$$
\begin{aligned}
& \text { by } \\
& 445
\end{aligned}
$$

THOMAS ALLEN WEBB III
B. S., Kansas state University, 1965

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1966

Approved by:


```
LD
2668
T4
1966
w 368
C.2
Document
```


TABIE OF CONTENTS

INTRODUCTION 1
FORTRAN II 4
DECISION SYSTEMS. 17
RANDOM NUMBERS 27
IMPLEMENTATION OF THE MODIFIED PROCESSOR 30
TRIAL PROGRAMS. 36
CONCLUSION. 40
FIGURES 42
APPENDIX 1 91
APPENDIX 2. 109
BIBLIOGRAPHY 137

IMTRODUCTION

Through simulation the performance of an orcanization or some part of an orcanization can be reprosented over a certain period of time (Nartin, 1961). This is accomplished by devising mathematical models representing the components of the organization and providing decision systems for these components to represent the various intermelationships. A dicital computer may bc used to proorcss through the model for various intcrvals of time, pausing at the end of each interval to compute the interactions between certain components. In this way it is possible to obtein a "simulated" history of the oreanization undcr certain specified conditions. By changing the conditions and repeating the process it is possible to compare various parameters or decision systems. In this manner it is possible to experiment with changes in an orcanization without affecting the actual organization being studicd.

Rondom variations are characteristic of many organizations. In many situotions, the randomess is so essential that the comron simplifyinc technique of using average values simply "assumes axay" the problcr. Whencver uncertainty is an essential consideration in an oremization, a method must be available to producc a. similar unccrtainty in the simulation model of the organization.

The usc of a computer in such problems depends to a sreat catcont on onc's aioility to structure a simulation in a machine or systczs lancuasc. More specifically, it depends a sreat deal
on the conformance of certain programing languages to the needs of simulation problems. For the programmer the most important need is that the language be problem oriented, since an organization will be reduced to a mathematical model.

Inherent in all organizations are many and varied decisions, 1. e. mules of action. Decisions may more accurately be described as decision systems since a single decision may be dependent on many factors. Decision systems, due to their complexities, normally occupy the greatest portion of the simulation routing. Thus, the ability of a programming language to implement decision systems is important.

Speed and efficiency are also primary factors. Spced rofers to the time required by a compiled decision system to malre the correct decision. This time must be minimized without occupying excessive amounts of computer memory.

Efficiency refers to the amount of computer memory required. Since the memory must provide room for the compiled mainline program, and many, sometimes large, areas for working and storage, the amount occupied by any one of these should be minimized. The size of the mainline program and, to a certain extent, the size of the worling areas are variable and depend upon the simulation being performed. However, since the subroutines do the bulk of the work, it seems only natural to malre them as efiicient as possible. This is true especially for the decision process.

Another important and sometimes over-looked factor, is flexibility. The process of trying several different conditions or changes within the organization is inherent to simulation. These
chamges are typically within the docision process itself. Thus, provisions should be madc to malse these chanscs in the form of data on the object level. This should reduce the need to recompile a progran each time a change must be made.

Three important factors in the sclcction of a programming language for use with simulation problems have been disoussed. They are speed, efficiency in the size of compiled programs and their subroutines, and flexibility on the object level of the compiled programs. Another requirement in Monte Carlo simulations is the ability to generate and use of random numbers ${ }^{1}$ (Fiull, 1962).

Chance variation is generally introduced into systems models by probability distributions. The distribution function may be a standard one (i.e. normal, exponential, Poisson, etc.) or an arbitrary observad distribution derived from historical data. The most important of these distributions is the rectangular or uniform distribution because any distribution may be represcnted by rendom numbers dram from a rectangular distribution by use of a probability integral transfommetion (Freund, 1963).

IBM 1620 Fortran II is not a progromming languace that satisfies all of the above needs. Thus it is the objective of this thesis to augment the Foutran II programing languasc so that the needs specified above arc satisfied.

[^0]
FORTRAN II

Fortran ("fommala translation") II is a language that closely resembles algebra (IBM, 1962). It is a programming language designed primarily for scientific and engineering calculations. Since it is problem oriented, it provides engineers with a method of communication that is more familiar, easier to learm, and easier to use than actual machine language. In this Iight, Fortran II meets one of the eforesaid qualifications for a programming language that is suited for simulation problems.

In addition, Fortran II object progiams are cenerally as ef゙ー ficient as those which might be written by an experienced programmer (IBN, 1962). A bank of efficient subroutines is included in every Fortran program. These subroutines are used throughout the entire program. The mainline program consists of branches to the subroutines. Since the subroutines occupy such an important position and malse up the majority of the object program, great pains have been taken to make them as short and as fast as possible.

In addition to speed and brevity, Fortran II is equipped with floating point capabilities. Although this is not necessary, it is convenient and maizes programing considerably easier.

Perhaps the greatest disadvantage associated with Fortran II, is the complexity of the decision process for multiple decisions. The basic element of the decision process 1s the "IF" statement which permits the programmer to change the sequence of statement execution, depending upon the value of an arithmetic expression.

The general form is:

$$
\operatorname{IF}(a) N 1, N 2, N 3
$$

where (a) is an expression, and $N 1, N 2$, and $N 3$ are statement numbers. Control is transferred to statement number $\mathbb{N} 1$, N2, or N3 depending on whether the value of (a) is less than, equal to, or greater than zero respectively (IBM, 1962). The "IF" statement will test only one decision parameter at a time.

As long as only one parameter need be tested at a time, the "If" statement is quite sufficient. However, the number of "IF" statements required increases exponentially with the number of parameters in the decision system. As an example, suppose A and B need to be tested independently. A flow diagram of the process is as in figure 1.

This means that there are nine possible configurations of the two variables. In tabular form these are as follows.

$$
\begin{aligned}
& \mathrm{A}+++-\cdots-000 \\
& \mathrm{~B}+-0+-0+-0
\end{aligned}
$$

Each possible configuration will require a seperate branch to a seperate or identical position within the program. A program following the logical flow listed above would contain the following "IF" statements:

IF (A) 11,12,13
11 IF (B) 1, 2, 3
12 IF (B) 4, 5, 6
13 IF (B) 7, 8,9

It is possible to generalize the number of possible paths as follovs:

$$
\text { Number of Paths }=3^{n} \text {, }
$$

where $n=$ the number of decision parameters. The number of "IF" statements necessary to program a decision on (n) parameters would be

$$
\sum_{i=1}^{n} 3^{i-1}
$$

This can be seen by suming the following series, representing a decision tree.

$$
1+3^{1}+3^{2}+\ldots \ldots \ldots+3^{n-1}
$$

Thus if twenty parameters are necessary, there would be 3,486,784,401 possible paths and 1,743,392,110 "IFs statements would be necessary to make the decision as to which path should be followed. In addition to this difficulty in implementing complex decisions, the mechine language programs resulting from "IF" statements are relatively slow and inefficient.

Another disadvantage to Fortran II is that random numbers are not readily available. Certainly, there are several models by which random number generators may be inserted into Fortran programs, but these are relatively time consuming if they are programmed in the Fortran language. The same models when programmed in SPS (Symbolic Programing System) are much faster and occupy much less space.

The choice of Fortran II for further study and implementation is quite logical since it is "easily implemented to problem solving applications and still compiles relatively efficient machine
language programs". It remains, however, to implement a method by Which decisions may be made more efficiently, both in terms of the memory occupied and in terms of the time necessary for execution. Implementation of an efficient "random number generator" will also be necessary.

