
HANDLING UNCERTAINTY IN INTRUSION ANALYSIS

by

LOAI M. M. ZOMLOT

B.S., Islamic University, Palestine, 2003

M.S.E., Kansas State University, 2008

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014



Abstract

Intrusion analysis, i.e., the process of combing through Intrusion Detection System (IDS)

alerts and audit logs to identify true successful and attempted attacks, remains a difficult

problem in practical network security defense. The primary cause of this problem is the

high false positive rate in IDS system sensors used to detect malicious activity. This high

false positive rate is attributed to an inability to differentiate nearly certain attacks from

those that are merely possible. This inefficacy has created high uncertainty in intrusion

analysis and consequently causing an overwhelming amount of work for security analysts.

As a solution, practitioners typically resort to a specific IDS-rules set that precisely captures

specific attacks. However, this results in failure to discern other forms of the targeted attack

because an attack’s polymorphism reflects human intelligence. Alternatively, the addition

of generic rules so that an activity with remote indication of an attack will trigger an alert,

requires the security analyst to discern true alerts from a multitude of false alerts, thus

perpetuating the original problem. The perpetuity of this trade-off issue is a dilemma that

has puzzled the cyber-security community for years.

A solution to this dilemma includes reducing uncertainty in intrusion analysis by making

IDS-nearly-certain alerts prominently discernible. Therefore, I propose alerts prioritization,

which can be attained by integrating multiple methods. I use IDS alerts correlation by

building attack scenarios in a ground-up manner. In addition, I use Dempster-Shafer The-

ory (DST), a non-traditional theory to quantify uncertainty, and I propose a new method

for fusing non-independent alerts in an attack scenario. Finally, I propose usage of semi-

supervised learning to capture an organization’s contextual knowledge, consequently improv-

ing prioritization. Evaluation of these approaches was conducted using multiple datasets.

Evaluation results strongly indicate that the ranking provided by the approaches gives good

prioritization of IDS alerts based on their likelihood of indicating true attacks.
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Chapter 1

Introduction

Intrusion-Detection System (IDS) has been seen as the ”silver bullet” that ensures secu-

rity of an enterprise network against conceivable attacks. Despite the wide spread of this

technology, it is not effectively used because of the large amount of false alarms that it pro-

duces. For example, the well-known open source IDS system Snort89 is run on a production

network with just a couple of hundred machines and it produces hundreds of thousands of

alerts on a daily basis, a majority of which are false alarms. In big enterprises the problem

worsen. IDS deployment often creates massive amount of events that typically flow into

the enterprise’s Security Operation Center (SOC), consequently causing an unrealistically

overwhelming amount of work and long working shifts for security analysts. Throughout my

experience of working with and interviewing many security analysts, I discovered that an

event discerned to be potential attack or false alarm, in 10 minutes interval. In many teams,

this number decreases to one minute or less. This unrealistic short time forces the team

to sample from the IDS events list. The short-term solution may be to recruit additional

staff, but this approach cannot help even in the near future, especially because of the rapid

growth of network size, which puts the IDS effectiveness on the line.

To technically cope with this problem, practitioners typically create specific IDS rules

(signatures) that precisely capture very specific attacks and reduce the overall false-positive

rate. However, this results in failure to discern other attacks or other forms of the targeted

attack because of the polymorphic nature of the attacks, which is a result of the human
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intelligence that stands behind them. On the other hand, to prevent false negatives, i.e.,

detection misses, the IDS’ rules engineers resort to combine the above approach with a more

generic one, so that an activity with even a remote possibility of indicating an attack will

trigger an alert. It then becomes the responsibility of a security analyst monitoring the IDS

output to distinguish the true alarms from the large number of false ones, thus perpetuating

the original problem. For example, Internet Control Message Protocol (ICMP) packets are

routinely generated to indicate networking errors (e.g., non-existence of a service). This

could be an indication that a remote attacker is probing a host or simply be a benign

error. Many IDSes capture these ”ICMP” packets as potential malicious activities, thus

unavoidably triggering a large number of false positives. Therefore, an inevitable trade-

off between false positive and false negative becomes a dilemma puzzling cyber-security

community.

The origin of this problem is deeply rooted into the base-rate fallacy (paradox) phe-

nomenon, which affects any detector. This phenomenon reveals itself when one probabilis-

tically tries to detect an attack in a big volume of benign traffic, consequently leading to

the declaration of many of the benign traffic as the culprit. However, to avoid this problem,

detection accuracy must exceed the rarity of the attack, which is not feasible technically.

The prevalence of this problem in intrusion analysis was first noted by Axelsson18 and since

then, accurate detection of intrusion by a single sensor has become virtually impossible. A

very low false positive rate results in so many false alarms as to make the analysis useless

in practice. This problem made the IDS acts like the boy who cried wolf in the famous

story, but even in a worse way because of the large amount of alerts in the era of big data.

This created a behavior various the practitioners call cognitive bias, i.e., the tendency to

ignore most IDS events (or sometimes all). As a result, it is common among practitioners

to altogether disable IDS signatures that tend to trigger large amount of false positive. In

fact, security analysts often tend to not use the standard IDS rule sets, but instead resort

to secret (unpublished) attack signatures that are highly specific to their experience and
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environment. Consequently, security analysts risk using these secret precise signatures sets

because they help capture only “low-hanging fruit”, and many attacks are likely missed

due to disabled signatures. Turning off IDS signatures is like turning a blind eye to attack

possibilities. Unfortunately, practitioners see no alternative, with the lacking of any other

significant distinguishing feature between the alerts.

1.1 Thesis

All above have instigated the problem of intrusion analysis, or the process of examining

real-time events such as IDS alerts and audit logs to identify and confirm successful attacks

and attack attempts into computer systems. In this dissertation, I aim to investigate and

propose a technical approach to help automate the intrusion analysis process. This work

considers human effort in relation to the problem, thereby reducing the burden from the

security analyst. Therefore, I propose events prioritization, achieved using reason under

uncertainty and machine learning approaches, to reduce a security analyst’s workload.

Thesis. The prioritization of IDS-correlated-alerts scenarios using a customized version of

Dempster-Shafer theory and machine learning can reduce uncertainty in intrusion analysis.

Prioritization is achieved using multiple approaches that handle uncertainty in intrusion

analysis:

• Alert correlation to establish the attack scenario from small pieces of evidence in a

ground-up manner

• Customization and application of a mathematical theory, i.e. Dempster-Shafer Theory

(DST) in this work, to quantify uncertainty in attack scenarios

• A machine learning approach to automatically capture the contextual knowledge spe-

cific to an enterprise’s network
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This dissertation primarily focuses on these three approaches to handle uncertainty in

intrusion analysis. Chapter 2 explains my approach in correlating IDS alerts and Chapter 3

elaborates on my approach using DST to quantify uncertainty in alert correlations. Chap-

ter 4 demonstrates usage of machine learning in this problem. Finally, Chapter 5 contains

the conclusion.

1.2 Intrusion Detection Systems

Cyber-attacks on homes, businesses, and governments have become daily events which vio-

late, Confidentiality, Integrity, and/or Availability (CIA) of the affected computer systems.

Therefore, a system must be in place that can detect and/or prevent these attacks on a

computer host or network. Consequently, many methods and systems have emerged to

automate this process.

Definitions19,57

• Intrusion: attempt to compromise Confidentiality, Integrity, and/or Availability (CIA)

in a computer system or network

• Intrusion Detection: process of monitoring events occurring in a computer system or

network and analyzing them for signs of intrusions

• Intrusion Detection System (IDS): piece of a software or a hardware system that

automates the intrusion detection process

• Intrusion Prevention System (IPS): system containing all IDS capabilities but can

also actively stop possible incidents.

Currently, IDS is widely used organizational networks. IDS can be categorized into

network-based and host-based and categorized by approach into signature-, anomaly-, and

specification- based. These categorizations are detailed in the following

4



IDS by Deployment

• Host-Based IDS (HIDS): system that resides as an agent on the local computer and

monitors machine behavior, e.g., by examining the logs

• Network-Based IDS (NIDS): system that monitors network traffic generally consisting

of sensors distributed over the network and a processing unit. The sensors sniff network

packets, e.g., TCP/IP packets, and the system attempts to identify malicious packets

or anomalous activity on the network.52

Detection Approaches

Intrusion detection approaches typically fall into one of the following categories:

• Signature-based or Misuse-based IDS

A signature is a pattern that corresponds to a known attack or threat; misuse detec-

tion is the process to compare patterns against captured events to recognize possible

intrusions. For example, in network IDS the packet content has a known pattern of

attack, such as NOP sled or shell code52. The primary advantage of this approach

is the ability to precisely detect known attacks, but it is unable to detect previously

unseen attacks. Therefore, evasion of these signatures is inventible, requiring users of

this type of IDS to write generic signatures in order to minimize the attackers’ evasion

effect, resulting in additional false positive.

• Anomaly-based IDS

An anomaly is a deviation from a known or expected behavior on the computer system

or network. Normal behaviors are derived from monitoring regular activities for the

network and hosts over a period of time and establishing a normal profile. Anomaly-

based IDS compares normal profiles with observed events to recognize any outlier as an

attack. For example, if a user’s work hours are always between (8:00 am - 5:00 pm), and

he/she suddenly diverges from these times the IDS will raise an alert. Multiple failed
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login attempts are also considered anomalous behavior. This approach, unfortunately,

cannot detect slow, gradual behavior divergence, but the primary advantage of this

approach is its ability to detect novel attacks. However, it suffers from high false alarms

because previously unseen legitimate system behaviors are also recognized as anomalies

and flagged as potential intrusions. Due to the diversity and dynamism of the networks

and applications, establishing a normal baseline is also difficult, consequently hindering

usage of anomaly-based IDS in practice.

• Specification-based IDS

In this approach, manually developed specifications are used to characterize legiti-

mate program behaviors. This approach depends on vendor-developed generic profiles

to specific protocols that enable it to trace protocol states. In general, the network

protocol models in a specification-base IDS are based on protocol standards from in-

ternational standard organizations, e.g., Internet Engineering Task Force (IETF). The

advantage of this approach is that it does not generate false alarms when legitimate

unusual user behaviors are encountered. It can also detect previously unknown at-

tacks because of its ability to detect attacks that deviate from the specified-legitimate

behaviors. However, specification development for such a system needs significant ef-

fort, which affects approach usability. In addition, the effectiveness in reducing false

positive is still questionable.

• Hybrid IDS

The hybrid approach is achieved with the use of multiple methodologies to provide

the best extensive and accurate detection. For example, anomaly-based and signature-

based are complementary methods by which IDS can cover unknown and known at-

tacks/threats.
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1.3 Intrusion Analysis

Intrusion analysis answers the questions, Are all these alerts important? or Is this alert true

or false positive? Therefore, intrusion analysis can be defined as follows:

• Organizing and characterizing data regarding user and system activity in order to

identify activity of interest20.

• Process of identifying attack traces from large amounts of system monitoring data,

e.g., IDS alerts and audit logs, either on the fly or offline67.

Intrusion analysis is a combined approach that utilizes intrusion detection and computer

forensics to achieve its goal.

Approaches in Intrusion Analysis

Currently, Intrusion analysis can be divided into two approaches: the primitive approach

and alert correlating approach. In the primitive approach, the security analyst manually

and randomly goes through raw IDS alerts and logs with hope to identify real attacks. This

approach may work if the security analyst monitors a small networks with tens of machines.

In the alert correlating approach, the security analyst attempts to reach conclusions through

events correlation. Correlation can be defined from statistical perspective as a technique

that indicates whether and how strongly pairs of variables are related, e.g., correlation

between the demand for a product and its price. Thus, correlation can be used to find

relationships between multiple IDS alerts in order to build attack scenarios in ground-up

manner. For example, by correlating a port scan action from an external machine toward

an internal server and malicious behavior of the latter, the security analyst can infer that a

hidden connection is present between these two events, which means the external machine

has exploited the server.

Therefore, IDS alert correlation can be defined as the reconstruction of high-level inci-

dents from low-level events. This approach has been used to remediate the high false-positive
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problem in practice. Investigation of at multiple observation points and correlating events

can potentially reduce the false-positive rate and increase the confidence in an attack sce-

nario. Axelsson’s18 reasoning implies that useful intrusion detection is impossible to achieve

based on a single event, such as a network packet, because features within the event are

too limited to provide necessary differentiating power to extract an extremely weak attack

signal from background traffic. Therefore, the reasonable assumption can be made that

in order to make IDS sensors useful, events from multiple sensors must be correlated to

increase features available for decision making.

1.4 Uncertainty

Uncertainty is the quality or state of being uncertain, or something that is doubtful or

unknown15. Two types of uncertainty are prevalent.

• Aleatory or Objective Uncertainty

This uncertainty is due to variability of input or system parameters when character-

ization of variability is available. It results in from random system behavior, e.g.,

sensor errors. This type can be handled by the frequentist approach associated with

traditional probability theory47, which is the limit of an event’s relative frequency in

a large number of trials.

• Subjective or Epistemic Uncertainty.

This uncertainty is due to variability of input or model parameters when correspond-

ing variability characterization is not available, or it is uncertainty due to the lack

of specific knowledge in system analysis. For example, the interpretation of a po-

tentially malicious event that also has a benign explanation is a common example of

this type of uncertainty. The application of traditional probability theory here runs

into fundamental problems because probabilistic analysis requires an analyst to have

information on prior probability of all events, which is often not available. Therefore,
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the uniform distribution function, is often used to represent the unknown, which is

justified by the Principle of Insufficient Reason or Indifference78. Consequently, all

simple events for which a probability distribution is not known in a given sample

space are equally likely. While application of such a principle may be appropriate for

physical systems, it is questionable in an area such as intrusion detection in which

beliefs and human-built models are innate to the analysis. This is especially when a

frequentist approach to estimate probabilities is infeasible or available information can

be ambiguous or conflicting. For example, difficulties arise when an analyst attempt to

assign a probability to the event that a particular nuclear power plant will experience

a meltdown. What are the set of possible events, and is it correct for these elements

to be equally likely? An approach to this problem is well established in the various

non-traditional theories for uncertainty, such as Dempster-Shafer Theory, Subjective

Logic, and Possibility theory47.

1.5 Related Work

Events Correlation

Intrusion analysis or IDS alert correlation has been extensively studied in the past ten

years29,30,34,35,62,64–67,87,99,100,103,106,109. Cheung, et al.30 propose the construction of a set of

modules that describe specific attacks with pre-conditions that must satisfied for the attack

to occur, the attack activity itself, and the post-condition that may result if the attack suc-

ceeds. To link two modules, the post-condition of one module must match the pre-module

of another. To model these multi-stage attacks, they developed a model called Correlated

Attack Modeling Language (CAML) that aims to develop attack patterns. They also used

attack patterns developed by them and stored in a knowledge base. Ning, et al.64 proposed

a similar approach using pre- and post-condition of attacks using predicates. Their imple-

mentation maps alerts to an internal representation called hyper-alert. After mapping each

raw alert to one of the pre-generated hyper-alerts stored inside a knowledge base, an attack
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scenarios are created by correlating hyper-alerts. Final visualization of the attack scenario

is presented as a graph using the GraphViz tool. Concerns regarding these two works are

the adoption a pre- and post-condition correlation module. A potential disadvantage of

ascribing a pre- and post-condition to an IDS alert is that the model utilizes specific attack

patterns, thus risking the potential of high false negatives. In addition, maintaining the

knowledge base for new attack types is an overhead, and no evidence indicates how well

their approach will work on production systems in which a large volume of false positive

alerts is typically received.

Ren, et al.72 proposed the usage of a real-time correlation system. They use an online

component that receives and groups alerts into hyper-alerts while utilizing a knowledge base

to constructs an attack graph. A hyper-alert is representative on a group of similar alerts,

and the knowledge-base is maintained by an offline component. This component maintains

tables that specify the frequency of occurrence of possible hyper-alerts by types and the

correlation between different hyper-alert pairs. The component is dynamically updated

depending on network traffic observed over a past time-window. In their work, hyper-alerts

were attack-specific, and updating the knowledge-base would be tedious considering the rate

at which new exploits are developed. In addition, automatic knowledge base construction

is limited to past attacks patterns and is not able to detect new ones.

The primary work from which I built my research and implementation is by Ou, et al.67.

In this work, the authors proposed an empirical approach to model uncertainty using an IDS

alert correlation tool called SnIPS54. SnIPS builds dynamic abstract proof traces supported

by evidences. To build a proof trace, they developed a generic knowledge-base derived from

attacker’s intentions and not on specific attacks. Attacks reflect attackers’ intentions and so

by carefully modeling attacker behavior through a set of generic rules, low-level IDS alerts

can be appropriately mapped to their high-level counterparts, resulting in a simple and

concise set of rules that is easy to maintain. SnIPS has the ability to elevate confidence

in proof traces by automatically joining two different proofs and strengthening them using
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their certainty tags. However, I found that proof strengthening is not sufficient, because

the strengthening rules seems to be ad-hoc. Therefore, in my work I built a correlation

engine that auto-correlates and combines SnIPS proof traces and produces a complete attack

scenario bounded by a given time-window. This scenario is visualized as an inference graph

that is easy to navigate by the security analyst. Finally, in their work they assume that

the strengthened two proofs are independent, meaning they are based on disjoint sets of

observations, which is a strong assumption to make, especially in a big attack scenarios.

Dempster-Shafer Theory

DST is one of multiple theories that handle the second type of uncertainty, e.g., Dempster-

Shafer theory, Subjective Logic, Fuzzy Logic and Possibility theory, some of which have

been proposed in IDS alert fusion92. According to Sentz 80 DST is superior to other theories

in this application because of its relatively high degree of theoretical development. DST is

a generalization of traditional probability theory in which probabilities are assigned to sets

of events as opposed to mutually exclusive singletons events. In addition, it provides a tool

to combine different types of evidence from multiple sources. Finally, it is widely applied in

sensor fusion.

Chen, et al.28 proposed a general approach of applying standard DST to combine mul-

tiple sensor reports for intrusion detection in ad-hoc networks. Yu, et al.103,104 extended

DST to handle alert fusion in IDS alert correlation systems. They observed that direct

application of DST in IDS alert fusion provides non-intuitive results. Sun, et al.90 proposed

the application of DST to risk analysis of information systems security. They presented an

evidential reasoning approach that provides a structured model to incorporate relevant risk

factors, related countermeasures, and their interrelationships when estimating information

system risk. Tang, et al.95 applied DST to fault diagnosis in overlay networks. However,

neither of them addressed the crucial issue of non-independence among evidence sources,

which I discuss in Chapter 3.
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Denceux38 proposed an approach for handling the combination of non-independent sources

in DST. He pointed out that lack of independence in evidence is a valid concern in many

applications; so he proposed a new rule of combination, the “cautious rule”, to handle this

issue. The cautious rule is designed to be as general as possible and is hence very complex.

Conversely, customization of the combination rule, in my work, follows the general idea pro-

posed by Shafer85 and is based on a simple probabilistic semantics. Therefore, it could be

considered a highly specialized case of the general cautious rule appropriate to this problem.

There have also been work on using Bayesian Networks (BN) in intrusion detection and

IDS alert correlation16,61,107. To use BN approach, the user must have prior probabilities

of events, that are often unavailable. DST does not have this requirement and DST can

quantify the unknown. Therefore, DST can be seen as a way to generalize probability theory.

Cole32 studied the problem of multi-step attack detection in the presence of uncertainty in

IDS parameters and pointed out to the importance of considering uncertainty when designing

IDS. Chen, et al.27 proposed an application of DST to the detection of anomalies in a variety

of systems, such as worm detection in email and learning in biological data. They showed

that a combination of multiple independent signal sources allows the possibility to achieve

better results than by using a single signal. They pointed out that the advantage of using

DST over Bayesian is that no a priori knowledge is required, making it potentially suitable

for anomaly detection of previously unseen information. Bayesian inference requires a priori

knowledge and does not allow allocation of probability to ignorance.

Guofei, et al.45 proposed an alert fusion technique based on likelihood ratio test (LRT).

However, in their model, prior probability of an attack should always be predefined. Barreno,

et al.22 introduced an optimal approach for combining binary classifiers using Neyman-

Pearson lemma. However, it is not clear if these approaches are effective in the IDS problem.

Machine Learning

Pietraszek68 used machine learning to classify IDS alerts into true and false positives. In
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a later work, Pietraszek and Tanner69 proposed a more complete system in which noisy

alerts are eliminated before feeding them into the system. This line of work differs from

mine in two ways: it operates at the IDS alerts level and utilizes RIPPER rule learner.

The rule learner approach has an explicit classification logic which allows a human expert

to inspect the classifier and verify its correctness. Instead of a rule learner, I used semi-

supervised learning with Support Vector Machine (SVM) algorithm to classify interesting

and non-interesting correlation graphs. In my framework, the classifier adapts according to

new incoming labels and presents non-intuitive conflicting results to the expert for further

study. Moreover, the RIPPER rule learner is typically applied before the correlation stage,

but my approach uses correlation graph-related features to build the classifier. Finally, in

my approach noisy alerts are not removed because the noisiest alerts could potentially have

a link to a true attack.

Beaver, et al.23,93 proposed an approach using “in-situ” learning and semi-supervised

learning to build a model for intrusion detection. Attack traffic is introduced to the network

where the detection tool is deployed, and this labeled data is used to train the classifier.

