
*\

^DISTRIBUTED PROBLEM SOLVING FOR DECISION SUPPORT/

by

Mark C. Foehse

B. S. , University of Missouri - Columbia, 1977

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Major Profes

jut
.7}

c.l

A112D2 IbSMbl

TABLE OF CONTENTS

TABLE OF CONTENTS i

LIST OF FIGURES AND TABLES iii

ACKNOWLEDGEMENTS iv

CHAPTER 1 - INTRODUCTION 1

CHAPTER 2 - LITERATURE REVIEW 5

2.1.1 Decision Support Systems - A Definition 5

2.1.2 Functional Components of Decision Support Systems 8

2.1.3 Decision Support Systems - Development Process 9

2.2.1 Expert Systems - A Definition 10

2.2.2 Expert Systems- Functional Components 10

2.2.3 Expert Systems- Development Process 13

2.3 A Comparison of Decision Support Systems and Expert
Systems 13

2.4 Relevant Current Work 17

2.4.1 BEINGS 17

2.4.2 Scientific Community Metaphor 19

2.4.3 HEARSAY-II 21

2.5 Problem Statement and Proposed Solution 25

CHAPTER 3 - FUNDAMENTALS 28

3.1 Purpose 28

3.2 Environment 30

3.3 User 32

3.4 Need 33

CHAPTER 4 - COMPONENTS 35

4.0 Introduction 35

- i -

4.1 Blackboard 36

4.2 Objects 38

4.2.1 General Description 38

1.2. 2 Activation 38

4.2.3 Execution 39

4.2.4 Structure 39

4.2.5 Types 40

4.2.5.1 Control Objects 40

4.2.5.2 Domain Objects 42

4.3 Messages 44

CHAPTER 5 - SIMULATED USE OF MODEL 51

5.1 Introduction 51

5.2 A Problem 51

5.3 A Solution 52

CHAPTER 6 - RESULTS AND CONCLUSIONS 62

6.1 Results 62

6.2 Challenges to the Model 63

6.3 Conclusions 64

6.4 Recommendations for Future Study 65

SELECTED BIBLIOGRAPHY 68

- ii -

LIST OF FIGURES AND TABLES

Table 2-1 Decision Support System Definitions 6

Figure 2-1 User Interface Classifications 8

Figure 2-2 HEARSAY-II Hypothesis Links 23

Figure 3-1 Business Enterprise Hierarchy 31

Figure 4-1 Blackboard 37

Figure 4-2 Message 45

Figure 4-3 Status Attribute States 47

Figure 4-4 Longevity and Location 48

Figure 4-5 Representation of Plans 49

Figure 5-1 Simulated Decision Support System Hierarchy 53

Figure 5-2 Simulated Decision Support System Blackboard 54

Table 5-1 Simulated Decision Support System Messages 57

Figure 5-3 Manufacturing Firm Model 60

- iii -

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. Elizabeth Unger, for her support and
encouragement during this work. It was a pleasure to work with her.

My thanks also go to the other members of my committee, Dr. Virgil
Wallentine and Dr. Richard McBride, for their suggestions on this
thesis.

I wish to thank Harvard Townsend and Robin Niederee for their help
with the intricacies of nroff.

Last, I wish to thank my wife, Karen, for her unfailing support during
the many years it took to achieve this goal.

- iv -

Chapter 1

INTRODUCTION

Time has seen the assimilation of great numbers of automated systems

into our everyday environment. In business, early computer

applications were unit record data processing systems such as payroll

processing. As the computer usage matured into another stage, the

desire on management's part for more information led to the

development of Management Information Systems (MIS). These systems

were intended to provide more usable information in the form of

charts, graphs, forms, et cetera, than their predecessors. The next

evolutionary stage in business information systems involves the use of

the Decision Support System (DSS). These systems are intended to aid

managerial staff in the process of decision making by providing data

analysis, models, and ease of communication between the tools, models,

and decision makers.

Researchers in the area of computer science known as artificial

intelligence (AI) set out in the late 1950s and early 1960s to build

automated systems for natural language understanding and models of

human thought processes and problem solving. Much of the success in

artificial intelligence has been more a case of improved techniques

than in finding real-world applications for artificial intelligence

research. One notable exception to this has been the development of

expert systems (ES) . These programs attempt to match or exceed the

problem solving ability of recognized experts within well-defined

problem domains. Commercial applications of this technology are now

- 1 -

being developed.

Presently business managers and executives want greater problem

solving support from their automated systems, and expert system

developers have been able to create problem solving systems for

specific problem domains. The time appears right for an integration

of these two areas. It is quite possible that using expert system

methodologies, decision support systems can be developed which go

further than present day systems in meeting the needs of business

decision makers.

At present there is no consistent theory of decision support systems.

Decision support systems are broadly defined. Furthermore, it is not

well understood how people make decisions, though several theories

exist. What can be stated with certainty is that decision makers in

business rely upon many sources of knowledge in trying to solve

difficult problems. These problems may be characterized as having a

large number of potential solutions, only a few of which are "good."

Multiple sources of knowledge are used by the decision maker in an

attempt to build a consensus with regard to the best problem solution

available. This development of a consensus position is the role of

the human support staff which a decision maker relies in part upon,

i.e., selecting a few good alternatives from among the many that

exist.

The development of a decision support system can be viewed as an

attempt to automate the function of the decision maker's human support

staff. In artificial intelligence, expert systems were developed to

solve difficult problems, those having a few good solutions out of a

- 2 -

potentially large number of possibilities. Typically, these expert

systems have dealt with narrowly defined problem domains. The

business decision maker will need information from several different

domains of knowledge, thus a single expert system, though it may solve

difficult problems, will not have sufficient breadth to serve as a

decision support system. An automated decision maker's support system

will have to include knowledge from many problem domains. Research in

artificial intelligence which has addressed the use of multiple

knowledge sources in automated systems is known as distributed

artificial intelligence, or distributed problem solving.

This thesis describes an abstract model architecture designed for

decision support systems. This model is a combination of the results

of research in distributed artificial intelligence and an

organizational view of business enterprises. The goal of the model is

to describe an architecture in which decision support systems can be

developed to meet the needs of decision makers; that is, the

incorporation of multiple diverse sources of knowledge for the purpose

of solving problems.

The model has three primary components: multiple intelligent objects,

messages, and a global blackboard. Each object represents some body

of knowledge in a particular problem domain. The objects cooperate to

solve problems by posting and reading messages on the blackboard.

Messages all have the same structure; it is their value which makes

each unique.

Following a review of the relevant literature, the role of the model

in the business environment is discussed. A full description of the

- 3 -

model components is then given. An example of how the model may be

used in a decision support system is provided, along with a discussion

of the model 1 s strengths and weaknesses. Recommendations for further

study are given.

- 4 -

Chapter 2

LITERATURE REVIEW

2.1.1 DECISION SUPPORT SYSTEMS - A DEFINITION

There is no single, concise definition of a decision support system.

Researchers in the field all seem to have a slightly different idea of

what type of software system should be distinguished as a decision

support system. The most common definition identifies decision

support systems as systems designed to support unstructured managerial

decision making.

That definition leaves a great deal of room for interpretation. The

diversity of opinion on what is a decision support system is well

shown by Ginzberg and Stohr [1982]. Their review of some of the

decision support system literature to that time shows researchers

defining decision support system in several ways (see Table 2-1).

Alter [1980] conducted a study of fifty- six different decision support

systems. His assessment of these case studies was that the term

decision support system did not refer to a "homogeneous category."

Realizing the diversity of these systems, Alter devised a taxonomy of

decision support systems based upon what he called the "degree of

action implication of system outputs (i.e., the degree to which the

system's outputs could determine the decision)."

- 5 -

Source DSS defined in terms of!

Gorry and Morton [1971] problem type, system function

Little [1970] system function,
interface characteristics

Alter [1980] usage pattern, system objectives

Moore and Chang [1980] usage pattern, system capabilities

Bonczek et al. [1980] system components

Keen [1980] development process

Sprague [1980] system components,
development process

Table 2-1

(adapted from Ginzberg and Stohr [1982])

These generic operations extend along a single dimension
ranging from extremely data oriented to extremely model
oriented:

- Retrieving a single item of information,

- Providing a mechanism for ad hoc data analysis,

- Providing prespecified aggregations of data in the form of re-
ports,

- Estimating the consequences of proposed decisions,

- Proposing decisions, and

- Making decisions. (Alter [1980])

Using these operations as a criteria for judgement, Alter classified

the fifty-six decision support systems in his study according to the

following taxonomy:

A. File drawer systems

B. Data analysis systems

- 6 -

C. Analysis information systems

D. Accounting models

E. Representational models

F. Optimization models

G. Suggestion models.

To be noted in Alter' s taxonomy is the broad range of functions

possible for a system labeled as a decision support system.

Bonczek et al. [1980] stressed the use of models in a system which was

defined as a decision support system. They noted three major

"interfaces" within a decision support system: the user-model

interface, the user-data interface, and the model-data interface.

Decision support systems were then classified according to the

language(s) employed by the user in interacting with the system (see

Figure 2-1).

Sprague [1980] proposed a decision support system "framework" based

upon system components. He identified three different levels of

technology: Specific Decision Support Systems, which are systems used

in particular problem domains; Decision Support System Generators,

which are packages of hardware and software used to quickly develop

Specific Decision Support Systems; and Decision Support System Tools,

the hardware and software functional components of Specific Decision

Support Systems and Decision Support System Generators. Sprague also

stated that the development process is an identifying characteristic

of decision support systems, i.e., decision support systems should be

developed iteratively, building adaptability into the system.

- 7 -

/

1

!

i

i

i

!

i

i

i

i

i

!

i

1

i

i

\

states
model

explicitly
•

•

•

invokes
model
by name

•

•

•

•

states
problem

i

i

i

i

i

i

i

i

i

i

c

!

!

: b

!

!

A

1 anguage
for

directing
computation

i

i

i

1

i

i

F

I

!

! E

!

1

D

i

!

i

i

I

i

!

! H
i

i

!

G

\

states . ,

problem
. invokes . .

report

states
retrieval
procedure
explicitly

/

language for directing
data retrieval

Figure 2-1

(Bonczek et al. [1980])

Ariav and Ginzberg recently made note of the variety of definitional

criteria for decision support systems. They proposed yet another

definition framework based upon systems theory.

The premise of the systemic view of DSS is that in order to
understand these systems the following five aspects must be
considered simultaneously: environment, role, components,
arrangement of components, and the resources required to
support the system. (Ariav and Ginzberg [1985])

2.1.2 FUNCTIONAL COMPONENTS OF DECISION SUPPORT SYSTEMS

Despite the differences of opinion on just how a decision support

system should be defined, there does appear to be one area of

agreement, and that is what are the components of decision support

- 8 -

systems. The literature identifies three major components of a

decision support system: a user interface management system, a

database management system, and a model base management system.

