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This work uses the discrete dipole approximation (DDA) to examine the internal electric field within a simulated
carbon soot fractal aggregate in fixed and random orientations. For fixed orientations, deviations of the internal
field magnitude up to �50% from that assumed by the Rayleigh–Debye–Gans Approximation (RDGA) are found.
Given the refractive index of the aggregate monomers and conditions for the validity of the approximation, such
large deviations are no surprise. Yet despite this deviation, the far-field scattered intensity from such aggregates
agrees surprisingly well with that described by the RDGA. Moreover, if the average over an ensemble of many
random aggregate-orientations is calculated, both the DDA and RDGA scattered intensities obey the well-known
power-law functionality in terms of the scattering wave vector and show a forward-angle intensity-maximum
proportional to the square of the number of monomers. The explanation for this lies in the over and under
estimations made by the approximation of the internal field, which apparently mostly cancel upon integration
to yield the scattered intensity. It is shown that this error cancellation is related to the fractal structure of the
aggregate and that the agreement between the DDA and RDGA improves with aggregates of increasing size
provided the fractal dimension is less than two. Overall, the analysis suggests that both the special fractal character
of the aggregate and its orientational averaging is important to account for the experimentally observed validity of
the RDGA despite its poor description of the internal fields. © 2013 Optical Society of America

OCIS codes: (290.5825) Scattering theory; (290.5850) Scattering, particles; (290.5890) Scattering,
stimulated; (290.1090) Aerosol and cloud effects; (010.1110) Aerosols; (290.5855) Scattering, polarization.
http://dx.doi.org/10.1364/JOSAA.30.001947

1. INTRODUCTION
Fractal aggregates are irregularly shaped particle composites
that occur via random aggregation of solid particles in
aerosols and colloids, e.g., soot aerosols that result from in-
complete combustion of hydrocarbon fuels [1]. A substantial
amount of work has been devoted to the light-scattering
behavior of such aggregates, especially as it relates to the ra-
diative forcing of the atmosphere [1–3]. More broadly, these
aggregates are interesting because they offer an opportunity
to study scattering from an object with both complex and
simple aspects to its morphology. For example, open-flame
soot-aggregation yields a dendritic morphology that is highly
complicated. Yet despite this complexity, when many aggre-
gates occur simultaneously in random orientations, the ob-
served pattern of scattered light is remarkably simple,
following a power-law functionality [Eq. (2) below] in terms
of the scattering wave vector q � 2k sin�θ∕2�, where k � 2π∕λ
is the wave number and θ is the scattering angle.

The popular understanding for why aggregates produce
such simple patterns despite their structural complexity
originates from the Rayleigh–Debye–Gans Approximation
(RDGA) [2]. Central to this approximation is the assumption
that electromagnetic interaction between the aggregate’s
monomers is negligible, i.e., the so-called single-scattering
approximation. Moreover, the RDGA assumes that the field
within a given monomer is identical to the incident field or,
in other words, refraction is neglected. Provided that the ag-
gregate’s fractal dimension is Df < 2, which is usually the case
for soot, this assumption is plausible and has been thoroughly

studied [2–4]. Using this RDGA of the internal field, one can
derive the experimentally observed power-law functionality
of the far-field scattered intensity for aggregates averaged
over random orientations [2]. However, certain aggregate
characteristics such as the overall size and refractive index
lie well beyond the formal range of validity of the RDGA. This
recognition has led to many studies concerning the validity of
the RDGA, most of which focus on the errors incurred in in-
tegrated quantities such as the total scattering and extinction
cross sections [2,5–7], although more recent work has studied
the scattering matrix elements as well [8].

The purpose of this article is not to formally assess the val-
idity of the RDGA for fractal aggregates per se, but to inves-
tigate the role played by their special fractal morphology and
the orientational averaging. Specifically, this is done from the
point of view of the electric field within the aggregate’s mono-
mers calculated using the discrete dipole approximation
(DDA). The far-field scattered intensity is calculated directly
from this field using the Maxwell volume integral equation
(VIE). Thus two treatments of an aggregate are compared:
the commonly used approximate internal field and scattered
intensity as given by the RDGA and the (numerically) exact
counterparts given by the DDA. These treatments reveal a sur-
prising behavior. The exact internal field deviates up to�50%
from the RDGA prediction, yet the scattered intensity agrees
very well with that prediction for aggregates in both fixed and
random orientations, although the agreement is better in the
latter case. The implication is that the over and under estima-
tions of the true internal field made by the RDGA mostly
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cancel upon integration in the VIE to yield little disagreement
with the DDA far-field scattered intensity.