Their model, as opposed to anomaly detection, learns known attacks and normal traffic. It

remains to be seen how effective the approach when the system is deployed in production

networks. My application of machine learning had a different objective. Instead of using

machine learning to make a decision as to whether or not an event is malicious, I used it

to prioritize alert-correlation graphs from an up-stream analysis tool, in an attempt to save

security analysts’ time. I also conducted my evaluation in a live production network.

Bolzoni, et al.25 proposed a system that automatically classifies attacks, e.g., buffer over-

flow or SQL Injection, detected by an anomaly-based network intrusion detection system.

This is done by comparing extracted byte sequences from an alert’s payload to previously

collected data, e.g., Snort alert classification. The goal of my approach is to classify alert-

correlation graphs into “interesting” and “non-interesting”, where “interesting” means that

security analyst will need to conduct further analysis.

13



Chiu31 used semi-supervised learning to reduce false alerts from IDS. They introduced

a method using TCP information of network connections to reduce false alarms. They use

semi-supervised learning technique called Two-Teachers-One-Student (2T1S) to gain more

useful information from the large amount of unlabeled data. The system was only tested

on DARPA 1999, the usage of which has been severely criticized60 in machine learning

applications. It remains to be seen how effective the approach will be when deployed in

production networks.

In addition to the mentioned limitations in the previous works, my application of ma-

chine learning is on top of intrusion analysis. The output of intrusion analysis is a list

of automatically constructed correlation graphs with confidence metric. This metric is a

measure of DST belief that the system has in graph depending on provided evidences.

There has been a long line of work on the application of machine learning in anomaly-

based intrusion detection39,43,48,49,55,74–76,86,108. It has been pointed out that significant chal-

lenges exist in applying machine learning in this area88. However, my application of machine

learning had a different goal than past works. My machine-learned model helps the secu-

rity analyst prioritize alerts correlations from an intrusion analysis system, which relies on

(multiple) IDS systems. My method is not to build an intrusion detector through machine

learning. Therefore, the application of machine learning is justified due to the nature of the

problem.

1.6 Contributions

As mentioned, prioritization of IDS-correlated-alerts scenarios using a customized version

of DST and machine learning can reduce uncertainty in intrusion analysis. Therefore, my

contributions, listed below, focus on this thesis.

1. Design and implement an alert correlation engine91(Chapter 2).

• The engine generates attack scenarios or alert correlations within a given time
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window.

• The correlation engine can report attacks in real time by continuously monitoring

network traffic.

• Present the correlation-engine’s output in multiple formats using a web-interface.

2. Applying DST to prioritize attack scenarios111(Chapter 3).

• Use “unknown” to capture sensor quality.

DST allows specification of a weight for “unknown” rather than specifying precise

probabilities for every possible event in the space by using the uniform distribu-

tion function. This allows to represent lack of knowledge or ignorance to capture

the intuitive notion of IDS sensor quality.

• Account for lack of independence among IDS correlated alerts.

DST has the assumption of independence in evidence sources, a property hard to

justify in practice, especially in IDS alert fusion problem since many alerts are

triggered by identical or similar signatures. In this problem, in order to derive

the overall belief on attack status, such non-independence must be appropriately

accounted for. I developed a customization for Dempster’s rule of combination,

specialized to my alert fusion problem. To the best of my knowledge, this is the

first sound DST non-independent rule in the IDS alerts fusion application.

• Efficient algorithm.

A direct application of DST formulas results in exponential (in the number of IP

addresses in the graph) blow-up of belief combinations. I adopted a “translate-

then-combine” approach so that beliefs are propagated in a correlation graph and

combined only at join points in the graph, thus producing an efficient algorithm

with worst-case running time quadratic in the number of IP addresses in alerts.

• Robustness of solution.

The goal of work is to prioritize alerts by confidence, so the relative order of
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hypotheses is the matter here, as opposed to establishing absolute certainties

regarding attacks scenarios. My application of DST requires the assignment of

numeric values to IDS sensors to act as weights for their alerts. However, there

is no help in the theory itself as to the manner of assignment. The weights of

evidences may affect the final conclusions in standard DST. Since I am interested

only in relative belief strengths assigned to hypotheses, this approach is robust

to small changes in these weights as long as the final ranking is not significantly

impacted. That is, for any two ranked hypotheses, absolute belief values are irrel-

evant as long as the relative strengths of belief remain unchanged when slightly

varying the numeric parameters. Experimental analysis shows that this is true;

the classifier’s operating characteristic does not change when the weights’ values

are varied within a small range.

3. Apply machine learning as a complementary approach to aid in automating the process

of intrusion analysis110 (Chapter 4).

• My method minimizes the time and effort of training the model in the deployment

stage by using the security analyst’s effort to investigate the correlations’ validity

to produce labeled data. In addition, I demonstrate that the usage of semi-

supervised learning enables the model to be in use with as low as 10% of the

required dataset size for supervised learning.

• Creating my own dataset by collecting real production network traffic and la-

beling it, and share lessons learned from applying machine learning in intrusion

analysis problem.
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Chapter 2

Using Events Correlation to Reduce
Uncertainty in Intrusion Analysis

Intrusion events correlation, i.e. the reconstruction of high-level incidents from low-level

events, has been used to reduce uncertainty in intrusion analysis. In practice, security

analysts typically use multiple observation points and correlate their events so they can

potentially reduce the false-positive rate and increase confidence in intrusion analysis. Ax-

elsson’s18 reasoning implies that the achievement of useful intrusion detection based on a

single event, such as a network packet is difficult, since features existing in the event are

too limited to provide differentiating power to extract extremely weak attack signal from

background traffic. Therefore, the reasonable assumption can be made that in order to

make IDS sensors useful, events from multiple sensors must be correlated to increase the

available features for decision making.

In the following sections, I elaborate on my approach of correlating events in intrusion

analysis. I use SnIPS67 correlation approach as a foundation for my correlation engine

implementation. SnIPS’ output is a list of proof traces, and each trace supports a hypothesis.

These proof traces are used as input to my correlation engine. Output of the correlation

engine is a list of attack scenarios supported by evidences, e.g. IDS events. The attack

scenario is a logical inference graph with one or more sink node(s). The sink node is

the frame of interest or the hypothesis that shows a specific machine is compromised; all
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inference paths are proofs traces that support this hypothesis.

The following section provides a background of SnIPS and an elaboration of my ap-

proach in correlating events to generate a correlation scenario. Finally, I elaborate on the

implementation and the testing.

2.1 Snort Intrusion Analysis using Proof Strengthen-

ing

I decided to use the open-source framework SnIPS67 as a foundation to build and test my

thesis. SnIPS was developed and maintained in Argus Lab in the department of Computing

and Information Sciences (CIS) at Kansas State University (KSU), Manhattan, Kansas.

SnIPS works on top of IDS sensors and audit logs to further analyze reported events in order

to identify possible incident scenarios. Figure 2.1 illustrates SnIPS. The intuition behind

SnIPS is to mimic the thinking process of security analyst during incidents investigation. It

maps raw observations, e.g., IDS alerts and syslog, to their semantics and then it reasons

about them using a succinct internal inference rules to reach a final conclusion.

Currently, SnIPS works with the widely used open source Snort IDS system89 network

intrusion prevention and detection system (IDS/IPS). SnIPS compares a network packet

with a set of predefined signatures (Snort rules) that specify certain patterns often associated

with malicious activities. Furthermore, SnIPS maps the trustworthiness of each Snort rule

to a discrete tag, e.g.,“possible”,“likely”,or ”certain”.

Ou et al.67 demonstrated that building the mappings can be done with minimal overhead

since the rules-related information already exists in an ad-hoc manner in IDS-signatures’

documentation, such as Snort rule repository, which can be automatically analyzed to ex-

tract the mappings. These tags were used in my research to derive a Snort rule’s quality

metric. To generate an attack trace, IDS events must pass through multiple stages within

SnIPS. I discuss these stages, using their order in SnIPS, in the following sections.

18



Figure 2.1: Snort Intrusion Analysis using Proof Strengthening (SnIPS)
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2.1.1 Semantic Pre-processing

SnIPS’ pre-processing stage is performed to translate and reduce the amount of information

entering the reasoning engine. This process consists of the following parts:

Observations Mapping

SnIPS reads Snort’s alerts as main input and maps the observations (events) to their se-

mantics (meaning). This process utilize a set of mapping rules called obsMap.

Definition 1. Observations
mode−−−→ Internal Conditions

Definition 1 gives the formal mapping rule between observations such as IDS alerts, and

abstract meaning (semantics). The mode is used as a tag indicating strength of the belief

(e.g., possible, likely, or certain). The assignment of the mode is created by interpreting

the natural language description of Snort rule (signature). Example 2.2 shows an obsMap

rule that maps a port scan alert to probing activity with the possible mode. In addition,

the example shows additional mapping between shell code detection in the traffic and send

exploit. This mapping is certain mode extracted from Snort-rule’s description. Therefore,

these rules are correspondence mappings between what the security analyst sees and what

he/she knows.

Summarization

SnIPS’ summarization stage is performed to reduce the amount of information entering the

reasoning process. SnIPS applies data abstraction technique by grouping a set of similar

predicates into a single ”summarized” one. The summarization is done on timestamps and

IP addresses. To summarize timestamps, if a set of internal conditions differs only by the

timestamp, SnIPS merges them into a single summarized internal condition with a time

range between the earliest and latest timestamp in the set. For further reduction, SnIPS is

able to summarize the external IP address into an ”external” variable, as needed. SnIPS

maintains mapping between summarized ”predicates” and raw observations in a backend

20



obs(portScan(H1,H2))
possible−−−−→ int(probeOtherMachine(H1,H2))

obs(shellcodeDetected(H1,H2))
certain−−−−→ int(sendExploit(H1,H2))

obs(memoryDumpMaliciousCode(H)
likely−−−→ int(compromised(H))

obs(memoryDumpIRCSocket(H))
likely−−−→ int(compromised(H))

obs(netflowBlackListFilter(H, BlackListedIP))
likely−−−→ int(compromised(H))

Figure 2.2: Example of mapping observations to their semantics: “obs” means observation;
“int” means internal condition predicate

int(probeOtherMachine(ext1, H),m, T1)
int(probeOtherMachine(ext2, H),m, T2)

...
int(probeOtherMachine(extn, H),m, Tn)

 int(probeOtherMachine(ext,H),m, range(T1, Tn))

Figure 2.3: Summarizing multiple predicates into one aggregated predicate: “int” means
internal condition predicate: “exti” and “ext” mean external machines; “H” means a host
machine; “m” means the mode of the rule; “Ti” means the timestamp for the internal
condition

database, thus helping to identify mapping of low-level observations and the summarized

predicates in the next stages of SnIPS. Figure 2.3 illustrates the summarization process.

Black List IP Processing in SnIPS

SnIPS reads a black list of malicious machines as another feed to be correlated with Snort

events. A machine can be added to the blacklist if it is found to be involved in malicious

activities (e.g., bot activities, ssh brute-force attempts, etc.). Such a list can be used to

map a blacklisted IP to the predicate compromised, with the mode assigned by the IP’s age

in the list. The IP address has a higher mode than the default one, if it is recently added
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to the list. Over time, confidence decreases because the infection will be eradicated from

the machine. The blacklist can also be used to create a Snort rule that can be triggered

whenever a communication exists between a local host and the black-listed IP. This alert is

mapped using observation mapping rules, and the mode for this mapping is certain because

it is a malicious communication. The second method is advantageous because it can capture

all communication with a black-listed IP even if the IP did not trigger an alert.

2.1.2 Reasoning Engine

The goal of the reasoning process is to find all possible semantic links among summarized

facts using a succinct Internal Model. Definition 2 gives the formal format for reasoning

rules in the internal model or internal rules. The rule derives one internal condition from

another with two qualifiers: direction of inference and mode. The direction tag has two

values: backward or forward.

Definition 2. Condition 1
direction of inference,mode−−−−−−−−−−−−−−−−→ Condition 2

Figure 2.4 illustrates one internal rule. In forward inference, if machine H1 is compro-

mised, then it may perform malicious probing for another machine H2. Conversely, if a

machine H1 is performing malicious probing against another machine, the inference can be

made that machine H1 is compromised (using the backward inference). Hence, each internal

rule can be used in the forward or the backward direction throughout the reasoning process.

Figure 2.5 shows an example of a proof chain using observation mapping and the reasoning

engine.

The output of reasoning stage is a collection of individual proof traces (Figure 2.5) stored

in SnIPS’ backend database for the next stage. Each step is associated with a fact, such as

compromised(H1), and a time range (startTime,endTime), indicating when the fact becomes

true. The direction of inference (forward or backward) is also indicated in the proof trace.

The time range of the conclusion can be calculated based on the time range of the antecedent

and direction of the inference.
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int(compromised(H1))
forward,possible−−−−−−−−−→ int(probeOtherMachine(H1, H2))

int(sendExploit(H1))
forward,likely−−−−−−−−→ int(compromised(H1))

int(compromised(H2))
backward,possible−−−−−−−−−−→ int(sendExploit(H1, H2))

int(probeOtherMachine(H1, H2))
backward,certain−−−−−−−−−−→ int(compromised(H1))

Figure 2.4: Example of rules from the internal model: “int” means internal condition
predicate; “Hi” means a host machine

int(compromised(H1), likely)
⇑

int(probeOtherMachine(H1, H2), likely)
⇑

obs(portScan(H1, H2))

Figure 2.5: Example of a proof trace: “int” means internal condition predicate; “Hi” means
a host machine

Proof Strengthening

SnIPS has the ability to elevate confidence in an attack scenario by combining proof traces in

ad-hoc manner. Figure 2.6 is an illustration of the intuition behind the proof strengthening

process, and Figure 2.7 is an example of strengthening two proofs. The first proof is from

the previous example in Figure 2.5, and the second proof proves that if machine H1 has a

memory dump of malicious code, it is likely compromised. The strengthening of likely1 and

likely2 results in the compromise of certainty of H1.

I found proof strengthening is a special case of event correlation in intrusion analysis 1.3

because it just correlates a pair of proof traces. This approach is considered add-hoc if

the goal to build holistic attack scenarios that span multiple evidences. In my approach, I

built a correlation algorithm, as an alternative to the ”proof strengthening” stage, on top

of SnIPS’ logical reasoner, which is discussed later in this dissertation.
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Figure 2.6: Illustration of proof strengthening in SnIPS

Strengthend hypothesis:
int(compromised(H1), certain)

First Proof:
int(compromised(H1), likely)

⇑
int(probeOtherMachine(H1, H2), likely)
⇑

obs(portScan(H1, H2))

Second Proof:
int(compromised(H1), likely)

⇑
obs(memoryDumpMaliciousCode(H1))

Figure 2.7: Proof strengthening in SnIPS: “int” means internal condition predicate; “Hi”
means a host machine
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2.1.3 Dynamic Knowledge Base

The dynamic knowledge base is used in multiple stages previously described. It includes

”obsMap Relations” used in the semantic pre-processing stage and ”Internal Model” used in

the logical reasoning stage. The dynamism of this model comes from the fact that it can be

automatically or manually updated based on emerging threats. For example, black-listed IP

addresses change every hour, and obsMap relations can be seamlessly updated accordingly.

2.2 Constructing Attack Scenarios

As mentioned, correlation intuitively reduce uncertainty in IDS output. The power of a

correlation engine comes from the ability to reconstruct attack scenarios in a ground-up

manner. Therefore, I chose SnIPS67 as a foundation to build and test my approach in order

to reduce uncertainty in intrusion analysis.

The output of SnIPS’ logical reasoner is a list of proof traces. A proof trace partially

covers an attack scenario, thereby serving as one source of information with which to reason.

In cyber-security investigations, the security analyst must have a full scenario of an attack

in order to comprehend the full picture of the attack. Therefore, I designed and developed

a correlation engine that auto correlates and combines SnIPS’ proof traces and produces

a complete attack scenario bounded by a time-window. This scenario is visualized as an

inference graph that can be navigated and queried. Instead of having a long list of raw and

in-actionable alerts to process, the security analyst has a compact list of comprehensible

correlations to validate every day.

Figure 2.8 shows an example of single-sink alert correlation graph automatically gener-

ated by the correlation engine. The correlation graph is a logical inference graph. SnIPS

uses predicates, such as “compromised” , “sendExploit” , and “probeOtherMachine” , to

describe various attack hypotheses. Five groups of alerts, alert1 − alert5, are triggered by

four sensors. A sensor could be one IDS signature (e.g., a Snort rule) or a group of IDS

signatures that capture similar patterns. Sensor nodes (located in dotted squares) are not
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part of the graph but are added in Figure 2.8 for clarity. In this example, alert1 is mapped

to the fact that host ip1 sent an exploit to ip2; alert2 and alert3 are mapped to the fact

that ip2 did malicious probing to ip3, and so on. The rationale for this correlation graph is

that after ip1 sent an exploit to ip2 (Node 6), ip2 could be compromised (Node 9). Once the

attacker compromised ip2, he/she could send malicious probing from there (Nodes 7 & 8).

Therefore, these alerts are potentially correlated in the same underlying attack sequence.

For representational simplicity, time information is not shown in the example but is included

in the reasoning process, therefore, alert2 − alert5 occurred after alert1. The arrows of the

arcs indicate that all alert1 − alert5 support the hypothesis that ip2 was compromised.

Section 2.2.1 elaborates the algorithm that computes the correlation graphs.

rule2rule1 rule2

8 : probeOtherMachine(ip2, ip4)7 : probeOtherMachine(ip2, ip3)

9 : compromised(ip2)

sensor2sensor1 sensor4sensor3

2 : alert21 : alert1 4 : alert43 : alert3

6 : sendExploit(ip1, ip2)

5 : alert5

Figure 2.8: Automatically generated correlation graph from the correlation engine

2.2.1 Correlation Algorithm

I designed and implemented a correlation engine that auto correlates and combines SnIPS

proof traces into a complete attack scenario bounded by a given time-window. For an input

list of proof traces, the algorithm follows the following steps:

Step 1: Translate input proof traces into a form that can be handled by the engine, i.e.,

object Oi, as shown in Figure 2.9. An object contains a number of fields, including

the fact associated with it, the start time, and the end time. The object’s fact and
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Figure 2.9: Correlation of facts objects with overlapping time ranges

times are derived from the final hypothesis in the trace, e.g., compromised(H1) in

Figure 2.5.

Step 2: All objects (Oi) are classified based on associative facts. For example, all objects

with the fact compromised(H) are in one group and so on. Figure 2.9 provides an

example of one group. Let us assume that each fact in the figure has the form

compromised(H). Each group of objects will be sorted ascendingly by the end time

(eti) and by the start time (stj).

Step 3: Each group is correlated using overlapping time between objects. Figure 2.9 also il-

lustrates the correlation process. Two sliding pointers track the correlation process.

The first pointer p1 starts at the first object O1, and the second pointer p2 moves

to the second object. If the time range of O2 overlaps with O1, then the intersec-

tion of the two time ranges is calculated and stored in a variable intT imeRange.

Pointer p2 then moves to O3 and calculates the intersection of its time range with

intT imeRange variable and updates the variable with the intersection time. The

process stops when intT imeRange becomes empty. The empty variable means that

the object’s facts can no longer be correlated. At this stage, a new graph node is

created for all objects that have a non-empty time-range intersection. The created

node has fact, intTimeRange fields. After the node creation, p1 moves forward until
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the time-range intersection for objects between p1 and p2 becomes non-empty. The

graph Nodes are stored in a hash table; the key for this table is the object O of the

Node. Therefore, the link of each graph’s Node can be tracked.

Algorithm 1 shows the pseudo code for the correlation algorithm. Line 21 includes

construction of the graph edges utilizing “other info” field in each object to connect merged

nodes.

Algorithm 1: Algorithm of building a correlation graphs

Require: Parameter P = ProofTraceList, such that P = {p0, p1, · · · , pn}, where pi is a
proof trace.

1: function Corr(P )
2: ObjectsList ← parse all pi ∈ P
3: for each Object(O) in ObjectList do
4: ObjectsGroupList ← group by fact of Object O.
5: end for
6: for each ObjectGroupList do
7: sort ascendingly by the endT ime,startT ime of the TimeRange.
8: Graph ← CreateGraph(ObjectGroupList)
9: end for

10: return Graph
11: end function
12:

13: function CreateGraph(ObjectGroupList)
14: for each Object(Oi) in ObjectGroupList do
15: intT imeRange ← find the intersection of timeRange with the next Oi

16: if intT imeRange is Empty then
17: NodesHash ← create new node with intT imeRange and Oi’s fact and use

Oi as the key for the hash table.
18: end if
19: end for
20: for each Node in NodeHash do
21: Graph ← build the edges from the related Oi

22: end for
23: return Graph
24: end function
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2.3 Implementation and Evaluation

This section describes implementation and evaluation of the correlation algorithm.

2.3.1 Implementation

Semantic mapping and logical reasoning of SnIPS are implemented using the Prolog system

XSB70. SnIPS engine output is a list of Prolog files, therefore, I introduced a back-end

database to store all proof traces, which needed a change in the implementation of SnIPS,

so I utilized MySQL, the open source database. The correlation algorithm is implemented

in Java. The correlation engine reads input proof traces from MySQL and outputs a list of

correlation graphs, which are stored in the back-end database.

