8

.ffA.SURVEY OF FORMS PROCESSING TECHNIQUES .

By

RAJIV KAPOOR
1
“§

MBA, KANSAS STATE UNIVERSITY, 1982

A MASTER'S REPORT

Submitted in partial fulfilment of the
requirements for the degree
MASTER OF SCIENCE

Department of Computer science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

- 1984 -

‘ Professor

’?;‘?? | IAJ.].aua L2022
Z; ?.ﬁ‘“f ACKNOWLEDGEMENTS
K26

c. 2

I would like to take this opportunity to acknowledge several
individuals who have been instrumental in the preparation of this
report. Academically, I would like to express my sincere
appreciation to my committee members, Professors Paul Fisher,

Virgil Wallentine and Rod Bates for their counsel and recommendations.
I wish to specially thank my major professor, Dr. Fisher, for the
many hours he must have spent in editing my report and also

because he was so patient and understanding of my circumstances of
trying to do my report while teaching at Missouri Southern State
College, I draw inspiratien from him in the tireless way he

performs his work. It was he who earmarked the extensive

literature survey I had to do. I also wish to express my gratitude

to him for always providing encouragment,and for appreciating my dual
commitment to finishing my degree and teaching Computer Science

at Missouri Southern. I wish to place on record my deep appreciation
of the Department of Computer Science at Kansas State University for
giving me the tools to be able to do well in the exciting field of
Computer Science. I have always found the environs of Fairchild

Hall a friendly place to work., I also wish te thank the Department

of Computer Science at Missourl Scoutherm State College for

encouraging me,

Personally, I wish to thank my wife Neena, who has always helped

me through all of my endeavours.

INDEX
Acknowledgement
Chapter Page
l. IntroductioNecesssacssnosrrossasssssscssassnsstassnsnnaa 1
Overview s0lubion..ceecscaoscscacuscasossstososrnacas
Dictionary SySteMSececescssssssscssssssosscssssncns

Control of Distributed Data and Metadata.seveesas. 4
Translation of global queries into meaningful local

L 3
Bl FU N
LD

et o
L]

queries....----..........--.---------.---------.o- 3
2. Forms ProcessSingecescascsossssssnuanssssssssssossnsssas 10

2.1 Specification of Forms Processing (Shu, Lum, Tung,

CRANS Y ¢ s e s 58 6 Soind & 5 5 00008 w000 5 000 5 500 § 0,058 60000 8 60 & W30 § Wiens 10

2.2 Form ProOCEeS5.usecasssnsosssnsasscessnssscsssssscnsasns 12
2.3 SpecificationNSsicssccnssesvsccnsnssosscussonaceconnssns 13
2.3.1 Title Lin@cscasssssnssnsenmsnmsosnmamesossosns 13
2.3.2 OperatioNececacscscecssnsncsasssnsasensssnas 14

= CreatBicecscasscvssnssscssnssssssasssssoiane 14

— Derivecsiccesssscsessnssnsasacanssscscacnses 14

= TABET v v v 00 & ¢ 90 v 60 0 moenis u -wnw o win' o avene o we w win y w g 14

~ Delet@avainnsims soms s o s o s eioe s mns e eas sen 14

~ Updatesesessessssnsnssacassssonnnnsnsnanns 14

= Printi.eecescocosssssasssassnanssnssensena 14

= QUeTYeuasssoosssrsansssacscssssssssnsannsssns 14

~ COMPOSCacssassossssanasctossssssscsssoscoss 14

2.4 Data and Process DescriptionS.ceecvescesssssnsnnans 15
2.5 Data CharacteristiCSeseeccsccsscsonsssascsnocccsasnns 15
2.6 Process QualificationNS.ieeesossscecsasossccncsnnsnns 18
Z2+6.] BOUIrCE.scesvesutssososconssnesssssssssssccns 18

2.7 Summary of Process Qualifications..cessceccacsasans 20
2.8 Integrating Data & Word Processing with COMPOSE... 21
2.9 A Business Procedure Specification Languag@eeaecss. 22
2.1
2.1

210 Trigegeringeceeesesecasssssccscassssnstssssssscneecs 23
.11 Invocation of a form pProCeSS.esessesssccccanvenss 24
2.11.]1 RoUting.secessvossossssacsnsonccnscssnsasss 25

2,12 Procedure Definition.isececceseesscssssscsscsnnanss 26

2.13 CONVERT: A High Level Translation Definition
Language for Data Conversion - Shu, Housel & Lum,. 26
2.13.]1 Form OperatioOnNS.evecscescsssasssssssseossoss 30
- ASSIGNMENT.esesooonsscacsnssscacssnasnns 30
=~ BELECT . escensnoncsananssssassnsssscannecs 31
=~ SLICEsssceaaaasannnsssonsmsssceanssannns 32
SORT uvensenussscsssasasssnosannsnansossasse 33
= CONSOLIDATE, tsvaunusssasansssesssecnsnns 34
— GRAFT . i eeceaonososcsanosstnssssssssnnnns 35
— BUILT IN FUNCTIONS.eeovasosssnccaccaanas 36
- CASE ASSIGNMENT..susessssacreanssnnsonns 37
2.14 Expressing different data structures in terms of

fOI‘mS------o.--.-.--...oc---.ooo.....-.--oo....... 38

3. rms Programming - Other ViewS.seecessssecsonsnsvessen
Il David W, Embley.ssvsessccssosnscncsssasesssassssnss
2 Do TEEohrlOZ i, s sre o won o winen goeie o won: o wsw s o wen o wewes s o eom s
3 Ladd & TSToRTTEE 1 8e s wm s vore o 000 & 065 & Vonis 3 908 6 036 & 9 668 5 w00 &
4 Other research = TsichritziSeescvsoovessosossscnsa
5

Kitagawa and Kuniilnnoooo.-n--..t...l-----lo-ionnl

Fo
3.
3.
3
3
3.
4. ConcluSionN.eiessnsscassosesccasassssassasssssnsannnsases

Bibliography......-........-............---c..--.......-..

