Environmental Modelling & Software 39 (2013) 283—-294

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at SciVerse ScienceDirect

The Simple Script Wrapper for OpenMI: Enabling interdisciplinary modeling

studies™

T. Bulatewicz **, A. Allen®, .M. Peterson¢, S. Staggenborg€, S.M. Welch ¢, D.R. Steward "

2 Dept. of Computing and Information Sciences, 234 Nichols Hall, Kansas State University, Manhattan, KS 66502, USA
b Dept. of Civil Engineering, Kansas State University, Manhattan, KS 66502, USA

“Dept. of Agronomy, Kansas State University, Manhattan, KS 66502, USA

d Dept. of Agricultural Economics, Kansas State University, Manhattan, KS 66502, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 18 April 2012
Received in revised form

6 July 2012

Accepted 11 July 2012
Available online 4 August 2012

Keywords:

OpenMI

Interdisciplinary modeling
Scripting languages

Model integration

Integrated environmental modeling enables the development of comprehensive simulations by
compositing individual models within and across disciplines. The Simple Script Wrapper (SSW), devel-
oped here, provides a foundation for model linkages and integrated studies. The Open Modeling Interface
(OpenMI) enables model integration but it is challenging to incorporate scripting languages commonly
used for modeling and analysis such as MATLAB, Scilab, and Python. We have developed a general-
purpose software component for the OpenMI that simplifies the linking of scripted models to other
components. Our solution enables scientists to easily make their scripting language code linkable to
OpenMI-compliant models fostering collaborative, interdisciplinary integrated modeling. The simplicity
afforded by our solution is presented in a case study set in the context of irrigated agriculture. The
software is available online as supplementary material and includes an example that may be followed to
employ our methods.

Integrated modeling

Published by Elsevier Ltd.

Software availability

Software name: SSW

Developer: GRoOWE/Kansas State University

Contact address: 234 Nichols Hall, Kansas State University,
Manhattan, KS, 66502, 785-532-6350

E-mail: tombz@ksu.edu

Year first available: 2012

Hardware required: Architecture independent

Required software: Windows/Linux

Program language: C#

Program size: 2 MB

Availability: Download available under MIT License at: http://code.
google.com/p/simple-script-wrapper

Cost: Free

* Thematic Issue on the Future of Integrated Modeling Science and Technology.
* Corresponding author. Tel.: +1 505 490 9681.
E-mail addresses: tombz@ksu.edu (T. Bulatewicz), andya@ksu.edu (A. Allen),
jpeters@ksu.edu (J.M. Peterson), sstaggen@ksu.edu (S. Staggenborg), welchsm@
ksu.edu (S.M. Welch), steward@ksu.edu (D.R. Steward).

1364-8152/$ — see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.envsoft.2012.07.006

1. Introduction

The importance of integrated modeling in addressing current
global environmental challenges is well established (Parson, 1995;
Rotmans and Van Asselt, 1996; Harris, 2002; Pahl-Wostl, 2002;
Parker et al., 2002; Jakeman and Letcher, 2003). The application of
disjoint disciplinary models, methodologies, and ontologies can
only offer insight into the behavior of processes within a specific
domain precluding investigation into the interactions between
processes in different domains. Comprehensive simulations in
which multidisciplinary models are collectively applied can capture
these process interactions and feedbacks as they propagate across
domains. Integrated modeling that bridges traditionally isolated
domains is an emerging field of study and is necessary for such
initiatives as the European Union Water Framework Directive and
studies envisioned by the Community Surface Dynamics Modeling
System (CSDMS) team at the University of Colorado, Boulder
(Peckham and Hutton, 2009) and the Consortium of Universities for
the Advancement of Hydrologic Science (CUASHI, 2012) such as the
Community Hydrologic Modeling Platform (CHyMP) (Famiglietti
et al.,, 2011).

An effective approach to interdisciplinary integrated modeling
is model linking (or coupling) in which models remain independent

mailto:tombz@ksu.edu
http://code.google.com/p/simple-script-wrapper
http://code.google.com/p/simple-script-wrapper
mailto:tombz@ksu.edu
mailto:andya@ksu.edu
mailto:jpeters@ksu.edu
mailto:sstaggen@ksu.edu
mailto:welchsm@ksu.edu
mailto:welchsm@ksu.edu
mailto:steward@ksu.edu
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2012.07.006
http://dx.doi.org/10.1016/j.envsoft.2012.07.006
http://dx.doi.org/10.1016/j.envsoft.2012.07.006

284 T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294

from one another and communicate to collectively carry out
a simulation. The Open Modeling Interface (OpenMI) (Moore and
Tindall, 2005; Gregersen et al., 2007) is an emerging standard
that facilitates model integration through the dynamic linking and
execution of models. The expertise necessary and the level of effort
required to enable an existing model to work with the OpenMI (or
create a new model that works with the OpenMI) are influenced by
the design of the model, the programming language that it is
written in, and the skill of the programmer. In cases where the
programming language of a model differs from that of the software
tools being used to link and execute it, language interoperability
techniques must be incorporated into the model to bridge the
languages. This can make the process of conforming a model to the
OpenMI prohibitively difficult in cases where a scientist’s
programming skills lie within the predominant language of his or
her discipline (e.g. MATLAB; Scilab or Python). In addition, many
academic programmers are not very familiar with object oriented
programming concepts, making it difficult to implement the
OpenMI interfaces. Scientists must be free to use the tools and
methods customary in their discipline without sacrificing simple
integration and collaboration with scientists in other domains.

Scripting languages such as MATLAB are pervasive throughout
research and education intersecting many different disciplines.
Languages for mathematics (MATLAB; Scilab; Mathematica) and
statistics (SAS; SPSS) are common in engineering, in applied
sciences such as agronomy, and in social sciences such as
economics (Kendrick and Amman, 1999) and sociology. General-
purpose scripting languages (Perl; Python; Ruby) are highly flex-
ible and have varied uses such as building Geographic Information
Systems (GIS) workflows and creating frameworks for optimization
and parameter estimation. Despite the widespread use of scripting
languages, it remains an open research question how to make
scripts OpenMI-compliant.

We have developed a general-purpose software component
called the Simple Script Wrapper (SSW) that enables interopera-
bility between OpenMI components and the scripting languages
MATLAB, Scilab, and Python. Our solution enables scientists to
simply integrate their model codes with the codes of others
fostering collaborative, interdisciplinary integrated modeling. Note
that models or modules that have been integrated into our SSW
also have the potential to be integrated with other SSW enabled
tools written in the same language (e.g. MATLAB), enabling further
interoperability and development of comprehensive modeling
tools. The SSW extends the Simple Model Wrapper (SMW)
(Castronova and Goodall, 2010) by adding support for scripting
languages. We demonstrate our solution in an example that brings
together groundwater, economics, and agricultural models for
multidisciplinary studies. The software is available online as
supplementary material and includes an example that may be
followed to employ our methods.

In the following section we introduce the OpenMI and discuss
approaches to supporting different programming languages. This is
followed by an explanation of how the SSW is used and implemented.
We then describe the process of creating linkable scripts for the SSW
and demonstrate its operation through an ongoing case study.

2. Background
2.1. Model linking

Model integration remains a challenging task due to the
inherent differences between models. The incompatibilities
between models must be resolved, such as variation in spatial and
temporal scale and differences in the programming languages in
which they are implemented. Creating integrated models by

merging them together into a single source code can be compli-
cated (particularly in the case of legacy models) and the software
maintenance (e.g. fixing errors and updating dependencies) of
many copies of a model becomes increasingly challenging. Inte-
grating models by linking them together keeps them independent
from one another and improves reusability. There has been
considerable work toward the development of methods and tools
for model linking (Larson et al., 2001; David et al., 2002; Buis et al.,
2006; Bulatewicz and Cuny, 2006; Ford et al., 2006; Joppich and
Kurschner, 2006; Gregersen et al., 2007).