Moreover, I used a web interface visualizer that I implemented in PHP and HTML.

Graphs visualization was generated using the Graph Visualization Software (GraphViz)41

tool. The graphs are displayed in the Scalable Vector Graphics (SVG) format, allowing

the user to interact with the graph by issuing queries by clicking the nodes, thus allowing

further analyzation of portions of correlation graph. For example, the user can examine

raw alerts behind a summarized alert, IDS signatures that trigger them, the payload, and

other relevant information. In addition, to increase navigation ease of the correlations, I

implemented an additional interface method. This method presents graphs as list of textual

records; each record represents a graph’s sink node, e.g. (compromised(H1), timerange);

the record can be clicked and checked for its supporting hypothesis.

2.3.2 Evaluation

The correlation engine was tested on a number of publicly available datasets91 and on the

CIS departmental network. Construction of the reasoning model was conducted separately

from the evaluation and without any knowledge regarding specifics of the data sets. The

objective of the testing was to ensure that the correlation engine was able to identify different

types of attacks and generate attack scenarios. Evaluation on the departmental network
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analyzes data from various sources such as Snort IDS or black-list logs from CIS department’s

computer clusters. Snort and SnIPS run on a dedicated Ubuntu server running a Linux

kernel version 2.6.32 with 16 GB of RAM on an eight-core Intel Xeon processor of CPU

speed 3.16 GHz.

In this section, results from testing the correlation engine on Symantec’s Worldwide

Intelligence Network Environment (WINE) dataset14 are presented.

Testing on Wine Dataset

WINE, a platform for repeatable experimental research, is a collection of more than 75

million machines and records occurrences of all known host- and network-based attacks.

The following results are scenarios derived from running the correlation engine on WINE

Anti-virus (AV) and IPS telemetries. Each scenario graph spans an entire day and sup-

ports a compromised machine as a scenario conclusion. This conclusion is represented as

a sink node in the graph, e.g., Node 5 in Figure 2.10. All supporting hypotheses (nodes)

point toward the compromised node, e.g., Nodes 3 and 4 in Figure 2.10. Each hypothesis

is supported by aggregated alerts from wine AV/IPS telemeters, e.g., Nodes 1 and 2 in

Figure 2.10. Rectangular nodes represented by AV threats or IPS signatures that trigger

alerts. Therefore, a scenario graph can be traced or understood in a bottom-up manner,

starting from the compromised machine and tracing back to supporting nodes until the

reader reaches aggregated alerts that represent evidence for the scenario. These records

are results of blocked attacks by the AV or IPS, meaning that the dataset is dominated by

attack records. However, this experiment shows the ability of the SnIPS correlation engine

to generate the attack scenario without previous knowledge.

The First Scenario The following scenario supports the conclusion that machine ip2 is

compromised (Node 5, Figure 2.10). In Node 3, ip1 sent exploit as maliciously crafted Acro-

bat PDF files to the host ip2
11. This event was followed by Trojan.Bredolab compromised

machine activity with the same attacker, i.e. ip1 in Node 46. These two events support the
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5: compromised(ip2) 

3: send exploit(ip1, ip2) 4: compromised machine activity(ip2, ip1) 

1: alerts aggregate1 2: alerts aggregate2 

 IPS Sig1    IPS Sig2  

Figure 2.10: Automatically generated correlation graph from testing the correlation engine
on WINE dataset

hypothesis that the host is compromised, i.e., compromised(ip1). This incident shows that

the attacker succeeded in compromising the machine with Trojan.Bredolab even though

the attack by crafted PDF files had been stopped by the AV. To confirm this scenario, I

investigated the attacker ip1 reputation and found that ip1 address is marked as malicious

by most IP/URL reputation websites3,5,9; Symantec lab confirmed the possibility of this

scenario, too.

The Second Scenario The following scenario supports the conclusion that machine ip2

is compromised (Node 7, Figure 2.11). In Node 4, ip1 sent an exploit as Trojan.Mebroot

to the host ip2
13. Later, the host showed symptoms of the Backdoor.T idserv compromised

machine activity (Node 6)7. This activity was a HTTPS request which is part of backdoor

activity with ip3. Research has shown that some forms of Trojan.Mebroot exhibit sim-

ilar in behavior to Backdoor.T idserv malware, thus confirming that these two malwares

share some of the code segments. This similarity allows Trojan.Mebroot to pretend to be

Backdoor.T idserv from the IPS/AV perspective4. Therefore, the source of compromised

activity is a result of the Trojan.Mebroot infection that triggered the Backdoor.T idserv
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7: compromised(ip2) 

4: send exploit(ip1, ip2) 6: compromised machine activity(ip2, ip3) 

1: alerts aggregate1 3: alerts aggregate3 

 IPS Sig1  

2: alerts aggregate2 

  IPS Sig2  

5: send exploit(127.0.0.1, ip2) 

  IPS Sig3  

Figure 2.11: Automatically generated correlation graph from testing the correlation engine
on WINE dataset

alert (IPS Sig 3). In Node 5, 127.0.0.1 (localhost) sent exploit as Fake AV Websites attack

the victim machine1. The reason for this strange behavior is that the compromised machine

may have had a running web service and this service had been used for the Fake AV Web-

sites attacks as a result of infection. In addition, this behavior is common among machines

infected by this type of malware. As confirmation of this scenario, I found that ip1 and ip3

are marked as malicious by most IP/URL reputation websites3,5,9; Symantec lab confirmed

the possibility of this scenario, too.

The Third Scenario The following scenario supports the result that the machine ip2

is compromised (Node 8, Figure 2.12). In Node 4, ip1 attempted to exploit the host ip2

through malicious JavaScript code which, when executed, downloads other exploits that

can compromise the host12. Nodes 5 and 6 show that the host exhibited Backdoor.T idserv

compromised machine activity with ip3 and ip4
8. The malicious JavaScript code exploited

and downloaded the Backdoor.T idserv that compromised the machine. This graph also has

a correlation with an AV event suspected to be a Backdoor.T idserv infection identified by

the AV7.

To confirm this scenario, I found that ip3 and ip4 are malicious IPs belonging to the same

subnet; ip1 is also marked as malicious by most IP/URL reputation websites3,5,9; Symantec

lab confirmed the possibility of this scenario, too.
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Chapter 3

Using Dempster-Shafer Theory to
Reduce Uncertainty in Intrusion
Analysis

Current IDS systems do not distinguish alarms that are highly likely to be true from alarms

that have only a small chance of being true. This leads to a decision dilemma between true

and false alarms. When each suspected attack is treated as a hypothesis that may or may not

be valid, an effective approach to deal with false positives is to quantify uncertainty in the

hypotheses ascribed to IDS alerts by correlating multiple observations relevant to each alert.

A list of intrusion hypotheses sorted by confidence and annotated by evidential support

for each hypothesis would allow a human analyst to more easily decide which hypotheses

are worth further investigation. Most network intrusions involve more than one action.

If observations from multiple events are related, a true successful attack will likely contain

multiple pieces of corroborating evidence, thus increasing certainty of the attack hypothesis.

Similarly, a false positive in one sensor is likely to have less corroborating evidence; thus the

particular attack hypothesis can have a low score and can be safely ignored.

DST, one theory that handles uncertainty, is a generalization of the probability theory

because of its ability of quantifying unknown85. This property makes this theory a superior

in situations when the system is in total ignorance. DST also provides a tool to combine

multiple evidences flowing from multiple sources.
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In this chapter, my approach of applying DST in Intrusion Analysis is elaborated. A

brief background on Dempster-Shafer theory is provided in Section 3.1. The extended

Dempster-Shafer model and its application to intrusion analysis are described in Section 3.2.

Experimental evaluation of the approach is discussed in Section 4.3.

3.1 Dempster-Shafer Theory

DST can be illustrated by an example that shows the difference between probability theory

and DST. In this example, if a person tosses a coin with an unknown bias, traditional prob-

ability assigns 50% for Head and 50% for Tail by the principle of indifference, which states

that all states of unknown probability must be assigned equal probability, i.e., uniformly

distributed. DST, on the other hand, handles this event by assigning 0% belief to {Head}
and {Tail} and assigning 100% belief to the set of {Head, Tail}, meaning “either Head

or Tail”. DST thus relaxes the assumption of indifference and does not “force” a number

choice when no basis is present on which to assign the number. In general, the DST ap-

proach allows for three kinds of answers: Yes, No, or Don’t know. The last option allows

ignorance, thus significantly affecting evidential reasoning.37,47,80,81,85

DST provides the following tools:

1. Basic probability assignment function (BPA)

2. Belief function (Bel)

3. Plausibility function (Pl)

4. Translation

5. Rule of combination

3.1.1 Basic Probability Assignment

Before defining bpa, frame of discernment must be defined as follows:
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Definition 3. Frame of discernment (θ) is a set of disjoint hypotheses of interest, e.g., the

set of {attack, no-attack} or {Head, Tail }.

The basic probability assignment, (bpa) function, also known as the mass distribution

function, distributes the belief over the power set of the frame of discernment and is defined

as follows:

Definition 4. Let θ be a frame of discernment and m is the bpa function if the following

hold:

m : 2θ → [0, 1] (3.1)

m is called the basic probability assignment (or mass distribution) on θ.

BPA has the following properties:

Definition 5. Let θ be the frame discernment, x ⊆ θ, and m is the basic probability assign-

ment then,

∀x ⊆ θ, m(x) ≥ 0 (3.2)

m({}) or m(φ) = 0 (3.3)∑
x⊆θ

m(x) = 1 (3.4)

From the above definition and properties, bpa function is distinguished from probability

measures by the following:

• It is not required that m(θ) = 1.

• No required relationship exists between m(x) and m(x̄).

• m(x) +m(x̄) does not have to be 1.
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3.1.2 Belief Function

Belief function, or credibility function measures the total belief of all-possible subsets of a

hypothesis. Belief function can be defined as follows:

Definition 6. Let θ be the frame of discernment, m is the basic probability assignment

function, and for any x ⊆ 2θ. The belief function is defined as

Bel(x) =
∑
y⊆x

m(y) (3.5)

Belief function has the following properties:

Bel({}) or Bel(φ) = 0 (3.6)

Bel(θ) = 1 (3.7)

Belief function and bpa are mapping from 2θ to [0, 1]. The intuition behind the belief

function is that it shows how much confidence is present in a set x in frame of discernment;

this confidence is supported by the sum of the weights of multiple evidences. The evidences

are all possible subsets of the question of interest x that can support the belief. For example,

m({attack, no-attack}) is a measure of uncertainty supported by evidence, meaning that we

is not sure whether or not there is an attack. On the other hand, Bel({attack, no-attack})
measures the confidence that attack or no-attack is true, which must be 1. Belief function

is considered the lower bound of support to the hypothesis.

3.1.3 Plausibility Function

Plausibility is another measure, which is not used in my application, but for the sake of

completeness, I introduce it in this section. Plausibility function shows the upper bound of

how much confidence is present in a set (hypothesis) (x) in the frame of discernment.
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Definition 7. Let θ be the frame discernment, m the basic probability, then for each x ⊆ 2θ,

then:

Pl(x) =
∑
y∩x 6=φ

m(y) (3.8)

Plausibility function has the following properties:

Pl({}) = 0 (3.9)

Pl(θ) = 1 (3.10)

Belief and Plausibility functions may be viewed as lower and upper bounds on proba-

bilities, respectively, where the actual probability is contained in the interval described by

these two non-additive continuous bounds, as follows;

Bel(x) ≤ P (x) ≤ Pl(x). (3.11)

Thus, if Bel(x) = Pl(x), the probability measure is uniquely determined, corresponding

to classical probability, as shown in the following:

Bel(x) = P (x) = Pl(x) (3.12)

Belief and Plausibility can be derived from each other. For example, Plausibility can be

derived from Belief in the following:

Pl(x) = 1−Bel(x̄) (3.13)

where x̄ is the classical complement of x. The following formula helps obtain Bel(x̄):

Bel(x̄) =
∑
y⊆x̄

m(y) =
∑
y∩x=φ

m(y) (3.14)
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3.1.4 Translation

A crucial aspect of DST is the translation process, which Shafer85 discussed implicitly.

Translation process, or compatibility relation, is a strength of DST, in which belief functions

bases its degrees for one question on the beliefs of a related question. In contrast, Bayesian

Networks require probabilities for each question of interest. The intuition of Translation can

be clarified using the following example from Shafer85. Suppose a person has to answer the

following question: ”Are the streets outside slippery?” For this question frame of discern-

ment, S = {yes, no} is created. Suppose Fred is a source of information, thus another frame

of discernment for Fred’s characteristics must be created, which is F = {truthful, careless}.
Suppose Fred said ”Streets outside are slippery”. The problem is that Fred’s statement does

not match the question hypothesis S. Thus, two sets S and F exist and the information

must be propagated from F to S.

Figure 3.1 provides an example of Translation using intrusion analysis context. E is an

IDS alert that indicates a hypothesis H stating ”machine ip1 may be maliciously probing

ip2.” Since no IDS sensor is perfect, i.e., does not have 100% accuracy, therefore, its alerts

cannot be fully trusted. The frame of discernment of E is {trustworthy, non-trustworthy}.
Let us say that, overall, a person has 90% belief in the alert’s trustworthiness, i.e., with

“90% chance” the sensor works reliably and an alert corresponds to the fact. With 10%

chance, the sensor is not reliable, meaning the alert has nothing to do with H. Note the

difference, traditional probability assigns 10% chance to being H false. When the sensor

fires, bpa is assigned to {trustworthy} being 90%, and 10% is assigned to {non-trustworthy}.
For the hypothesis H, the frame of discernment is {true, false}, meaning the machine is

maliciously probing or not. Table 3.1 illustrates the translation from E to H.

The translation process happens through a compatibility relation that specifies which

elements in H’s frame of discernment are compatible with E’s elements. Since the sensor

triggers an alert, “trustworthy” is only compatible with trueelement. “Non-trustworthy”,

on the other hand, is compatible with true and falseelements, meaning when a person does
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H : probeOtherMachine(ip1, ip2)

E : alert

Figure 3.1: Translation of beliefs

E H
element value maps to element value

{trustworthy} 0.9 → {true} 0.9
{non-trustworthy} 0.1 → {true,false} 0.1

Table 3.1: Example of the translation process in DST

not trust the alert, the best it can said about whether ip1 is maliciously probing ip2 is either

true or false, in other words, “unknown.”

3.1.5 Rule of Combination

The goal of combination is to fuse the evidence of a hypothesis from multiple independent

sources and calculate an overall belief for the hypothesis. Figure 3.2 illustrates this notion,

where E1, E2 are two alerts triggered by independent IDS sensors1. Both alerts could

indicate that machine ip1 is maliciously probing ip2, which is the hypothesis H. Suppose

for each alert a person has 90% belief of its trustworthiness. Suppose that both alerts were

fired. How much belief does the person have in H? First, E1 and E2’s frames of discernment

must be translated to H as conducted in Section 3.1.4. Let us name the translated frames

of discernment H1 and H2. Based on Table 3.1 in Section 3.1.4, the mass functions for H1

and H2 are: m({true}) = 0.9 and m(θ) = 0.1. All possible combinations between H1 and

H2 are shown in Table 3.2.

Since the two sensors’ operation characteristics are assumed to be independent, the mass

1“Independent” means that the two sensors operate on completely unrelated features to determine attack
possibilities.
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E2 : alert2E1 : alert1

H : probeOtherMachine(ip1, ip2)

Figure 3.2: Combination of beliefs

(h1,h2) product h = h1 ∩ h2

(true,true) 0.81 {true}
(true, θ) 0.09 {true}
(θ, true) 0.09 {true}
(θ, θ) 0.01 θ

Table 3.2: Combination table

values for H1 and H2 can be multiplied in each of the four rows and the numbers for the

same resulting subset in H can be added, producing the combined mass function for H. In

general, the following rule is known as the Dempster rule of combination.

m1,2(h) =
1

1−K ·
∑

h1∩h2=h

m1(h1) ·m2(h2),when h 6= {} (3.15)

where K =
∑

h1∩h2={}
m1(h1) ·m2(h2) (3.16)

m1,2({}) = 0 (3.17)

Where hi is a subset of Hi and h is a subset of H. 1−K is a normalization factor that

is a measure of the conflict between the two alerts, equivalent to the measure of cases of

empty intersection between the Hi’s. In this example, no conflict exists (K = 0).

The intuition behind the rule of combination in the context of IDS is that when two

independent sensors stat the same fact, one belief in the fact will increase. Intersection

betweenH1 andH2 leads to possibly reduced uncertainty. Using above formula, the following
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can be calculated:

Bel({true}) = m1,2({true}) = 0.81 + 0.09 + 0.09 = 0.99

The normalization factor completely ignores conflict and attributes any mass associated

with conflicting masses to the empty set. Therefore, the rule of combination can produce

counter-intuitive results105, and, the reader can find a long line of research about extending

the rule of combination to cope with conflicting masses80. In my dissertation, I apply this

rule monotonically meaning that no conflicts are present, i.e., K = 0. The multiplication

in Formula 3.15 is only valid when the two evidence sources are independent, which is rare

in practice and especially in intrusion analysis since many alerts are generated by the same

or related sensors. In the next section, my approach of the customized DST to account for

non-independent evidence sources is introduced in order to be correctly applied in intrusion

analysis.

3.2 Applying Dempster-Shafer Theory in Intrusion

Analysis

DST is uniquely advantageous because it handles uncertainty in intrusion analysis, namely,

the lack of need to specify prior probabilities of all events, the ability to quantify the unknown

or ignorance, and the ability to combine beliefs from multiple sources of evidence81,82. The

key question that I attempt to answer in this section is in a correlation structure, how

should a hypothesis’s possibility of being true based on the reasoning structure in which it

is derived and the quality of supporting evidence be calculated? Therefore, I represent the

lack of knowledge to capture IDS sensor quality, which is often imprecisely described. I

present a customization for Dempster’s rule of combination that addresses the dependency

issue related to application in intrusion analysis. I implemented my method on top of the

correlation engine in Chapter 2, so a numeric confidence score can be calculated for a given

correlation scenario in order to prioritize.
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rule2rule1 rule2

8 : probeOtherMachine(ip2, ip4)7 : probeOtherMachine(ip2, ip3)

9 : compromised(ip2)

sensor2sensor1 sensor4sensor3

2 : alert21 : alert1 4 : alert43 : alert3

6 : sendExploit(ip1, ip2)

5 : alert5

Figure 3.3: Automatically generated correlation graph from the correlation engine

3.2.1 Metrics for Sensor Quality

The common standard in measuring IDS sensors quality is false positive and negative rates.

These metrics or probabilities may be obtained in other applications by applying the fre-

quentest or objective approach. However, in cyber-security, specifically IDS, obtaining these

metrics can be difficult or impossible because this problem is categorized as Subjective un-

certainty (Section 1.4), which presents difficulties in obtaining parameters for the system

of interest. For example, lack of knowledge exists regarding how to obtain the prior prob-

ability of an attack or the probability of not triggering the sensor in the presence of the

attack because of the polymorphic behavior of cyber-attacks. Therefore, the ability of DST

to quantify the ”unknown” is a desirable feature in cyber-security applications. In addition,

the nature of unknown matches naturally with how humans interpret IDS alerts. For ex-

ample, when an alert is fired, the security analyst will have a degree (approximately 10%)

of belief or confidence that an attack is occurring. On the other hand, a security analyst

suppose not to have 90% belief or confidence that the attack is not occurring. Observing

an alert should raise security analyst confidence that the attack is present, or reduce uncer-

tainty. Adopting the simple true and false case in order to capture information provided by

an alert requires security analyst to know the prior probability of attack or intrusion Pr[I],

which is hard to obtain, as shown in the following Bayes’ formula:
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sensor1’s alert sendExploit(ip1,ip2)
element bpa maps to element bpa

{trustworthy} 0.1 → {true} 0.1
{non-trustworthy} 0.9 → {true,false} 0.9

Table 3.3: Example of using the sensor’s quality metric

Pr[I|A] =
Pr[A|I] · Pr[I]

Pr[A|I] · Pr[I] + Pr[A|¬I] · Pr[¬I]

where A: IDS fires and I: intrusion occurs.

Utilization of DST allows 0.1 belief to be assigned to “attack”({true}), 0 belief to “no-

attack” ({false}), and 0.9 to “unknown” ({true, false}). This is an intuitive quantitative

interpretation and does not provide any belief for “no-attack”. Just because the sensor is

not trustworthy, does not mean an attack is not going on. Attack may still occur that is

completely outside the scope of the sensor’s detection.

DST method only requires a single metric δ to characterize sensor quality. Therefore,

belief calculation begins by assigning this metric to first hypothesis and then propagating

the belief to final hypothesis, i.e., frame of interest. To concretely clarify this concept, let

us consider the following example:

Example 3.2.1. Suppose we need to calculate belief in the hypothesis of sendExploit(ip1, ip2)

in Node 6 of Figure 3.3. We start by using the sensor quality metric δ that corresponds to

how much confidence or trustworthiness we have in sensor′1s alerts. Let us say that δ = 0.1

in this example; thus, we construct Table 3.3 to show translation between the two facts.