Ahstractn'-o.-..o.oo------totntut-..0.--...0..------..--l-

41
41
46
48
52
54

56

LIST OF FIGURES
Figure page
1. Example 0of 2 FOTM tevecrvsnccacnnsenasusnassssenes 11

2. Example of a form heading and its
corresponding hierarchy graphieessessoccennsacass 12

3. Specification of a form pProcesSS.sisecccsessscsnnss 13

4, Description of data in PRODUCT forMecsceessssosas 16

5. Summary Qualification/Operation matriX.esseseeaaas 21
6. Example of a Text Template.sessecescevesocscansonas 22
7. Trigger Specification..ciceessnssserscacsasccanne 24
8. Routing SpecificationNesescersecsecscssvonssonsssns 25
9, Procedure DefinitioNisecsececssssossarsvsascsscses 26
10. Sample Personnel FOrMecesossssssssassnssoncsssnsss 32

11, Result of SELECT from Fig.lO..oevvooseessosssoces 32
12, Result of SLICE from Fig.lOusesoonseenossccaasnss 33
13. Result of SORT eocsensnsoncessanassssssessossnas 34
14. Result of CONSOLIDATE sue.ivvvvenssasasosssscsnans 35

15. RESult Of GRAFT [EE R N R RE O D S NN B B N B B R BECRE S B RN A R B BN R NN 36

16. Form Fis adi s o000 5 608 505 5 Rk ¥ ookl 6 B 5 500 ¥ 1606 6 0l 208000 3 mom 8 37
1?. Network Of Forms....lll.‘.‘...“.....‘.ll."'.u. 38
18. Nodes Dept. and Employee shown as FormB..ecessss 39

19. Resultant Forms Representing information exppressed by
the edges-...l.-.l-l...l“‘I-...-‘.lll..l.-'.... 40

20, Schematic of Automatic Program Generatol.isses... 43

21, Form flow for a simplified loan officeeveccescas 49

Chapter 1

INTRODUCTION

The purpose of this research is to investigate the role of
utilities; in this case forms; in supporting access to data bases
dispersed throughout a network. An amplification of this objective
is as follows:

The objective of this research is concerned with the
development and use of forms as a design specification for network
utilities which allow access through a common query facility to
data at any node of a decentralized network of databases with
non-homogenous data models, non-homogenous data model
implementations and non-homogenous database management systems

(DBMS) query faecilities,

1.1 OVERVIEW SOLUTION

In the environment of data access there are several associated
problems which are listed below. With regard to these problems
some are amenable to solution or resolution through forms based

systems.,

i Identification of the data in the network -- the solution of

this will be handled through the use of data diectionary

technology.

. Location of the data in the network -- the solution can be
developed from an extension of data dictionary technology to
directories making available an integrated data dictionary/directory

technology.

. Translation of request for data at one node into a synonymous
request for data at a different node. This entails the following
consideration :

- Resolution of potential naming discrepancies - this problem
involves synonyms and homonyms; its solution can be affected
through use of the data dictionary,

- Reconciliation of potential data model discrepancies- this is a
preblem of mapping between the hierarchical, network and the
relational models whose solution involves forms and metadata
available in a data dictionary.

- Differences in query languages - this 1s a language problem; its
solution involves the translation from global query language
statements into primitives which implement the semantics of the
initial query in terms of the data model at the node{s) where the
data resides. The metadata required for the solution of this
problem resides in the integrated data dictionary/directory; the
solution involves the design of a global user interface, of the

primitives and the translation algorithm.

A forms based programming language can be applied to the above

problem. A form is the same for each node in the decentralized
network of databases with non-homogenous data models and
non~homogenous data model implementations, and non-homogenous
database management system (DBMS) query facilities, If these
nodes could communicate through the common language of forms,
then any such interface problems could be resolved. A form
presents an easily understood context for an element, and is

virtually free of specific relationships.
1.2 DICTIONARY SYSTEMS

Current Data Dictionary Systems (DICS) address the problem of
locating data and processes from a logical point of view ie., they
contain metadata that shows the usage of data and proccesses
by other data and processes. In a distributed environment,
it 1is additionally neccessary to identify the physical location of
data and processes : the facility that is used to handle this
problem is a Directory System (DIRS). It might be a good idea to
combine the Data Dictionary System (DICS) with the Directory
System resulting in an integrated Data Dictionary/Directory

(DIRS/DICS) system. Advantages of this are:

» redundancy between DICS and the physical locator system DIRS

is removed.

» The same technology that was applied to a DICS in a distributed

environment can now be applied to the integrated DIRS/DICS system.

The Integrated DIRS/DICS System may resolve the following

problems:

. Control of distributed data and metadata.

« Translation of "global queries" into meaningful local queries,

1.3 CONTROL OF DISTRIBUTED DATA AND METADATA

As databases are distributed, the need for distributing data
also varies, as some of this data is required at the various nodes
to allow processing at these points. Thus, though a single node
contains the integrated DIRS/DICS the need for distributing
data for operational reasons introduces redundancy. The DD/DS may
be distributed functionally across the network for performance or

reliability reasons. Two kinds of problems arise:

+« The problem of synchronization of distributed data especially in
the case where two users at two different nodes in a distributed

database are vying for access to the same data simultaneously.

. Problems concerning control of distributed data depending

upon where the DIRS/DICS should reside,

It becomes neccessary to have software which controls

theinterface to the DIRS/DICS for the purpose of insuring that

the neccessary data for control and access is communicated
between the varilous systems. This control and access software is
one of the utilities which has been a focus of extensive

research.

If you have data distributed at the nodes and also have an
integrated DIRS/DICS system then in actuality the same data is

maintained in two places leading to problems of synchronization.

If however, you combine both kinds of data into one DIRS/DICS
then though the problem of synchronization gets solved, problems
of bottlenecks are introduced when two independent users would
have difficulty in having queries answered about or with the

same data at the same time.

The solution to these problems lie in the design and
development of a new architecture of DIRS/DICS to support
the management and control functions of the integrated

directory/dictionary and the data.

Where data is to be distributed, several issues have to be

resolved:

1. Is there to be "master dictionary" at one node and "slave

dictionaries" at all other nodes?

2. Is there to be a single directory for the entire network?

3. Is a single dictionary to be replicated at each node of the

network?

In answering these questions we will consider three

possibilities:

a) one centralized directory covering all distributed centers.
b) one directory at each node and no central mechanism.
c) one central master directory and local subsets of the central

directory.

A satisfactory form of overall contrel can only be

implemented if options a) or ¢) are chosen because only in these
options is there some central control over data when additions,
deletions and access rights to the database are involved. Else,
every node in the network could do updates without permission from
some sanctioning authority and could lead to an unplanned and
haphazard change in the data.. Option b) is the easiest to
implement and the most difficult to control and also relies
heavily upon communications, since a program that requests data on
another machine does not know where the data might be and has to

poll every distributed center until it the data is found.

