, and error 

bars represent sample standard deviation.    
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Figure 8.7 Fed-batch process for 2,3-butanediol fermentation using Klebsiella oxytoca ATCC 

8724 in glucose medium with pH control at 6.8±0.2, and 1vvm aeration. Fermentation was 

carried out in 7-L bioreactor with 5 L working volume at 37°C and 200 rpm. Data are average 

values of duplicate experiments, and error bars represent sample standard deviation.    
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Figure 8.8 Fed-batch process for 2,3-butanediol fermentation  using Klebsiella oxytoca ATCC 

8724 in glucose medium without pH control, and 1vvm aeration for first 8 h, followed by 0.33 

vvm for rest of fermentation process. Fermentation was carried out in 7-L bioreactor with 5 L 

working volume at 37°C and 200 rpm. Data are average values of duplicate experiments, and error 

bars represent sample standard deviation.    
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Figure 8.9 Fed-batch process for 2,3-butanediol fermentation using Klebsiella oxytoca ATCC 

8724 in glucose medium without pH control, and 1vvm aeration. Fermentation was carried out 

in 7-L bioreactor with 5 L working volume at 37°C and 200 rpm. Data are average values of 

duplicate experiments, and error bars represent sample standard deviation.    



 

200 

 

 

Figure 8.10 2,3-butanediol fermentation using Klebsiella oxytoca ATCC 8724 in glucose and 

xylose media. Fermentation was carried out in 7-L bioreactor with 5 L working volume, 1 vvm 

aeration, 200 rpm, without pH control, and at 37°C. Data are average values of duplicate 

experiments, and error bars represent sample standard deviation.    
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Chapter 9 - Efficient production of 2,3-butaneidol from multiple 

sugars sources using Bacillus licheniformis DSM 8785  

 Abstract 

  2,3-butanediol (BD) is an advanced biofuel and promising platform chemical with 

enormous potential for conversion to industrial chemicals. Microbial production of BD has 

recently attracted global attention; however, most of the promising BD producing microbes 

reported so far are pathogenic (biosafety level 2) including Klebsiella oxytoca, which is not 

desirable for commercial bulk chemical production. In this study, a non-pathogenic (biosafety 

level 1) organism, Bacillus licheniformis DSM 8785, was evaluated for BD production from both 

synthetic and biomass-derived sugars. The fermentation conditions optimized in our earlier study 

for Klebsiella oxytoca ATCC 8724 were used for B. licheniformis as well for the comparative 

evaluation of this culture in different sugar media. The results showed that B. licheniformis utilized 

both glucose and xylose from synthetic sugars medium; however, poor fermentation performance 

resulted from using a medium containing a mixture of glucose and xylose leading to a reduced BD 

productivity. Glucose medium generated a significantly higher BD productivity (2.23 gL-1h-1) 

compared to the xylose medium (1.58 gL-1h-1). The mixed sugars medium with glucose and xylose 

in a 2:1 ratio had the lowest productivity (0.91 gL-1h-1). BD production using the sorghum stalk 

hydrolyzate with 4% total sugar was as efficient as synthetic sugars; limited BD production was 

achieved using hydrolysates containing higher sugar concentrations (8%, w/v, total sugars). 

Sorghum stalk hydrolyzates containing a higher total sugar content were challenging to utilize due 

to poor xylose consumption. The culture was unable to utilize xylose in detoxified wood 

hydrolyzate with an 8% (w/v) total sugar concentration as well, which indicated that the biomass 

hydrolyzate with higher total sugars is not an appropriate medium for efficient BD fermentation 



 

202 

 

using B. licheniformis, unless an appropriate biomass processing technology is developed to obtain 

separate cellulose and hemicellulose streams. The highest BD titer obtained from fed-batch 

fermentation using glucose medium in 7-L bioreactor was 11.5% (w/v) after four feedings, but the 

productivity suffered (0.48 gL-1h-1); two glucose feedings was the optimum fed-batch process in 

which final  BD titer, yield and productivity were 8% (w/v), 0.49 g/g glucose, and 0.94 gL-1h-1, 

respectively. As compared to K. oxytoca, the B. licheniformis culture had 2.2 and 2.5 times greater 

BD productivity using glucose and xylose medium, respectively, but was less efficient in biomass 

hydrolyzate containing 8% or total sugars. This study determined that efficient BD production is 

possible using a non-pathogenic organism from single sugar medium; a discovery for potential 

future BD development.   