In most approaches to model linking the models are modified
and given the ability to exchange data either in an ad-hoc or
standardized way. Standards enable models to be shared between
researchers and foster collaboration and the creation of a common
repository of linkable models. One of the primary ways in which
standards differ from one another is in how they balance the
expressiveness of the interactions between models and the level of
specification necessary to link them together. At one extreme
scientists have very fine control over how models execute and
exchange data but require a highly detailed specification to link
them. At the other extreme models may only exchange limited
kinds of data and execute in prescribed ways but require a simple
specification to link them. The latter is well-suited to use cases
where model linkages are frequently changed for experimentation
or prototyping and when it is desirable to minimize the skills and
knowledge necessary to link models. The Open Modeling Interface
is an example of such a standard and we have found it to be an
effective means to integrating multidisciplinary models in previous
work (Bulatewicz et al., 2010).

2.2. The Open Modeling Interface

The Open Modeling Interface (OpenMI) defines a standard way
for software components to exchange data with each other and
coordinate their execution. It defines a set of capabilities that
a model must possess in order for it to be linked to other models.
These capabilities are both descriptive, to support the task of
specifying model interactions at the domain level, and functional,
to support the execution of a set of linked models. To fulfill the
descriptive requirements, a component must be capable of
providing a list of the domain quantities that it can provide and
those that it can consume, along with the units and spatial distri-
bution of each. These are called output exchange items and input
exchange items, and in the case of model components, there is
usually one output item for each quantity that it simulates and one
input item for each of its inputs. To fulfill the functional require-
ments, a component must possess a GetValues method through
which it provides data (that correspond to the output exchange
items) at runtime. A model that meets the requirements of the
interface is called a linkable component and can be dynamically
linked to other models at runtime. Using visual software tools
(provided by the OpenMI Association Technical Committee),
a scientist chooses a set of linkable components of interest, inter-
actively specifies the quantities to be exchanged between them,
and then executes the linked model. Components can be added and
removed and the links between them reconfigured, facilitating
experimentation and rapid prototyping of linked models.

The GetValues method (member of the Open-
MI.Standard.ILinkableComponent namespace) has two parameters
and returns an array of numbers. The parameters specify the input
link on which the call should be made and the simulation time at
which input is required. As each link represents the transfer of
a spatially-distributed quantity, the parameters collectively request
a set of numbers that represent the state of a quantity at a single
point in time over some spatial domain, as illustrated in Fig. 1. A

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294 285

— 18915
18015/) /
[18956 /| ... 18921
o |
77 J I\ 18923
7
18921 18923 18956 | 121112010 | | femperature |
U A
\ N\ VAN . E - element set T-time Q - quantity
NI T S A
conceptualization
GetValues(Q,T,E)

GetValues(Q,T,E)

196 |
28|

201 : AR
. Vv
V - value set |

Fig. 1. Operation of GetValues. Solid lines indicate function calls and dashed lines
indicate the flow of data.

quantity is represented by an object with several properties such as
a textual identifier and units information, the time is represented
by a modified Julian date, and the spatial domain is represented by
a list of spatial elements called an element set. An element set is
a list of geo-referenced spatial elements (i.e. points, lines, or poly-
gons) or non-spatial identifiers. The GetValues function returns
a list of floating-point numbers called a value set that describes the
state of a single quantity at a specific point in time across an
element set. Each number in a value set represents the state of the
quantity and time at a different geographic location. The number at
a particular index in the value set represents the spatial element in
the corresponding index of the element set.

The GetValues method not only provides a means for the
exchange of data between components but it also provides a means
for the coordinated execution of a set of components at runtime.
When the GetValues method is called on a component it must
return the value set that corresponds to the requested quantity,
time, and locations. If the component has not yet simulated the
requested point in time then it must perform a series of time steps
to advance its simulation time to that point. Prior to the simulation
of each time step, the component may call GetValues on other
components to collect the inputs necessary for the computation of
the step. Those components may in turn perform time steps
themselves and call GetValues on other components before they
return the requested value sets. A linked simulation begins when
the GetValues method of one of the components is called. The
OpenMI Software Development Kit (SDK) includes a special
component called a trigger that can be used to initiate the first call.
The trigger repeatedly calls GetValues on the component until the
component’s simulation time reaches the simulation end time
defined by the scientist. A component always waits until each call
to GetValues completes before it computes a time step. In this way
the components take turns executing and pull data from each other
until the component attached to the trigger reaches the simulation
time requested by the trigger.

The structure of a time-stepped (simulation) model that has
been made OpenMI-compliant is typically organized into three
primary functions called Initialize, Perform Time Step, and Finish
(Gijsbers et al., 2005). The Initialize function reads the model inputs
and prepares the simulation and is called once at the start of
a simulation. The Perform Time Step function simulates a single
time step and is called as needed by the GetValues function. The
Finish function writes the final output and is called once at the
conclusion of a simulation.

There are 18 functions that every linkable component must
possess (Gijsbers et al., 2005) to implement the Open-
MILStandard.ILinkableComponent interface. Ten of these make up
the functional requirements and facilitate the execution of the
linked model during runtime (such as GetValues) and eight of
them constitute the descriptive requirements (such as GetMo-
delDescription). The OpenMI SDK includes a collection of classes
(within the Oatc.OpenMIL.Sdk.Wrapper namespace) that perform
some of the underlying responsibilities of a component such as
adding links, caching exchanged data, and performing time steps
in response to calls to the GetValues function, but several time-
related functions and descriptive functions must still be added
to a model. The Simple Model Wrapper (SMW) (Castronova and
Goodall, 2010) was developed independently from the OpenMI
SDK as a 3rd party extension to simplify the model creation
process. It abstracts the Wrapper class and implements the 15
additional time-related and descriptive functions so that a model
need only include the three primary functions thus minimizing
the amount of programming necessary to create a linkable
component. The SMW can implement the time-related functions
because it assumes that the model uses a fixed-length time step
and it keeps track of the simulation time and advances it as
necessary. The SMW can implement the descriptive functions
because it has the ability to read the model metadata from
a configuration file. In this way the SMW facilitates the creation of
linkable components requiring that the scientist (1) adds 3
functions to a model’s source code and (2) creates a file that
contains information about the model.

2.3. Language interoperability

Although the OpenMI defines a standard way to link models
together it does not address language differences between models.
The OpenMI concepts are not language dependent but its design
mandates that a set of models and the tools used to link and
execute them be implemented in a common language. In cases
where model languages differ, language interoperability techniques
can be utilized. This is common in an interdisciplinary context as
different disciplines use different modeling methodologies,
languages, and tools (see the description of Babel in Peckham and
Hutton (2009) for an example). Scripting languages (also called
dynamic languages) are an important class of programming
languages that are pervasive across many different scientific
disciplines. Although lacking a formal definition, scripting
languages are often identified by their purpose of coordinating the
execution of programs (Ousterhout, 1998).

There are two broad approaches to enabling support for
scripting languages, and alternative programming languages in
general, for the OpenMI as illustrated in Fig. 2. Given a language A,
either the OpenMI standard may be implemented for the language
(top) or an existing implementation for a different language B may
be used in conjunction with language interoperability (bottom).
The former approach is well-suited for cases where models are
written in a common language whereas the latter approach
accommodates models written in different languages.

