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ABSTRACT 

Background:  Complement has been implicated in the pathogenesis of intestinal damage and 

inflammation in multiple animal models. Although the exact mechanism is unknown, inhibition 

of complement prevents hemodynamic alterations in hemorrhage.  

Materials/Methods:  C57Bl/6, complement 5 deficient (C5-/-) and sufficient (C5+/+) mice were 

subjected to 25% blood loss.  In some cases, C57Bl/6 mice were treated with C5a receptor 

antagonist (C5aRa) post-hemorrhage. Intestinal injury, leukotriene B4, and myeloperoxidase 

production were assessed for each treatment group of mice. 

Results:  Mice subjected to significant blood loss without major trauma develop intestinal 

inflammation and tissue damage within two hours. We report here that complement 5 (C5) 

deficient mice are protected from intestinal tissue damage when subjected to hemorrhage (Injury 

score = 0.36 compared to wildtype hemorrhaged animal injury score = 2.89; p<0.05). We present 

evidence that C5a represents the effector molecule because C57Bl/6 mice treated with a C5a 

receptor antagonist displayed limited intestinal injury (Injury score = 0.88), leukotriene B4 

(13.16 pg/mg tissue) and myeloperoxidase (115.6 pg/mg tissue) production compared to 

hemorrhaged C57Bl/6 mice (p<0.05).   

Conclusion:  Complement activation is important in the development of hemorrhage-induced 

tissue injury and C5a generation is critical for tissue inflammation and damage. Thus, 

therapeutics targeting C5a may be useful therapeutics for hemorrhage-associated injury.  
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Introduction 

Hemorrhage and the accompanying hemorrhagic shock result in clinical complications and 

systemic inflammation (1, 2).  During hemorrhage, there is decreased systemic perfusion leading 

to decreased blood flow to the intestine, kidney and skeletal muscle (3, 4).  As the intestine 

normally receives more blood from the heart than any other organ with the splanchnic circulation 

consisting of up to 25-30% of the total blood volume, hemorrhage-induced decreased intestinal 

blood flow and associated vasoconstriction, may result in a functional intestinal ischemia (5).  In 

other models of ischemia, this process leads to local and systemic damage and is suggested to be 

critical in the induction of multiple organ failure (6).  Mechanisms of ischemia and subsequent 

reperfusion-induced intestinal mucosal injury include oxidative stress and excessive complement 

activation (7-9).  

 

Excessive complement activation results in tissue damage in many animal models including 

septic shock, transplantation and mesenteric or skeletal muscle ischemia (reviewed in (10)). 

Previously, we showed that C5a has a significant role in a mouse model of intestinal 

ischemia/reperfusion-induced damage and eicosanoid production (8).  In addition, others have 

shown that C5 and specifically, C5a, is critical for neutrophil and monocyte chemotaxis in either 

myocardial or mesenteric ischemic models (11-14).  Finally, in a renal ischemia/reperfusion 

model, C5a blockade prevents damage that is not dependent on neutrophil infiltration, but by 

alteration of the chemokine profile (13).   Thus, therapeutics which target complement activation 

in the intestine prevent damage in other animal models and the same therapeutics may be 

beneficial in hemorrhage. 
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Complement activation is also critical in rat models of hemorrhagic shock. .  Depletion of 

complement prevented clinical signs of hemorrhagic shock (15) and hemodynamic changes were 

prevented with complement inhibition with soluble complement receptor 1 (sCR1) (3, 16) or C1-

inhibitor (17).  Recent studies showed that anti-C5 antibody treatment decreases the resuscitation 

fluid volume required to improve mean arterial pressure (18).  Total inhibition of complement 

activation and the membrane attack complex, however, may lead to sepsis and other infectious 

complications due to the inhibition of all complement cascades.   It is critical therefore, to 

identify the specific molecules involved in the complement mediated damage in order to achieve 

targeted complement inhibition.  Excess of C5a is lethal in a rat hemorrhage model (15) and a 

C5a receptor antagonist decreased the inflammatory response within rat intestine and lungs in a 

model of intestinal ischemia with hemorrhage (19).  However, it is unclear if inhibition of C5a 

activity is sufficient to prevent or attenuate intestinal damage and its sequelae.   