Other scolutions to synchronization and bottleneck problems may be

to develop a hierarchy of data dictionary systems consisting of a

"master" data dictionary system at the top level of the hierarchy

and specialized control or management dictionaries at the second
level and DBMS specific data dictionary systems at the third
level. A local DBMS is given a default option e.g. enters into a
special routine 1if the data requested by a program is not
available locally. This special routine gives access to a higher
level of directory bullt as a separate system, the object of which
is to route a data request to the correct machine or reject it
on the grounds that it is not available within the network.

One advantage of this is that all remote accesses and updates are
thus routed through a point where they can be monitored and
controlled. However, this advantage is also a liability with

regard to communication stress.

The updating of dictionaries and directories may happen anywhere
and at any time. There are some obvious privacy considerations:
only database administration staff should be allowed to update
and, within that general constraint, different people may be given
different priveleges. The propogation of updates should happen
in a semi-automatic manner: while a change may be started by a
local site, it may be dangerous to accept it as 1t stands, without
some check by a central co-ordinating body. It seems therefore
that one needs a facility for incorporating a number of changes,
printing or displaying a revised dictionary and directory,
obtaining approval, with or without changes, and then propogating

automatically the agreed version.

1.4 TRANSLATION OF GLOBAL QUERIES INTO MEANINGFUL LOCAL QUERIES

The usefulness of any database environment is ultimately
measured by the user interfaces which exist to support access to
the data. The query language interface is one of two basic user
interfaces generally available for most database systems { the
other being the programming language interface). It provides the
ugser with an easy-to-use language by which ad-hoc queries can be
answered in a timely manner. This can be accomplished without the
need for the high overhead activities of program coding,

debugging, compilation and testing.

While query language syntax varies widely, the architecture of a
conventional query language is, for the most part determined by
the data model of the database system belng used, whether

hierarchical, network, or relational.

The fact that the query language syntax varies widely is a major
problem in a network of distributed databases. Some query formats
are meaningless to other data models; they only have relevance in
models with a particular structure. To solve this problem, a

normalized query facility/ user interface is required.

A language built around documents would resolve the above
problem. Documents serve as an all-purpose media for communicating

information. A document environment wlith spread sheet capabilities

and which uses either global or local names provides a readily
acceptable format, a transparent mechanism without regard to
existing database structures, and a representation which is
translatable or mappable into any number of database models. The
global and local names will be handled as specified by the

DIRS/DICS facility.

Using a forms based query language, 1t is easy to provide a
mapping from the document to the actual query. One can derive
programs to satisfy information requests from the document format.
In some cases, where the data is distributed over several systems
or models, the request may be mapped into a more complex form such

as a program.

10

Chapter II

FORMS PROCESSING

A form is an information holding object consisting of two
parts: 1) a form heading which describes form name and form
components; and 2) one or more form instances (or form
cccurrences) conforming to the form heading. A collection of all
form instances is known as a file of that form identified by its

form name.

2.1 SPECIFICATION OF FORMS PROCESSING (16)

Many authorities consider that forms are the most natural

interface between a user and his data. An example of a form is:

11

o S RS S A T TR MR S A S M T M S T T e S b e e e o e e o ok o e i i i oy e e T W S TR = e T T o —

(PRODUCT)
PROD-NO PNAME TYPE (SUPPLIER) (STORAGE) PRICE
VNAME BIN-RO LOC
110 PIPE PVC AQUA Bl SJC 0.79
CHEMTRON B2 SJC
B3 SFO
120 PIPE STEEL ABC B4 SFO 4.10
CHEMTRON
210 VALVE STEEL AQUA B5 5JC 0.45
ABC Bé SFO
CHEMTRON
221 VALVE COPPER ABC B7 5JC 1.25
CHEMTRON BS SFO
ROBINSON

Fig 1. Example of a Form

The form heading assumes a role that is commonly known as data
structure definition or schema definition in the data processing
community, Its purpose is to formally define the form name,
components of the form and structural relationships among
components. Fig 2. shows the form heading (in upper case) for

a form named PRODUCT. The top line of the form heading contains
form name. Components and form structure are represented as
follows: Item names are represented in columns. Group names are
placed on top of its components. Parentheses are used to denote
repeating components. Nesting of repeating groups are
represented as levels of parenthesized group names.
Parenthesizing the name of the outermost group (i.e. the form
name) indicates that the form may have more than one instance.

A double line placed at the bottom of the form signals the end

12

of the form heading. A corresponding hierarchy graph for
PRODUCT is also included in Fig. 2. It should be obvious that
mapping the hierarchical relationships into form heading is

stralightforward.

i i D A B A o S i A D S A M o L S A S S S B D Al) ol S L ol e o s i i e

(PRODUCT)
"PROD_NO PNAME TYPE (SUPPLIER) (STORAGE) PRICE
© unamE BIN-NO LOC
PROD-NO PNAME TYPE PRICE
I
I
I I
SUPPLIER | STORAGE |
Cyame B0 Loc

FIG, 2 Example of a form heading and its
corresponding hierarchy graph

2.2 FORM PROCESS

Each form process is defined as an activity which takes one or
more inputs and produces one form as normal output., A big business
may have several form processes. Application specialists can

decompose a complex procedure into form processes.

13

2.3 SPECIFICATIONS

In general, specifications of a form process starts with a
title line, followed by form heading of the output, with
descriptions of data and qualifications for the process. An END is

used to indicate end of a specification as shown in Fig. 3.

INSERT-NEWPROD: INSERT INTO PRODUCT

S — S S S e S A S T S S S T S M e S S

il Al i A L i e G S M T T P e e b i ol ke el e S A A -

PROD-NO PNAME TYPE (SCPPLIER) (STORAGE) PRICE
VNAME BIN-NO LOC

A I T T T I T S T T S S T T T NN NS ONEESES oMo oS ESES

SOURCE | % % * s * * *

i ok Al i S S ooy e T o e b e D il o A il L A g T S e e e e i e

Fig 3. Specification of a form process

2.3.1 Title Line

The first line of specification (Fig. 3)
INSERT-NEWPROD: INSERT INTO PRODUCT
is the title line. It specifies the name of the form process
(INSERT-NEWPROD), operation to be performed (INSERT_ INTO) and the

name of the output form (PRODUCT).