2. AGGREGATE MORPHOLOGY
Image (a) in Fig. 1 shows a transmission electron microscope
(TEM) picture of part of a carbon-soot aggregate captured in
an open-burning acetylene flame [9]. This aggregate is com-
posed of roughly spherical carbon monomers. On average,
the structure of these aggregates obeys a mass-versus-size
scaling law given by Eq. (1) below [2]. Realistic models of
aggregate formation have been developed to create simulated
aggregates that also obey this scaling law [10]. Image (b) in
Fig. 1 shows a simulated aggregate generated by the
diffusion-limited cluster aggregation (DLCA) model, which
is described, e.g., in [2].

The scaling law for a DLCA fractal aggregates is

Nm � ko

�
Rg

Rm

�
Df

; (1)

where Nm is the number of monomers, ko is the prefactor, Rg

is the aggregate radius of gyration, Rm is the monomer radius,
and Df is the fractal dimension [2]. Aggregates that obey this
scaling law possess a fractal-like character in that they show
self-similar structure over a range of length scales. The param-
eters in Eq. (1) related to the aggregate shape are ko andDf . To
get a sense for their influence, [3] shows simulated aggregates
for different values of these parameters. For the DLCA aggre-
gate considered here, ko is roughly constant ko ≅ 1.3, andDf ≅
1.8 [2,11]. Variations of Df correspond to distinct qualitative
changes in the aggregate morphology; Df < 2, gives branch-
like aggregates that become more compact as Df increases
to Df � 3. Aggregates forming from incomplete combustion,
like the one in Fig. 1(a), usually correspond to Df � 1.8,
although examples of multi-Df aggregates are also known
[12–14]. The parameters Rg, Rm, and Nm relate to the overall
aggregate size, with Rg being the most often used measure.
Based upon the TEM image in Fig. 1(a), a nominal monomer
size of Rm � 35 nm is used in this work.

3. KNOWN SCATTERING BEHAVIOR
Consider a linearly polarized plane wave Einc incident on an
aggregate along the positive z axis with polarization along the
x axis. The light scattered by the aggregate will be considered
in the far field at points in the horizontal scattering plane, i.e.,
the y–z plane. For common measurements, it is typically the
case that many similar aggregates are present simultaneously
in random orientations. Then the scattered intensity can be
described by the intensity associated with a single aggregate
averaged over an ensemble of all possible orientations,
although a single orientation also will be considered here.
Now, for a Df � 1.8 aggregate, the monomers are arranged
with approximately two nearest neighbors on average (recall
Fig. 1(a) [15]). This means that the monomers are more spread
out than the volume elements in a compact, Df � 3 particle of
the same mass. One could then argue that the electromagnetic
coupling between monomers is negligible, and thus, only the
influence of the incident wave is important to account for the
aggregate’s scattering curve. This is the essence of the RDGA;
intermonomer coupling is negligible. More specifically, it is
possible to show that the RDGA describes the scattered inten-
sity as a Fourier transform of the aggregate’s density distribu-
tion (see, e.g., [16]). Using this approximation, [2] shows that
the scattered intensity for a collection randomly oriented
aggregates obeys a power-law functionality in terms of the
dimensionless parameter qRg:

I�qRg� ∝

8>><
>>:

N2
m qRg < 1

N2
m�qRg�−Df 1 ≤ qRg ≤ qRm

N2
m�qRg�−4 qRm < qRg

: (2)

This representation of I in terms of q, rather than θ, will be
called Q-space analysis. Examples of experimental and theo-
retical studies of Q-space analysis to characterize aggregates
can be found in [2,6,9,16,17], and these show very good agree-
ment with Eq. (2). For an aggregate in a fixed orientation, the
scattering curve will typically contain much more structure
than that described in Eq. (2) and will not obey a simple
power-law functionality.