The standard itself (org.OpenMlI.Standard namespace) is defined
in terms of the object-oriented programming concept of an inter-
face, which defines a set of operations that a class must implement.
In addition, the OpenMI SDK (Oatc namespace) provides an
implementation of the OpenMI Standard that relies on the object-
oriented capabilities of a language, such as inheritance. Object-
oriented languages are thus predisposed for implementation of
the standard and are required to implement the existing SDKs.
Implementations of the standard and SDK exist for both C# and Java

286 T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294

<< component >> $:|

<< component >>
C1 (language A) El

C2 (language A)

Model Engine

org.OpenMI.
Standard

Model Engine 4—[9—(0——[;,*

<< component >> << component >>
C1 (language B) $:| org.OpenMI. C2 (language B) $:|
Standard
Stub <—[F|—(o——[€|—> Stub
call call
ST Uses _ —”',’—’
v Language v
(language A) Interoperability (language A)
Model Engine Model Engine

Fig. 2. UML class diagram indicating two alternative approaches to supporting
a programming language A for the OpenMI.

and additional implementations could be created for other object-
oriented languages as well.

The fundamental concepts behind the OpenMI are not
language-dependent, such as the pull-based execution model and
input/output definitions composed of quantities and element sets.
By conceptually broadening the object-oriented interface to
a generalized contract it would be possible to create a variant of the
OpenMI for non-object-oriented languages. An Open Modeling
Contract could be envisioned that defines similar operations to the
OpenMI standard but does so without requiring a language to
possess an explicit interface construct. This could be accomplished
in a variety of ways. In the context of a dynamic language, for
example, a model could provide a file that specifies the name of
each of its functions that implements each operation in the
contract. At runtime, other models would use this file to lookup the
function name to call on that model for a particular operation.

In the case of a language for which implementing the standard is
not feasible or desirable, or in the case of models written in
differing languages, components may implement the standard in
a common language and internally interoperate with other
languages as illustrated in Fig. 2 (bottom). In this case both
components implement the interface in a common language
enabling them to directly call methods on one another (see
Damgaard (2004) for an example). Within each component, the
responsibility of performing the implementation of an interface
method is delegated to a set of model functions written in another
language through the use of language interoperability techniques.
This interoperability can be accomplished in many different ways
depending on the characteristics of the two languages but can be
broadly classified into intra-process and inter-process approaches.
In cases where different languages are compiled into compatible
object code or bytecode, functions can be called directly across
languages within a process (with care to properly marshall argu-
ments as necessary). One example of this is the native object code
generated by many C and Fortran compilers. Another example is
the bytecode generated by the Microsoft .NET framework for
languages such as C# and Visual Basic, which is executed on the
Common Language Runtime (CLR) virtual machine. The Microsoft
Dynamic Language Runtime (DLR) extends the CLR to dynamic
languages such as Python, JavaScript, and Ruby while preserving
interoperability with the static languages of the CLR. Interopera-
bility between virtual machine-based execution environments

such as the CLR and Java Virtual Machine (JVM) with other execu-
tion environments may be possible through capabilities provided
by the virtual machine. Examples include the Platform Invocation
Services (PInvoke) capability of the CLR and the Java Native Inter-
face (JNI) capability of the JVM that allow code running within
a virtual machine to call and be called by native applications and
libraries written in other languages such as C, C++, and assembly.

Interoperability can also be achieved through inter-process
communication between processes whose underlying program
implementations are in different languages. Operating systems
typically provide several means for inter-process communication
such as named pipes, shared memory, and sockets. In addition, files
may be used as a means for communication across processes
although this may incur limitations in the frequency of data
exchanges (see Bulatewicz et al. (2010) for an example). The use of
sockets for inter-process communication enables interoperability
between processes executing on independent machines through
remote method invocation. Inter-process communication
approaches generally offer lower performance compared to the
intra-process approaches because execution must be dispatched
across processes (and possibly across machines) and data must be
copied across address spaces.

Utilizing the OpenMI in the context of multidisciplinary
modeling requires the ability to link models written in different
languages, as programming languages differ across domains. For
this reason it is necessary to utilize language interoperability. In
addition, utilizing a popular implementation of the interface fosters
collaboration between modelers. To maximize efficiency and
performance, the SSW uses the most direct form of interoperability
available between C# and MATLAB, Scilab, and Python.

The SSW utilizes the Engine Library of the C/C++ and Fortran
API provided by MATLAB to instantiate an interpreter and execute
scripts within it. The API is provided by MATLAB in the form of
native library files (included with the MATLAB application)
requiring the SSW to use PInvoke to call the unmanaged dynamic
link library functions from a managed context and marshall the
data exchanged in those calls. The interpreter runs as an inde-
pendent background process and the MATLAB API handles the
inter-process communication. An independent interpreter process
is started for each instance of the SSW component to prevent global
data from being accessed across models.

The SSW utilizes the Scilab Gateway API provided by Scilab
which has similar functionality to the MATLAB Engine Library API
and is also provided in the form of dynamic link libraries (included
with the Scilab application) that are accessed using PInvoke. Rather
than run as a separate process, the Scilab interpreter is instantiated
within the memory of the process in which the SSW is loaded. A
single Scilab interpreter may exist within the memory space of
a process, so since all components are loaded into a single memory
space (per OpenMI) the interpreter is shared among all instances of
the SSW. This means that global variables and operations on them
affect all instances of the SSW component using Scilab and care
must be taken to not use global variables with the same name in
different models and to not clear all global variables.

The SSW utilizes IronPython (IronPython) to create a Python
interpreter and execute scripts within it. IronPython is built on
the Dynamic Language Runtime (DLR) of the Microsoft .NET
framework enabling the SSW to instantiate a Python interpreter
engine directly from C# and execute Python functions via method
calls. Each instance of the SSW component creates its own instance
of a Python interpreter. As IronPython is implemented in .NET,
model scripts cannot access the CPython modules commonly used
in Python programming (although the .NET API is accessible). The
SSW can be extended to support both additional scripting
languages and alternative means for executing scripts of a single

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294 287

language making it possible to add support for the execution of
Python scripts via CPython.

Scripting languages present unique challenges and unique
opportunities for creating OpenMI-compliant linkable components
from scripted model codes. Scripting languages complicate
language interoperability due to their reliance on an interpreter
program for execution. The use of an interpreter, though, affords
the opportunity for a single component to execute any scripted
model, alleviating the need to create a separate linkable component
for each model. A single component that can interoperate with
different script interpreters can serve as a general-purpose means
to making any script linkable. Thus, our SSW is opening the OpenMI
world to those who develop scripting language computer code. In
this work we present an approach to creating linkable model
components from scripting languages that capitalizes on the
dynamic nature of these languages obviating the need for model-
specific components and allowing model scripts to be used as
OpenMI-compliant models without the need for programming
outside the model code itself. In the following section we describe
the process of creating a linkable script and then present the design
of the SSW.

3. Methods
3.1. Using the SSW

The process of creating a linkable script consists of two steps: (1) write the
configuration file and (2) write the three primary script functions. After the linkable

<Configuration>
<ModelInfo>
<ID>Economic Model</ID>

script has been created, the component can be added to a composition, linked to
other OpenMI components, and executed.

An example of a configuration file (Castronova and Goodall, 2010) taken from
the case study in Section 4 is shown in Fig. 3 (simplified). A configuration file
includes three sections that describe a model’s basic properties, temporal charac-
teristics, and exchange items. The basic properties define a unique identifier for the
model, its name, and its scripting language. The temporal characteristics specified in
the configuration file includes the earliest and latest points in time that the model is
capable of simulating (called the time horizon), the time step length and units, and
the relative input time at which inputs from other models are collected. Each
exchange item identifies a quantity, an element set, and a unit along with its
dimensions (not shown). An element set is typically defined in a separate file (so that
it can be referenced from multiple configuration files) and consists of a list of
elements described in XML. Each element is defined by an identifier and a type
(point, line, polygon, or non-spatial) along with any geo-referenced points necessary
to describe the geometry of the element. The SMW includes support for automati-
cally generating the element set file from a GIS.

