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INTRODUCTION

Decision-making, the process of choosing from among a number

of alternatives, is a basic characteristic of management. De-

cisions are continually made concerning the means of achieving

objectives of the firm in every Industry. Management requires

information in order to make sound decisions. In almost every

situation there is a considerable amount of information available.

The problem is to choose the relevant information and determine

the appropriate use of this information on reaching the goals

of the firm.

It is increasingly evident that a systematic approach to

the formulation and solution of business problems is an explicit

characteristic of modern management.^ One of the most popular

and useful techniques that management can turn to for assistance

is the mathematical technique of linear programming. Linear

programming is a scientific method for selecting an optimum solu-

tion to a problem by solving simultaneously a set of equations

2
or inequalities under specific mathematical conditions.

The purpose of this study is to investigate the application

of linear programming as a tool to assist management decision

Thomas H. Nay lor and Eugene T. Byrne, Linear Programming--
Methods and Cases (Belmont, Calif.: Wadsworth Pub. Co., 1963),
p. A.

2
Leonard W. Schrubcn, "Mathematical Models for Decision

and Control in Flour Milling," Association o f Operative Mi lie rs

Technica l Bulletin , (August, 1967), p. 2989.
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making by grain merchandising firms from a profit maximizing

point of view. The objective is to formulate a linear program-

ming model which c?n be used to develop grain merchandising policy

and assist management in making merchandising decisions. The

mathematical theory of linear programming will not be discussed

in this paper.

Considerable material has been published on the application

of linear programming in the feed manufacturing industry x-^here it

has become a widely accepted technique used primarily in deter-

3 4
mining least cost feed formulas. Baynham and Clithero have

suggested the application of linear programming to grain mer-

chandising but again with the idea of filling orders at least

cost. Unger^ presented a linear programming grain merchandising

problem in vjhich he considered profit maximization but he did not

expound on this example in his study.

PROBLEM SETTING

The manager of a terminal elevator is continuously faced

with decisions related to buying and selling grain. His offers

to buy grain are based on the relative quality attributes of each

T. E. Baynham, Jr., "Linear Pro gramming—For Filling Orders
at Grain Storage Elevators," The Northwestern Miller , CCLXV, No.
23 (October 30, 1961), p. 30.

4
Wendell Clithero, "Computers for Wheat Blends, Purchasing,"

The Southwestern Miller , XLIII, No. 10 (May 1, 1964), p. 11-A.

^Joseph E. linger, "Application of Linear Programming to
Milling Problems Which Involve Blending of Wheat" (unpublished
master's thesis, Kansas State University, 1957), pp. 38-44.
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lot and the usefulness of each lot in blending to make grades

with specified requirements. Sales are made based on these

grades. Both the stocks already on hand as well as the stocks

available must be considered in establishing a blending policy.

With the objective of maximizing profits, the following

questions arise in establishing an optimum merchandising policy

in a given situation:

(1) How many bushels of each lot should be used or

purchased?

(2) How many bushels of each grade should be sold?

(3) How should the various lots be blended to make

each of the grades sold?

(A) How sensitive is the policy to changes?

These questions will be explored assuming that the limited num-

ber of bushels available does not exceed the elevator capacity.

NECESSARY DATA

Four major areas will be considered in the Initial analysis

of the grain merchandising model: (1) availability and cost of the

grain in each of the several bins or lots, (2) quality character-

istics of each lot, (3) grade requirements and restrictions, and

(4) grade prices and demand limitations.

Cost and Availab ili ty

For purposes of this study, 8 lots of corn of representative

quality arc assumed to be available. The quantity of each lot of



corn and the initial price of each lot are shown in Table 1.

The price represents the market value of each lot of corn in

dollars per bushel of 56 pounds at the terminal elevator.

Table 1. Supply and prices of corn available.

Lot Quanti ty Market price

(bu.) ($ per bu.

)

1 38 ,000 1 . 39

2 32,000 1.40

3 12,000 1.36

A 15,000 1.28

5
;

- 29 ,000 1. 39

6 9 ,000 1.35

7 9,000 1. 37

8 12 ,000 1.23

Qualit y Characteristics

In this study, it is assumed that the quality characteristics

of each lot of corn are sufficiently known that the various lots

can be blended with predictable accuracy. Table 2 displays the

quality characteristics of each lot or corn available. Only those

characteristics that are important in determining grade or price

need be considered. For corn these factors are moisture, total

damage, foreign material, heat damage, and odor. Modern instru-

mentation and sampling tachniques permit accurate , rapid, and

economical measurement of these factors by personnel experienced

in operating a grain elevator.
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Table 2. Characteristics of the grade determinants
of each lot of corn.

Total Forei gn Heat Odor

Lot Mo is ture Damage Material Damage Present

% % % %

1 14.9 2.9 3.5 .05 None

2 14.5 4.3 1.9 .05 None

3 14.4 5.3 6.0 .05 None

4 16.0 20.0 4.0 .05 Sour

5 15.9 3.1 4.0 .05 None

6 14.8 6.8 3.0 .90 Musty

7 13.4 7.6 2.8 .05 None

8 13.8 40.0 • 5.0 5.00 Sour

Grade Reg uirements

The grade designations and grade requirements used in this

study are presented in Table 3. These grades and specifications

were supplied by a major grain merchandiser as representative of

their actual corn merchandising activities.

Table 3. Grade designations and grade
requirements of blended corn.

Total Foreign Heat
Grade Moisture Damage Material Damage Odor

Designation Max. % Max. % Max. % Max. % Allowable

1 15.5 5.0 2.8 0.20 None

2 15.5 5.0 4.0 0.20 None

3 15.5 7.3 4.0 0.50 None

4 15.5 10.5 5.0 1.00 None

5 15.5 16.5 7.0 3.00 None
6 15.5 27.0 7.0 2.00
7 15.5 No max 7.0 3. 00
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P rices and Demand Limitations

Demand in the market may limit the quantity of some of the

grades that can be sold. Within these limitations the demand

faced by the firm is perfectly elastic. The demand limitations

assumed in this study and the price of each grade are shown in

Table 4. For example, the price of grade 6 is $1.28 per bushel

and no more than 25,000 bushels may be sold at this price. Any

quantity equal to or less than 25,000 bushels may be sold with-

out affecting price. The price of each grade is indicative of

the market value of that grade in the given time frame.