Fortran II is capable of using "functions" or subroutines. Functions are divided into three types:

1. Library functions
a. Non-relocatable library functions
b. Relocatable library functions
2. Arithmetic statement functions
3. Fortran subprograms
a. Subprogram functions
b. Subprogram subroutines.

The most elementary type of function is the "non-relocatable" library function. These, along with the relocatable library functions, occupy the subroutine decls of the Fortran II compiler. This type of subroutine is used for the input and output functions as well as the basic arithmetic operations (such as add or multiply). They are under the control of the processor only and may not be called directly from a Fortran source program.

Non-relocatable library functions occupy a fixed area in core storage. They will be present in all Fortran programs and in the same location unless the processor is changed. These subroutines may be changed only with direct changes to the processor. It would be better to rewrite the entire processor than to attempt to pork at the level of the "non-relocatable" library function. The rewards
for direct work on the processor would be about the same for a greater investment in time and effort. Hereafter, when reference is made to library functions, it will be to the exclusion of the non-relocatable variety.

Relocatable library functions will be compiled into the object program only if they are called from within the source program (with the exception of the exponential and logarithm library functions), and they will not occupy a fixed location. Certain functions, for instance the square root function, are not always required and would only occupy space in the computers memory. These are included as relocatable library functions so that core storage is not needlessly taken up.

Library functions are preprogramed and exist in a prepared deck, referred to as the subroutine deck of Fortran II. Instead of appearing in the object program every time they are called, they appear only once and only if they are called. They may be called by including the name of the function in an arithmetic statement within the source program. The name is followed by a single argument enclosed in parentheses which may be a constant, a variable (subscripted or not subscripted), or an expression.

An example of a statement which will call two of the library functions, Viz, SINF and SQRTF, is:

$$
Y=A-\operatorname{SINF}\left(B^{*} \operatorname{SQRTF}(C)\right) .
$$

In this case, the assembled instructions of the object program will:

1. Branch to the square root subroutine to compute the value
of the square root of C.
2. Multiply the value of the square root of C by B.
3. Branch to the SINE subroutine to compute the value of the sine of the product.
4. Subtract this value from A.
5. Replace the present value of X with the value obtained in step 4.
only one value is produced by a library function and only one value may be used as an argument. Fortran II has the capability of using up to fifty library functions. The compiler furnished by IBK has seven. The process by which a user may add library functions will be discussed later.

An arithmetic statement function is defined by one arithmetic statement and applies only to the program in which it appears. The name of the function determines the mode of the value that is computed. The mode must be either fired point or floating point as determined by the first letter in the name of the function.

The arithretic statement function is defined as follows:

NAME (ARG) $=$ EXPRESSION
where NAME is the name of the function, ARG is the argument and consists of one or more variable names of non-subscripted variables; and EXPRESSION is an arithmetic expression that must conform to the rules for forming expressions. Examples of arithmetic statement functions are as follows:

$$
\operatorname{FIRST}(X)=A * X+B
$$

$$
\begin{aligned}
& \operatorname{SECOND}(X, B)=\operatorname{COS}(X) * \operatorname{FIRST}(B) \\
& Y=\operatorname{SECOND}(C, D) .
\end{aligned}
$$

This sequence of functions could be replaced (losing a great deal of versatility but saving much space and computing time) by the following statement.

$$
Y=\cos (C) *(A * D+B)
$$

The appearance of the name of an arithmetic statement function in an arithmetic statement serves to cail the function.

As many of the variables appearing within the expression of a function as desired may be stated on the left hand side of the arithmetic statement function as arguments. The arguments are really only dumy variables so their names are unimportent excent to specify the mode. They may even be the same as names appearing later in the program.

Those variables which are not stated as arguments are treated as parameters. Thus, if FIRST is defined in a function statement as

$$
\operatorname{FIRST}(X)=A * X+B,
$$

then a later reference to $\operatorname{FIRST}(Y)$ will cause

$$
A * Y+B
$$

based on the current values of A, B, and Y, to be computed.
The arguments of an arithmetic statement function may be expressions and may involve subscripted variables. Thus, a reference to

$$
\operatorname{FIRST}(Z+Y(I)),
$$

as a result of the previous definition of FIRST, will cause

$$
A *(Z+Y(I))+B
$$

to be computed on the basis of the current values of $A, B, Y(I)$, and Z.

Functions defined by arithmetic statements are always compiled as closed subroutines. A closed subroutine is used only by calling for it in the source program and will be used only in the program in Which it was compiled. This means that the machine language instructions are compiled only once in the object prograrn. Calling is accomplished either with the use of a "CALI" statement or by mentioning the name of a subroutine in the source program.

Fortran subprograms consist of subroutines that are not used frequently enough to be library functions, yet due to their size or complexity, they cannot be defined in a single arithmetic statement.

Fortran subprograms are compiled seperately but the object program cannot be executed by itself. For execution they must be called and loaded by a main program. For this reason they are called subprograns. Since each subprogram is compiled seperately, the arithmetic function and variable names used in the main prosram are completely independent of the function and variable names used In the subprogram. This means that very general subprograms can be created and used trith any main Fortran II program.

Subprocrams may be divided into two types; function subprograms and subroutine subprograms. Four statements are necessary for their definition and use. They are:

FUNCTION,
SUBROUTINE,
CAIL, and
RETURN,
and will be described later.
Although function and subroutine subprograms are similar and are treated together in this thesis, they differ in two significant respects:

1. Function subprograms can computc only one value, whereas subroutine subprograms can compute many values and return them to the main prosram.
2. Function subprograms may be called by an expression containing its name but subroutine subprograms are called by the usc of a CAI工 statement. This means that function subprograms may be uscd in arithmetic statcments.

The FUNCTION statement is always the first in a function subprogram and defines it as such. The General form of a FUNCTION statement is as follows:

FUNCTION "Name" (a1, a2, , an).
"Name" is the symbolic name of a single-vaiued function, and each argument (a1, a2, ... , an) is a non-subscripted variable name, i.e. must not be a member of a dimensioned array.

In a function subprocram, the name of the function must appear in an input list or on the left-hand side of an arithmetic statement. An example indicatinc the use of a FUNCTION statement and a REMURN statement and which conforms to this rule is as follows:

FUNCTION SUM (A, B)
 $\operatorname{SUN}=A+B$
 RETUPN.

The REMURN statement temminated the function subprogram and returns the value of the function to the ealling program. Any number of these statements may be used but control must end with one of them.

The argunents which follow the function referenee in the calling program must açree in number, mode, and order with the arguments Iisted in the FUNCTION statement in the funetion subprogram. When the argument in the reference statement is an array name the eormesponding argument in the FUNCTION statement must also be an array name and both must be dimensioned within their respective programs. None of the dummy variables may appear in EQUIVALENCE statements in the function subprogram.

The SUBROUTINE statement is used in a subroutine subprogram in the same manner a FUNCTION statement is used in a function subprogram. The general fom of the statement is as follows:
SUBROUTINE "Name" (a1, a2, , an).
"Name" is the symbolic name of a subprogram, and each argument, if any is specified, is a non-subseripted variable name. The SUBROUNINE statement defines the subroutine subprogram and must be the first statement in the subprogram. The subprogram must be a Fortran program and may use any Fortran II statement exeept a FUNCMION statement or another subroutine statement.

A ealling program may refer to a subroutine subprogram by a

CALL statement which specifies the name of the subprogram and its argurents. The subroutine subprogram uses one or more of its arguments to retum results. Therefore, the arguments that are used for this purpose must appear on the left-hand side of an arithmetic statement in the subprogram or in an input list within the subprogram.