 

Many animal models of hemorrhage involve rats and include traumatic injury (19-24) and the 

use of heparin (3, 16) which complicates determination of the complement activation factors. In 

addition, rat models of hemorrhagic shock preclude the use of genetically modified animals.  

Here we show that in the absence of major trauma, loss of one-quarter of the total blood volume 

in mice results in significant intestinal inflammation and damage. We present evidence that C5 

deficient mice do not develop signs of inflammation and tissue damage and more importantly, 

blockade of the action of C5a with a synthetic C5a receptor antagonist limited tissue damage in 

wild type mice.  
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Materials and Methods:  

Mice- C57Bl/6, B10.D2-Hc0H2dH2-T18c/oSnJ and B10.D2-Hc1H2dH2-T18c/nSnJ (C5-/- 

and C5+/+, respectively) male mice (6-8 wks old) were obtained from Jackson Laboratories 

(C5+/+, and C5-/-) or bred (C57Bl/6) and maintained in the Division of Biology at Kansas State 

University.  All mice were allowed food and water ad libitum and kept in 12-hour light-to-dark 

facilities.  Research was conducted in compliance with the Animal Welfare Act and other federal 

statutes and regulations relating to animals and experiments involving animals and experiments 

were performed according to the principles set forth in the Guide for the Care and Use of 

Laboratory Animals (Institute of Laboratory Animal Resources, National Research Council, 

1996 edition).   

 

Hemorrhage Protocol:  After a 1 week acclimatization period, mice were anesthetized using 

ketamine (16 mg/kg) and xylazine (80 mg/kg).  All procedures were performed with the animals 

breathing spontaneously and body temperature maintained at 37 C using a water-circulating 

heating pad.  Mice undergoing hemorrhage were subjected to retro-orbital removal of 25% of the 

calculated blood volume (approximately 0.5 ml) over a 90 sec period (25, 26).   Volume of blood 

to be removed was based on weight and ranged from 400 ul to 600 ul; (body weight in grams x 

0.02 (27)).  The determined blood volume was measured in water and marked on both the 

collection tubes and the capillary tubing used for  retro-orbital punctures.  This ensured that the 

correct amount would be withdrawn. A single retro-orbital puncture was sufficient for blood 

collection.   The 2 hr mortality rate was less than 1%.  Sham mice were subjected to similar 

procedures with no blood removal.  In some studies, the murine C5aRa (25 g/mouse) was 
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injected intravenously 5-15 min after either hemorrhage or sham treatment (28).  An additional 

experimental group consisted of mice subjected to hemorrhage followed one hour later by 

administration of 200l normal saline i.v.  Control animals for this group received an equal 

volume of sterile phosphate buffered saline (PBS).  C5aRa was synthesized and similar dosages 

administered as described previously (28).  To prevent spontaneous complement activation, all 

studies were performed in the absence of heparin.  At 2 hr post-hemorrhage, mice were 

euthanized and tissues collected for analysis.  Intestinal tissues were formalin fixed for analysis 

of injury and frozen sections were obtained for immunohistochemistry.  

 

Injury Score: Formalin fixed tissue sections were transversely sectioned and H+E stained for 

analysis of injury. Injury was scored by an observer unaware of the treatment given using a six-

tiered scale adapted from Chiu et al. that was described previously (7, 8, 29).  The average 

damage score was assigned to an approximately 2 cm section of mid-jejunum intestine (75-150 

villi) after grading each villus from 0-6.  Normal villi were assigned a score of zero; villi with tip 

distortion were assigned a score 1; score 2 was assigned when Guggenheims’ spaces are present; 

villi with patchy disruption of the epithelial cells were assigned a score of 3; score 4 was 

assigned to villi with exposed but intact lamina propria with epithelial sloughing; a score of 5 

was assigned when the lamina propria was exuding; last, villi that display hemorrhage or 

denuded were assigned a score of 6.   