The user interface management system, or dialogue management system,

acts as go-between for the user and the database and model base

management systems. From the user's point of view this is the

decision support system (Sprague and Carlson [1982]). As summarized

by Bonczek et al. [1980], there is a great deal of variation in user

interfaces. The range extends from systems where the user must have

knowledge of FORTRAN or PL/1 to access data and/or models, to those

which present the user with a menu of possible functions, such as the

Portfolio Management System described by Keen and Scott Morton [1978].

The model management system provides access to models for use in

simulation, process optimization, or providing suggested decisions.

Again, there is wide variation in decision support system models.

Simple algorithms called as subroutines, to linear programming

algorithms, to high-level simulation languages such as GPS (General

Problem Solver) have been identified as decision support system

models.

The database management system handles data oriented tasks. Systems

which do no more than retrieve raw data to those which produce data

summaries in the form of pie charts and bar graphs on graphics

terminals fit into this category.

2.1.3 DECISION SUPPORT SYSTEMS - DEVELOPMENT PROCESS

The process by which a decision support system is developed has been

- 9 -

discussed by many authors: Keen and Scott Morton [1978], Bonczek et

al. [1980], Sprague and Carlson [1982], The consensus is that

decision support systems should be developed incrementally, that is,

working closely with the user to identify what the system should

accomplish. This may involve prototyping, that is, giving the user

hands-on feedback with regard to design decisions.

To develop a system in an iterative fashion, it must be readily

adaptable to change. System functions (hence components) must be

easily added, deleted, or modified. If a system is developed in an

iterative manner, incorporating adaptability, the result should not

only please the user at the present time, but it will be able to

evolve to satisfy the user at some future time.

2.2.1 EXPERT SYSTEMS - A DEFINITION

An expert system is a program designed to solve a problem or problems

within a particular domain of knowledge. Such systems are built with

the aid of someone who is considered to be an expert in the field in

question. These systems attempt to codify the expert's problem

solving methodology.

Expert systems differ from the broad class of AI tasks in
several respects. First, they perform difficult tasks at
expert levels of performance. Second, they emphasize
domain- specific problem- solving strategies over the more
general 'weak methods' of AI (Newell [1969]). Third, they
employ self-knowledge to reason about their own inference
processes and provide explanations or justifications for
conclusions reached.
(Hayes- Roth et al. [1 9 83]

)

2.2.2 EXPERT SYSTEMS - FUNCTIONAL COMPONENTS

- 10 -

In their simplest form expert systems have four functional components:

rule base, working memory, an inference engine, and a user interface.

Expert systems rely on large databases of knowledge. A large number

of expert systems use production rules to represent this knowledge. A

production rule can be represented in the following form:

IF <pattern> THEN <action>.

A list of production rules is assembled into what is called the rule

base, or knowledge base, of the expert system. A working memory is

used to hold the current state of a problem under investigation. The

driving program, or interpreter, of an expert system is the inference

engine. The inference engine attempts to match the rule base against

a subset of the working memory, driving towards a solution. In

attempting to arrive at a solution the inference engine must employ

some sort of control strategy.

There are two requirements for a control strategy (Rich [1983]).

First, a good control strategy must cause motion, that is, progress

must be made towards achieving some goal. Second, a good control

strategy must be systematic. A systematic strategy is necessary to

reduce the amount of time and effort expended in solving the problem

at hand, as opposed to random or exhaustive search.

There are a number of different methods which can be employed as a

control strategy by an inference engine. A pure recognize-act cycle

searches the rule base for a rule whose pattern "matches" a subset of

working memory. The first matching rule which is found is "fired", in

other words, the actions specified by the rule are carried out. This

- 11 -

control strategy implies an ordering of the rules in the rule base.

Another control technique is conflict resolution. Here the entirety

of the rule base is searched. All rules which match the working

memory are selected. Two methods can then be used to determine which

of the selected rules to fire; only one rule will be fired.

A decision procedure may be employed to rank the rules, selecting the

"best" one to fire. Since this choice may not lead to a problem

solution, backtracking may be necessary. Alternatively, viewpoints

can be used to determine which selected rule to fire. In this method,

which rule to fire is indeterminate. Thus a copy of the working

memory is made and any one rule is fired using the copy. The firing

of rules can continue in this manner until a problem solution is

reached. If a solution cannot be reached, it is possible to return to

previous states of the working memory and select a different rule to

fire.

The user interface provides the means for interaction between the user

and the expert system. This is extremely important in that these

systems are designed to solve problems. If the human user is to

accept the system's proposed problem solution, the user must be both

comfortable with and have confidence in the expert system's reasoning

process. This can be accomplished through explanation facilities in

the user interface.

There are two important classes of situations in which
expert systems should be able to explain their behavior and
results. For the user of the system who needs clarification
or reassurance about the system's output, the explanation
can contribute to the transparency, and thus the acceptance,
of the system. The second major need for explanation is in

- 12 -

the debugging process ..., where a human expert, in order to
locate some error in the knowledge base, makes use of the
system's explanations of why it has done what it has done.
(Barr and Feigenbaum [1982])

2.2.3 EXPERT SYSTEMS - DEVELOPMENT PROCESS

The mention of debugging in the above section raises the issue of

expert system development. In order to develop an expert system, a

human expert must be found who is willing to invest the necessary time

and effort. The process of interviewing the expert to determine how

they go about their job, and then translating this knowledge into an

expert system, is referred to as knowledge engineering. The

development of the system becomes an iterative process of extracting

knowledge from the expert, codifying it, and then testing.

Production systems are especially adapted to this iterative design

process as knowledge can be easily added to the rule base via new

rules. Knowledge which is correct and already encoded as rules is not

disturbed.

2.3 A COMPARISON OF DECISION SUPPORT SYSTEMS AND EXPERT SYSTEMS

It should be immediately recognized that both decision support systems

and expert systems are automated systems that deal with problems and

problem solutions. Some researchers would have you believe that any

similarities end there. Those who would support this statement are

decidedly decision support system oriented, in other words, decision

support system researchers and developers.

A return to some decision support system definitions and

characteristics will serve to illustrate.

- 13 -

Decision support implies the use of computers to:

1. Assist managers in their decision process in semis-
tructured tasks.

2. Support, rather than replace, managerial judgement.

3. Improve the effectiveness of decision making rather
than its efficiency. (Keen and Scott Morton [1978])

...DSS, which became characterized as interactive computer
based systems, which help decision makers utilize data and
models to solve unstructured problems. (Sprague [1980])

...they tend to be aimed at the less well structured
underspecif ied problems that upper level managers typically
face; they attempt to combine the use of models or analytic
techniques with traditional data access and retrieval
functions; they specifically focus on features which make
them easy to use by noncomputer people in an interactive
mode; and they emphasize flexibility and adaptability to
accommodate changes in the environment and the decision
making approach of the user. (Sprague [1980])

We propose that, for now at least, a definition of DSS quite
close to the early definitions of Gorry and Scott Morton and
Little be adopted. That is, a DSS is a computer-based
information system used to support decision making
activities in a situation where it is not possible or not
desirable to have an automated system perform the entire
decision process. (Ginzberg and Stohr [1982])

We stress supporting rather than replacing managerial
judgements. We focus on improving the effectiveness of
decision making rather than merely improving its efficiency.
(Bennett [1983])

These authors define decision support systems in terms which imply

that the type of problem solving activities decision support system

users are involved in defy translation into computer programs. It

appears further that not only should decision support system

developers refrain from attempts to embody the problem solving methods

of their users, but also that it is plainly impossible to do so.

- 14 -

A point to be made at this time is that there is no single, consistent

theory of decision support systems. The above authors, in forming

their definitions, are attempting to integrate specific decision

support system implementations with what they feel should be a

decision support system. I feel these definitions are weighted

heavily towards what a decision support system is now in an

implementation sense, as opposed to what a decision support system

should be at some time in the future.

If we look towards the future of decision support systems the

definitional views of decision support systems change somewhat.

Bennett [1983] stated:

In an ideal DSS the computer would take an active role in
leading the DM [decision maker] to a problem solution. This
would require the computer to have an "understanding" of
what the DM is seeking to do. In such a "knowledge-based"
system, the DM and the computer would share responsibility
for arriving at a "mutually satisfying" solution. In this
idealized case the DSS would take an active role in
directing the DM towards optimized decisions.

This statement contains the major difference that now exists between

decision support systems and expert systems. Both decision support

systems and expert systems use data (facts) and models (rules) to

arrive at a problem solution. However, an expert system uses the

codified inference methods of an expert to reach its solution. The

decision support system solution is only as good as the current user's

problem solving skills.

The need to include knowledge in decision support systems is being

recognized, as knowledge about specific problem domains can lead to

more efficient and efficacious decisions. Reitman [1982] observed

- 15 -

that the decision support provided by a human staff is still superior

to that of a decision support system, if only in the fact that the

human staff provides the decision maker with reasonable alternatives.

The decision maker does not have to search through all possible

scenarios. Knowledge about the problem domain, coupled with effective

problem solving skills, can lead to better decisions.

If the knowledge and problem solving strategies of the human
decision support staff, or an expert, could be codified in a
DSS, a substantial impact could be made in unstructured
managerial problems. (Gorry and Krumland [1983])

The coding of knowledge and problem solving methods is exactly what

artificial intelligence researchers have done in expert systems, in an

attempt to produce superior problem solutions. This work has not been

lost on some decision support system researchers.

The systemic view makes it clear the ES bear many
similarities to DSS. Their environments and roles are quite
similar, and it is mainly a change in the arrangement and
resources that differentiates them. (Ariav and Ginzberg
[1985])

The following definition of an expert system could be applied equally

to a decision support system which incorporates both knowledge of the

problem domain and problem solving methods.

An expert system is one that has expert rules and avoids
blind search, performs well, reasons by manipulating
symbols, grasps fundamental domain principles, and has
complete weaker reasoning methods to fall back on when
expert rules fail and to use in producing explanations. It
deals with difficult problems in a complex domain, can take
a problem description in lay terms and convert it to an
internal representation appropriate for processing with its
expert rules, and it can reason about its own knowledge (or
lack thereof), especially to reconstruct inference paths
rationally for explanation and self- justification. (Brachman
et al. [1983])

- 16 -

2.4 RELEVANT CURRENT WORK

A search of the current decision support system literature indicates

little published work dealing expressly with the application of

artificial intelligence techniques, specifically expert systems, to

decision support systems. Reitman [1982] concluded that it may be

possible to build a system of multiple experts for cooperative problem

solving, as he did for the game of Go, but that a system of this type

for decision support was not in the foreseeable future.