The correspondence between argunents applys in the case of the subroutine subprogram just as it did for the function subprogram. That is, the arguments listed in the CALL statement must correspond in number, order, mode, and dimension.

The CAIL statement refers only to the subroutine subprogram whereas the RETURN statement is used by both the function and subroutine subprograms. The general form of the CALL statement is as follows:

$$
\text { CALI "Name" }(2.1, a 2, \ldots . \text {, an). }
$$

Name is the name of the subroutine subprosram being called and (a1, a2, an) are the arguments. Each argument may be a fized or floating point constant or variable (with or without subscripts), or an expression.

A priority list of the functions in order of their power and flexibility would be as follows:

1. Non-relocatable Functions
2. Library Functions
3. Subroutine Subprograms
4. Function Subprograms
5. Arithmetic Statement Functions.

This list would have the same priority of difficulty of programing, the first being difficult and the last being nomal fortran programing.

A symbol table is a straightforward list of all encountered symbols such as subroutine names, variable names, and statement numbers (Leeson, 1962). A symbol table lookmp operation occurs each time a constant, variable, or a statement number is encountered. If the symbol is in the table its object time address is found in the corresponding "Table of Addresses of Encountered Symbols" and is used in the generated object program. If the symbol is not in the table it is placed there and its object time address is determined and stored in the corresponding address table. The address is then used as above.

A brute force comparison is used to determine if a symbol is in the symbol table until a successful comparisor is made, the teraporary end of the symbol table is found, or the symbol table is found to be full. This way, the mere mention of a symbol defines it.

The first symbols in the symbol table are the names and alternate names of the library functions.

With the use of the symbol table and the table of encountered addresses, Fortran II generates a series of branch and transmit instructions, of the regular, immediate, and floating varieties, for the mainline program. The P address depends upon the operation desired and directs control to a subroutine. The Q address depends upon which symbol wants action at that time. Both will come from the table of addresses with the exception of operations requiring
the use of non-relocatable subroubines. These have a fixed location and their addresses may oe found more directly. The symbol table and the tablc of addresses are both compiling aids and therefore are not used in an object program.

If the basic processor is chanced we lose the ability of incorporating revisions furnished by IBM. If we work at the library function level or higher with very little additional work our developed subroutines may be used by a different processor (on a machine other than the 1620). For this reason, alterations and additions will be made in the form of library functions.

DECISION SYSTEMS

A decision systcri is the algorithm for rclating interacting variables in a problem solution. Decision systcms can be simplified and put in a logical flow. For this discussion, then, a decision systcm will be described as a locical and orderly method by thich decisions may be made.

The inefficiencies of a dccision tree have already been demonstrated in the discussion of the "IF" statement. For simplification, this discussion will bc reduced to one of "limited entry", or binary decisions. Even when using "IF" statcments in Fortran, the two-way decision is often adequate.

The decision tree, for limited entry decisions, is shown in fisure 2, wherc Y and N stand for Yes and no respectively. The use of two decision parameters yields four paths and requires three "IF" statements to accurately describe the system. Thus 20 parameters yield 1,048,576 possible paths and requires 1,048,575 "IF" statements to describe the system.

An example of a dccision system is the problem of credit approval (Kirlk, 1965). In this case three parameters are chosen on which to base a decision. They are:

1. Is the credit limit OK?
2. Is the pay experience favorable?
3. Has special clearance been obtained?

The decision tree to describe these parameters is shown in figure 2. The three parameters yield eight possible branches and
require seven comparisons to describe the systen.
stmucture tables are an advantageous method for unambiguously describing complex, multi-variable, multi-rule decision systems (Schmidt, 1964). Each table is a precise statement of the logical and quantitative relationships supporting a particular elementary process. They are developed in terms of the criteria or parameters affecting the problem and the various outcomes which may result. An example of a decision table incorporating the aoove parameters is described in figure 3.

This table may be shortened by introducing another symbol other than the Y or \mathbb{N}. This symbol is "-" and means "not pertinent". Whenever this symbol is used, the parameter in question (the row) has no significance in that mule (the column). Using this new symbol the decision taole in ficure 3 is reduced to fisure 4. Using this new decision table we may shorten the tree in figure 2 to that shown in figure 5. This shortens the proolem to one of four paths and three "IF" statements by eliminating redundancies. Another economy in the decision taole is gained by introducing the concept of "ELSE". This concept merely states: if no rule in a decision table can be matched then the action specified by "ELSE" will be executed. Using this idea we may reduce the decision table above to two rules, one a formal rule and the second an implied mule (figure 6).

The conversion of a decision table into a decision tree is not always as easy as above. The usual case has oeen to constmuct the general tree with all of its redundancies and inefficiencies. Several algorithms oy which a fairly consistant and efficient tree
may be constructcd have been dcvised. One such alcorithra will be presented here. This algorithm minimizes compute= storage space required for the resultant program. It is also designed to pinpoint any contradictions or redundacies among the mules in a table (Pollack, 1965).

Figure 7 presents an ezample of a limited-entry decision table that could easily prescnt redundancies and inefficiencies in the normal procedure of constructing a tree. The A_{1} are the actions, the C_{1} are the conditions or parameters, and the R_{1} ere the rules. Before convertins the decision table to individual comparisons and the series of branches associatcd with each path, the number of written decision rules should be reduced to a minimum to simplify the use of the algorithm. As an example, figure 7 may be reduced to the table described by figure 8.

It would bc helpful to present a general description of how to convert the decision table to tree form before the algorithm due to Pollack is presentcd. The procedure is as follows.

One row of the original decision table is selected. The criterion for selection is given in the algorithm. The condition in that row becomes the first comparison of the flowchart. The oricinal decision table is then decomposed into two subtables (containing one less row), or a subtable and a rule, or only two rules; and each of these is associated with each branch of the comparison.

This is continucd with each subtable until the branches lead only to completed rules or "ELSE", or until a subtable indicates that the original table contained redundant or contradictory rules.

The algorithm is presented without proof, however when applied, it has proven to be effective (Pollack, 1965). The objective of the algorithm is to convert a decision table to a computer prosram and have this procram use the minimum number of storace locations, and still be relatively fast.

Step one of the algorithm is a checis for redundancy or contradiction. If at any stage, a pair of mules does not contain at least one (Y, N) pair in any of its row, redundancy or contradiction exists. Such is the case for rules 1 and 2 in figure 9. If the actions for rules 1 and 2 are identical a redundancy exists and rule 2 may be eliminated. Figure 10 presents an example of this. Where the actions for rule 1 differ from those of rules 2 and 3, a contradiction exists. Where the actions of rule 1 are identical with those of rules 2 and 3, a redundancy exists.

Step two of the algorithm is to maire a dash count and determine those rows which have a minimum dash count. A dash that appears in a rule (column) that contains r dashes is counted as 2^{r} dashes. For each rule, 2^{r} is denoted as the colurn count. In each row, the sum of the column counts corresponding to the dashes in that row is called the dash count. A row dash count is the sum of the column counts of those rules that have dash entries in the row: This is illustrated in figure 11 in which row 2 has the minimum dash count.