An example of a MATLAB Perform Time Step script is shown in Fig. 4. All of the
inputs to the model (as defined in the configuration file) are collected from the other
components by the SSW prior to the Perform Time Step script being called and are
accessible to the script for use in the calculation of the time step. Thus the script can
assume that the inputs from the other components that correspond to the (specified
offset of the) current simulation time have already been received. At the end of the
script, the outputs from the model (as defined in the configuration file) are saved.
The SSW increments the simulation time by one time step after each invocation of
the Perform Time Step script.

The SSW provides a set of accessor functions (Table 1) that can be called by
a script to obtain input values from other components, save output values to be later
delivered to other components, and obtain other information such as the current
simulation time. The sswGetInput function returns the value of an input quantity for
a specific element. The sswSetOutput function stores the value for an output
quantity and element so that it may later be provided to another component. The
sswGetCurrentTime function returns the current simulation time. The

<Description>Economic model</Description>
<Scriptinglanguage>MATLAB</ScriptinglLanguage>

</ModelInfo>
<TimeHorizon>

<StartDateTime>01/01/1990 00:00:00</StartDateTime>
<EndDateTime>01/01/2004 00:00:00</EndDateTime>

<TimeStep>31536000</TimeStep>

<InputTimeOffset>0</InputTimeOffset>

</TimeHorizon>
<ExchangeItems>
<InputExchangeItem>
<Quantity>
<ID>SatThick</ID>

<Description>Saturated thickness</Description>

<ValueType>Scalar</ValueType>

</Quantity>
<ElementSet>
<ID>SheridanCoWells</ID>

<Description>Points of diversion in Sheridan County, KS</Description>
<XmlFilePath>ElementSets.xml</XmlFilePath>

<Version>1</Version>
</ElementSet>
</InputExchangeItem>
<OutputExchangeItem>
<Quantity>
<ID>CropChoice</ID>

<Description>Crop choice</Description>

<ValueType>Scalar</ValueType>

</Quantity>
<ElementSet>
<ID>SheridanCoWells</ID>

<Description>Points of diversion in Sheridan County, KS</Description>
<XmlFilePath>ElementSets.xml</XmlFilePath>

<Version>1</Version>
</ElementSet>
</OutputExchangeItem>
</ExchangeItems>
</Configuration>

Fig. 3. An example of a configuration file. Unit and dimension elements not shown.

288

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294
function sswPerformTimeStep()

global input_folder;
global current_year;
global well_filename;
global coeff_filename;

% get the current time from the SSW
current_time = sswGetCurrentTime();
current_year = current_time(1);

% we want to simulate the next year (since after this function is called,
% the SSW will advance the time of this component to the next year and

% assumes these values correspond to that year)

current_year = current_year + 1;

% set the paths to the input files for this year
well filename = sprintf('%s/data_wells.txt', input_folder);
coeff_filename = sprintf('%s/data_crop_coefficients.txt', input_folder);

% get the size of the element set

element_count = sswElementCount('SatThick"');

% get the saturated thickness inputs from the SSW

global sat_thick;
sat_thick = [];
for i=1:element_count

element_id = sswElementIDAtIndex('SatThick', i);
sat_thick(i,1) = sswGetInput('SatThick', element_id);

end

% solve the regression equation

[crop_choices crop_names probabilities] = SolveCropChoices(current_year);

% write the output files for this time step
WriteFiles(crop_choices, crop_names, probabilities, current_year);

% save the calculated results for the SSW

for i=1:element_count

element_id = sswElementIDAtIndex('CropChoice’, 1i);
ExchangeOutSet('CropChoice', element_id, crop_choices(i));

end

return

Fig. 4. An example of a MATLAB model script for the ssw Perform Time Step function.

sswGetScriptFolder function returns the absolute path to the folder where the script
files are located from which input files may be read and output files written. The
sswElementCount function returns the number of elements in a quantity’s element
set and the sswElementIDAtIndex function returns the identifier of an element at
a particular index in the element set.

3.2. Implementation of the SSW

The Simple Model Wrapper (SMW) simplifies the process of creating a linkable
component that conforms to the OpenMI by abstracting the interface to consist of 3
methods: Initialize, Perform Time Step, and Finish. The remaining interface methods
are replaced with a configuration file that provides the model metadata (e.g. the list
of inputs to a model). The metadata is read by the component at runtime and thus
may be changed without recompiling the component itself. This is necessary if
a component is to be capable of representing any model, as metadata differs
between models. For this reason we utilized the SMW in the implementation of the
SSW. Whereas the SMW is a code library that is utilized to develop components, the
SSW is a complete OpenMI-compliant component that is downloaded and linked to
other components.

The SMW was initially created for the 1.4 version of the OpenMI standard and
thus so too the SSW. The methods employed by the SSW may be adapted to version
2.0 of the standard making it possible to link scripted models in the same way
(which is not directly supported in 2.0) and is currently in progress.

Our utilization of the SMW required two minor extensions. First, we added
a ScriptingLanguage element to the configuration file that is used to specify the
language of a particular set of scripts. Second, we added an InputTimeOffset element
to the configuration file that allows the scientist to specify the point in simulation
time at which inputs should be collected from other components. The input time

defaults to the current simulation time but some models require inputs from an
earlier or later point in time, so the InputTimeOffset value allows an offset from the
current simulation time to be specified as a number of time steps. For example,
specifying a value of 1 indicates that inputs collected on a given time step should
reflect the following time step (i.e. the point in time that is being computed).

The SSW extends and inherits the functionality of both the OpenMI SDK’s Oat-
c.OpenMI.Sdk.Wrapper.LinkableEngine class and the Simple Model Wrapper’s
SMW.Engine class as shown in Fig. 5. The SMW.Engine (1) reads and provides the
contents of the configuration file via the appropriate interface methods and (2)
temporarily stores both the input data received from other components and the
output data produced by its child class, effectively serving as a data relay between
the LinkableRunEngine and SSW.Engine. The SSW.LinkableEngine class completes
its parent class by providing an implementation of the SetEngineApiAccess method
which simply creates an instance of the SSW.Engine class. The SSW.Engine class
completes its parent class by providing implementations of the Initialize, Perform-
TimeStep, and Finish methods and contains an instance that conforms to the ILan-
guageAdapter interface which provides interoperability with a specific scripting
language. The Initialize method instantiates the appropriate language adapter and
the Finish method destroys it. The Perform Time Step method instructs the inter-
preter to perform a time step.

The ILanguageAdapter interface consists of 5 methods: Initialize, Finish, Set-
Values, GetValues, and Perform Time Step. Each realization of the interface must be
capable of starting an interpreter, creating and reading variables inside the inter-
preter, and issuing commands such as invoking script functions. The Initialize
method creates the MATLAB, Scilab, or Python interpreter and loads the model
scripts into it. It then creates an array variable in the interpreter for each input and
output exchange item so that the model scripts can access the input data and have
a place to store their outputs. The SetValues and GetValues methods write and read

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294 289

Table 1
Accessor functions callable from scripts.

Function Description

sswGetlnput Returns values from other components

sswSetOutput Saves values for other components
sswGetCurrentTime Returns the current simulation time
sswGetScriptFolder Returns the path to the script folder

Returns the size of the element set
Returns the identifier of an element at an index

sswElementCount
sswElementIDAtIndex

to these interpreter variables. It dynamically generates the accessor function code
tailored to the input and output exchange items and loads them into the interpreter.
It also calls the Initialize script that prepares the model for execution. The SSW may
be extended to support additional scripting languages (and alternative imple-
mentations for a single language) through the creation of new language adapters.