Artificial intelligence literature is the most applicable in this

case. Several researchers have proposed models of problem solving by

cooperating experts, sometimes referred to as knowledge sources. This

area of research is referred to as distributed artificial intelligence

or distributed problem solving. Though none of the following models

or implemented systems deals directly with decision support systems,

the techniques used may be applicable to that domain.

2 .4 .1 BEINGS

Lenat [1975a] modeled knowledge as interacting experts called Beings.

Each Being is a "specialist" in some domain of knowledge. They

cooperate to solve problems through questioning and answering each

other. This implies that each Being recognizes when its own expertise

is relevant.

The particular problem domains with which Lenat' s systems dealt are

automatic programming and the discovery of mathematical theories.

Programs in both domains were successfully implemented using the Being

concept.

- 17 -

Beings are uniform in that they all have the same mental "parts." The

values of its parts make each Being unique. It is this difference in

knowledge (values) that allows Beings to solve a task, while the

uniformity of structure provides ease of communication.

Since the paradigm of the meeting [problem solving session]
is questioning and answering, the names of the parts should
cover all the types of questions one expert wants to ask
another. (Lenat [1975a])

The number of parts in a Being is thus important. A large number of

parts makes the addition of Beings difficult because of both the

effort required and the knowledge necessary to assign values to all

the parts. Lenat states that the optimum number of parts appeared to

be in the range of 10 to 100. The systems he implemented had Beings

consisting of ca. 30 parts.

Beings are not recursively defined. The Being parts constitute the

primitive level of the system; there are no Beings defined as parts of

Beings, nor are there any aggregations of Beings.

In a community of Beings, only one Being at a time has control. Each

Being can recognize when it is relevant. Should more than one Being

at a time want control, a special Being, CHOOSER, takes control.

CHOOSER ranks the Beings wanting control, seeing which needs control

most immediately. If there is still conflict, the simplest Being is

given control. If the issue of control is still not resolved, a Being

is chosen at random and given control.

Lenat concluded that, though a community of Beings did effectively

solve problems within its defined domain, there were flaws in the

- 18 -

model. The community was implemented in PUP6 (Lenat [1975a]). One

problem was that the addition of new Beings was difficult. Lenat

noted that for the purposes of his experiments, only 30? of the parts

of the Beings in the community were filled in. Another difficulty

with the implementation was the awkward user interface. Dialogue was

difficult due to the minimal completion of the system noted above.

2.4.2 THE SCIENTIFIC COMMUNITY METAPHOR

The Scientific Community Metaphor was developed by Kornfeld and Hewitt

[1981] to model the parallelism in problem solving which occurs within

scientific communities. Scientists do not work individually on

problems, but rather concurrently with other scientists. At any time,

there will be many theories extant in the community. Some scientists

will be working in support of a particular theory while others believe

the theory false and work to disprove it. In both cases, their

research is supported by a financial sponsor. The language Ether was

developed by Kornfeld and Hewitt to capture this.

All computation in Ether is carried out by sprites. Communication

between sprites is accomplished by disseminating messages of two

types: assertions and goals. An assertion is the result of some

computation, while a goal indicates a computation which needs to be

done.

Each sprite has a set of potential interests called the interestSet.

If a message is disseminated which is a member of a sprite's

InterestSet, then that sprite will receive the message. The receiving

sprite can then create new sprites and disseminate new messages.

- 19 -

Kornfeld and Hewitt [1981] listed four important properties of

dissemination in Ether: monotonicity, commutativity, parallelism, and

pluralism.

Monotonicity means that once a message is disseminated, it will remain

available forever. This is akin to a scientist's published works;

they will forever be a part of the literature.

The principle of commutativity states that a sprite will receive a

message in its InterestSet whether that message was disseminated

before or after activation of the sprite. This is equivalent to a

scientist finding all previously published works of interest. And, as

soon as new works of potential interest are published, the scientist

will find these also.

Parallelism states that if message ml is received by both sprites s1

and s2, then s1 and s2 will process ml concurrently. Also, should

sprite s1 receive messages ml and m2, it will process both messages

concurrently. Analogously, scientists can work simultaneously without

negative effects.

Pluralism allows Ether to work concurrently on multiple, possibly

incompatible hypotheses. In the scientific community, there is no one

source of truth.

There are four general types of activities carried out by sprites.

First, there are proposers. These are processes whose job it is to

propose new theses or goals upon which the community can act. Second,

proponents are processes which seek to prove correct, or assert, the

proposed goals. Third, skeptic processes attempt to disprove, or

- 20 -

refute, proposed goals. Fourth, sponsors are processes which

determine how the community resources should be allocated. No

processing work is done unless it is supported by a sponsor. Sponsors

give support in the form of processing power, measured in units of

cycles per second. Sponsors prevent the wasting of resources by

processes attempting to prove results already known, i.e. goals which

have been asserted.

Within Ether there are also mechanisms for adherence, viewpoints,

inheritance, and translation. Adherence means that, though a theory

may be believed at present, it may not be true in the future. Thus

messages can become context-sensitive through labeling with their

author, date, time of creation, etc. Messages can be "relativized"

via viewpoints. Dsing viewpoints, assertions do not have to be

global, believed by everyone. Thus different theories may exist with

regards to the same subject. Inheritance allows information to be

shared between viewpoints. One piece of information can be treated in

multiple ways, depending upon one»s viewpoint. In some instances

information cannot be shared directly among viewpoints, rather some

translation may be necessary. As an example, there may be two groups

of scientists working on theories of light. Both groups need access

to some particular body of knowledge, but one group views light as

particles, while the other views light as waves. These different

viewpoints require a translation of information between them.

2.4.3 HEARSAY-II

The HEARSAY-II speech understanding system (Erman and Lesser [1975])

utilized a hypothesize-and-test paradigm as "... the basis for

- 21 -

cooperation among many diverse and independent knowledge sources

(KS's)." An interesting note is that the individual KS's were assumed

to be "errorful and incomplete."

The type of AI problems addressed in the HEARSAY-II architecture are

those having a very large problem (search) space and requiring large

amounts of knowledge for solution. The different kinds of knowledge

necessary for problem solution are represented by knowledge sources.

KS's cooperate by writing hypotheses on a "blackboard."

The blackboard was a shared data structure to which all the
KS's had access. When a KS was activated ... it examined
the current contents of the blackboard and applied its
knowledge either to create a new hypothesis and write it on
the blackboard, or to modify an existing one. (Rich [1983])

The blackboard of HEARSAY-II is subdivided into seven levels.* These

levels are heterogeneous and represented different levels of

abstraction in the problem domain. Each level is an abstraction of

the one below it. The levels, considered hierarchically, constitute a

plan for solving the problem.

The hypotheses written upon the blackboard have a uniform structure,

regardless of the level at which they are written. Hypotheses have

associated attributes of several types: name, rating, attention,

problem-specific, KS-specific, processing state, and structural

relationships. Each hypothesis must have a unique name, including the

name of its level. The KS-assigned ratings are used by a scheduler to

guide the search for a solution. The attention attribute indicates

•The exact number of levels varied from three to eight,
depending upon the configuration. The most cited
number is seven.

- 22 -

three things: the amount of processing resources which have already

been used on the hypothesis, the amount of additional processing that

may be required, and what type of additional processing is needed.

The latter can represent system goals. Problem- specific attributes

allow the addition of supplementary information to the hypothesis

which is germane to some particular problem. KS-specific attributes

provide KS's with the state information necessary to process the

hypothesis. These attributes also allow implicit (not blackboard) KS

communication. The processing state attributes are summaries of the

other hypothesis attributes. These summary attributes are efficient

ways to trigger KS»s. The structural relationship attributes

represent relationships between hypotheses, using "links."

Links describe several kinds of relationships between hypotheses.

There may be OR-, AND-, and SEQUENCE- links. In Figure 2-2, if links

11 and 12 were both OR-links, then hypothesis hi could be either an h2

or an h3. If the links were AND-links then both h2 and h3 are

necessary to support hi . SEQUENCE- links can be thought of as ordered

AND-links.

hi

/ \

11 / \ 12

/ \

h2 h3

Figure 2-2

Hypotheses may be linked both upward and downward. Link-attributes on

downward links can be used to indicate supporting or contradicting

- 23 -

hypotheses, while upward links show where a hypothesis might be used.

Hypotheses may have multiple uses. Duplication of hypotheses is

prevented through the use of an additional hypothesis attribute - a

connection matrix. Since one hypothesis may have multiple uses the

value of the connection matrix "specifies which of the alternative

supports of the hypothesis are applicable ('connected to 1
) which of

its uses" (Erman and Lesser [1975]).

A knowledge source is specified in three parts: a) the
conditions under which it is to be activated (in terms of
the conditions in the blackboard in which it is interested),
b) the kinds of changes it makes to the blackboard, and c) a
procedural statement (program) of the algorithm which
accomplishes those changes. A knowledge source is thus
defined as possessing some processing capability which is
able to solve some subproblem, given appropriate
circumstances for its activation. (Erman and Lesser [1975])

When conditions on the blackboard match a KS's preconditions, an

activation record is created indicating which KS should be activated

and which event caused this activation (Rich [1983]). This specifying

of the event which triggered the KS allows each KS to carry out its

actions within a particular context. Instantiated KS's (those with an

activation record) are selected for activation by a scheduler KS. The

scheduler KS employs an "opportunistic search strategy."

Each instantiated KS has a hypothesis upon which it wants to operate.

The scheduler examines the ratings of all instantiated KS's and will

select for activation the KS with the highest rated hypothesis. This

is best-first search. Should all hypotheses have an equal rating, the

associated KS's would be activated together. This increases the

breadth of the search. Choices among competing hypotheses are thus

- 24 -

delayed pending more complete information.

The hypothesize-and-test paradigm allows independent activation of

KS's. Therefore, KS's need have no knowledge of one another. Also,

because KS's are activated based upon certain blackboard conditions,

the processing of hypotheses becomes data-directed.

Barr and Feigenbaum [1981] summarized the design ideas of the

HEARSAY-II system as follows:

- Separate, independent, anonymous knowledge sources;

- Self- activating, asynchronous, parallel processes;

- Globally accessed database; and

- Data-directed knowledge invocation.

I believe we can add to this summary the use of multiple levels of

abstraction in the problem solving process.

2.5 PROBLEM STATEMENT AND PROPOSED SOLUTION

To this author, it appears that the next step in the development of

decision support systems is the addition of knowledge and problem

solving methods. In other words, the next step in the development of

decision support systems should be to incorporate the artificial

intelligence techniques of expert systems. A huge monolithic general

purpose decision support system is not what is envisioned. A

different approach is suggested.

Currently, most decision support systems are developed for use in a

tightly defined problem domain. The same is true of expert systems.