Step three is used in the event that more than one row has a minimum dash count. It is to select that row which has a maximum delta, which is the absolute value of the difference of the Y count and the N-count. The Y-count is the sum of the column-
counts corresponding to the Y's in the row. The N-count is simi1ar. Figure 12 is an example of a decision table with a minimum dash count in all of the rows. Since C_{1} had the maximum delta, it was selected. The selected row is called k. In figure 12 $\mathrm{C}_{1}=\mathrm{C}_{15}$ 。

Step four is to discriminate on the condition in row 2. This discrimination has two branches, each of which leads to a suotable Which contains one or more mules, with one row less than the original table (row 15 is deleted). The Y-branch had a Y in row k. The N-branch worlks similarly. In addition both subtables contain those rules that had a dash in row k of the previous table.

Step five is to go back to step one if the subtable of interest contains more than one mule.

Step six may be divided into four smaller steps each of which handles a different situation. They are as follows:
a. If a branch lcads to a subtable containing one rule, and if that rule contains all dashes, then replace the subtable with the mule itself.
b. If a branch leads to a subtable with one rule, and that mule does not have all dashes but has more than one Y, N, or a combination of Y or N, choose as row is any row that has no dash. The selected branch will indicate a subtable with one less row in it. The opposing branch Will indicate "ELSE".
c. If a branch does not lead to a subtable, it leads to "ELSE".
d. If a branch leads to a subtable containing only one rule,
and that rule contains only one condition whose value is Y or \mathbb{N}, then one branch of the discrimination on that condition leads to the rule, the other branch leads to "ELSE".

As an example of the use of this alcorithm, refer to the table in figure 8. The application of the algorithm yields figure 13.

Using this algorithm one may reduce a decision table to the minimun tree and program it in Fortran. This is then a valuable programing aid. This does not, however, allow a programmer to program decision tables into his Fortran program. This means, also, that the programer nust recalculate the entire decision tree, reprogram it, and reprocess the procram in order to matre any change in the decision process. A possible program might perform the process of reducing the table to a tree, and might even generate the cornpleted "IF" statements on cards. The compiling process would remain, however. It would be more desirable to change the decision table at object level.

It is possible to procram decision tables into Fortran with the use of the computed "GO TO" statement and a simple arithmetic statement (Veinott, 1966). The computed "GO TO" statement indicates the statement that is to be executed next. However, the statement number that the program control is transferred to can be altered during the program. The general form of the computed "GO TO" statement is
where $\mathbb{N 1}, N 2, \ldots, N m$ are statcment numbers and I is a non-subscripted fixed point variable. This statement causes transfer of control to the first, second, third, etc., statement in the list depending on whether the value of I is $1,2,3$, etc.

The approach taken considers a decision table as a multiple branch within a program. The procedure is to calculate a unique number for each possible set of conditions. The unique numbers must be an unbroken series or consecutive numbers in order to be used as a branching variable. Figure 4 will serve as an example. A new table is constructed, adding a "value" column. Since there are $2^{3}=8$ possible combinations of three conditions, 8 columns will be provided, one for each possible combination. The 8 columns are numbered from 0 to 7 inclusive. X 's are placed in the columns so that the corresponding "values" add to the number heading the column. This is represented in figure 14. This provides a unique number for each possible combination with a consecutive order. Since the series contains a zero it is necessary to add one to make it a branching variable. Ordinarily yes is denoted by 1 and no is denoted by 0 . This convention is carried over in this case. In the above table the following notation is used:

I1	$=1$,		Credit Iimit OK
$=0$,		Otherwise	
$I 2=1$,		Pay Experience OK	
$=0$,		Otherwise	
$I 3=1$,		Special Clearance	
$=0$,		Otherwise	

N1=	Statement number to initiate the action
N2 $=$	"do not approve order"
	Statement number to initiate the action
	"approve order"

The Fortran program for this table is as follows:

$$
\begin{aligned}
& \text { JUMP }=1+I 1+2 * I 2+4 * I 3 \\
& \text { GO TO }(\mathbb{N} 1, N 2, N 2, N 2, N 2, N 2, N 2, N 2), J U M P
\end{aligned}
$$

It may be desirable to represent one or more conditions by more than two states. Again, let there be m conditions, the states of each of which is indicated by the value of variables I1,I2,... ,Im. Let the various conditions have $K 1, K 2, \ldots, \ldots \operatorname{mutually}$ exclusive states. That is, the conditions themselves are represented by the "I" variables: each of these "I" variables can talse on different values, starting with zero, to express the state of this particular condition. The number of states of any condition.

Since the states, for any condition, are mutually exclusive, by definition, only one state can exist at a time for any given condition. The number of combinations or "rules" that exist will be:

$$
\text { Number of rules }=(\mathrm{K} 1)(\mathrm{K} 2) \ldots(\mathrm{Km})=\text { R. } \text {. (Veinott, 1966) }
$$

For convenience, let IKNL equal the number of states of the next-to-the-last condition.

The procedure in programing such a table is to set up R rules and identify each combination. To each combination a statement number must be assigned. The Fortran program would be:

$$
\begin{aligned}
& \text { JUMP }=1+\mathrm{I} 1+\mathrm{K} 1 * I 2+\mathrm{K} 1 * K 2 \% I 3+\ldots \ldots+(K 1 * K 2 \ldots * \mathrm{KNL}) * \operatorname{Im} \\
& \text { GO TO }(\mathbb{N} 1, N 2, \ldots \ldots, N r), \mathrm{JUMP}
\end{aligned}
$$

For an example, see figure 15.
This technique requires the exclusion of the "-" or "not pertinent" element as well as the use of "ELSE". This means that a table must be expanded to cover all possible combinations of conditions. For the limited entry decision table 2^{n} mules are required for n decision parameters. Finally, changes in the decision table cannot be made on the object level. The user must recompile his program to make any such changes.

A more efficient and faster method is desirable, as well as one which will allow changes on the object level. An algorithm which should best fit these requirements was presented by Kirls in January, 1965. It is as follows.

The first step is to prepare a binary image of the condition portion of the decision table. This image, called the "table vector" and consisting of "rule vectors" is shown in figure 16 for the credit-approval table in figure 3.

The table matrix and the data vector alone do not have sufficient information for solving the problem because of the use of a zero for nonpertinent conditions in the table matrix. A masking matrix is used to screen out nonpertinent conditions from the data vector prior to scannint the table matrix. The masking matrix is produced by replacing a Y and an \mathbb{N} with a 1 , and "--" with 0. Therefore, a logical multiplication will insure a zero in the element of the data vector corresponding with a nonpertinent element in the original table. The masking matrix for the credit
approval table is as in fiçure 17.
A table of logical multiplication, shom in figure 18 is used to multiply the data vector, element by element, by the appropriate masking vector prior to scanning. The result is then compared to the corresponding table vector. If a match is found the resulting action is executed; if not the next masking vector and table vector are tried until the table is exhausted. If the table is exhausted then "ELSE" is executed.

Since the IBM 1620 computer is not a binary computer, the use of characters is necessary. The losic used in the programming of this algorithm is presented in a subsequent section of this thesis.

RANDOM NUNBEPS

A Monte Carlo calculation makes systematic use of random numbers. The simulation is provided with internally fenerated data that has the same characteristics as the actual data (Bowman and Fetter, 1961). A schematic diagram of a process might consist of a jagged, irregular figure representing the collection of facts as ooserved. An idealized model, represented by a smooth curve may be derived from the schematic diagram of observations. This model, used with a random number generator, produces an artificially irresular figure, representing the simulated experience. The simulated data is used in mathematical models for further simulations. In addition to providing more extensive data, you can generate your data according to any linown rule or give it any special characteristics that you wish in order to study the effects on your simulation model.