In this application, δ is viewed as a metric solely dependent on sensor trustworthiness.

IDS signatures often come with ad-hoc natural-language descriptions that indicate sig-

nature quality in terms of how likely the triggered alerts will be false positives. For example,
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Measures maps to Metrics
unlikely → 0.01
possible → 0.33

likely → 0.66
probable → 0.99

Table 3.4: Example of mapping discrete certainty tags from SnIPS to quantitative sensor
quality metrics

SnIPS (Section 2.1) uses descriptions in Snort signatures documentation to estimate a cer-

tainty tag for alerts generated by a signature. In practice, such belief tags could be explicitly

provided by the signature writer. These tags are utilized to map quantitative quality metrics

in SnIPS’ deployment in CIS departmental network, as shown in Table 3.4.

The mapping is fixed, but different numeric levels can be chosen to assign to a Snort

signature, resulting in different bpa’s assigned to alert trustworthiness which depends on

operating environment. According to Ou, et al.67, the intuition for these tags is that humans

typically cannot distinguish small differences in numerical parameters, so a few discrete levels

are sufficient to express the various beliefs ascribed to an alert.

Another benefit of using this model of sensor quality is that no conflict exists among

alerts. When security analyst does not trust an alert, he/she says I Don’t know whether the

hypothesis is true, rather than assert that the hypothesis is false, which does not contradict

the fact that the user may trust another alert, from which derives the same hypothesis being

true. Therefore, this application always has K = 0 in the combination rule, Formula 3.15.

3.2.2 Extending Dempster’s Rule of Combination

Attack scenarios established by events correlation could provide an elevated belief that an

attack is occurring, since multiple pieces of evidence support the same conclusion, e.g.,

compromised(ip2) in Figure 3.3. A key question is whether these pieces of evidence come

from independent sources. Dempster’s rule of combination has a strong assumption about

the independence of the mass functions m1(h1) and m2(h2) in Formula 3.15.
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I discovered that the dependent nature of evidences cannot be ignored or avoided in this

application. I routinely observed multiple alerts in correlation supporting a hypothesis but

these alerts were triggered by the same or similar IDS signatures, leading to an unjustified

high level of confidence if the standard Dempster’s rule of combination is used.

For example, in Figure 3.3, the main hypothesis is Node 9, meaning “whether machine

ip2 is compromised”. This hypothesis is supported by three proof traces that are supported

by alert Nodes 1 - 5. Node 7 is supported by Node 2 and 3 (as evidence). Belief in Node 7

is a result combination of beliefs of the supporting nodes. Then we need to combine the

belief in Nodes 6, 7, and 8 to answer the final question in Node 9. The fact that these nodes

have overlapping evidence cannot be ignored. In particular, Nodes 7 and 8 partially rely

on alerts triggered by sensor3, so they are not completely independent and the Dempster

rule cannot be applied. Figure 3.4 shows Venn-diagram illustrations for independent and

non-independent paths of the graph in Figure 3.3.

sensor1
sensor2

sensor3

(a) Independent evidences

(b) Partially Dependent evidences

Figure 3.4: Venn diagrams showing dependency of paths in correlation graph in Figure 3.3
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Number of approaches in DST literature account for such dependence38,83–85; however, I

adopted an idea proposed by Shafer85, which interprets combined bpa’s as joint probabilities.

I consequently developed a set of customized combination formulas to correctly account for

the dependence when combining beliefs in the alert correlation graph.

Customized rule of combination

The joint mass function in Dempster’s rule of combination is calculated through multi-

plication (Formula 3.15), which is the source of independence requirement in this rule.

For non-independent evidences, the multiplication of masses from two sources is no longer

valid85. To handle this limitation, the overlapping part between these masses must consid-

ered. Therefore, instead of using m1(h1) · m2(h2) in Formula 3.15, I propose ψ[h1, h2] to

denote the joint masses of the two sources. The following new formula combines possibly

non-independent evidences in the correlation graph.

m1,2(h) =
∑

h1∩h2=h

ψ[h1, h2] (3.18)

In this application, the only possible his are {true} (referred to as t) and {true, false}
(referred to as θ) because of how the bpa is assigned to the sensors’ frame discernment. As

result, only positive correlation exists among IDS alerts because of the absence of conflicts

between evidences in the correlation graph, more alerts will not decrease one belief in the

existence of attacks. This topic was discussed in Section 3.2.1. The following equations

demonstrate how to calculate ψ[h1, h2]:

ψ[t, t] = r1 ·m1(t) + (1− r1) ·m1(t) ·m2(t) (3.19)

ψ[t, θ] = (1− r1) ·m1(t) ·m2(θ) (3.20)

ψ[θ, t] = (1− r2) ·m1(θ) ·m2(t) (3.21)

ψ[θ, θ] = r1 ·m2(θ) + (1− r1) ·m1(θ) ·m2(θ) (3.22)
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w1 w2

(a) Independent

w1 w2

(b) Non-independent

w2

w1

(c) Completely de-
pendent

Figure 4. Venn diagram illustration of evidence dependency

where α is defined in (13) and can be computed as:

α =
m1(t) · (1 −m2(t))

m2(t) · (1 −m1(t))

That is, we gauge the correlation between two sources
by dividing the overlapping evidence’s weight by the total
evidence weight of one branch. Since r1 and r2 are related,
if we estimate one the other will be computed using α. The
above estimation ensures that both r1 and r2 are within [0, 1].
This is an intuitive estimation, and for both extreme cases
in Figure 4 the estimation gives the accurate result (0 for
independence and 1 for complete dependence).

D. The Extended Translation Method

Section II-A gave the basic concept of translation in DS
theory. In this section we present how we extend the concept
of translation to use in the alert correlation system. In Fig-
ure 3, the bpa’s on the alert nodes (node 1 to 5) are translated
to their corresponding hypotheses using the standard method
introduced in section II-A. Let us look further at how the
mass function on node 6 (sendExploit(ip1, ip2)) is translated
to node 9 (compromised(ip2)). When an exploit is sent from
one machine to another there is a good chance that the target
machine will be compromised, but this is not guaranteed
since exploits often fail. For this reason, we cannot assign
all the mass distribution for the {true} case of sendExploit to
the {true} case of compromised. Our idea is to split the mass
distribution based on the predicate’s semantics. For example,
in our application we split the {true} portion of sendExploit
into two parts corresponding to the two possible outcomes
of an exploit: success or failure. The portion of the split is
currently pre-set in our implementation, but it could also be
dynamically adjusted based on the difficulty of the exploit
or the vulnerability condition on the target host. The success
portion is translated to the {true} case of compromised, and
the failure part is translated to the θ case of compromised.
Here we assume a failed exploit to a machine X does not
mean that machine X is not compromised. X could still
be compromised through other means. This is the rationale
behind the translation relation shown in Table IV where any
means any IP address, and dest stands for the destination IP.

The translation tables like IV are built corresponding to
SnIPS’s reasoning model. Thus for every derivation SnIPS
makes between hypotheses, we know how to translate the
mass distribution from the reason to the conclusion.

Table IV
SENDEXPLOIT→COMPROMISED

sendExploit(any,dest) compromised(dest)

{true} {success} {true}
{failed} {true,false}

{true,false} {succ,failed,false} {true,false}

As another example, Table V shows the translation from
the fact that a machine is doing malicious probing to
the fact that this machine is compromised. If a machine
is performing malicious actions then it must itself have
been compromised. Thus the {true} portion of the mass
distribution on probeOtherMachine is completely translated
to the {true} portion of compromised.

Table V
PROBE→COMPROMISED

probe(source,any) compromised(source)
{true} {true}
{true,false} {true,false}

We have presented all the necessary preliminaries for
our extended approach using DS theory. We present the
algorithms for applying this theory in the following section.

E. Belief Calculation Algorithm

This section shows the formal algorithms we have de-
veloped in our DS-based approach. Typically the alert cor-
relation graph returned by SnIPS is not fully connected
but contains a number of correlation segments like the one
shown in Figure 3. The calculation starts by taking a set of
graph segments. Then each graph segment is processed by
propagating the belief in the supporting evidence to the sink
nodes. Then the graph set is sorted in descending order of
the belief level in the sink nodes, which is presented to the
user.

The main algorithm is DsCorr (Algorithm 1). This func-
tion takes GraphSet which is a set of correlation graphs.
It calls ComputeGraphBelief on each graph segment in
the input set, and returns a set of the graph segments

Figure 3.5: Venn diagram illustration of evidence dependency

Semantics of overlapping factors ri

r1 and r2 are correlation factors measuring the amount of overlap in the evidence from

the two sources. r1 is the portion of m1(t) that relies on overlapping evidence from m2(t).

Figure 3.5 shows three cases of dependency between evidence sources. wi is the statement

that hi = t, and the circles represent the IDS signature (sensor) set that triggered the alerts

in support of this statement. For example, in Figure 3.5 (a), sensors that support w1 are

completely disjoint from supporting w2, giving the independent case where r1 = r2 = 0 and

Formulas 3.19 – 3.22 become the standard Dempster’s rule of combination. Figure 3.5 (c)

illustrates another extreme case where evidence supporting w1 completely overlaps evidence

supporting w2. In this case, r1 = 1 meaning that when a person believes in w1, will also

believe in w2. Thus, ψ[t, t] = m1(t) and ψ[t, θ] = 0. If no evidence can be trusted in w2, no

evidence in w1 can be trusted, resulting in ψ[θ, θ] = m2(θ). In general, r1 will be between

0 and 1, as illustrated in Figure 3.5. Figure 3.4 is a venn diagrams illustration of evidences

in Figure 3.3. The first venn diagram identifies, when two graph’s paths are independent,

and the second diagram demonstrates the partial dependence of the two branches that flows

from Node 7 and Node 8 into Node 9.
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Since only two non zero-bpa subsets are present, t and θ in each hypothesis’s frame of

discernment, I utilized wi to denote hi = t and w̄i (negation of wi) to represent hi = θ.

Let us define:

r1 =
Pr[w2|w1]− Pr[w2]

Pr[w̄2]
, (3.23)

r2 =
Pr[w1|w2]− Pr[w1]

Pr[w̄1]
(3.24)

Let us take r1 in Formula 3.23 as an example to explain the intuition behind this def-

inition. If one condition of hypothesis h1 is true, the probability that h2 is also true is

greater than or equal to its absolute probability (shared IDS sensors only give positive cor-

relation). The bigger the difference, the stronger influence h1 has on h2. An extreme case

is Pr[w2|w1] = 1, which gives r1 = 1. Both r1 and r2 measure dependence between h1 and h2.

Theorem 3.2.1.

r2 = α · r1, where α =
Pr[w1] · Pr[w̄2]

Pr[w2] · Pr[w̄1]
(3.25)

The proof of the theorem is presented in Appendix A. Let us substitute ri’s definition

into Formulas 3.19 – 3.22. Let us also substitute the following definitions:

mi(t) = Pr[wi] mi(θ) = Pr[w̄i]

The following theorem is based on above:
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Theorem 3.2.2.

ψ[h1, h2] = Pr[h1, h2]

Theorem 3.2.2 can be proved using standard probability theory, which can is also located

in Appendix A. This theorem is sound because it is generalization of the joint probability

distribution of the trustworthiness of two (potentially) dependent sources.

Estimating overlapping factors The definition of ri requires knowledge of conditional

probabilities Pr[w1|w2] and Pr[w2|w1], which are unavailable. Therefore, ri must be esti-

mated in this application. In a given correlation graph, each alert node is associated with a

set of IDS signatures that triggered alerts. In this application, these signatures are viewed

as independent sensors. For example, Node 7 is supported by alerts from Sensor 2 (Signa-

ture 2) and Sensor 3 (Signature 3) in Figure 3.3. In this application, the identity of the

sensor triggered an alert is propagated to the supported hypothesis and to other implied

hypotheses. Thus, each hypothesis such as h1 or h2 is associated with a set of sensors sup-

ported by alerts. Each sensor s has a quality metric δs, as discussed in Section 3.2.1. Let

R1 and R2 be the two sensor sets associated with the hypothesis h1 and h2 to be combined

using Formula 3.18. Let R = R1 ∩ R2. I utilized Formulas 3.26 and 3.27 to estimate the

correlation between h1 and h2 as follows:

if α ≤ 1, then

r1 =

∑
s∈R

δs∑
s∈R1

δs
, r2 = r1 · α (3.26)
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else,

r2 =

∑
s∈R

δs∑
s∈R2

δs
, r1 = r2 · α−1 (3.27)

where α is defined in (3.25) and can be computed as

α =
m1(t) · (1−m2(t))

m2(t) · (1−m1(t))

I gauged the correlation between two sources by dividing the overlapping evidence’s

weight by total evidence weight of one branch. Since r1 and r2 are related, if a factor is

estimated, the other can be computed using α. The above estimation ensures that r1 and r2

are within [0, 1]. In addition, for both extreme cases in Figure 3.5, the estimation provides

accurate results (0 for independence and 1 for complete dependence).

Suppose R1 and R2 are two sets of IDS sensors supporting evidences w1 and w2, respec-

tively, thus, the following cases are possible:

R1 ∩R2 = φ where, φ = {}, then r1 = r2 = 0

R1 ∩R2 = R where, R 6= φ, then r1, r2 ∈]0, 1[

R1 ∩R2 = Ri where, Ri 6= φ and i ∈ {1, 2}, then r1 = 1 or r2 = 1

3.2.3 Using Translation in Alerts Correlation

This section presents the application of Translation process in the alert correlation sys-

tem. In Figure 3.3, bpa values in alert Nodes 1-5 are translated to their corresponding

hypotheses using the method introduced in Section 3.1.4. For example, belief in Node 6

(sendExploit(ip1, ip2)) is translated to Node 9 (compromised(ip2)). When an exploit is sent

from one machine to another, the target machine will most likely be compromised, but this

compromise is not guaranteed because exploits often fail. Therefore, bpa of the {true} in
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SendExploit(any,dest) maps to Compromised(dest)

{true} {success} → {true}
{failed} → {true,false}

{true,false} {succ,failed,false} → {true,false}

Table 3.5: Translating sendExploit to compromised: any stands for any IP address, and
dest stands for the destination IP

sendExploit cannot directly mapped to {true} in compromised. One solution is to split the

bpa based on the predicate’s semantics. Thus, the {true} element of sendExploit is split

into two parts corresponding to two possible outcomes of an exploit: success or failure. The

weight of each portion is pre-set in the current implementation, but it can also be dynami-

cally adjusted based on exploit difficulty or vulnerability condition on the target host. The

success portion is translated to the {true} case of compromised, and the failure part is trans-

lated to the θ case of compromised. The assumption is that the failed exploit to a machine

X does not mean that machine X is not compromised. X could be compromised through

other means. This is the rationale behind the translation relation shown in Table 3.5 in

which any means any IP address and dest stands for destination IP.

Translation tables such as Table 3.5 are built corresponding to SnIPS’ Internal Model

in Section 2.1. Therefore, for every derivation that SnIPS makes between hypotheses, the

system knows how to translate bpa from the reason to the conclusion. Finally, With the

exception of the translation in Table 3.5, no other translations involve splitting bpa’s weight.

ProbOtherMachine(source,any) maps to Compromised(source)
{true} → {true}
{true,false} → {true,false}

Table 3.6: Translating probing to compromised: any stands for any IP address, and source
stands for the source IP

Table 3.6 shows the translation from the fact that a machine is maliciously probing to

the fact that the machine is compromised. If a machine performs malicious activities, it

must be compromised. Therefore, the {true} portion of the bpa on probeOtherMachine is
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completely translated to the {true} portion of compromised.

SendExploit(source,any) maps to Compromised(source)

{true} {succeed} → {true}
{failed} → {true}

{true,false} {succ,failed,false} → {true,false}

Table 3.7: Translating from sendExploit to compromised in the backward direction: any
stands for any IP address, and source stands for the source IP

Similarly, Table 3.7 shows the translation from sendExploit by the source machine to

the fact that the source machine is compromised. If a machine performs malicious actions,

such as sending exploit, thus is compromised.

I used the above translation tables in the current implementation, but the notion of

translation is not limited to these tables. The semantics and syntax of these tables are

related to SnIPS’ Internal Model, which is customizable by design. For example, a new

internal rule and translation table can be introduce about probing that is followed by sending

exploit. In this section, I presented all necessary preliminaries for my extended approach

using DST. Next, I present algorithms for applying this theory.

3.2.4 Belief Calculation Algorithm

This section elaborates on the formal algorithm for applying the customized DST approach.

The correlation engine typically generates a list of non-connected alerts-correlation-graph

segments such as the one shown in Figure 3.3. Calculation begins by reading this list of

graph segments as input. For a given graph segment, the belief of supporting evidences

is propagated to the sink nodes, and then the graph list is sorted in descending order by

the belief value of the sink nodes. The ranked list is presented to the security analyst ,

increasing focus on highest-confidence scenarios.

The main algorithm is DsCorr (Algorithm 2). This function takes GraphList, which

is a set of correlation graphs. It calls ComputeGraphBelief on each graph segment in the

input set and returns a set of graph segments sorted by belief of the sink node (node of final
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Algorithm 2: Ranking graph segments by belief value

Require: GraphList is a list of graph segments.
Ensure: RankedGraphList is sorted graph list in descending order by the belief value of

the sink nodes.

1: function DsCorr(GraphList)
2: for each Graph in GraphList do
3: ComputeGraphBelief(Graph) (Algorithm 3)
4: end for
5: RankedGraphList ← SortGraphSetbyBelief(GraphList)
6: return RankedGraphList
7: end function

conclusion from the correlation) in descending order. If a segment has more than one sink

node, the highest belief value among all sink nodes is taken.

Algorithm 3 takes a graph and computes the belief of every node by propagating evidence

from the source nodes (i.e., alert nodes) to the sink node(s) by using breadth-first search

algorithm. The algorithm calculates a belief value for each node and returns the highest

belief value of the sink node(s). If the correlation graph is cyclic, another algorithm converts

it to an acyclic graph by using depth-first search to remove all back edges, yielding a directed

acyclic graph (DAG). Then the algorithm starts with source nodes that have no parents

and insert them in a queue (ProcessingQueue). As long as the queue is not empty, the

algorithm continues to remove a node, computes its belief value, marks the node as visited.

The algorithm also checks for unvisited child nodes with fully visited parents, thus if this

condition is met, that child is also placed in the processing queue. This process continues

until the algorithm reaches a sink node. The algorithm returns the highest belief value of

the sink nodes in the graph.

Algorithm 4 takes a node and returns an updated node with belief value and supporting

IDS signatures. Three cases must be considered for the node:

1. The node is a source node. AssignBpaValues method computes basic probability
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Algorithm 3: Compute the belief for each node in the graph segment

Require: Graph has an array of nodes.
Ensure: record the highest belief value of sink nodes.

1: function ComputeGraphBelief(Graph)
2: MakeAcyclic(Graph)
3: ProcessingQueue ← all the source nodes
4: while (ProcessingQueue is not empty) do
5: Node ← ProcessingQueue.RemoveHead
6: Node ← ComputeNodeBelief(Node) (Algorithm 4)
7: Node.visited ← true
8: for each C in Node.Children do
9: if all C’s parents are marked visited AND C.visited = false then

10: ProcessingQueue ← C
11: end if
12: end for
13: end while
14: record the highest belief value of sink nodes.
15: end function

Algorithm 4: Compute the belief value of a node

Require: Node a Graph node.
Ensure: Node′ is updated node with belief value and sensors list.

1: function ComputeNodeBelief(Node)
2: if Node.Parents has no parents then
3: AssignBpaValues(Node)
4: else if Node has one parent P then
5: Node.belief ← Translate(P)
6: Node.sigSet ←P.sigSet
7: else if Node has multiple parents PS then
8: Node.belief ← Combine(PS )
9: Node.sigSet ← union of PS.sigSet

10: end if
11: return Node
12: end function
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assignment based on method in Section 3.2.1. This case applies to alert nodes, e.g.,

Node 1-5 in Figure 3.3.

2. The node has only one parent node. The translation function propagates the belief

from the parent to the current node, as discussed in Section 3.2.3.

3. The node has multiple parents. The parents are implicitly translated into the current-

node semantic and the combination process is applied.

Algorithm 5: The Combination Process

Require: ParentsList is a list of parents nodes.
Ensure: Belief is the combined belief value.

1: function Combine(ParentsList)
2: for each P in ParentsList do
3: TranslatedParentsList ← Translate(P)
4: end for
5: FillPriorityQueue(TranslatedParentsList)
6: Belief ←CombinePairwise(PriorityQueue)
7: return Belief
8: end function

Algorithm 5 reads a node’s parents list and returns the combined belief value. The

algorithm begins by translating the parents into the current-node semantic. In the case of

more than two parents to combine, Node 9 in Figure 3.3, they are combined in pairwise

manner. The customized combination Formula 3.18 is associative because it computes joint

probability of hypotheses, thus it can handle evidence in any order. In this algorithm, I

ordered branches dynamically in descending order by belief values (using priority queue)

to fuse the highest-quality information first. IDS-signature identifications are propagated

through the graph to estimate the correlation factor using Formulas 3.26 and 3.27.

56



Complexity The complexity for this algorithm is O(N.G), where N is the number of

graph segments in GraphList in Algorithm 2, and G is the size of the graph segment. In

the worst case, the generated graph is quadratic in the number of IP addresses in the alerts.