Fig. 1. (a) Open-flame acetylene soot aggregate. (b) DLCA-simulated aggregate. The simulated aggregate contains Nm � 99 monomers with a
fractal dimension of Df � 1.8. Also shown in (b) is the DDA lattice residing within the monomers discussed in Section 4. In this case, the number of
lattice sites is Ndda � 3323 corresponding to approximately 34 sites per monomer. The aggregate’s radius of gyration Rg is shown by the large gray
sphere positioned on the center of mass.
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Upon careful consideration, however, the RDGA’s validity
becomes quite questionable: Eq. (1) for Df � 1.8 soot
shows that an aggregate’s density decreases with increasing
aggregate size; thus one could plausibly argue that intermono-
mer coupling is negligible. Yet the refractive index of the soot
material is relatively strong, estimated to be m � 1.57� 0.56i
at λ � 532 nm [2,18]. Now, in the context of the aggregate
monomers, the formal condition for the validity of the RDGA
is that both jm − 1j ≪ 1 and kRmjm − 1j ≪ 1, which given the
typical range of kRm ≅ 0.1–0.5 for soot, these conditions are
not well satisfied [19]. Moreover, it not obvious why contin-
gent monomers with such high refractive index should be
treated as independent scatterers. Thus a careful examination
of the aggregate’s internal field and scattering behavior is
warranted.

4. INTERNAL FIELDS
To study an aggregate’s internal field requires a versatile
numerical model that can accurately handle the complex
geometry with the strong refractive index. While the T-matrix
method is perhaps the most appropriate choice for this appli-
cation given its analytical capabilities, its current implemen-
tations do not readily provide access to the internal field;
that information is encoded in the far-field scattered wave
via the boundary conditions at each monomer’s surface. The
DDA, however, formulates the scattered wave directly in
terms of the internal field [see Eq. (6) below] and thus pro-
vides a natural choice for this study.

The DDA is applied to a DLCA-simulated aggregate that dis-
plays a single fractal dimension indicative of soot, Df � 1.8.
To do this, the aggregate is superimposed on a large cubic lat-
tice of dipole moments p, where the dipoles residing outside
of the aggregate’s monomers are set to zero. The fineness of
the lattice determines how well the aggregate shape is repre-
sented and is quantified by the number of dipoles per mono-
mer Ndda∕Nm where Ndda is the number of dipoles residing
in the entire aggregate. Figure 1(b) shows the simulated
aggregate superimposed on the lattice. In this example,
Ndda∕Nm ≅ 34, which one can see adequately represents
the aggregate structure, although fine details such as
monomer–monomer “necking” are not well represented. To
model many aggregates in random orientations, a total of
Nori random directions are selected uniformly, onto which
the propagation direction of the incident wave is rotated.
The internal or scattered field quantities are then calculated
for the same aggregate in each of these orientations. Finally,
the ensemble average of the quantities is calculated following
Section 3.2 in [20].

Several techniques are used to study the magnitude and
direction of the monomer internal field Eint and to compare
these to the RDGA. At each lattice site ri in the aggregate,
the relative, orientationally averaged deviation in magnitude
δi between the RDGA field and the true (at least within the
accuracy of the DDA) internal field, which is proportional
to the site’s dipole moment, is calculated via

δi �
1

Nori

XNori

n�1

jEint
n �ri�j − jEinc

n �ri�j
jEinc

n �ri�j
: (3)

If δi � 0, then the orientationally averaged field at site
ri is equivalent in magnitude to what the RDGA predicts,

whereas δi ≠ 0 indicates � percent deviations from the
RDGA. To study the directional character of the field, each
lattice site is assigned a unit vector representing the field’s
direction at that site. Each aggregate orientation results in
a different unit vector, all of which are then averaged to yield
a single vector ei as

ei �
1

Nori

XNori

n�1

RefEint
n �ri�g

jRefEint
n �ri�gj

: (4)

To visualize these directions, a point is plotted on the sur-
face of the unit sphere corresponding to the direction given by
the ei vector. Since Einc is polarized along the x axis, these
points would be coincident with the x-axis poles of the unit
sphere if the RDGA holds. A dispersion of points away from
these poles indicates a departure in field direction from
the RDGA.