Process name is used to uniquely identify a form process. The

name of a form process can be the same as that of the output form

14

as long as no two form processes are given the same name.

2.3.2 Operation

Operation refers to the activity which produces/modifies the

form specified in the title line., Many types of operations are

possible. They include: CREATE, DERIVE, INSERT, DELETE, UPDATE,

PRINT, QUERY & COMPOSE.

CREATE i1s an operation that constructs a new form or a new file.

DERIVE makes a new form only temporarily. It exists only for the

duration of a business procedure.

INSERT inserts form, group or other items Into an existing file,

DELETE deletes form, group or item instances from a file.

UPDATE modifies some item values in a file.

QUERY causes contents of a form to be displayed on a terminal.

PRINT causes generation of a hard copy of the form.

COMPOSE means to combine word processing and data processing

facilities. It is an operation which allows insertion

of data (from a data file) into a text file according to

15

template.

2.4 DATA AND PROCESS DESCRIPTIONS (16, 17)

There are basically two categories to make the
specification of forms complete: characteristics and constraints
on data, and qualifications for the operation., The first category
specifies the type of each item and neccessary errors to check;
the second category provides the neccessary operations for the

computer to generate tailor made code.

2.5 DATA CHARACTERISTICS (16, 17)

Data descriptions may include DATA~TYPE, KEY, UNIQUENESS,
ORDER, VALUE, NULL-0K, OCCURRENCE, COPY visibility, and COPY-ID.
As shown in Fig. 5 below characteristics and constraints on data
can be specified in rows under appropriate columns of the form
heading. Note that when a 'Y or ‘N’ is specified, they mean ‘YES’
or "NO’ respectively. A number enclosed in a pair of angle
brackets refers to a footnote. More specifically, <i> at column j
refers to a corresponding row of footnote <{i> relevant to column
je« For example, VALUE OF LOC is described by footnote <3>», which,
in turn specifies that it can only be ANY OF ('SAN JOSE’, ‘SAN

FRANCISCO’, ‘LOS ANGELES’, ‘NEW YORK’, ‘BOSTON’, 3 ‘?7).

16

DEFINE PRODUCT

e e i o e i e e i o e e ek i) e e i e A R A A S At o A S o S S e il e i i S il e b i ek

e L S S — T o " —— i . i

PROD~NO PNAME TYPE (SUPPLIER) (STORAGE) PRICE
VNAME BIN-NO LOC

T e e T T T T T T T T S T T R S T T T T T T E S S EE S S S EREEEE RS

DATA-TYPE NUM(3) CHV(6) CHV(9) CHV(8B) CHV(4) <2> <1>

KEY ¥ Y Y

e S S
e
e
e T Ty T
oy 1T G
COPY 2

N 5T
o ey T
T o Gy T
T R o saae s o meanciager “ios wenies

‘NEW YORK’, ‘BOSTON’, 3 ‘7')

S T = T e o = T i e} T — - T P i e i i e e e . i e i S e M ol A A G S A A B L S G AN S S A S S A S A - —

COPY~1ID COPY 1 = “SALES’, COPY 2 = ‘PURCHASE’,
COPY 3 = ‘PRODUCTION’, COPY 4 = ‘DESIGN’

S S T S M S T W T T S R P T T I e o S e iy il oy e e i A il ke (.l D A k) e LR U Sl i e el A e AL i b s

Fig, 4. Desription of data in PRODUCT form

The following are explanations of the material shown in Fig.4:

- DATA TYPE describes the types of items which comprise a form

- KEY denotes an item {(or collection of items) whose value

uniquely identifies an instance within a group. This information

17

is important for fast accessing and for generating optimized

code to carry out an_ operation.

- UNIQUENESS conveys the fact that every instance of the

specified item in the form has a distinet value.

— ORDER specifies the ordering of instances within a form or
ordering of group instances within parent instance. Ordering may

be ASC (for ascending) or DES (for descending)

- VALUE specification can be used to provide information on

validity of data.

- NULL-0K means that a null value is acceptable for that item.

- OCCURRENCE specifies the number of forms instances. This
specification 1s used to provide data volume information, which is
useful for estimation of needed storage space. Specified number
represents the maximum number of occurrences within a parent
instance. The example in Fig.4 shows that there are 1000 instances

of PROD NO in the PRODUCT form.
- COPY VISIBILITY specifies whether to have exact copies of form
instances or multi parts {(i.e. some instances are blocked off).

In other words this determines what the copies will show.

- COPY-ID is the name designated to each copy.

18

In summary, properties of and constraints on data are specified
by means of DATA TYPE, KEY, UNIQUENESS, ORDER, NULL_OK,

OCCURRENCE, COPY VISIBILITY and COPY_ID.

2.6 PROCESS QUALIFICATIONS (16, 17)

The purpose of process qualifications is to provide more
specific descriptions of the form process. Qualifications may
include information such as the source of data (SOURCE);
conditions to be applied for selecting instances from an input for
processing (CONDITION); items to be matched when constructing an
output instance from two or more input forms (MATCH); retaining or
elimination of duplications (ELIMDUP); and deletions effected

(DELETION).

2.6.1 SOURCE

Source for the column value specifies how or where to obtailn
the instances relevant to the operation. For PRINT, QUERY,
CREATE, or DERIVE source must be specified for all items of the
form. For INSERT and UPDATE source denotes the new instances to
be inserted or to be used, as replacements. For DELETE source
need not be specified.

There are many ways to specify the source:

1. An asterisk (i.e. **”) under an item indicates that the value

is to be supplied (or filled in) from the data base.

19

2, A form name under one or more components specifies that values
of these components are to be obtained from the corresponding

components of the specified form.

3. An expression invelving arithmetic operations specifies how the

new values are to be derived.

4. "CASE" expression allows varying assignment to a particular

item.

5. A set of built-in functions can be used for more complex source
of data. Built in functions such as SUM, COUNT, MAX, MIN and AVG

can he used to specify an aggregate value as the source of data.

6. Set expressions can be applied to homogenous input forms -

PLUS, MINUS, UNION, INTERSEC.

CONDITION - the purpose of the CONDITION specification is to
provide criteria for selecting instances for processing. Boolean
expressions can be used there. In addition, AND and OR also may be

used to imply complex conditions.