Continuing in this manner, what is proposed is a system of domain

- 25 -

specific experts. Each of these experts would have knowledge of its

problem domain and methods for solving problems in that domain. Each

expert must also include knowledge of itself, so as to know when it is

out of its area of expertise.

These domain specific experts can be linked in a network structure,

where each expert is a node. There could conceivably be other types of

nodes in the network. These additional nodes could serve as

information processors, their task being the collection and processing

of data for use by the domain specific experts. These information

processing nodes would also require knowledge about themselves and the

network, e.g., the expert should know what is its task and where its

information is needed. Let us then refer collectively to the system

nodes as intelligent objects.

Access to this network of intelligent objects by a human user would be

through a user interface management system. To paraphrase Sprague and

Carlson, from the user's point of view this would be the system.

The use of intelligent objects in this model is simply an extension of

the recognized role of abstraction in programming languages and

systems. Abstraction reduces the level of complexity in large

systems, thereby raising both the level of understanding and comfort

of human users.

Programming language developments which contributed to the object

model can be traced back to SIMJLA67, developed by Dahl (Jones

[1979]). SIMDLA67 provided for the aggregation of data and allowed

operations on said data via the class construct. Instantiations of

- 26 -

classes were referred to as objects. This is known as data

abstraction (Ghezzi and Jazayeri [1982]).

SIMJLA67 influenced the development of later languages such as ALPHARD

(Shaw and Wulf [1977]) and CLU (Liskov, et al. [1977]). These later

languages included not only data abstraction, but procedural and

control abstraction as well. More important was the idea that user-

defined abstractions should not only combine data and the allowable

operations on said data, .but also protect the data from manipulation

by any means other than the user-defined operations. It was this

later point which was not effected in SIMJLA67.

A simple object could be defined as an encapsulation of data and the

allowable operations on that data. This type of abstraction mechanism

is not sufficient, though, for complex distributed systems involving

concurrent operations (Unger [1978]). The best means of representing

the functional system components in this environment would be

autonomous objects, that is, objects containing not just data and the

operations on that data, but also mechanisms for independent action by

the object. Unger [1985] defines this type of object as an

intelligent data object (IDO). In the model defined by this research,

data may not necessarily reside within an object, therefore the

designation intelligent object.

- 27 -

Chapter 3

FUNDAMENTALS

3.1 PURPOSE

The purpose of this model is to integrate multiple diverse intelligent

objects in an automated environment for the purpose of decision

support, just as a human decision maker now uses the diverse talents

of a human staff. This idea agrees in principle with the structure of

the HEARSAY-II system (Erman et al. [1980]). In the HEARSAY-II system

there was one uniform method of communication among many different

knowledge sources. This differs from BEINGS (Lenat [1975a]) in which

the structure of the objects was uniform.

The primary facets of this model are:

- a homogeneous environment for inter-object communication, i.e., a

blackboard and messages,

- a blackboard for the posting of messages,

- heterogeneous intelligent objects,

- no restriction on the number of objects within the system, and

- no restriction on the locality of the objects.

The goal of combining a homogeneous communication mechanism with

heterogeneous intelligent objects is system flexibility. This allows

communication between objects but does not restrict how an object is

- 28 -

implemented. An analogy would be the system of roads and highways in

this country and the vehicles which operate on them. As we know,

there are many different types of cars and trucks, each designed for a

particular purpose. All cars and trucks share the same roads and

highways. If a uniform representation of objects was required in this

model, that would be akin to designing one combination car/truck for

use by all persons for all tasks for all time. Likewise, if a uniform

communication mechanism were not enforced, the analogy would be a

divided road system, one set of roads for cars, another for small

trucks, another for large trucks, et cetera. It would be difficult to

move goods from cars to small trucks, small trucks to large trucks, or

vice versa due to this segregation; this is not a desirable

characteristic.

The use of a blackboard for the posting of messages coincides with the

expectation that this model system will be quite large, larger than

what could be easily maintained by one individual. If one relaxed the

requirements that messages be the only inter-object communication

mechanism and that all messages be posted on the blackboard, in other

words one allowed direct calls between objects, then a great deal of

the system flexibility is lost. It would then be necessary to know

all the possible calling sequences in which an object might be

involved. It would become extremely difficult to remove existing

system objects; that would be definitely undesirable. Software

systems of the future may be so large that no one person will be able

to know all possible inter-object effects. Hence, it will be necessary

to have systems (objects) operate in an autonomous manner.

- 29 -

3.2 ENVIRONMENT

This model is intended for use in any environment. An environment

means any person who needs to make decisions based on a large body of

knowledge. It is expected that this body of knowledge will be diverse

in nature. This model attempts to mimic the support a human staff

gives to a decision maker; office personnel or technical support

staffs usually represent many areas of expertise. This staff, to

support the decision maker, must cooperate. The objects in this model

must do likewise.

This model is loosely based upon the plex structure in which most

business enterprises are established (see Figure 3-1). This

enterprise structure is a hold-over from the age of the Roman Legions

and beyond. It may be viewed as a hierarchy of units (corporate

divisions, departments, personnel; archdioceses, dioceses, parishes;

federal, state, and local governments, etc.), though it is not a

strict hierarchy. Information flows both upward and downward through

the levels, there is also lateral information flow. Ordinarily, the

goals of the enterprise are communicated in a top-down manner, while

the data is processed in a bottom-up manner (becoming information in

the process). This model preserves the basic enterprise structure as

described.

The idea of applicability in any environment is not unreasonable given

the characteristics of the model. Though the communication mechanism

is homogeneous (standardized), the heterogeneous intelligent objects

will be for the most part, environment (application) specific. For

example, a business executive's decision support system based on this

- 30 -

Figure 3-1

model might have the following objects as components:

User- Interface object,

Financial Advisor expert system object,

Stock market data input object,

Product market analysis expert system object,

Statistical package object,

Crisis Management expert system object,

Graphics package object,

Company Product database object, and

Competitor's Product database object,

while an emergency room physician's system might include

User- Interface object,

Myocardial Infarction expert system object,

- 31 -

Cerebral Vascular Accident (Stroke) expert system object,

Poison treatment expert system object,

Pharmacy database object,

Pharmacology expert system object,

Burn treatment expert system object,

Organ donor/ recipient database object,

Medical dictionary database object,

Infectious disease expert system object,

On-call physician database object, and

Patient Monitor object.

3.3 USER

The model is designed for a single-user system. It is limited in this

way for the sake of simplicity. This limitation removes any question

of security. It is also assumed for the present that each object,

when executing, does so to completion. This removes any problems

associated with concurrency.

The user will interact with one intelligent object. This object's

area of expertise would be human/system communication. The object

could be tailored to the individual user, just as shell files in UNIX

allow the tailoring of the user's environment. The User- Interface

object could lead the inexperienced user by the hand via menus or it

could provide a terse action oriented communication style for the more

experienced user.

The user should be able to query the system through this User-

Interface object as well as receive all system outputs through this

- 32 -

object. One exception to this might be a Graphics object, whose

specialty is visual representation of data. Since the user interacts

with only one object, he or she would be theoretically unaware of

which other system object provided an answer to a query. The answer

may have come from a local object, residing on the same processor as

the Oser- Interface object, or the answer may come from a non-local

object, since this model could be implemented on a distributed system.

The location and identity of the responding object should be

transparent to the user unless specifically requested.

All active objects in the system should be able to explain themselves

as well as query the user if necessary. The user may wish to know how

or why some output was arrived at by an object. In this case, the

user should be able to ask the object to explain itself and the object

could respond with a textual description of its function and how it

carries out that function. An object may require more information

before it can proceed with processing in some instance. If no other

object can answer this object's query (posted as a message on the

blackboard), the User- Interface object should output this query to the

user. Under these circumstances, a dialog may ensue between the user

and the object requesting information. Questions such as: "What do

you need", "Why do you need that", "How do you know that", and "Where

did that come from", would require answers on the part of the

requesting object.

3.4 NEED

This model is particularly appropriate with respect to decision

support systems for several reasons. The decision support system

- 33 -

literature indicates that existing systems tend to be one-of-a-kind.

Those systems which are installed at multiple locations operate within

a narrow problem domain. The current situation with implemented

decision support systems is one where often there is no existing

system applicable in and adaptable to a problem area. In this case

the decision maker has to use conventional methods. Also, decision

support system descriptions would indicate that these systems are

large, essentially monolithic pieces of software. Such large systems

are not easily modified. Neither are such systems easy to link

together, given an business enterprise which might use multiple

decision support systems.

This model alleviates such problems. It provides a framework

independent of environnent. A system designed under this model will

be less like a traditional software system and more like a hardware

system, in the sense that the user will begin with a base system and

add components as needed. Some installations will have several

components in common, while other components will be unique to that

particular installation. The point is that these software components

should be easily interchangeable (added/deleted).

If this easy interchange of software can be realized, then a potential

user could start with a small, less expensive system and add other

features at a later date. This is the sort of system evolution which

decision support system researchers have identified as necessary.

- 34 -

Chapter 4

COMPONENTS

4.0 INTRODUCTION

There are three principle components of the model: the blackboard,

intelligent objects, and messages. Knowledge within this model is

embodied in the intelligent objects. This includes both procedural

("how-to") and declarative ("what") knowledge. Objects interact to

solve problems by posting messages on the blackboard. The only

inter-object communication mechanism is the message. All messages are

posted on the blackboard; all messages have the same general

structure. Together, messages and the blackboard form a uniform

environment in which the objects operate.

The user posts messages on the blackboard via the User- Interface

object. These messages are questions which the user wants answered.

These questions may be thought of as system goals.

There are a number of different types of objects in the model. They

may be viewed as being hierarchically arranged based upon where each

posts its messages on the blackboard. Some low- level objects will be

working constantly, collecting data for use by other objects, while

other high-level objects are activated only in response to user

queries.

For example, suppose one low-level object does nothing but poll a

factory production line, counting the number of units produced.

- 35 -

Another low-level object watches the warehouse, counting the stock on

hand of some particular item. It adds the number of units produced

and subtracts the number of units shipped. These two objects would

post their messages (outputs) on the blackboard. A third object could

monitor customer orders. It might post messages at one minute

intervals (if the product was electricity from a power plant), one

hour intervals, or weekly (if the product was ready-to-eat cereal).

An intermediate- lev el tracker object might read the messages posted by

the customer order watcher and condense them to assess trends in

product demand. It too would post its reports on the blackboard. All

these messages may be read by a high-level inventory control object

which generates reports or serves as a link in an automated production

control system.

4.1 BLACKBOARD

The blackboard is an object which provides a global data structure

accessible in one way or another to all objects. Subdivisions of the

blackboard, called knowledge realms, represent particular problem

domains. Within each knowledge realm the blackboard is further

divided hierarchically into levels of abstraction (see Figure 4-1).

