
RECOMMENDING RECIPES BASED ON INGREDIENTS AND USER

REVIEWS

by

ANIRUDH JAGITHYALA

B.Tech, Jawaharlal Nehru Technology University (JNTU), India, 2010

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Doina Caragea

Copyright

Anirudh Jagithyala

2014

Abstract
In recent years, the content volume and number of users of the Web have increased

dramatically. This large amount of data has caused an information overload problem, which

hinders the ability of a user to find the relevant data at the right time.

Therefore, the primary task of recommendation systems is to analyze data in order to

offer users suggestions for similar data. Recommendations which use the core content are

known as content-based recommendation or content filtering, and recommendations which

utilize directly the user feedback are known as collaborative filtering.

This thesis presents the design, implementation, testing, and evaluation of a recom-

mender system within the recipe domain, where various approaches for producing recom-

mendations are utilized. More specifically, this thesis discusses approaches derived from

basic recommendation algorithms, but customized to take advantage of specific data avail-

able in the recipe domain. The proposed approaches for recommending recipes make use of

recipe ingredients and reviews. We first build ingredient vectors for both recipes and users

(based on recipes they have rated highly), and recommend new recipes to users based on

the similarity between user and recipe ingredient vectors. Similarly, we build recipe and

user vectors based on recipe review text, and recommend new recipes based on the simi-

larity between user and recipe review vectors. At last, we study a hybrid approach, where

both ingredients and reviews are used together. Our proposed approaches are tested over

an existing dataset crawled from recipes.com. Experimental results show that the recipe

ingredients are more informative than the review text for making recommendations. Fur-

thermore, when using ingredients and reviews together, the results are better than using

just the reviews, but worse than using just the ingredients, suggesting that to make use of

reviews, the review vocabulary needs better filtering.

Table of Contents

Table of Contents ix

List of Figures xii

List of Tables xiii

Acknowledgements xiv

1 Introduction 1

1.1 Motivation for Recommender Systems . 1

1.2 Problem Addressed and Challenges . 2

1.3 Thesis Contribution . 3

1.4 High-Level Overview of Proposed Approaches 3

2 Related Work 6

2.1 The World Wide Web . 6

2.2 Information Retrieval . 7

2.3 Information Filtering . 9

2.4 Recommender Systems . 9

2.4.1 Content-based Filtering . 9

2.4.2 Collaborative Filtering . 11

3 Recommendation Approaches 12

3.1 Basic Approaches for Finding Similar Items 12

ix

3.1.1 Vector Space Model . 12

3.1.2 Extended Vector Space Model for Content-based Filtering 17

3.2 Proposed Approaches . 18

3.2.1 User Recommendations based on Recipe Ratings 18

3.2.2 User Recommendations based on Recipe Ingredients 20

3.2.3 User Recommendations based on Recipe Review Text 23

3.2.4 User Recommendations based on Recipe Ingredients and Review Text 24

4 Experimental Setup 27

4.1 Overview . 27

4.2 Data Description . 28

4.3 Dataset Folds, Training and Test Datasets 29

4.4 Evaluation Metric: Mean Average Precision 31

4.5 Experiments . 32

4.5.1 Evaluate Recommendations based on Ratings 32

4.5.2 Evaluate Recommendations based on Ingredients 33

4.5.3 Evaluate Recommendations based on Review Text 34

4.5.4 Evaluate Recommendations based on Ingredients and Review Text . . 34

5 Results 36

5.1 Experiment 1 Results . 36

5.2 Experiment 2 Results . 37

5.3 Experiment 3 Results . 37

5.4 Experiment 4 Results . 38

5.5 Experiment 5 Results . 39

5.6 Experiment 6 Results . 40

5.7 Experiment 7 Results . 40

x

5.8 Experiment 8 Results . 41

5.9 Summary of Results . 42

6 Discussion and Conclusions 44

7 Future Work 46

Bibliography 47

A Technologies 49

A.1 Apache Hadoop . 49

A.2 Mahout . 49

A.3 Pig . 50

A.4 Google GSON API . 50

B Additional Experiments 51

B.1 Algorithm Results Using Cosine Similarity over a 3-fold Dataset 52

B.2 Algorithm Results Using Pearson Correlation Coefficient Similarity over a

3-fold Dataset . 53

xi

List of Figures

2.1 Number of Internet Hosts . 7

2.2 Information Retrieval System Architecture 8

2.3 Information Filtering in Recommender Systems 10

3.1 Inverted Index Example . 14

3.2 Document-Item Matrix . 15

3.3 Cosine Similarity . 16

3.4 Pearson Correlation Coefficient . 17

3.5 Workflow for Rating-based Recommendation Approach 19

3.6 Workflow for Ingredient-based Recommendation Approach 21

3.7 Workflow for Recommending Similar Recipes based on Ingredients 23

3.8 Workflow for Review Text-based Recommendation Approach 25

3.9 Workflow for Ingredient and Review Text-based Recommendation Approach 26

4.1 Experimental Setup . 28

4.2 JSON Recipes . 29

4.3 JSON Reviews . 29

4.4 Class Diagram to Read Input Files . 30

xii

List of Tables

4.1 Statistics for All Training Folds . 31

4.2 Statistics for All Test Folds . 31

5.1 Results for Experiment 1: Using Cosine Similarity to Make Recommendations

based on Ratings . 36

5.2 Results for Experiment 2: Evaluate User Recommendations on Ratings by

Pearson correlation Coefficient Measure . 37

5.3 Results for Experiment 3: Evaluate User Recommendations on Recipe Ingre-

dients by Cosine Similarity Measure . 38

5.4 Results for Experiment 4: Evaluate User Recommendations on Recipe Ingre-

dients by Pearson Correlation Coefficient Measure 39

5.5 Results for Experiment 5: Evaluate User Recommendations on User Review

Text by Cosine Similarity Measure . 39

5.6 Results for Experiment 6: Evaluate User Recommendations on User Review

Text by Pearson Correlation Coefficient Measure 40

5.7 Results for Experiment 7: Evaluate User Recommendations with Hybrid ap-

proach by Cosine Similarity Measure . 41

5.8 Results for Experiment 8: Evaluate User Recommendations with Hybrid ap-

proach by Pearson Correlation Coefficient Measure 42

5.9 Experiment: Evaluation Results of All approaches by Cosine Similarity Measure 43

xiii

B.1 Experiment: Evaluation of All approaches in three fold dataset by cosine

similarity measure . 52

B.2 Experiment: Evaluation of All approaches in three fold dataset by Pearson

correlation similarity measure . 53

xiv

Acknowledgments

While this thesis is my own work, it benefited from the insights and directions of several

people. I would like to thank them all for their help and support.

First and foremost, I would like to express my deepest gratitude to my advisor Dr. Doina

Caragea, for her excellent guidance, caring, patience, and for providing me with an excellent

atmosphere for doing research. Without her guidance and persistent help this thesis would

not have been possible.

I would also like to thank Dr. Daniel Andresen, for being a member of my M.S. com-

mittee. His classes are a great source of information and also motivate students to think of

latest and efficient solutions to the challenging problems.

I would like to thank Dr. Torben Amtoft for being a member of my M.S. committee,

and for educating me with some of the important concepts of algorithms and about ways to

tackle some of the hardest problems.

I wish to place on record my deep sense of gratitude to my Supervisor, Mr. Will Baldwin

from Biosecurity Research Institute, with whom I worked throughout my Masters years at

Kansas State University.

Finally, I would like to thank my family members, Mr. Jagityala Ashok Kumar, Mrs.

Jagithyala Arpitha, my brother Mr. Animesh Jagithyala and my sister Mrs. Likitha

Jagithyala, for their love and support at every stage of my life. I would also like thank

my friends and colleagues for their support throughout my Graduate Study.

xv

Chapter 1

Introduction

Recommender systems are prominently researched within the field of Data processing and

Data Mining. Recommender systems are applied in e-commerce websites, social networking

sites, and many other domains which contain high volume of data. The primary goal

of recommender systems is to analyze data behavior and predict similar future relativity.