Keywords: 2,3-butanediol, Bacillus licheniformis, fed-batch fermentation, biomass 

hydrolyzate        

 Introduction 

2,3-butanediol (BD) is an important platform chemical with wide industrial applications as 

chemical feedstocks and liquid fuels, as shown in Figure 8.1 (Celińska & Grajek, 2009; Ji et al., 

2011; Li et al., 2013; Qi et al., 2014). The microbial BD production started more than a century 

ago; however, most of the robust BD producing organisms reported so far, including Klebsiella 

oxytoca, Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescents, belong to 

biosafety level 2 (pathogenic) (Jurchescu et al., 2013). A number of nonpathogenic strains, 

including Paenibacillus polymyxa, Bacillus subtilis, Bacillus licheniformis and Bacillus 

amyloliquefaciens, also produce BD; however, their BD fermentation efficiency is very low 

compared to biosafety level 2 organisms (Ji et al., 2011). Recently, some strains of Bacillus 

licheniformis were reported as promising bacterial strains for BD production (Jurchescu et al., 
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2013; Li et al., 2014). In addition, most of the research on microbial production of BD so far has 

used food-based materials, including glucose and sucrose, as feedstocks, which possesses a threat 

to food security (Ji et al., 2011). Lignocellulosic biomass is a sustainable feedstock for biofuels 

and biochemicals production using conversion routes as shown in Figure 1.3. Studies on BD 

fermentation from biomass derived sugars are limited. In addition, high BD titer is desirable in 

fermentation broth to reduce downstream processing cost but batch fermentation is limited due to 

substrate inhibition at the high initial sugar concentrations needed to achieve high BD titer. Fed-

batch fermentation is an appropriate approach to meet high titer without the limitations of substrate 

inhibition. Thus, the objective of this study was to evaluate the use of Bacillus licheniformis DSM 

8785, a biosafety level 1 microorganism, to produce BD using different substrates, including 

synthetic sugars and biomass-derived sugars over various concentrations, and use fed-batch 

fermentation to achieve high BD titer. BD fermentation efficiencies of this culture was compared 

with that of Klebsiella oxytoca ATCC 8724.    

 Materials and methods 

 Microorganisms 

The Bacillus licheniformis DMS8785 culture procured from Leibniz Institute DSMZ—

German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, was used in 

this experiment. The culture was revived in nutrient broth medium and several stock culture tubes 

were prepared comprising 0.5 ml each revived culture and 30% (v/v) sterilized glycerol. The stock 

culture were stored at -80°C until used for inoculum preparation.   

 Preparation of biomass hydrolyzate  

Sorghum stalk hydrolyzate and wood (poplar) hydrolyzate were prepared using the 

protocol explained in Chapter 8 under “Preparation of biomass hydrolyzate” sub-section.     
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 Inoculum preparation  

A study on the growth curve of the bacteria, Bacillus licheniformis, was first performed. A 

0.3 ml stock culture was added to 100 ml sterilized (at 121°C for 15 min) nutrient broth medium 

in 1000-ml flask and incubated in temperature-controlled shaker (Innova 4300, New Brunswick 

Scientific, NJ, USA) at 30°C and 200 rpm. Around 0.3 ml sample were taken every 2 h to measure 

optical density at 600 nm until 30 h. The measured optical density was plotted against fermentation 

time to find the optimum inoculum preparation time; that is, half way between beginning and end 

of the exponential growth phase. The results showed (see Result and discussion section) that 6 to 

7 h was the optimum incubation time for inoculum preparation in nutrient broth medium. 

Therefore, inoculum was prepared by inoculating 0.3 ml stock culture in 100 ml sterilized nutrient 

broth medium in 1000-ml flask, and incubated at 30°C and 200 rpm for 7 h. The inoculum were 

directly added in fermentation medium at the rate of 5% (v/v) of total fermentation medium 

volume.  

 Fermentation  

 Shake-flask 

Shake-flask fermentations were carried out in 500-ml flasks with a 50 ml working volume. 

The media for shake-flask fermentation were prepared using specific concentrations of synthetic 

sugars (glucose, xylose or mixed sugars) or biomass hydrolysates with supplemented nutrients. 

The supplementary nutrients for Bacillus licheniformis (per liter): 5 g yeast extract, 5 g bacto 

tryptone, 7 g dipotassium phosphate, 5.5 g monopotassium phosphate, 1 g ammonium sulfate, 0.25 

g magnesium sulfate heptahydrate, 0.12 g sodium molybdate dihydrate, 0.021 g calcium chloride 

dihydrate, 0.029 g cobalt nitrate hexahydrate, and 0.039 g ferrous ammonium sulfate hexahydrate. 