' Table 4. Prices and demand limitations
faced by the firm.

Grade Market Value Upper Damand
Des 1 gnat ion Limitations

($ per bu.) (max. number of bu.)

1 1.40
2 1.385 100,000
3 1.37
4 1. 35

5 1.33 150 ,000
6 1.28 25 ,000
7 1.23 10 ,000

THE MODEL

been outlined, the next step

the mathematical technique of

in this study, the data

y FORMULATION OF

After the necessary data have

is formulating the model. In that

linear programming has been chosen
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described above must be assembled into a set of linear equations

and linear inequalities. The difficult task lies in insuring

that these linear equations and linear inequalities adequately

and accurately define the conditons or situation under study.

Identification of Variables

To facilitate the statement of the problem in mathematical

terms, the following variables and coefficients are defined:

X the number of bushels of the i lot used to make the

j grade

X^Q = the number of bushels of the i^^ lot sold without

^i

mixing

the total number of bushels of the i^^ lot used or

purchased

Y = the number of bushels of the j
^"^ grade sold

j

ki

b. = the k^ quality characteristic of the j grade

the k^^ quality characteristic of the i^^ lot

*^i
the cost per bushel of the i^^ lot

the price per bushel of the j^^ grade

= the supply of the i*^^ lot

D. = the demand limits of the j grade

d. = the demand requirements for the j grade

where

1=1,2, . . . ,8 lots

j - 1, 2, . . . , 7 grades

k = 1 (moisture), 2 (total damage), 3 (foreign material, 4

(heat damage) , and 5 (odor) quality characteristics
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Objective Function

The function to be optimized is called the objective function

and depending on the circumstances can be either a minimum or a

maximum. It is an expression of the problem objective in dollars

and cents. In this study the goal is to maximize profits. In

mathematical terms the objective function is stated as follows:

7 8

I P J. - I Ci^i = Zmax.

j = l J J 1 = 1

This function reflects the selling price per bushel of each grade

and the cost or value per bushel of each lot used or bought.

Blending to Make Grades

The basic part of the model is the blending of the various

lots of corn to meet the prescribed grade requirements. The

structure of this problem is slmlliar to that of the feed formu-

lation problem of determining the least cost combination of

Ingredients that can be used to meet predetermined product

formulation specifications.

Linear inequalities or constraints are expressed in mathe-

matical terms to take into account the per unit (bu.) contribu-

tion of each lot of corn to the requirement or restriction for

each specification. Using the variables identified above the k*^^

specification constraint for the j
^"^ grade takes the general

form .

. "
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For example, the total damage constraint for grade 3 is stated

as follows

:

2.9 Xj^3 + 4.3 + . . . + ^0.0 £ 7.3 Y^.

This specifies that the total damage level in lot 1 (2.9 percent)

times the number of bushels of lot 1 used to blend into grade 3

plus the total damage level in lot 2 (4.3 percent) times the num-

ber of bushels of lot 2 used to blend into grade 3 plus . . . plus

the total damage level in lot 8 (40.0 percent) times the number

of bushels of lot 8 used to blend into grade 3 must be equal to or

less than the total damage level restriction of grade 3 (7.3

percent) times the number of bushels of grade 3 after it is mixed.

The moisture, foreign material, and heat damage requirements are

also expressed in terms of maximum percentages and the corresponding

constraints are handled in a similar manner.

The odor restraint takes a different form. While the other

requirements are in terms of composition control comparable to

nutrient control in a feed formulation problem, the odor restraint

is one of utilization control. It is assumed that when no more

than 20 percent from any stocks designated sour or 40 percent

from any stocks designated musty or proportional quantities of

sour and musty stocks are utilized the resulting mix will have

no odor. A restriction considering only the quantity of sour

stocks could be expressed by the inequality
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^sour stocks < .20Y , (1)

and a restriction considering only the quantity of musty stocks

could be expressed by

^musty stocks_< .AOY , (2)

If inequality (1) is multiplied through by 2 the resulting in-

equality is

2^sour stocks <_ .40Y . (3)

Comparing inequalities (2) and (3) indicates that 2 times the

allowable quantity of the sour stocks is equivalent to the allow-

able quantity of the musty stocks, since both are less than or equal

to the same quantity, .AOY. The proportional restriction consid-

ering both musty and sour stocks then is

'

' 2jsour stocks + ^musty stocks <_ .40Y , (4)

and is the only restraint that is needed for the odor specifica-

tion. If there were no musty stocks the restraint would reduce

to (1) while if there were musty stocks but no sour stocks the

restraint would reduce to (2). The constraint then is formed by

assigning a coefficient of 2 to stocks designated sour, a coeffi-

cient of 1 to stocks designated musty, and zero coefficients to

those stocks which have no odor. In this problem lot 4 and lot

8 are sour and lot 6 is musty so the constraint becomes

2X, . + X, , + 2Xo^ < .40Y

.

4j 6j 8j ~
j
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This constraint applies only to grades 1 through 5. There is no

odor restriction on grades 6 and 7.

Necessary also in defining the blending portion of the prob-

lem is a quantity control or material balance equation. This

equation takes the form

and simply states that the quantity of the j grade mixed is the

sum of the quantities of each of the lots that are being blended

into the j*"^ grade.

Quantity Res trictions

, Constraints are necessary to define the quantities of stocks

on hand or available for purchase. These supply availability con-

straints take the form

7

j ' "iO - "iy X. . + X. „ < s

j = l

indicating that the sum of the quantities of the i*"^ lot blended

into each of the 7 grades plus the quantity of the i*"^ lot that

is sold without mixing cannot exceed the quantity of the i*^^' lot

on hand or available for purchase. This is an obvious statement

but one that is necessary in terms of the model formulation. The

availability constraint for lot 6, for example, is

X^^ + X^2 + . . . + Xg^ + X^o < 9.000 bu.
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For the purposes of this study it is assumed that demand in

the market limits the quantities of certain of the grades that

can be sold. These limitations must be reflected in the model

and take the form

The constraint expressing the demand limitation of 10,000 bushels

of grade 7 is

<_ 10,000 bu.

Limitations are not present for all grades but where limitations

do exist they are expressed in a like manner.