3.3. Operation of the SSW

The operation of the SSW is illustrated in Fig. 6. During the execution of a linked
model, components call the GetValues function on the SSW component (Data Is
Requested of Fig. 6) requesting a quantity across an element set at a particular time.

OpenMI Standard

<<interface >>
OpenMI.Standard.
ILinkableComponent
4

OpenMI SDK el

7
-

<< abstract >>
Oatc.OpenMI.Sdk.Backbone.
LinkableComponent

i

<< abstract >> << interface >>
Oatc.OpenMI.Sdk.Wrapper. —| Oatc.OpenMI.Sdk.Wrapper.
LinkableRunEngine IRunEngine

1 1

<< abstract >> << interface >>
Qatc.OpenMI.Sdk.Wrapper. Oatc.OpenMI.Sdk.Wrapper.

LinkableEngine I[Engine

A A
I
Simple Model \
Wrapper !
|

<< abstract >>

SMW.Engine
Simple Script A

Wrapper
SSW.LinkableEngine ~ — SSW.Engine

<< interface >>
SSW.ILanguageAdapter
V.

-

SSW.ScilabAdapter

S~

SSW.MatlabAdapter SSW.PythonAdapter

Fig. 5. UML class diagram specifying class relationships within and across packages.

The requested time is compared to the current simulation time to determine
whether the requested data has already been simulated or if it is necessary to
advance the model forward. If the requested data has not yet been simulated a call to
GetValues is made to the components that are configured to provide input and the
obtained data is saved. Once all the input data has been obtained and saved, the
interpreter is instructed to perform a time step and the results of the time step are
saved. The updated simulation time is compared to the original requested time and
if the data has been simulated it is returned to the original requesting component.

Fig. 7 provides additional detail in how a time step is carried out (corresponding
to Perform Time Step in Fig. 6). The SSW.Engine relays the input data obtained from
other components to the adapter object via a call to SetValues (2 in the Fig. 7). The
adapter in turn inserts the values into the interpreter engine using the appropriate
language-specific API function (2.1 in the Fig. 7). The SSW.Engine then calls Perform
Time Step on the adapter (3 in the Fig. 7) which in turn calls a language-specific API
function that executes the ssw Perform Time Step script within the interpreter
engine (3.1 in the Fig. 7). During the execution of the script it calls the accessor
functions (Table 1) to read the input data and save its output data. Although the
variables could be accessed directly, the use of accessor functions allows the model
script to request quantities by name rather than the mangled internal variable name
used by the SSW. The SSW.Engine calls GetValues on the adapter (4 in the Fig. 7)
which in turn calls a language-specific API function that reads the results data from
the interpreter variables (4.1 in the Fig. 7).

This is a general design that can be applied to any dynamic scripting language
that provides an API that external programs can use to create and interact with an
interpreter. The implementation of the SSW component, however, must include
support for a specific set of languages due to differences in the interpreter API of
each language. In our current implementation the SSW component supports
MATLARB, Scilab, and Python under Windows and Linux (partial).

4. Case study

In this study we demonstrate how the SSW can be utilized to
create an integrated model that is composed of domain-specific
models written in different programming languages. The applica-
tion of the SSW to interdisciplinary investigations begins with the
conceptualization of a problem as a set of domain models that
interact. This is followed by the identification of the quantity
exchanges between the models that represent process interactions.
The processes are then modeled using a scripting language with the
given input and output quantities and the code is designed around
the basic SSW exchange functions. The scripted models are then
linked together using the SSW and the simulation is performed. We
follow this general 4-step schema in the following sections in our
presentation of an example of how to utilize the SSW for an
important interdisciplinary challenge with global significance.

4.1. Conceptualization

Groundwater is of primary importance in arid and semi-arid
regions around the world for both human consumption and crop
production. In many areas of intensive irrigation natural recharge is
not sufficient to compensate for groundwater withdrawals and
results in diminishing groundwater stores and eventually depletion
of the aquifer (Konikow and Kendy, 2005; Foster and Loucks, 2006;
Scanlon et al., 2007; Shah et al., 2007; Rodell et al., 2009; Wang
et al., 2009). Irrigated agricultural systems involve close interac-
tions between biological, hydrologic, and economic processes and
changes from within these processes or from exogenous factors can
influence the availability and sustainability of water, crop produc-
tion, and economic profitability. By incorporating these multidis-
ciplinary processes into a comprehensive simulation the cross-
domain impacts may be investigated and used to inform the way
in which water consumption may be transitioned toward sustain-
able use.

For the purposes of this study we abstracted the irrigated agri-
cultural system into 3 disciplinary areas such that processes within
each are simulated by different domain-specific models and
interact on an annual basis, as illustrated in Fig. 8. A groundwater
model simulates the elevation and movement of groundwater in
response to changes in natural or anthropogenic forcings such as

290 T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294

(LinkableRunEngine)
Values Return Simulated Data

(SMW.Engine)
Get Simulated Data

(LinkabIeRunEngine) [time reached]
Data Is Requested

| A

[time not reached]\L

(SMW.Engine) .
Save Simulated Data

(LinkableRunEngine)
i Request Input Data
Get |~

Values '«

. v
~J (LinkableRunEngine) (SSW.Engine)
Receive Input Data Save Input Data Perform Time Step

(SMW.Engine)

Fig. 6. UML activity diagram specifying the behavior of the SSW. Responsible parties are indicated in the annotations of each action.

climate change or changes in withdrawal rates (Steward, 2007;
Steward et al., 2009). The simulation of crop growth (biomass) and
irrigated water use is provided by the EPIC (Williams et al., 1990;
Williams, 1995) model. An economic decision-making model
predicts the choice of which crop is planted (alfalfa, corn, sorghum,
or soybean) based on several external and internal factors such as
crop prices, energy prices (which influence pumping costs), soil
attributes, and aquifer saturated thickness (Hendricks, 2007).

4.2. Quantity exchanges

There are two direct interactions between the modeled
processes: (1) the extraction of water from the aquifer for irrigation,
and (2) the decision of which crop to plant which is based in part on
the availability of groundwater. These interactions correspond to
three exchanges of data between the models. At the start of each
annual growing season the groundwater model provides the
saturated thickness of the aquifer to the economic model. The
economic model incorporates this information into its decision of
the crop to plant for each parcel and then provides these choices to

: SMW.Engine

\k performTimeStep()

the crop model. The crop model simulates the growth of the crops
on each parcel over the course of the year and provides the
groundwater model with the amount of water pumped from the
aquifer. The groundwater model uses this information to predict
the water depth at the end of the year. This circular exchange of
data is repeated for each year of the simulation period.

4.3. Linkable model scripts

There are two steps to creating a linkable scripted model: (1)
create a configuration file, and (2) write the model scripts. The
following sections describe these two steps using the economic
model as an example.

4.3.1. Creating a configuration file

The configuration file specifies a model’s metadata organized
into 3 sections that describe basic model information, temporal
characteristics, and the data that can be exchanged with other
components, as shown in Fig. 3. Basic model properties are speci-
fied in the Modellnfo element. We chose to identify the model by

- SSW.Engine 2. setinput() *[i=0..n]

3. performTimeStep()
\4. getOutput() *[i=0..n]

: SSW.ILanguage
Adapter
: SSW. : SSW. : SSW.
ScilabAdapter MatlabAdapter PythonAdapter

2.1. createNamedMatrixOfDouble() *
3.1, sendScilablob() Y
4.1. readNamedMatrixOfDouble() *

2.1. setMember() +
3.1. invokeMember() +
4.1. getMember() +

2.1 setMatrix() ¥
3.1. evaluate() +
4.1. getMatrix() *

<< actor >>
: Matlab Engine

<< actor >>
: Scilab Engine

: Microsoft.Scripting.
Hosting.ScriptEngine

Fig. 7. UML communication diagram specifying the sequence of steps performed by the SSW.Engine when performing a time step.