The blackboard is global in the sense that all objects use it.

Communication between objects will tend to become localized, that is,

all messages are not appropriate for all objects. Objects will

communicate most frequently with those others who solve similar and/or

related problems. This communication pattern is the motivation for

subdividing the blackboard. The subdivisions correspond to realms of

knowledge shared by several objects. An analogy, based on the

- 36 -

R
o
L
o

Figure 4-1

Scientific Community Metaphor, would be that the subdivisions are

logically equivalent to the specialized discourse among experts in

some particular field of science. To preserve the generality of the

model, it must be noted that these specialized conversations are

logical only; the structure of the messages cannot change from one

blackboard subdivision to another.

- 37 -

Within each knowledge realm the blackboard can be further subdivided

into several layers. These layers will correspond to logical

subdivisions of knowledge (or tasks) within a given problem domain or,

in other words, levels of abstraction. The determination of levels is

akin to the top-down design process practiced in structured

programming. The programmer begins with the most general and abstract

problem components, refining each in turn into a lower level, more

detailed description. For example, in the HEARSAY-II system (Lesser

and Erman [1977]) the problem of recognizing spoken phrases was

decomposed into the following six levels: phrase, word-sequence, word,

syllable, segment, and parameter. Each level is a more detailed

aspect of its predecessor. In this model, level ROLO (knowledge realm

0, level 0) is the highest level of the blackboard. It is common to

all knowledge realms. Distinct knowledge realms (R1..Ri) are

differentiated beginning at level one downward (L1..LJ).

4 .2 OBJECTS

4.2.1 GENERAL DESCRIPTION

Each object in the model may be viewed as a large-grained production

rule of the form:

<condition> —> <action>.

The <condition> identifies those messages or blackboard states in

which the object is interested, i.e., those messages upon which the

object will act.

4.2.2 ACTIVATION

- 38 -

When a message is placed upon the blackboard which matches (triggers)

an object's condition, the object is activated. At activation, a copy

of the condition-matching message and its associated context, a

summary of the action to be taken by the object and its effects upon

the blackboard, and the objects rating (necessity of execution) are

placed together in an activation record. This activation record is

posted on a section of the blackboard reserved for control information

(a control knowledge realm). There may be several object activation

records posted on the control blackboard at any one time. Those

objects whose activation records are posted are said to be pending

execution. Since objects are activated based upon the blackboard

state, .the processing of messages becomes data-driven.

4.2.3 EXECUTION

A specialized object known as the Scheduler evaluates all pending

activation records, selects one, and schedules the corresponding

object for execution. The object selected for execution by the

scheduler is thus in a ready state. When any preceding objects have

run to completion the next scheduled object is executed, i.e., its

<action> is carried out.

Each object, when executed, runs to completion. When implemented on a

single- processor system, this criteria simplifies the model and

negates problems associated with concurrency and shared data objects

(the blackboard).

4.2.4 STRUCTURE

All objects in this model operate in the uniform environment provided

- 39 -

by the blackboard and messages. Recall that all messages have the

same structure. Note however that objects are heterogeneous in

structure. The objects within the model must be constructed with

regard to a particular application; they are domain specific. As

such, the system developer who uses this model must be granted the

freedom to implement each object in an optimum manner. This lack of

restraint on the internal representation of objects allows objects to

be recursively defined.

4.2.5 TYPES

There are nine different types of objects segregated into two

categories: control and domain. Substantial research on blackboard

architectures has indicated the desirability of separating knowledge

about the problem domain from knowledge about problem solving, hence

domain and control objects, respectively (Balzer, et al. [1980],

Aiello [1983], Hayes-Roth [1983], Hayes-Roth [1984], Hayes- Roth and

Hewett [1985]). This distinction allows the modification of the

problem solving method without disturbing domain knowledge, and vice

versa. The result is a greater amount of generality and flexibility

within the model.

4.2.5.1 CONTROL OBJECTS

The first category of objects, control objects, are divided into four

types: blackboard handler, scheduler, policy, and user-interface.

The blackboard handler is a conceptual designation for the kernel

routines used to add, remove, display, debug, and analyze information

(messages and activation records) on the blackboard. Since all

- 40 -

objects use messages of a uniform structure, a standard set of

blackboard functions can be created, simplifying system development.

The scheduler operates upon the activation records posted on the

control knowledge realm of the blackboard. Its function is to rank

the activation records of all triggered objects, selecting for

execution that object whose activation record has the highest

priority. For example, given two objects activated by the same

message, if both objects perform a similar operation on the message

but one uses twice the processing cycles to do so, the scheduler

should select for execution the faster object. The factors which are

used to calculate this priority will be problem-domain specific.

Policy objects are used to control the problem solving process in a

more dynamic manner than the scheduler. This is accomplished by

setting system goals which will trigger desired events. This does not

violate the independence of objects as the policy objects are

requesting (through goals) "what", not "who."

Policy objects are triggered by certain blackboard states. Events

which result in a policy object triggering would be "quiescence", a

condition in which objects above a designated level fail to activate,

and "stagnation", which occurs when progress toward a goal state slows

(Hayes-Roth and Lesser [1977]).

The user- interface object handles all interaction between the human

user and the model system. The user inputs all queries to the system

through the user-interface object. These inputs may be thought of as

system goals or directives. These goals will be posted in the form of

- 41 -

messages by the user- interface object on section ROLO (realm 0, level

0) of the blackboard. Recall that ROLO spans all knowledge realms

within the model. High-level domain objects and expert objects (both

described below) respond to messages posted at that level.

4.2.5.2 DOMAIN OBJECTS

The second category of objects includes five types: expert, high-,

intermediate-, low-level, and database. These objects capture the

information germane to a particular problem domain (or knowledge

realm)

.

Within any given field of knowledge, some processes will be well

understood while others will not. In decision support system

terminology, some problems are structured, others unstructured.

Expert objects are intended to capture structured knowledge, that is,

problems for which known solution methods exist. This covers a broad

range of possibilities from the "problem" of finding a number's square

to determining if a hospital patient has septicemia, e.g., MYCIN and

other expert systems. Throughout this range, these problems all

exhibit some degree of bounds, at least sufficient to allow the

creation of a solution. This "well-defined" solution can be coded,

compiled, and used in compiled form. Thus expert objects in this

model can be viewed as compiled solution methods to particular

problems.

A sophisticated expert object, a genuine expert system for instance,

would respond directly to messages posted by the user-interface object

on ROLO of the blackboard. A simpler expert object could be used at

- 42 -

lower blackboard levels by other objects (recall that objects can be

recursively defined). Contrast the class of problems defined by these

expert objects with the class of problems for which the HEARSAY-II

architecture was developed.

The basic premise of the HEARSAY-II system was that both the

hypotheses and the knowledge source used by the system were "errorful

and incomplete." In other words, the problem domain was not well

structured; the methods by which problem solutions are arrived at are

not well understood. Allowance for problems and solutions of this

nature has been made through the inclusion of high-, intermediate-,

and low-level objects in this model.

The designations high-, intermediate-, and low- lev el are arbitrary and

refer to the blackboard levels at which these objects operate. Recall

that blackboard levels correspond to levels of abstraction within a

particular problem domain. This assumes that even unstructured

problems can be decomposed into a hierarchy of partial solutions.

High-, intermediate-, and low-level objects will cooperate while

working at different blackboard levels to arrive at a problem

solution. The number of levels into which a problem should be

decomposed (hence the number of blackboard levels) should be left to

the system designer.

Decision support researchers have indicated that decision support

system development should be evolutionary. This idea is embodied in

the high-, intermediate-, and low-level objects in this model.

Artificial intelligence researchers using blackboard models have noted

that, once a problem solution method is well understood, the method

- 43 -

should be re- implemented in some model other than a blackboard, thus

allowing compilation and more efficient execution. That idea is

captured in the expert objects of this model.

Note that some low-level objects will serve as data inputs for the

model. These objects act as "sources" in Petri Net terminology

(Peterson [1977]), bringing information into the model to be acted

upon by other objects.

The last type of domain object is the database object. These objects,

as their name implies, are simply data repositories. They provide, in

response to a message, data for use by the human user or other

objects.

In general, the number of objects within the model will be dependent

upon the problem domain.

4.3 MESSAGES

Messages are the only communication mechanism between objects. All

messages have the same structure; what distinguishes one message from

another are the values of its parts. Not all message parts need be

defined (have a value). Messages may be passed from higher blackboard

levels to lower levels ("I need an answer to ...") and vice versa ("I

have a response to ...").

A message consists of attributes as listed in Figure 4-2.

The message identifier is composed of two parts: name and context.

The message name is generated by the blackboard handler at message

creation (posting). All names must be unique throughout the

- 44 -

identifier
name
context

knowledge realm (R0..Ri)
level (L0..LJ)

rating
attention

processing-cycles- used
processing-cycles- needed
operation- needed
status

temporal
longevity
location
replications
authorization

processing-state
structural relationships

upper hypotheses links
connects- with
type

implication
implication- strength

lower hypotheses links
connects- with
type

implication
implication- strength

value

Figure 4-2

blackboard. The message context is of two parts - a label indicating

the knowledge realm (R0..Ri) of the blackboard on which the message

was posted as well as a label indicating the blackboard level (L0..LJ)

within the knowledge realm of posting.

The rating attribute is a numeric index of the message's validity. A

message's validity may range from positive fact (an absolute truth in

support of something) through suppositions (weak support or

contradiction) to negative facts (an absolute truth which contradicts

something). This variability must be accommodated. The manner by

which message ratings are indicated must be left to the system

- 45 -

developer e.g., +100..-100, +1.0..-1.0, etc.

The attention attribute bas four components: processing-cycles- used,

processing-cycles- needed, operation-needed, and status.

The processing-cycles- used is a scalar representation of the computing

resources already expended by objects in processing a message.

Processing-cycles- needed is an indication of the computing resources

necessary to complete operations on a message. Processing-cycles- used

and processing-cycles- needed are supplied by the objects which operate

upon a message. A message which states a fact would have a low

processing-cycles- used index (the cost of retrieval from a database

object) and a zero processing-cycles-needed index. A problem

hypothesis represented as a message would, in contrast, have a far

greater range of values possible for these indices. The processing-

cycles-used/processing-cycles-needed attributes could be used by

control objects for resource allocation within the model.

Operation- needed indicates what processing needs to be done on the

message by other objects. Facts would need no further processing,

whereas hypotheses may need support evidence developed.

The status component of the attention attribute can be of five types:

user-interface-query, in-process, done, user- interface- reply, and

object-query. The allowable status attribute state transitions are

shown in Figure 4-3.