MATCH specification provides a facility to tie input forms
together in a meaningful way by matching some attribute of one
form with an attribute of another form. When a match is found, the

criterion specified in the CONDITION is applied. When there is no

20

match, no output instance will be produced. However, the "no

match” situation may be treated as an error by assigning the
unmatched instance of the specified form to an error file. In
other words, to tie forms in a meaningful manner we can, in

general, use either MATCH or CONDITION specification.

ELIMDUP provides a facility to eliminate duplications in a form.

DELETION specifies what is to be deleted from the form when the

specified condition is met,

2.7 SUMMARY OF PROCESS QUALIFICATIONS

The following matrix in Fig.5 summarizes the applicability of
qualification at row i to operation at column j. An entry of Y’
at (i,j) denotes that the qualification i must be specified for
operation j. Conversely, "N’ at (i,j) denotes that qualification
is not applicable to operation j. A blank entry means it is

optional.

21

CREATE/DERIVE
INSERT DELETE UPDATE PRINT/QUERY COMPOSE
coxoirion y x N
waten T N
Lwove N
DELETION N Y N N N

A A 0% iy ok i e il il ek S U A S N AN W A S A . e et et i okl ot e il b e Bl b el e i

Fig.5 Summary Qualification/Operation Matrix

2.8 INTEGRATING DATA & WORD PROCESSING WITH COMPOSE (l6, 17)
COMPOSE is an operation that allows insertion of data (from a

data file) into a text file according to a template. This

data, from forms which have been updated by the specification

constraints and operations described above, can be used to write

standardized letters with imbedded data. The text is standardized

but the data is procured from the applicable form as shown in

Fig. 6.

22

(TODAY)

{ CNAME)
{ CADDRESS)

Dear Sir:
We wish to acknowledge your order of (DATE). Due to unanticipated
high demand on certain items, we are unable to schedule for

immediate delivery some of the products that you have ordered.
They are listed below.

PRODICT QUANTITY

e i e S v v —

(PROD=-NO) (PNAME) (QTY)

We have placed these items on back-order. Please be assured that
we will not spare any effort to fill your order. We apologise for
the delay and thank you for your patience.

Yours truly,

Rajiv Kapoor
Shipping Department
ABC DISTRIBUTORS

Fig. 6 Example of a Text Template

2.9 A BUSINESS PROCEDURE SPECIFICATION LANGUAGE (16)

Thus far a formal language for forms processing has

23

been described. But to enable a business procedure to be
automated, we need two additional constructs. One is the
specification of dispersement of form instances or messages -
ROUTING. Another is the specification of conditions, called
triggers, which when satisfied will cause a form process to

be executed or routing to be initiated.

S0 a business procedure definition consists of one or more
statements from three major categories of constructs: TRIGGER for
specification of conditions; PERFORM for invocation of a form
process or other predefined procedure, and ROUTE for the

dispersement of messages or forms.

2.10 TRIGGERING (16, 17)

Triggering refers to the conditions for starting up an activity
which can either be a form process or routing. An activity can be
triggered upon arrival of certain form instance{s) and/or a signal
from a ‘post’, and/or at a specified time. A signal may be a
command or a predefined message. A ‘post’ is the originating point
of the form instance(s) or the signal. It could be eithera work
station, a user, or a form process. Triggering can be graphically

represented as:

24

o (MQRI VAL oFJ—@vm naw@f

\ (Pflac,é-ss
_<5f<'=r!\”’f‘— H;P\OM). PP.oCE‘DURé

)L

,(IDENTIFIBR,).

{Srﬁﬂ’fouj_,

(G)

*Qnm e AT 7_‘)(%‘,&& 51;,‘;,3}

(AND / o@/

—

Fig.7 Trigger Specification

2.11 INVOCATION OF A FORM PROCESS

Invocation of a form process 1s simply expressed by a PERFORM

statement, the syntax of which is : PERFORM <stmt>. Naming

25

several processes in a single PERFORM statement implies that the

named processes can be executed in parallel.

2.11.1 ROUTING (16, 17)

Routing refers to the electronic distribution of messages or

forms. This can be specified in a routing syntax diagram as

shown!

(Rovre) ‘ 69 C:::; [f?ﬁﬁal l I
]S(-E-z;?}— Grmen ol L= () AR)ofriehin)

_(‘{_____, Loseayl - O

f@_}l{c"@[[@} —| [}

@ (&)

02

Fig.8 Routing Specification

26

A form name specifies what is to be routed, to which
destinations, under what conditions. Also to provide for
different pricrities and services for different classes of mail,

mail CLASS can be specified,
2.12 PROCEDURE DEFINITION

The procedure definition defines how to use trigger, perform,
and route specifications to define a business procedure. This
consists of a heading, followed by specification for a source of

activity, and an END statement.,

(Pf@ﬁﬁdw\"t h&bHT PROC- .)ﬁ(““——> W en D })

Fig.9. Procedure Definition

2.13 CONVERT: A HIGH LEVEL TRANSLATION DEFINITION LANGUAGE FOR

DATA CONVERSION (15)

In the above named paper Shu, Housel and Lum of the IBM Research

Laboratory in San Jose identified and'researched an area which has

27

direct bearing on the main point of this paper which is the
development and use of forms as a design specification for network
utilities which allow access through a common query facility to
data at any node of a decentralized network of databases with
non-homogenous database management systems (DBMS) query

facilities.

Since in such a heterogenous environment we are dealing with
different databases at different nodes, for effective
communication between the nodes, data conversion must take place

to a common medium which is recognizable to all nodes.

Their research deseribes just such a conversion language- they
call it a translation definition language CONVERT, which provides
very powerful and highly flexible data restructuring
capabilities. Its design is based on the simple underlying
concept of a form which enables the users to visualize the
translation process and thus makes data translation a simpler

task.

In their work they have said that essentially two tools are
required to execute the data conversion process: 1) a data
definition language to describe the source and target data
structures and 2) a translation definition language to specify the
mapping of instances from a set of source files to a different set

of target files.

28

The data definition language that they have defined i1s called
DEFINE. This language i1s capable of describing most linearized

data structures; it uses the input/output format in the conversion

model,

Further in addition to reasons stated above, the following

are external factors requiring conversion of data:

1) changing to a different hardware eavironment

2) conversion from a conventional file system to a database

system

3} conversion from one database system to another

4) a change in application requirements

Some conversions can be fairly simple, others quite complex.