 

Villus Height/ Crypt Depth:  Villus height/ crypt depth ratio of at least 15 individual villi per 

animal was measured using Metavue computer software (Molecular Devices, Sunnyvale, CA). 

The average of 3-8 animals per treatment group is reported.  
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Leukotriene B4, myeloperoxidase and total peroxidase production: Ex vivo intestinal 

supernatants were generated for total peroxidase, leukotriene B4 (LTB4) and myeloperoxidase 

(MPO) analysis as described previously (30, 31).  Briefly, 1 cm mid-jejunum sections were 

minced, washed and resuspended in oxygenated Tyrode’s buffer (Sigma, St. Loius, MO) for 20 

min at 37oC.  Following incubation, the supernatants and tissues were collected and stored in -

80oC until assayed.  Commercially available LTB4 EIA kit (Cayman Chemicals #520111, Ann 

Arbor, MI) and MPO specific ELISA kit (Cell Sciences, #HK201 Canton, MA) were used to 

determine LTB4 and MPO concentrations.  Total tissue peroxidase was determined by incubating 

supernatants with  3, 3’, 5, 5’ tetramethylbenzedene (TMB) (KPL Chemicals, Rockville, MD) 

and the reaction stopped with 0.18 M sulfuric acid. The OD450 was determined and compared 

with a horseradish peroxidase (Sigma) standard. The concentration of each factor was reported as 

pg/mg intestinal tissue. 

 

Immunohistochemistry.  Tissues snap frozen in TBS freezing media (ThermoFisher, Waltham, 

MA) were sectioned at 6-8 for immunohistochemistry staining as described previously (7, 8).  

Briefly, nonspecific antibody binding sites were blocked by treatment with a solution of 20% 

rabbit serum (Jackson ImmunoResearch, West Grove, PA) in PBS for 30 minutes prior to 

incubation with rabbit anti-mouse C3 antibody (Cell Sciences #HP8012) overnight at 4o C.  The 

tissue was then incubated with donkey anti-rabbit secondary antibody conjugated to Texas Red 

(Jackson ImmunoResearch).  After washing, the slides were mounted with ProLong Gold 

(Invitrogen, Carlsbad, CA).  A blinded observer examined the slides by fluorescent microscopy 

using a Nikon 80i fluorescent microscope equipped with appropriate filters and CoolSnapCf  
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camera (Photometrics, Tucson, AZ)and analyzed by MetaVue Imaging software (Molecular 

Devices). 

 

Statistics.  The data are presented as mean ± SEM and compared by one-way ANOVA with 

Neuman-Keuls post-hoc analysis (GraphPad, San Diego, CA).  Differences were considered 

significant when p<0.05.  
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RESULTS 

Hemorrhage induces intestinal damage 

A recent study showed that during porcine hemorrhage, intestinal blood flow decreased 

proportionally to total volume, but these studies did not examine the extent of intestinal damage 

(4). To confirm that blood loss induced intestinal damage, mice were sham-treated or retro-

orbitally bled to remove 25% blood volume.  Previous reports indicated that removal of 25% 

blood volume induced liver damage and inflammation and preliminary data indicated the 

presence of significant intestinal damage.  Intestinal tissues were collected 2 hr post bleeding and 

analyzed for mucosal injury.  As shown in Fig. 1A, and D, sham treatment did not result in 

damage of the intestines as indicated by preservation of villi tips (Fig. 1A) and low injury score 

(Fig. 1D).  In contrast, significant mucosal damage occurred at 2 hr post hemorrhage as shown in 

Fig. 1B and 1D. Intestinal damage at 2 hr post hemorrhage included disintegration of the 

epithelial integrity, exuding lamina propria from the villi (Fig. 1B) which resulted in increased 

injury score (Fig. 1D).  Also, indicative of damage, hemorrhage resulted in significantly shorter 

villi without altering the crypt depth as indicated by villus height/crypt depth ratio (Fig. 1E). As 

resuscitation with even small volumes of saline, may alter damage and inflammation, some 

groups of both sham and hemorrhaged mice were administered 200ul normal saline i.v. As 

indicated in Fig. 1C, 1D and 1E, small volumes of normal saline at 1 hr post hemorrhage did not 

alter the injury score (p=0.092), or villus height vs. crypt depth ratio (Fig. 1C, 1D and 1E).  