The user- interface-query status would be assigned to a message when it

was first posted on the blackboard by the user- interface object. This

message would be a human user query. If the user- interface- query

- 46 -

user- interface- query

—> time-out, cannot be processed

in- process

v
done object-query —» user- interface-reply

Figure 4-3

status remained unaltered for some specified number of object

executions, the user- interface object could return an output message

to the user indicating the query message could not be processed, i.e.,

it triggered no objects. The user could then reformulate the query.

Should a message marked user- interface-query trigger an object,

causing the creation of an activation record, the message's status

would be changed to in-process. An in-process status indicates

processing is being performed on the message.

When processing upon a message is complete the status would be set to

done. A done status serves as a trigger to the user- interface object

that a message should be output to the user.

Situations may occur in which a message is in-process, but processing

of the message halts. The message does not trigger an object to

perform the operation- needed. The last object to process the message

can then change the message status from in-process to object-query.

An object-query status indicates to the user- interface object that no

further processing can be done on the associated message without

- 47 -

additional information. It is the user- interface object's

responsibility to obtain additional information that would allow

message processing to proceed.

This additional information, in response to an object- query, will be

posted on the blackboard with a status of user-interface-reply. The

object which posted the object-query message would then trigger on the

user-interface-reply message and attempt to proceed with message

processing. This query/reply cycle could require several iterations

before message processing can proceed.

The temporal attribute has four components: longevity, location,

replications, and authorization.

Longevity represents the lifespan of a message within its context.

Closely coupled with longevity is location, which represents the

messages beginning horizontal coordinate on the blackboard level where

it is posted (see Figure 4-4).

<—- location >

<— longevity — >|

message
blackboard
level j

Figure 4-4

In some problem domains the longevity and location of a message will

- 48 -

be or importance. If, for instance, four messages were linked

together representing the four stages of a plan, different plans could

be represented through differing longevity and location values (see

Figure 4-5).

Plan 1

longevity:

location:

25

! phase 1

r

25 25

phase 2 phase 3

t
i

25

f
i

50

25

phase 4

f
i

75

Pi^n 2

longevity:

location:

19 27 33

I I

phase 1 | phase 2 ! phase 3

r
i r

19

f

46

Figure 4-5

21

phase 4

r

79

The replications attribute is a positive integer indicating the number

of copies of a message extant within the model. Multiple objects may

be triggered by one message. If this model were implemented as a

concurrent system all triggered objects could process individual

copies of a message in parallel, thus the necessity of the

replications attribute.

The value of the authorization component determines whether a message

- 49 -

may be replicated. As such, it can be represented as a boolean value.

The processing-state attribute constitutes a change record associated

with each message. The processing- state entries comprise a

chronological list of all processing performed on a message. Each

entry in this list would include the identifier of the processing

object, the operation performed on the message, the time at which the

processing was performed, and a description of why the processing was

done. This information would be of import in debugging a system based

on this model. Also, to be successful a decision support system must

have the user's confidence. The information contained in the

processing-state attribute would be of use in an explanation facility

which could explain to the user how problem solutions were developed.

The structural-relationships attributes link messages together to form

an information net. Based on the HEARSAY-II architecture, these

structural- relationships would be upward and downward links (to other

messages) composed of four parts: connects-with (which other

messages), type (logical AND; OR; and SEQUENCE, an ordered AND),

implication (support or contradict), and implication- strength (numeric

index)

.

The value attribute or a message would be the information to be

conveyed from one object to another. In the event the message

represented a datum, the structure of the value attribute could be a

simple, aggregate, or enumerated data type. In general, the

structure of the value attribute will be problem domain dependent. In

fact, the model has the designed capability to be a representation of

a large dynamic problem solution.

- 50 -

Chapter 5

SIMULATED USE OF MODEL

5.1 INTRODUCTION

The use or the model as described in this thesis will be illustrated

using a problem as proposed below. The problem is quite simple. This

is not to imply that this model can be used only on simple problems,

but rather to keep the illustration tractable and to allow the reader

to easily follow the sequence of events.

5.2 A PROBLEM

To simulate the use of the model, consider the following problem.

There exists a business, Terri's Typing, which types theses and

dissertations for graduate students.* Terri's Typing is a sole

proprietorship, and Terri, the owner, wants to estimate her profits

for the upcoming third quarter.

Terri's Typing is a unique business in several aspects. Terri

operates out or her home. She does this to avoid any concerns

relating to rent, utilities, insurance, etc. with regard to the

business. Terri buys her own paper, her only expense. She was given

a typewriter which she expects will last forever, hence no

depreciation. Tne demand for Terri's typing is unlimited, thus the

quantity of product produced (number of pages typed) is a function of

•The idea for a typing service was drawn from Forgionne
[1986J.

- 51 -

the rate of typing (pages per hour) and the number of hours worked

(forty per week, exactly). These factors combine to form a simple

model of Terri's business.

This model may be represented mathematically by the following set of

equations.

P = p • Q

p = i - e

Q = r • h

r = c / t

where:

P = total profit
p = per page profit

Q = quantity produced (number of pages typed)
i = gross income per page
e = expense per page
r = rate of typing in pages per hour
b = hours worked per week
c = total number of pages typed
t = total elapsed work time in hours

5.3 A SOLUTION

A decision support system is to be implemented based upon the business

model for Terri's Typing described above. This decision support

system will be designed to answer Terri's questions about profits;

specifically, what are the estimated third quarter profits?

Recall that the primary components of this thesis' model are the

blackboard, messages, and objects. In the decision support system

being developed for Terri's business the blackboard will consist of

only one knowledge realm associated with profits, thus no distinction

will be made between knowledge realms and the blackboard.

The blackboard will be subdivided into four levels based upon the

- 52 -

hierarchical structure of Terri's business model (see Figure 5-1).

There will be multiple objects associated with each level; several of

these objects correspond to the high-, intermediate-, and low-level

objects or the thesis model.

level P

/ \

/ \

/ \

level 1 p Q

/ \ / \

/ \ / \

level 2 i e r h

/ \

/ \

level 3 c t

Figure 5-1

The User- Interface object will post Terri* s queries on the top level

(level 0) of the blackboard. The Profit object will be activated by

messages dealing with profits. The second level of the blackboard

(level 1) will be associated with the Page-Profit and Quantity

objects; each object will be activated by messages about per- page

profits and quantities produced, respectively. The third level of the

blackboard (level 2) has four associated objects: Income, Expense,

Rate, and Hours. The Rate object responds to messages about number of

pages produced per hour. The other three objects are all database

objects. In this simple business model each contains only 1 fact.

Income contains the per-page fee charged by Terri for typing,

currently $0.80. Hours holds the number of hours worked per week by

Terri; she works exactly forty hours per week. The Expense object

contains the per-page cost of typing paper, which is $0,005. The

- 53 -

lowest level of the blackboard (level 3) has two associated objects.

The Counter object maintains a count of the total number of pages

typed by Terri. The Counter object increments itself every time Terri

finishes and removes another page from the typewriter. The Time

object logs the total number of hours which Terri has typed.

The ten objects in Terri' s decision support system may be pictured as

shown in Figure 5-2. Note the four blackboard levels with multiple

objects associated with each level. The objects are represented by

directed arcs indicating the levels at which each object reads and

posts messages on the blackboard.

Given the decision support system described above, examine the trace

of the sequence of events which follows when Terri enters the query

"What will be the estimated third quarter profits?" The messages

which are generated by the decision support system objects in

answering this query have their attributes listed in an abbreviated

- 54 -

manner in Table 5-1.

When Terri sits down at the computer terminal and begins to type, she

is interacting with the decision support system's User- Interface

object. After Terri types her query "What will be the estimated third

quarter profits?", the User- Interface object forms the query into a

message M1 , posting M1 on blackboard level (LO). Since the value

attribute or M1 deals with profits, Profit is activated and the status

attribute or M1 is changed from user- interface- query to in-process.

As Profit is the only object activated by M1 , it is immediately

executed by the Scheduler object.

The body of Profit is procedural in nature, that is, to complete the

processing of M1 , Profit must calculate P=p*Q. Profit creates two new

messages, M2, which is "What is the per- page profit?", and M3, which

is "What quantity will be produced in the third quarter?", because it

does not possess values for p and Q. Both messages are posted by

Profit at level L1

.

Message M2 activates the Page-Profit object, while M3 activates the

Quantity object. In this particular example, all objects must be

activated and executed before a reply to Terri* s original query can be

produced. Therefore, there is no selection to be made among activated

objects and further discussion of the Selection object is moot.

Assume the Page-Profit object executes before the Quantity object.

Page-Profit is procedural, knowing it needs to calculate p=i-e in

response to M2. As Page- Profit does not have values for i and e, it

posts two messages on L2: M4 , which is "What is the value of i?", and

- 55 -

M5, which is "What is the value of e?"

Message M4 activates the Income object; it executes, posting MM with

attributes value = 0.80, operation- needed = none, and status = done.

Recall that Income is a database object whose sole purpose is to

return a value in response to a query. The Expense object is likewise

a database object. It is activated by M5 , executes, and posts M5 with

value = 0.005, operation- needed = none, and status = done.

The change in attributes on M4 and M5 will activate/execute the Page-

Profit object, calculating p=i-e. This value (0.795) is posted in M2

with operation- needed = none and status = done.

The Quantity object was activated by M3; assume it now executes

attempting to calculate Q=r»h. Lacking a value for r, Quantity will

post M6, "What is the rate of production?", at level L2.

Message M6 will activate/execute Rate. To obtain its needed values,

Rate will post two messages at L3. The first, M7, will be "What is

the total number or pages typed?", while the second, M8, will be "What

is the total elapsed time?"

Terri has been in business just over four years, working 8640 hours

and typing in this time 77760 pages. The Counter object will

activate/execute on M7, posting M7 with value = 77760, operation-

needed = none, and status = done. M8 will activate/execute the Time

object, causing it to post M8 with value = 8640, operation- needed =

none, and status = done.

These changes to the attributes of M7 and M8 cause Rate to again

- 56 -

8,1

>•

« o Q o\3 » o t» a i

o

8 2

I s

I
i

- r
« a,
o ._

g s

3 S

8
S I
p

3 S £ £

a- a.
i i

o »
V 9
a, a.

£> -a

j» >•

11

u
a
s
3

I
-8

V u
•a -o

x
u

e
3

1 3 *

^ .t: "8

fc s
"

111

a
3

-6
i *

1

1

|6 1

3 b

11?"8 - H
I 9 5? 1° $? * « :

s _ • "3

fill!