Shu, Housel and Lum placed emphasis on designing a data
definition language for describing the logical and physical
aspects of data for a wide varlety of data collections that could
be found at any node of a network. Statements in this language can
then be used as a driver for data translation. Their emphasis on
the need for such a translation definition language has been
recognized. Data conversion involving extensive and selective

yestructuring is becoming more and more common. CONVERT, provides

29

powerful and flexible restructuring capability. They have assumed
that users of CONVERT know the logical aspects of their data; know
what they want to be done but do not want to be burdened with the
details of how to accomplish it. CONVERT is a high level, easy to
learn, procedural language for that kind of user. It handles

all kinds of data structures with equal facility.

Since hierarchical data 1is the most abundant form of existing
data it plays a dominant role in CONVERT’s development. They
envisioned that a translation analyst can best view his data in
terms of Forms. According to their approach a Form is a two
dimensional representation of hierarchical data which reflects
the images of data instances. They have gone on to describe the
hierarchical base of a form and the links between headings,
subheadings and instances in terms of ancestors (parents) and
descendents {(children) as has been described earlier in this

paper.

They have reccgnized two broad categories of translation
definition in CONVERT: data mapping and data validation. Since the
primary purpose of data conversion is to construct target data
from various COMPONENTS of source data the primary emphasis is on
data mapping. In addition recognition of invalid data is a

neccessary part of the process.

The data mapping and restructuring facilities in CONVERT are

provided by a set of form operators which include component

30

extraction, SELECT, SLICE, GRAFT, CONCAT, MERGE, SORT, ELIM-DUP,
CONSOLIDATE, a set of built in functions (SUM, MAX, MIN, AVG, and
COUNT), assignment, and CASE- assignment. Each of these form
operators operates on one or more forms (or their components) and
produces a FORM as a result. The resultant FORM can then be used
as an operand for another FORM extraction. All FORM operations can

be nested.

The authors describe the notation that they have used in their
language: F denotes a FORM; f denotes a field; C denotes a
component of a FORM; EXPR denctes an arithmetic expression
derivable from the fields of a FORM. An EXPR could be a constant,
a field name or a built in function (e.g. SUM, MAX, MIN, AVG,
COUNT); an expression derived from the above or a derived
expression enclosed in parentheses using the +, -, *, [/ as
arithmetic operators; or a sub-FORM. Specified conditions (SC) can
define logical factors comnected by AND’s and/or OR’s. The
permissible comparison operators include =, #, <, >, \<, \>, >=,
<=, Boolean values can be assigned and unless parentheses specify
the priorities of evaluation, the logical factors are evaluated in

standard left to right order.

Some of the form operations are:

2.13.1 FORM OPERATIONS (15)

1) ASSIGNMENT

31

Assignment takes the result of the operation(s) specified on the
RHS of the assign operator (<--) and assigns it to the form named

on the LHS,.

Ex. 11 <~-- POR (P#, S#, QR) produces a FORM 1l with column

headings P#, S#, QR.

2) SELECT([EXPRl,....,EXPRN] FROM F [,...] [;SC].

This operation selects part(s) of a FORM if the specified

conditions are specified.

32

Thus if a certain PERSONNEL form were as shown in Fig.l10.

—— S T S S N T TS T e Sk i i i M e iy S oy s e v Y A S P T G D G NS SR ik i e e

EDUCATION KIDS
E# NAME SCHOOL DEG FIELDS SAL KNAME AGE
1 JONES A - Ccs 10K MARY 10
B B CS JACK 8
SUE 5
2 SMITH A B RIO 20K JACK 7
c M CHEM
P BIOCHEM
3 DOW A B MATH 15K
Cs
4 CARY b B CHEM 18K MARY 6
B M CHEM
5 JONES C B MATH 25K JILL 11
B B PHYSICS SUE 5
D P MATH JOHN 3
PHYSICS

[—————————— e —————————— e T Y

e e < A D . A S A A . S - T T " T] T e T S

Fig.10 Sample Personnel Form

then the result of SELECT (FROM PERSONNEL : DEG = ‘P’) would be
shown in Fig.1ll,

S i kil e e el i i o ke S el e ekl b S S e et i e S O S R ST e S N S M R S S R e S S i i

EDUCATION KIDS
E# NAME SCHOOL DEG FIELDS SAL KNAME AGE
2 SMITH c P BIQCHEM 20K JACK 7

i — - S G - el i e i i S i it i ol ks e e et e e e O G S S A S i

Fig.ll Result of SELECT from Fig.lO

3, SLICE (fl,vece.,fj FROM F)

33

The SLICE operation provides the capability to produce one row

for each instance of fj

Ex. The result of SLICE (E#, DEG, FIELDS FROM PERSONNEL) would

be as shown in Fig.12.

- 0 4 i S v o —— -

E# DEG FIELDS
. s cs

2 s 810
2 . cHEM

2 e RI0CHEM

ke o o T T T T T T o o gt i S i bl it . A i

Fig.12 Result of SLICE from Fig.lO

Thus, the SLICE operation provides a convenient means to produce
relational tables from hierarchical structures. Each SLICE

operation produces only one relational table.

4, SORT (F [BY [ASCENDING] f, f2,.40..,fN] [WITHIN PARENT])

DESCENDING

The SORT operation sorts the instances of a FORM in either

ascending or descending order of fl, £2,......,fn where f1,

34

f2,44422,fn are members in the same part of a tree. The sort
fields should be listed from left to right in order of decreasing
significance, regardless of whether they are ascending or
descending. If the WITHIN PARENT clause 15 specified, sorting will
be performed over instances of the sort fields without affecting
the sequences of the parent instances

Ex. SORT (F4 BY P# WITHIN PARENT) produces F4A as shown in

Fig.l13,
Fé F4A
s3 P# S# P#
A 10 A 10
11 11
12 12
c 15 c 14
14 15
D 10 D 10
12 12
B 13 B 10
10 13

e — —— — — i s e S —— it i e e it

Fig.13 Result (F4A) of SORT from F4

5. CONSOLIDATE (F FOR UNIQUE { fl, £2,
{(£1, £2,.0..), (fa, £B,.0.)euul)

Duplicate instances in a field are removed as shown in Fig.lé4

35

Exe.