Trace elements (per liter): 0.002 g nicotinic acid, 0.172 mg sodium selenite, 0.037 mg Nickel (II) 
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chloride hexahydrate, 0.005 g manganese chloride tetrahydrate, 0.001 g Boric acid, 0.172 mg 

aluminum potassium sulfate dodecohydrate,  0.01 mg Copper(II) chloride dihydrate, and 0.00554 

g disodium ethylenediaminetetraacetate (Jurchescu et al., 2013). The sugar solutions and biomass 

hydrolyzates were autoclaved at 121°C for 15 min in the 500-ml flasks. Once cool, a 10x 

concentrated nutrient solution was filter sterilized (0.22 µm, Millipore) and added aseptically 

(10%, v/v) to each flask. The freshly prepared inoculum were added to each flask and incubated 

in temperature-controlled shaker at 30°C and 200 rpm. 0.5 ml sub-samples were obtained over the 

fermentation time to measure the products and residual sugars. Filter sterilized concentrated sugar 

solutions were used as feeding medium for fed-batch fermentation.     

 Bioreactor scale-up  

The fermentation medium evaluated in the batch-flask study were scaled up to a 7-L 

bioreactor (Bioflo 110, New Brunswick Scientific Inc., Enfield, Connecticut, USA) with a 5 L 

working volume. The fermenter with 3,750 ml sugar solution containing sugars in the amount 

sufficient to make the desired sugars concentration in final 5 L fermentation medium were 

autoclaved at 121°C for 30 min. Three autoclavable sample bottles were fitted with the fermenter 

before autoclave: one bottle contained 10% (w/v) sodium hydroxide solution, other contained 

antifoam and third was used to pump sterilized nutrient solution and inoculum. One liter nutrient 

solution with required nutrients in the amount sufficient for 5 L fermentation medium was filter 

sterilized (Millipore, 0.22 µm) and pumped into the sterilized fermenter. The fermentation process 

was optimized for pH and aeration using 200 rpm agitation and 30°C temperature to maximize BD 

concentration, yield per gram sugar and productivity. Around 10 ml samples were drawn 

periodically to measure biomass growth, products formation and sugar consumption. Filter 
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sterilized concentrated sugars solution were added at desired time to carry out the fed-batch 

fermentation process. 

 Analytical and statistical methods 

The analytical methods to analyze monosaccharides (glucose, xylose and arabinose), and 

fermentation products/byproducts used in “Analytical methods” sub-section in Chapter 8 were 

followed in this study. Similarly, statistical methods used in Chapter 8 was followed in this study.    

 Results and discussion 

 Growth curve study for the optimization of inoculum preparation time   

Figure 9.1 shows that the Bacillus licheniformis DSM 8785 in 7% (w/v) glucose medium 

had no growth period (lag phase) for first 4 h, slow growth period (initiation of log phase) from 4 

to 6 h, exponential growth period (log phase) from 6 to 14 h, second slow growth period (initiation 

of stationary phase) from 14 to 16 h, and finally no growth period after 16 hour (stationary phase). 

We observed a similar growth curve in nutrient broth medium, but log phase started at 4 h (data 

not shown here). These results indicate that the optimum inoculum preparation time is 6 to 7 h for 

nutrient broth medium, and 8 to 10 h for 7% (w/v) glucose medium.      

 Optimization of initial pH of fermentation medium  

Our earlier study using Klebsiella oxytoca ATCC 8724 culture (Chapter 8) showed that the 

initial pH of fermentation medium dropped from around 7 to 5.3, and remained fairly constant 

throughout the fed-batch experiment; 2,3-butanediol (BD) production initiated only after the pH 

dropped below 6  (Figure 8.8). Different researchers reported different optimum pH for BD 

fermentation depending upon the microorganisms and substrate used; however, the majority of 

them reported that a pH 5 to 6 is the optimum for efficient BD production (Celińska & Grajek, 

2009). On the other hand, Jurchescu et al. (2013) reported that an initial neutral pH and no pH 
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control during fermentation resulted in an efficient BD fermentation using Bacillus licheniformis 

DSM 8785, which was consistent with our earlier work using Klebsiella oxytoca ATCC 8724 

(Chapter 8). We, therefore, evaluated the glucose medium with two different initial pH values (5.5 

and 7.0), and with no pH adjustment during the fermentation process. 

Figure 9.2 shows that the medium with an initial pH of 7.0 resulted in a significantly higher 

glucose uptake rate leading to a higher titer and productivity compared to an initial pH of 5.5.  

Faster cell growth and organic acids (acetic acid and lactic acid) formation was observed during 

the first 6 h of fermentation at a pH of 7.0 compared to a pH of 5.0. This led to lower BD yield 

and higher total products (BD, acetic acid, lactic acids, acetoin, and ethanol) yield per gram sugar 

consumed in the medium with an initial pH of 7.0. These results indicate that an initial pH of 7.0 

results in greater cell growth and subsequently in improved BD production.        

