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Abstract

In the fitting of mixtures of linear regression models, the normal assumption has been traditionally used

for the error term and then the regression parameters are estimated by the maximum likelihood estimate

(MLE) using the EM algorithm. Under the normal assumption, the M step of the EM algorithm uses

a weighted least squares estimate (LSE) for the regression parameters. It is well known that the LSE is

sensitive to outliers or heavy tailed error distributions. In this report, we propose a robust mixture of linear

regression model, which replaces the least square criterion with some robust criteria in the M step of the

EM algorithm. In addition, we will use a simulation study to demonstrate how sensitive the traditional

mixture regression estimation method is to outliers or heavy tailed error distributions and compare it with

our proposed robust mixture regression estimation method. Based on our empirical studies, our proposed

robust estimation method works comparably to the traditional estimation method when there are no outliers

and the error is normally distributed but is much better if there are outliers or the error has heavy tails

(such as t-distribution). A real data set application is also provided to illustrate the effectiveness of our

proposed methodology.
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Chapter 1

Introduction

1.1 Mixture Model

1.1.1 History

The history of Finite Mixture Models goes back to more than 100 years ago. In the middle of the 19th

century, Quetelet did some work involving mixture model which was mentioned explicitly by Galton. More

than 30 years latter, Holmes (1892) introduced in the concept of mixtures of populations. The classic

paper on mixture models is by the famous biometrician Pearson (1894). This classic paper was the first

two monstrous memoirs in a series of “Contributions to the Mathematical Theory of Evaluation ”( see

Stigler(1986), Chapter 10). Pearson is one of the first major analysts involving the use of mixture models.

He used a moment based method to fit a mixture of two heteroscedastic normal components in the paper.

The moment based method to fit a mixture by Pearson is pretty tedious. He obtained his moment based

estimates of 5 parameters (µ1 µ2 σ1 σ2 π) by solving a ninth degree polynomial.

The data Pearson worked on in 1894 was provided by the zoologist Walter Frank Raphael Weldon. He

had speculated in 1893 that asymmetry in the histogram of these ratios could signal evolutionary divergence.

Pearson’s approach was to fit a univariate mixture of two normals to the data by choosing the five parameters

of the mixture such that the empirical moments matched those of the model.

Although Pearson’s method means more work , actually it was still used widely until a new approach was

found about 30 years into of the 20th century. But at the same time, some effort aiming at simplifying and

extending the method was made. For example, Charlier and Wicksell (1924) extended it to the bivariate

normal component case, Doetsch (1928) used it in the case of more than two univariate normal components,

Stromgren (1934) considered the use of cumulants, and Rao expanded the use to statistics. Much recently,

Cohen (1967) did some work on solving Pearson’s ninth degree polynomial by an iterative process.
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Considerable advances have been made in the fitting of finite mixture models in last 20 years or so,

and maximum likelihood, with the advent of EM algorithm, is one of the most important methods. It is

still by far the most widely used approach to the fitting of finite mixture distributions. ML estimation was

considered by Tan, Chang, Fryer and Robertson (1972), among some others, for solving Pearson’s ninth

order polynomial. This method has since been focused and reconsidered by researchers.

1.1.2 Definition

In statistics, a mixture model is a probabilistic model for density estimation using a mixture distribution.

Mixture model have experienced increased interest over last decades. They are related to cluster analysis,

discriminant analysis, survival analysis. Mixture model have applications in a number of areas such including

finance, medicine, agriculture and others.

Here is an example: Financial returns often behave differently in normal situations and during crisis

times. A mixture model for return data seems reasonable. Some researchers model this is a jump-diffusion

model, or as a mixture of two normal distributions.

Finite mixture models are most commonly used for mixture models. They are applied to one sample from

a population which consists of several homogeneous or heterogeneous subpopulations. These populations will

be called components of the population. Let (X1...,Xn) be a sample from a population and zi be the index

number of the component to which Xi belongs. The number of components will generally be denoted by m,

which can be known or unknown. Denote the density function of jth component by f(x;λj), j = 1, 2, ...,m.

where λj is a component specific parameter, which can be scalar or vector. For simple notation, f(·) can be

the density of discrete or continuous random variables and generally is called component density. We have

p(xi|zi = j) = f(xi;λj)(i = 1, ..., n; j = 1, ...,m).

where p(·) is the general notation for the density function of both discrete or a continuous probability

distribution. The proportion of the total population that is in the jth component will be denoted by πj and

called the component weight. We have

P (zi = j) = πj(i = 1, ..., n; j = 1, ...,m),

where 0 ≤ πj ≤ 1,j = 1, ...,m, and
∑m

j=1 πj = 1. If we could observe the component labels (zi, i = 1, ..., n),

then the variables (Xi, zi), i = 1, ..., n. are a random sample from the joint density of the form

p(x, j) = p(x|z = j)P (z = j) = f(x;λj)πj .

If the component labels (z1, ..., zn) are missing, we only observe (X1, ..., Xn) from the marginal density of

X, which is the mixture density

p(x; θ) =

m∑
j=1

p(x|z = j)P (z = j) =

m∑
j=1

πjf(x;λj), (1.1)

2



where θ = (λ1, ..., λm, π1, ..., πm). A family of distributions having density (1.1) are called anm−component

finite mixture model. When m = 1, there is just one component and p(·) will be called unicomponent

mixture density. To estimate the unknown parameters θ = (λ1..., λm, π1, ..., πm) in (1.1), we generally use

the maximum likelihood estimator (MLE):I.e, we find θ to maximize

l(θ;x) =
n∑

i=1

log
m∑
j=1

πjf(xi;λj).

Since there is no explicit formula for the MLE, we can use EM algorithm to find the MLE for finite mixture

models.

1.1.3 EM Algorithm

EM algorithm refers to expected-maximization algorithm. It is used for finding maximum likelihood es-

timates of parameters in probabilistic models, where the model depends on unobserved latent variables.

EM is an iterative method which alternates between performing an expectation E step, which computes

an expectation of the log likelihood with respect to the current estimate of the distribution for the latent

variables, and a maximization M step, which computes the parameters which maximize the expected log

likelihood found on the E step. These parameters are then used to determine the distribution of the latent

variables in the next E step. Suppose the observed data x = (x1, ..., xn) are from g(x|θ), where the g(x|θ) is

any density with parameter θ. The MLE of θ is θ̂ = argmaxθ l(θ), where l(θ) =
∑n

i=1 log g(xi|θ). Suppose

there is a simple or closed form of the ML estimator for the data y = (x, z) with log likelihood lc(θ), where

z = (z1, ..., zn) are the unobserved (or missing) data. We can use EM algorithm to find the θ̂. The EM

algorithm is performed as follows:

1. Start with initial values θ(0).

2. E step: At the (k+1)th step, compute the expected value of the log-likelihood function, with respect

to the conditional distribution of z given x under the current estimate of the parameters θ(k). Thus

Q(θ, θ(k)) = Eθ(k)(lc(θ)|x). (1.2)

3. M step: Determine the new estimate θ(k+1) as the maximizer of Q(θ, θ(k)) over θ.

θ(k+1) = argmax
θ
Q(θ, θ(k)). (1.3)

4. Iterate steps 2 and 3 until some convergence criterion is attained.

3



For finite normal mixture models with λj = (µj , σ
2
j ), we can define the missing data as

Zij =

 1, if the ith observation is from the jth component;

0, otherwise.
1

Then the log-likelihood for the complete data is

lc(θ) =
n∑

i=1

m∑
j=1

zij log(πjϕ(xi;µj , σ
2
j )), (1.4)

where ϕ(x;µ, σ2) is the normal density for N(µ, σ2), i.e..

ϕ(x;µ, σ2) =
1√
2πσ

exp{− (x− µ)2

2σ2
}.