Section 1.1 offers motivation for the proposal of recommender system. We state the problem

addressed and emphasize on challenges of the recipe domain in order to recommend recipes

in Section 1.2. The next Section 1.3 describes my contribution towards this thesis. Finally,

an outline of proposed approaches is described in Section 1.4.

1.1 Motivation for Recommender Systems

The World Wide Web, a massive database system in which connected information can be

accessed or manipulated through hypertext, is experiencing dramatic growth as a result of

increased Internet usage. Recent statistics also indicate that the number of Internet users

is high and rapidly growing. Data continues to increase with more interrelated features

such as products, corresponding reviews, new products, and user preferences. Most avail-

able information help providers recommend similar available products with closely related

1

features.

However, manually processing existing data is tedious, inefficient, and often leads to

errors. In addition, it is difficult to classify, filter, and then recommend from such a huge

set of data. A more efficient approach is to automatically process user opinions, features,

and other related data in order to predict a new set of related products.

Recommender systems achieve this goal(i.e., to suggest products based on processing

of related opinionated products) by utilizing opinions of a community of users to help in-

dividuals in that community to effectively identify content of interest from a potentially

overwhelming set of choices1 cited at p. 1, 8. Two dominant recommendation strategies:

content-based and collaborative filtering. Content-based filtering relies on rich content de-

scriptions of items that are recommended2 cited at p. 1, while collaborative filtering recom-

mendations are motivated by the fact that users often look to friends for recommendations3

cited at p. 1, 14, 20.

Recommender systems are primarily applied for commercial use to analyze the process

of data. Especially for popular e-commerce sites such as Amazon. Any approaches such

as building ingredient networks and exploring Folksonomy and Cooking Procedures exist

on recipe domain. This paper would further discuss the different approaches for a recipe

domain to recommend additional accurate recipes.

1.2 Problem Addressed and Challenges

This thesis focuses on the development and evaluation of a recommender system within

the recipe domain. Various approaches for computing recommendations are designed, im-

plemented, and tested with real end-users. Evaluation was conducted by assessing system

functionality and comparing recommender precision obtained by each approach.

One of the many factors for any successful user interactive systems is the ability to offer

accurate recommendations. For the domain of recipe databases, recommendation of various

2

recipes is difficult due to variations in user preferences, ingredients, cooking procedures, etc.

Recipes may contain identical titles but they may differ in details of preparation procedures

and ingredients.

In addition, standard strategies do not always sufficiently reflect a user’s preference be-

cause preference is often context-dependent4 cited at p. 2. User mood, allergic ingredients,

or preparation procedures with/without certain ingredients or predefined preparation pro-

cedures (such as baked, fried, steamed) could contribute to user preferences. By integrating

recipe ingredients, preference with recommender systems a more accurate recommender than

a standard collaborative filtering.

This paper presents various approaches for building recommendations based on user

preferences, and corresponding ingredients. Moreover the free-form review text is also used

to identify recipe similarities for recommendations.

1.3 Thesis Contribution

The major contribution of this thesis work is to propose approaches to recommend recipes

based on recipe ingredients and user reviews. All approaches mentioned in chapter 3 have

been devised and the corresponding algorithms were implemented and tested.

Each approach is evaluated and compared against a standard list of recommendations

generated with a generic collaborative filtering approach. The collaborative filtering ap-

proach is considered as a benchmark for all the approaches.

1.4 High-Level Overview of Proposed Approaches

The primary objective of this project was to propose various approaches that could be used

to predict user recommendations on a recipe domain. User ratings are typically the only

factor utilized in order to make recommendations to the user. However, other approaches

specifically related to recipe domain are proposed below:

3

1. Approach 1: Ingredient-based Similarity of Recipes

In this approach, the system is trained to consider ingredients as primary factor for

recipes to be similar. This approach does not consider user profiles. The current

recipe is considered to be liked by the user and recommendations are provided to an

anonymous user without a profile. Most similar recipes are recommended to the user

browsing/reviewing/liking the current recipe.

2. Approach 2: User Recommendations based on Recipe Ratings

This approach utilizes user ratings given for various user recipes. Each user offers a

rating after reviewing the recipes. Based on these ratings, similar recipes which may

be related to the user are predicted. This approach is an extension to collaborative

filtering.

3. Approach 3: User Recommendations based on Recipe Ingredients

The main criteria for recommendations is recipe ingredients, there by demonstrating

content based filtering. Recipe ingredients are considered to correspondingly determine

relative recipe recommendations.

4. Approach 4: User Recommendations based on Recipe Review Text

Recommendations to a user are generated based on textual information reviews offered

by the user, the user profile is constructed based on reviews given by user. Textual re-

views of the recipes are thus analyzed to predict user recommendations. This approach

is also an extension to content based filtering.

5. Approach 5:User Recommendations based on Recipe Ingredients and Re-

view Text - HYBRID

Recommendations to a user are based on recipe ingredients and corresponding textual

reviews of the recipes. The hybrid approach considers content-based filtering on recipe

ingredients and review text given by users. The hybrid approach also combines the

4

similarity measure obtained from content based filtering on ingredient and content

based filtering on review text. User recommendations are generated most closes to the

similarity measures.

The remainder of the thesis is organized as follows: Chapter 2 describes related work

on recommender systems. Chapter 3 formulates the problem of recommender systems on

the recipe domain and explains various approaches and detailed examples. Chapter 4 ex-

plains the dataset, experimental setup of various performed experiments, and the research

questions addressed. Chapter 5 discusses experimental results and explains the usefulness

of the proposed approaches for recommender system approaches on recipe domain. Chapter

6 concludes the work and the directions for future work are presented in Chapter 7.

5

Chapter 2

Related Work

This chapter introduces the concept of recommender systems and problems which recom-

mender systems are attempting to solve by utilizing various approaches. A set of widely

used basic approaches of recommender systems are also described.

2.1 The World Wide Web

The World Wide Web consortium, formed in 1994, developed standards within which com-

puters can communicate with each other. These standards included the use of Hyper Text

Transfer Protocol (HTTP), Hyper Text Markup Language (HTML), and Uniform Resource

Locator(URL) in order to communicate efficiently. Since 1994, these standards have pro-

vided a simple and standard platform through which information is shared. These standards

increased the number of users and hosts which share data over the Web. The number of

hosts have been exponentially increasing since 1994 and is expected to continue as described

in figure 2.1.

Since the discovery of world wide web in the 90’s, information or the required data has

been growing rapidly. In 1990, it has already been accentuated by Tim Berners-Lee, the

need for an information management system, to prevent the loss of information resulting

6

Figure 2.1: Number of Internet Hosts

from the growing organizational structure at CERN15.

Rapid expansion of web size and amount of information required application various

techniques in order to find required information. These techniques are categorized as infor-

mation filtering and information retrieval. Although the goal of information retrieval and

information filtering is to deal with the information overload problem by examining and

filtering big amounts of data, a distinction is often made between the two6.

2.2 Information Retrieval

Information Retrieval(IR), commonly associated with data search or searching required

information, involves technologies such as web crawling, document processing, indexing and

query processing.. A high level architecture of the information retrieval system is shown

in 2.2. Crawling is the retrieval of various kinds of information from many diverse web

servers. A web crawler processes the entire set of URL or links to request web servers

and stores response as information. The crawler then processes the internal URL on the

retrieved data using approaches such as depth-first search and breadth-first search. Then

the documents are processed in order to add information like, meta data details, or remove

7

Figure 2.2: Information Retrieval System Architecture

noisy data.

Furthermore, nearly all information retrieval systems construct indexes from processed

data. Data indexing allows fast processing and easy retrieval of the extracted data.

A request for information is a query. A typical IR system allows the user to write

queries in order to retrieve the related information. The IR system interacts with the query

processor to retrieve the query in the form of keywords on the indexed data. The objective is

to evaluate the user’s intent from the query, and then retrieve the most relevant documents.