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294 291

Crop Choice

Economic
. Model
. PI'fei) Simulate choice of
+ crops planted
Crop Model Weather Decision
Simulate yield and Maker
water pumped
Parcel Management
%J%
Aquifer
—_— Saturated
Thickness
Groundwater
Model

Simulate water elevation

Fig. 8. System conceptualization and exchanges between models.

the name “Economic Model” and set the name of the scripting
language to be “MATLAB” in this case.

The temporal characteristics of the model are specified in the
TimeHorizon element. The time span that the model is capable of
simulating is specified by the StartDateTime and EndDateTime
elements and in this case the model is calibrated to the time period
1991 to 2004. The time step length is set to 1 year (expressed in
seconds) via the TimeStep element and the InputTimeOffset is set
to 0 to indicate that inputs from other models should correspond to
the current time step, since the model uses the groundwater
information for a given year to predict the crop choice of the
following year.

The inputs and outputs of the model are specified in the
Exchangeltems element. Each exchange item is described by
a quantity, element set, dimension, and units (the latter two are not
shown in the figure). The quantity ID both appears in the user
interface of the software used to link models together and is used
within model scripts to identify a specific input or output. In this
case the configuration file includes one input exchange item that
represents the saturated thickness data from the groundwater
models and one output exchange item that represents the choice of
which crop is planted (encoded as sentinel values 0, 1, 2, and 3). The
elements of the element set are specified in a separate XML file (not
shown in the figure). In the case of the economic model the element
set consists of a collection of 2D points that correspond to the
locations of the parcels within the study area. This file accompanies
the model script files and is read by the SSW component during
initialization.

4.3.2. Writing model scripts

Following the design of the OpenM], the SSW expects a model’s
source code to be logically organized into 3 parts. The model source
code must be provided to the SSW as 3 script files each of which
contains one of the functions sswinitialize, ssw Perform Time Step,
and sswFinish. The SSW reads these script files during initialization
and executes the functions at runtime.

The sswinitialize function typically reads input files and
initializes a model’s internal state variables. The ssw Perform Time
Step function calculates a time step. The sswFinish function closes
any resources in use and writes final output files as necessary.
These functions may call the accessor functions, given in Table 1, to

obtain information about the state of the SSW component, such as
the current simulation time, or the path to the folder in which the
scripts are located (to, for example, read input files and write
output files). The ability to obtain the current simulation time from
the SSW component is necessary because the component (specif-
ically the functionality provided by the SMW) keeps track of the
model’s simulation time and advances it as necessary.

The accessor functions also provide a means for a script, typi-
cally the ssw Perform Time Step function, to obtain the input data
provided by other components and save output data calculated
during a time step so that it can be made available to other
components. Thus the source code of this function typically has 3
parts that (1) call the sswGetInput function to obtain input data, (2)
perform the computation of a time step, and (3) call the sswSe-
tOutput function to save the results of the computation. These
regions are apparent in the ssw Perform Time Step function of the
economic model, shown in Fig. 4. The function begins by obtaining
the current simulation time and locating the necessary input files. It
then calls the sswGetlnput function (passing one of the quantity
ID’s specified in the configuration file) to obtain the saturated
thickness value for each spatial element in the element set. The
calculation of the time step is performed by the SolveCropChoice
function which solves the regression equation for each spatial
element and returns the crop choices as an array. The function
concludes by calling the sswSetOutput function for each spatial
element using the quantity ID “CropChoice” as defined in the
configuration file. The sswSetOutput function saves a copy of the
values in a special variable that is read by the SSW following the
completion of the ssw Perform Time Step function.

Model scripts may be written and tested separately from the
SSW outside of a linked environment by supplying placeholder
functions in place of the accessor functions. For example, when
writing the scripts for the economic model, we wrote a surrogate
function called sswGetlnput that read saturated thickness data
from a file. This way we could test the ssw Perform Time Step
function, which calls the sswGetlnput function, without the SSW.
After we verified that the operation of the model was correct, we
removed the surrogate functions and the scripts were ready for
execution by the SSW. The SSW dynamically generates the accessor
functions at runtime for each set of model scripts based on the
input and output exchange items defined in the configuration file.

4.4, Performing the simulation

We created a configuration file and model scripts for the Scilab
groundwater model in the same way as the economic model
described above and configured all 3 models for the study region
and time period (Steward et al.,, 2009; Bulatewicz et al., 2009;
Hendricks, 2007). We used an existing OpenMI component for the
EPIC model (Bulatewicz et al., 2010).

We chose Sheridan County, Kansas as the study region, as the
Ogallala Aquifer has supported irrigated agriculture in this county
for over 50 years, as well as the surrounding semi-arid grasslands of
the Central Plains of the United States. The scale of a single county
(approximately 50 km x 50 km) is the typical aggregation level for
economic data such as prices and yields and the chosen county
reflects the groundwater properties, economic context, and agri-
cultural practices for the region.

In this retrospective study, we show how cropping patterns and
water use would have changed over the years 1991—-2004 had
energy prices been higher during that period. Since that time,
energy prices have increased substantially and cropping patterns
have changed, but a number of other contributing factors such as
crop prices have also changed. This counterfactual simulation
disentangles the separate effect of energy prices from all other

292 T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294

factors, which are fixed at their observed values. We conducted
simulations of two scenarios. In the historical scenario the linked
model was configured to reproduce observations over the simula-
tion period (calibration described in Bulatewicz et al. (2010)). In the
high energy price scenario the exogenous energy price input to the
economic model was increased by 15% per well for each year. The
energy price (average of 2.32 $/mcf over study period) is the natural
gas futures price (normalized by index of prices paid) as the
February monthly average of June and July contracts in the United
States (source: Futures — CRB PowerGen).

Using the Configuration Editor application (OpenMI Association
Technical Committee) we interactively created a new composition
and added the agricultural component and two instances of the

a Historical

Kilometers

Total Water Use (x1 D'r’ms) Value

+ 00-10 - High : 1 [T
. 1.0-3.0 'Qrg, 'Q“b '09, ’\?,
L] 3.0-6.2 Low :-23 N > ° 2

b High Energy Prices

SSW component along with the necessary input and output links.
We attached the trigger to the groundwater model because its
outputs for a given year are used by the other models for the
simulation of the following year and attaching the trigger to the
agricultural or economic model would result in the groundwater
model not simulating the final year of the simulation period. When
we executed the linked model the dependencies were automati-
cally identified and the order in which the components advanced
their simulation times and exchanged data was fully automated.
The execution of the linked model begins with the trigger calling
GetValues on the groundwater model requesting the saturated
thickness for 1991. The groundwater model requires the water-use
in 1991 in order to compute the next time step so it calls GetValues

Crop Choice 2001
M

@ 2
‘}\s{\@“ %\é‘ 006\ 6906\ @

& '

Total Water Use (x1 Dsms) Value
+ o0-10 . High 1 T
. 1.0-3.0 ‘Q-}, ‘Qg, ‘Qt;, ,\?‘

. 3.0-6.2 Low :-23 o > © o

Fig. 9. Results of the historical and high energy price scenarios. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

e @ & &
I 5 _‘?e’
o P

T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294 293

on the agricultural model requesting it. In response to this request
the agricultural model calls GetValues on the economic model to
obtain the crop choice in 1991 which it needs before it can simulate
the crop growth and water-use that year. The economic model in
turn calls GetValues on the groundwater model requesting the
saturated thickness at the end of 1990 which is necessary to predict
the crop choice in 1991. The groundwater model returns the satu-
rated thickness for 1990 (observed values are used for the first year)
to the economic model which uses the values to predict the crop
choice in 1991 and then provides those results to the agricultural
model. The agricultural model simulates the crop growth and
water-use of the chosen crops and provides the water-use values to
the groundwater model which uses the values to simulate the
saturated thickness in 1991. The trigger then calls GetValues on the
groundwater model for the next year (1992) and the chain of
requests repeats.