Note that lc(θ) is a linear function of zij . Therefore, in order to calculate Eθ(k)(lc(θ)|x) in the E step,

we only need to calculate

p
(k+1)
ij = Eθ(k)(Zij |x).

In the M step, we need to maximize

n∑
i=1

m∑
j=1

p
(k+1)
ij log[πjϕ(xi;µj , σ

2
j )] =

n∑
i=1

m∑
j=1

p
(k+1)
ij log(πj) +

n∑
i=1

m∑
j=1

p
(k+1)
ij log[ϕ(xi;µj , σ

2
j )]. (1.5)

Since ϕ is a normal density, the above criterion has explicit solutions.

Therefore, the EM algorithm for normal mixture is as follows:

1. Take initial guesses of the parameters, say µ
(0)
j , σ

2(0)
j , π

(0)
j , j = 1, ...,m.

2. E step: At the (k + 1)th step, compute the classification probability that the observation xi comes

from component j based on the current estimates.

p
(k+1)
ij = E(zij |x, θ(k)) =

π
(k)
j ϕ(xi;µ

(k)
j , σ

2(k)
j )∑m

j=1 π
(k)
j ϕ(xi;µ

(k)
j , σ

2(k)
j )

, i = 1, ..., n, j = 1, ...,m. (1.6)

3. M step: Compute the component means, variance and the mixing probability:

That is to find θ(k+1) that can maximize Eθ(k)(l(θ)(k+1)|x) in (1.5)

µ
(k+1)
j =

∑n
i=1 p

(k+1)
ij xi∑n

i=1 p
(k+1)
ij

. (1.7)

σ
2(k+1)
j =

∑n
i=1 p

(k+1)
ij (xi − µ

(k+1)
j )2∑n

i=1 p
(k+1)
ij

. (1.8)
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π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
. (1.9)

for j = 1, ...,m.

4. Iterate step 2 and 3 until convergence.

1.2 Robust Regression

1.2.1 History and Application

Robust regression is a form of regression analysis designed to circumvent some limitations of traditional

parametric and non-parametric methods. Robust methods have a long history that can be tracked back at

least to the end of the nineteenth century with Simon Newcomb (see Stigler, 1973). However the first great

steps forward occurred in the 1960s and the early 1970s with the fundamental work of Tukey (1960, 1962),

Huber (1964, 1967) and Frank Hampel (1971, 1974). The applicability of the new robust methods proposed

by these researchers was made possible by the increased speed and accessibility of computers. In the last

four decades the field of robust statistics has experienced substantial growth as a research area, and a large

number of articles were published. Influencial books have been written by Huber(1981), Hampel,(1986),

Rousseeuw (1987), Staudte(1990).

Why are robust statistics needed? All statistical methods rely explicitly or implicitly on a number of

assumptions. The most widely used model formalization is the assumption that the observed data have a

normal (Gaussian) distribution. This assumption has been present in statistics for two centuries, and has

been the framework for most of the classical methods in regression, analysis of variance and multivariate

analysis. There have been attempts to justify the assuming of normality with theoretical arguments, such as

the central limit theorem. The main justification for assuming a normal distribution is that it is theoretically

quite convenient because it allows one to derive explicit formulas for optimal statistical methods such as

maximum likelihood and likelihood ratio tests, as well as the sampling distribution of inference quantities

such as t-statistics. We can call those the classical statistical methods, and note that they rely on the

assumption that normality holds exactly.

It often happens in practice that an assumed normal distribution model holds approximately in that it

describes the majority of observations, but some observations follow a different pattern or no pattern at

all. In the case when the randomness in the model is assigned to observational errors, the reality is that

while the behavior of many sets of data appeared rather normal, this is held only approximately. There are
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still a small proportion of observations which are quite atypical by virtue of being far from the bulk of the

data. We call such atypical data “outliers”. The kind of“approximately” normal distribution that gives rise

to outliers is one that has a normal shape in the central region, but has tails that are heavier or “fatter”

than those of normal distribution. We might expect that if such approximate normality holds, then the

results of using a n inference tool based on normal distribution theory would also hold approximately. This

is unfortunately not true. If the data are assumed to be normally distributed but their actual distribution

has heavy tails, then estimates based on the maximum likelihood principle not only cease to be“best” but

may have unnecessarily large variance if the tails are symmetric and may have very large bias if the tails

are asymmetric.

The robust approach to statistical modeling and data analysis aims at deriving methods that produce

reliable parameter estimates, not only when the data follow a given distribution exactly, but also when this

happens only approximately in the sense just described above. A more informal data-oriented characteriza-

tion of robust methods is that they fit the bulk of the data well: if the data contain no outliers, the robust

method gives approximately the same results as the classical method, while if a small proportion of outliers

are present, the robust method gives approximately the same results as the classical method applied to

the“typical” data . As a consequence of fitting the bulk of the data well, robust methods provide a very

reliable method of detecting outliers, even in high-dimensional multivariate situations.

1.2.2 Robust Methods

Given the observations {(xi, yi), i = 1, . . . , n}, where xi is a p-dimension column vector, we assume that

they are linked by the linear relationship

yi = xTi β + ϵi

where xi = (1, xTi )
T , β = (β0, β1, . . . , βp)

T , {ϵ1, . . . , ϵn} are i.i.d. unobservable random errors with E(ϵi) =

0,Var(ϵi) = σ2, and xi and ϵi are independent.

The simplest and most widely used estimator of the parameter β is the ordinary least squares estimator

(LSE)

β̂ = argmin
β

n∑
i=1

(yi − xTi β)
2. (1.10)

It is well known that the LSE has minimum variance among unbiased estimators and is the most efficient

estimator if error is normal. However the least squares criterion is extremely sensitive to outliers and the

heavy tailed error distribution. Many robust estimators has been proposed over the last 30 years.

One approach to robustly estimating the regression parameters is to replace the normal distribution with

a heavy-tailed distribution. A t-distribution with between 4 and 6 degrees of freedom has been reported to

be a good choice in various practical situations. Bayesian robust regression, being fully parametric, relies

heavily on such distributions.
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Under the assumption of t-distributed errors, the distribution is a location-scale family. The degrees of

freedom of the t-distribution is sometimes called the kurtosis parameter. Lange, Little and Taylor (1989)

discuss this model in some depth from a non-Bayesian point of view. A Bayesian account appears in Gelman

et al (2003).

An alternative parametric approach is to assume that the errors follow a mixture of normal distributions;

in particular, a contaminated normal distribution in which the majority of observations are from a specified

normal distribution, but a small proportion are from a normal distribution with much higher variance. That

is, errors have probability 1 − ε of coming from a normal distribution with variance σ2, where ε is small,

and probability ε of coming from a normal distribution with variance cσ2 for some c > 1.

ϵi ∼ (1− ε)N(0, σ2) + εN(0, cσ2).

Typically, ε < 0.1. This is sometimes called the contamination model.

Parametric approaches have the advantage that likelihood theory provides an “off the shelf” approach

to inference (although for mixture models such as the -contamination model, the usual regularity conditions

might not apply), and it is possible to build simulation models from the fit. However, such parametric

models still assume that the underlying model is literally true. As such, they do not account for skewed

errors distributions or finite observation precisions

Among various robust estimators which don’t assume any parametric density for error, there are three

broad classes: L estimators based on the linear combinations of order statistics, R estimators based on

ranking techniques, and M estimators based on minimizing a loss function. The M-estimators are the most

flexible and commonly used ones. They can be easily generalized to multiparameter problems. The M-

estimators replace the least squares criterion with one based on an outlier resistant function, ρ(·), of the

form

β̂ = argmin
β

n∑
i=1

ρ(yi − xTi β), (1.11)

where ρ(·) is an outlier resistant loss function. Denote ψ(·) = ρ′(·). Generally if ψ(·) exists and is bounded,

then ρ(·) is an outlier resistant loss function. If we use the L1 loss function ρ(t) = |t|, we will get the

commonly used robust regression method — median regression. One of the unctions commonly used in this

setting is Huber’s ψ-function (Huber 1981) ψk(t) = ρ′(t) = max{−k,min(k, t)}, i.e.