IR depends on the users to type in the query for the required data. An IR system is

efficient for the users who can query the system based on certain keywords obtained from

the user’s knowledge of the complete dataset.

8

2.3 Information Filtering

Information Filtering emphasize filtering of information specific to a user based on user

preferences or user profiles. User behavior is studied by utilizing the user input or monitoring

user activity. Information Filtering (IF) is automatically performed by the system to provide

the user with information related to the profile. A detailed description is shown in the figure

2.3

The primary advantage of information filtering is its ability to adapt to various user

profiles and to automatically perform the action by the user based on the past user profile.

Information Filtering (IF) does not require the user to type in the query, but it records all

user activity and filters the data to provide a suitable suggestion for future actions.

A subclass of an IF system that seeks to predict the ’rating’ or ’preference’ a user would

give to an item is known as a recommender system.7.

2.4 Recommender Systems

A recommender system is an Information Filtering (IF) system that provides personal pref-

erence guide based on the user profile and preferences.

2.4.1 Content-based Filtering

Information filtering (IF) differs from Information Retrieval (IR) in the way that user inter-

ests are presented. Instead of allowing user lookup information using a query, an IF system

attempts to model the user’s long-term interests and suggest relevant information to the

user.

Content-based filtering methods, based on item description, considers user preferences

according to the user profile. A content-based algorithm stores the users preferences such

as interests to provide recommendations.

9

Figure 2.3: Information Filtering in Recommender Systems

Content-based filtering considers user history in order to match the history to the pre-

dicted future interest of the user for recommendations. Based on the algorithm considered,

user preferences can be represented by weighted vectors and then compared to completed

document dataset in order to retrieve most relevant documents. Bayesian classifiers, cluster

analysis, decision trees, or artificial neural networks are methods to calculate weights and

classify items to user preferences.

Textual information can easily be parsed and automatically categorized. For other types

of information, such as multimedia data (e.g., images, music, and movies), categorization

requires more complex operations performed manually by humans. However, this activ-

ity is error-prone, time-consuming, expensive, and highly subjective8. Therefore for an

environment with variant amounts of information, dynamically increasing, content-based

systems are not suitable. However, the problem with systems involving variant amounts of

information can be avoided if information can be categorized without parsing.

10

2.4.2 Collaborative Filtering

The collaborative filtering method considers user preferences such as ratings, behaviors, or

reviews to provide a filter for user preference information. Collaborative filtering systems

are often classified as memory-based (user-based) or model-based (item-based). A memory-

based collaborative filtering approach predicts item ratings based on all ratings given by

various users for an item. A model-based approach predicts user ratings of all items from a

particular set of items rated by the user. Collaborative filtering algorithms can be applied

to any domain, as the algorithm considers explicit user feedback in the form of ratings. K-

nearest neighbors, Pearson Correlation Coefficient are two of the approaches used to predict

nearest relevance to the user.

User profile information is obtained through explicit or implicit feedback. Implicit feed-

back is obtained when the system automatically analyzes the user behavior based on factors

such as browsing history, viewed items, and purchases made. Explicit feedback is also ob-

tained by user ratings and reviews explicitly given by the user contributing to users feedback

for constructions of the user’s profile.

However, collaborative filtering has a ’cold start’ problem. Similarities between users

change needs to be determined when new ratings are posted. The new recommendations

are determined using all old and the new modified data discarding the previously calculated

recommendations. Therefore, the system must be constantly updated. Another problem

with collaborative filtering is sparsity of data. A majority of items may not be rated by the

user resulting diminished performance.

11

Chapter 3

Recommendation Approaches

Several algorithms can be applied on a dataset of recipes to compare and determine most

accurate recommendation behavior. All approaches use a common experimental setup men-

tioned in Chapter 4. The primary algorithms for the experiments involved variations of

content-based filtering, collaborative filtering, and hybrid approaches involving multiple al-

gorithms.

3.1 Basic Approaches for Finding Similar Items

Before the algorithmic approaches applied for the recipe domain are described, the basis

model used by all approaches must be defined. The vector space model a concept of

representing documents, queries, and profiles in the form of vectors, was used extensively.

The vector space model represents all basic recipe entities and corresponding features with

user profiles and preferences in the form of vectors.

3.1.1 Vector Space Model

A vector space model is an algebraic model to represent text documents (and general objects)

as vectors of identifiers, such as index terms9. A vector space model uses term occurrences

12

as vector identifiers, so vector space model (VSM) is also known as term vector model.

Each document (an item in the source database, such as web page, images or text files

etc.,), query, user profiles are represented in the form of vectors. Each vector dimension

corresponds to a term, and based on term dimensions, various components have been de-

termined to calculate corresponding weights. One way to calculate weights of the terms is

to use term frequencies and inverse document frequencies (TF-IDF). For each orthogonal

term i for a document or query j, a real valued weight Wij is calculated.

d j=(W1,j,W2,j,....,Wt,j)

q =(W1,q,W2,q,....,Wt,q)

The above vector format is represented for a document d i with corresponding weights

of each term in the form of W1,W2..,Wt. Similarly, query ’q’ is represented in the vector

format. Once all the documents, queries or any other available information is in the form

of vectors, vector operations are applied to compare queries with the document.

A vector space model follows three steps to retrieve documents similar to the query: (1)

document cleaning and indexing, (2) term weighting, and (3) similarity measure.

Document Cleaning and Indexing

The first step of a vector space model is to extract particular content which bears terms from

the document. It is evident that the document would contain some unrelated data such as

is, the, a etc., which do not contribute to describe the contents of the document. Therefore,

most of such stop words are removed in order to represent the document by the content

bearing terms (10). In addition, terms can be stemmed to hold root term of the word,

such as cats for catlike and catty, thus relating more terms and reducing the vocabulary.

Next, inverted index with the terms and corresponding occurrences in the documents are

constructed. Indexing can be based on term frequencies of the term in the document, as

13

1 d3 d2 d4 d1 d6

2 d6 d1 d5

3 d4 d3

Figure 3.1: Inverted Index Example

discussed in the Section 3.1.1. Vocabulary dimension is determined by orthogonal terms

formed after cleaning and indexing.

Figure 3.1 represents a sample inverted index with terms 1, 2 and 3 and term occurrences

in various documents d1, d2, d3, d4, d5, and d6. In addition to indexing the documents,

corresponding weights described in Section 3.1.1, of the term document can be calculated

and stored in a similar inverted index.

Term Weighting

The second step of the vector space model is to weight indexed terms. Appropriate term

weighting must be chosen in order to improve the retrieval of relevant document to the user.

The most popular and efficient term weighting is use of term frequencies, inverse document

frequencies11 TF-IDF.

Most frequent terms in the document are considered more indicative of the document

topic. Similarly, terms that appear in many documents are less indicative of the document

topic.

To determine most frequent terms in the document:

frequency of term i in document j : fij

normalizing term frequencies : tfij=fij/maxi(fij)

To determine document frequencies for terms, such as to recognizing less indicative terms

within many documents:

14

Figure 3.2: Document-Item Matrix

number of documents containing term i : dfi

Inverse Document Frequencies of term i : idfi=log2N/dfi

where N is the total number of documents.

A term occurring frequently in the document but rarely in the rest of the collection is given

high weight. A typical tf-idf weighting which combines the occurrence of frequent terms in

the document and less frequent in the remaining documents is given by:

Wij=tfij*idfi

Wij=tfij*(log2N/dfi)

At the end of term weighting step, weights can be directly stored in the inverted index for

fast retrieval. A collection of documents can be represented in matrix format. An element

in the matrix corresponds to a weight of the term in the particular document, as shown in

figure 3.2.

Similarity Measures

The last step of VSM, is to rank the document with respect to the query or user profile

according to a similarity measure. The similarity measure computes the degree of similarity

15

CosSim(x, y) =

∑
i(xi)(yi)√∑
i x

2
i

√∑
i y

2
i

(3.1)

=
〈x, y〉
||x|| ||y||

(3.2)

Figure 3.3: Cosine Similarity

between query and the document. The final document can be ordered based on the relevance

when similarity with the query is determined.