         2,3-Butanediol fermentation in shake-flask using different sugar sources  

The sugar concentration optimized for Klebsiella oxytoca ATCC 8724 in our earlier study 

(Chapter 8) was used for Bacillus licheniformis DSM 8785 as well; the optimum sugar 

concentrations were 7% (w/v) for the single sugar medium and 9% for the mixed sugar medium. 

Therefore, a 7-8 % single sugar (glucose/xylose) medium, and a 9-10% for mixed sugars medium 

comprising glucose and xylose in a 2:1 ratio were used in this study. In addition, two types of 

sorghum stalk hydrolyzates with 4% and 8% total sugar concentrations were evaluated in this 

study.  

Figure 9.3 shows that the glucose uptake rate was almost 50% greater compared to the 

xylose uptake rate leading to significantly higher BD productivity in glucose medium compared 

to xylose. Cell mass growth and byproduct (acetic acid, lactic acid, ethanol, and acetoin) formation 

were also significantly higher in the glucose medium compared to xylose. This resulted in a lower 
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final BD titer and BD yield per gram sugar consumed in glucose medium; the opposite was 

observed for total products (including BD) yield. The mixed sugar medium was significantly less 

efficient for BD production compared to the single sugar media in terms of both yield and 

productivity. The major problem in mixed sugar medium was the lack of simultaneous utilization 

of glucose and xylose because of the carbon catabolic repression of glucose for xylose utilization 

(Ji et al., 2011). These results indicated that the mixed sugar medium is not appropriate for efficient 

BD fermentation using B. licheniformis.  Using the biomass hydrolyzate with 4% total sugars, both 

glucose and xylose sugars were utilized for BD fermentation, but at reduced rate compared to the 

pure sugar mixtures; however, the xylose was not utilized significantly in biomass hydrolyzate 

with a higher total sugar concentration of  8% (w/v). One possible explanation for the different 

behavior in sugar utilization between these two biomass hydrolyzates could be the higher 

concentration of acetic acid in the hydrolysates with 8% total sugar (around 3 g/L) compared to 

hydrolysates with 4% total sugar (less than 0.5 g/L). Acetic acid is produced during hydrolysis of 

biomass hemicellulose, and it is an inhibitory compound for microbial fermentation (Hu & 

Ragauskas, 2012). Detoxification of biomass hydrolyzate is essential to remove these inhibitory 

compounds. For the hydrolysates containing 8% total sugar, BD productivity was calculated over 

24 h of fermentation because almost all glucose was consumed in 24 h of fermentation, but xylose 

was not significantly consumed in this medium. On the other hand, BD productivity was calculated 

over 18 h of fermentation in the hydrolysates containing 4% total sugars hydrolyzate, during which 

both glucose and xylose were completely utilized. This led to a significantly lower BD productivity 

in hydrolysates containing 4% total sugars because of the slow xylose utilization.      
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 2,3-Butanediol fermentation in a 7-L bioreactor using different sugar sources 

The fermentation process performed for shake-flask fermentation with 50 ml working 

volume was scaled up to a 7-L bioreactor with a 5 L working volume. In this study, two types of 

biomass hydrolyzates and single sugar media containing either synthetic glucose or xylose were 

evaluated and compared. Sorghum biomass hydrolyzate were prepared from alkali pretreated 

sorghum stalks using 12% (w/v) solid loading to achieve a total sugar concentration of 8% (w/v). 

Concentrated poplar wood biomass hydrolyzate were obtained from Technology Holding LLC 

(Salt Lake City, Utah, USA) and prepared by diluting to a total sugar concentration of 8% (w/v).  

In this study, fermentation conditions optimized for K. oxytoca ATCC 8724 were used for 

B. licheniformis DSM 8724. Figure 9.4 shows that the glucose uptake rate is significantly higher 

than the xylose uptake rate; this resulted in a BD productivity in glucose medium that was almost 

double the productivity using the xylose medium. Surprisingly, product yield per gram of sugar 

consumed in glucose medium was less than for xylose medium because of higher cell biomass 

formation. The single sugar BD production efficiencies were similar to results from the 7-L 

bioreactor and shake-flask fermentations; however, final BD concentration, productivity and yield 

in 7-L bioreactor were significantly lower than the shake-flask fermentations for both glucose and 

xylose media. These results indicate that BD fermentation conditions, including pH, aeration, and 

substrate concentration, for B. licheniformis DSM 8785 can be further improved to increase BD 

concentration, productivity and yield in 7-L bioreactor, at least equal to the shake-flask production 

efficiency.  