ψk(t) =


k where t > k;

t where |t| ≤ k;

−k where t < −k.

(1.12)

If k = ∞, the function ρ(·) becomes the L2-loss, and as k → 0, it becomes the L1 loss when suitably

7



normalized. Another possibility for ψ(·) is Turkey’s bisquare function ψk(t) = t{1− (t/k)2}2+, i.e.,

ψk(t) =

 0 if | tk | > 1;

t(1− ( t
k )

2)2 if | tk | < 1.
(1.13)

which weighs down the tail contribution of t by a biweight function. For more detail, see Huber (1973,

1981), Andrews (1974), Beaton and Tukey (1974), Holland and Welsch (1977), and Hampel (1986). Figure

3.1 and 3.2 display the Huber′s ψ function and bisquare ψ function.

−3 −2 −1 0 1 2 3

−
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.0
−

0
.5

0
.0

0
.5

1
.0

x

p
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Figure 1.1: Huber’s ψ function

Huber’s-ψ function is monotonic increasing and it gives a unique solution. But the bisquare-ψ function

is not monotonic, so it will generally give multiple solutions. We call the estimate by Huber’s-ψ function

“monotone M-estimates” and that by bisquare-ψ function “redescending M-estimates.”

Redescending estimates offer an increase in robustness in the presence of large outliers. This is caused

by the different ways the two methods handle with outliers: For the fixed k, Huber’s ψ function will take the
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Figure 1.2: Bisqure’s ψ function

observations, whose absolute values bigger than absolute k value, as k. But bisquare’s ψ function will delete

those exceptionally large outliers. Hence bisquare’s method can be better if large outliers exist. Certainly,

the k in the two functions are different. Bisquare’s k is usually bigger than Huber’s k.

Note that the k value usually depends on the scale. If the scale parameter σ is unknown, we also need to

estimate it robustly. In our report, we introduce the frequently used scale estimate– bisquare scale weight.

The function is defined as

w(t) =

 ρ(t)/t2 if t ̸= 0;

ρ
′′
(0) if t = 0.

Where

ρ(t) =

 1− [1− ( t
k )

2]3 if |t| ≤ k;

1 if |t| > k.
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By the definition of M − estimate of scale, the estimate of σ should satisfy an equation of the form

1

n

n∑
i=1

ρ(
xi
σ
) = δ, (1.14)

where ρ is a ρ− function and δ = 0.5. Note: ρ− function is a function with the following properties:

R1 ρ(x) is a nondecreasing function of |x|.

R2 ρ(0) = 0.

R3 ρ(x) is increasing for x > 0 such that ρ(x) < ρ(∞).

R4 If ρ is bounded, it is also assumed that ρ(∞) = 1.

See Maronna(2006, section 2.2) for more detials.

Combining the bisquare scale weight function and M − estimate sale equation, The weighted M-scale

estimate of variance satisfies the following equation:

σ̂2 =
1

nδ

n∑
i=1

w(
xi
σ̂
)x2i . (1.15)

Where w is the bisquare scale weight above.

This M-scale estimate of σ̂ will be used to calculate the regression parameters. This will be discussed in

the next chapter.

After standardizing the observations by the weighted M-scale estimate of σ̂. we can get the fixed k value

in Huber’s ψ function and bisquare ψ function. Basically, we choose k = 1.345 in Huber’s ψ function, and

k = 4.685 in bisquare ψfunction. The choices of k in this way can give very robust results for estimating the

location parameters. See Maronna(2006, section 2.2). When k = 1.345, the efficiency of Huber’s ψ function

is 0.95. That means if the data follows normal distribution exactly, the ratio of MSE by the classic method

over the MSE by Huber′s ψ function is 0.95. But if the distribution is not exactly normally distributed,

Huber′s ψ function is better than the classic method. Similar explanation for k = 4.685 in bisquare ψ

function.
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Chapter 2

Robust Mixtures Of Linear

Regression Models

2.1 Introduction

Mixtures of regressions provide a flexible tool to investigative the relationship between variables people are

interested coming from several unknown latent components. They are widely used in may fields, including

engineering, genetics, biology, econometrics, and marketing. A typical data set is tone perception data

(Cohen, 1984), which is shown in Figure 2.1. In the tone perception experiment of Cohen (1984), a pure

fundamental tone was played to a trained musician with electronically generated overtones added, which

were determined by a stretching ratio. The tuning ratio, which is the ratio between adjusted tone and the

fundamental tone, was recorded for 150 trials from the same musician. The purpose of this experiment was

to see how this tuning ratio affects the perception of the tone. Furthermore, the experiment was designed

to determine if either of two musical perception theories was reasonable (see Cohen (1980) for details).

Based on Figure 2.1, two lines are evident which correspond to the behavior indicated by the two musical

perception theories. The two regression lines corresponds to correct tuning and tuning to the first overtone,

respectively.

The model setting for mixture of regression models can be stated as follows. Let Z be a latent class

variable with P (Zi = j | xi) = πj for j = 1, 2, · · · ,m, where xi is the p-dimensional vector. Given Zi = j,

suppose that the response yi depends on xi in a linear way

yi = xTi βj + ϵij , (2.1)

βj = (β1j , . . . , βpj)
T , and ϵij ∼ N(0, σ2

j ). Here, xi includes both the predictors and the constant 1. Then

11
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Figure 2.1: The scatter plot of the tone perception data and the fitted two lines by our proposed method.

The predictor is actual tone ratio and the response is the perceived tone ratio by a trained musician.
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the conditional distribution of Yi given xi can be written as

Yi|xi ∼
m∑
j=1

πjN(xTi βj , σ
2
j ). (2.2)

Therefore, the log-likelihood for the observations {xi, yi, i = 1, . . . , n} is

l(θ) =

n∑
i=1

log[

m∑
j=1

πjϕ(yi;x
T
i βj , σ

2
j )], (2.3)

where θ = (π1, σ1,β1, . . . , πm, σm,βm). See, for example, Wedel (2000), Skrondal (2004), Jacobs, Jordan,

Nowlan, and Hinton (1991), and Jiang and Tanner (1999), for some applications of model (2.2).

The unknown parameters in the model (2.2) can be estimated by the maximum likelihood estimator

(MLE), which maximizes (2.3). Note that (2.3) does not have explicit solution. It is usually estimated by

the EM algorithm ; see Dempster, Laird, and Rubin (1977).

Based on the EM algorithm theory, after we get the classification probabilities p
(k+1)
ij in the E step, in

the M step βj , j = 1, . . . ,m is updated by

β
(k+1)
j = argmin

n∑
i=1

p
(k+1)
ij (yi − xTi βj)

T (yi − xTi βj). (2.4)

Consider the first derivative:

∂

∂βj

n∑
i=1

pij(y
T
i yi − yTi x

T
i βj − βT

j xiyi + βT
j xix

T
i βj) = 0

n∑
i=1

p
(k+1)
ij (−2xiyi + 2xix

T
i βj) = 0

n∑
i=1

p
(k+1)
ij xi(yi − xTi βj) = 0

n∑
i=1

p
(k+1)
ij xix

T
i βj =

n∑
i=1

p
(k+1)
ij xiyi

Therefore,

β
(k+1)
j = (

n∑
i=1

p
(k+1)
ij xix

T
i )

−1
n∑

i=1

p
(k+1)
ij xiyi

To make the formula neater, we introduce matrix notation for the above formula. Let

W
(k+1)
j =


p
(k+1)
1j 0 · · · 0

0 p
(k+1)
2j 0 · · ·

...
...