It may be necessary or desirable for reasons not explored

here to meet a minimum demand level for a certain grade. Such a

requirement would enter the model in the form of a constraint,

indicating that a minimum quantity of the j grade must be

blended.

Although not expressly considered in this study, it may be

desirable under some circumstances to require that a specific lot

or portion of a lot he sold or used in blending. For example, if

it were deemed necessary to insure that all of the sour corn in

lot A were used, the following constraint would be added to the

mode 1

:
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7

y X, . + X, „ = 15,000 bu.
j=l

^°

Similar constraints could be formed for any of the lots or com-

binations of the lots.

Trans fer Equations

To facilitate the a.tate4iLent of the objective function and

for ease in the use of the model and analysis in later stages

transfer equations or material balance equations are added. They

take the form "

.

^ij ^ ^iO = ^i •

and serve to express in terms of a single variable (X^) the total

quantity of the i^^ lot used.

The inequalities and equations necessary to meet the re-

quirements of blending each grade and the basic structure of the

model are shown in matrix format in Appendix I.

The non-negativity restrictions, those which require that

the variables be non-negative, are taken care of by the linear

programming algorithm and do not have to be explicitly expressed.

SOLUTION OF THE MODEL

The linear programming grain merchandising model begins with

a set of constraints that describe both the limitations on re-

sources and certain requirementy or specifications that must be

met. Since there are many more variables or unknowns than there
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are equations and restrictions, an infinite number of solutions

is possible. The problem is to select from this infinite number

a solution that is optimum.

The objective function which describes the total profit is

the driving force that is used to define the optimum solution.

The goal is to maximize the value of the objective function (total

profit) subject to the constraints. The optimum solution was de-

termined on a high-speed electronic computer (IBM 360/50) using

the standard linear programming code designed for that computer.

Other computers of suitable size could have been used provided

an appropriate program were available.

Technically, the problem is solved by iteratively computing

the solution to the set of simultaneous linear equations and in-

equalities defining the model. The profit is increased by ex-

amining successive combinations of alternatives until the solu-

tion is the most profitable one. The theory of linear program-

ming will not be discussed here except to state that the optimum

solution for the model is determined.^ Subject to the restric-

tions and demands of the model, no other quantities of the various

grades sold and n£ other blending arrangement will increase the

profit of the operation.

For a more complete explanation of linear programming two

excellent references are G. Hadley , Linear Programming (Reading,

Mass.: Addison-Wesley Pub. Co., 1962) and Kurz Meisels, A Primer
of Linear Progr ammin g (New York: New York University Press, 1962)
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Interpretation of the Ansv;ers

The basic or fundamental solution to a linear programming

problem states the level of each activity that will yield the

maximum profit while meeting all the restrictions and specifica-

tions and it gives the value of the maximum profit. In the grain

merchandising model this solution states the quantity of each

grade that should be sold and the quantity of each lot that should

be used to blend each grade. This solution, given the initial

prices and restrictions, is presented in Table 5. The optimum

policy is to sell 79,761 bushels of grade 1; 45,928 bushels of

grade 2; 13,800 bushels of grade A; and 9,453 bushels of grade 6.

It is not profitable at the existing prices to blend in all of

lot 7; 7,058 bushels of lot 7 are sold without mixing. The make-

up of each grade is also indicated in the table. For example,

the 9,453 bushels of grade 6 sold are blended by mixing 565

bushels from lot 3; 5,164 bushels from lot 4, and 3,724 bushels

from lot 8. The make-up of the other grades sold is similarly

presented. The maximum profit from this blending policy is

$1,996.86.

The one solution giving the single best policy for the

problem as stated is often only the beginning of obtaining in-

formation about the situation under study. With very little

extra effort and little more computer time considerable additional

information can be derived from a linear programming solution.

This additional information is at least useful secondary informa-

tion and in some cases may be as important as the statement of
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optimum policy because it defines boundaries within which pro-

fitable trading can occur.

This is particularly true in the grain trade. Buying and

selling grain are continuous simultaneous operations with changes

in each occurring constantly. Naturally, many uncertainties

exist. Basic to the structure of the model presented here is a

degree of uncertainty associated with the grade quality char-

acteristics of grain. Because of technical conditions in grain

handling, grain never becomes a homogeneous mixture regardless of

how many times it is mixed and handled. These uncertainties

point out the importance of using the model as a guide . Supple-

mentary information from linear programming solutions can be

useful management data if interpreted with care,

jP r i c e Sensitivity

Once the optimum policy is known, it is valuable to have

Information such as the sensitivity of this policy to price

fluctuations. There is a range over which objective function

variations do not cause a change in the basic solution. These

ranges of validity are not obvious from the objective function

or the optimum solution, but they can be easily determined from

the model.

Sensitivity of the optimum policy to changes in the price of

each grade is indicated in Table 6. These price ranges measure

the price change that can occur for each grade, taken one at a

time, without necessitating a change in the optimum policy. For

example, the price range for grade 1 is $1.3985 to $1.4074. In
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more practical terms, considering the fact that the price of cash

corn is quoted in terms of ^ cent per bushel the range is $1.40

to $l.AOi. This indicates that the price of grade 1, which is

presently $1.40 per bushel, can fluctuate within the price range

of $1.40 to $1.40i without changing the optimum policy, if all

other prices remain stable. When the price drops below the lower

limit, less of the grade should be sold and when the price rises

above the upper limit more of the grade should be sold. Similar

price ranges are given for grades 2, 4, and 6.

The grades which are not in the optimum policy, grades 3, 5,

and 7, clearly have only an upper price limit, they already are

too low in price. Regardless of how much the price drops below

the present level, no change in the optimum solution will result.

The upper limit in this case is the price at which the grade

should become a part of the selling policy. The price of grade

5, for example, must be greater than $1.3363 before grade 5

should be offered for sale.

Table 6. Current price of each grade and the price range
over which the current policy would not be changed.

Price Range
Grade Current Price Low e r Limit Upper Limit

($ per bu.) ($ per bu.) ($ per bu.)

1 l.AO 1.3985 1.4074
2 1. 385 1. 3819 1. 3867

3 1.37 *** 1.3732
4 1.35 1.3489 1.3503
5 1.33 *** 1.3363
6 1.28 1.2798 1.2860
7 1.23 *** 1.2362
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In an actual situation, of course, prices generally will not

change for only one grade at a time. In merchandising a single

commodity, one would expect that the prices of all grades will

generally move together, however, there will be price fluctuations

with respect to each grade. A relative price change of a quarter

of a cent or greater may necessitate a change in the optimum policy.