For biomass hydrolyzate media, xylose utilization was minimal in both the sorghum and 

wood hydrolyzate. The 7–L bioreactor results for the sorghum hydrolyzates were similar to the 

shake-flask fermentations. The inability of the culture to utilize xylose in detoxified wood 
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hydrolyzate medium showed that our assumptions for sorghum hydrolyzate medium based on 

shake-flask fermentation results were not completely valid. Shown in Figure 9.3, xylose was 

completely utilized in the sorghum hydrolysates containing 4% total sugars with a low acetic acid 

content (less than 0.5 g/L); this was not true for the 8% total sugars hydrolysate with a high acetic 

acid content (around 3 g/l). Therefore, we assumed that acetic acid was the major inhibitory 

compound for inability of the culture to utilize xylose. For the wood hydrolysates, the opposite 

was observed; the culture did not utilize xylose from hydrolyzate containing low acetic acid 

content (less than 0.5 g/L). The supplier claimed that they detoxified the wood hydrolyzate to 

remove potential inhibitory compounds. Due to this, other inhibitory compounds may be present 

including but not limited to hydroxymethylfurfural (HMF), furfural, acetic acid and phenolics. 

Alternatively, B. licheniformis DSM 8785 utilized xylose from biomass hydrolyzate if glucose was 

depleted from the medium before the bacteria reached stationary phase of its growth cycle (14 h 

or less), but did not utilize xylose if the glucose was depleted from the medium after the bacterial 

reached its stationary phase (after 16 h); this was not true for the medium containing synthetic 

sugars. These results indicate that biomass hydrolysates containing a mixture of glucose and xylose 

in high concentrations is not an appropriate medium for efficient BD fermentation using B. 

licheniformis DSM 8785, despite the high production efficiency observed from BD fermentation 

with single sugar media. Therefore, appropriate biomass processing technology should be 

developed to separate cellulose and hemicellulose from biomass to generate separate streams of 

glucose and xylose. Further research is required to evaluate the BD fermentation efficiencies of 

this culture in separate cellulose and hemicellulose streams from biomass sources.   
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 Fed-batch fermentation in 7-L bioreactor using glucose medium 

Fed-batch fermentation process was carried out in 7-L bioreactor with a 5 L working 

volume using glucose medium for B. licheniformis DSM 8785 culture to produce a high titer of 

BD for efficient downstream processing. Figure 9.5 shows that the rate of glucose uptake was 

highest during the first phase of the fermentation process (before glucose feeding), and gradually 

decreased in subsequent feedings leading to a gradual decrease in BD productivity. The final BD 

titer achieved was 11.5% (w/v) after the fourth feeding with a BD yield of 0.46 g/g glucose 

consumed; productivity was reduced from 1.83 gL-1h-1 to 0.48 gL-1h-1. Here, we need to tradeoff 

between BD titer, yield and productivity to find the optimum fermentation approach. Based on 

these data, BD fed-batch fermentation with two feedings is promising since it generates a BD titer 

of 8% (w/v), BD yield 0.49 (98% of theoretical maximum value), and BD productivity 0.94 gL-

1h-1. There is still opportunity for further optimization of the fermentation parameters, including 

the initial glucose concentration, pH, and aeration, for more efficient BD fermentation, at least 

equal to that of shake flask fermentation for this culture. This indicates that B. licheniformis DSM 

8785 is an efficient bacteria for BD production from single sugar medium; further research is 

needed to improve the fermentation performance using mixed and biomass-derived sugars.      

 Comparison of B. licheniformis DSM 8785 and K. oxytoca ATCC 8724  

K. oxytoca ATCC 8724 is one of the most robust BD fermenting bacteria but is classified 

as a biosafety level 2 microorganism, while B. licheniformis DSM 8785 is a nonpathogenic BD 

fermenting bacteria. The two bacterial cultures were evaluated using different fermentation media 

with the same initial sugar concentrations and agitation in shake-flask fermentation. In addition, 

these cultures were compared using fed-batch fermentation in glucose medium at same 
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fermentation conditions, including, pH, aeration, agitation and initial glucose concentration in 7-

L bioreactor with a 5 L working volume.   