Now consider the application of Eqs. (3) and (4) to the ag-
gregate in Fig. 1(b). The number of monomers is Nm � 99 and
the total number of lattice sites is Ndda � 3323. This gives an
average of 34 dipoles per monomer; a slight variation in this
number from monomer to monomer is due to lattice-shape
errors (see [21]). The size parameter of the aggregate is
kRg � 5.4, the monomer size parameter is kRm � 0.42, and
the refractive index ism � 1.57� 0.56i. These values are rep-
resentative of carbon soot aggregates illuminated by visible
light [2,18]; for example, if λ � 532 nm, Rg � 457 nm, and
Rm � 35 nm. One can compare these values to Fig. 1(a) to
see satisfactory agreement with actual soot.

Figure 2 shows the aggregate in a single orientation with
each monomer assigned a color given by

Δi �
1
Vm

Z
Vm

jEint�ri�j − jEinc�ri�j
jEinc�ri�j

dV; (5)

where Vm is the monomer volume. The quantity Δi represents
the fractional (expressed as percent in Fig. 2) deviation in
magnitude of the internal field throughout a monomer from
that predicted by the RDGA. Note that this is not an orienta-
tionally averaged quantity unlike much of the following
analysis. One can clearly see from Fig. 2 that some monomers

Fig. 2. Percent deviation of the monomer internal field from the
RDGA. Shown here is the DLCA-simulated aggregate in Fig. 1(b) with
each monomer color-coded according to Eq. (5).
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have �25% deviation from the RDGA expectation, and most
are at least �10% from this expectation.

Given the significant deviations of the internal field seen in
Fig. 2, one might expect that the RDGA would be equally poor
in describing the far-field scattered intensity I. Using the DDA,
accurate scattered intensity distributions can be calculated
via the far-field scattering amplitude Esca

1 , which is essentially
a discretized form of the VIE [21]:

Esca
1 �r̂� � k2

4πεo
� I
↔
− r̂ ⊗ r̂� ·

XNdda

i�1

pi exp�−ikr̂ · ri�; (6)

where I
↔

is the 3 × 3 identity dyadic, r̂ is the direction to the
observation point, and r̂ ⊗ r̂ is the dyadic formed by the direct
product of r̂ with itself. Equation (6) describes the scattered
wave amplitude as a Fourier transform of the aggregate’s in-
ternal field as represented by the dipole moments pi associ-
ated with each volume element in the aggregate. In the RDGA,
this internal field is replaced by the incident field, in which
case Eq. (6) can be simplified to a form that describes the scat-
tered wave as the Fourier transform of the aggregate’s spatial
structure (see [22]). Equipped now with the DDA and RDGA
far-field scattered intensity, a comparison between the two
can be done, and this is shown in Fig. 3. Referring to plot
(a), the comparison is done for the aggregate in a single ori-
entation and averaged over Nori � 500 orientations. For the
single orientation, the RDGA scattered intensity follows the
DDA intensity surprisingly well. The agreement is improved
when orientational averaging is done. To explore the conse-
quences of this averaging in more detail, plot (b) presents the
DDA scattered-intensity for the aggregate averaged over a va-
riety of random orientations. One can see that only after
roughly 500 orientations are included does the scattered inten-
sity take on the power-law functionality of Eq. (2). Thus,
Figs. 2 and 3 give a conflicting message for the validity of
the RDGA. Regarding the internal field, the RDGA only poorly
represents the true internal field. The far-field scattered inten-
sity, however, is quite well described by the RDGA. Moreover,
the success of the RDGA for the scattered intensity appears to
only weakly depend on the average over many aggregate-
orientations.

Because the DDA calculations do not analytically average
the scattered intensity, one must establish if enough orienta-
tions are included such that the ensemble average converges
to its true value. The convergence is established from the evo-
lution of the Q space scattering curves, which is presented in
Fig. 3(b). One can see from these plots that the average
converges well for Nori � 500 and agrees with Eq. (2).

To further compare the internal field and scattered inten-
sity, Fig. 4 shows the field-direction points ei of Eq. (4) in
row (a), the relative magnitude-deviation δi of Eq. (3) in row
(b), and the polarization state of the far-field scattered wave in
row (c). Each column shows these quantities for Nori � 1, 10,
and 500 aggregate orientations. One can see in row (a) that
most lattice sites in the aggregate have field directions close
to the x-axis poles, consistent with the RDGA. Interestingly, as
more orientations are included in the ensemble, the dispersion
of points appears to narrow only slightly, unlike the narrowing
seen in the magnitude-deviation histograms in row (b). More-
over, the shape of the distributions in row (b) shows that the

field magnitude tends to be slightly greater than the RDGA
expectation.