. . .
...

0 0 · · · p
(k+1)
nj

 (2.5)
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X =


xT1

xT2
...

xTn

 =


1 xT1

1 xT2
...

...

1 xTn .

 (2.6)

Thus,

β
(k+1)
j = (XTW k+1

j X)−1XTW
(k+1)
j Y, j = 1, . . . ,m.

Therefore, based on the normal assumption of the error density the traditional method uses the following

EM algorithm to estimate the regression parameters.

Algorithm 2.1.1. Based on the initial values of {π(0)
j , β

(0)
j , σ

(0)
j , j = 1, . . . ,m}, The EM algorithm is to

iterate the following E-step and M-step.

E-step: Calculate the classification probabilities

p
(k+1)
ij =

π
(k)
j ϕ(yi;x

T
i β

(k)
j , σ

2(k)
j )∑m

l=1 π
(k)
l ϕ(yi;xTi β

(k)
l , σ

2(k)
l )

, j = 1, . . . ,m

M-step: Update θ

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, . . . ,m.

β
(k+1)
j = (XTW

(k+1)
j X)−1XTW

(k+1)
j Y, j = 1, . . . ,m,

σ
2(k+1)
j =

∑n
i=1 p

(k+1)
ij (yi − xTi β

(k+1)
1 )2∑n

i=1 p
(k+1)
ij

, j = 1, . . . ,m,

where X and W
(k+1)
j are defined in (2.6) and (2.5), respectively. If we assume the variances are equal, then

σ
2(k+1)
j =

1

n

n∑
i=1

m∑
j=1

p
(k+1)
ij (yi − xTi β

(k+1)
j )2.

Based on (2.4), one can see that in the M step, β is updated by minimizing a weighted least square due

to the normal error assumption. It is well known that the least square criterion is sensitive to outliers or

heavy tail error distribution. In this report, we will provide a robust estimation method for the mixtures of

regression models.

2.2 Robust Estimation Method

In order to robustly estimate the regression parameters, in the M step, we propose to replace the least

squares criterion with a robust criterion ρ, i.e., β
(k+1)
j , j = 1, . . . ,m is the solution of

n∑
i=1

p
(k+1)
ij xiψ(

yi − xTi βj

σ
(k)
j

) = 0,

14



where ψ(·) = ρ′(·). In our report, we will consider bothHuber’s ψ function defined in (1.12) (with k = 1.345)

and the bisquare ψ fucntion defined in (1.13) (with k = 4.685).

Note that

n∑
i=1

p
(k+1)
ij xiψ(

yi − xTi βj

σ
(k)
j

) ≈
n∑

i=1

p
(k+1)
ij

ψ{(yi − xTi β
(k)
j )/σ

(k)
j }

(yi − xTi β
(k)
j )/σ

(k)
j

xi(
yi − xTi βj

σj
)

=
n∑

i=1

p
∗(k+1)
ij xi(

yi − xTi βj

σj
),

where

p
∗(k+1)
ij = p

(k+1)
ij

ψ((yi − xTi β
(k)
j )/σ

(k)
j )

(yi − xTi β
(k)
j )/σ

(k)
j

.

So

β
(k+1)
j =

(
n∑

i=1

p
∗(k+1)
ij xix

T
i

)−1 n∑
i=1

p
∗(k+1)
ij xiyi

Let

W
∗(k+1)
j =


p
∗(k+1)
1j 0 · · · 0

0 p
∗(k+1)
2j 0 · · ·

...
...

. . .
...

0 0 · · · p
∗(k+1)
nj

 (2.7)

Thus,

β
(k+1)
j = (XTW ∗(k+1)

j X)−1XTW ∗(k+1)

j Y,

where X is defined in (2.6).

Based on the above discussions, we propose the following new robust estimation method for the mixtures

of regression model of (2.1).

Algorithm 2.2.1. Given the initial values of {π(0)
j , β

(0)
j , σ

(0)
j , j = 1, . . . ,m}, our new robust EM algorithm

is to iterate the following E-step and M-step.

E-step: Calculate the classification probabilities

p
(k+1)
ij =

π
(k)
j ϕ(yi;x

T
i β

(k)
j , σ

2(k)
j )∑m

l=1 π
(k)
l ϕ(yi;xTi β

(k)
l , σ

2(k)
l )

M step: Update θ

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, i = 1...n.j = 1, . . . ,m.

β
(k+1)
j =

(
n∑

i=1

p
∗(k+1)
ij xix

T
i

)−1 n∑
i=1

p
∗(k+1)
ij xiyi
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Using the techniques similar to those in Section 1.2.2, we update the variance by

σ
2(k+1)
j =

∑n
i=1 p

(k+1)
ij (yi − xTi β

(k+1)
j )2w

(k+1)
ij

δ
∑n

i=1 p
(k+1)
ij

, j = 1, . . . ,m

where

w
(k+1)
ij = min[1− {1− (

yi − xTi β
(k+1)
j

cσ
(k)
j

)2}3, 1]/(
yi − xTi β

(k+1)
j

σ
(k)
j

)2

δ = 0.5, and c = 1.56.

If the two variances are equal, the (k + 1)th estimate of the variance is:

σ2(k+1) =

∑n
i=1

∑m
j=1 p

(k+1)
ij (yi − xTi β

(k+1)
j )2w

(k+1)
ij

nδ
.

In (2.2), if xi only includes the intercept term 1, then the model is the regular normal mixture model.

Thus, our above proposed robust estimation method can be also applied to robustly estimate the location

parameters in the normal mixture model.
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Chapter 3

Simulation Studies and Real Data

Application

We generate the independent and identically distributed (i.i.d.) data {(xi, yi), i = 1, . . . , n} from the

model

Y =

 0 + 4X + ϵ1, if Z = 1;

0− 4X + ϵ2, if Z = 2.
,

where Z is component indicator of Y with P (Z = 1) = 0.5, X ∼ U(0, 1), and ϵ1 and ϵ2 have the same

distribution. We consider the following three cases for the error density ϵ.

Case 1: ϵ ∼ N(0, 1) – Standard normal distribution.

Case 2: ϵ ∼ t4 – T distribution with degree freedom 4.

Case 3: ϵ1 ∼ 0.95N(0, 1) + 0.05N(0, 52) – Contaminated normal mixture.

We use Case 1 to test the efficiency of our robust estimation method compared to the traditional method

when the error is exactly normally distributed. Note that when the error is normal, the traditional estimation

method by the Algorithm 2.1.1 is the asymptotically most efficient one. Case 2 is a heavy tailed distribution.

The t-distributions with degrees of freedom from 3 to 5 are often used to represent heavy-tailed distributions.

Case 3 is a contaminated normal mixture model, which is often used to mimic the outlier situation. The

5% data from N(0, 52) are mostly likely to be outliers. Figure 3.1, 3.2, and 3.3 are the scatter plots of a

typical sample size 200 for the three cases, separately.

We use both the traditional estimation method (Algorithm 2.1.1) and our robust estimation method

(Algorithm 2.2.1) to estimate the mixture regression parameters. For our robust method, we will consider
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Figure 3.1: Case 1: Standard normal distribution

both Huber’s ψ function and Tukey’s bisquare function. In addition, we will consider the algorithms of both

assuming unequal variance and equal variance in each case.

We got the MSE’s for each case under six conditions: no robust assuming equal and unequal variance;

robust by bisquare method assuming equal and unequal variance; robust by huberpsi methods assuming

equal and unequal variance, and then compare the MSE by efficiency.Based on the MSE of no robust

assuming equal variance, I got the efficiency which is easier to compare the results.