 

Intestinal damage and inflammation is complement-dependent  

As other forms of intestinal mucosal damage are complement mediated, we assessed C3 

deposition on the intestine of mice subjected to hemorrhage by immunofluorescence (Fig. 2).  
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Significant amounts of C3 were deposited on the intestinal tissues of hemorrhaged mice (Fig. 

2B), whereas no C3 was deposited to the intestines of sham-treated mice (Fig. 2A). 

   

To investigate if complement has a critical role in hemorrhage-induced intestinal damage, C5 

deficient (C5-/-) mice and C5 sufficient mice (C5+/+) were subjected to hemorrhage and 

intestinal injury assessed 2 hr later. As shown in Fig. 3A, sham treatment did not induce 

intestinal damage in either strain.  Similar to C57Bl/6 mice, the complement sufficient mice 

subjected to hemorrhage developed significant intestinal damage (Fig. 3A, B) manifested by 

increased injury scores and decreased villus height/crypt depth ratio compared to sham-treated 

mice.  In contrast, hemorrhage-induced, intestinal damage was significantly attenuated in C5-/- 

mice compared to the C5+/+ mice with mean injury scores of 0.36 and 2.89, respectively (Fig. 

3A, B and C).  Villi remained tall, the villus height/crypt depth ratio did not change and the 

epithelial layer remained intact in C5-/- mice after hemorrhage (Fig. 3C).  As expected, C3 was 

deposited in both C5+/+ and C5-/- mice despite the lack of damage (data not shown). 

  

Excessive inflammation, characterized by neutrophil infiltration, mediates hemorrhage induced 

liver and lung injury (17, 26, 32).  To determine if hemorrhage induces intestinal neutrophil 

infiltration, the production of chemotactic factor LTB4 was determined. As shown in Fig.4A 

hemorrhage induced significant LTB4 production.  In addition, intestinal tissues from 

hemorrhaged, complement sufficient mice contained increased amounts of myeloperoxidase 

when compared with sham-treated mice (Fig. 4B).  In contrast, when C5-/- mice were subjected 

to hemorrhage, the release of LTB4 was significantly reduced, suggesting that the recruitment of 
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neutrophils to the intestine is complement dependent (Fig. 4A).  In addition, intestinal tissue 

from C5-/- mice subjected to hemorrhage did not contain any myeloperoxidase (Fig. 4B).      

 

C5a receptor antagonist attenuates intestinal damage and inflammation 

We considered it likely that C5a generated following complement activation is responsible for 

the observed neutrophil infiltration in C5 sufficient mice subjected to hemorrhage and that 

inhibition of its action would limit the inflammatory response and tissue damage.  To test this 

possibility we treated male C57Bl/6 mice with murine C5a receptor antagonist or an equivalent 

volume of PBS 5-10 min after hemorrhage.  In contrast to the PBS-treated C57Bl/6 mice (Fig. 

5B), mice injected with C5a receptor antagonist displayed attenuated intestinal mucosal damage 

(Fig. 5C) with pathology similar to that recorded in the sham group of animals (Fig. 5A).  

Hemorrhage-induced intestinal injury was decreased significantly in C5a receptor antagonist -

treated mice compared to the PBS-treated group of hemorrhaged mice and was comparable to 

tissue injury observed in the sham group of mice (Fig. 5D).  C5a production occurs downstream 

of C3 activation; therefore, C5a receptor antagonist should not alter C3 deposition. C5a receptor 

antagonist treatment did not limit the amounts of C3 deposited to the intestine of hemorrhaged 

mice (Figs. 2 and 6) and the observed C3 deposition in these mice was increased compared to the 

sham group of animals (Fig. 6A,B).  As expected, administration of C5a receptor antagonist 

decreased LTB4 production in both sham and hemorrhaged mice (Fig. 7A) and eliminated the 

hemorrhage-induced increase in myeloperoxidase content (Fig. 7B). Together these data indicate 

that C5a receptor antagonist can attenuate the hemorrhage-induced chemotactic activity and 

intestinal tissue damage.  
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Discussion 