Similarity in vector space models is determined by the use of associative coefficients

based on inner product of the document vector and query vector, where word overlap in-

dicates similarity. The inner product is typically normalized. The most popular similarity

measures is the cosine coefficient and Pearson correlation coefficient. Cosine coefficient mea-

sures the angle between a document vector and query vector; Pearson correlation coefficient

is a measure of linear correlation or dependency. Both correlation values lie between [-1,1].

Cosine similarity between two vectors can be represented as demonstrated in figure 3.3,

where x i and y i represent two vectors. These vectors are the pairs of query and every

document in the dataset.

Pearson correlation coefficient can be explained as a centered cosine; or normalized covari-

ance. Pearson correlation coefficient is an invariant to shift; therefore, it considers the mean

to normalize in the form, as shown in figure 3.4, where xi and yi represent two vectors and

x̄, ȳ represents the respective mean of the vectors from the collection already calculated.

Pearson correlation coefficient is represented as centered average inner product. Therefore,

for the vector space model, the correlation measure mentioned in Figure 3.4 is efficient than

cosine similarity measure.

16

Corr(x, y) =

∑
i(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(3.3)

=
〈x− x̄, y − ȳ〉
||x− x̄|| ||y − ȳ||

(3.4)

= CosSim(x− x̄, y − ȳ) (3.5)

Figure 3.4: Pearson Correlation Coefficient

3.1.2 Extended Vector Space Model for Content-based Filtering

No explicit queries are given by the users in recommender system so the vector space model

is extended for recommendations. Various stages of a vector space model described in

Section 3.1.1 are used according to required recommendations to the user. Generically all

user profiles are constructed as queries to the system.

Steps followed to recommend documents to users based on the user’s profile are listed

below

• Clean and Build Inverted Index, based on relevancy of terms to be considered. Terms

vary based on domain. For example, ingredients can be considered terms for a recipe

document.

• Construct the document-term matrix and store values in the inverted index for faster

computation.

• Construct a user profile similar to vectors of the documents. For example, construct

user profiles with terms considered for inverted index such that user profiles and doc-

uments are comparable. User profile can be constructed based on the documents user

has already considered in his profile.

• Calculate similarities of all user profile vectors with document vectors and sort order

according to relevance. Documents previously considered by the user (i.e., documents

already on the user profile) should be omitted to calculate relevance.

17

• Most relevant documents not already considered by the user can be offered as recom-

mendations

3.2 Proposed Approaches

The following are various approaches used in this paper to recommend related recipes.

3.2.1 User Recommendations based on Recipe Ratings

A memory-based collaborative filtering for the user and recipes was applied. This approach

utilizes information related to user ratings on the recipes. An item-based collaborative

filtering with user profiles was applied to discern the recommendations.

The following steps were followed to obtain recommendations for a user:

• Extract all user profiles and recipes, such that every user and recipe can be represented

by a unique key value.

• Obtain all ratings given by the user for each recipe. If no feedback is provided by the

user, the corresponding rating input is blank or not used in the algorithm.

• From all obtained user ratings, prepare a preference matrix on the recipe vectors.

• Calculate user that are similar to each other with the row similarity job.

• For any user ’u’, the rating given to the item ’i’ is predicted using an aggregate function.

ru,i=aggru’∈ U ru’,i

where ’U’ is the top N users similar to the user ’u’, and the aggregate function ’aggr’

can be denoted in the similarity measure.

ru,i=
∑

u′∈U Simil(u, u′) ru’,i

The SIMIL(u,u’) uses the similarity measure mentioned in Figures 3.3 and 3.4.

18

Figure 3.5: Workflow for Rating-based Recommendation Approach

• Predicted ratings of the recipes are used to retrieve recommendations for a user. The

total number of recommendations requested are extracted as the recipes with highest

predicted ratings. Predicted ratings with certain thresholds (a rating greater than or

equal to 3 out of 5) are only considered for recommendations.

If the number of recommendations requested is more than the total predicted ratings

on recipes for the user, all the recipes predicted above the threshold can be given as

recommendations.

For example, the rating of the user for corresponding recipes needs to be predicted and

then all similar users are predicted with the user-user distribution and user-item distribution.

From this distribution of ratings, the blank rating is predicted and recommended if the result

is liked.

19

3.2.2 User Recommendations based on Recipe Ingredients

Recipe Ingredients are used to calculate user recommendations in recipe ingredient based

recommendations approach. The user and recipe vectors are constructed based on ingredi-

ents as orthogonal terms, or the dimension of the vectors.

A high-level overview of recipe ingredient based recommendations approach is stated in

the Figure 3.6.

• Extract all recipe ingredients from recipe data.

• Obtain unique ingredient terms with corresponding quantities. Multiple ingredients

as a single unit should be split into unit set ingredients. For example, ingredients

separated with ’and’/’or’/’instead’ are split into independent or separate ingredients.

Quantity associated with ingredients for the recipes are considered as the frequency

of ingredient occurrence in the recipe.

• Construct inverted index with ingredients as terms and quantities as frequencies from

all recipes. Common ingredients such as salt (to taste) are considered for a quantity

of 1.

• Calculate maximum ingredient frequencies of the recipe, and the total number of

recipes.

• Calculate the term frequencies and inverted document frequencies of all terms as

described in Section 3.1.1. Then construct the inverted index with corresponding

weights.

• Construct all recipe vectors for each recipe in the dataset.

• Build user vectors based on user-liked ingredients or user liked recipes. For all recipes

rated by the user with a threshold (rating greater than or equal to 3 for a maximum

rating of 5) acceptable rating, extract all ingredients and construct an ingredient

dimension vector from the inverted index previously constructed.

20

Figure 3.6: Workflow for Ingredient-based Recommendation Approach

• User recommendations are calculated from user vectors and ingredient vectors. User

vector and all recipe vectors, represented in the ingredient dimension, are evaluated

against similarity measures as cosine (Figure 3.3), Pearson correlation coefficient

(Figure 3.4) and the closest relevant recipes with highest similarity are given as

recommendations.

Ingredient-based Similarity of Recipes

A primary approach to determine recipe similarity among the recipes themselves involves

the use of vector space model with queries as documents. In ingredient-based similarity,

recipe ingredients are used to calculate similarity between recipes. For each ingredient as

terms and the recipes as documents, a pairwise recipe similarity matrix is constructed. No

user profile is required for this approach, and the recommendations are given to any anony-

mous user. Recipes similar to the current recipe are given as recommendations.

21

This approach follows the following steps:

• Extract all recipe ingredients from the recipe data.

• Obtain unique ingredient terms with corresponding quantities. Multiple ingredients

as a single unit should be split into unit set ingredients. For example, ingredients

separated with ’and’/’or’/’instead’ are split into different and independent ingredi-

ents. Quantity associated with recipe ingredients are considered as the frequency of

ingredient occurrence in the recipe.

• Construct inverted index with ingredients as terms and quantities as frequencies from

all recipes. Common ingredients such as salt (to taste) are considered as a quantity

of 1.

• Calculate maximum ingredient frequencies of the recipe, and the total number of

recipes.

• Calculate the term frequencies and inverted document frequencies of all the terms

as described in Section 3.1.1. Then construct the inverted index with corresponding

weights.

• Construct all recipe vectors for each recipe in the dataset.

• Build a pairwise similarity matrix for all recipes to store the similarity correlation.

Similarity measures could be cosine 3.3, Pearson correlation coefficient 3.4, or any

other similarity measure obtained from the constructed recipe vectors.

• When a user requests recommendations on a recipe, the most closest relevant recipes

from the pairwise similarity matrix are given as recommendations.