3.2.5 Illustrative Example

In this section an illustrative example demonstrates belief calculation process using the

correlation graph segment in Figure 3.3. In this figure, sensor nodes are present for the

purpose of explanation, but they are not part of the graph in practice. The steps of belief

calculation are shown below.

Step 1: Compute belief values for source nodes.

The algorithm starts from alert Nodes 1 – 5 which are each associated with the

triggering sensor (IDS signature). Let the sensor’s quality metric be δ based on

the definition in Section 3.2.1. Suppose δ = 0.6 for Node 1. The following steps

explain the process:

(a) Create frame of discernment, θ = {true, false}

(b) Create the power set out of (θ), 2θ = {{}, {true}, {false}, {true, false}}

(c) Distribute the measures on the 2θ, using bpa. In Table 3.8, the empty set

receives Zero, (m({true})) takes the measures (e.g., 0.6 ) from Node 1. Zero

is then assigned to (m({false})), because no supporting evidence exists for

this element. Finally, (m({true, false})) receives the remaining mass.

In these steps, I implicitly map the trustworthiness frame of discernment of the

alerts to {true, false} frame of discernment.

Step 2: Propagate belief values using Translation.

In this process, I translate semantics of the source node to the destination node

using a set of translation tables, as explained in Section 3.2.3. For example, to

translate from Node 6 to Node 9, I consulted Table 3.5.
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bpa values

m({}) 0
m({true}) 0.6
m({false}) 0
m({true, false}) 0.4

Table 3.8: Bpa table for Node 1 in Figure 3.3

sendExploit(ip1, ip2) compromised(ip2)
element value element value element value

{true} 0.6
{success} 0.36 {true} 0.36
{failure} 0.24 {true,false} 0.24

{true,false} 0.4 {success,failure,false} 0.40 {true,false} 0.40

Table 3.9: Example of translating sendExploit to compromised

Table 3.9 shows the translation process with computed values. The left side of the

table has the {true} element for sendExploithas belief value of 0.6. This is split into

{success} and {failure} using a pre-set 3 : 2 ratio, assuming that if an exploit is sent

to a machine, this machine “likely” is compromised. Finally, I added up translated

weights for each subset and obtained 0.36 as the belief for compromised(ip2) being

true.

Step 3: Combine belief values.

Combination is applied when multiple derivation paths lead to a single node.

Node 9 is as an example, which has three pieces of evidences flowing into it from

Node 6–82. First, the nodes’ belief values based on their perspective semantics are

translated into the bpa of Node 9’s semantics compromised(ip2). The algorithm

sorts the three branches based on translated belief value and combines top two

branches. Then the combined branches are similarly combined with the rest of the

branches. Let us assume that Nodes 7 and 8 are the first pair to be combined;

Node 7’s belief value after translation is 0.68 and Node 8 ’s value is 0.6.

2I use the word “evidence” broadly since 6–8 are actually hypotheses with supporting evidence.
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To combine, I used the customized combination formula 3.18–3.22. To estimate

the overlapping factors r1 and r2, I used Formulas 3.26 and 3.27, resulting in

m1(t)=0.68 andm2(t)=0.6; R1 = {sensor2, sensor3} andR2 = {sensor3, sensor4}.
Quality metrics for the sensors are δsensor2 = 0.2, δsensor3 = 0.6, and δsensor4 = 0.01.

Therefore, I have the following:

α = 1.42

Since α > 1, the following is used:

r2 =

∑
s∈R

δs∑
s∈R2

δs
, r1 = r2 · α−1 then,

r2 =
0.6

0.61
= 0.98, r1 = 0.98 · 1.42−1 = 0.69

(h1,h2) ψ(h1, h2) h
(true,true) 0.597 {true}
(true, θ) 0.083 {true}
(θ, true) 0.003 {true}
(θ, θ) 0.317 {true,false}

Table 3.10: Belief combination example

Table 3.10 has four tuples for the combination of two evidences. The first element

in the tuple is from the first evidence and the second is from the other. For each

row, I used the Formulas 3.19-3.22, respectively. For example, I used Formula 3.19

to calculate (true,true) tuple. Finally, by adding the values in the first three rows,

the belief is Bel({true}) = 0.683.

The overlapping sensor3 weight was not count in the result. The interested reader

can verify if the standard Dempster rule of combination was used, the result is

much higher (0.872) since sensor′3s weight is double-counted. Using standard rule
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produces significant amplification on the graph segment, leading to unjustified

higher ranking.

Finally, is to combine this result with the belief from Node 6, which is similarly

calculated. The sensor set associated with the combined belief is the union of

sensor sets from all branches.

3.3 Implementation and Evaluation

In this section, I elaborate on the implementation and evaluation of the customized DST

application algorithm.

3.3.1 Implementation

The implementation of the customized DST algorithm is in Java. The prototype reads

the input as a list of correlation graphs from a back-end database. The back-end MySQL

database is used by the correlation engine to store output graphs (Section 2.3.1), and the

prototype carries out the algorithm described in Section 3.2.4. The program then outputs

a list of correlation segments sorted by highest belief values of the sink nodes. This list is

stored in the back-end database to be used in later stages of the implementation.

I utilized a web interface visualizer implemented in PHP and HTML. The graphs visual-

ization was generated using the Graph Visualization Software (GraphViz)41 tool. Further-

more, to increase the ease of correlation navigation, I implemented an additional interface

method, which presents the graphs as a list of textual records. Each record represents a

graph’s sink node, (compromised(H1), timerange, beliefvalue). Each compromised record

can be clicked and checked for its supporting nodes with their calculated belief values.

Figure 3.6 shows part of the interface.
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Kansas State University 
CIS dept., Argus Lab 
by Loai Zomlot 

SnIPS User Manual

SnIPS output is on cyber2 server. The user can access it by ssh forwarding. SnIPS output is ranked 
hypothesis about network's machines. The rank is by the belief of how the hypothesis is true. 

1) The first page of SnIPS output is the ranked hypothesis. The beliefs values colored by the 
criticality of it. They are from red > orange > yellow > blue. Figure1 illustrates example of the 
output. The Rules set is the snort supporting rules numbers for the hypothesis. The Time range 
is when the hypothesis is valid or may occurred. 

   
2) The user can click on any of these hypothesis to investigate the supporting hypothesis of it. Fig2 

illustrate an example of the output when the user clicks on one of the Fig1 hypothesis. The 
upper most line is the chosen hypothesis. The first list has skolem which is has the supporting 
snort rule with some information about the triggered alerts list.

Figure 1: ranked SnIPS output

Figure 3.6: Example of textual format user interface

3.3.2 Evaluation

The prototype was continuously evaluated on the production network throughout my re-

search. The production network consists of approximately 200 servers and workstations,

including Windows, Linux, and Mac OS X. The Snort alert collection, correlation, and DST

algorithm application were all carried out on a Ubuntu server running a Linux kernel version

2.6.32 with 16GB of RAM on a eight core 3.16GHz Intel Xeon processor.

I found that, although SnIPS can infer a certainty tag for each Snort rule by analyzing

the rule’s documentation, estimated certainty tags often are not consistent. SnIPS may map

one Snort rule to “likely”, whereas a similar rule may be mapped to “possible”. In such

cases, I manually modified certainty tags for rules triggered on the production network based

on my understanding of rule descriptions. Snort rules often need to be grouped since they

detect similar patterns and cannot be deemed “independent”. For example, Snort rules for

detecting Network File System (NFS) related network traffic are placed in single group. In

this work, these manual adjustments are called “refinements” of system input parameters.

IDS systems often cast into doubt the validity of evaluation effectiveness since the tool

may be trained to work well for a specific system. To avoid bias in the refinement process, I

61



refined Snort rule’s trustworthiness level based on the generic meaning of the rule without

considering system specifics on which the rule is triggered. However, to maintain evaluation

integrity, refinement was conducted in a “context-agnostic” manner. After I refined param-

eters on the production network, I applied the system to two additional datasets. Both

datasets have “truth files” which can be used to compare against the ranking provided by

DST algorithm. I used the following datasets:

1. Lincoln Lab DARPA intrusion detection evaluation dataset.

2. Predict dataset.

Evaluation Methodology

The objective of evaluation is to test whether the customized DST is effective in prioritizing

IDS alerts correlations. To that end, I assigned a belief value to each IDS alert that was the

highest belief of the supporting hypotheses. This can be calculated from the alert correlation

graph through linear traversal. If IDS alerts with high belief values turn out more likely

to be true alerts than those with low belief values, it is an indication of effectiveness of the

approach.

In order to demonstrate that the application of customized DST helps in prioritization,

I compared the performance of the customized DST algorithm to the following alternative

methods:

1. Using sensor quality metrics only. In this method, I used sensor’s quality metrics

assigned to each alert as an alert’s belief value.

2. Using maximum sensor’s quality metric in a correlation graph as the belief value for

all alerts in the graph.

3. Using belief values calculated from standard DST instead of the customized rule.

62



Each method assigns a belief value to each IDS alert. A threshold value is set and alerts

with belief values above the threshold are classified as true alerts; those below the threshold

are classified as false alerts.

I used truth files included in the dataset to compare against classification provided by

belief values. As the belief-value threshold changed, the classifier obtained different operat-

ing points in terms of true positive rate and false positive rate. Therefore, I used Receiver

operating characteristic (ROC) curves for the four methods to compare their performance.

I also used precision, recall, and sample size for each operating point, in effort analysis. In

the effort analysis, I showed the effect of alerts prioritization to reduce the workload of the

security analyst.

Results from Predict Dataset

Predict dataset was prepared and released by Skaion Corporation for the Disruptive Tech-

nology Office (DTO), a funding agency within the United States Intelligence Community,

now called the Intelligence Advanced Research Projects Activity (IARPA). This dataset is a

simulation for the Open Source Information System (OSIS) network, which is an unclassified

network used by the intelligence community to share sensitive-but-unclassified information.

The notional network consists of a central internet-connected backbone, combined with (fic-

tional) intelligence community subnets. Subnets contain a collection of services and clients

that run Windows and Linux operating systems. The nature of the background traffic is

a mixture of benign packets and failed attacks, and successful attacks are documented as

ground truth scenarios.

The dataset has Postgre database dumps of Snort alerts. To run the experiment, I

first ran SnIPS’ correlation engine to generate correlation graphs, which were stored in a

back-end database to run the DST module in the future. To facilitate the testing process,

I implemented an automatic testing program (in Java) that read the ground truth and

correlation graphs to plot ROC, sensitivity, and efforts (prioritization effects) curves. The

ground truth was created by going through each attack scenario and checking against the
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alert database to select alerts that could be verified as true alerts. The remainder of the

alerts were declared as false alerts.

Figure 3.7: ROC Curves for Predict dataset

The ROC curve is a standard method to compare performance of IDS systems18. It

shows the relationship between detection rate (true positive) and false positive rate of a

classifier. In general, the steeper and closer to the left-up corner, the better the classifier.

A comparison of ROC curves generated for the Predict dataset is shown in Figure 3.7.

The curves clearly indicates that the customized DST algorithm outperforms the three

alternative methods. The customized DST algorithm produces the most optimal operating

point A corresponding to belief threshold 0.87. The calculating formulas for TPR and FPR

are shown below for reference.
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True Positive Rate (TPR) =
number of true alerts above threshold

number of total true alerts

False Positive Rate (FPR) =
number of false alerts above threshold

number of total false alerts

Prioritization Effect The primary objective of DST application is to use relative belief

values to prioritize intrusion analysis. Figure 3.8 shows how precision and recall changes

when the threshold decreases from 1 to 0. (Note that 0 in the X axis corresponds to belief

1, and 1 corresponds to belief 0). When the reader starts with alerts with high beliefs,

precision is high, meaning the security analyst effort is devoted to useful tasks. When the

threshold decreases, cumulative precision decreases, indicating that calculated belief values

can be effectively used to prioritize further investigation.

Figure 3.8: Prioritization effect for Predict dataset

For example, for 0.87 belief value (0.13 point at the X axis), the percentage of total alerts

captured was approximately 21%, and the recall was approximately 90%, meaning that if

only alerts set with the highest belief (e.g. > 0.87) are analyzed, this set only includes 21%
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of all alerts, and covers 90% of all true alerts. Recall and precision calculating formulas are

shown below for reference.

Precision =
number of true alerts above threshold

number of alerts above threshold

Recall =
number of true alerts above threshold

number of total true alerts

Sensitivity Analysis I experimented with the effect of variation on the choice of sensor’s

quality metric values. I varied default mapping in four ways, each of which increased all

numeric values by approximately 0.03, e.g., from 0.3 to 0.33. I compared results from all

four cases along to the default case using ROC curves (Figure 3.9).

Figure 3.9: Sensitivity analysis’ ROC curves for Predict dataset

Figure 3.9 shows that the five curves overlap each other, indicating that small change in

66



one direction for certainty tag values has negligible effect classifier performance. However,

I found that the system is sensitive if the change in mapping gets to more than 0.15 in one

direction. Sensitivity is revealed by the decrease in system performance, resulting in worse

ROC.

Results from Lincoln Lab DARPA Dataset

The system was tested on the MIT Lincoln Lab DARPA intrusion detection evaluation

dataset. Although the Lincoln Lab dataset has been criticized in the literature59,60, it is

still one of the few usable publicly available datasets for IDS research because it is supported

by good documentation of ground truths and the existence of background and attack traffic.

The limitation of the LL dataset does not significantly affect the validity of this evaluation

for the following reasons:

1. Most problems identified in the LL dataset affect anomaly-based detection59 in which

data for training and testing purposes must be utilized. For example, one issue is that

the Time to live (TTL) value of the packets is a decisive feature in classifying attack

and non-attack traffic. This example does not affect a signature-based IDS such as

Snort, which I used as the underlying alert source.

2. SnIPS’ reasoning model was built, from existing Snort rule repositories before the

testing occurred. It is calibrated on the departmental network, which is completely

unrelated to the LL dataset.

3. The problem in LL dataset’s background traffic60 makes it hard to make claims on

the performance of the tested system on real networks, especially since it is a very

old dataset. Therefore, I primarily used the dataset to compare performance. The

relative performance of various methods is likely not affected as much as the absolute

performance since they may all benefit or suffer from specific features of the dataset.
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DARPA 1998 and 1999 Training Data To generate correlation graphs, Snort and

SnIPS were run on the packet capture (pcap) format of the dataset. Generated correlations

were stored in a back-end database to run future experiments. To facilitate the testing

process, I implemented an automatic testing program (in Java) that read the ground truth

and correlation graphs to plot ROC, sensitivity, and efforts curves. Ground truth was

created by going through each attack scenario and checking against the alert database to

choose alerts that can be verified as true; the remainder of the alerts were declared as false.

Figure 3.10: ROC curves for Lincoln Lab 1998 dataset

A comparison of ROC curves generated for both datasets is shown in Figure 3.10 and

3.11. The curves indicate that the customized DST algorithm outperforms the three al-

ternative methods. Some operating points of the other three methods come close to the

customized DST algorithm for LL 98 data, e.g., point B and C. but these points are inferior

to LL 99 data. Conversely, the customized DST algorithm consistently produces the most
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Figure 3.11: ROC curves for Lincoln Lab 1999 dataset

optimal operating point for both graphs (point A, corresponding to belief threshold 0.9).

Prioritization effect The primary objective of DST application is to use relative belief

values to prioritize intrusion analysis. Figures 3.12 and 3.13 demonstrate how precision

and recall changes when the threshold decreases from 1 to 0. (Note that 0 in the X axis

corresponds to belief 1, and 1 corresponds to belief 0). When one starts with alerts with high

beliefs, the precision is high meaning more of the effort is devoted to useful tasks. When

the threshold decreases, the cumulative precision decreases, indicating that calculated belief

values can be used effectively to prioritize further investigation.

At the highest belief range (0 point at the X axis), the percentage of total alerts captured

was approximately 40% and the recall was approximately 80%. This means that if only alerts

slice with the highest belief were analyzed (e.g., > 0.9), it only includes 40% of all alerts,
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Figure 3.12: Prioritization effect for Lincoln Lab 1998 dataset

and covers 80% of all true alerts. The recall curve is flat, meaning that most attacks can

be captured using a high threshold value. This is certainly the case for these two datasets,

but it also indicates the effectiveness of prioritization provided by the DST method. Thus

in the absence of prioritization, security analyst must to analyze twice as many alerts to

achieve the same coverage.

Sensitivity Analysis I experimented with the effect of variation on the choice of sensor’s

quality metric values. I varied the default mapping shown in table 3.4 in four ways, each

of which decrease all the numeric values by approximately 0.03, e.g., from 0.33 to 0.3. I

compared results from all four cases and the default case in ROC curves for LL 99 data.

Figure 3.14 indicates that the five curves overlap, indicating that small change in one

direction for certainty tag values has virtually no effect on classifier performance. However,

I found that the system is sensitive if the mapping change gets to more than 0.15 in one
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Figure 3.13: Prioritization effect for Lincoln Lab 1999 dataset

direction. The sensitivity revealed by decreased system performance, resulting in worse

ROC.
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Figure 3.14: Sensitivity analysis’ ROC curves for Lincoln Lab 1999
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Chapter 4

Using Machine Learning to Reduce
Uncertainty in Intrusion Analysis

Observation of SnIPS 1 output that runs on the departmental network, revealed that an

security analyst must perform repetitive tasks to pruning out false positives in ranked cor-

relations because of inability to feedback the system with security analyst’s decisions. In one

incident, security analyst found a high-ranking noisy server that turned out to be a benign

DNS server. This event continuously appears on the graphs list and the ranking cannot be

changed, according to findings from the security analyst. Therefore, I hypothesized that

such repetitive tasks can yield (limited) labeled data that can enable the use of a machine

learning-based approach to prune output based on security analyst feedback, similar to

spam filters that learn from users’ past judgment to prune emails42,44,51. The goal of this

chapter is to classify correlation graphs produced from SnIPS’ DST prioritization module

into “interesting” and “non-interesting”, where “interesting” means that security analyst

needs to conduct further analysis on the events. I manually labeled SnIPS’ output based

on this criterion and built prediction models using supervised and semi-supervised learning

approaches. The experiments revealed a number of insightful observations into the pitfalls

and challenges of applying machine learning in intrusion analysis. Experimentation results

also indicated that semi-supervised learning is a promising approach to practical machine

1The correlation engine and customized DST implementation has been combined with SnIPS. SnIPS
intrusion analysis framework is currently available as an open source software54.
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learning-based tools that aid security analysts, when a limited amount of labeled data is

available.

Section 4.1 presents research hypotheses and Section 4.2 discusses the approach for

the application of machine learning in intrusion analysis using SnIPS. Section 4.3 presents

experimental results and discussion.

4.1 Research Hypothesis

Through empirical study of the output of deployed SnIPS on the departmental network, I

found that many correlations are not interesting because they are supported by noisy IDS

signatures and the correlation structure does not provide significant boost on the belief

in attacks. When the correlation seems to be interesting (potential attack) , additional

information currently not captured by SnIPS must often be consulted. In order to use a

tool such as SnIPS, the security analyst must first determine whether the output correlation

is worthy of further investigation. While it would be ideal if the calculated belief value could

determine whether further investigation is warranted, practical experience shows that this

is not always the case. Therefore, manual work is still necessary to select interesting output

from SnIPS for further analysis. In this chapter I hypothesis the following:

Hypothesis 4.1.1. The possibility to automate the manual process of determining whether

an IDS alert correlation graph is interesting and worthy of further investigation through a

machine-learning approach.

This hypothesis is justified by the fact that a security analyst can determine the use-

fulness of an IDS alert correlation graph, indicating that features within the graph are

predictive to the classification of “interesting” and “non-interesting”, where “interesting”

means that the graph is worthy of further investigation. In addition, a security analyst must

validate the alert correlation graph, implying that, ultimately, the human analyst must make

final decision on graph usefulness. This process creates limited amount of labeled data to

train a machine-learned classifier. Therefore, a machine learning approach could be feasible
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rule2rule1 rule2

8 : probeOtherMachine(ip2, ip4)7 : probeOtherMachine(ip2, ip3)

9 : compromised(ip2)

sensor2sensor1 sensor4sensor3

2 : alert21 : alert1 4 : alert43 : alert3

6 : sendExploit(ip1, ip2)

5 : alert5

Figure 4.1: Automatically generated correlation graph from the correlation engine

for operational use, where a human analyst analyze the output and continuously provides

feedback on the classifier’s precision in the form of fresh-labeled data.

4.2 Methodology

This work aim to utilize features existing in a correlation graph to build a prediction model

to classify whether output correlation is “interesting” or “non-interesting.” Each correlation

graph has one or more sink nodes representing the correlation’s conclusion. The classification

task is to determine whether the correlation is worthy of investigation based on features

included in the correlation graph, including graph structure, details of supporting evidence,

and the belief value of the graph.

4.2.1 Classes

The sink node for the graph is considered the data point for the classification,e.g., Node 9 in

Figure 4.1. Using this data point, the correlation graph can be classified into the following

two classes:

1. Interesting: This class means that the correlation is found to be highly suspicious and

worthy of additional in-depth investigation. This class covers a wider area than “true
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positive,” since the conclusion drawn by the correlation may turn out to be a false

positive after further investigation.