Price ranges can prove valuable in determining the sensitivity

of a policy to these price fluctuations. When price changes are

widespread, it may be necessary to re-run the model to establish

a new optimum policy. The optimum policy under one set of cir-

cumstances may not be optimum under another set of circumstances.

So far, only changes in selling prices have been considered.

However, the same principles apply to changes in the cost of

various lots used for blending.

Sensitivity of the optimum policy to changes in the cost

or price of each lot is shown in Table 7. Lots 1 through 7 are

used to the extent available, therefore, they do not have a

bounded lower price range. Regardless of how much lower the

price may be, the usage of these lots cannot be increased. The

upper limit is the highest price at which all of the lot will

continue to be used. For example, all of the 15,000 bushels of

lot 4 available should continue to be used as long as the price

of lot 4 is not greater than $1.3069; all other prices remaining

unchanged. All of lot 8 is not used in the blending policy,

therefore, it has both a lower and an upper price limit. Below

$1.2198 more of lot 8 should be used, while above $1.2303 less

of lot 8 should be used.
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Table 7. Current price of each lot and the price range over
which the current policy

IT ^ J would not be changed

.

Price Range
Lot Current Price Lower Limit Upper Limit

($ per bu.

)

($ per bu. ) ($ per bu.

)

1 1. 39 *** 1. A018

2 ' 1.40 *** 1.4152

3 1.36 *** 1.3628
4 1.28 *** 1. 3069

5 1.39 *** 1. 3944

6 1.35 *** 1. 3881

7 1.37 *** 1.3865
8 1.23 1.2198 1.2303

Price ranges for each lot can be very helpful in establishin

a purchasing policy. The model presented here not only considers

what each lot is worth as it is, but it also determines the value

of each lot in relation to the other lots on hand and available.

High moisture grain normally will prove to be worth more to the

merchandiser who has considerable dry grain on hand than it will

to the merchandiser who already has an elevator full of wet grain

This will be reflected in the price ranges for each merchandiser.

Price ranges are useful guides in evaluating the desirability of

purchasing alternative lots.

The price range information indicates when a policy needs

to be changed, but does not identify the complete nature or ex-

tent of the change required. At a price above the upper limit

more of a grade should be sold, but the quantity to be sold and

the blending of this grade are not evident. To complete the

analysis of the change required the model must either be re-run

with the new prices or a parametric study made over a range of

prices.
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Marg inal Values

Having looked at the effects of a change in prices it can

also be important to know what effects a change in the supply

of a lot available will have on the optimum merchandising policy.

As in the objective function and price ranges, there is also a

range through which the quantity of a lot used can vary without

changing the basic solution. However, the value of some of the

variables will change, and there is a change in the total profit.

Of interest then is a measurement of the change in total profit

and the limits of the change in the quantity used or bought for

which this measurement is valid.

The concept of marginal value can appropriately be applied

in studying the effect on profit of a change in the usage or

availability of a given lot. The marginal value of a lot is de-

fined as the change in the value of the objective function (total

profit) resulting from a unit change (a change of one bushel) in

the quantity of the lot used. The marginal value of each lot in

the situation under study and the quantity range over which they

are applicable are shown in Table 8. For example, the marginal

value of lot 2 is $.01521 per bushel and the applicable range is

from 20,998 bushels to 39,A06 bushels. For every bushel less

than the original 32,000 bushels used, the profit will be reduced

by just over a cent and a half a bushel until the level of 20,998

bushels is reached. For every bushel available over 32,000 bushel

profit can be increased by a cent and a half up to 39,406 bushels.

Thus an increase of 1,406 bushels in the supply of lot 2 available

could increase profit by $21,38. The marginal values of the other
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lots are similarly interpreted.

Table 8. Marginal value of each lot and the range over which
the marginal value is applicable.

Marginal Ori ginal Range
Lot Value Solution Level Lower Limit Upper Limit

($ per bu.) (bu.) (bu.) (bu.)

1 .01184 38,000 30,812 48,677
2 .01521 32,000 20 ,998 39 ,406

3 .00288 12,000 4,099 21,142
4 .02699 15,000 9,979 23,258
5 .00444 29,000 10 ,740 55 ,455

6 .03812 9,000. 14,949
7 . 10656 9,000 5,566 38,822
8 .00034 4,942 4 ,006 4,942

The ranges for the marginal values shown above hold only

when the quantity of one lot is changed at a time. It is pos-

sible, however, to reformulate the model to change prices of

2 or more lots at the same time to determine what the joint im-

pact of such changes will be. The marginal values thus deter-

mined provide important management guides. Suppose that the

quantities available were only estimates with uncertainties in-

volved. The range of a marginal value gives an indication of

how much the estimate can vary with a given effect on profit

without requiring a change in the basic policy.

A related question is the effect on profit of an increase

in supplies available. If an additional 10,000 bushels of each

lot were made available and the merchandiser only has capacity

to handle a total of 8,000 more bushels, the marginal values are

a useful guide in determining which lot to increase. It is
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evident from the data used in this study that lot 7 with a

marginal value of $.10656, more than 10 cents per bushel, con-

tributes most to total profit. Obviously lot 7 should be se-

lected. Since the marginal value is valid up to 38,822 bushels,

other factors unchanged, 8,000 bushels can be used.

\ J ALLOCATION AT THE FIRM LEVEL

In a free enterprise marketing situation it must be recog-

nized that many factors are subject to continuous and sometimes

substantial change. A discussion of the fundamental solution and

price range information is based on the assumptions that one thing

is changed at a time and that the changes are not great enough to

cause a change in the basic solution. By relaxing these assump-

tions it is possible to better understand the structure of the

situation under study and how it might be affected by changes.

Parametric programming, which is a technique for investigating

the effect on the optimum linear programming solution of a se-

quence of proportionate changes in one or more of the elements

of a single rov7 or column of the matrix^, allows the freedom to

study changes. It is one of the best examples of the expanding

usefulness of linear programming to management.