The scheme choosen for generating random numbers has the following features: (a) the numoers generated are uniformly distributed between 0 and 1; (b) there is no serial correlation between successive numbers in the sequence; (c) about 50 million numbers can be generated before the sequence repeats itself; (d) the calculation is easy to perform on an electronic computer (Hull, 1962).

The scheme is this: Start with any ten-digit number of the form xyz0000001; call it F_{0}. Thereafter

$$
R_{n}=K \cdot R_{n-1}\left(\bmod 10^{10}\right)
$$

where K is a fixed multiplier, which should be a te: dicit odd power
of a prime that is relatively prime to 10. Possible values for K include (Fiull, 1962),

$$
\begin{aligned}
& 3^{19}=1,162,261,467 \\
& 7^{11}=1,977,326,743 \\
& 11^{9}=2,357,947,691
\end{aligned}
$$

The recursion relation expressed aoove in symbols can be translated: To get the next number in the sequence, multiply the previous number by K . The result will be a 20 digit number. Taire the last (right-hand) ten digits of the product as the next number in the sequence. Treat the number as a ten-digit decimal.

This scheme will cenerate rectangular or uniform random numbers Which in turn may be used to sample from any distribution desired. It was coded in the Symbolic Procramming System (SPS) language for the 1620 and compiled as a library function for Fortran II (see page

```
    ).
```

Non-uniform random numbers are occasionally needed in order to more properly describe a particular process. For one dimensional distributions we need only to solve the equation $x=(y)$ for y, where X is uniformily distributed, and where $F(y)$ is the required (cumuletive) distribution function. For example, if y is to be exponentially distributed, the following distribution function is used:

$$
\begin{aligned}
& x=1-e^{y} \text { and } \\
& y=\ln (1-x) .
\end{aligned}
$$

An arithmetic statement function to generate randon numbers representing an exponential distribution could be as follows.

$$
\operatorname{EXPPN}(X)=\operatorname{LOGP}(1 .-\operatorname{RNDN}(X))
$$

The use of these functions has been previously described.
Many simulations require the use of aribitrary distributions, which may be used with a table look-up operation. For a detailed study on the use of arbitmary distributions, see Starr and Miller (12).

Since its developement, the random number generator has been tested by wichlan (14). The numbers were found to be rectangular on the five permeent level. The Chi-squared and Sexial Correlation tests were used.

MTPLIENTATION OF MHE RODIETED EROCESSOR

The Deeision Table subroutine has been coded into a relocatable library subroutinc. There is present a need for the eapasility to set up data vectors, i.e. present the conditions as they aetually exist in the form of a veetor. This eapability must be in the form of reloeatable subroutines to be eompatible with the Decision Table subroutine. A one parameter data veetor, with the help oi the proper subroutine, could be set up with the followinc Fortran statement.

$$
D A T A=E Q(T-S)
$$

If I and S are equai, a 1 will beeome the entire data vector; if not a 0 will be produced. The funetions available for construetine the data vector are:

E2 Iqual
Un Not equal
GR Greater than
LR Less than
GE Greater than or equal
LE Less than or equal
INC No ehange (for data vectors that have already been produeed)

YES Always generates a 1
NO Always generates a 0
PDAPA The entire data veetor will be read in.

An example of the use of these functions is illustrated by the
following Fortran statement.

$$
D A T A=E Q(T-S)+G R(U-T+L R U-S)+G E(T-U)+L E(U-T)
$$

if $T=1, S=2$, and $U=3$ the following data vector will be produced. 011000

The data vector may then be tested after a table has been read into core. This is accomplished by the following statement.

$$
A C T I O N=B D T B(1)
$$

This will cause a decision table to be read into the proper place in core (common). It will also be named table number 1. Thereafter a table may be referred to by its number in testing as follows:
JUNP=TEST(1).

The last data vector produced will then be tested by decision table number 1. The resulting value will be assigned to the branching variable, JUMP. JUMP is then used in a computed GO TO statement.

The credit approval table will serve as an example (figure 4). The following variables will be used in the example:

JUMP =	the branching variable
ORDLMT =	the customers credit limit
CUSDBT $=$	the amount owed of the customer
ORDAMT =	the dollar amount of the order
$X=$	a dummy variable

The Fortran program is as follows:

$$
\begin{aligned}
& \text { DATA=GE(CRDLMT- }(\text { CUSDBT+ORDAMT }))+Y E S(X)+N O(X) \\
& A C T I O N=R D T B(1) \\
& \text { JUMP=TEST }(1) \\
& \text { GO TO }(1,1,1,2), J U M P
\end{aligned}
$$

The DATA statement may vary and options may be placed under switch control. When DATA is executed a data vector is produced and stored in core according to the function names and the values of their arguments. When the function RDTB(1) is executed a table will be read into common and labeled with a 1 . In this case the table will look like the following:

$$
\begin{aligned}
& 0403 \\
& 1--\ddagger \\
& 01-\ddagger \\
& 001 * \\
& 000 \ddagger
\end{aligned}
$$

Where 0403 means that there are four mules and three conditions in the table. For each table the limit on conditions is 79 and the limit on rules is 99. The rules may be presented in any order but the desired actions must be expressed in the same order in the computed GO TO statement used in the source program. ACTION and DATA are dummy variables but must be floating point variables. The data vector must fit the table it is intended for. The decision table and data vector must be based on the same number of conditions or parameters. In addition, the data vector must be used before another data vector is produced. However, a decision system may contain more than one decision table. Tables may also
vary in length.
When the arithmetic statement defining JUMP is encountered a value will be assigned to the variable, JUMP. Assuming this particular customer has exceeded his credit limit, the value of the data vector is as follows.

010

The resulting value of JUMP will be 2 and statement number 1 will be the next statement executed within the program.

If a data vector is to be read in, the entire data vector must be ready and must be right justified on the data card with a flag over the lert-most element on the card as follows.

$$
\text { columns 78-80 } 010
$$

The data vector should have the same number of conditions as does the table used for testing.

The purpose of the "data arranging" subroutines is to set up the data vectors in a place in core which is accessable to all of the relocatable subroutines. In this way any subroutine can make changes to or use the data vector as it must. The purpose of the "table reading and testing" subroutine is to read a table into core, label it and set up the table and masking matrices. At the time of testing the logical multiplication is periormed on the data vector to mask it and the result is compared to the table Vector. Each time a comparison is made a counter is incremented by one. When a comparison is successfully made this counter becomes the value of the branching variable. The subroutines and
their flow-charts are presented in the appendix.
In order to implement relocatable library functions, they must first be coded into a 1620 SPS source program. The origin is assigned at location 10,000. AII P and Q addresses that are relative to the origin must be labeled as such by placing a flag in the O_{1} and O_{2} positions of that same instruction, respectively. The resulting condensed object, with the first 2 and last 7 cards removed, must be preceded by a header card punched with the following information:

Columns 1-5	XXXXXX	Total number of storage locations required by the subroutine. This number must be even.
Columns 11-12	YY	The altermate subroutine number
		if any.
Columins 16-20	WWWWW	The alternate entry point if any.
Column 63		A record mark.
Columns 75-80	XX0001	Card sequence number, where XX
		is the subroutine number.

The obfect decls, minus the header card, must be renumbered starting with $X X 0002$, where $X X$ is the subroutine number.

If a subroutine contains two entry points the card sequence numbering does not change and is done as if no alternate entry were in effect. The information given on the header is sufficient for the use of the alternate entry point. The paclret of cards can be inserted between any two subroutines in the library subroutine decls.