2. Non-interesting: This class means that the correlation is found to be non-interesting

and not worthy of further investigation. Ideally, the conclusion must be false positive;

however, in reality, an attack could be true but no sufficient evidence is captured

in the correlation so the graph is mistakenly dismissed as “non-interesting.” 2 The

“non-interesting” class means that no sufficient evidence exists to warrant further

investigation of the correlation.

4.2.2 Dataset Construction

I utilized data from the departmental network for training and testing. This is consistent

with the envisioned use of the prediction model in which each organization trains its own

prediction model based on security analysts’ feedback using the correlation tool. Multiple

datasets could produce stronger evidence on a prediction model’s effectiveness; however,

the particular problem addressed in this research requires access to production networks. I

fortunately have had supportive local system administrators and was able to conduct this

experiment on the CIS network, but practical constraints made obtaining access to multiple

production networks infeasible. Even though experimentation was conducted on a single

network, the results I obtained provide useful insights into the effectiveness of this approach

and how to generally apply machine learning for intrusion analysis, especially, compared to

artificially generated traffic. Furthermore, collecting and labeling the dataset provided me

with invaluable insights, thereby aiding feature selection process, as described later in this

chapter.

Network Setup and Labeling Tool

The departmental network consists of 35 Linux and 11 Windows servers and more than

150 workstations, including Sun, Mac Pro, and PC running Windows and Linux. The

2Improving true positive of intrusion analysis is an orthogonal problem of this research.
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departmental network consists of three VLANs: main, printer, and thin clients. The main

VLAN contains all servers and user machines and is the entry point to the departmental

network. It is a giga-bit switched network with a giga-bit uplink to the campus network. A

fiber optic cable is attached to Cisco switch of the main VLAN to mirror all traffic including

ingress and egress traffic for the departmental network and internal traffic for the main

VLAN. Snort IDS system runs on captured traffic, which produces tens of thousands of

alerts per day. Snort and SnIPS run on a dedicated Ubuntu server running a Linux kernel

version 2.6.32 with 16GB of RAM on an eight-core Intel Xeon processor of CPU speed

3.16GHz.

To facilitate the labeling process, I implemented a web-based interface that allows a

security analyst to interact with SnIPS’ output and determine on whether it is interesting

or non-interesting. Feedback is recorded in a back-end database along with the features ex-

tracted from correlation graph and supporting evidence. The web interface is implemented

in PHP and HTML, and the graphs visualization was generated using the Graph Visualiza-

tion Software (GraphViz)41 tool. Graphs are displayed in Scalable Vector Graphics (SVG)

format, allowing user to interact with the graph by issuing queries by clicking the nodes,

thus aiding analyzation of portions of the correlation graph. For example, security analyst

can examine raw alerts supporting a summarized alert, triggering IDS signatures, payload,

and other relevant information. This drill-down feature is useful in the labeling process. In

order to increase ease of correlation navigation, I implemented additional interface method,

which presents graphs as a list of textual records; each record represents graph’s sink node

such as (compromised(H1), timerange), which can can be drilled down for its supporting

nodes.

Labeling Process

The labeling process was the most time-consuming part of this research because of the need

to obtain sufficient amount of labeled data for training and testing. However, when the tool

is deployed and used in operation, the labeled data will be generated “naturally” by security
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analysts when they analyze correlation graphs. As the tool is used over time, continuously

fresh-labeled data will be generated to train the prediction model. Although a tremendous

amount of initial work is required for researchers who must be trained as operation analysts

and analyze large amounts of data for research experiments, such effort would be part of

routine work of security analysts in a deployed setting and virtually no additional cost would

be required for labeling.

The ideal research method would prefer that labeling be done by a real (full time) security

analyst. However, such professionals are difficult to recruit for research purposes. Research

prototypes are not as easy-to-use as mature off-the-shelf products, and security analysts are

typically overwhelmed by a variety of tasks with limited time to assist researchers. Therefore,

I acted as a security analyst to further examine SnIPS’ output in order to understand and

label the events, which is a less-than-ideal situation in regard conflicts of interest. To prevent

bias, multiple persons should label the data whenever possible.

The labeling process went through multiples rounds. The first round, I labeled dataset A

consisting of 160 data points. The second round labeled dataset B with approximately 625

data points. Datasets A and B had two issues: insufficient size for experimentation and

bias in the labels to the belief values, resulting in forcing the classifier to use only belief for

classification; therefore, the results were too good to be true.

To better understand the reason for the unexpectedly good results, I conducted experi-

ments using a decision-tree classifier, which builds a binary tree with leaves representing class

labels and branches representing conjunctions of features that lead to those class labels. Fig-

ure 4.2 illustrates the overall difference, in terms of decision trees, between datasets B and C.

For dataset B, the output decision tree has five nodes with three leaves. The main distin-

guishing feature is the belief value of 0.52. However, when I ran the same algorithm on

dataset C, the result was a tree with 97 nodes and 49 leaves, meaning that the second

decision tree used a majority of the features to classify. The reason for this difference is

that when I labeled dataset B, the belief values were shown to the user and the belief value
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(a) dataset B

(b) dataset C

Figure 4.2: Comparison between decision trees for B and C datasets
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likely influenced the labeling decision. When I labeled dataset C, the belief values were

hidden and the SnIPS output graphs were randomly re-ordered to ensure that the user was

not influenced by the belief value. This method helped reduce the bias to the graph belief

value or to the graph rank. Dataset C size is 1615 data points, which is moderately sized

to conduct the evaluation, as shown in Section 4.3.

Labeling Guidelines To ensure consistency, these guidelines were followed throughout

the labeling process. For each correlation graph, I performed the following steps to determine

whether a graph is “interesting” or “non-interesting”.

1. Check the graph structure to understand and validate the scenario that supports the

hypothesis (sink node), e.g., Node 9 in Figure 4.1.

2. Check type of the machines involved in the graph, either internal machines (clients

or servers) or external machines. For external machines, I used “whois” service

and IP reputation websites, e.g., “Trend Micro site safety center” (http://global.

sitesafety.trendmicro.com) to get a sense on whether they are benign or poten-

tially malicious.

3. Check open ports on the machines involved in the graph, in order to discover any

malicious services on these machines and to verify some Snort alerts.

4. Check Snort alerts’ payloads to gain insights into the reason behind each alert. This

only provides a limited view however, because Snort only stores the triggering part of

the packet for the alert.

5. Check other features such as timestamp, graph size, and Snort-signature categories in

the correlation.
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Observations on Labeling Process

Throughout the labeling process, multiple correlation graphs marked the departmental DNS

server as compromised because of many DNS queries to some blacklisted domains. If a

user,in the internal network, wants to access websites in blacklisted domain, network’s DNS

server sends queries to authoritative name servers for those blacklisted domains. Those

name servers are likely to be blacklisted, too. Blacklist IPs were from the Emerging Threat

Snort signatures that flag any communication with a blacklisted IP. This behavior puts

the DNS server at the top of the list as it triggers large number of these alerts, however,

little chance exists for the DNS server to be compromised. This observation indicates that

contextual information, such as a host’s intended functionality, plays important role in un-

derstanding security alerts triggered for the host. For an effective learning-based approach,

such information must be accounted for in the process of selecting features.

In addition a Snort’s sfPortScan rule was found to be noisy in the departmental network

and was tuned to avoid obvious false positives. For example, one client machine in the

departmental network was browsing multiple websites simultaneously. A Snort rule was

triggered and an alert was generated because a single machine accessing multiple machines

on a single port (80 in this case) was sufficient for the signature to match. These type of

rules made generic to capture all types of port scans. However, a fine-grain tuning is needed

for this rule and many other rules. This type of tuning requires significant effort and time

from the security analyst.

My experience of manually labeling data indicates that the information that matters in

determining the existence of attack tends to be highly specific to the nature of IDS alerts

involved and contextual information within the network. In order for a machine-learning

system to make high-quality classifications, such factors must be reflected in the feature

selection. However, the challenge is how to encode fine-grained diverse information in a uni-

form format so that a machine-learning algorithm consumes. Current feature selection and

construction as explained in Section 4.2.3 is coarse-grained, which may limit the effectiveness
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of the machine-learning approach.

Class Distribution

The class distribution (interesting vs. non-interesting) is skewed in this problem, with non-

interesting scenarios significantly out-numbering interesting ones. This is consistent with

past estimates of IDS false-positive alerts, where the estimation has been made that more

than 99% of alerts reported by IDSs are not related to security issues17. This makes the

classification process harder and prone to low accuracy88. In the labeled dataset, I found the

ratio of positive “interesting” to negative “non-interesting” class to be approximately 1 : 4

because classification is based on whether a correlation is worthy of further investigation,

opposed to whether a single event represents a true attack. Therefore, the latter would

have a much lower ratio. This unbalanced data presents a challenge for machine learning

because the resulting classifier could be biased towards the majority class. To ensure that

both classes are learned with accepted performance, I experimented with balancing training

data while maintaining original distribution in the testing data.

4.2.3 Feature Selection

The most important task in building a machine-learned classifier is to select features likely

to be predictive to the classes of interest. Based on my empirical experience, I divided

these features into two categories. The first category consists of information regarding

input to SnIPS. Since SnIPS primarily takes Snort alerts as input evidence, I called this

category ”Snort-related features”. The second category consists of information regarding

SnIPS reasoning and correlation, manifested as structures of the correlation graphs. This

category was called ”SnIPS-related features”. The feature set is described below.

Snort-Related Features

1. Snort-signature set size. In each correlation graph, a set of IDS alerts are trig-

gered by a set of Snort signatures. This feature concerns the size of this set. For
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example, in Figure 4.1, sensor1 − sensor4 represents Snort signatures, and the size of

the signature set is 4.

2. Snort-signature class groups. In SnIPS, each Snort signature is given a weight

(sensor quality metric). This weight is a measure of the trustworthiness level in alerts

triggered by that signature. Snort signatures are categorized into 24 classes. Class

weight is the maximum weight among all weights associated with Snort signatures

in that class. This feature is represented as a k-size vector of pairs, where each

pair consists of the number of appearance of a class and its corresponding weight, as

follows:{{# of appearances of class type1 , weight1 } , · · · , {# of appearances of class typen

, weightn}}. If the class does not appear in the graph, I used zeros. For example, the

graph in Figure 4.1 has sensor1 and sensor2 belong to class1 and sensor3 belongs to

class2. Therefore, this feature is {{2, 0.33}, {1, 0.66}, {0, 0.0}, · · · , {0, 0.0}}, meaning

that the first pair corresponds to class1, which appears twice and has a weight of 0.33.

3. Host categories. I grouped monitored network IP addresses into three categories:

client, server, and external IPs. This feature is a vector consisting of the number

of appearances of the IPs in each category in the Snort alerts supporting the corre-

lation. This feature is: {{# of appearances of client}, {# of appearances of server},
{# of appearances of external}}. For example, in Figure 4.1, suppose that ip2 belongs

to the server category, ip3 and ip4 belong to the client category, and ip1 belongs to

the external category. Thus, the IPs count of the alert1 − alert5 (not shown on the

graph) is encoded as {4, 5, 1}.

SnIPS-Related Features

1. Belief value of the correlation graph. The maximum belief value of the sink

nodes in a correlation graph is the belief value of the whole graph.

2. Correlation-graph size. This feature is the number of nodes in the graph. For
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example, the correlation graph in Figure 4.1 has 9 nodes. Sensor nodes in dotted

squares are not part of the graph.

3. SnIPS’ inference rules set. This feature is pertains to the participation of SnIPS’

inference rules that created the correlation graph. This feature is represented as a vec-

tor of SnIPS’ inference rules appearing in the graph. Currently, SnIPS has three inter-

nal rules. Thus, this feature is: {{# of appearances of rule1} , {# of appearances of rule2}
, {# of appearances of rule3}}. If a rule does not appear in the graph, I assigned zero

for it. For example, the sample graph in Figure 4.1 has this vector {1, 2, 0} - rule1 is

used to connect Nodes 6 to 9, rule2 is used to connect Nodes 7 to 9 and Nodes 8 to 9.

4.2.4 Learning Approaches

The nature of this problem implies that supervised or semi-supervised learning approaches

are possible candidates. Supervised approaches often yield better results if enough labeled

training data are available. Since the labeling process for this problem domain is time-

consuming, it is oftentimes hard to have a large number of labeled samples. This allows

for the possibility of applying semi-supervised learning techniques to address the scarcity

of labeled data. By using semi-supervised learning, the system can start with a fraction

of labeled data, and this classifier labels more data iteratively until the process stabilizes.

Two approaches are well-known in semi-supervised learning: Co-training24 and Expectation

Maximization (EM)36 and its variants, such as self-training (a.k.a., self-teaching or boot-

strapping)102. In Section 4.3, results of using supervised and semi-supervised approaches

are presented.

For various classification methods, Support Vector Machine (SVM) algorithm33 has been

used widely in the application of machine learning, including in cyber-security. SVM is a

binary classifier in its original formulation. In the linearly separable case, it works by

maximizing the separating boundary between the two classes, or margins, and selects a

number of critical boundary instances, or support vectors, from each class. Then, it builds
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a linear discriminant function, or a hyperplane, separating the two classes. When the data

is not linearly separable, the algorithm implicitly maps the data to a higher dimensional

space, by means of a kernel, where data becomes linearly separable, and it builds a linear

discriminant function in that space.

4.3 Implementation and Evaluation

In this section, I elaborate on implementation and experimentation of the machine learning

approach.

4.3.1 Implementation

To facilitate the labeling process, I implemented a web-based interface that allows a secu-

rity analyst to interact with the correlations-graphs list and determine whether the graph

is interesting or non-interesting. Feedback is provided by two radio buttons (interesting

and non-interesting) for each graph and recorded in a back-end database with the features

extracted from the correlation graph and the supporting evidence (Snort alerts). I utilized

MySQL, the open source database, for this purpose. The web interface was implemented

in PHP and HTML, and the graphs visualization is generated using Graph Visualization

Software (GraphViz)41 tool. The graphs are displayed in the Scalable Vector Graphics

(SVG) format, allowing the user to interact with the graph by issuing queries by clicking

the nodes, thereby furthering analyzation of portions of correlation graph. In addition,

to increase the ease of navigation, I implemented an additional interface method, which

presents the graphs as a list of textual records. Each record represents a graph’s sink node,

e.g., (compromised(H1), timerange). Each compromised record can be clicked and checked

for its supporting nodes. All experiment phase implementation was in Java using Weka46

Java library to conduct experiments with supervised and semi-supervised.
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4.3.2 Evaluation

In the experiments, I used a dataset with 1615 data points (Section 4.2.2). I conducted

experiments with supervised and semi-supervised learning using SMO (Sequential Minimal

Optimization) classifier, which is an implementation of the SVM algorithm from Weka46.

Validation method

The best method to conduct machine-learning validation is to have multiple labeled datasets

from different sources and experts. This is the ideal case but, in reality, I have one dataset la-

beled by one expert (me) and partially validated by another expert because labeling process

is time consuming. This is discussed in more details in Section 4.2.2. Therefore, I used the

n-fold cross-validation101 method to evaluate results of my experiments. Even though, I uti-

lized one dataset for training and testing, this method proved to have more validation power

than percentage splitting the dataset into training and testing. In n-fold cross-validation,

the original sample is randomly partitioned into n subsamples: n-1 subsamples are used for

training and the remaining one is used for testing. The procedure iterates n times to cover

each possible split as testing exactly once. Empirically, 10 folds have been shown to give

the most reliable results101, so this method was used in my experiments.

Performance Metrics

I used accuracy, the area under the curve (AUROC), precision, recall, and F-measure to

measure the performance. These measures ranged from (0 to 1), and the closer the measure

to 1, the better it is. Even though accuracy is not a reliable measure in the case of skewed

models, I chose to use it to observe how it behaves with the change of SMO’s kernels and

parameters. I also used the AUC because it has been shown to be a better classification

performance measure compared to overall accuracy 26,50. Receiver operating characteristic

(ROC) Area Under Curve (AUC) is a way to measure classifier performance by obtaining

different operating points in terms of true positive and false positive rates, and calculating

the area under the curve using integral or some other approximation formula. Precision, re-
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call, and F-Measure were used to better understand the classifier behavior for the two classes

(interesting vs. non-interesting). Precision measures the fraction of classified instances rel-

evant to the right class. Recall measures the fraction of correctly classified instances out of

the total number of instances in that class. F-Measure is the harmonic mean of recall and

precision measures, thereby showing the trade-off between precision and recall and offering

a sense of how they perform.

Accuracy =
number of true positive + true negative

number of true positive + false positive + true negative + false negative

Precision =
number of true positive

number of true positive + false positive

Recall (True Positive Rate) =
number of true positive

number of true positive + false negative

False Positive Rate =
number of false positive

number of false positive + true negative

F-measure = 2 · precision · recall

precision + recall

The following subsections describe the conducted experimentations, including the fol-

lowing:

1. Supervised experiments:

• Support Vector Machine (SVM) kernels and parameters

• Balance using over-sampling and under-sampling techniques

2. Semi-supervised experiments:
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• Co-training

• Expectation Maximization (EM)

3. Benefit of machine learning approach experiments:

• Comparison between customized DST prioritization (Chapter 3) and hybrid DST

and machine learning.

• Effort analysis to show how much effort is saved by this approach

Supervised Learning

Machine learning is a class of algorithms, which is data-driven. Supervised learning means

that the examples must be fully labeled (in my case, 1615 labeled data points) so the

algorithm can predict the classes. For various classification methods, SVM algorithm33

has been used widely in the application of machine learning, including in cyber-security.

SVM is a binary classifier in its original formulation. Therefore, I conducted all supervised

experiments using Sequential Minimal Optimization (SMO) classifier, an implementation of

the SVM algorithm from Weka46. The effectiveness of SVM depends on kernel selection,

kernel’s parameters, and soft margin parameter C. Therefore, I conducted the following

experiments to select the best performance for SVM.

Support Vector Machine’s Kernels Experiments I conducted experiments with mul-

tiple SMO kernels to find the best kernel for this problem. Choosing the right kernel function

depends on the nature of the dataset, and the best mapping function is often determined

experimentally in practice. This is done by applying various kernel functions and selecting

the best kernel and parameters with the highest generalization performance on a validation

dataset. I conducted experiments with normalized polynomial, polynomial, Gaussian Radial

Basis Function (RBF) kernel, and Pearson VII Universal Kernel (PUK). PUK97 is a uni-

versal kernel that can be calibrated to work as any standard SMO kernels by appropriately

adjusting its two parameters, σ and ω. I used various parameter values provided in Üstün et
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al.’s97 work to have the effect of standard kernels and other values for the parameters were

used, too. Experiments indicated that use of the other values (called generic kernel) give

the best performance metrics (Table 4.1). Therefore, I used these parameters to conduct

the remaining experiments.

Soft Margin Parameter (C) Selection To avoid over fitting, SMO has a regularization

parameter C that controls the trade-off between allowing training errors and enforcing rigid

margins (a.k.a., bias-variance problem). Thus, this parameter can be seen as a penalty for

training errors. Increasing the value of C increases the cost of misclassifying points and

forces the creation of a classifier that fits the training dataset well but may not generalize

well on new data. Decreasing the value of C may result in a very simple classifier that

generally performs poorly. No widely accepted standard exists for selecting the appropriate

value for C. One method recommends trying exponentially growing sequences, e.g., C ∈
{2−5, 2−3, · · · , 213, 215}. Another method uses C ∈ {0.5, 1, 2, 3, 5, 7, 10, 15, 20}71.

Table 4.2 shows how the change in C parameter can affect results of the generic PUK

kernel. In general, selecting the best parameter is is the responsibility of the user, because

it depends on the nature of the dataset or network environment. I tried both and found

that the best value for my experiments was 10.

Data Balancing As mentioned, the distribution of classes (interesting vs. non-interesting)

is unbalanced, potentially resulting in models skewed toward the negative class (non-interesting),

affecting the prediction ability for the positive case. As Table 4.1 shows, performance met-

rics for the interesting class are often worse than for the non-interesting class because the

classifier does not have enough data to learn for prediction.

Several approaches address unbalance in classification. Over-sampling balances class

populations through over-weighting minority class instances. For example, in this case, I

used weight of 4 for each instance in the positive (interesting) class. Under-sampling balances

class populations by eliminating majority instances56. In this application, I eliminate part
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of the negative (non-interesting) classes. Tables 4.3.2 and 4.3.2 illustrate results for over-

sampling and under-sampling using SMO PUK generic kernel with parameter (C = 10).

Over-sampling results are shown in Table 4.3.2. As shown, the AUROC decreases in

some cases and increases in others, but Fmeasure drops for all kernels. In addition, the

recall for the interesting class increased and the precision decreased possibly because the

simplicity in over-sampling method by artificially duplicating data samples.

Table 4.3.2 illustrates under-sampling results. Overall numbers dropped, meaning that

under-sampling does not have good performance in this problem due to size and class-

distribution ratio in the dataset. This is due to the small number of the instances the

classifier learns after negative class trimming process. For the 1615 instances and 10-fold

validation, I had 1449 instances for training and 161 for testing. Knowing that class distri-

bution of the positive to negative is 1 : 4, means that the training set is approximately 575.

This number is not enough for a classifier to generalize from. Therefore, I cannot rely on

the under-sampling results.