The Stokes parameters I, Q, U , and V are used to describe
the polarization state of the far-field scattered wave. To render
the state graphically, row (c) in Fig. 4 shows the unit sphere
shaded to denote the wave’s ellipticity along with the wave’s
vibration ellipse. The ellipticity is calculated from the Stokes
parameters via Eq. (194) of [20], whereas the handedness, or
rotation, of the polarization is indicated by the color: red de-
notes left-handed and blue denotes right-handed rotation.
Inspection of the polarization state shows some degree of
ellipticity for Nori � 1, including points in the horizontal scat-
tering plane, which is wholly unexpected from the RDGA. In
particular, the backscattering direction displays a nonzero
ellipticity. This is consistent with the nonspherical shape of
the aggregate in the context of the phasor cancellation model
of the polarization state given in [23] and other studies

Fig. 3. Comparison between the DDA and RDGA scattered intensity.
Both intensities are calculated using Eq. (6), except that the RDGA
of the internal field is replaced by the incident field. Thus this
calculation of the RDGA scattered intensity is essentially the square
of the Fourier transform of the aggregate’s spatial structure (see [22]).
Plot (a) presents the comparison for an aggregate in a single orienta-
tion and averaged over Nori � 500 orientations. Plot (b) shows the
DDA-calculated scattered intensity for a variety of aggregate orienta-
tions to demonstrate the effect that this averaging has to yield
agreement with the power-law functionality of Eq. (2).
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concerning the change in polarization state for nonspherical
particles [20].

To say more, [24] shows that if the internal field is uniform,
the scattered wave must be linearly polarized in all directions.
If the RDGA were valid for an aggregate with spherical mono-
mers, the polarization state would then be linear for all scat-
tering angles. Indeed, this is the case in Fig. 4 once many
orientations have been included. This implies that one reason
why the polarization is linear is due to orientational averaging.
Hence, a polarization measurement in the scattering plane for
a single aggregate in a fixed orientation may show angular
regions where the scattered wave is elliptical. Yet, the same
measurement on a swarm of similar randomly oriented aggre-
gates would show mostly linear polarization, which is consis-
tent with laboratory observations [25].

As mentioned earlier, one can conclude from Figs. 2–4 that
the RDGA is in error up to�25% in describing the aggregate’s
internal field, yet the far-field scattered intensity and polariza-
tion agrees well with the RDGA, especially when many orien-
tations are considered. Thus there must be some special

characteristic of the internal field that yields this agreement
with the RDGA.

5. ROLE OF FRACTAL GEOMETRY
An explanation for the apparent validity of the RDGA relates
to the fractal character of the aggregate. Given thatDf < 2, the
aggregate has a nondense, porous structure [15]. Comparing
this to a solid object (Df � 3) of similar refractive index,
one could propose that the highly porous character of the ag-
gregate reduces the electromagnetic coupling between mono-
mers. Such a hypothesis could be tested quantitatively using
the phase-shift parameter ρ � 2kRjm − 1j, where R is a suit-
able characteristic length. For a single spherical monomer,
ρ represents the difference in phase between a ray passing
through the monomer diameter and a ray traversing the same
distance in vacuum [26]. In other words, ρ is a measure of the
degree of refraction. Thus the two formal conditions for the
validity of the RDGA mentioned in Section 3 can be combined
into the single requirement that the phase-shift parameter for
the aggregate be small. To account for the fractal geometry,

Fig. 4. Survey of the internal field and scattered wave’s polarization state as a function of aggregate orientations. Row (a) shows the internal field
directions given by Eq. (4), and row (b) shows histogram plots of the number of DDA lattice sites Ns with internal field deviation δi [Eq. (3)] in 5%
bins. Row (c) shows the polarization state of the far-field scattered wave across the unit sphere as calculated by the DDA via the Stokes parameters.
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the Maxwell–Garnet theory is used to define an effective re-
fractive index (see [2]). With this, an effective phase-shift
parameter for the aggregate would be

ρeff � 2kjm − 1jR3−Df
m RDf−2

g : (7)

Examination of Eq. (7) reveals that ρeff decreases as the
size of the aggregate increases provided that Df < 2. Thus,
in as much as Eq. (7) can describe the degree of refraction
by an aggregate, it shows that the condition for the validity of
the RDGA is met for sufficiently large aggregates. One should
note that Eq. (7) is not the only way to understand the (un-
expected) effectiveness of the RDGA (e.g., see [4,27,28]).