It is also necessary to increase the number in columns 1-2 of card 03000 of the Pass I deck to reflect a new total number of relocatable subroutines. Then add the subroutine name(s) at the end of the last card. If a new card is required, it must be numbered consecutively.

Linkage into the subroutine is provided with one of the "Branch and Transmit" instructions. For instance:

BTM SUBR, A
will branch to SUBR and carry A with it. It will place the field represented by A into core just before the entry point of SUBR. When the subroutine is finished a "Branch Baclr" will be encountered and control will be transferred bacle to the mainline program.

TRIAL PBOGRAMS

In order to test the effectiveness of the decision processes and illustrate the use of the random number generator, a system was chosen for simulation. This system entails a pump and a tanle. The pump is used to fill the tank and may have various capacities. The capacity of the pump is stated in terms of the depth of liquid replaced in the tanl per pass through the simulation. Thus, a continuous process is simplified into a discrete process. The pump will also have a tendency to heat during the process of pumping. It is assumed that the process of pumping will increase the temperature of the pump by one degree during one pass through the simulation. Initially the pump is 70 degrees and the upper safety limit is 180 degrees. It is assumed that the atmosphere is 70 degrees.

The loss of heat from the purnp depends upon the temperature of the pump. The computer program removes heat from the pump by finding the temperature gradient between the pump and the atmosphere and subtracting one hundreth of it from the pump temperature during each pass through the simulation when the pump is inactive.

The tank has a valve which may be used to remove liquid from the tank at the rate of "B" feet per pass through the simulation. The control of this valve is placed under a user of users. The program places the control of this valve under a switch on the 1620 console or will simulate the use of the valve with the random number generator at the discretion of the operator. It is
considered desirable to keep the level of the tank between four and five feet.

In addition, two alarms are provided. The first is a heat alarm and will be tumed on when the temperature of the pump exceeds 180 degrees. The second is a "tank level high" alarm and will be turned on when the liquid level in the tank exceeds five feet. The decision table used to govern the pump and the alarms is depicted by figure 19.

This entire process has been simulated in four different ways each of which differs in the decision process. The general flow diagram is as presented in figure 20. They are as follows:

1. Using a tree constructed by eliminating the table (figure 19) one condition at a time in the order of their occurrence.
2. Using a tree constructed by eliminating the table according to the "dash count" of the conditions (thus constructing an optimal tree).
3. Programming the table in the Fortran language.
4. Using the table on the object level, thus using the aforementioned Iibrary subroutines.

The tree which resulted from reducing the table one condition at a time is illustrated in figure 21. This reduction was accomplished by first discriminating on condition number one (tank in use) and progressing directly through the rest of the conditions until the conversion was complete. The resulting program is illustrated by figure 22.

The tree which resulted from the reduction of the table
according to the dash count is as described by figure 23. According to the proponents of the algorithm used, this is the smallest tree that can be produced. The resulting program is illustrated by figure 24.

Programing the decision table in the Fortran language is accomplished by expanding the decision table into the form indicated in figure 25. This is then programned with the use of a single arithmetic statement and a computed "GO TO" statement. The resulting program is illustrated by figure 26.

The use of the decision table on the object level calls for a reduction for the decision table as depicted in figure 27. The resulting program is illustrated by fiugre 28.

The resulting programs are compared in figure 29. This comparison is made to illustrate the difference in programming, time and core storage necessary to perform the simulation with 1000 passes. Although the tank use was controlled by the random number generator, the same tank usage was experienced since the same argument controlled the random number gnerator in all of the programs in the comparison.

The fastest programs were the programs which used the decision trees. Both had times of 1.901 minutes. The slowest program was the program using the SPS subroutines with a time of 5.222 minutes. The shortest mainline program is the program using the SPS subroutines. However, when the subroutines are taken into consideration this program becomes the longest. The shortest program (including the required subroutines) is the decision tree produced by Pollacir's algorithm. However, the subroutines are of a constant
length and the mainline programs are of a variable length. For prosrams requiring more complicated decision systems the program produced with Pollack's algorithm would soon prove to be shorter. There would be a break-even point where the length of the improved decision tree program would be the same as the length of a program utilizing the decision table subroutines. Any larger systems would yield a shorter program with these subroutines.

CONCLUSION

The comparison of the different trial programs yields the following information.

1) Small to medium decision systems yield shorter proframs When reduced to a tree with Pollacis's algorithm ${ }^{2}$.
2) Larger decision systems would probably yield the shortest programs using decision tables and the special subroutines.
3) The particular example show above indicates that faster programs are feasible, using a decision tree. There is, however, nothing on which to base a generalization about the speed of resulting programs.

In addition, the SPS subroutines allow changes to be made on the object level of compiled programs, thus allowing a greater flexibility. This is important for simulations because you can try several different rules and arrangements and study the effects they have on an organization without recompiling any programs. The SPS subroutines are of the following lengths.

Random Number Generator. 240
Read Table and Test.. 2164
Greater than or equal and Less than equal........... 290
Greater than and Less than............................... 290
Equal and Unequal.. . . 280

[^1]Yes and No. 194
No Change 90
Read Data 36

Some of these are quite small and efficient; others (due to their complexity) are large and bulky. It is quite probable that some of the subroutines could be shortened and/or made to operate faster by another approach, either to the problem solution or to the techniques used in programing the solution. Due to its length and bullr the "Read Table and Test" subroutine could prooably be shortened considerably.

PLATE I

Fisure 1 is an example or a decision tree in which each condition has three stetes. rigure 2 illustrates a binary or Iimited-entry decision tree.

Fig. 1

Fig. 2

PLATE II

Figure 3 is a crodit approval decision table which is expanded to include all possible cases. Figure 4 is the same table after the mules have been combined with "not-pertinent" elements. Figure 5 is the credit approval table illustrated in the form of a tree.

Fig. 3

	CONDITIONS	
$\begin{aligned} & C_{1} \\ & C_{2} \\ & C_{3} \end{aligned}$	Credit Limit OK Pay Experience OK Special Clearance	$\begin{array}{llll} Y & N & N & N \\ - & Y & N & N \\ - & - & Y & N \end{array}$
	ACTIONS	
$\begin{aligned} & A_{1} \\ & A_{2} \end{aligned}$	Approve Order Disapprove Order	$\mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X}$

Fig. 5

PLATE III

Figure 6 is the credit approval table simpliried by using the implied decision rule - "ELSE". Fisure $?$ is any decision table. Ficure 8 is the simplified version of figure ? after the introduction of the "not-pertinent" element.

		Logic Rules 1
	CONDITIONS	E
C_{1}	Credit Limit OK	N
C_{2}	Pay Experience OK	N
C_{3}	Special Clearance	N
	ACTIONS	
A_{1}	Approve Order	
A_{2}	Disapprove Order	X

$$
\text { Fis. } 6
$$

	R_{1}	R_{2}	R_{3}	R_{4}	R_{E}
C_{1}	Y	Y	N	N	
C_{2}	N	Y	Y	N	
C_{3}	Y	N	Y	Y	
A_{1}	X	X	X	X	
A_{2}		X	X		X
A_{I}					

$$
\text { Fig. } 7
$$

	$\mathrm{R}_{1,4}$	R_{2}	R_{3}	R_{E}
C_{1}	$\overline{\mathrm{~N}}$	Y	N	
C_{2}	Y	Y		
C_{3}	Y	N	Y	
A_{1}	X			
A_{2}		X	X	
A_{E}				X

Fig. 8

PLAME IV

Figures 9 and 10 illustrate decision tables which contain redundant or inconsistant rules. Figure 11 is a decision table which indicates the use of a dash count. Fisure 12 illustrates the use of a dash count and the delta of each condition.