The sample size in each case is n = 200 and 500 repetitions were generated for each parameter configu-

ration. Similar to Bordes, Chauveau, and Vandekerkhove (2007), we use the true initial values for θ in our

EM algorithm, in order to avoid the possible bias introduced by different starting values among replications

or label switching issues (Diebolt and Robert, 1994; Stephens, 2000; Yao and Lindsay, 2009). The true

parameter values are β10 = β20 = 0, β11 = 4, β21 = −4, π1 = π2 = 0.5. In case 1, ϵj ∼ N(0, 1), σ1 = σ2 = 1.

In case 2, ϵj ∼ t4, and the standard deviation is
√
2 = 1.414. In case 3, ϵj ∼ 0.95N(0, 1) + 0.05N(0, 25),
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Figure 3.2: Case 2: T distribution with 4 degree freedom

and the standard deviation is
√
0.95× 1 + 0.05× 25 = 1.483.

In Table 3.1, 3.3, and 3.5, we report the MSE for different estimation methods for regression parameters.

EM-Reg means the traditional estimation method. Rob-EM-Bi refers to the robust estimation method using

Tukey’s bisquare function. Rob-EM-Hu refers to the robust estimation method using Huber’s ψ function.

For better comparison, in Table 3.2, 3.4, and 3.6, we also report the relative efficiency for different estimation

methods as compared to the tradition method assuming equal variance. The value greater than 1 means

the corresponding method is more efficient than the tradition method assuming equal variance.

For Table 3.1 and 3.2, ϵ ∼ N(0, 1), one can see that all methods estimate the parameters well. Note that

in this case, the traditional estimate, which assumes a normal error is the best one. From Table 3.1 and

3.2, one can see that our proposed robust estimation methods are comparable to the traditional methods.

Based on Table 3.3 and 3.4, one can see that our robust estimation method works better than the

traditional non-robust method when the error has heavy tail. Both robust methods work closely. But
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Figure 3.3: Case 3: Contaminated mixture distribution

bisqure way is a little bit better than huber′s ψ method.

In table 3.5 and 3.6, ϵ ∼ 0.95N(0, 1)+0.05N(0, 25), which mimics the outlier situations. From the tables,

one can see that our proposed robust methods work much better than the traditional methods except for

proportions. By comparing two methods in robust regression, bisquare method and huber′s ψ method don’t

have much more difference for almost each parameter in both equal and unequal variance.
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Method Condition
MSE of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 0.073 0.109 0.192 0.225 0.001 0.001

unequ 0.076 0.118 0.197 0.235 0.001 0.001

Rob-EM-Bi
equ 0.079 0.115 0.209 0.240 0.001 0.001

unequ 0.082 0.122 0.213 0.247 0.001 0.001

Rob-EM-Hu
equ 0.079 0.115 0.209 0.240 0.001 0.001

unequ 0.082 0.123 0.213 0.247 0.001 0.001

Table 3.1: MSE’s of Case 1: ϵ ∼ Standard normal distribution

Method condition
efficiency of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 1 1 1 1 1 1

unequ 0.962 0.924 0.975 0.957 1.149 1.149

Rob-EM-Bi
equ 0.921 0.945 0.918 0.937 0.971 0.971

unequ 0.894 0.892 0.903 0.911 1.051 1.051

Rob-EM-Hu
equ 0.923 0.943 0.919 0.936 0.967 0.967

unequ 0.894 0.887 0.903 0.912 1.046 1.046

Table 3.2: Efficiency of Case 1: ϵ ∼ Standard normal distribution
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Method Condition
MSE of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 0.165 0.197 0.366 0.446 0.003 0.003

unequ 0.161 0.188 0.353 0.442 0.003 0.003

Rob-EM-Bi
equ 0.110 0.159 0.238 0.371 0.003 0.003

unequ 0.119 0.157 0.252 0.369 0.003 0.003

Rob-EM-Hu
equ 0.116 0.171 0.246 0.379 0.003 0.003

unequ 0.124 0.165 0.257 0.372 0.003 0.003

Table 3.3: MSE’s of Case 2: ϵ ∼ T distribution with 4 degree freedom

Method Condition
efficiency of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 1 1 1 1 1 1

unequ 1.021 1.050 1.037 1.007 0.956 0.956

Rob-EM-Bi
equ 1.495 1.241 1.541 1.200 1.135 1.135

unequ 1.381 1.258 1.453 1.208 1.031 1.031

Rob-EM-Hu
equ 1.420 1.156 1.490 1.175 1.131 1.131

unequ 1.330 1.198 1.425 1.198 1.021 1.021

Table 3.4: Efficiency of Case 2: ϵ ∼ T distribution with 4 degree freedom
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Method Condition
MSE of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 0.310 1.014 0.596 2.251 0.005 0.005

unequ 0.240 0.959 0.476 2.18 0.004 0.004

Rob-EM-Bi
equ 0.199 0.260 0.390 0.617 0.004 0.004

unequ 0.206 0.304 0.378 0.702 0.004 0.004

Rob-EM-Hu
equ 0.202 0.365 0.365 0.832 0.004 0.004

unequ 0.213 0.425 0.375 0.934 0.004 0.004

Table 3.5: MSE’s of Case 3: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52)

Method Condition
efficiency of Parameters

β̂10 β̂20 β̂11 β̂21 π̂1 π̂2

EM-Reg
equ 1 1 1 1 1 1

unequ 0.777 0.946 0.798 0.969 0.733 0.733

Rob-EM-Bi
equ 0.646 0.256 0.653 0.274 0.649 0.649

unequ 0.665 0.300 0.634 0.312 0.794 0.794

Rob-EM-Hu
equ 0.654 0.360 0.612 0.370 0.683 0.683

unequ 0.687 0.419 0.629 0.415 0.771 0.771

Table 3.6: Efficiency of Case 3: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52)
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Mixtures of regressions are widely used in many fields. The tone data in section 2.1 is a good example.

We applied our new method to the real data, and compared it with the traditional method. With some

outliers added to the data set, the scatter plot and the fitted lines by robust EM algorithm and regular EM

algorithm look like this way:
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Figure 3.4: Robust regression and non robust regression for tone data with outliers

In figure3.4, we added three outliers which are x=(1.4,1.41,1.44) y=(3.6,3.6,3.5) The red (or solid )lines

by robust EM method ignored the outliers. So they are much better than that by regular EM algorithm.

Actually comparing with figure 2.1, robust lines in figure 3.4 are very close to the fitted line in figure 2.1.

If we increased the values of outliers, which are x=(1.4,1.4,1.4) y=(3.9,3.9,3.9), some dramatic changes

happened in figure3.5. Our new method still kept the same as that in figure3.4, while the regular EM

algorithm fitted the whole body of data as one group and the outliers as the other group. That means our

new method can still work well to the real data.
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Figure 3.5: Robust regression and non robust regression for tone data with increased outliers
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Chapter 4

Conclusion and Future Work

The traditional estimation method for mixture of linear regression models is to assume a normal model

for the error and then the parameters are estimated by the MLE using the EM algorithm. Under the

normal assumption, the EM algorithm uses a LSE to update the regression parameters in the M step. Due

to the sensitivity of LSE, in this report, we proposed the robust estimation methods for mixtures of linear

regression models which may replace the least square criterion used in the M step of the EM algorithm with

some robust criteria. Based on our simulation study, we can see that our robust estimation method does not

lose too much efficiency compared to the traditional estimation method when there are no outliers and the

error term follows a normal. But when the distribution of error term has heavier tail or there are outliers,

our robust estimation method can be much more efficient than the traditional method.