This discussion suggests that an evolution toward agree-
ment with the RDGAwill be seen for aDf � 1.8 soot aggregate
as its size increases. Such an evolution can be studied with the
DDA; however, one cannot simply scale the size of the aggre-
gate to vary ρeff . In order to keep the morphologic and electro-
magnetic properties of the aggregate constant as much as
possible, the aggregate size is varied through the number of
monomers Nm, with Rm and m fixed. This is done using a
parent-child model: the aggregate in Figs. 1–4 above, which
will be called the parent, is truncated by a sphere of radius
Rt positioned at the center of mass. All monomers outside
of this sphere are discarded, and what remains becomes
the child aggregate. In this way, aggregates of varying size

Fig. 5. Comparison of the DDA and RDGA scattered intensity and internal field as a function of increasing aggregate size. The parent aggregate is
shown in IV and is the same aggregate used in Figs. 1–4. Smaller child aggregates are generated from this parent by truncating the parent with a
sphere of radius Rt. The middle plots show the percent deviation δI [Eq. (8)] of DDA and RDGA scattered intensity for aggregates in a single
orientation and an ensemble of 500 orientations. The bottom plots show the number of lattice sites Ns with internal field magnitude deviations
δi [Eq. (3)] in 5% bins.
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can be made that have some structural similarity with each
other. Ideally, this structural similarity would mean that the
fractal dimensions of the child and parent are equivalent.
However, the range of Rt considered is such that the smallest
child aggregate consists of a single monomer only. In that
case, the fractal dimension is Df � 3.0, whereas the largest
aggregate, i.e., the parent, has Df � 1.8. Note that in some
sense, this procedure is similar to the evolving aggregate-size
structure factor measurements in [16].

Figure 5, top row, shows the parent and three child aggre-
gates each labeled by Roman numerals. Also shown are the
truncation spheres as measured in terms of Rm. To test the
predictive ability of Eq. (7), the scattered intensity is calcu-
lated for each aggregate using the DDA and RDGA, i.e.,
Idda and Irdga, respectively. The relative deviation as a function
of qRt between these is then calculated as

δI�qRt� �
Idda�qRt� − Irdga�qRt�

Irdga�qRt�
: (8)

If δI � 0, then the DDA and RDGA yield equivalent scat-
tered intensity, whereas a nonzero value indicates percent
deviation between the two.

The middle panel in Fig. 5 shows δI for the aggregates in a
single orientation and averaged over Nori � 500 orientations.
The values of ρeff are also shown. For both single and random
orientations, larger aggregates show less overall deviation
from the RDGA, in agreement with Eq. (7). Interestingly,
the average deviation δI is roughly the same for aggregates
of the same size, regardless of whether or not they are orienta-
tionally averaged. The primary effect of the averaging is to
wash out the spikes in deviation that are seen in the large
qRt range for aggregates in fixed orientations. The bottom
panels in Fig. 5 show histogram plots of the number of lattice
sites Ns in each aggregate with internal field magnitude
deviation δi [Eq. (3)] in bins of 5%. Here, one can see that
the distributions grow in amplitude with aggregate size, which
is simply due to the larger number of sites contained within
aggregates of increasing size. The important behavior is
contained in the distribution shape, in particular its width.
For aggregates in a single orientation, the deviation is large,
up to �50%, whereas this is reduced to �25% for orientation-
ally averaged aggregates, consistent with Fig. 4. However, the
shape of the distributions is roughly symmetric about δi � 0,
meaning that on average there are as many lattice sites with
internal field magnitude greater than the RDGA prediction as
there are with magnitude less than the RDGA.

Formally, the internal field is connected to the scattered
intensity by the VIE, which integrates the internal field
throughout the aggregate [recall Eq. (6)]. Thus the mostly
symmetric shape of the field-deviation distributions in Fig. 5
suggests that this integration averages out the positive and
negative deviations, yielding the unexpectedly good agree-
ment with the RDGA for I. The slight asymmetry of the dis-
tributions may then account for the small error ultimately
observed in the RDGA. Had the phase-shift parameter of
the aggregate been calculated with the monomer refractive
index and radius of gyration, one would find that increasing
aggregate size would give an increasing phase shift, and thus
no enhanced agreement with the RDGA would be expected.
By building in the fractal nature of the aggregate using the

Maxwell–Garnet theory, the phase shift of Eq. (7) decreases
with increasing aggregate size and thus correctly predicts the
improved agreement with the RDGA.