S# P# QTY S P QTY
Si Pt 3 S1 P1 3

sl P2 2 P2 2

Sl P3 4 P3 4

S1 P4 2 P4 2

Ss1 P5 1 P5 1

S1 P6 1 Pé 1

52 Pl 3 52 P1 3

52 P2 4 P2 4

D A D e Sl e S (o et ey e T i ik e e T — Nl il ol e s e ek e e R T T P . S g A i e s i e e

Fig.l4 Result of CONSOLIDATE

There are other versions of the CONSOLIDATE operation.
6. GRAFT (Fl, F2,..4...0NTO Fn [AT £] [: SC])

Graft provides a means to combine two or more FORMS inteo one
FORM when specified conditions are specified.
Ex. Suppose we wish to form one file from the PTS and INV files
such that the resulting file will have the information of the PTS
file plus the quantity on hand (QH) obtained from INV which can be

stated as shown in Fig.l5.

36

GRAFT (INV ONTO PTS: PTS. P# = INV,P#);

PTS
S
p# DES S# CN Uc
2 X 4 AB 5
2 AB 4

e e " i o . v i e

X8 3
)
7 Y 7 ¢ 7 P# DES S# CN UC QH
2 X 4 AB 5 10
2 BB 4
INN e
---------------------- 3 XX 4 AB 2 17
P# QH 1 XB 3
2 10 7 Y 7 c 7 20
3 17
4 5
7 20

b T T -

Fig.15 Result of GRAFT

A PREVAIL field may be used in the GRAFT operation, The names on
the LHS of the key word PREVAIL are considered to be the

prevailing fields.

7.BUILT-IN FUNCTIONS

{ SUM }
{ MAX }
{ MIN } (f IN F [FOR UNIQUE fl,....,fn][:SC])

{ AVG }

37

{ COUNT }

The built in functions compute the sum, maximum, minimum,
average, or count of the instances of a certain field f in a form
F where the specified conditions are satisfied. They all have
exactly the same format and operate in exactly the same manner.

An example is shown in Fig.lé6.

Given
F
A B Cc D E
Q 1 2 3 4
15 6
7 8
R 2 9 10 11
22 13
S 3 14 15 16
T 1 17 18 19
20 21
32 23
2 24 25 26

e e e it o vt o i i el e oy e A el o N A D A S S R

Fig.l6 Form F

Then for SUM (C IN F) result in
2+ 15+ 7 + 9 4+ 22 + 14 + 17 + 20 + 32 + 24
the COUNT (C IN F : CKD) result is 7.

8. CASE Assignment

38

Every one of the form operators discussed so far performs one
uniform operation over all instances of the relevant form(s). CASE
Assignment, on the other hand, allows varied operations to be
performed over different instances. These varied instances must
produce homogenocus results to be assigned to the resulting form

for example:

F {--- CASE (f COP wvi, v2, .s+s., vn [, others)]

(F1l, F2,¢0¢,Fn [,Fn + 1]);
F and f denote a Form and a field respectively and COP denotes a
comparison operator, vl denotes a single value defined as:
<Single~ VAlue> ::= <{Value>| <Single-Value> OR <Value)>

<Value) ::= <Literal?> ANY OF <FORM>

and <FORM>, in turn, is either a Form name or a nestable Form

operation representing a one-column Form.

2.14 EXPRESSING DIFFERENT DATA STRUCTURES IN TERMS OF FORMS (15)

Let us visualise a network as Fig. 17

DP
G

Al W DE
{ EMPLOYEE |

Fig. 17 Network of Forms

where each node in the network can be viewed as a form. For

39

example the nodes DEPT and EMPLOYEE are shown as Forms in Fig.l8,

DEPT EMPLOYEE
D# MGR p# E# EDUCATION
EMP# DEG IR SKILL
55 SMITH Pl 551 = = = =
P2 552 “ =
P3 L i e e i e o
554 - - - -
353 = eereoeereeee s o e e e i
5356
54 JONES Pl 541
P4 542
543
544

i e e e gy e e vy e e S S

Fig.l8 ©Nodes Dept. and Employee shown as Forms

Each named edge represents a means of connecting two forms.
Conceptually, there are two ways to provide these connections. OUne
way is to have the connecting information embedded in one or both
of the Forms., Another is to build a Form to represent the
information expressed by the edges. In the example, the edges DE
and DP are embedded in the DEPT form, while A and W appear

as separate Forms as shown in Fig.19.

40

e i e e e e o —

Fig.19 Resultant Forms Representing Information
expressed by the edges
The user may decide to express the edge that serves as a
connection between 2 forms. Conceptually, as Lum, Housel and Shu
have described it, it is possible to adopt the notion of a Form as

a basis for more complex data structures.

Thus a language can be specified to map instances of source
items, which may be components of one or more files into instances

of target data which may constitute multiple files.

It was found that 1f CONVERT was used the conversion could be
performed using five to twenty times fewer statements than using a
language like PL/l. Thus, through the medium of FORMS and a data
translation language like CONVERT data conversion at nodes can be

performed without problems.

41

Chapter 3

FORMS PROGRAMMING -~ OTHER VIEWS

3.1 DAVID W. EMBLEY (4, 5, 6, 7)

David Embley, of Dept. of Computer Science at the Brigham Young
University has done extensive research on forms programming

systems. Three of his papers are briefly discussed here.

In his paper "Forms Based Automatic Program Generation' he has
described an approach to automatic program generation based on
descriptions of data processing operations by means of
conventional administrative forms. In order for forms based
programming to proceed smoothly, a library of knowledge about
common items of data needs to be available. The representation of
this knowledge can be manifest in what the author calls a data
frame. In a data frame, the set of data objects is described by

giving:

1) the internal representation,

2) a routine to validate set membership,

3) a routine to transform a sequence of characters to the internal

42

representation,

4) a routine to transform the internal representation to a

sequence of characters,

5) an initialization routine if needed.

According to Embley a form F is a 3 - tuple

F=¢{1, R, C}
where
I is a nonempty, finite set of items
R is a set of relationships among the items

C is a set of symbols (or characters) that appear on the form

With a library of data frames, knowledge about forms and program
templates available, an automatic program generator can work
interactively with an application "programmer" to produce a

desired object program

43

’ APPLICATION
S vV PRDGRATIMER
|
_________ - X
Puslic bieraey
LOF DATA rapmes \
- InTerAcnvE
GenERAL KnowLeme 1 AUT‘OI"V\ AT ¢
Rowur Tz . Proce |
___________ ’ R e e e
Desiren
GEMNERATDR, B
Proa asm]
TEMPLATES

Fig.20 Schematic of Automatic Program Generator

The application "programmer" need never see the object program
and can, in fact, develop or modify it only through the program
generator. The analysis phase of program development is still
essential, but the actual coding is replaced by the design of the

forms.