The results of each model for the historical and high energy
price scenarios are illustrated in Fig. 9 and briefly interpreted to
explain the SSW results for this interdisciplinary problem. The high
energy prices resulted in the economic model predicting less
planting of the water intensive crops, corn and alfalfa, and more
planting of soybean and sorghum which have lower water
requirements. Over the 14-year period the acreage planted
decreased for corn (—4.92%) and alfalfa (—0.45%) and increased for
soybean (+5.34%) and sorghum (+0.04%). There was a corre-
sponding decrease in total production (across all crops) by 4.31%
(390 x 10% t—3.73 x 10° t), a decrease in revenue by 1.39%
($3.23 x 108—$3.19 x 10%), and a decrease in water-use by 1.26%
(1.54 x 10° m3-1.52 x 10° m>).

The impact of the change in energy prices on the crop choice
varied by year according to the magnitude of the increase. In years
where the energy prices were low, the 15% increase had a smaller
magnitude and smaller effect on the crop choice. Conversely, years
with higher energy prices resulted in a larger magnitude and larger
effect on crop choice.

The smallest change occurred in 1996 in which the difference in
acreage planted for each crop was less than 0.60%. The greatest
impact of the change in energy prices on the crop choice was in year
2001 in which the share of acreage planted to alfalfa, corn, and
sorghum decreased by 0.96%, 34.27%, and 0.24% and soybean
production increased by 35.48%. The spatial distribution of this
change in crop choice for year 2001 is shown in Fig. 9 along with
the corresponding change in revenue. Production in this year
decreased by 24.66% with corresponding decreases in revenue by
11.35% and water-use by 14.74%. There was a similar impact for the
years 2003 and 2004 and those three years accounted for much of
the change over the simulation period.

Our results accord with a typical economic property of input
demand functions—quantities are relatively more sensitive to price
changes at high prices than at low prices. At high energy prices, we
find an implied elasticity of water use with respect to the energy
price of 6.9/15 = 0.46, which is within the range of estimates from
other irrigated regions (Scheierling et al., 2006). In periods when
energy prices are high, the additional energy costs will dampen
farmers’ incentives to plant water intensive crops somewhat,
although the response is still relatively small in elasticity terms and
may be outweighed by other factors such as increased commodity
prices.

5. Conclusions

In this work we have presented the design of a software
component called the Simple Script Wrapper (SSW) that enables
scientists to link models and tools written in scripting languages to
OpenMI components. The SSW provides the interoperability

between scripting languages and the C# language used by the OATC
SDK allowing the scientist to work exclusively within a scripting
language. It capitalizes on the dynamic nature of scripting
languages making it general-purpose and usable to link any scripts
written in the supported languages. The SSW thus enables
modeling tools developed with scripting languages to become
OpenMI-compliant. This makes model linking to scripting
languages accessible to both scientists and students alike and has
been employed in the classroom as an activity in multidisciplinary
model linking.

The process of making a scripted model into an OpenMI linkable
component involves two steps in which the scientist (1) writes a file
that describes the configuration of a model such as its name, inputs,
and outputs and (2) adds three functions to the model script for
initialization, performing a time step, and finishing its simulation.
The SSW collects inputs from the other components as necessary
and makes them available to the model script through a function
call. It instructs the model when to perform time steps in response
to requests from other components. The model script calls func-
tions to save the results of its time steps and the SSW relays these
results to other components as necessary. The current imple-
mentation can be used with any scripts written in MATLAB, Scilab,
or Python and can be extended to support additional scripting
languages.

We conducted a case study in the context of irrigated agricul-
tural systems that demonstrates how the SSW can be utilized for
interdisciplinary model integration. The integrated model was
composed of agricultural, groundwater, and economic models and
the latter two were scripted models that utilized the SSW. Modeled
quantities were exchanged between the models in a circular
fashion (Fig. 8). We utilized the integrated model to carry out the
simulation of two scenarios to investigate the impact of changes in
exogenous energy prices on an irrigated agricultural system. The
results of the integrated model for the historical scenario between
1991 and 2004 are shown in Fig. 9. The results of the retrospective
scenario in which energy prices were 15% higher throughout the
study period are shown in Fig. 9. In both cases the results are
presented spatially in terms of groundwater elevation, crop choice,
and economic productivity. The results illustrate the spatial
patterns of changes in water-use, production, and revenue that
result from an increase in energy prices.

Multidisciplinary integrated models are uniquely suited to
contribute to the understanding of complex coupled human-
natural systems. The technical challenges of integrating dispa-
rate models can be prohibitive and results in isolated modeling
studies by scientists and minimal exposure to quantitative inte-
grated assessment techniques for students. The development of
accessible methods for model integration, such as the SSW, are
necessary for the practice of integrated modeling to be broadly
adopted in the modeling and simulation community. Our SSW
implementation provides a foundation for those who write
scripting language tools to make their models OpenMI-
compliant, and thus integrable with other OpenMI codes. It is
through such practices that large-scale natural resources can be
managed in an environmentally sound, economically viable, and
socially acceptable way.

Acknowledgments

This work was supported in part by the National Science
Foundation (grant GEO0909515) and the United States Department
of Agriculture/Agricultural Research Service (Ogallala Aquifer
Initiative). Any findings, opinions, conclusions, or recommenda-
tions expressed herein are those of the authors and do not neces-
sarily reflect the views of any funding units.

294 T. Bulatewicz et al. / Environmental Modelling & Software 39 (2013) 283—294

References

Buis, S., Piacentini, A., Declat, D., 2006. PALM: a computational framework for
assembling high-performance computing applications. Concurr. Comp. -Pract. E
18 (2), 231-245.

Bulatewicz, T., Cuny, J., 2006. A domain-specific language for model coupling. In:
Proceedings of the 2006 Winter Simulation Conference, Monterey, California,
3—6 December, pp. 1091—-1100.

Bulatewicz, T, Jin, W., Staggenborg, S., Lauwo, S.Y., Miller, M., Das, S., Andresen, D.,
Peterson, J., Steward, D.R., Welch, S.M., 2009. Calibration of a crop model to
irrigated water use using a genetic algorithm. Hydrol. Earth Syst. Sci. 13,
1467—1483.

Bulatewicz, T., Yang, X., Peterson,].M., Staggenborg, S., Welch, S.M., Steward, D.R.,
2010. Accessible integration of agriculture, groundwater, and economic models
using the Open Modeling Interface (OpenMI): methodology and initial results.
Hydrol. Earth Syst. Sci. 14 (3), 521-534.

Castronova, A.M., Goodall, J.L., 2010. A generic approach for developing process-
level hydrologic modeling components. Environ. Model. Softw. 25, 819—-825.

CUASHI, 2012. CUASHI website. http://www.cuashi.org.

Damgaard, C.F, 2004. Coupling between the river basin management model
(mikebasin) and the 3d hydrological model (mike she) with use of the OpenMI
system. In: 6th International Conference on Hydroinformatics, Singapore, June
2004, pp. 21-26.

David, O., Markstrom, S.L., Rojas, KW., Ahuja, L.R., Schneider, LW., 2002. The Object
Modeling System. In: Ahuja, L., Ma, L., Howell, T.A. (Eds.), Agricultural System
Models in Field Research and Technology Transfer. Lewis Publishers, CRC Press
LLC, pp. 317—-337.