Table 9.1 shows that B. licheniformis had significantly higher substrate uptake rate and 

thereby higher BD productivity in all media compared to K. oxytoca, except sorghum hydrolyzate 

with 8% (w/v) total sugars. No specific trend was observed in BD yield per gram sugar consumed 

between these two cultures. That is, a different media was preferred by each type of culture; hence, 

different BD fermentation performance was observed. Despite their differences in BD 

fermentation efficiency, some similarities were observed between these two cultures: (1) glucose 

was the best medium for efficient BD fermentation followed by xylose and mixed sugars; (2) lack 

of simultaneous utilization of glucose and xylose in the mixed sugars medium due to the carbon 

catabolic repression of glucose for xylose utilization was the main obstacle for reduced efficiency 

in the mixed sugar fermentation; and (3) xylose from non-detoxified sorghum stalk hydrolyzate 

was utilized if the total sugar concentration was 4% (w/v) or less; this was not true for sorghum 

stalk hydrolyzate with a total sugar concentration 8% (w/v) or more. One significant difference 

between these two cultures was utilization of xylose in detoxified wood hydrolyzate containing 

8% total sugars. These results show that removal of acetic acid and other inhibitory compounds 

from biomass hydrolyzate resulted in improved fermentation performance comparable to that of 

synthetic sugars for K. oxytoca, but this was not true using B. licheniformis. Therefore, 

development of appropriate biomass technology to fractionate cellulose and hemicellulose into 

different sugar-rich streams is necessary for efficient BD fermentation using B. licheniformis; such 

approach would also improve BD fermentation efficiency while using K. oxytoca culture. 

 The fed-batch BD fermentation in glucose medium was more efficient using B. 

licheniformis culture (Figure 9.5) compared to K. oxytoca culture (Figure 8.9). Final BD titer was 
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11.5% and 8.2% (w/v) in B. licheniformis and K. oxytoca, respectively. Two feedings was 

optimum for both cultures based on BD concentration, yield and productivity, in which BD titer 

was equal (around 8%, w/v) in both cultures, but BD productivities and yields for B. licheniformis 

and K. oxytoca were 0.94 gL-1h-1 and 0.79 gL-1h-1, and 0.49 g/g and 0.47 g/g sugar consumed, 

respectively.  The fed-batch fermentation results also showed that B. licheniformis is a more 

efficient producer of BD compared to K. oxytoca for BD fermentation while using single sugar 

media.       

 Conclusions  

2,3-butanediol (BD) productivity using Bacillus licheniformis DSM 8785 in glucose, 

xylose and mixed sugars media were, 2.23 gL-1h-1, 1.58 gL-1h-1, and 0.91 gL-1h-1, respectively. The 

culture can utilize both glucose and xylose in biomass-derived sugars with a total sugar 

concentration of 4% (w/v); poor performance was observed with hydrolysates containing a total 

sugar concentration of 8% (w/v) or higher. The highest BD titer obtained from fed-batch 

fermentation using glucose medium in 7-L bioreactor was 11.5% (w/v); however, substrate uptake 

rate and BD productivity reduced with each subsequent feeding cycle. The BD productivity using 

B. licheniformis was 2.2 and 2.5 times greater than K. oxytoca in the glucose and xylose medium, 

respectively. Results from this study show that efficient BD production using a non-pathogenic 

organism and a single sugar medium is promising; however, an appropriate biomass processing 

technology is needed to separate cellulose and hemicellulose streams for efficient BD 

fermentation.  
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Figure 9.1 Growth curve of Bacillus licheniformis DSM 8785 in 70 g/L initial glucose medium 

with supplement nutrients in shake-flask (50 ml working volume in 500-ml flask) at 30°C 

and 200 rpm. Data are average values of triplicate experiments, and error bars represent sample 

standard deviation.   

 

 

 

Figure 9.2 2,3-butanediol fermentation using Bacillus licheniformis DSM 8785 in glucose 

medium with different initial pH. Fermentation was carried out in shake flask (50 ml working 

volume in 1000-ml flask) at 30°C and 200 rpm. Data are average values of triplicate experiments, 

and error bars represent sample standard deviation.     
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Figure 9.3 2,3-butanediol fermentation in shake-flasks using Bacillus licheniformis DSM 

8785 in various media with different initial sugars concentration. Fermentation was carried 

out at 30°C and 200 rpm with 50 ml working volume in 1000-ml flask. Data are average values of 

triplicate experiments, and error bars represent sample standard deviation. 
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Figure 9.4 2,3-butanediol fermentation in batch bioreactor using Bacillus licheniformis DSM 

8785 in various media with different initial sugars concentration. Fermentation was carried 

out in 7-L bioreactor with 5 L working volume, 1vvm aeration, 200 rpm, without pH control, and 

at 30°C. Data are average values of duplicate experiments, and error bars represent sample 

standard deviation. 
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Figure 9.5 Fed-batch process for 2,3-butanediol fermentation in fermenter using Bacillus 

licheniformis DSM 8785 in glucose medium. Fermentation was carried out in 7-L bioreactor with 

5 L working volume, 1vvm aeration, 200 rpm, without pH control, and at 30°C. Data are average 

values of duplicate experiments, and error bars represent sample standard deviation. 
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Table 9.1 Comparison of two bacteria cultures for 2,3-butanediol production using different 

fermentation media.   