Hemorrhage induces intestinal mucosal damage and inflammation with complement activation 

and influx of neutrophils (3, 16).  Complement inhibition prevents intestinal damage and 

decreases vasoconstriction and the subsequent requirement for fluid to maintain the mean arterial 

pressure (18, 19, 33). Our study shows that low blood volume also leads to intestinal damage and 

inflammation in complement sufficient but not in C5 deficient mice.  C5a which is produced 

during complement activation appears to be the culprit because inhibition of its action by C5a 

receptor antagonist limits both the inflammatory response and intestinal tissue damage.  

 

Complement is known to have a role in the intestinal damage, but the specific pathway or 

molecules involved are unknown.  In ischemia and sepsis models of intestinal damage,  C5a has 

been shown to be required for neutrophil infiltration (8, 14, 19, 34, 35).  Inhibition of C3a and 

C5a in rat models of hemorrhage or hemorrhage with vascular clamping prevented decrease in 

mean arterial pressure and the appearance of acidosis, intestinal permeability and tissue damage 

(15, 19).  Our studies extend these observations and suggest the recorded beneficiary effects of 

complement inhibition on physiological parameters such as mean arterial blood pressure and 

acid-base balance are probably due to the preceding inhibition of the tissue inflammatory 

response and damage.  Indeed, the administration of C5a receptor antagonist limited the 

production of the chemotactic factor, LTB4, and the infiltration of the intestinal tissue by 

neutrophils as manifested by decreased myeloperoxidase content.  C5a receptor antagonist has 

been shown to be effective in other animal models of inflammation (35, 36), including a murine 

model of mesenteric ischemia/reperfusion (8).  
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It is possible that the administration of C5 receptor antagonist alters the cytokine milieu that 

leads to intestinal damage.  Previous studies have illustrated that monocytes treated with C5a 

produce IL-6 (37).  Other studies have shown that hemorrhage increases KC, MCP-1, IL-6 and 

IL-10 serum concentrations in a TLR4-dependent manner (22, 38, 39).  In addition, Meng et.al. 

showed that IL-6 is critical for the induction of lung and liver damage in response to hemorrhage 

(32).  Therefore, IL-6 and possibly other cytokines or chemokines may be involved in 

hemorrhage-induced intestinal damage and it is possible that C5a receptor antagonist alters the 

inflammatory cytokine response.   

 

In many animal models, C5a and selective C5a agonists induce hypotension and vascular 

permeability that is inhibited by blockade of C5a receptor binding (19, 33). In other animal 

models, C5a receptor antagonists attenuate the cobra venom factor mediated or xenotransplant 

induced blood pressure changes (40, 41). However, in other hemorrhage studies, complement 

depletion did not significantly alter mean arterial pressures within the first 2 hr after hemorrhage 

(15).  Thus, it is possible that administration of the C5 receptor antagonist prevents the 

hemorrhage-induced hypotension. Additional studies will be needed to determine the exact 

mechanism of protection provided by the C5a receptor antagonist.  

 

Previous studies have shown that complement inhibition prevents intestinal damage and 

decreased vasoconstriction in rat models of hemorrhage (3, 16).  In a rat model of hemorrhage 

and mesenteric ischemia, the combination of heparin and C5a receptor antagonist decreased 

intestinal permeability and tumor necrosis factor production (19).  The unavoidable use of 
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heparin in practically all hemorrhage models complicates the interpretation of the data because 

of the extensive interaction of the complement and coagulation activation cascades (42).  Our 

studies offer a unique model to study the role of complement activation in a murine model of 

hemorrhage without the interference of confounding factors such as trauma, tubing and the need 

for anti-coagulation drugs.  