Overall results in the over-sampling are better than under-sampling; however, there is

no indication that over-sampling or under-sampling significantly improves classifier perfor-

mance. This may be due to a number of factors such as the overall small number of labeled

data and the simplicity in over-sampling by artificially duplicating data samples. In the

following experiments, I used the unbalanced dataset.

Semi-Supervised Learning

Semi-supervised learning means that the system can start with a very small amount of

labeled data and grow by retraining itself until it consumes all unlabeled data. To vali-

date my hypothesis (Section 4.1), I ran experiments with two widely used semi-supervised

approaches: Co-training24 and a popular variant of Expectation Maximization (EM)36.

Co-training idea is to split the feature set into two subsets (views). Each view should

be sufficient to build a classifier (predictive of the class label), and the two views should be

conditionally independent given the class. The algorithm starts from a small-labeled sample
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and builds two classifiers from the two views. Then, it consumes some unlabeled instances

from the unlabeled data pool, and each classifier labels them. Newly labeled data points are

added to the training pool. Instances where the two classifiers disagree are ignored (thus,

effectively removing possible noise in the labeling process). Next, the algorithm builds two

new classifiers from the bigger labeled data pool, and iterates until the unlabeled data pool

is consumed or a maximum number of iterations is reached24,58,63. I use SVM classifiers to

learn from the two views in the co-training approach.

In the first experiment (co-training1), I split the feature set into: the correlation graph

belief value as the first view and the rest of the features as the second view. In the second

experiment (co-training2), I used SnIPS-related features for the first view and Snort-related

features for the second view (section 4.2.3). This split is more intuitive and follows the two

conditions for co-training.

Table 4.5 shows the comparison between the two approaches, where 10% of the training

data is used as labeled and the rest of the data is used as unlabeled. For comparison, I also

show an upper-bound, (the best results that SMO classifier can achieve with a fully labeled

dataset, or a supervised learning) and a lower-bound (results for running SMO supervised

classification only with 10% of labeled data from my dataset, as used in co-training). Co-

training1’s results are worse than the lower bound, which is certainly not acceptable because

the two views were not conditionally independent since the belief value is effected by the

other SnIPS’ features. In addition, the belief value was not sufficient for prediction. Results

show that co-training2 seems to be the most promising approach. Figure 4.3illustrates a

visual comparison between the two splits in co-training.

Table 4.5 also shows results for an Expectation Maximization (EM) type learning algo-

rithm (self-training). EM-type learning is an iterative statistical technique for maximum

likelihood estimation for small-labeled dataset. Given a model and data with missing class

values, EM locally maximizes the likelihood of the parameters and predicts with estimates

for missing class values36. At each iteration, instances from the unlabeled pool that are clas-
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Figure 4.4: Effort analysis using Support Vector Machine (SVM) (as supervised) learning,
with σ=1,ω=1,and C=10

sified with high confidence by the current classifier are added to the training data pool. As

opposed to co-training, the use of one view makes it impossible to detect labeling conflicts.

Self-training is also used with SMO in my experiments. Results show that this approach

can also produce good performance but not as good as co-training because it experienced

conflicts between some instances, such as noise, which self-training cannot detect. The two

views used in co-training help in this respect since the two independent “experts” can point

to conflicting instances.

Benefit of the Machine Learning Approach

Baseline Comparison I conducted an experiment to see if the machine learning ap-

proach is an improvement over the customized DST prioritization module. I used the belief

value as a classifier criterion by thresholding the belief value of correlations and calculating

performance metrics. Table 4.6 shows the advantage of the machine learning approach that

uses multiple features, including the belief value, over the approach that relies solely on the

customized DST belief value (denoted “Baseline” in the table).
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Effort analysis I conducted an effort or benefit analysis using precision, recall, and

dataset sample size to show the benefit of using machine learning to reduce the workload of

the security analyst. I used logistic-models option in SMO to produce probability estimates

for the output. Figure 4.4 shows the changes when the threshold (x-axis) increases. When

the security analyst works a small amount of alerts correlations, the precision is high, mean-

ing more effort is devoted to useful tasks, and the recall is high, too. When the workload

increases, however, cumulative precision decreases as well. Analysis shows that the mini-

mum amount of effort that gives good results can be achieved by choosing a 0.8 threshold

that provides the security analyst, as little as 16% of the total correlations, 74% recall, and

83% precision. Furthermore, a sharp decline of the sample-size curve was observed, which

can be measured by the vertical distance between the sample-size and precision curves. The

precision curve starts from 20% on oppose of 0, because by choosing 0 as a threshold, the

precision shows the amount of the true positive cases, which is 20% of the sample size. This

is consistent with class distribution of the dataset, which is approximately 1 : 4. This result

is a good indication that the classification helps presents interesting (potentially malicious)

correlation to the security analyst.

94



N
a
m

e
(σ
,ω

)
A

cc
u

ra
cy

C
la

ss
*

A
U

R
O

C
P

re
ci

si
o
n

R
e
ca

ll
F

-M
e
a
su

re

G
en

er
ic

(1
,1

)
0.

92
7

1
0.

95
6

0.
82

4
0.

79
7

0.
81

0
0

0.
95

6
0.

95
1

0.
95

8
0.

95
5

W
ei
gh

te
d
A
v
g.

0.
95

6
0.

92
6

0.
92

7
0.

92
6

P
O

L
Y

1
(2

.3
,5

7)
0.

91
9

1
0.

95
3

0.
79

7
0.

78
5

0.
79

1
0

0.
95

3
0.

94
8

0.
95

2
0.

95
W
ei
gh

te
d
A
v
g.

0.
95

3
0.

91
8

0.
91

9
0.

91
9

P
O

L
Y

2
(1

.9
,9

0)
0.

92
3

1
0.

95
3

0.
81

2
0.

79
1

0.
80

1
0

0.
95

3
0.

95
0

0.
95

5
0.

95
2

W
ei
gh

te
d
A
v
g.

0.
95

3
0.

92
3

0.
92

3
0.

92
3

R
B

F
1

(1
.2

,1
00

)
0.

92
2

1
0.

95
7

0.
80

9
0.

79
1

0.
80

0
0

0.
95

7
0.

94
9

0.
95

5
0.

95
2

W
ei
gh

te
d
A
v
g.

0.
95

7
0.

92
2

0.
92

3
0.

92
2

R
B

F
2

(4
.7

,8
5)

0.
91

5
1

0.
95

2
0.

80
3

0.
75

0
0.

77
6

0
0.

95
2

0.
94

0
0.

95
5

0.
94

8
W
ei
gh

te
d
A
v
g.

0.
95

2
0.

91
3

0.
91

5
0.

91
4

*
C

la
ss

:
in

te
re

st
in

g(
p

os
it

iv
e)

is
“1

”
an

d
n
on

-i
n
te

re
st

in
g(

n
eg

at
iv

e)
is

“0
”.

T
a
b

le
4
.1

:
R

es
u

lt
s

fo
r

m
u

lt
ip

le
S

M
O

’s
P

U
K

ke
rn

el
s

va
lu

es
,

w
it

h
C

=
10

,
on

u
n

ba
la

n
ce

d
da

ta
se

t

95



S
o
ft

m
a
rg

in
p
a
ra

m
e
te

r
(C

)
A

cc
u
ra

cy
C

la
ss

*
A

U
R

O
C

P
re

ci
si

o
n

R
e
ca

ll
F

-M
e
a
su

re

0.
5

0.
92

1
1

0.
95

0
0.

82
2

0.
75

9
0.

78
9

0
0.

95
0

0.
94

3
0.

96
0

0.
95

1
W
ei
gh

te
d
A
v
g.

0.
95

0
0.

91
9

0.
92

1
0.

92
0

1
0.

92
2

1
0.

95
2

0.
83

0
0.

75
6

0.
79

1
0

0.
95

2
0.

94
2

0.
96

2
0.

95
2

W
ei
gh

te
d
A
v
g.

0.
95

2
0.

92
0

0.
92

2
0.

92
1

3
0.

92
6

1
0.

95
4

0.
83

2
0.

78
2

0.
80

6
0

0.
95

4
0.

94
8

0.
96

2
0.

95
5

W
ei
gh

te
d
A
v
g.

0.
95

4
0.

92
5

0.
92

6
0.

92
5

5
0.

92
7

1
0.

95
2

0.
83

0
0.

78
8

0.
80

8
0

0.
95

2
0.

94
9

0.
96

1
0.

95
5

W
ei
gh

te
d
A
v
g.

0.
95

2
0.

92
6

0.
92

7
0.

92
6

10
0.

92
7

1
0.

95
6

0.
82

4
0.

79
7

0.
81

0
0

0.
95

6
0.

95
1

0.
95

8
0.

95
5

W
ei
gh

te
d
A
v
g.

0.
95

6
0.

92
9

0.
92

9
0.

92
9

20
0.

92
8

1
0.

95
5

0.
82

1
0.

81
3

0.
81

7
0

0.
95

5
0.

95
5

0.
95

7
0.

95
6

W
ei
gh

te
d
A
v
g.

0.
95

5
0.

92
9

0.
92

9
0.

92
9

30
0.

92
7

1
0.

95
5

0.
81

8
0.

81
0

0.
81

4
0

0.
95

5
0.

95
4

0.
95

6
0.

95
5

W
ei
gh

te
d
A
v
g.

0.
95

5
0.

92
7

0.
92

8
0.

92
7

*
C

la
ss

:
in

te
re

st
in

g(
p

os
it

iv
e)

is
“1

”
an

d
n
on

-i
n
te

re
st

in
g(

n
eg

at
iv

e)
is

“0
”.

T
a
b
le

4
.2

:
R

es
u

lt
s

fo
r

m
u

lt
ip

le
C

va
lu

es
fo

r
th

e
de

fa
u

lt
S

M
O

’s
P

U
K

ke
rn

el
,

w
it

h
σ

=
1

an
d
ω

=
1

96



N
a
m

e
(σ
,ω

)
A

cc
u

ra
cy

C
la

ss
*

R
O

C
A

re
a

P
re

ci
si

o
n

R
e
ca

ll
F

-M
e
a
su

re

G
en

er
ic

(1
,1

)
0.

91
6

1
0.

95
8

0.
75

2
0.

84
3

0.
79

5
0

0.
95

8
0.

96
1

0.
93

3
0.

94
7

W
ei
gh

te
d
A
v
g.

0.
95

8
0.

92
1

0.
91

6
0.

91
8

P
O

L
Y

1
(2

.3
,5

7)
0.

90
5

1
0.

94
8

0.
69

4
0.

90
7

0.
78

7
0

0.
94

8
0.

97
6

0.
90

4
0.

93
9

W
ei
gh

te
d
A
v
g.

0.
94

8
0.

92
1

0.
90

5
0.

90
9

P
O

L
Y

2
(1

.9
,9

0)
0.

90
7

1
0.

94
8

0.
70

1
0.

90
7

0.
79

1
0

0.
94

8
0.

97
6

0.
90

7
0.

94
0

W
ei
gh

te
d
A
v
g.

0.
94

8
0.

92
3

0.
90

7
0.

91
1

R
B

F
1

(1
.2

,1
00

)
0.

91
1

1
0.

95
7

0.
72

0
0.

88
8

0.
79

5
0

0.
95

7
0.

97
2

0.
91

7
0.

94
4

W
ei
gh

te
d
A
v
g.

0.
95

7
0.

92
3

0.
92

2
0.

91
5

R
B

F
2

(4
.7

,8
5)

0.
90

5
1

0.
94

6
0.

69
6

0.
90

1
0.

78
6

0
0.

94
6

0.
97

4
0.

90
6

0.
93

9
W
ei
gh

te
d
A
v
g.

0.
94

6
0.

92
0

0.
90

5
0.

90
9

*
C

la
ss

:
in

te
re

st
in

g(
p

os
it

iv
e)

is
“1

”
an

d
n
on

-i
n
te

re
st

in
g(

n
eg

at
iv

e)
is

“0
”.

T
a
b

le
4
.3

:
R

es
u

lt
s

fo
r

m
u

lt
ip

le
S

M
O

’s
P

U
K

ke
rn

el
s

va
lu

es
w

it
h

ov
er

-s
am

pl
in

g
ba

la
n

ce
d

da
ta

se
t,

w
it

h
C

=
10

97



N
a
m

e
(σ
,ω

)
A

cc
u

ra
cy

C
la

ss
*

R
O

C
A

re
a

P
re

ci
si

o
n

R
e
ca

ll
F

-M
e
a
su

re

G
en

er
ic

(1
,1

)
0.

89
2

1
0.

95
3

0.
65

9
0.

92
4

0.
76

9
0

0.
95

3
0.

98
0

0.
88

4
0.

92
9

W
ei
gh

te
d
A
v
g.

0.
95

3
0.

91
7

0.
89

2
0.

89
8

P
O

L
Y

1
(2

.3
,5

7)
0.

88
6

1
0.

94
5

0.
64

7
0.

92
1

0.
76

0
0

0.
94

5
0.

97
9

0.
87

8
0.

92
5

W
ei
gh

te
d
A
v
g.

0.
94

5
0.

91
4

0.
88

6
0.

89
3

P
O

L
Y

2
(1

.9
,9

0)
0.

87
7

1
0.

94
5

0.
62

8
0.

90
8

0.
74

3
0

0.
94

5
0.

97
5

0.
86

9
0.

91
9

W
ei
gh

te
d
A
v
g.

0.
94

5
0.

90
7

0.
87

7
0.

88
4

R
B

F
1

(1
.2

,1
00

)
0.

88
0

1
0.

94
9

0.
63

6
0.

90
8

0.
74

8
0

0.
94

9
0.

97
5

0.
87

4
0.

92
2

W
ei
gh

te
d
A
v
g.

0.
94

9
0.

90
9

0.
88

0
0.

88
8

R
B

F
2

(4
.7

,8
5)

0.
88

0
1

0.
94

7
0.

63
8

0.
89

9
0.

74
6

0
0.

94
7

0.
97

3
0.

87
6

0.
92

2
W
ei
gh

te
d
A
v
g.

0.
94

7
0.

90
7

0.
88

0
0.

88
8

*
C

la
ss

:
in

te
re

st
in

g(
p

os
it

iv
e)

is
“1

”
an

d
n
on

-i
n
te

re
st

in
g(

n
eg

at
iv

e)
is

“0
”.

T
a
b

le
4
.4

:
R

es
u

lt
s

fo
r

m
u

lt
ip

le
S

M
O

’s
P

U
K

ke
rn

el
s

va
lu

es
w

it
h

w
u

n
de

r-
sa

m
pl

in
g

ba
la

n
ce

d
da

ta
se

t,
w

it
h

C
=

10

98



Approach Accuracy AUROC Precision Recall F-Measure

Lower bound 0.875 0.900 0.880 0.875 0.877

Co-training1 0.833 0.807 0.819 0.833 0.797

Co-training2 0.900 0.948 0.907 0.900 0.903

Expectation Maximization (EM) 0.893 0.895 0.889 0.893 0.890

Upper bound 0.927 0.956 0.926 0.927 0.926

Table 4.5: Results for semi-supervised with SMO’s generic PUK kernel on unbalanced data,
with σ=1,ω=1,and C=10

Approach Accuracy AUROC Precision Recall F-measure

Baseline 0.803 0.679 0.755 0.803 0.753

Semi-supervised 0.900 0.948 0.907 0.900 0.903

Supervised 0.927 0.956 0.926 0.927 0.926

Table 4.6: Comparison between using only SnIPS’ belief value as a classifier (baseline), co-
training2 (semi-supervised) learning, and machine learning using SVM (supervised): with
σ=1,ω=1,and C=10
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Chapter 5

Conclusion

In this dissertation, I present a method of handling uncertainty in intrusion analysis by

combining multiple approaches. Uncertainty is created by an overwhelming amount of

false alerts triggered by Intrusion Detection Systems (IDS). The source of this problem

is deeply rooted in the base-rate fallacy phenomenon from which many detectors suffer.

This phenomenon is revealed when a sensor probabilistically looks for an attack in large

amount of benign traffic, leading to the mistaken declaration of benign traffic as the culprit

(Appendix B). Handling uncertainty in intrusion analysis can help reducing the amount of

false alerts security analyst must process each day. This can be achieved by causing intrusion

alerts most likely to be true to stand out from the crowd. Therefore, I hypothesized that

the prioritization of IDS-correlated-alerts scenarios using a customized version of Dempster-

Shafer Theory (DST) and machine learning can reduce uncertainty in intrusion analysis. I

used SnIPS67 as a foundation for implementation and validation of the proposed methods.

SnIPS is an intrusion analysis tool that builds dynamic abstract proof traces supported

by evidences. I implemented a correlation engine that auto correlates SnIPS’ proof traces

to produce a complete attack scenario. This scenario is visualized as an inference graph

through which the security analyst can navigate.

To prioritize correlation graphs, I needed a method to quantify uncertainty. I found that

DST has proven its superiority in this problem (Chapter 3). Therefore, I propose a way to

handle uncertainty in intrusion analysis using my customized version of DST. The proposed
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DST customization can accurately combine non-independent evidence commonly found in

correlated IDS alerts. In addition, I created a DST model for capturing sensor quality

(Section 3.2.1), and an efficient algorithm for calculating belief values for the hypotheses

in an alert correlation graph (Section 3.2.4). Evaluation was conducted for the approach

on multiple datasets. Results of evaluation strongly indicate that the ranking provided by

belief value gives good prioritization on correlated alerts based on their likelihood of being

true attacks. I added my method implementation to SnIPS and have provided it as open

source tool with the same name as SnIPS54. Furthermore, I deployed SnIPS in the CIS

departmental network for continued evaluation.

Observation of the output of SnIPS running on the departmental network revealed that

a security analyst must perform repetitive tasks in order to prune out false positives in

correlation graphs. The reason behind this issue is inability to feedback the system with the

security analyst’s decisions. Therefore, I hypothesized that such repetitive tasks can yield

(limited) labeled data, enabling the use of a machine learning-based approach to prune

SnIPS output based on the human analysts’ feedback, similar to spam filters that learn

from users’ past judgment to prune emails. I manually labeled SnIPS’ output correlations

and built prediction models using supervised and semi-supervised learning approaches. Ex-

perimentation results indicate that semi-supervised learning using Support Vector Machine

(SVM) is promising approach for a practical machine learning-based tools that can aid

security analysts when a limited amount of labeled data is available. Furthermore, the ex-

periments revealed a number of interesting observations that give insights into the pitfalls

and challenges of applying machine learning in intrusion analysis. The main lesson learned

from this work is that proper labeling is an important step in this research and the insights

in labeling helped in feature selection and construction. The research also indicated that

encoding all relevant features to build a classifier is a challenging task and researcher must

make trade-offs in deciding granularity of features.

The conclusion of this dissertation is that the prioritization of IDS correlated alerts
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(Chapter 2) using the customized version of DST (Chapter 3) and semi-supervised learning

technique from machine learning (Chapter 4), can help reduce uncertainty in intrusion

analysis, which is shown by multiple experiments.

As future work, potential opportunity exists to apply the extended version of DST on

host-domain access graph in order to produce predictions for benign and malicious domains,

depending on a small set of labels. In addition, I plan to continue to explore the base-rate

fallacy problem in order gain a better understanding of this problem, especially in other

fields, which may help in significantly mitigating or eliminating its effect in intrusion analysis

(Appendix B).

102



Bibliography

[1] Fake app attack: Fake av website 4. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23509.

[2] Federal rules of evidence. http://www.law.cornell.edu/rules/fre/.

[3] Mcafee trustedsource. http://www.trustedsource.org.

[4] The mebroot and tidserv crossover. http://www.symantec.com/connect/blogs/

mebroot-and-tidserv-crossover.

[5] Norton safe web. http://safeweb.norton.com.

[6] System infected: Bredolab activity. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23363.

[7] System infected: Https tidserv request. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23570.

[8] System infected: Tidserv activity 2. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23615.

[9] Trend micro site safety center. http://global.sitesafety.trendmicro.com.

[10] Understanding evidence. http://www.lexisnexis.com/lawschool/study/

outlines/pdf/evid.pdf.

[11] Web attack: Adobe acrobat suspicious executable download. http://www.symantec.

com/security_response/attacksignatures/detail.jsp?asid=23218.

[12] Web attack: Malicious injected javascript 3. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23741.

103

http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23509
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23509
http://www.law.cornell.edu/rules/fre/
http://www.trustedsource.org
http://www.symantec.com/connect/blogs/mebroot-and-tidserv-crossover
http://www.symantec.com/connect/blogs/mebroot-and-tidserv-crossover
http://safeweb.norton.com
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23363
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23363
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23570
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23570
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23615
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23615
http://global.sitesafety.trendmicro.com
http://www.lexisnexis.com/lawschool/study/outlines/pdf/evid.pdf
http://www.lexisnexis.com/lawschool/study/outlines/pdf/evid.pdf
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23218
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23218
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23741
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23741


[13] Web attack: Neosploit toolkit website 2. http://www.symantec.com/security_

response/attacksignatures/detail.jsp?asid=23613.

[14] Worldwide intelligence network environment (wine). http://www.symantec.com/

about/profile/universityresearch/sharing.jsp.

[15] Merriam-webster, 2014.