Fermentation 

medium 
Culture 

Conc. 

(g/L) 

Yield   

(g/g sugar 

consumed) 

Productivity 

(gL-1h-1) 
Remarks 

Glucose           

(7 - 8%, w/v) 

B.l. 26.8 ± 0.3e 0.42 ± 0.00b 2.23 ± 0.03a 
 Fermentation time: 12 h for 

B.l. and 24 h for K.o. K.o. 28.2 ± 0.1d 0.43 ± 0.01b 1.03 ± 0.03c 

Xylose             

(7 - 8%, w/v) 

B.l. 28.4 ± 0.5d 0.44 ± 0.01a 1.58 ± 0.03b 
 Fermentation time: 18 h for 

B.l. and 36 h for K.o. K.o. 23.1 ± 0.7g 0.36 ± 0.02d 0.64 ± 0.02f 

Mixed sugars 

(9 - 10%, w/v) 

B.l. 32.7 ± 0.5b 0.32 ± 0.01e 0.91 ± 0.01d  Fermentation time: 36 h for 

B.l. and 60 h for K.o. K.o. 29.8 ± 0.9c 0.35 ± 0.01d 0.50 ± 0.01h 

Sorghum 

hydrolyzate  

(3 - 4%, w/v) 

B.l. 10.0 ± 0.3j 0.26 ± 0.00f 0.56 ± 0.02g 
 Fermentation time: 18 h for 

both cultures  

 Biomass hydrolyzate used 

for K.o. had lower total 

than that used for B.l. than  
K.o. 4.1 ± 0.2k 0.19 ± 0.00g 0.23 ± 0.01i 

Sorghum 

hydrolyzate 

(8%, w/v) 

B.l. 19.7 ± 0.9i 0.41 ± 0.01bc 0.82 ± 0.04e 
 Fermentation time: 24 h for 

both cultures  

 Both cultures did not 

utilize xylose 
K.o. 21.3 ± 0.8h 0.45 ± 0.01a 0.89 ± 0.03d 

Detoxified 

wood 

hydrolyzate 

(8%, w/v) 

B.l. 25.0 ± 0.0f 0.40 ± 0.01c 1.56 ± 0.03b 
 B.l. utilized all glucose in 

16h, and did not utilized 

xylose at all 

 K.o. utilized all glucose in 

around 30, then slowly all 

utilized all xylose in 72 h 

K.o. 34.9 ± 1.0a 0.36 ± 0.02d 0.48 ± 0.01h 

Conc. = concertation, B.l. = Bacillus licheniformis DSM 8785, K.l. = Klebsiella oxytoca ATCC 

8724. Data are average values of triplicate experiments ± sample standard deviation. Values with 

the same letters, in superscripts, within the same column are not significantly different form each 

other at p < 0.05. 
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Chapter 10 - Conclusion and future research  

 Conclusion 

  Sustainable production of biofuels and biochemicals requires an integrated approach 

including plant breeding, harvesting and handling, and conversion of diverse biomass feedstocks 

to fuels, chemicals and power. Various steps of biomass processing were evaluated, and the 

following conclusions were drawn from this doctoral research.  

1. Pelleting of biomass to better streamline handling and logistic issue results in beneficial 

effect to improve biomass pretreatment and hydrolysis efficiencies.  

2. Alkali pretreatment is more effective than acid pretreatment at same processing conditions 

for grasses and hardwood biomass resources 

3. Alkaline ethanol-isopropanol mixture and glycerol are promising solvent systems for the 

pretreatment of corn stover (grass) and poplar (hardwood), respectively.    

4. Pretreatment conditions used in this study were not effective for Douglas fir (softwood); 

appropriate processing conditions, better solvent and catalyst are required for this biomass.   

5. Each potential sorghum cultivar should be separately evaluated for each type of the brown 

midrib (bmr) mutation to develop the best sorghum line as a promising feedstock for 

biofuels and biochemicals production, with concomitant promising grain yield.  