The ingredient based similarity on recipes approach is difficult to evaluate as construction

of a test set of recommendations to compare resulting recommendations is difficult. The

22

Figure 3.7: Workflow for Recommending Similar Recipes based on Ingredients

test set is difficult to construct due to lack of user profile and also because recommendations

are specific to each recipe. However, the algorithm approach is the basis for all approaches

mentioned in Sections 3.2.2, 3.2.3, 3.2.4

3.2.3 User Recommendations based on Recipe Review Text

User recommendations for recipes are computed based on textual review given by the user.

The user recommendations based on review text approach also considers the explicit feed-

back offered by the user as part of the review text given for the document. User recommen-

dations based on review text approach can be compared to a document search model with

the vector dimension acting as vocabulary of the review text. A high-level overview of this

approach is stated in the Figure 3.8

• Clean the review text by removing stop words such as a, the, is etc., which do not

contribute to review content. Stem all words such that terms are orthogonal forming

the dimension of the vectors to be constructed.

• Construct inverted index with terms and corresponding frequencies from the reviews

23

of all recipes.

• Calculate maximum ingredient frequencies of the recipe, and the total number of

recipes.

• Calculate the term frequencies and inverted document frequencies of all terms as

described in Section 3.1.1. Then construct the inverted index with corresponding

weights.

• Construct all recipe vectors for each recipe in the dataset using the inverted index of

the review text.

• Build user vectors based on user reviews. For every review of the user, extract all

terms and build a vector with the inverted index previously constructed. To obtain

user vectors more inclined to the user profile, consider reviews for recipes which the

user liked.

• User recommendations are calculated from user vectors and ingredient vectors. User

vector and all recipe vectors represented in the ingredient dimension are evaluated

against the similarity measures as cosine (Figure 3.3), Pearson correlation coefficient

(Figure 3.4), and the closest and most relevant recipes with highest similarity are

given as recommendations.

3.2.4 User Recommendations based on Recipe Ingredients and

Review Text

User recommendations based on ingredients and review text approach uses similarity mea-

sures of multiple methods to provide recommendations. It also utilizes the results of both

the methods Ingredient vector approach (Section 3.2.2), review text approach (Section 3.2.3)

to compute recommendations for the user.

A high-level overview of hybrid approach is presented in Figure 3.9

24

Figure 3.8: Workflow for Review Text-based Recommendation Approach

• Similarity measure was calculated as described in ingredient vector approach in Section

3.2.2.

• Similarity measure was calculated as described in review text approach in Section

3.2.3.

• Based on the considered similarity, measure considered cosine (Figure 3.3), Pearson

correlation coefficient (Figure3.4) the average of similarity values for all combinations

are computed.

• The most similar recipes identified from the average of the two approaches are given

as recommendations to the user.

25

Figure 3.9: Workflow for Ingredient and Review Text-based Recommendation Approach

26

Chapter 4

Experimental Setup

This chapter explains the dataset used and the experiments designed to evaluate this study’s

approach. Experiments were conducted with various approaches mentioned in Chapter 3.

Section 4.5 lists the set of experiments performed for this study. Section 4.2 describes the

dataset used.

4.1 Overview

A high-level overview of the experimental setup is shown in Figure 4.1. Data from www.allrecipes.com

was crawled and stored in the local dataset in order to perform the experiments. Details

of the dataset are described in Section 4.2. The complete dataset was randomly split into

two parts such that 70% of the data was in the training set and 30% was in the test. The

training set was given to the algorithm to provide recommendations, and then the training

set was evaluated across the test set to calculate the Mean Average Precision (MAP) for

the experiment. The experiment was repeated for datasets of five iterations generated from

the training and test folds. Training and test fold setup and corresponding datasets are de-

scribed in Section 4.3 and a high-level overview of the experiments performed is described in

27

Figure 4.1: Experimental Setup

Section 4.5. The evaluation measure used was MAP which is explained in detail in Section

4.4.

4.2 Data Description

Two separate files stored a set of recipes and reviews of corresponding recipes. Recipe

data and review data were stored in JSON (JavaScript Object Notation) format after being

extracted from a website known as www.allrecipes.com. The data set consisted of 45,668

recipes with 2,845,167 reviews reviewed by 585,700 users. One input file, JSONRecipes,

consists of all recipes including ingredient details, cook details, preparation details. All of

these were in JSON format. Similarly, reviews that included reviewer, ratings, and reviews

of a recipes was a JSONReviews file. Both the files were processed to extract unique recipe

names and user names in order to generate unique ID’s for each of the unique user names.

Furthermore, reviews were processed to have only the set for which every user had atleast

28

Figure 4.2: JSON Recipes

Figure 4.3: JSON Reviews

3 reviews to properly split the data into training and test folds. Considering users with at

least 3 reviews negligibly reduced the total number of reviews. A sample recipe and review

data are shown in Figures 4.2 and 4.3

Figure 4.4 shows a class diagram used to read/write the input files in JsonReview and

JsonRecipe formats.

Data statistics include :

• Total number of recipes = 45,668

• Total number of users = 585,700

• Total number of reviews = 2,394,505

4.3 Dataset Folds, Training and Test Datasets

Input data was divided into five folds and each fold was randomly divided in order to

independently perform experiments on all folds. Each fold was further split into a training

set and test dataset. Seventy percent of the data (or reviews of the user) was in the training

set and 30% was given to the test set. For each fold, experiments were performed on the

29

Figure 4.4: Class Diagram to Read Input Files

30

training dataset and evaluated across the corresponding test dataset. All folds were built on

random input; however, the training set had 1,652,625 reviews and the test set had 741,880

reviews for all five folds.

A review with a rating greater than or equal to 3 was considered a user-liked recipe.

Those rated recipes were considered as output for the test set, and the algorithm used the

training set to generate comparable recommendations to the test set.

Table 4.1: Statistics for All Training Folds

Folds Recipes Users Reviews(Training) Reviews Considered (Ratings≥3)

Fold 1 45668 585700 1652625 121684
Fold 2 45668 585700 1652625 121502
Fold 3 45668 585700 1652625 121728
Fold 4 45668 585700 1652625 121771
Fold 5 45668 585700 1652625 121798

Table 4.2: Statistics for All Test Folds

Folds Recipes Users Reviews(Test) Reviews Considered (Ratings≥3)

Fold 1 45668 585700 741880 54160
Fold 2 45668 585700 741880 54342
Fold 3 45668 585700 741880 54116
Fold 4 45668 585700 741880 54073
Fold 5 45668 585700 741880 54046

4.4 Evaluation Metric: Mean Average Precision

For all approaches, recommendations were evaluated as a measure of MAP. Recommenda-

tions generated by algorithms applied on the training set were evaluated with the test set

in order to find corresponding positions and determine precision points of each recommen-

dation. The MAP is the average of precision points.

31

Precision of a recommended recipe/ingredient is calculated as follows:

Precision = (A/(A+C))*100

C: Number of irrelevant documents retrieved

A: Number of relevant documents retrieved

All precision points were evaluated for user recommendations. For precision values of all

user outcomes, the mean was computed to determine the Mean Average Precision (MAP)

for the corresponding approach.

4.5 Experiments

Various sets of experiments were performed for each approach mentioned in Chapter 3. All

experiments evaluated the approaches on a test data set for every user profile. However, the

algorithm in Section 3.2.2 does not require any user profile and no test set is available to

evaluate this approach, but the approach based on ingredient similarity mentioned in Section

3.2.2 forms the basis for other algorithms based on ingredients such as user similarities on

ingredients as described in Sections 3.2.2, 3.2.4.

Every algorithm was evaluated with a similarity measure of cosine and Pearson correla-

tion coefficient for a set of 10 and 20 recommendations each thus dividing all experiments

into sets of two for each algorithm. The following description offers additional detail as to

the type of experiments performed for all algorithms in Chapter 3.

4.5.1 Evaluate Recommendations based on Ratings

Ratings given to recipes were extracted from the dataset as described in Section 4.2 and

unrated combinations of user and recipes were predicted as mentioned in Section 3.2.1. Ex-

periments 1 and 2 evaluate the same algorithm approach but by using different the similarity

measure.