[16] Magnus Almgren, Ulf Lindqvist, and Erland Jonsson. A multi-sensor model to improve

automated attack detection. In 11th International Symposium on Recent Advances in

Intrusion Detection (RAID 2008). RAID, September 2008.

[17] Stefan Axelsson. The base-rate fallacy and its implications for the difficulty of intrusion

detection. In Proceedings of the 6th ACM Conference on Computer and Communica-

tions Security (CCS), 1999.

[18] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM

Trans. Inf. Syst. Secur., 3(3):186–205, 2000.

[19] Rebecca Bace and Peter Mell. Intrusion detection systems. Technical report.

[20] Rebecca Gurley Bace. Intrusion Detection. Sams Publishing, 2000.

[21] Maya Bar-Hillel. The base-rate fallacy in probability judgments. Acta Psychologica,

44(3):211 – 233, 1980.

[22] Marco Barreno, Alvaro A. Cárdenas, and J. D. Tygar. Optimal ROC curve for a

combination of classifiers. In Advances in Neural Information Processing Systems

(NIPS), page 2008, 2007.

[23] Justin Beaver, Christopher Symons, and Robert Gillen. A learning system for discrim-

inating variants of malicious network traffic. In 8th Cyber Security and Information

Intelligence Research Workshop, January 2013.

104

http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23613
http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=23613
http://www.symantec.com/about/profile/universityresearch/sharing.jsp
http://www.symantec.com/about/profile/universityresearch/sharing.jsp


[24] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. In Proceedings of the 11th annual conference on Computational Learning

Theory (COLT), 1998.

[25] Damiano Bolzoni, Sandro Etalle, and Pieter H. Hartel. Panacea: Automating attack

classification for anomaly-based network intrusion detection systems. In Proceedings of

the 12th International Symposium on Recent Advances in Intrusion Detection (RAID),

2009.

[26] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern Recognition, 30, 1997.

[27] Qi Chen and Uwe Aickelin. Anomaly detection using the Dempster-Shafer method.

In International Conference on Data Mining (DMIN2006), 2006.

[28] Thomas M. Chen and Varadharajan Venkataramanan. Dempster-Shafer theory for

intrusion detection in ad hoc networks. IEEE Internet Computing, 2005.

[29] Steven Cheung, Ulf Lindqvist, and Martin W Fong. Modeling multistep cyber at-

tacks for scenario recognition. In DARPA Information Survivability Conference and

Exposition (DISCEX III), pages 284–292, Washington, D.C., 2003.

[30] Steven Cheung, Ulf Lindqvist, and Martin W Fongx. An online adaptive approach to

alert correlationx. In DARPA Information Survivability Conference and Exposition

(DISCEX III), 2003.

[31] Chien-Yi Chiu, Yuh-Jye Lee, Chien-Chung Chang, Wen-Yang Luo, and Hsiu-Chuan

Huang. Semi-supervised learning for false alarm reduction. In Proceedings of the

10th industrial conference on Advances in data mining: applications and theoretical

aspects(ICDM), 2010.

105



[32] Robert Cole. Multi-step Attack Detection via Bayesian Modeling Under Model Pa-

rameter Uncertainty. PhD thesis, The Pennsylvania State University, 2013.

[33] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning,

1995.
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Appendix A

Mathematical Proof for Customized
DST

Since only two non zero-bpa subsets, true and θ, exist in each hypothesis’s frame of dis-

cernment, wi denotes the confidence in hi (hi = t), and wi (negation of wi) denotes the lack

of confidence in hi (hi = θ). The reader may think using wi and wi, which appears to be

not mutually exclusive, counterintuitive since θ includes true and false. This is exactly

how DST uniquely expresses disbelief in a hypothesis: It clearly differentiates between not

believing a hypothesis and believing the negation of that hypothesis. When a person trusts

a hypothesis, he/she believes its state is true, and when he/she does not trust a hypothesis,

he/she is unsure of its state, hence θ. Interested readers are referred to Shafer’s discussion

on how to handle non-independent evidence using this interpretation85.

The semantics of overlapping factor can be defined as:

r1 =
Pr[w2|w1]− Pr[w2]

Pr[w2]
, r2 =

Pr[w1|w2]− Pr[w1]

Pr[w1]

Without loss of generality, let us take r1 as an example to explain the semantics. If we

condition on trusting hypothesis h1, the probability that we also trust h2 is greater than

or equal to its absolute probability since shared IDS sensors give the user only positive

correlation. The bigger the difference, the stronger influence trusting h1 has on trusting h2.

The extreme case is when Pr[w2|w1] = 1, which gives r1 = 1. Another extreme case when
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w1 w2

(a) Independent

w1 w2

(b) Non-independent

w2

w1

(c) Completely de-
pendent

Figure 4. Venn diagram illustration of evidence dependency

where α is defined in (13) and can be computed as:

α =
m1(t) · (1 −m2(t))

m2(t) · (1 −m1(t))

That is, we gauge the correlation between two sources
by dividing the overlapping evidence’s weight by the total
evidence weight of one branch. Since r1 and r2 are related,
if we estimate one the other will be computed using α. The
above estimation ensures that both r1 and r2 are within [0, 1].
This is an intuitive estimation, and for both extreme cases
in Figure 4 the estimation gives the accurate result (0 for
independence and 1 for complete dependence).

D. The Extended Translation Method

Section II-A gave the basic concept of translation in DS
theory. In this section we present how we extend the concept
of translation to use in the alert correlation system. In Fig-
ure 3, the bpa’s on the alert nodes (node 1 to 5) are translated
to their corresponding hypotheses using the standard method
introduced in section II-A. Let us look further at how the
mass function on node 6 (sendExploit(ip1, ip2)) is translated
to node 9 (compromised(ip2)). When an exploit is sent from
one machine to another there is a good chance that the target
machine will be compromised, but this is not guaranteed
since exploits often fail. For this reason, we cannot assign
all the mass distribution for the {true} case of sendExploit to
the {true} case of compromised. Our idea is to split the mass
distribution based on the predicate’s semantics. For example,
in our application we split the {true} portion of sendExploit
into two parts corresponding to the two possible outcomes
of an exploit: success or failure. The portion of the split is
currently pre-set in our implementation, but it could also be
dynamically adjusted based on the difficulty of the exploit
or the vulnerability condition on the target host. The success
portion is translated to the {true} case of compromised, and
the failure part is translated to the θ case of compromised.
Here we assume a failed exploit to a machine X does not
mean that machine X is not compromised. X could still
be compromised through other means. This is the rationale
behind the translation relation shown in Table IV where any
means any IP address, and dest stands for the destination IP.

The translation tables like IV are built corresponding to
SnIPS’s reasoning model. Thus for every derivation SnIPS
makes between hypotheses, we know how to translate the
mass distribution from the reason to the conclusion.

Table IV
SENDEXPLOIT→COMPROMISED

sendExploit(any,dest) compromised(dest)

{true} {success} {true}
{failed} {true,false}

{true,false} {succ,failed,false} {true,false}

As another example, Table V shows the translation from
the fact that a machine is doing malicious probing to
the fact that this machine is compromised. If a machine
is performing malicious actions then it must itself have
been compromised. Thus the {true} portion of the mass
distribution on probeOtherMachine is completely translated
to the {true} portion of compromised.

Table V
PROBE→COMPROMISED

probe(source,any) compromised(source)
{true} {true}
{true,false} {true,false}

We have presented all the necessary preliminaries for
our extended approach using DS theory. We present the
algorithms for applying this theory in the following section.

E. Belief Calculation Algorithm

This section shows the formal algorithms we have de-
veloped in our DS-based approach. Typically the alert cor-
relation graph returned by SnIPS is not fully connected
but contains a number of correlation segments like the one
shown in Figure 3. The calculation starts by taking a set of
graph segments. Then each graph segment is processed by
propagating the belief in the supporting evidence to the sink
nodes. Then the graph set is sorted in descending order of
the belief level in the sink nodes, which is presented to the
user.

The main algorithm is DsCorr (Algorithm 1). This func-
tion takes GraphSet which is a set of correlation graphs.
It calls ComputeGraphBelief on each graph segment in
the input set, and returns a set of the graph segments

Figure A.1: Venn diagram illustration of evidence dependency

they are independent, thus r1 = 0 as shown here:

by using bayes’ rule,

r1 =
Pr[w1, w2]− Pr[w1] · Pr[w2]

Pr[w2] · Pr[w1]

when w1 and w2 are independent then,

r1 =
Pr[w1] · Pr[w2]− Pr[w1] · Pr[w2]

Pr[w2] · Pr[w1]

r1 = 0

when w1 and w2 are totally dependent (Figure A.1) then,

r1 =
1− Pr[w2]

Pr[w2]
=
Pr[w2]

Pr[w2]
,

r1 = 1

Both r1 and r2 measure the dependence between w1 and w2, but from different directions.

Theorem A.0.1.

r2 = α · r1, where α =
Pr[w1] · Pr[w2]

Pr[w2] · Pr[w1]
(A.1)
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Proof.

r1 · Pr[w2] · Pr[w1] = Pr[w1, w2]− Pr[w1] · Pr[w2]

r2 · Pr[w1] · Pr[w2] = Pr[w1, w2]− Pr[w1] · Pr[w2]

We then have,

r1 · Pr[w2] · Pr[w1] = r2 · Pr[w1] · Pr[w2]

knowing that wi = 1− wi, then:

r2 = r1 ·
Pr[w1] · Pr[w2]

Pr[w2] · Pr[w1]

Considering the following customized DST formulas,

ψ[t, t] = r1 ·m1(t) + (1− r1) ·m1(t) ·m2(t)

ψ[t, θ] = (1− r1) ·m1(t) ·m2(θ)

ψ[θ, t] = (1− r2) ·m1(θ) ·m2(t)

ψ[θ, θ] = r1 ·m2(θ) + (1− r1) ·m1(θ) ·m2(θ)

and substitute the following definitions:

mi(t) = Pr[wi] mi(θ) = Pr[wi]

Theorem A.0.2. Based on the above definitions

ψ[h1, h2] = Pr[w1, w2]

Proof. This proof is split into four small sub-proofs for each formula.
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part (a).

To prove Pr[w1, w2] = ψ[t, t], let us do the following:

Pr[w2|w1] =
Pr[w1, w2]

Pr[w1]

substitute the above into the definition of r1, we get

r1 · Pr[w2] · Pr[w1] = Pr[w1, w2]− Pr[w1] · Pr[w2]

knowing that Pr[w2] = 1− Pr[w2], then:

Pr[w1, w2] = r1 · Pr[w1] + (1− r1) · Pr[w1] · Pr[w2]

= ψ[t, t]

part (b).

To prove Pr[w1, w2] = ψ[t, θ], let us do the following:

Pr[w2|w1] = 1− Pr[w2|w1]

Pr[w2|w1] =
Pr[w1, w2]

Pr[w1]
then,

Pr[w2|w1] =
Pr[w1]− Pr[w1, w2]

Pr[w1]

substitute the above into the definition of r1, we get

r1 · Pr[w2] · Pr[w1] = Pr[w1]− Pr[w1, w2]− Pr[w1] · Pr[w2]

knowing that Pr[w1] = 1− Pr[w1], then:

Pr[w1, w2] = (1− r1) · Pr[w1] · Pr[w2]

= ψ[t, θ]
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part (c).

To prove Pr[w1, w2] = ψ[θ, t], let us do the following:

Pr[w1|w2] = 1− Pr[w1|w2]

Pr[w1|w2] =
Pr[w1, w2]

Pr[w2]
then,

Pr[w1|w2] =
Pr[w2]− Pr[w1, w2]

Pr[w2]

substitute the above into the definition of r2, we get

r2 · Pr[w1] · Pr[w2] = Pr[w2]− Pr[w1, w2]− Pr[w1] · Pr[w2]

knowing that Pr[w1] = 1− Pr[w1], then:

Pr[w1, w2] = (1− r2) · Pr[w1] · Pr[w2]

= ψ[θ, t]

part (d).

To prove Pr[w1, w2] = ψ[θ, θ], let us do the following:

by using r1 definition then,

1− r1 =
Pr[w2|w1]

Pr[w2]

from above two definitions of r1 then,

(1− r1) · Pr[w1] · Pr[w2] = Pr[w2|w1] · Pr[w1]

r1 · Pr[w2] = Pr[w2|w1]− Pr[w2]
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by adding the two equitions we have,

(1− r1) · Pr[w1] · Pr[w2] + r1 · Pr[w2] = Pr[w2|w1] · Pr[w1] + Pr[w2|w1]− Pr[w2]

by substituting from the above Dempster’s extended fromulas,

and knowing Pr[w1] = 1− Pr[w1] and Pr[w2, w1] = Pr[w2|w1] · Pr[w1] we have,

Pr[w1, w2] = Pr[w2]− Pr[w1, w2]

by substituting for Pr[w1, w2] from above formulas and knowing Pr[w1] = 1− Pr[w1], we have,

Pr[w1, w2] = r1 · Pr[w2] + (1− r1) · Pr[w1] · Pr[w2]

= ψ[θ, θ]

The importance of this theorem is that my calculation of the joint bpa ψ[h1, h2] is sound

because it gives a generalization of the joint probability distribution of the trustworthiness

of two non-independent sources. This also follows Shafer’s general guide on how to han-

dle non-independent evidence sources in DST85, although Shafer did not provide specific

formulations.
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Appendix B

Base-rate Fallacy in Intrusion
Analysis

The base rate fallacy is a corollary of the Bayes Theorem that links a conditional probability

of an event to that of its negation. It can be explained using the following example.

Example B.0.1. Suppose a medical test is 99% accurate, meaning that when the test is

administered to 100 people all of whom have the disease, 99 of the test results will be positive;

when the test is administrated to 100 people none of whom has the disease, 99 of the test

results will be negative. Suppose that your doctor has asked you to take this test, and the

result came back positive. Does this mean that you need to assume that you have the disease?

The answer to this question depends very strongly on the prevalence of the disease for the

overall population. Suppose that the disease is very rare, say with 1 : 1, 000, 000 prior

probability (only 1 in a million people has this disease). After knowing this, one can say

with high confidence that the test result is most likely wrong. This is due to the following

calculation.

Pr[D|T ] =
Pr[T |D] · Pr[D]

Pr[T |D] · Pr[D] + Pr[T |¬D] · Pr[¬D]

=
0.99 · 0.000001

0.99 · 0.000001 + 0.01 · 0.999999

≈ 0.01%
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where T: test positive and D: has the disease.

This calculation shows that even when the test result is positive, it can be ignored since

only 0.01% chance exists that you have this disease. Therefore, false positive tests are far

more probable than true positive tests when the overall population has a low incidence of the

disease. This phenomenon is called the false-positive paradox; and neglecting this paradox

is the cause of the base-rate fallacy. The primary cause of the above result is that false-

positive rate for the administrated test Pr[T |¬D] = 0.01. On the other hand, the base-rate

(prior) probability for a disease happens to be Pr[D] = 0.000001, Therefore, Pr[T |¬D] is

much greater than Pr[D], meaning that if the false-positive rate for the test is greater than

the prior for the attack, detection is difficult using that test 73. Therefore, when a person

tries to detect an extremely weak signal, the test’s accuracy must match the weakness of

that signal. For example, if you are trying to point at a single pixel on your screen, a sharp

pencil is a good pointer because the pencil-tip is smaller than a pixel. On the other hand,

a pencil-tip is not suitable to point at a single atom in your screen40.

Axelsson’s Reasoning

Axelsson applied this base-rate reasoning to the intrusion detection problem in his 1999

paper17 (and a subsequent journal version18). Let I denotes the event that an intrusion

occurs and A denotes the event that the IDS sensor fires. The essence of the argument is

that in order to measure the effectiveness of an IDS sensor, examination of true positive

(Pr[A|I]) and false positive (Pr[A|¬I]) is not sufficient. Bayesian detection rate (Pr[I|A]),

likelihood of an attack when an alert is fired, need to be considered. Due to Bayes theorem,

the latter is also dependent upon the prior probability that an intrusion will happen (the

base rate Pr[I]). Based on reasonable assumptions about network operations at that time,

Axelsson assumed that the probability an audit record will contain attack activities to be on

the order of 10−5. Formula below highlighting the relationship among Bayesian-detection

rate, true-positive rate, and false-positive rate of an IDS sensor, can be obtained using
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similar calculation as in Example B.0.1.

Pr[I|A] =
Pr[A|I] · Pr[I]

Pr[A|I] · Pr[I] + Pr[A|¬I] · Pr[¬I]

=
Pr[A|I] · 10−5

Pr[A|I] · 10−5 + Pr[A|¬I] · 0.99999

where A: IDS fires and I: intrusion occurs

The formula clearly indicates that in order to reach a reasonable Bayesian detection

rate, approximately 50%, false-positive rate Pr[A|¬I] must be “on par” with base rate of

intrusion events, which is approximately 10−5, according to Axelsson. To build an IDS

sensor with that low of a false positive while maintaining a reasonable true positive (i.e.,

Pr[A|I] close to 1), is infeasible in practice.

Axelsson’s estimate of attack base rate is in accordance with the understanding of pro-

duction networks and number of attacks that possibly seen therein at the time the paper

was written. Currently, the number of attacks (or attack attempts) has increased dramat-

ically because of the virtually non-existence of deterrence for malicious activities in cyber

space. On the other hand, network bandwidth and CPU powers have also been increasing

dramatically, leading to an even larger amount of legitimate traffic/events. Based on my

experience of intrusion detection systems, the base rate for attacks is currently much lower

than 10−5 1 meaning that Axelsson’s base-rate problem still exists.

Base-rate Fallacy in Other Fields

So far I have considered the problem of false-positive paradox (base-rate fallacy) in intrusion

analysis first pointed out by Axelsson18, which has made it virtually impossible to accurately

detect intrusion by a single sensor. A very low false-positive rate will result in so many false

alarms as to make the analysis useless in practice. However, this is a general phenomenon

and the consideration of how other fields handle this problem would be useful.

1I ran the Snort IDS on a production network with the default rule set and it generated approximately
500, 000 alerts daily, but intrusions are rarely found on the network.
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In machine learning, base-rate phenomenon is revealed as highly imbalanced classifiers.

For example, when classifying fraudulent actions in the banking systems, the number of

fraudulent actions is much smaller than normal transactions in credit card usage data. In the

case of two-class classifiers, this leads to submergence of the entire minority (positive) class

into the majority (negative) class because the way classifier algorithm works by consistently

aims to reduce error rate. There are some techniques,used in machine learning, to avoid

this problem. In general, these techniques focus on increasing the base-rate of the minority

class in the dataset before applying the primary classification algorithm. In concrete terms,

this means one needs to increase the number of the samples for the minority class in the

training phase. Moreover, it has been proven that the error in the highly skewed models is

not related to the ratio but to the amount of samples of the class94. Therefore, if one has

enough samples from the positive case (rare class), and a good classifier algorithm, with the

right feature set, the algorithm will learn and will detect the minority class. However, for

intrusion detection one does not have control over the occurrence of the rare class (malicious

events) to increase their occurrence even during training phases (unless one is willing to deal

with potentially non-representative synthetic data).

In the medical field, this phenomenon is well known, too. The problem is usually over-

come by a multi-stage process. The first step is to screen with a test or procedure that

yields low false negatives with an acceptable rate of true positives. Therefore, doctor will

then have a concentrated high risk population. Secondly, the doctor diagnoses with a more

complex procedure with low false-positive rate. For example, if breast cancer is regarded

as a rare disease in a certain age group, women are recommended to do screening tests

before any symptoms development. Then only if something suspicious is found during a

screening exam, the doctor use one or more methods (usually costly) to find out if a disease

is present. If cancer is found, other tests will be done to determine the stage (extent) of

the cancer. This multi-step process helps in avoiding base-rate fallacy and reducing the

total cost. Such a multi-step process is similar to how security practitioners seem to ap-
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proach intrusion detection; however a systematic study of such process from mathematical

probability of detection, is yet to be conducted.

In jurisprudence, the law of evidence is used to prove facts in a legal proceeding. The law

of evidence considers amount, quality, and type of proof (evidence) needed to trial. There

are rules to accept and reject evidences and even weigh an evidence. In a trial several types

of evidence are required, e.g. , oral statements, physical objects, and documentary material.

Persuading a court about a case, often requires multiple trustworthy-evidence pieces. For

example, in Scottish law a rule requires two pieces of evidence to prove each essential fact,

e.g., DNA evidence could be corroborated with eyewitness testimony. Therefore, intuitively

collaborating multiple relevant high quality sensors helps the court in decision process2,10.

However, there is an interesting phenomenon in law, which is Prosecutor’s Fallacy96; a

known mistake in trial when prior probability of a defendant being guilty or innocent while

considering an evidence is neglected.

Base-rate fallacy is also revealed in “bloom filter paradox” in computer science. Bloom

filters are probabilistic data structures that can answer set membership queries with zero

false negatives and very low probability of false positive, e.g., ≤ 10−3. Networking de-

vices typically use bloom filters as cache directories. Neglecting the prior set-membership

probability of elements can actually make the directory more harmful than beneficial77.

According to Schneier79 base-rate fallacy can render useless security-face-recognition sys-

tems. Finally, base-rate fallacy is a phenomenon in many other fields such as Geosciences98,

Psychology, Behavioral, and Brain Sciences21,53.
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