1=1Shi
• « "S
5 ^ -8

e e s
• 5 3
5, 8 "3

O 1 S >

3

O 1

oil

1 3

8 8hN HHNHf<NN»l«l»lNHN-cN«lH <N c-> f> rt N •) •) «1

9
(hWIWIMVIMWIMM
^88888888-00000000
3 .S .E .S .S .S .5 c c o o

ssssssss s

ueouuuuoo
<ta<t«t«oafl« a a
JJ«JJJJi«i u »«»»oo

ooooooooooo

8 8 8 8 8
o o O O o
in e b e u
O* 04 Pi Pi a<

« ,g jjj ,g a

o o

r t l
.s « .2 .2 e e 9 9 3

•a "B .5 .S "o "B "B

H3M n
> > > > > >

I 1
"3 "3

>

a<a<a<a<a<a b « <a a c o <3 e e a

§sJ§32333333333uSoooooooooooooooo

3S33S3333239333SSS3333SS333

J2

- 57 -

activate/execute, calculating r=c/t and posting M6 with value = 9,

operation- needed = none, and status = done.

With the changes to M6, Quantity moves closer to calculating a value

for Q=r«h. Before Quantity can do so, it needs a value for h. M3,

which originally activated/executed Quantity, specified a time period

of one quarter. M6's value was expressed in hours; Quantity must

therefore change a quarter into hours. To do so, Quantity will

combine internal data with a response to message M9 , "How many hours

are currently in a work-week?", which it posts on L3. M9

activates/executes Hours, a database object, which replies by posting

M9 with attribute value = 40, operation- needed = none, and status =

done. With the value of M9 , Quantity now uses an internal unit

conversion table to calculate 40 hours/week « 13 weeks/quarter s 520 =

h. With h in the proper terms, r*h is computed and posted as message

M3 with value = 4680, operation- needed = none, and status = done.

Messages M2 and M3 now have a status of done, Profit again

activates/executes and carries out its calculation, P=p*Q, and posts

M1 with value = $3720.60, operation- needed = none, and status = done.

The User-Interface object detects the change in M1's status and

outputs the result, M1's value of $3720.60, to Terri.

This simple example illustrates how the thesis model may be used to

structure a decision support system. The sample problem was decomposed

into hierarchical levels of abstraction, yielding four blackboard

levels. Multiple objects were described, each with its own area of

expertise. The cooperation of objects through the posting and reading

of messages was traced, showing how message attributes change as a

- 58 -

result or successive processing operations performed by the objects.

To repeat, a simple business enterprise model was selected to keep the

example tractable and to allow the reader to easily follow the

sequence of events. What may not be appreciated by the reader is the

rapid growth in complexity of the problem solution process if the

business enterprise model is expanded. Consider the following

business model based on a Fortune 500 manufacturing firm (see Figure

5-3). Even as snown, this model is simpler than the actual

corporation on which it is based. Consider what may transpire in

attempting to answer the same query used above, i.e., what will be the

estimated third quarter profits?

Potentially, almost every department of every division possesses

information which impacts upon the answer to the query. The

Industrial Engineering Department may have noticed a recent downward

trend in production line productivity. Warehouse Operations may have

scheduled construction for loading dock modifications early in the

quarter, severely limiting shipping. The Market Trend Analysis Group

may have noted a steady upward trend in demand over the previous year,

though this may be tempered by a traditionally lower third quarter

demand due to seasonal fluctuation. The Legal Division may report

that the Federal Trade Commission has begun antitrust proceedings in

Federal Court, indicating a lengthy court battle and large

expenditures for legal services.

A sophisticated decision support system would have to take all these

pieces or inrormation into account in generating an answer to the

query. In the simple example of Terri»s Typing, all objects had to

- 59 -

Manufacturing Division
Industrial Engineering
Inventory Control and Scheduling
Maintenance and Mechanical
Quality Control
Shipping and Distribution

Raw Materials Storage and Delivery
Finished Product Storage and Delivery
Warehouse Operations

Production
Processing
Packaging

Operations

Sales and Marketing Division
Advertising
Customer and Consumer Services
Product Liability and Insurance
Market Planning

Profit Factor Analysis
Merchandising Methods Analysis
Business Cycle Analysis
Cost Analysis and Projection
Customer Analysis
Market Trend Analysis
Price/Demand Analysis

Product Planning
Sales Administration

Accounting and Finance Division
Auditing and Accounting
Budgeting
Credits and Collections
Financial Planning and Analysis
Taxes
Treasury

Administrative Services Division
Personnel
Benefits
Compensation
Public Affairs
Purchasing

Legal Services Division

Technical Services Division (Science and Engineering)

Figure 5-3

- 60 -

execute before arriving at a solution, and some degree of parallelism

was possible. In this later, more "real-world" example, not all of

the oojects would have to execute thus introducing a greater degree of

non-determinism. Dnlike Terri's Typing, messages no longer represent

facts but beliefs, requiring the use of message ratings. The need for

control objects arises, as the selection from among competing messages

becomes necessary. Further, tremendous parallelism is possible in a

decision support system which captures this larger business enterprise

model. In the face of such complexity, the uniform operating

environment or this thesis model may provide a solution.

- 61 -

Chapter 6

RESULTS AND CONCLUSIONS

6 . 1 RESULTS

This model describes how a decision support system may be structured

as heterogeneous intelligent objects cooperating in a homogeneous

environment. The use or heterogeneous objects organized in a pi ex

structure parallels the organizational scheme of most business

enterprises.

The model views the components of a decision support system at a more

abstract level than other current descriptions, through the use of

knowledge realms. Thus the model is more general than other decision

support system descriptive models. At the same time, this model is

more finely grained through the use of hierarchical decomposition of

proDlem domains (levels within knowledge realms) and the use of

heterogeneous intelligent objects.

The use of a global blackboard subdivided into knowledge realms and

levels, and messages of uniform structure for inter-object

communication provides a homogeneous environment in which objects may

be easily added to or deleted from the model. This increases the

adaptability of the model to particular problem domains as well as its

flexibility within problem domains. This also provides for the

evolutionary development of decision support systems, cited as

necessary by many researchers. Additionally, a homogeneous

environment or operation would allow for the use of "stock" software

- 62 -

modules (objects), an interchangeable library of programs as

envisioned by computer scientists over three decades ago.

The separation or control knowledge from domain knowledge permits

experimentation with one form of knowledge without disturbing the

other form. Independent optimization of problem solving methods and

proDlem domain expertise can thus be realized.

6.2 CHALLENGES TO THE MODEL

There are a number of difficulties inherent in the model which would

slow its becoming widely implemented in actual decision support

systems. Tnis is not to say that these difficulties are

insurmountable, as several systems have been implemented using a

blackboard architecture.

The uniform structure of messages is both a model strength and

weakness. A uniform structure may be difficult to realize in a large

system incorporating many knowledge realms due to the diversity of the

information to be represented. As such, system developers may be

prone to relax the uniform message structure requirement. A

relaxation of this requirement, or any deliberate attempts to limit

object independence, subverts the idea of a homogeneous model

environment. This subversion would be the downfall of the model.

Multiple knowledge realms and levels within realms of the blackboard

present problems for the system developer. First, this assumes a

problem domain has a natural decomposition, that is, the domain has

several recognizable levels of abstraction. Second, there are no

rules or guidelines to help the system developer determine these

- 63 -

levels, either how many or what they should represent. The HEARSAY-II

speech understanding system went from three, to six, to seven

blackboard levels in its successive incarnations. The path to an

optimum number or levels is experimentation. Business personnel, both

system users and management, may have little tolerance for a software

system that seems never to be done.

The User-Interface object will be a difficult piece of software to

develop. It must be comfortable for the user while also dealing with

many forms of data (message attributes). The requirements of simple

and powerful are difficult to weld together.

The use or multiple intelligent objects introduces the complexities

normally associated with distributed systems. These systems are

harder to develop, code, debug, and maintain than more traditional

software.

Technological support for implementing this model is still lacking.

Many problems previously viewed as difficult become easy in light of

new technology: moving heavy objects versus the wheel, communication

across vast distances versus the telegraph, distant travel versus

powered flight, etc. Though advances are made almost daily in VLSI

circuit technology and software systems, the tools to readily

implement this model are found, at best, in research laboratories and

are certainly not found in wide commercial distribution.

6.3 CONCLUSIONS

The approach to structuring decision support systems taken by this

model uses three primary components: a global blackboard, intelligent

- 64 -

objects, and messages. The blackboard is subdivided into knowledge

realms associated with particular problem domains. Intelligent

objects germane to each domain cooperate to solve problems via the

posting of messages on the blackboard. Messages are the only inter-

object communication mechanism. All messages are of uniform

structure; messages are distinguished one from another by the values

of their attributes.

6.4 RECOMMENDATIONS FOR FUTURE STUDY

Given that this model was based upon the hierarchical structure of

most business enterprises, it would be appropriate to model a real-

world business using this model's architecture. This would be of aid

in determining the validity of this model. Such a real-world business

model would also provide baseline data for determining appropriate

blackboard knowledge realms and levels in addition to the specific

number and function or objects necessary.

The intelligent objects in this model may be thought of as abstract

data types. As such, the development of complete operational and/or

denotational specifications for each object type would be of benefit

in clarifying each objects function, hence its area of applicability.

Partial implementation of this model would be of aid in determining

the optimum structure of messages. Though a truly optimum structure

may never be found, no good or adequate structures will be ascertained

without experimentation.

Implementation would also allow experimentation on different control

strategies within one problem domain (Aiello [1983]). Studies could

- 65 -

also be carried out to determine the most suitable technology to use

in systems based on the model.

A description of the means by which learning could be incorporated

into this model would be significant. A model system which learned

how humans solved less well- structured problems could automatically

code the solution method as one or more objects. The solution method

would thus be captured by the system and easily re-used by the user.

Developing the model as a multi-user system versus a single-user

system would be a worthwhile research effort. It is highly likely

that in a business environment, the expertise of a decision support

system based on this model would be shared by several users.

Implementation of such a distributed system, where intelligent objects

could reside on any processor (assuming each user had his/her own PC,

for instance) would pose problems of security and concurrency.

It is interesting to note that in a distributed implementation of the

HEARSAY system (Lesser and Erman [1977]), a four- to six-fold increase

in parallelism was realized. This increase was lower than expected

and resulted from superfluous knowledge source synchronization. It

was discovered that large areas of the blackboard were being locked in

order to maintain data consistency, resulting in Knowledge Source

interference. With system synchronization turned off, a fourteen- fold

increase in parallelism was realized. Rigid synchronization was found

to be unnecessary due to the self-correcting nature of the HEARSAY

architecture, i.e., its data-driven computation coupled with a

hypothesize- and-test paradigm. These results prove interesting in

that the model in this thesis is in part based upon the HEARSAY

- 66 -

architecture.

- 67 -

SELECTED BIBLIOGRAPHY

Ahlsen, M. , A. Bjornerstedt, S. Britts, C. Hulten, and L. Soderlund.
1984. An architecture for object management in OIS. ACM
Transactions on Office Information Systems 2(3): 173-196.