Famiglietti, J.S., Murdoch, L.C., Lakshmi, V., Arrigo,]., Hooper, R., March 15-17, 2011.
Establishing a framework for community modeling in hydrologic science, In:
Report from the 3rd Workshop on a Community Hydrologic Modeling Platform
(CHyMP): a Strategic and Implementation Plan, Beckman Center of the National
Academies, University of California at Irvine.

Ford, RW,, Riley, G.D., Bane, M.K,, Armstrong, C.W., Freeman, T.L, 2006. GCF:
a general coupling framework. Concurr. Comp. -Pract. E 18 (2), 163—181.

Foster, S., Loucks, D.P., 2006. Non-renewable Groundwater Resources. In: Series on
Groundwater No. 10. UNESCO, Paris.

Gijsbers, P., Brinkman, R., Gregersen, J., Hummel, S., Westen, S., 2005. OpenMI:
Open Modeling Interface. The OpenMI Document Series: Part C The org.O-
penMI. Standard Interface Specification (version 1.0). Available at: http://
www.OpenMl.org.

Gregersen, J.B., Gijsbers, PJ.A., Westen, S.J.P, 2007. OpenMI: Open Modeling Inter-
face. J. Hydroinform 9 (3), 175-191.

Harris, G., 2002. Integrated assessment and modelling: an essential way of doing
science. Environ. Model. Softw. 17 (3), 201—-207.

Hendricks, N.P., 2007. Estimating Irrigation Water Demand with a Multinomial Logit
Selectivity Model. Department of Agricultural Economics, Kansas State
University, Manhattan, Kansas.

IronPython. IronPython Community. http://www.ironpython.net.

Jakeman, AJ., Letcher, R.A., 2003. Integrated assessment and modelling: features,
principles and examples for catchment management. Environ. Model. Softw 18
(6), 491-501.

Joppich, W., Kurschner, M., 2006. MpCCI — a tool for the simulation of coupled
applications. Concurr. Comp. -Pract. E 18 (2), 183—192.

Kendrick, D.A., Amman, H.M., 1999. Programming languages in economics. Comput.
Econ. 14, 151-181.

Konikow, LF, Kendy, E., 2005. Groundwater depletion: a global problem. Hydro-
geol. J. 13, 317—-320.

Larson, J.W.,, Jacob, R.L., Foster, LT, Guo,]J., 2001. The model coupling toolkit. In:
Lecture Notes in Computer Science. Proceedings of the International Conference
on Computational Sciences-Part I, vol. 2073. Springer-Verlag, pp. 185—194.

Mathematica. Wolfram. http://www.wolfram.com.

MATLAB. Mathworks. http://www.mathworks.com.

Moore, R.V,, Tindall, C.I, 2005. An overview of the Open Modelling Interface and
environment (the OpenMI). Environ. Sci. Policy 8 (3), 279—286.

OpenMI Association Technical Committee. Configuration editor software. http://
sourceforge.net/projects/openmi.

Ousterhout, J., March, 23-30 1998. Scripting: higher level programming for the 21st
century. [EEE Comput.

Pahl-Wostl, C., 2002. Participative and stakeholder-based policy design, evaluation
and modeling processes. Integr. Assess. 3 (1), 3—14.

Parker, P, Letcher, R, Jakeman, A., Beck, M.B., Harris, G., Argent, R.M., Hare, M., Pahl-
Wostl, C., Voinov, A., Janssen, M., Sullivan, P, Scoccimarro, M., Friend, A.,
Sonnenshein, M., Barker, D., Matejicek, L., Odulaja, D., Deadman, P, Lim, K,
Larocque, G., Tarikhi, P,, Fletcher, C., Put, A., Maxwell, T., Charles, A., Breeze, H.,
Nakatani, N., Mudgal, S., Naito, W., Osidele, O., Eriksson, I., Kautsky, U., Kautsky, E.,
Naeslund, B., Kumblad, L., Park, R., Maltagliati, S., Girardin, P., Rizzoli, A.,
Mauriello, D., Hoch, R., Pelletier, D., Reilly, J., Olafsdottir, R., Bin, S., 2002. Progress
in integrated assessment and modelling. Environ. Model. Softw. 17 (3), 209—217.

Parson, E.A., 1995. Integrated assessment and environmental policy making: in
pursuit of usefulness. Energ. Policy 23 (4—5), 463—475.

Peckham, S.D., Hutton, E., 2009. Componentizing, standardizing and visualizing:
how CSDMS is building a new system for integrated modeling from open-
source tools and standards. Eos Trans. AGU 90 (52). Fall Meeting Abstracts
Suppl., abstract IN11A—1045.

Perl. http://www.perl.org

Python. Python Software foundation. http://www.python.org.

Rodell, M., Velicogna, I, Famiglietti,].S., 2009. Satellite-based estimates of
groundwater depletion in India. Nature 460, 999—-1002.

Rotmans, J., Van Asselt, M., 1996. Integrated assessment: a growing child on its way
to maturity. Clim. Chang. 34 (3—4), 327—336.

Ruby. http://www.ruby-lang.org.

SAS. SAS Institute Inc. http://www.sas.com/.

Scanlon, B.R,, Jolly, L, Sophocleous, M., Zhang, L., 2007. Global impacts of conver-
sions from natural to agricultural ecosystems on water resources: quantity
versus quality. Water Resour. Res. 43, W03437.

Scheierling, S.M., Loomis,].B., Young, R.A., 2006. Irrigation water demand: a meta-
analysis of price elasticities. Water Resour. Res. 42, W01411.

Scilab. Inria. http://www.scilab.org

Shah, T., Burke, J., Villholth, K., 2007. Groundwater: a Global Assessment of Scale and
Significance. Earthscan, London, UK and IWMI, Colombo, Sri Lanka. Molden, D.

SPSS. IBM Corporation. http://www.sas.com/.

Steward, D.R., 2007. Groundwater response to changing water-use practices in
sloping aquifers. Water Resour. Res. 43 (W05408), 1-12.

Steward, D.R., Peterson,].M., Yang, X., Bulatewicz, T., Herrera-Rodriguez, M., Mao, D.,
Hendricks, N., 2009. Groundwater economics: an object oriented foundation for
integrated studies of irrigated agricultural systems. Water Resour. Res. 45, W05430.

Wang, J., Huang, |., Rozelle, S., Huang, Q., Zhang, L., 2009. Understanding the water
crisis in northern China: what the government and farmers are doing. Int. J.
Water Resour. D. 25 (1), 141—-158.

Williams, J.R., 1995. The EPIC model. Comput. Models Watershed Hydrol.,
909-1000. Chapter 25.

Williams, J.R,, Dyke, P.T,, Fuchs, W.W., Benson, V.M., Rice, O.W., Taylor, E.D., 1990.
EPIC — Erosion/productivity Impact Calculator: 2 User Manual. USDA. Technical
Bulletin No. 1768.

http://www.cuashi.org
http://www.OpenMI.org
http://www.OpenMI.org
http://www.ironpython.net
http://www.wolfram.com
http://www.mathworks.com
http://sourceforge.net/projects/openmi
http://sourceforge.net/projects/openmi
http://www.perl.org
http://www.python.org
http://www.ruby-lang.org
http://www.sas.com/
http://www.scilab.org
http://www.sas.com/

	The Simple Script Wrapper for OpenMI: Enabling interdisciplinary modeling studies
	1. Introduction
	2. Background
	2.1. Model linking
	2.2. The Open Modeling Interface
	2.3. Language interoperability

	3. Methods
	3.1. Using the SSW
	3.2. Implementation of the SSW
	3.3. Operation of the SSW

	4. Case study
	4.1. Conceptualization
	4.2. Quantity exchanges
	4.3. Linkable model scripts
	4.3.1. Creating a configuration file
	4.3.2. Writing model scripts

	4.4. Performing the simulation

	5. Conclusions
	Acknowledgments
	References