It is well known that the traditional robust regression method is consistent when the error is symmetric

about 0. It will be our future task to discuss consistent conditions for our robust mixtures of linear regression

models. In addition, we will also consider extending our method to some other mixture models such as

mixtures of generalized linear models and mixtures of nonparametric regressions.
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Appendix A

R Code

################

huberpsi<-function(t,k=1.345){ out=pmax(-k,pmin(k,t));out}

bisquare<-function(t,k=4.685){out=t*pmax(0,(1-(t/k)^2))^2;out}

biscalew<-function(t){out=pmin(1-(1-t^2/1.56^2)^3,1)/t^2;out}

################

#the EM algorithm to fit the mixture of linear regression

#########################

#lin_equa

mixlin1<-function(x,y,beta,sig1,pr,m=2){

run=0;acc=10^(-4)*max(abs(c(beta,sig1,pr)));n=length(x);

if(length(sig1)>1){

r=matrix(rep(0,2*n),nrow=n);pk=r;

for(j in seq(m))

r[,j]=y-beta[j,1]-x*beta[j,2];

#E-steps

repeat

{ prest=c(beta,sig1,pr);run=run+1

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,sig1[j])

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));
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#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

temp=pk[,j]%*%x;

beta[j,]=solve(matrix(c(np[j],temp,temp,pk[,j]%*%x^2),nrow=2))%*%c(pk[,j]%*%y,pk[,j]%*%(x*y))

r[,j]=y-beta[j,1]-beta[j,2]*x;

sig1[j]=sqrt(t(pk[,j])%*%(r[,j]^2)/np[j]);

}

dif=max(abs(c(beta,sig1,pr)-prest))

if(dif<acc|run>500){break}

}

}

else{

r=matrix(rep(0,2*n),nrow=n);pk=r; sig1=sig1*c(1,1)

for(j in seq(m))

r[,j]=y-beta[j,1]-x*beta[j,2];

#E-steps

repeat

{ prest=c(beta,sig1,pr);run=run+1

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,sig1[j])

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

temp=pk[,j]%*%x;

beta[j,]=solve(matrix(c(np[j],temp,temp,pk[,j]%*%x^2),nrow=2))%*%c(pk[,j]%*%y,pk[,j]%*%(x*y));

r[,j]=y-beta[j,1]-beta[j,2]*x;

}

sig1=sqrt(sum(pk*(r^2))/n)*c(1,1)
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dif=max(abs(c(beta,sig1,pr)-prest))

if(dif<acc|run>500){break}

} }

theta=c(beta,sig1,pr);theta

}

################

#the robust EM algorithm to fit the mixture of linear regression

#########################

#bi_eq

mixlinrb_bi1<-function(x,y,beta,sig1,pr,m=2){

run=0;acc=10^(-4)*max(abs(c(beta,sig1,pr)));n=length(x);

if(length(sig1)>1)

{

r=matrix(rep(0,2*n),nrow=n);pk=r;

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig1[j];

#E-steps

repeat

{ prest=c(sig1,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig1[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

w=pk[,j]*bisquare(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig1[j];

sig1[j]=sqrt(sum(r[,j]^2*sig1[j]^2*pk[,j]*biscalew(r[,j]))/np[j]/0.5);
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}

dif=max(abs(c(sig1,beta,pr)-prest))

if(dif<acc|run>500){break}

} }

else{ r=matrix(rep(0,2*n),nrow=n);pk=r;sig1=sig1*c(1,1);

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig1[j];

#E-steps

repeat

{ prest=c(sig1,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig1[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

w=pk[,j]*bisquare(r[,j])/r[,j];

#w=pk[,j]*huberpsi(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig1[j];

}

sig1=sqrt(sum(pk*(r^2*sig1[1]^2)*biscalew(r))/n/0.5)*c(1,1)

dif=max(abs(c(sig1,beta,pr)-prest))

if(dif<acc|run>500){break}

}}

theta=c(beta,sig1,pr);theta

}

################
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#the robust EM algorithm to fit the mixture of linear regression

#########################

#hu_eq:

mixlinrb_hu1<-function(x,y,beta,sig1,pr,m=2){

run=0;acc=10^(-4)*max(abs(c(beta,sig1,pr)));n=length(x);

if(length(sig1)>1)

{

r=matrix(rep(0,2*n),nrow=n);pk=r;

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig1[j];

#E-steps

repeat

{ prest=c(sig1,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig1[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

#w=pk[,j]*bisquare(r[,j])/r[,j];

w=pk[,j]*huberpsi(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig1[j];

sig1[j]=sqrt(sum(r[,j]^2*sig1[j]^2*pk[,j]*biscalew(r[,j]))/np[j]/0.5);

}

dif=max(abs(c(sig1,beta,pr)-prest))

if(dif<acc|run>500){break}
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} }

else{ r=matrix(rep(0,2*n),nrow=n);pk=r;sig1=sig1*c(1,1);

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig1[j];

#E-steps

repeat

{ prest=c(sig1,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig1[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

#w=pk[,j]*bisquare(r[,j])/r[,j];

w=pk[,j]*huberpsi(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig1[j];

}

sig1=sqrt(sum(pk*(r^2*sig1[1]^2)*biscalew(r))/n/0.5)*c(1,1)

dif=max(abs(c(sig1,beta,pr)-prest))

if(dif<acc|run>500){break}

}}

theta=c(beta,sig1,pr);theta}

bt=Sys.time()

rep=500

mixlin1_eN_no=matrix(rep(0,8*rep),nrow=rep)

mixlin2_eN_no=matrix(rep(0,8*rep),nrow=rep)
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mixlinrb_bi1_eN_no=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu1_eN_no=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_bi2_eN_no=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu2_eN_no=matrix(rep(0,8*rep),nrow=rep)

#mixlin1_eN_yes=matrix(rep(0,8*rep),nrow=rep)

#mixlin2_eN_yes=matrix(rep(0,8*rep),nrow=rep)

#mixlinrb_bi1_eN_yes=matrix(rep(0,8*rep),nrow=rep)

#mixlinrb_hu1_eN_yes=matrix(rep(0,8*rep),nrow=rep)

#mixlinrb_bi2_eN_yes=matrix(rep(0,8*rep),nrow=rep)

#mixlinrb_hu2_eN_yes=matrix(rep(0,8*rep),nrow=rep)

mixlin1_emix=matrix(rep(0,8*rep),nrow=rep)

mixlin2_emix=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_bi1_emix=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu1_emix=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_bi2_emix=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu2_emix=matrix(rep(0,8*rep),nrow=rep)

mixlin1_et=matrix(rep(0,8*rep),nrow=rep)

mixlin2_et=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_bi1_et=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu1_et=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_bi2_et=matrix(rep(0,8*rep),nrow=rep)

mixlinrb_hu2_et=matrix(rep(0,8*rep),nrow=rep)

n=200

m=2

beta=matrix(c(0,0,4,-4),nrow=2)

pr=c(0.5,0.5)

x=runif(n,0,1)

u=runif(n,0,1)
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for(ii in seq(rep))

{

#e=normal

#sig2=c(1,1);

#sig1=c(1)

#e=rnorm(n,0,sig2[1]);

#y=(u<=pr[1])*(beta[1,1]+beta[1,2]*x+e)+(u>pr[1])*(beta[2,1]+beta[2,2]*x+e)

#add 8 outliers.