Aieilo, N. 1983. A comparative study of control strategies for expert
systems: AGE implementation of three variations of PUFF. Report
No. HPP-83-33t Heuristic Programming Project, Stanford
University, Stanford, California.

Alter, S. 1980. Decision Support Systems: Current Practice and
Continuing Challenges. Addison- Wesley, Reading, Mass.

Ariav, G. and M. J. Ginzberg. 1985. DSS design: A systemic view of
decision support. Comm ACM 2 8(10) : 1045-52.

Balzer, R. , L. Erman, P. London, and C. Williams. 1980. HEARSAY-HI: A
domain- independent framework for expert systems. Proc. 1st Ann.
Natl. Conf. on Artif. Intel 1. , AAAI pp. 108-110.

Barr, A. and E. A. Feigenbaum (eds.). 1981. The Handbook of Artificial
Intelligence. Volume 1. HeurisTech Press, Stanford, California.

Barr, A. and E. A. Feigenbaum (eds.). 1982. The Handbook of Artificial
Intelligence. Volume 2. HeurisTech Press, Stanford, California.

Bennett, J. L. , Ed. 1983. Building Decision Support Systems.
Addison-Wesley, Reading, Mass.

Bobrow, D. G. and B. Wegbreit. 1973. A model for control structures
for artificial intelligence programming languages. Advance Papers
3rd Intl. Joint Conf. Artif. Intel 1. pp. 246-251.

Bonczek, R. H. , C. W. Holsapple, and A. B. Whinston. 1980. The
evolving roles of models in decision support systems. Decision
Sciences 1 1(2): 339-56.

Bonczek, R. H. , C. W. Holsapple, and A. B. Whinston. 1981. Foundations
of Decision Support Systems. Academic Press.

Brachman, R. J., S. Amarel, C. Engelman, R. S. Engelmore, E. A.

Feigenbaum, and D. E. Wilkins. 1983. What are expert systems? In
Building Expert Systems. Frederick Hayes- Roth, Donald A.
Waterman, and Douglas B. Lenat, Eds. Addison- Wesley, Reading,
Mass. pp. 31-57.

Cohen, P. R. and E. A. Feigenbaum (eds.) 1982. The Handbook of
Artificial Intelligence. Volume 3. HeurisTech Press, Stanford,
California.

CorkLll, D. D. 1979. Hierarchical planning in a distributed

- 68 -

environment. Proc. 6th Intl. Joint Conf. Artif. Intell. pp.
168-175.

Erman, L. D. , R. D. Fennell, V. R. Lesser, and D. R. Reddy. 1976.
System organizations for speech understanding: implications of
network and multiprocessor computer architectures for AI. IEEE
Transactions on Computers, Vol. C-25(4) :414-421

.

Erman, L. D. , F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. 1980. The
HEARSAY-II speech-understanding system: integrating knowledge to
resolve uncertainty. Computing Surveys 12(2) : 21 3-253.

Erman, L. D. and V. R. Lesser. 1975. A multi-level organization for
problem solving using many, diverse, cooperating sources of
knowledge. Advance Papers 5th Intl. Joint Conf. Artif. Intell.

Filman, R. E. and D. P. Friedman. 1984. Coordinated Computing.
McGraw-Hill, New York.

Ford, N. F. 1985. Decision support systems and expert systems: A
comparison. Info & Mgmt 8:21-6.

Forgionne, G. A. 1986. Quantitative Decision Making. Wadsworth
Publishing Co. , Belmont, CA.

Ghezzi, C. and M. Jazayeri. 1982. Programming Language Concepts.
John Wiley and Sons, Inc., New York.

Ginzberg, M. J. and E. A. Stohr. 1982. Decision support systems:
Issues and perspectives. In Decision Support Systems. M. J.

Ginzberg, W. R. Reitman, and E. A. Stohr, Eds. North- Hoi land,
Amsterdam, pp. 9-32.

Gorry, G. A. and R. B. Krumland. 1983. Artificial intelligence
research and decision support systems. In Building Decision
Support Systems. J. L. Bennett, Ed. Addison- Wesley, Reading,
Mass. pp. 205-19.

Gorry, G. A. and M. S. Scott Morton. 1971. A framework for management
information systems. Sloan Management Review 13(1): 55-70,

Hayes-Roth, B. 1983. A blackboard model of control. Report No. HPP-
83-38, Heuristic Programming Project, Stanford University,
Stanford, California.

Hayes-Roth, B. 1984. BB1 : An architecture for blackboard systems that
control, explain, and learn about their own behavior. Report No.
HPP-84-16, Heuristic Programming Project, Stanford University,
Stanford, California.

Hayes-Roth, B. and F. Hayes-Roth. 1979. A cognitive model of planning.
Cognitive Science 3:275-310.

Hayes-Roth, B. , F. Hayes-Roth, S. Rosenchein, and S. Cammarata. 1979.

- 69 -

Modeling planning as an incremental, opportunistic process. Proc.
6th Intl. Joint Conf. Artif. Intell. pp. 375-383.

Hayes-Roth, B. and M. Hewett. 1985. Learning control heuristics in
BB1. Report No. HPP-85-2, Heuristic Programming Project, Stanford
University, Stanford, California.

Hayes-Roth, F. and V. R. Lesser. 1977. Focus of attention in the
HEARSAY-II speech understanding system. Proc. 5th Intl. Joint
Conf. Artif. Intell. pp. 27-35.

Hayes-Roth, F. , D. A. Waterman, and D. B. Lenat. 1983. An overview of
expert systems. In Building Expert Systems. F. Hayes- Roth, D. A.

Waterman, and D. B. Lenat, Eds. Addison- Wesley Publishing
Company, Inc., Reading, MA.

Hewitt, C. 1977. Viewing control structures as patterns of passing
messages. Artificial Intelligence 8:323-364.

Jones, A. K. 1979. The object model: A conceptual tool for
structuring software. In Operating Systems: An Advanced Course.
R. Bayer, R. M. Graham, and G. Seegmuller, Eds. Springer- Verlag,
Berlin.

Keen, P. G. W. 1980. Adaptive design for decision support systems.
Data Base 12(1,2).

Keen, P. G. W. and M. S. Scott Morton. 1978. Decision support systems:
an organizational perspective. Addison- Wesley, Reading, Mass.

Kormeid, W. A. and C. E. Hewitt. 1981. The scientific community
metaphor. IEEE Trans, on Systems, Man, and Cybernetics, Vol.
SMC-1 1:21-33.

Lenat, D. B. 1975a. Beings: knowledge as interacting experts. Proc 4th
Intl. Joint Conf. Artif. Intell. pp. 126-133.

Lenat, D. B. 1975b. Duplication of human actions by an interacting
community of knowledge modules. In: Modern trends in cybernetics
and systems. Proc. 3rd Intl. Cong, of Cybernetics and Systems,
Bucharest, Romania, pp. 853-867.

Lesser, V. R. and D. D. CorkLll. 1979. The application of artificial
intelligence techniques to cooperative distributed processing.
Proc. 6th Intl. Joint Conf. Artif. Intell. pp. 537-540.

Lesser, V. R. and L. D. Erman. 1977. A retrospective view of the
HEARSAY-II architecture. Proc. 5th Intl. Joint Conf. Artif.
Intell. pp. 790-800.

Liskov, B. , A. Snyder, R. Atkinson, and C. Schaffert. 1977.
Abstraction mechanisms in CLU. Comm ACM 20(8) :564-76.

Little, J. D. C. 1970. Models and managers: the concept of a decision

- 70 -

calculus. Management Science 16(8) :B466-85

.

Moore, J. H. and M. G. Chang. 1980. Design of decision support
systems. Data Base 12(1 ,2) : 8-14.

Newell, A. 1969. Heuristic programming: ill- structured problems. In
Progress in Operations Research. A. Aronofsky, Ed., Vol. 3, John
Wiley and Sons, New York, pp. 360-41 4

.

Peterson, J. L. 1977. Petri nets. Computing Surveys 9 (3): 223-252.

Reitman, W. 1982. Applying artificial intelligence to decision
support: where do good alternatives come from? In Decision
Support Systems. M. J. Ginzberg, W. R. Reitman, and E. A. Stohr,

Eds. North- Hoi land, Amsterdam, pp. 155-74.

Rich, E. 1983. Artificial Intelligence. McGraw-Hill Book Company.

Rosenchein, J. S. and M. R. Genesereth. 1984. Communications and
cooperation. Report No. HPP-84-5, Heuristic Programming Project,
Stanford University, Stanford, California.

Shaw, M and W. A. Wulf. 1977. Abstraction and verification in
ALPHARD: defining and specifying iteration and generators. Comm
ACM 20(8):553-64.

Sprague, R. H. 1980. A framework for the development of decision
support systems. MIS Quarterly, December.

Sprague, R. H. and E. D. Carlson. 1982. Building Effective Decision
Support Systems. Prentice- Hall, Englewood Cliffs, New Jersey.

Dnger, E. A. 1978. A Natural Model for Concurrent Computation. The
University of Kansas, Ph.D. Dissertation.

Unger, E. A. 1985. Intelligent data objects: a concept useful in

networks, forthcoming.

Winston, P. H. 1984. Artificial Intelligence. Addison- Wesley
Publishing Company.

- 71 -

DISTRIBUTED PROBLEM SOLVING FOR DECISION SUPPORT

by

Mark C. Foehse

B. S. , University of Missouri - Columbia, 1977

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

ABSTRACT

Much has been written in recent years about decision
support systems (DSS): applications, design
methodology, and morphology. Over a similar time
period the literature has also been full of articles
describing expert systems (ES) and their design,
applications, et cetera.

It is the perspective of the author that decision
support systems and expert systems have more
similarities than dissimilarities when viewed at a
conceptual level. A hybrid system is therefore
proposed based upon a blackboard model drawn from
distributed artificial intelligence research. This
system will be treated as a network of intelligent
objects, each with its own inference mechanism. An
abstract model is provided which describes how these
intelligent objects could be linked in a three
dimensional network for the purpose of decision
support.

ABSTRACT

Much has been written in recent years about decision
support systems (DSS): applications, design
methodology, and morphology. Over a similar time
period the literature has also been full of articles
describing expert systems (ES) and their design,
applications, et cetera.

It is the perspective of the author that decision
support systems and expert systems have more
similarities than dissimilarities when viewed at a
conceptual level. A hybrid system is therefore
proposed based upon a blackboard model drawn from
distributed artificial intelligence research. This
system will be treated as a network of intelligent
objects, each with its own inference mechanism. An
abstract model is provided which describes how these
intelligent objects could be linked in a three
dimensional network for the purpose of decision
support.