32

Experiment 1: The purpose of this experiment was to evaluate the user recommendations

on Ratings algorithm mentioned in Section 3.2.1 using cosine similarity measure. Exper-

iment 1 determined the MAP of the results when compared across a randomly generated

test set. The dataset used for this experiment is described in Section 4.2. Experiments were

performed for an output set of 10 and 20 recommendations.

Experiment 2: The purpose of this experiment was to evaluate the User recommenda-

tions on Ratings algorithm mentioned in Section 3.2.1 comparing with Pearson correlation

coefficient similarity measure. Experiment 2 determined the MAP of the results when com-

pared across a randomly generated test set. The dataset for this experiment is described in

Section 4.2. Experiments were performed for an output set of 10 and 20 recommendations.

4.5.2 Evaluate Recommendations based on Ingredients

Experiment 3: The purpose of this experiment was to evaluate the user recommendations

on Ingredients algorithm mentioned in Section 3.2.2 utilizing cosine similarity measure. Ex-

periment 3 determined the MAP of the results when compared across a randomly generated

test set. The dataset for this experiment is described in Section 4.2. Experiments were

performed for an output set of 10 and 20 recommendations.

Experiment 4: The purpose of this experiment was to evaluate the user recommendations

on Ingredients algorithm mentioned in Section 3.2.2 using Pearson correlation coefficient

similarity measure. Experiment 4 determined the MAP of the results when compared across

a randomly generated test set. The dataset for this experiment is described in Section 4.2.

Experiments were performed for an output set of 10 and 20 recommendations.

For Experiments 3 and 4, recipe ingredients, and customer ratings were the core compo-

nents used in the dataset. Recipe ingredients and customer ratings on recipes were extracted

from the large dataset mentioned in Section 4.2.

33

4.5.3 Evaluate Recommendations based on Review Text

Experiment 5: The purpose of this experiment was to evaluate the user recommendations

on review text algorithm mentioned in Section 3.2.3 using cosine similarity measure. Ex-

periment 5 determines the MAP of the results when compared across a randomly generated

test set. The dataset used for this experiment is described in Section 4.2. Experiments were

performed for an output set of 10 and 20 recommendations.

Experiment 6: The purpose of this experiment was to evaluate the user recommendations

on review text algorithm mentioned in Section 3.2.3 utilizing Pearson correlation coefficient

similarity measure. Experiment 6 determined the MAP of the results when compared across

a randomly generated test set. The dataset that used for this experiment is described in

Section 4.2. Experiments were performed for an output set of 10 and 20 recommendations.

For Experiments 5 and 6 the user reviews and customer ratings were the core components

used in the dataset. Reviews in text of recipes and customer ratings with corresponding

recipe reviews were extracted from the large dataset mentioned in Section 4.2. This dataset

was cleaned to handle review text experiments. Experiments 5 and 6 evaluate the same

algorithm approach but for a different similarity measure.

4.5.4 Evaluate Recommendations based on Ingredients and Re-

view Text

The complete dataset described in Section 4.2 was utilized in these experiments. Ratings

were extracted from the dataset in order to construct the test dataset. Recipe ingredients

and review text of the user on recipes were also extracted from the same dataset. Experi-

ments 7 and 8 evaluated the same algorithm approach but for a different similarity measure.

Experiment 7: The purpose of this experiment was to evaluate the user recommenda-

tions on review text and the recipe ingredient algorithm mentioned in Section 3.2.4 utilizing

34

cosine similarity measure. Experiment 7 determined the MAP of the results when compared

across a randomly generated test set. The dataset used for this experiment is described in

Section 4.2. Experiments were performed for an output set of 10 and 20 recommendations.

Experiment 8: The purpose of this experiment was to evaluate the user recommendations

on review text and the recipe ingredient algorithm mentioned in Section 3.2.4 using Pearson

correlation coefficient similarity measure. Experiment 8 determined the MAP of the results

when compared across a randomly generated test set. The dataset used for this experiment

is described in Section 4.2. Experiments were performed for an output set of 10 and 20

recommendations.

35

Chapter 5

Results

5.1 Experiment 1 Results

Table 5.1 shows the average of MAP (Mean Average Precision) for the algorithm in order

to generate recommendations based on ratings described in Section 3.2.1 over the dataset

described in Section 4.2.

Table 5.1: Results for Experiment 1: Using Cosine Similarity to Make Recommendations
based on Ratings

Number of Recommendations

Fold 10 20

Fold 1 0.00144074965126068 0.00198493215185491
Fold 2 0.0010925630563132 0.00115491027416314
Fold 3 0.000962693863675622 0.00122997865361737
Fold 4 0.00094435526647306 0.00137860567666071
Fold 5 0.00106470022445386 0.00160853316591987

Average of all Folds 0.0011010124 0.0014713920

Experimental results show that recommendations generated based on ratings had a rel-

atively good MAP. However, a change in the number of recommendations resulted in a

negligible change in resulting values. The cosine similarity measure for Section 3.2.1 is

36

better than the Pearson correlation coefficient measure.

5.2 Experiment 2 Results

Table 5.2 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings described in Section 3.2.1 over the dataset described in Section 4.2 using

Pearson correlation coefficient similarity measure.

Table 5.2: Results for Experiment 2: Evaluate User Recommendations on Ratings by Pear-
son correlation Coefficient Measure

Number of Recommendations

Fold 10 20

Fold 1 0.000718911837151497 0.000858195410660199
Fold 2 0.00061512709103312 0.000654555627984316
Fold 3 0.000607430663641943 0.0010303553457882
Fold 4 0.000370247538390318 0.000568127243207782
Fold 5 0.000918472060501275 0.000697737097567657

Average of all Folds 0.0006460378 0.0007617941

Experimental results show that recommendations generated based on ratings had a rel-

atively good MAP. However, an increase in MAP occurred with an increase in number of

recommendations. This behavior is unique, since the expected result may have many false

positives, thereby reducing MAP. The Pearson correlation coefficient similarity measure for

Section 3.2.1 was not better than the cosine similarity measure.

5.3 Experiment 3 Results

Table 5.3 shows the average of MAP for the algorithm in order to generate recommenda-

tions based on ratings described in Section 3.2.2 over the dataset described in 4.2 with cosine

similarity measure.

37

Table 5.3: Results for Experiment 3: Evaluate User Recommendations on Recipe Ingredi-
ents by Cosine Similarity Measure

Number of Recommendations

Fold 10 20

Fold 1 0.000153401676285802 0.000153401676285802
Fold 2 0.000157027162947017 0.000157027162947017
Fold 3 0.000131198746515271 0.000131198746515271
Fold 4 0.000192523525856859 0.000192523525856859
Fold 5 0.000158055039571627 0.000158055039571627

Average of all Folds 0.0001584412 0.0001584412

MAP calculated using the ingredients with cosine similarity measure projected relatively

good results. However, the MAP was constant even though the number of recommendations

increased because the number of recommendations produced less than the minimum required

number of recommendations (i.e., ¡10 recommendations) for both cases. Therefore, even

though the results were good, the produced recommendations were highly satisfactory due

to the constant MAP.

The cosine similarity measure for ingredient similarity was better than the Pearson

correlation similarity measure for less recommendations but the scenario changed with an

increased number of recommendations.

5.4 Experiment 4 Results

Table 5.4 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings described in Section 3.2.2 over the dataset described in Section 4.2 with

Pearson correlation coefficient similarity measure.

The MAP calculated using the ingredients with Pearson correlation coefficient similarity

measure was better than the cosine similarity measure for less recommendations. However,

38

Table 5.4: Results for Experiment 4: Evaluate User Recommendations on Recipe Ingredi-
ents by Pearson Correlation Coefficient Measure

Number of Recommendations

Fold 10 20

Fold 1 0.0000253789685120157 0.000130076793442712
Fold 2 0.000112294516800954 0.000126089082223149
Fold 3 0.0000402128186092551 0.000277762368938264
Fold 4 0.000195847362514029 0.000298647746016167
Fold 5 0.000107823042104364 0.000171012123356473

Average of all Folds 0.0000963113 0.0002007176

an increased number of recommendations resulted in increased result value for MAP, but

with a significantly lower increase compared to cosine similarity measure.