International Business Machines. An Introduction to Linear
Progr amming . . . Data Processing Application Manual. (White
Plains, N. Y.; I.B.M., 1964), p. 20.
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Framework of Analys 1

s

Most agricultural marketing situations are considered to

represent near perfect competition. In such a case the decisions

made by a buyer or a seller have no measurable effect upon market

prices. Knowing this it is of Interest to know what the firm's

decision should be to maximize profits at various prices of a

particular grade or lot.

A grain merchandiser is both a buyer and a seller. Supply

curves can be developed to assist the grain merchandiser by ob-

serving the effect of a change in the price of a grade on the

quantity of that grade which should be offered for sale. The

supply curve shows the optimum quantities of a grade which should

be offered for sale at alternative prices. Likewise, demand

curves can be developed by observing the effect of a change in

price of a certain lot on the quantity of that lot which the

grain merchandiser should purchase. The demand curve shows the

optimum quantities of a lot which should be purchased at alter-

native prices

.

Within the framework of the model presented here both supply

curves and demand curves can be developed by using parametric

linear programming. The functions obtained by this technique are

normative in the sense that they indicate what should be done in

keeping with the goal of maximizing profits. They are not pre-

dictive in the sense that they will indicate what actually will
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be supplied or purchased. However, they can serve as useful

management guides.

Supply Functions

In a variable-price or parametric linear programming analy-

sis of the price of a particular grade in a given situation,

prices for which the merchandising policy should change are com-

puted. In this study the price was changed by increments of a

quarter of a cent. Thus the scale of price-quantity relation-

ships revealed by the analysis constitutes a normative supply

function

.

The supply function derived by parametric linear programming

can be formalized as follows, using the variables previously de-

fined :

' ^(Pj'^i'^'^ki'^i^

where again

i = 1,2 , . . . , 8 lots

j = 1,2, . . . , 7 grades

k = 1,2, 5 quality characteristics.

The quantity of grade A to be sold is not considered as simply a

function of the price of grade A. The supply function also con-

siders the prices of the other grades; the prices, the supplies.

Ronald D. Krenz, Ross V. Baumann, and Earl 0. Heady. "Norma-
tive Supply Functions by Linear Programming Procedures," Agricul-
tural Economics Research, XIV (January, 1962), pp. 14-15.
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and the quality characteristics of the various lots of grain

available; and the quality restrictions or requirements of all

the alternative grades. This fact is taken into account by con-

sidering that all factors are held constant while varying only

the price in question.

In this study two of the supply functions were developed.

The price-quantity relationships for grade 1, which was a part of

the initial optimum policy, are summarized in Table 9, and the

price-quantity relationships for grade 3, which was not a part

of the initial optimum policy, are summarized in Table 10.

These supply functions are presented graphically in Figures 1 and

2.

Table 9. Price-quantity relationships for grade 1 with
all other factors constant.

Price Range Quantity

($ per bu.) (bu.)

4,393

1. 39 24,042

1.39i

1.39i

68,333

79,548

1.40 1.40i 79,761

82 ,817

1.41 84 ,112

1.43 86,121
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($ per bu. )
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1.41 -
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Fig. 1. Supply function for grade 1
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Fig. 2. Supply function for grade 3.
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Table 10. Price-quantity relationships for grade 3

with all other factors constant.

Price Range Quantity

($ per bu. )
V. Du .

;

1.37i

I.37I 47,382

I.37I - 1.381 79,427

1.39 - l.Al 150,737

The supply function for grade 1, developed by varying the

price of grade 1 while holding the other prices and factors fixed,

rciveals that none of grade 1 should be sold when the price is

$1.38i or less. This is not difficult to see for the price of

grade 2 is currently 1.38i and the quality restrictions are not

as rigid. In the initial policy 79,761 bushels of grade 1 should

be sold with the price at $1.40 per bushel. The price range in-

formation indicated that this quantity was the best policy as

long as the price of grade 1 remained in the range $1.40 to $1.40i

other prices and factors fixed, but did not indicate what should

happen should the price fluctuate outside this range. The supply

function indicates the optimum quantities at prices outside this

range, and can in effect be viewed as a continuous extension of

the price range information. The supply function for grade 3 is

similarly presented.
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Demand Functions

Although not as frequently discussed as supply functions,

demand relationships at the firm level can also be revealed by

parametric linear programming. In the analysis of a particular

lot in a given situation, again prices for which the merchandising

policy should change are computed. The demand function takes the

same general form as the supply function, but here the quantity of

a particular lot that should be bought or used at various prices

of that lot is of interest:

- g(Pj.c^,S. ,aj^^,bj^.) .

Two of the demand functions were developed in this study;

the demand function for lot 4, which was used in its entirety in

the initial optimum policy and the demand function for lot 8,

which was not used to the extent available in the initial optimum

policy. The respective price-quantity relationships are sum-

marized in Tables 11 and 12, and the demand functions are pre-

sented graphically in Figures 3 and A. As with the supply func-

tion, the demand function for a particular lot is developed by

varying the price of that lot while holding the other prices

and factors fixed.
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Tabic 11. Price-quantity relationships for lot A with
all other factors constant.

Price Ran ge Quantity

($ per bu. ) (bu.)

1.301 15 ,000

1.30| - 1.3l| 9,979

1. 32 - 1.321 7,780

1.32i
2

- 1.331 2,653

1.34 1,789

Table 12 Price-quantity relationships for lot 8 with
all other factors constant.

Price Ran ge Quanti ty

($ per bu. ) (bu.)

1.2ll
2

12,000

1. 2ll 8,399

1.22 - 1.23 4,942

1.2 31 - 1.263 4,007

1.27 1,586

The demand function for lot 4 reveals that in the situation

under study all 15,000 bushels of lot 4 available will be used

up to a price of $1.30|. This fact was pointed out in discussing

the price range information. At a price of $1.32i only 2,653

bushels of lot 4 should be sought or demanded. The demand
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($ per bu.)

1. 34H

1. 33-

1. 32-

1. 31-

1. 30-

1.29-

1. 2 8H
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1.

r
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(000 bu.)

Fig. 3. Demand function for lot A.

($ per bu.)
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(000 bu.)

Fig. 4. Demand function for lot 8.
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function for lot 8 is similarly presented. At the initial price

of $1.23 only A, 942 bushels of this lot are demanded. Not until

the price falls to $1.2li or lower should all 12,000 bushels of

lot 8 be used.