#x=c(x,rep(0,8));

#y=c(y,rep(-6,4));

#y=c(y,rep(6,4))

#e=mix

#sig1=c(1.8439)

#sig2=c(1.8439,1.8439);

#e=(u<=0.90)*rnorm(n,0,1)+(u>0.90)*rnorm(n,0,5)

#y=(u<=pr[1])*(beta[1,1]+beta[1,2]*x+e)+(u>pr[1])*(beta[2,1]+beta[2,2]*x+e)

#sig1=c(1.4832)

#sig2=c(1.4832,1.4832);

#e=(u<=0.95)*rnorm(n,0,1)+(u>0.95)*rnorm(n,0,5)

#y=(u<=pr[1])*(beta[1,1]+beta[1,2]*x+e)+(u>pr[1])*(beta[2,1]+beta[2,2]*x+e)

#e=t(4)

sig1=c(1.414)

sig2=c(1.414,1.414);

e=rt(n,4)

y=(u<=pr[1])*(beta[1,1]+beta[1,2]*x+e)+(u>pr[1])*(beta[2,1]+beta[2,2]*x+e)

#mixlin1_eN_no[ii,]=t(mixlin1(x,y,beta,sig1,pr))

#mixlin2_eN_no[ii,]=t(mixlin2(x,y,beta,sig2,pr))
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#mixlinrb_bi1_eN_no[ii,]=t(mixlinrb_bi1(x,y,beta,sig1,pr))

#mixlinrb_bi2_eN_no[ii,]=t(mixlinrb_bi2(x,y,beta,sig2,pr))

#mixlinrb_hu1_eN_no[ii,]=t(mixlinrb_hu1(x,y,beta,sig1,pr))

#mixlinrb_hu2_eN_no[ii,]=t(mixlinrb_hu2(x,y,beta,sig2,pr))

#mixlin1_eN_yes[ii,]=t(mixlin1(x,y,beta,sig1,pr))

#mixlin2_eN_yes[ii,]=t(mixlin2(x,y,beta,sig2,pr))

#mixlinrb_bi1_eN_yes[ii,]=t(mixlinrb_bi1(x,y,beta,sig1,pr))

#mixlinrb_bi2_eN_yes[ii,]=t(mixlinrb_bi2(x,y,beta,sig2,pr))

#mixlinrb_hu1_eN_yes[ii,]=t(mixlinrb_hu1(x,y,beta,sig1,pr))

#mixlinrb_hu2_eN_yes[ii,]=t(mixlinrb_hu2(x,y,beta,sig2,pr))

#mixlin1_emix[ii,]=t(mixlin1(x,y,beta,sig1,pr))

#mixlin2_emix[ii,]=t(mixlin2(x,y,beta,sig2,pr))

#mixlinrb_bi1_emix[ii,]=t(mixlinrb_bi1(x,y,beta,sig1,pr))

#mixlinrb_bi2_emix[ii,]=t(mixlinrb_bi2(x,y,beta,sig2,pr))

#mixlinrb_hu1_emix[ii,]=t(mixlinrb_hu1(x,y,beta,sig1,pr))

#mixlinrb_hu2_emix[ii,]=t(mixlinrb_hu2(x,y,beta,sig2,pr))

mixlin1_et[ii,]=t(mixlin1(x,y,beta,sig1,pr))

mixlin2_et[ii,]=t(mixlin2(x,y,beta,sig2,pr))

mixlinrb_bi1_et[ii,]=t(mixlinrb_bi1(x,y,beta,sig1,pr))

mixlinrb_bi2_et[ii,]=t(mixlinrb_bi2(x,y,beta,sig2,pr))

mixlinrb_hu1_et[ii,]=t(mixlinrb_hu1(x,y,beta,sig1,pr))

mixlinrb_hu2_et[ii,]=t(mixlinrb_hu2(x,y,beta,sig2,pr))

}

Sys.time()-bt
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mixlin1_eN_no

mixlin2_eN_no

mixlinrb_bi1_eN_no

mixlinrb_bi2_eN_no

mixlinrb_hu1_eN_no

mixlinrb_hu2_eN_no

mixlin1_emix

mixlin2_emix

mixlinrb_bi1_emix

mixlinrb_bi2_emix

mixlinrb_hu1_emix

mixlinrb_hu2_emix

mixlin1_et

mixlin2_et

mixlinrb_bi1_et

mixlinrb_bi2_et

mixlinrb_hu1_et

mixlinrb_hu2_et

Sys.time()-bt

#for e=rt(n,4)

#a=b=1.414

# for e=mix

a=b=1.4832

#for e=rnorm(n,0,1)

a=b=1

orig=c(0,0,4,-4,a,b,0.5,0.5)

d=matrix(rep(1,500),nrow=500)

#d=matrix(rep(1,100),nrow=100)

orig_matrix=kronecker(t(orig),d)
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mixlin_eN_no=Xno[,1:8]

mixlinrb_eN_no=Xno[,9:16]

mixlin_eN_yes=Xyes_lin_rb[,1:8]

mixlinrb_eN_yes=Xyes_lin_rb[,9:16]

mixlin_emix=Xemix_lin_rb[,1:8]

mixlinrb_emix=Xemix_lin_rb[,9:16]

mixlin_et=Xet_lin_rb[,1:8]

mixlinrb_et=Xet_lin_rb[,9:16]

diffeN_no_lin1=mixlin1_eN_no-orig_matrix

diffeN_no_lin2=mixlin2_eN_no-orig_matrix

diffeN_no_linrb_bi1=mixlinrb_bi1_eN_no-orig_matrix

diffeN_no_linrb_bi2=mixlinrb_bi2_eN_no-orig_matrix

diffeN_no_linrb_hu1=mixlinrb_hu1_eN_no-orig_matrix

diffeN_no_linrb_hu2=mixlinrb_hu2_eN_no-orig_matrix

diffemix_lin1=mixlin1_emix-orig_matrix

diffemix_lin2=mixlin2_emix-orig_matrix

diffemix_linrb_bi1=mixlinrb_bi1_emix-orig_matrix

diffemix_linrb_bi2=mixlinrb_bi2_emix-orig_matrix

diffemix_linrb_hu1=mixlinrb_hu1_emix-orig_matrix

diffemix_linrb_hu2=mixlinrb_hu2_emix-orig_matrix

diffet_lin1=mixlin1_et-orig_matrix

diffet_lin2=mixlin2_et-orig_matrix

diffet_linrb_bi1=mixlinrb_bi1_et-orig_matrix

diffet_linrb_bi2=mixlinrb_bi2_et-orig_matrix

diffet_linrb_hu1=mixlinrb_hu1_et-orig_matrix

diffet_linrb_hu2=mixlinrb_hu2_et-orig_matrix

mseeN_no_lin1=apply(diffeN_no_lin1^2,2,mean)

mseeN_no_lin2=apply(diffeN_no_lin2^2,2,mean)
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mseeN_no_linrb_bi1=apply(diffeN_no_linrb_bi1^2,2,mean)

mseeN_no_linrb_bi2=apply(diffeN_no_linrb_bi2^2,2,mean)

mseeN_no_linrb_hu1=apply(diffeN_no_linrb_hu1^2,2,mean)

mseeN_no_linrb_hu2=apply(diffeN_no_linrb_hu2^2,2,mean)

mseemix_lin1=apply(diffemix_lin1^2,2,mean)

mseemix_lin2=apply(diffemix_lin2^2,2,mean)

mseemix_linrb_bi1=apply(diffemix_linrb_bi1^2,2,mean)

mseemix_linrb_bi2=apply(diffemix_linrb_bi2^2,2,mean)

mseemix_linrb_hu1=apply(diffemix_linrb_hu1^2,2,mean)

mseemix_linrb_hu2=apply(diffemix_linrb_hu2^2,2,mean)

mseet_lin1=apply(diffet_lin1^2,2,mean)

mseet_lin2=apply(diffet_lin2^2,2,mean)

mseet_linrb_bi1=apply(diffet_linrb_bi1^2,2,mean)

mseet_linrb_bi2=apply(diffet_linrb_bi2^2,2,mean)

mseet_linrb_hu1=apply(diffet_linrb_hu1^2,2,mean)

mseet_linrb_hu2=apply(diffet_linrb_hu2^2,2,mean)