6. VALIDITY OF THE MODEL
There is some question how valid the DDA may be when ap-
plied to the high refractive index and complex shape of the
fractal aggregates considered here. For example, a study by
[29,30] using the T-matrix method to model scattering from
aggregates of interacting spheres finds slow convergence of
the number of terms in the harmonic expansions involved.
Even though the spherical monomers are Raleigh-type par-
ticles, due to the strong interactions between them [29] found
that up to 10 terms may be required in the expansion for a bi-
sphere aggregate for acceptable convergence to be obtained.
Such results could suggest that the DDA cannot be used to
model scattering from fractal aggregates as is done here.
To investigate this question, Fig. 6 shows the effect on Idda
as the number of dipoles per monomer Ndda∕Nm is increased
using the following values Ndda∕Nm � 4, 8, 14, 23, 34, 48, 65,
88, and 113. This ratio is the primary quantity controlling the

Fig. 6. Relative error between DDA scattered intensity curves using
successively greater numbers of dipoles per monomer Ndda∕Nm. The
upper plot shows the convergence error as described by Eq. (9) where
the number of dipoles per monomer is indicated on each curve. The
aggregate is the parent aggregate of Fig. 5. The lower plot shows the
scattered intensity curve for the largest, i.e., most accurate, value for
Ndda∕Nm. Here, one can see the correlation between the minima in the
scattered intensity and the spikes in the convergence error above.
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accuracy of the calculated scattered intensity. Using the pa-
rent aggregate in Fig. 5, i.e., the largest aggregate, the relative
error between Idda as calculated by using an increasing num-
ber of dipoles is shown in the upper plot. This is called the
“convergence error” here. For example, the bottom curve
in the error plot is calculated in analogy to Eq. (8) as

I�8�dda�qRt� − I�4�dda�qRt�
I�8�dda�qRt�

× 100; (9)

where I�4�dda means that the DDA scattered intensity is calcu-
lated using Ndda∕Nm � 8 dipoles per monomer and is com-
pared to the same calculation using Ndda∕Nm � 4. On
average, the error is less than 10% when Ndda∕Nm � 34 or
larger values are used. The exception is in the neighborhood
of minima in the scattered intensity curves, where numerical
errors resulting from the subtraction of two small numbers
cause spikes in the curves. The figure shows a plot of the
scattered intensity using the largest dipole ratio Ndda∕Nm �
113 where the minima in the curve are correlated with the
spikes in the error. What Fig. 6 shows is that increasing the
number of dipoles per monomer produces a scattering curve
that converges to a “master curve” as more dipoles are in-
cluded, i.e., a curve approximately given by the Ndda∕Nm �
113 case. In this context, the value of Ndda∕Nm � 34 that is
used above would seem to be acceptable for relative errors
less than 10%. It is plausible, then, that this assessment of ac-
curacy also extends to the internal fields provided by the same
DDA calculations. Such validity is an important assumption in
this work, and there would be value to further investigating
this issue. For example, the same superposition T-matrix
theory used in [30] could be applied to the aggregates consid-
ered here, which would provide the analytically exact
scattered intensity. However, what is really needed is a
retooling of the simulation code in [29,30] for the internal

fields; those could then be directly compared to the DDA
fields calculated here. Unfortunately, such comparison is
not possible within the scope of this work.

7. CONCLUSION
Using the DDA, this work shows that the internal electric field
within a simulated soot fractal aggregate can deviate up to
�50% from the RDGA prediction, yet the DDA far-field scat-
tered intensity agrees well with this prediction. The validity of
the approximation for the scattered intensity, despite its poor
description of the internal field, relates to the manner in which
the true field deviates from that assumed in RDGA. The DDA
shows that roughly equal portions of the aggregate exhibit in-
ternal field magnitudes greater than, and less than, the RDGA
value. Consequently, when the internal field is integrated by
the VIE to yield the scattered intensity, the average result is
well described by the RDGA. This behavior is seen for aggre-
gates in both fixed and random orientations; in the latter case,
the classic Q-space power-law functionality is seen.
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