Fig. 9

Figs. 10

Column Count	4	4	2
	R_{1}	R_{2}	R_{3}
C_{1}	N	-	Y
C_{2}	N	Y	-
C_{3}	-	Y	N

Fig. 11

Fig. 12

PLATE V

Figure 13 illustrates the apolication of Pollacls"s alm gorithm for the expansion of decision tables into minimum decision trees.

Fig. 13

PLATE VI

Figure 14 illustrates the credit approval table modified for prosramminc in Fortran. Figure 15 11lustretes a table containing conditions with more than two states modified for Foriran progranming.

Fig. 14

Fig. 15

PIARE YII

Figure 16 is the table matrix for the credit approval table. Figure 17 is the maskinc matrix for the credit approval table. Figure 18 illustrates a talle of losical multiplication.

CONDITIONS	Logic	Rules			
C $_{1}$	Credit Limit 0K	2	3	4	
C $_{2}$	Pay Experience 0K	1	0	0	0
C $_{3}$	Special Clearance	1	0	0	

Fig. 16

	CONDITIONS				
	Logic	Rules			
C_{1}	Credit Limít 0K	2	3	4	
C_{2}	Pay Experience 0K	1	1	1	1
C_{3}	Special Clearance	1	1	1	

Fig. 17

Fig. 18

PLATE VIII
Figure 19 is the decision table for the "pump and tank" simulation.
$67 \cdot 8 T+\mathbb{H}$

PLATE IX
Figure 20 is the flow logic used to simulate the pump and tank.

Fig. 20

PLATE X

Tigure 21 is the unimproved decision tree for the pump simulation table.

[^2]** PUMP AND TANK SIMULATIGN (UNIMPRCVED DECISION TREE)
23 FSRMAT $(\overline{\mathrm{F}} 6.3, \mathrm{~F} 6.0, F 6.3, F 6.0, F 6.3)$
60 FSRMAT $(3 \times 7 \mathrm{HTANK}$ CN $5 \times 7 \mathrm{HPUMP}$ ON 6×5
IHTEMP ALARM)
80 FSRMAT $(2 H A=F 6.3,5 \times 2 \mathrm{HB}=F 6.3)$
A IS THE CAPACITY OF THE PUMP
B IS THE CAPACITY OF THE TANK VALVE
SIZE IS THE SIZE ©F THE SIMULATION
71 READ $23, A, S I Z E, B$, TEMP, ALEVEL
PUNCH $80, A, B$
PUNCH 60
TANK $=0$.
PUMP=0.
CCUNT $=0$.
70 IF (CSUNT-SIZE) $22,71,71$
22 IF(PUMP) 8,8,9
9 TENP=TEMP+1.
ALEVEL=ALEVEL+A
GO TO 24
8 TEMP=TEMP-(1TEMP-70.)/100.)
24 IF(TANK)10,10,11
11 ALEVEL=ALEVEL-B
10 IF
12 ALALEVEL) $12,13,13$
DECISICN SYSTEM

PLare XII

sigure 22 contimued.

IFISENSE SWITCH 1115,16
15 PUNCH 17，TANK，PUMP，ALEVEL，TEMP，ALARM1，ALARM2

PLATE XIII

Figure 22 concluded.

PLATE XIV
Ficure 23 is the improved decision tree for the pump simulation.

Fig. 23

PLATE XV

Figure 24 is the Fortran program for the improved decisfon tree for the pump simulation.
** PUMP AND TANK SIMULATICN (IMPROVED DECISISN TREE)
$12.0, F 13.1, F 12.0, F 11,0, F 12.0$)
F6.3)
CN6X5HLEVEL 7×4 HTEMP 5×11 HLEVEL ALARM 2×10 $3)$
, F6
6.
1 F
13
SN5 $\times 7$ HPUMP
M)
80 F CRMAT $(2 H A=F 6.3,5 \times 2 \mathrm{HB}=\mathrm{F} 6.3$
A IS THE CAPACITY 厅F THE PUMP
B IS THE CAPACITY $\because F$ THE TANK VALVE
SIZE IS THE SIZE 厅F THE SIMULATICN

DECISICN SYSTEM

PLATE XVI

Fisure 24 concluded.
34 IF（TANK）5，5，37，
37 IF（ALEVEL－4．17，7，5
CHANGE THE VARIABLES ACCORDING TO THE DECISICN

[^3]
DLATコ XVII

Figure 25 is the expanded decision table for programming the purap simulation decision table in Fortran.

Fig. 25

PLATS XVIII

Figure 26 is the prosram for the pump simulation using the decision table in Fortran.
＊＊ $\begin{aligned} & \text { PUMP AND TANK SIMULATISN（DEC TABLES WITHCUT MED．PROCESSOR）} \\ & 17 \text { F }\end{aligned}$ ，F12．0） FS． 31

$$
-\infty \frac{1}{n-1}
$$

$$
\begin{aligned}
& m \mathrm{mo} \\
& m \mathrm{~N} 0
\end{aligned}
$$

DECISICN SYSTEM
13 IF（ALEVEL－4．）40，41，41
$3=1$
42

PLATE XIX
Figure 26 continued.

14 CCUNT $=$ COUNT＋1．

SWITCH 1	ON TE PUNCH STATUS
SWITCH 2 ON－TANK USE IS RANDOM	
	OFF－TANK CONTRELLED BY SWITCH 3
SWITCH	3 SN－TANK IN USE
	OFF－TANK NOT IN USE

[^4]PLATE XX
Figure 26 concluded.

PLATE XXI

Figure 27 is the pump decision table simplified by the use of "ELSE" for use by the modified processor.

Fig. 27

PIATE XXII
Figure 28 is the progran for simulating the pump and tanir mith the modified processor.
＊＊PUMP AND TANK SIMULATICN（DEC TABLES WITH MOOIFIED PROCESSOR）

$$
=\text { SRMAT }(F 6.3, F 6.0, F 6.3, F 6.0, F 6.3)
$$

 1HTEMP ALARM）
80 F こRMAT $(2 H A=F 6.3,5 \times 2 H B=F 6.3)$
A IS THE CAPACITY OF THE PUMP
B IS THE CAPACITY OF THE TANK VALVE
SIZE IS THE SIZE CF THE SIMULATICN
71 REAO 23，A，SIZE，B，TEMP，ALEVEL PUNCH 80，A，B
PUNCH 60
ACTICN＝RDTB（1）
TANK $=0$ ．
UUMP $=0$ ．
COUNT $=0$ ．
IF（COUNT－SIZE） $22,71,71$
IF（PUMP） $8,8,9$
TEMP T TEMP +1 ．
ALEVEL＝ALEVEL + A
Gこ TS 24
8 TEMP＝TEMP－（（TEMP－70．）＊．01）
24 IF（TANK） $10,10,11$
11 ALEVEL＝ALEVEL－B
10 IF（ALEVEL） $12,13,13$
12 ALEVEL＝0．
DECISION SYSTEM
13 DATA $=$ UN（TANK）＋UN（PUMP）＋LR（ALEVEL－4•）＋GR（ALEVEL－5•）＋GR（TEMP－180•） JUMP＝TEST（1）
CHANGE THE VARIABLES ACCOROING TO THE DECISION
○ No
いט

PLATE XXIII

Figure 28 continued.