The demand relationships derived by parametric analysis may

well be of more importance than the supply functions. In the

model presented in this study, the entire quantity of a grade is

sold with respect to a given basing point without regard to

actual destination, and except for small fluctuations the prices

of all grades will generally move together. Therefore, only

small price changes around the original price of a grade will be

very meaningful. The different lots, on the other hand, may be

considered as coming from separate origins. Thus part of their

cost will be transportation charges. As transportation rates are

changed or alternative means of transportation are considered, it

is not unreal to want to study a greater range for the cost of a

particular lot. By using a parametric programming analysis the

effects of a change in one or several costs simultaneously may

be examined

.

The resulting curves of both the supply and the demand func-

tions are of a "stair-step" nature. The stair-step characteristic

results from a finite number of alternatives, and rigid resource

restrictions used in the programming calculations. The number

of "steps and corners" is a function of the number of alterna-

• .
9

tives and restricting resources.

^Ibid.
, p. 17

.
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SUMMARY

the principle aim of a grain merchandiser is profit maximi-

zation. Thinking strictly "least-cost" does not insure maximum

profit. This study had two main objectives: (1) to formulate a

grain merchandising model which considers overall buying and selling

policy or profit maximization, and (2) to develop some of the

management information that can be derived from the basic model.

The mathematical technique of linear programming was chosen

as the basis for a management model. The grain merchandising

situation presented was formulated in terms of a linear program-

ming problem and a basic solution was obtained. This solution

indicated which grades should be sold, which lots should be used

or purchased, how the various lots should be blended to make the

grades, and the maximum profit for the given situation.

An important aspect of the model presented is the management

information which can be derived from it. A model cannot eliminate

all of the judgement associated with managerial decision-making.

Nowhere is this more true than in grain merchandising where con-

tinuous changes and uncertainties are ever present. This points

out the importance of using the model as a management ^^uide
.

To

enable the merchandiser to better understand the situation, sensi-

tivity to changes was explored by looking at ranges on the ob-

jective function coefficients and at marginal values. Supply and

demand functions for the firm were also derived using parametric

analysis.
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While only the fundamental aspects of grain merchandising

were considered in developing this model, the basic structure

offers the possibilities of several interesting extensions. The

practical problems of grain drying or cleaning might be explored.

The model also offers a framework in which the effects of trans-

portation rate changes can be reviewed. Prospects for use of this

"maximum-profit" model appear promising.
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APPENDIX I

The equations and variables comprising the model were

assembled in a systematic fashion by listing them all together.

The variables were all transferred to the left-hand-side of the

equation or inequality, leaving only a constant term on the

right-hand-side. To conserve space and effort the variable name

is "detached" and placed at the head of the column. The resulting

array of coefficients is called a matrix. Figure 5 presents the

basic matrix structure of the model while Tables 13 through 19

show the actual coefficients of the blending sub-matrices. In

Figure 5 a plus sign represents a +1 coefficient and a minus sign

represents a -1 coefficient.



OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOtOWNinO)''"''*^
cow— —P5T

JIJIJIJIJI lUIJUIJIJI IWUIJI JUl IUl<4l JUI<!I !MIJ|.JIJIJI llll JI.II-II IIJIJIJI IIJI J1JI4II1 II II II II II II IMI-JUIJUUI JUI

0)

•a
fit

o

(U

fi}

0)

o

to

to (U (U

>-i •H rH
m

0)

!

t
e

io
W ^
•rl Cd

(U
I

I*
I

+j

'

to u *J

•o T3 •H
' c rt C -H

rt rt C3 6 <a 3
u <u •H '

>-i 3 >
o o o o

1

H w o- <



37

Table 13. Sub-matrix I, blending grade 1.

^11 ^21 ^31 \l ^51 ^61 ^71 ^81 ^1

Mois ture 1A.9 14.5 14.4 16.0 15.9 14.8 13.4 13.8 -15.5 <.0

Total
damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 - 5.0 <0

Foreign
mat. 3.5 1.9 6.0 4.0 4.0 3.0 2.8 5. 0-2. 8 £0

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 5.00 - 0.20<0

Odor 2 1 2 - 0.40<0

Mat. bal. 1 1 1 1 1 1 1 1-1 =0

Table 14. Sub-matrix II, blending grade 2.

'l2 ""22 ^32 ''42 '^52 ^62 "72 "82 ^2

Moisture 14.9 14.5 14.4 16.0 15.9 14.8 13.4 13.8 -15.5 <_0

Total
damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 - 5.0 <.0

Foreign
mat. 3.5 1.9 6.0 4.0 4.0 3.0 2.8 5.0 -4.0^0

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 5-.00 - 0.20^0

Odor 2 1 2 - 0.40<0

Mat. bal. Ill 1 1 1 1 1-1 =0
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Table 15. Sub-matrix III, blending grade 3.

^13 ^23 ^33 ^43 ^53 ^63 ^73 ^83 ^3

Moisture 14.9 14.5 14.4 16.0 15.9 14.8 13.4 13.8 -15.5 <0

Total , ^ „

damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 - 7.3 <0

Foreign
mat

.

3.5 1.9 6.0 4.0 4.0 3.0 2.8 5.0 -4.0 <0

Heat ^ ^ ^

damage 0,05 0.05 0.05 0.05 0.05 0.90 0.05 5.00 - 0.50<0

Odor 2 1 2 - 0.40<0

Mat. bal. 1 1 1 1 1 1 1 1-1 =0

Table 16. Sub-matrix IV, blending grade 4.

^14 ^24 ^34 ^44 ^54 ^64 ^74 ^84 "^4

Moisture 14.9 14.5 14.4 16.0 15.9 14.8 13.4 13.8 -15.5 <0

Total
damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 -10.5 <0

Foreign
mat. 3.5 1.9 6.0 4.0 4.0 3.0 2.8 5.0 -5.0 <0

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 0.05 - 1.00£0

Odor 2 1 2 - 0.40<0

Mat. bal. 1 1 1 1 1 1 1 1-1 =0
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Table 17. Sub-matrix V, blending grade 5.

^15 -^25 ^35 ^45 ^55 ^65 *75 X'^85 Y
5

Moisture 14.9 14.5 14.4 16.0 15.9 14. 8 13.4 13.8 -15. 5 £0

Total
damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 -16.