#ratio

rationo_lin11=mseeN_no_lin1/mseeN_no_lin1

rationo_lin21=mseeN_no_lin2/mseeN_no_lin1

rationo_linrb_bi1=mseeN_no_linrb_bi1/mseeN_no_lin1

rationo_linrb_bi2=mseeN_no_linrb_bi2/mseeN_no_lin1

rationo_linrb_hu1=mseeN_no_linrb_hu1/mseeN_no_lin1

rationo_linrb_hu2=mseeN_no_linrb_hu2/mseeN_no_lin1

ratioemix_lin11=mseemix_lin1/mseemix_lin1

ratioemix_lin21=mseemix_lin2/mseemix_lin1

ratioemix_linrb_bi1=mseemix_linrb_bi1/mseemix_lin1

ratioemix_linrb_bi2=mseemix_linrb_bi2/mseemix_lin1

ratioemix_linrb_hu1=mseemix_linrb_hu1/mseemix_lin1

ratioemix_linrb_hu2=mseemix_linrb_hu2/mseemix_lin1
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ratioet_lin11=mseet_lin1/mseet_lin1

ratioet_lin21=mseet_lin2/mseet_lin1

ratioet_linrb_bi1=mseet_linrb_bi1/mseet_lin1

ratioet_linrb_bi2=mseet_linrb_bi2/mseet_lin1

ratioet_linrb_hu1=mseet_linrb_hu1/mseet_lin1

ratioet_linrb_hu2=mseet_linrb_hu2/mseet_lin1

#############################

Regression for tone data

#############################

###

huberpsi<-function(t,k=1.345){ out=pmax(-k,pmin(k,t));out}

bisquare<-function(t,k=4.685){out=t*pmax(0,(1-(t/k)^2))^2;out}

biscalew<-function(t){out=pmin(1-(1-t^2/1.56^2)^3,1)/t^2;out}

################

#the EM algorithm to fit the mixture of linear regression

#########################

mixlin<-function(x,y,beta,sig,pr,m=2){

run=0;acc=10^(-4)*max(abs(c(beta,sig,pr)));n=length(x);

if(length(sig)>1){

r=matrix(rep(0,2*n),nrow=n);pk=r;

for(j in seq(m))

r[,j]=y-beta[j,1]-x*beta[j,2];

#E-steps

repeat

{ prest=c(beta,sig,pr);run=run+1

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,sig[j])

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));
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#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

temp=pk[,j]%*%x;

beta[j,]=solve(matrix(c(np[j],temp,temp,pk[,j]%*%x^2),nrow=2))%*%c(pk[,j]%*%y,pk[,j]%*%(x*y))

r[,j]=y-beta[j,1]-beta[j,2]*x;

sig[j]=sqrt(t(pk[,j])%*%(r[,j]^2)/np[j]);

}

dif=max(abs(c(beta,sig,pr)-prest))

if(dif<acc|run>500){break}

}

}

else{

r=matrix(rep(0,2*n),nrow=n);pk=r; sig=sig*c(1,1)

for(j in seq(m))

r[,j]=y-beta[j,1]-x*beta[j,2];

#E-steps

repeat

{ prest=c(beta,sig,pr);run=run+1

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,sig[j])

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

temp=pk[,j]%*%x;

beta[j,]=solve(matrix(c(np[j],temp,temp,pk[,j]%*%x^2),nrow=2))%*%c(pk[,j]%*%y,pk[,j]%*%(x*y));

r[,j]=y-beta[j,1]-beta[j,2]*x;

}

sig=sqrt(sum(pk*(r^2))/n)*c(1,1)
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dif=max(abs(c(beta,sig,pr)-prest))

if(dif<acc|run>500){break}

} }

theta=c(beta,sig,pr);theta

}

################

#the robust EM algorithm to fit the mixture of linear regression

#########################

mixlinrb<-function(x,y,beta,sig,pr,m=2){

run=0;acc=10^(-4)*max(abs(c(beta,sig,pr)));n=length(x);

if(length(sig)>1)

{

r=matrix(rep(0,2*n),nrow=n);pk=r;

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig[j];

#E-steps

repeat

{ prest=c(sig,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

w=pk[,j]*bisquare(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig[j];

sig[j]=sqrt(sum(r[,j]^2*sig[j]^2*pk[,j]*biscalew(r[,j]))/np[j]/0.5);

}
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dif=max(abs(c(sig,beta,pr)-prest))

if(dif<acc|run>500){break}

} }

else{ r=matrix(rep(0,2*n),nrow=n);pk=r;sig=sig*c(1,1);

for(j in seq(m))

r[,j]=(y-beta[j,1]-x*beta[j,2])/sig[j];

#E-steps

repeat

{ prest=c(sig,beta,pr);run=run+1;

for(j in seq(m))

{

pk[,j]=pr[j]*dnorm(r[,j],0,1)/sig[j]

}

pk=pk/cbind(apply(pk,1,sum),apply(pk,1,sum));

#M-step

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m))

{

w=pk[,j]*bisquare(r[,j])/r[,j];

#w=pk[,j]*huberpsi(r[,j])/r[,j];

temp=w%*%x;

beta[j,]=solve(matrix(c(sum(w),temp,temp,w%*%x^2),nrow=2))%*%c(w%*%y,w%*%(x*y))

r[,j]=(y-beta[j,1]-beta[j,2]*x)/sig[j];

}

sig=sqrt(sum(pk*(r^2*sig[1]^2)*biscalew(r))/n/0.5)*c(1,1)

dif=max(abs(c(sig,beta,pr)-prest))

if(dif<acc|run>500){break}

}}

theta=c(beta,sig,pr);theta}

#read tone data in to R;

X=read.table("F:/report/master_report/latex_source/tone/tonedata.txt", header=TRUE)

#tone data without outliers.

x=c(X[,1])
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y=c(X[,2])

m=2;

n=length(x);

beta=matrix(c(-0.5,2,0.89,0.01),nrow=2);

pr=c(0.5,0.5);

#sig wothout outliers

sig=c(0.2797);

mix=mixlin(x,y,beta,sig,pr)

mixrb=mixlinrb(x,y,beta,sig,pr)

par(mfrow=c(2,2))

tt=seq(1,3,by=0.01);

ff=mix[1]+mix[3]*tt;

gg=mix[2]+mix[4]*tt

plot(x,y)

lines(tt,ff,lty=2)

lines(tt,gg,lty=2)

ff=mixrb[1]+mixrb[3]*tt;

gg=mixrb[2]+mixrb[4]*tt

plot(x,y)

lines(tt,ff,lty=1)

lines(tt,gg,lty=2)

par(mfrow=c(1,1))

#tone with 3 outliers.

x=c(X[,1],1.4,1.41,1.44)

y=c(X[,2],3.6,3.6,3.5)

m=2;

n=length(x);

beta=matrix(c(-0.5,2,0.89,0.01),nrow=2);

pr=c(0.5,0.5);

#sig with 3 outliers

sig=c(0.322);

mix=mixlin(x,y,beta,sig,pr)

mixrb=mixlinrb(x,y,beta,sig,pr)

tt=seq(1,3,by=0.01);
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ff=mix[1]+mix[3]*tt;

gg=mix[2]+mix[4]*tt

plot(x,y,xlab="Actual tone ratio",ylab="Perceived tone ratio")

lines(tt,ff,lty=2)

lines(tt,gg,lty=2)

ff=mixrb[1]+mixrb[3]*tt;

gg=mixrb[2]+mixrb[4]*tt

lines(tt,ff,lty=1,col="red")

lines(tt,gg,lty=1,col="red")
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