6. Biomass hydrolyzate with separate glucose and xylose streams is beneficial for efficient 

2,3-butanediol (BD) fermentation using a non-pathogenic (biosafety level 1) bacterial 

strain, Bacillus licheniformis DSM 8785. This culture is significantly more efficient for 

BD fermentation in single sugar media than Klebsiella oxytoca ATCC 8724; the K. oxytoca 

is a better culture reported so far for BD fermentation from diverse sugars media, but they 

are pathogenic (biosafety level 2) bacteria.  
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 Future research 

1. Biomass lignin characterization 

Our study showed that reduced total lignin content in lignocellulosic biomass feedstocks 

does not necessarily improve pretreatment efficiency.  In addition, the efficient biomass 

pretreatment solvents varied from biomass to biomass. These results indicated a significant effect 

of lignin structure, and inter-unit lignin linkages on biomass pretreatment and hydrolysis 

efficiencies. Therefore, characterization of biomass lignin structure, and study of change to lignin 

structure and composition during various biomass pretreatment methods is critical to better 

understand the underlying mechanism of above variations, and develop the best pretreatment 

method for each type of biomass feedstock, including grass, hardwood and softwood biomass. The 

lignin characterization also helps evaluate the quality of extracted lignin from the alkaline 

organosolv pretreatment process we performed in this study for high value applications. The 

solution-state two dimensional heteronuclear single quantum coherence (2D 13C-1H HSQC) NMR 

is a promising technique for biomass lignin characterization (Kim and Ralph, 2010).   

2. Bioprocessing to obtained separate cellulose and hemicellulose hydrolyzates  

Our study determined a promising opportunity for efficient 2,3-butaneidol (BD) 

fermentation using a non-pathogenic (biosafety level 1) bacterial strain, Bacillus licheniformis 

DSM 8785 with very high BD productivity, which is more efficient compared to Klebsiella 

oxytoca ATCC 8724 from single sugar medium; the K. oxytoca is the a better culture reported so 

far for BD fermentation from diverse sugars media, but they are pathogenic (biosafety level 2) 

bacteria. However, the B. licheniformis is inefficient for BD fermentation from biomass 

hydrolyzates with total sugars (glucose + xylose) 8% or more. Therefore, a separate glucose and 
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xylose stream is required for efficient BD fermentation using B. licheniformis. We proposed a 

three-step pretreatment method to generate different streams for extractives, lignin, hemicellulose 

hydrolyzate and cellulose hydrolyzate as shown in Figure 10.1. The processing conditions can be 

varied depending on the biomass types. For example, the proposed condition in Figure 10.1 can 

be good for grass biomass with high extractives and non-structural sugar content, such as bmr 

sorghum. However, biomass with very low amount of water-soluble extractives, like poplar 

biomass, does not need the first pretreatment step, but requires more severe processing conditions 

for second and third pretreatment steps; for example, addition of dilute acid for second 

pretreatment step and higher temperature and/or higher NaOH concentration for third pretreatment 

step.    

 3. Detoxification of biomass hydrolyzates    

Depending on the pretreatment method and the severity of the process, a number 

degradation products are generated during pretreatment, including sugar degradation products, 

such as hydroxymethylfurfural (HFM), furfural, levulinic acid, and formic acid, and lignin 

degradation products, such as phenolics and acetic acid. In addition, acetic acid is released during 

hydrolysis of hemicellulose. These compounds are considered toxins because they inhibit sugar-

fermenting microbes. Ideally, appropriate pretreatment method can be developed to avoid or 

minimize these toxin formation; however, some of the toxins, like acetic acid from hemicellulose 

hydrolysis, are unavoidable in biomass hydrolysis. Therefore, development of appropriate 

detoxification methods to remove these toxins from biomass hydrolysis is another important area 

for future research.   
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4. Strain development for Bacillus licheniformis DSM 8785 

Our study showed that the commercial culture of Bacillus licheniformis DMS 8785 is a 

promising bacteria for BD fermentation using single sugar media. However, BD productivity 

severely decreased in mixed sugars medium because the culture could not simultaneously utilize 

both glucose and xylose sugars due to the carbon catabolic repression (CCR) of glucose for xylose 

utilization. Therefore, a bacterial strain need to be engineered to express the required gene to 

eliminate the CRC mechanism or modify the xylose metabolic pathway to avoid the effect of CCR. 

The research carried out by (Ji et al., 2011) for Klebsiella oxytoca bacteria could be followed for 

this proposed research.     
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Figure 10.1 Proposed three-step pretreatment and hydrolysis to get separate stream of 

fermentable sugars. 

 Hot water around 90°C is obtained by cooling biomass slurry after liquid-hot-water   =٭

pretreatment at around 180°C to around 95°C. 

 Warm water around 45°C is obtained by cooling biomass slurry after alkali  pretreatment =٭٭

at 95°C to around 50°C. 

S =   Separator containing 0.5 mm sieve size to separate liquid and solid fraction of biomass 

slurry without vacuum pump.  
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