Forei gn
mat

.

3.5 1.9 6.0 4.0 4.0 3.0 2.8 5.0 - 7. <0

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 5.00 - 3. 00<0

Odor 2 1 2 - 0. 40<.0

Mat. bal. 1 1 1 1 1 1 1 1 - 1 =

Table 18. Sub-matrix VI, blending
;

grade 6.

^16 ^36 ^4 6 ^56 ^66 ^76 ^86 Y
6

Mois ture 14. 9 14.5 14.4 16.0 15.9 14. 8 13.4 13.8 -15. 5 <_0

Total
damage 2.9 4.3 5.3 20.0 3.1 6.8 7.6 40.0 -27. <p

Foreign
mat. 3.5 1.9 6.0 4.0 4.0 3.0 2.8 5.0 - 7. <Q

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 5.00 - 2. 00 <0

Mat. bal. 1 1 1 1 1 1 1 1 - 1 =

Table 19. Sub- matrix VII, blendin g grade 7.

^17 ^27 ^7 ^47 ^57 ^67 ^77 ^87 Y
8

Mois ture 14. 9 14,5 14.4 16.0 15.9 14.8 13.4 13.8 -15. 5 <.0

Fore ign
mat

.

3.5 1.9 6.0 4.0 4.0 3.0 2 . 8 5.0 - 2. 8 ±0

Heat
damage 0.05 0.05 0.05 0.05 0.05 0.90 0.05 5.00 - 0. 20 <0

Mat. bal. 1 1 1 1 1 1 1 1 - 1 -0
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: ^ APPENDIX II

The demand and supply relationships derived through variable-

price or parametric linear programming show the relationships be-

tween the price and the quantity of the particular grade or lot

in question. It is obvious, however, that at each "step" the

optimum policy should change. As the quantity of the grade or lot

in question changes other quantities will change, as will the way

in which these quantities are blended. Tables 20 through 24 show

the total effect on the optimum policy at each "step" as the

price of lot 8 is varied. Similar information could be presented

for each parametric study, as could the new price sensitivity

ranges and marginal value ranges which accompany each change in

the optimum solution.



u
•H

ta i-l *J

CD C
•o 4J C3

C3 O 3
<d

t^
N
•

I-I Cm
<fy

•

O • H
. 0)

f-l 4->

N <d

• H
<-l 7i 00
vy 6

M *

e o f-H

**

m f-H CO

0) n)

bo T-i r-H *

C 4J o f-H

(d f-t K/i

•H 0)

00
ID rt

4J (d M in

O ^ CO
i-l Q) *

f-H

O * *

4-1 CO

0) O
U iH CO CO
•rl 4J

u u

c
0) (0

,C 0)

in
K>

CM CO

o c
iH

4J

3 cn

rH (U

o o
0)

M
6 p. o
3 1-H

E M
•H Q) rH
4J ^
Ci. W
O O

u
• •H
O u
tM ru

rH
u

to o
H .J

O o O O o O O O
o o O O o o o O
o o o O o o o o
00 CN CM m OS OS CM

CO CO i-H H CM rH

m
o

o CM

m VC
in i-H f-H

CO CO o 00 vO

ON CO Cs!

VD O m rH
CO ON O <• -3-

m sj- O c^ ON

m rH f-H ON
rH

vO O fH o OS

vO o VO o m
«* o m o o
CM CM CO o\ CO
CO CO

c^ o vO 00 ON in
CO fO CM CO CO CO

r-{ fH iH rH f-H f-H rH

f-H CM CO «3- in VO

-3-

O
OS

00

«3-

O
CM
CO

ON
CM

vO
00
O
in
00

OS

u
o
H



42

4->

•H
1-1 4J /

B) CO C
4J (d

n O 9 .

0)

u
•rl

Wl

P-

u CO

a CM
1^ • .

rH ^

o

l-l

«]

CO
•o CM

c vO •

(0 <-l
'

• • ••

i-l

i-l

• o en

t-H

in •

• 0)

•H Q) td «•

4->

00 R) C5
fH

P 3
B CO

fH U
O r-{

M (t-i

O • • ••

M-i

rH
fl) r-l r~
U Cd ro
•H l-( CO •

M 4J r-l

a-H
C

C "H
0)

X (0

^ (d LO
00

C 0) CO

O »J CM •

•H td rH
4-1

9 U)

H C
O O
05 "H

4J

E u O
3 "H <f
B H r-H •

•H *J i-H

U TO

0)

CM

V
rH

Cd

H

O
O
O
CO
CO

o
o
o
CM
CO

o
o
o

o
o
o
m
rH

o
o
o

CM

o
o
o

o
o
o

a.
CO

CO

CM

ON
CM
CM

ft «3- O o 00
CO H

NO 0^ UO

00 CO O

CO O O vO
CO CO VO CM

r-~ rH CM 00
>

m CM CO rH rH
<M

Sf O m o
lO O CO o
CM o nD o rH

CM CM CO
CO CO

O vD 00 in
CO CO CM CO CO co

rH rH rH rH rH rH rH

rH CM CO m VO

CO

CM

<•

CO

CO
rH

00

Cd

o
H



5»-

4.>

lH

rH 1-1 U .

c
4J to

•o O 3
H O >

CO

n
•

t-l
en

</> CM

o • i-i

4)

CM cd

• i-i

r-< :) 00
CM

vD •

E o i-l

O M-i

r-(

n r-l 13 CO

(t) n) rH CO

to 1-1 O in •

C *J C/D i-i

CD -H
0)

•H
00 rt

m
4-1 (d o in

o CO

I-I r-<

U
o

^ o
U -H CO

CO •

M U iH

Pu 1-1

V4

C
0) m
.C! flJ

^ U m
00
CO

o C CM •

iH m

f-i a)

o o
CO *H

g p- o
3 «^

e »^ r^ •

i-( 01

4J ^
P, 4-1

o o

o
•H

CM >-l

«M fV,

O
iH
.Q 4J

rt O
H kJ

o o o o o O C CM

o o o o o O O
o o o o o O O 0^

3
00 CM <N m 0^ o>

—

'

CO CO 1-1 H CM

m CO

vO vO CM m
m i-< -a-

CO On

CM CM 00 00 O
•<r so rH O

o in ON CM 00
»