5.5 Experiment 5 Results

Table 5.5 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings described in Section 3.2.3 over the dataset described in Section 4.2 with

cosine similarity measure.

Table 5.5: Results for Experiment 5: Evaluate User Recommendations on User Review
Text by Cosine Similarity Measure

Number of Recommendations

Fold 10 20

Fold 1 0.0000362394229435427 0.0000758836807525946
Fold 2 0.0000281282996659223 0.0000304887164211046
Fold 3 0.0000228538038671232 0.0000233286489489153
Fold 4 0.0000237518037518037 0.0000238548752834467
Fold 5 0.0000157750895844891 0.0000708431965278243

Average of all Folds 0.0000253497 0.0000448798

The MAP for the approach with review text was relatively low compared to ingredients

as vectors due to large vector dimension for review text. An increase in vector dimen-

39

sions may reduce similarity values. Moreover, similar reviewed recipes may not always be

similar. However, the use of cosine measure improves the MAP with increased number of

recommendations.

5.6 Experiment 6 Results

Table 5.6 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings described in Section 3.2.3 over the dataset described in Section 4.2 with

Pearson correlation coefficient similarity measure.

Table 5.6: Results for Experiment 6: Evaluate User Recommendations on User Review
Text by Pearson Correlation Coefficient Measure

Number of Recommendations

Fold 10 20

Fold 1 0.000312754489734687 0.0000103135313531353
Fold 2 0.00114399545257033 0.000187245993405413
Fold 3 0.00200040597389549 0.0000130154815728181
Fold 4 0.000201643378623576 0.00000603864734299516
Fold 5 0.0010328843414622 0.0000378630225675175

Average of all Folds 0.0009383367 0.0000508953

The MAP for the approach with review text was relatively high compared to ingredi-

ents with Pearson correlation coefficient similarity measure. However, use of the Pearson

correlation coefficient measure significantly decreased the MAP when the number of recom-

mendations increased.

5.7 Experiment 7 Results

Table 5.7 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings as described in Section 3.2.4 over the dataset described in Section 4.2 with

40

cosine similarity measure.

Table 5.7: Results for Experiment 7: Evaluate User Recommendations with Hybrid ap-
proach by Cosine Similarity Measure

Number of Recommendations

Fold 10 20

Fold 1 0.0000464157075769714 0.0000979736374572268
Fold 2 0.0000458487465403449 0.000055824367114407
Fold 3 0.0000493205942618071 0.0000565927292571694
Fold 4 0.0000382213332877469 0.0000550880925364684
Fold 5 0.000052284230526673 0.000118948750280643

Average of all Folds 0.0000464181 0.0000768855

The hybrid approach with cosine similarity measure falls like an intermediate path for

both the ingredient similarity approach and review text similarity approach. The MAP

value significantly improved with an increased number of recommendations using cosine

similarity measure.

5.8 Experiment 8 Results

Table 5.8 shows the average of MAP for the algorithm in order to generate recommendations

based on ratings as described in Section 3.2.4 over the dataset described in Section 4.2 with

Pearson Correlation Coefficient similarity measure.

The hybrid approach with Pearson correlation coefficient similarity measure provided

intermediate results for ingredient similarity approach and review text similarity approach.

The MAP value decreased with an increased number of recommendations using Pearson

correlation coefficient similarity measure.

41

Table 5.8: Results for Experiment 8: Evaluate User Recommendations with Hybrid ap-
proach by Pearson Correlation Coefficient Measure

Number of Recommendations

Fold 10 20

Fold 1 0.000138484106528316 0.0000779907451667064
Fold 2 0.000523594188190461 0.000150355511552621
Fold 3 0.00040867093105899 0.000187143048058312
Fold 4 0.000123530982905982 0.000193891813346098
Fold 5 0.0000629447181171319 0.000119258431341885

Average of all Folds 0.0002514450 0.0001457279

5.9 Summary of Results

Table 5.9 shows the results of all the approaches described in Chapter 3 applied on the

dataset described in Section 4.2 with the cosine similarity measure described in Section

3.3 and Pearson correlation coefficient described in Section 3.4. The Similarity columns

identifies the similarity measure used, ’Reco’ is the number of recommendations, and the

other columns are resultant MAPs for approaches mentioned in Chapter 3. Recommen-

dations generated based on rating described in Section 3.2.1 stands-out from all the other

approaches and it is used as a benc- mark to compare with the approaches described in Sec-

tions 3.2.2, 3.2.3, and 3.2.4. Recommendations based on ratings were expected to perform

the best because the test set to evaluate approaches considered only highly rated recipes as

recommendations. Therefore, the approach to find recommendations using ratings was not

comparable to other approaches.

Ingredient-based similarity recommendation looks better than other approaches for co-

sine similarity measure even with a range of number of recommendations. The review

text similarity performed better with Pearson correlation coefficient similarity measure with

less number of recommendations. However, as the number of recommendations increased

ingredients-based similarity approach performed better. The hybrid approach took the in-

termediate path of ingredient-based approach and review text approach due to its average

42

Table 5.9: Experiment: Evaluation Results of All approaches by Cosine Similarity Measure

Recommendation based on

Similarity Reco Ratings Ingredients Review Texts Hybrid

Cosine 10 0.0011010124 0.0001584412 0.0000253497 0.0000464181
Cosine 20 0.0014713920 0.0001584412 0.0000448798 0.0000768855

Pearson Correlation 10 0.0006460378 0.0000963113 0.0009383367 0.0002514450
Coefficient

Pearson Correlation 20 0.0007617941 0.0002007176 0.0000508953 0.0001457279
Coefficient

of results of both approaches.

43

Chapter 6

Discussion and Conclusions

This chapter discusses the optimization of all approaches, draws conclusions, and also ad-

dresses limitations of these approaches.

Based on results, the argument can be made that the algorithm to find recommendations

of ratings given by the user on recipes perform better. However, the user rating approach

extends collaborative filtering and should perform better because the test set was built based

on user liked recipes with good ratings. Therefore, recommendations on ratings approach

are comparable to other approaches as a baseline and among other approaches, performance

varies based on similarity measure and change in number of recommendations.

For cosine similarity measure, ingredient-based similarity performed better and looks to

be constant with an increased number of recommendations. When an increase in number

of recommendations occurred, a slight increase in the review text similarity approach was

observed, but that increase became static after a certain point. The hybrid approach falls

in between ingredient similarity and review text similarity as per its definition.

44

However, with the use of Pearson correlation coefficient as the similarity measure, recom-

mendations on review text offered better results with less number of recommendations. The

scenarios changes to a normal expected behavior with increase in number of recommenda-

tions.

The recipe dataset was sparse. For example, a recipe with few common ingredients such as

salt and pepper were found in almost all recipes and some ingredients were used in relatively

very less recipes. Therefore, the performance to be predicted becomes difficult when the

dataset increases.

45

Chapter 7

Future Work

This chapter discusses improvements and possible future directions for the approaches de-

scribed in this paper. The following work can be performed to extend future work of this

project.

1. The approaches can be extended to study the behavior of recommendations on recipe

domain with varying similarity coefficients such as log likelihood and maximum like-

lihood

2. The algorithms can be applied on denser datasets to test whether or not it yields

better results.

3. In addition to the above experiments, other classification approaches such as Naive

classifier, Bayes classifier, or support vector machine (SVM) can be implemented to

study trend changes.

4. Furthermore, the approach could be comparable with more advanced algorithms such

as adsorptions involving recommendations from graphs of the heterogeneous network.

46

Bibliography

[1] Resnick and Varian. Acm press, recommender systems, volume 40., 1997. URL http:

//doi.acm.org/10.1145/245108.245121.

[2] R. Mooney ”P. Melville and R. Nagarajan.”. ”content-boosted collaborative

filtering”. ”Recomender System”, 40, 2001. URL citeseer.ist.psu.edu/

melville01contentboosted.html.