14 COUNT=COUNT+1.

PLATE XXIX

Figure 28 concluded. Decision table input for the modified processor. Figure 29 is a comparison of the rour different pump simulations.

> 0705
> $-1-1-\neq$
> $-0-1=\ddagger$
> $-1-01 \neq$
> $-0-01 \neq$
> $01-00 \neq$
> $10100 \neq$
> $11000 \neq$

Fig. 28 (concluded)

	Time for 1000 Passes (Minutes)	Length of Mainline Program	Length of Subroutines	Total Length
Program 1	1.901	14134	240	14374
Program 2	1.901	13590	240	13830
Program 3	2.762	13872	240	14112
Program 4	5.222	13514	3066	16580

Fig. 29

APPENDIX 1

Subroutines

1) Random Number Generator

Program A1................................ SPS Source Program
2) Read Table and Decision Subroutine

Fisure A2(a)
Read Table
Figrure A2(b)................................... Set Up Matrices
Fisure A3(a)................Determine Branchinç Variable
Figure A3(b).....................................Nasir Data Vector
Program A2...........Read Table and Decision Subroutine
3) Set Up Data Vector Subroutines

Program A3...Greater Than or Equal, Less Than or Equal Program A4.........................Greater Than, Less Than

Program A5......................................Equal, Unequal
Program Ab. ..Yes, No

Program A8.. Data

Fig. A1

F1g. A2(a)

Fig. A2(b)

Fic. A3(a)

Fig. A3(b)

$O P \mathrm{~N}$

a a
MON N N N N N N N NO
No00000000

00
+
\vdots
$\frac{4}{4}$
$\frac{1}{2}$
$\frac{1}{2}$

呙の	$\times \sim \mathrm{N}$	zNm		\pm	$\stackrel{\vee}{0}$
¢	$1 \times \infty$	$1 \times$ ¢	「	3	O

, SET UP TWO RECSRD MARKS TO
, INDICATE THE END OF THE BLOCK
, OF TABLES.
,
,
,
,
, BRANCH BACK

 -
$\underset{\sim}{2}$
0 , FIND CUT WHICH TABLE TO USE IN
, THE TESTING AND FIND IT. THEN THE TESTING AND FIND IT. THEN ,GO TO DEVT.

1 Noo .07
, 0
, 07
, 07
, 0 NANO

$\frac{\frac{v}{a}}{\frac{a}{\Sigma}}$	U	$>$	\sum_{n}^{u}

90
00
98
10
-10

| 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |
| 0 | 1 | 0 |

00000
NNO
00
0
0
0
O
D

		10	
z	出	¢	
－	$\bigcirc \infty$	0 －	\cup

$\underset{\sim}{\sim} \quad \underset{\sim}{\sim}$

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNM

-10
U
u.
-1
5
2

8
8
8

~

YES.
$\stackrel{6}{\vdash}$

NOROO

. 0
응웅
, 11090

뚱

๙ ๙

山	c)	~
\%	z	$\underset{\sim}{\sim}$

1000000000

ㅇ

\circ
8
8

			n	0
O	2	C)	ω	C
山	\bigcirc	z	>	I

HOROMO

. 11090

[^5]

ールールール

APPENDIX 2

Pump and Tanls simulation Results

A= Pump Capacity
$B=$ Tanls Valve Capacity
$\underset{\substack{5 \\ \frac{2}{2} \\ \frac{2}{2} \\ \hline \\ \hline}}{ }$

$\stackrel{11}{\infty}$

ALARM

${ }^{11}$

$\dot{\circ} \dot{\circ} \dot{\circ}$

ALARM

\sum_{α}^{∞}
$\frac{1}{4}$

${ }_{8}^{18}$

${ }^{11}$

BIBLIOGRAPHY

1 Bowman, Edward H. and Robert B. Fetter, Analysis for Production Management: Richard D. Irwin, Inc., 1961.

2 Brown, Robert C., Statistical Forecasting For Inventory Control: McGraw-Hill, 1959.

3 Freund, John E., Mathematical Statistics, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.

4 Huli, T. E. and A. R. Dobeli, "Random Number Generators". SIAN Review, Vol. 4, \#3, July, 1962.

5 Intemational Business Nachines, IBM 1620 Fortran II Programming Systen, Reference Manual, File No. 1620-25: IBM, 1962.

6 Kirls, H. W., "Use of Decision Tables in Computer Programming". Communications of the ACM, January, 1965.

7 Leeson, Daniel N. and Donald L. Dimitry, Basic Prosrammins Concepts and the IBM 1620 Computer, Holt, Rinehart \& Winston, 1962.

8 Martin, E. Wainright Jr., Electronic Data Processinf, An Introduction, Irwin, 1961.

9 Pollack, soloman L., "Conversion of Limited Entry Decision Tables to Computer Programs". Communications of the ACM November, 1965.

10 Schmidt, D. T. and T. F. Kavanaugh, "Using Decision Structure Tables". Datamation, February, 1964.

11 sprague, V. G., "Letters to the Editor-on Storage space of Decision Tables". Comunications of the ACM, May, 1966.

12 Starr, Martin K. and David W. Miller, Inventory Control: Theory and Practice, Englewood Cliffs, New Jersey: Pren-tice-Hall, Inc. 1962.

13 Veinott, Cyril G., "Programming Decision Tablos in Fortran, Cobol or AIzo". Communications of the ACM, January, 1966.

14 Wichlan, Daniel Jospeh, A Study of the Effect of Nor-Normal Distribution Upon Simple Lenear Regression, Kansas state University: Thesis, 1966.

A SYSTEMS SIMULATOR PROGRAMNING LANGUAGE FOR THE IBM 1620 COMPUTER

by

THOMAS ALLEN WEBB III
B. S., Kansas State University, 1965

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1966

The objective of this thesis was to develope a system for the IBM 1620 computer which would facilitate the simulation of systems. The Fortran II programing language was chosen as a basis for further study and implementation. Four methods for programing decision systems were studied and implemented in Fortran either as Fortran programs or as subroutines to Fortran. The four methods were each used to program a simulation and the results were compared. The four methods were: normal Fortran Programing (using a decision tree), an algorithm for minimum Fortran programming (improved decision tree), a decision tables procrammed in Fortran, and decision tables used with Fortran object programs (using SPS subroutines).

The results indicate that shorter and probably faster programs can be written using the minimum decision tree programmed in Fortran for small to medium decision systems. However, for large decision systems, shorter and possible faster programs may be written if use is made of the SPS subroutines.

[^0]: 1Randon numbers gencrated on a computer are called "pseudo-random" numbers and only appear to be dram at random from certain probability distributions. Hovover, they arc expected to be non-repeating for a "lonst" sequence of numbers.

[^1]: ${ }^{2}$ Pollack has met with recent criticism of his algorithm. His assumption has been proven not infallable by sprague (11).

[^2]: PLATE XI
 Figure 22 (3 paces) is the program for the unimproved decision tree for the purn simulation.

[^3]: IFISENSE SWITCH 1） 15,16

 IF（．5－RAN（．243））20，20，21
 ANK $=0$ ．
 19 IFISENSE SWITCH 3121,20
 END

[^4]: IF（SENSE SWITCH 1）15，16
 15 PUNCH 17，ITANK，IPUMP，ALEVEL，TEMP，ALARM1，ALARM2
 16 IF（SENSE SWITCH 2） 18,19
 18 IF（．5－RAN $(.243) 120,20,21$

[^5]: $-$