00 1-1 CM 1-1 CO
rH

in CO m O m 00

vD in o Csl

\D CO o o 00 ON

vD CO sr c^ CM in

CM -<r

in o ON O r> rH

o o CO O rH VO

CO o CM O CM r~

iH CM St- CT\ CO On

CO CO r~

c^ o VD 00 cr> in
CO vr CO CO CO

*
iH 1-1 iH 1-1 rH rH rH

rH
a)

4-1

1-1 CM CO «3- m vO CO O



cd c

O 3

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o

CO
CO

(M
CO

CM
o

o

CO IT)

o
CO

.H O Cn|

St vD vO O o
CO O O 00

vo CO »3- CM m
CM

ON O \o o CO 00
in O VD o CM <•

CN O CvJ o O m
CM sr ON CO

CO CO r-.

o 00 m
CO CO CO CO CO *

lH t-l i-l rH t-H

rH
rt

iH CM CO in vD r>- 00 O



t-i

f-l 4J

to c
dt

O 3
n H O
0)

V
•H
u

Cm
Cn|

o

(-1

n) CO

•O \0 •

f-H

cd

r>.

esi

Cm

r-l CO
</>

I—

(

T)
•H 01 rH

4J O
00 «3 t/j

f-l

4J n (U in

U CO
ttf

O iH

o •*

f-H

Q> t-H

U (4 CO
•H 1-1 CO •

U

c

0)

X to

^ Ri in
00

C 4) CO

O i-i esi •

•rl (d iH
4J

3 to

•H C
O O
tC *H

4J

E <J O
sr

e »-i t-< •

•H
i-> to

Cl O
O l-t

0)

o
•

-* l-i

u

o
H ij

O o o o o o o vD

O o o O o o o 00

O o o O o o o m
CO CM CM m <y\ c^ a> rH
CO CO 1-H CM

vO
1^

rH
-a-

CO vO O
00 vO
sr 00

t-H CM

VO CO o r--

m CO CM
00 00 rH

CM m vO <•

rH

CO VO -3- O
-a- 00

sr rH

VO CM CM
I-I

O 1^ O CO

O O o rH

o O sr o O
rH CM 0^ CM
CO CO

O vD 00 ON m
CO CO CM CO CO CO

rH rH rH rH rH rH rH

rH CO sr ITI vO

sr

00



46

LITERATURE CITED

Baynham, T. E., Jr., "Linear Programming-For Filling Orders at

Grain Storage Elevators," The Northwestern MiJrl.er> CCLXV,

No. 23 (October 30, 1961), p. 30.

Clithero Wendell. "Computers for Wheat Blends, Purchasing,"

IlLe SpjJthwji^e^n XLIII, No. 10 (May 5 , 1964), p. 11-A,

Hadley, George. Linear Programming . Reading, Mass.: Addison-

Wesley, 1962.

International Business Machines Corporation. An Introduction,

to Linear Programming^. . . Data Processing Application

Manual. White Plains, N. Y.; I.B.M., 1964.

Kottke, Marvin W. "Anatomv of a Step Supply Function," Journal

of Farm Economics ,
XLIX, No. 1 (February, 1967), 107-118.

Krenz, Ronald D., Baumann , Ross V., and Heady, Earl 0. ''Normative

Supply Functions by Linear Programming Procedures," Agxic.¥J:J2

lural Eco^njimics. Re^^ XIV, No. 1 (January, 1962), 13-18.

Meisels, Kurt. A Primer of Linear Programming .
Nex^ York: New

York University Press, 1962.

Naylor, Thomas H. and Byrne, Eugene T. Linear Programming-^Mg^hois.

and Cases. Belmont, Calif.: Wadsworth Publ. Co., 1963.

Schruben, Leonard W. "Least Cost Wheat Mix by Computer," The

Northwe stern MiljLer, CCLXXII , No. 8 (August, 1965), 14-17 .

. "Mathematical Models for Decision and Control in

Flour Milling," Association of Operative Millers Technical

Bulletin, (August, 1967), 2988-2999.

Stafford, Joseph H., Ott, Leland E., and Snyder, James C.

Mana gerial Aspects of Least- Cost Fee_d Fo^rjnul^JLi.on wit^h

Linear Pr o gra_mmin^." Marke tin g Research Report 729 ,
Economic

Research Service of the U. S. Department of Agriculture,

1965.

Stafford, Joseph H. and Snyder, James C. A£pJjU_ay^s of_ an

Assembly Model in. the F^eed Industry . Research Bulletin 773 ,

Purdue University, 1964.

Unger, Joseph E. "Application of Linear Programming to Milling

Problems Which involve Blending of Wheat." Unpublished

Master's thesis, Kansas State University, 1957.



APPLICATION OF A LINEAR PROGRAMMING MODEL
TO GRAIN MERCHANDISING

by

EDWARD LOVJELL JANZEN

B. S., Kansas State University, 1962

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Economics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1968



One of the most popular and useful techniques that manage-

ment can turn to for assistance in the systematic approach to

the formulation and solution of business problems is the mathe-

matical technique of linear programming.

The purpose of this study was to formulate a linear pro-

gramming model which considered profit maximization for a grain

merchandising situation and to develop some of the management

information that can be derived from the basic model.

The grain merchandiser is continuously faced with decisions

related to buying and selling grain. His offers to buy grain are

based on the relative quality attributes of each lot and the use-

fulness of each lot in blending to make grades with specified

requirements. Sales are made based on these grades. Both the

stocks already on hand as well as the stocks available must be

considered in establishing a blending policy.

The mathematical technique of linear programming was chosen

as the basis for a management model. The grain merchandising

situation presented was formulated in terms of a linear pro-

gramming problem and a basic solution was obtained.

This solution indicated which grades should be sold, which

lots should bo used or purchased, how the various lots should be

blended to make the grades, and the maximum profit for the given

situation.

An important aspect of the model presented is the use cf the

management information. A model cannot eliminate all of the

judgment associated with managerial decision-making. Nowhere is



this more true than in grain merchandising where continuous

changes and uncertainties are ever present. This points out the

importance of using the model as a management guide . To enable

the merchandiser to better understand the situation, sensitivity

to changes was explored by looking at ranges on the objective

function coefficients and at marginal values. Supply and demand

functions for the firm were also derived using parametric analysis.