 

In conclusion, we present evidence in a simple model of murine hemorrhage which does not 

involve the use of trauma or anti-coagulants that complement activation is responsible for 

inflammation and tissue damage in the intestine.  C5 deficient mice were found to be completely 

protected from hemorrhage-induced intestinal damage and the administration of a C5a receptor 

antagonist limits both the inflammatory response and tissue damage in the intestine of mice 

subjected to hemorrhage.  The use of complement inhibitors may therefore be of clinical value in 

people who hemorrhage and they may limit the need for resuscitation fluids.   
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Figure Legends: 

Figure 1. Hemorrhage induces intestinal injury. Wildtype mice which were subjected to sham 

treatment (A) or hemorrhage (B) followed by a 2 hour recovery period. Intestinal sections were 

stained with H+E.  Additional mice were subjected to hemorrhage followed by an injection of 

normal saline (C).  Formalin fixed intestinal sections from each treatment group were scored for 

mucosal injury (0–6) as described in Materials and Methods  (D). Open bars represent no 

resuscitation fluid, solid bars represent resuscitation fluids were administered. Each bar 

represents the average ±SEM with 4-10 mice per group. Villus height/ crypt depth ratio of 

individual villi was measured using Metavue computer software (E).  All measurements were 

obtained at a x200 magnification. Open bars represent no normal saline, solid bars represent 

normal saline was administered.  Each bar is the average ±SEM with 3 mice per group. Using 

ANOVA with Newman-Keuls post hoc test, the asterisk indicates significant difference from the 

respective sham treatment group (p ≤ 0.05). 

 

Figure 2. C3 is deposited to intestinal tissue following hemorrhage.  Intestinal sections from 

wildtype mice subjected to sham treatment (A) or hemorrhage (B) and were stained for C3 

deposition as described in Materials and Methods. Original magnification is x200. Data are 

representative of three individual experiments. 

 

Figure 3. Hemorrhage-induced intestinal damage is attenuated in C5 deficient mice.  

Formalin fixed intestinal sections from each group were scored for mucosal injury (0–6) as 

described in Materials and Methods (A). Each dot represents a single animal.  H + E intestinal 

sections from wildtype (C5+/+) (B) and C5 deficient (C5-/-) (C) mice subjected to hemorrhage. 
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Using ANOVA with Newman-Keuls post hoc test, the asterisk indicates significant difference 

from C5+/+ hemorrhage group (p ≤ 0.05). 

 

Figure 4. Hemorrhage induces a complement-dependent inflammatory response.  Ex vivo, 

intestinal LTB4 (A) and myeloperoxidase (B) production from each treatment group was 

determined by enzyme immunoassays as described in Materials and Methods. Each bar 

represents the average± SEM with four to six animals per group. Using ANOVA with Newman-

Keuls post hoc test, the asterisk indicates significant difference from the wildtype treatment 

groups. 

 

Figure 5.  Administration of C5a receptor antagonist after hemorrhage prevents intestinal 

damage.  H+E intestinal sections of wildtype mice (B6) with (A, C) or without (B) C5a receptor 

antagonist (C5aRa) treatment were subjected to sham treatment  (A) or hemorrhage (B,C).  

Mucosal injury (0–6) was determined as described in Materials and Methods (D). Using 

ANOVA with Newman-Keuls post hoc test, the asterisk indicates significant difference from 

C57Bl/6 hemorrhage group (B6 Hem). 

 

Figure 6.  C5a receptor antagonist does not prevent C3 deposition on intestinal tissue.  

Wildtype mice were subjected to sham (A) or hemorrhage (B) prior to treatment with C5a 

receptor antagonist (C5aRa) and frozen intestinal sections were stained for C3 deposition as 

described in Materials and Methods. Original magnification is x200. Data are representative of 

three individual experiments. 
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Figure 7.  C5a receptor antagonist attenuates leukotriene B4 and myeloperoxidase 

production in response to hemorrhage.  Ex vivo, intestinal LTB4 (A) and myeloperoxidase (B) 

production by each treatment group was determined by enzyme immunoassays as described in 

Materials and Methods. Each bar is average± SEM with three to eight animals per group. Using 

ANOVA with Newman-Keuls post hoc test, asterisks indicate significant difference from the 

respective wildtype treatment groups (B6). 
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