[3] Joseph A. Konstan Badrul M. Sarwar, George Karypis and John Reidl. Item-based

collaborative filtering recommendation algorithms. 2001. URL citeseer.ist.psu.

edu/sarwar01itembased.html.

[4] Fourth workshop on the evaluation of adaptive systems in conjunction with um’05.

2005. URL http://www.easy-hub.org/hub/workshops/um2005/challenge.html.

[5] T. Berners-Lee. Information management: A proposal. cern. world wide web consortium

(w3c). 1989.

[6] N. Belkin and B. W. Croft. Information filtering and information retrieval: two sides

of the same coin? Recomender System, 1992. URL http://doi.acm.org/10.1145/

138859.138861.

[7] ”Recommender Systems Handbook”. ”Springer”, 2011.

[8] P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender

systems. Recomender System, 2004. URL citeseer.ist.psu.edu/article/

massa04trustaware.html.

47

http://doi.acm.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121
citeseer.ist.psu.edu/melville01contentboosted.html
citeseer.ist.psu.edu/melville01contentboosted.html
citeseer.ist.psu.edu/sarwar01itembased.html
citeseer.ist.psu.edu/sarwar01itembased.html
http://www.easy-hub.org/hub/workshops/um2005/challenge.html
http://doi.acm.org/10.1145/138859.138861
http://doi.acm.org/10.1145/138859.138861
citeseer.ist.psu.edu/article/massa04trustaware.html
citeseer.ist.psu.edu/article/massa04trustaware.html

[9] Wikipedia. Vector space model, 2013. URL http://en.wikipedia.org/wiki/Vector_

Space_Model.

[10] Gerard. Salton. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[11] Buckley Salton, Gerard and Chris. Technical Report TR87-881.

[12] Wikipedia. Mapreduce, 2013.

[13] The Apache Software Foundation. Mahout, 2014. URL https://mahout.apache.org/.

48

http://en.wikipedia.org/wiki/Vector_Space_Model
http://en.wikipedia.org/wiki/Vector_Space_Model
https://mahout.apache.org/

Appendix A

Technologies

A.1 Apache Hadoop

Apache Hadoop is an open-source framework for run applications on large cluster. Apache

Hadoop processes large amounts of data by dividing data into independent small fragments

and processing them individually over a distributed environment. Hadoop Distributed File

System (HDFS) stores and retrieves data over a distributed environment. Apache Hadoop

manages the cluster for any failures, nodes of the cluster and provides relentless highly

available service.

Hadoop implements a computational paradigm known as MapReduce [12]. A majority

of the research involved writing MapReduce programs in Hadoop framework

A.2 Mahout

Apache Software Foundation provides an open-source scalable machine learning library,

known as Mahout13. Mahout has a set of predefined algorithms implemented in hadoop

framework. Partial implementation of collaborative filtering by item-based recommenda-

49

tions was in this study for the recommendations approach based on user ratings.

A.3 Pig

Pig is a tool to create MapReduce programs using Hadoop using SQL approach. Pig scripts

are written in Pig Latin script which provides syntax and semantics for processing or re-

trieving data through MapReduce Hadoop programs. Pig Latin scripts were written for this

study to evaluate results of all approaches in order to calculate MAP.

A.4 Google GSON API

Google GSON API converts model objects to JSON strings and vice versa. Data from the

website allrecipes.com is parsed and stored in model objects and these model objects are

converted to JSON strings which are stored in a text file. The text file is the input file that

is sent to the algorithm for processing.

A beocat cluster provided by CIS department of Kansas State University to process all

my jobs for this study. A lot of shell scripts had to be written in order to submit jobs to

beocat. Only Java programming language in Eclipse IDE was used to code this project.

50

Appendix B

Additional Experiments

An additional set of experiments were performed by dividing the dataset into different for-

mat of training and test folds. This chapter explains the dataset division and describes

corresponding results.

The complete data set of reviews were divided into three independent folds of data. For

each experiment, a pair of folds was given to an algorithm as a training set and the other

fold was used as a test set to evaluate results. This division of train and test was conducted

so the algorithm might process all data rather than a randomly generated fold.

Experiments were applied for all approaches described in Chapter 3 for a combination

of the three folds using cosine and Pearson correlation coefficient similarity measures. A

standard of ten (10) recommendations were used to evaluate results.

51

B.1 Algorithm Results Using Cosine Similarity over a

3-fold Dataset

MAP values of all algorithms with cosine similarity measure over three fold combinations is

shown in Section B.1. Surprisingly, these results demonstrate improvement in the evaluation

pattern with this kind of fold division on the dataset. However, when all approaches are

compared, it follows identical results as mentioned in Chapter 6.

Table B.1: Experiment: Evaluation of All approaches in three fold dataset by cosine simi-
larity measure

Test Training Recommendation based on

TestSet Training Sets Ratings Ingredients Review Texts Hybrid

Fold 1 Fold2 Fold3 0.0006588469 0.0001331084 0.0000542784 0.0000732641
Fold 2 Fold3 Fold1 0.0011485206 0.0001331084 0.0001209689 0.0001024186
Fold 3 Fold1 Fold2 0.0008088946 0.0001331084 0.0001213160 0.0001034884
Average of all Folds 0.0008720874 0.0001331084 0.0000988545 0.0000930570

52

B.2 Algorithm Results Using Pearson Correlation Co-

efficient Similarity over a 3-fold Dataset

MAP values of all algorithms with Pearson correlation coefficient similarity measure over

three fold combination is shown in Section B.2. These results show similar kind of behavior

as mentioned in Chapter 6 and consistently there is no variation of results based on number

of recommendations is present. However, the Pearson correlation coefficient result and cosine

coefficient result are in compliance with each other.

Table B.2: Experiment: Evaluation of All approaches in three fold dataset by Pearson
correlation similarity measure

Test Training Recommendation based on

TestSet Training Sets Ratings Ingredients Review Texts Hybrid

Fold 1 Fold2 Fold3 0.0004931997 0.0001411597 0.0000879158 0.0000829122
Fold 2 Fold3 Fold1 0.0005721238 0.0000821126 0.0001312880 0.0001066105
Fold 3 Fold1 Fold2 0.0005218508 0.0000821126 0.0000000550 0.0000537270
Average of all Folds 0.0005290581 0.0001017950 0.0000730863 0.0000810832

53

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation for Recommender Systems
	Problem Addressed and Challenges
	Thesis Contribution
	High-Level Overview of Proposed Approaches

	Related Work
	The World Wide Web
	Information Retrieval
	Information Filtering
	Recommender Systems
	Content-based Filtering
	Collaborative Filtering

	Recommendation Approaches
	Basic Approaches for Finding Similar Items
	Vector Space Model
	Extended Vector Space Model for Content-based Filtering

	Proposed Approaches
	User Recommendations based on Recipe Ratings
	User Recommendations based on Recipe Ingredients
	User Recommendations based on Recipe Review Text
	User Recommendations based on Recipe Ingredients and Review Text

	Experimental Setup
	Overview
	Data Description
	Dataset Folds, Training and Test Datasets
	Evaluation Metric: Mean Average Precision
	Experiments
	Evaluate Recommendations based on Ratings
	Evaluate Recommendations based on Ingredients
	Evaluate Recommendations based on Review Text
	Evaluate Recommendations based on Ingredients and Review Text

	Results
	Experiment 1 Results
	Experiment 2 Results
	Experiment 3 Results
	Experiment 4 Results
	Experiment 5 Results
	Experiment 6 Results
	Experiment 7 Results
	Experiment 8 Results
	Summary of Results

	Discussion and Conclusions
	Future Work
	Bibliography
	Technologies
	 Apache Hadoop
	 Mahout
	 Pig
	 Google GSON API

	Additional Experiments
	Algorithm Results Using Cosine Similarity over a 3-fold Dataset
	Algorithm Results Using Pearson Correlation Coefficient Similarity over a 3-fold Dataset