The dialcgue proceeds as the programmer is prompted to supply
the item I for a form and the relationships R among the items;
the set of characters C is a by produect of the process, For each
item, the system requests a key phrase Ki, the type of blank space
Bi, and the name of the data frame, which defines the possible
entries Ei. The interactive program generator, in essence, is a
data entry system that solicits extremely specific information

from the programmer.

The public library of data frames is available for wveneral use.

44

but only the data frames needed for the entries Ei become part of
the object program. In addition to using a data frame available in
the library, a programmer can also define application- specific

data frames or take data frames from the library and modify them.

There are two categories of program templates, namely data entry
and relationship validation templates. The data entry templates
correspond directly to the five types of blank spaces. The
"n entries™ type of blank, for example, corresponds to a template
that successively requests n entries and checks each one to
determine data type compatibility. The relationship validation
program templates make use of both blank types and predicates and
functions defined in the data frames being used. To validate a
total cost entry, for instance, the template makes use of the
addition operator and the equality predicate in a dollar amount
data frame and provides a summing loop based on the type of blank

specified by the programmer.

Although the automatic programming process is presented here as
being interactive, there are other alternatives, All that is
essential is to supply for each item a key phrase Ki, a blank
space type Bi, and a data frame name to define the possible
entries Ei and to supply the relationships. Any method that
communicates this information in a reasonable fashion is

applicable.

Thus, with a library of data frames available, it is

45

conceivable that a forms based programming system could select the
appropriate frame for each item on the form and define
relationships among the items without any intervention from an

applications programmer.

In another paper entitled " A Forms Programming System” Embley
proposes a forms based programming system (FPS) and discusses
current efforts and expectations. The major objective of the FPS
project is to investigate the extent to which erdinary forms can
be used to provide a basis for a very high level programming system.
Questions are explored such as what information can be inferred
from an ordinary form about the data that is to flow to and from
the form, and what additional information must be specified in
order to generate software to direct the flow of this information.
In partial answer to these questions, FPS provides facilities to
analyze forms including the ability to mateh entry blanks with
domains of expected entries, to generate queries for database
retrieval and update, and to allow for the specification of the
flow of information among forms. In applications where forms are
common, it appears that an FPS system in which an application
programmer specifies computer processes, directs information

flows, and formats data by means of forms has promise of success.

46

3.2 D. TSICHRITZIS (i3 19)

OFS: An Integrated Form Management System

Tsichritzis has done a lot of work in this area. According to
him there are three goals of office work - integration,
evolutionary facilities and potential for automation. He describes
forms as being electronic images of business paper forms. By
handling forms there is a natural way to incorporate limited text
capabilities together with ways to structure data for further
retrieval and processing. He also describes form types and form
instances. He describes three kinds of form fields - those that
were created at form creation time and cannot be changed, those
that will be created later and cannot be changed, and those whose
value can be updated. Each station through which a form passes
has a unique signature. Fach time a field value is entered or
changed on a form the system retains the system signature that
initiated the change. With additional information about the time
of the change plus the identity of the person connected to the
station during that time a complete accountability of actions is
possible on the form values i.e. each value can be uniquely
attributed to a station and eventually to a person operating from
that station.

station.

Each form instance has a unique key which identifies that form

47

instance, A form can never be destroyed or deleted from the system
after it is created. It can only be disposed of by sending it to a
special disposal station. Such stations retain the privelege to
shred electronically or archive the unwanted form. A form cannot
be copied freely. The operations on electronic images of forms
mirror operations on paper forms. Form instances can be filled and
entered by displaying the appropriate format and allowing the user
to enter values using a limited text editor to correct mistakes.
Forms are stored in form files. Stations can only operate on forms
in their local environment. A form has to be moved into a station
before it can be retrieved, changed, ete., by that station. Forms
move from station to station using mail commands. Forms can be
located and traced in the system. All form commands are issued
from a terminal via a short dialog with the system using
reasonably friendly simple language. Forms can be printed if there

is a need for paper output.

Tsichritzis talks of three kinds of office procedures. The first
type called a desk activity, specifies a specfic action in a local
station which is initiated under specific conditions local to the
station and notifies other objects local to the station. The
second type is called mail activity which automatically routes
mail i,e. when a form arrives at a specific mail tray the
procedure is initiated and routes the form to another mail tray
according to the form;s origin, contents, and the status
of the system as it can be detected by a general program. The

third type, called a coordination activity, is initiated when a

48

complementary set of forms arrive or are present in specific files
or mail trays. When this happens, the coordination activity will
initiate a procedure and notify one or more stations about the
event. Desk activities are specified by filling a form. A mail
activity encapsulates automatic routing of messages., Mail
activities are specified by filling an appropriate form. It
distributes mail it receives according to predefined
specifications. Mail can be sent according to three conditions.
First, the contents of the form may determine the routing, second
the origin of the form may determine its routing and finally, a
general condition may be specified to a program which checks for
that condition and routes the form accordingly. Mail can be
forwarded to specified stations or be distributed according teo
certain percentages to distribute the load to stations. A
coordination activity helps to streamline the activities happening

in different stations.

3.3 LADD & TSCIHRITZIS (12)

AN OFFICE FORM MODEL

In this paper Ladd and Tsichritzis say that the effectiveness of
automated offices depends largely on the success of formally
describing and analyzing the well defined portions of traditional
offices., The need for formal descriptive and analytic tools gives
rise to the study of formal models of offices. The form flow model

described in this paper regards an office as a network of stations

49

through which forms flow. Forms originate in some initial stations
of the network, flow from station to station where they are
processed, and terminate in some final stationms. The model yields
to many types of analyses. The graph thecretic, commodity flow and

query network approaches are descibed in this paper.

Form flow for a simplified loan vffice is described as
consisting of five stations: a receptionist (R), a processing
clerk (PC), and manager (PM), and a credit clerk (CC) and

manager (CM).

brm‘co N’VU)KL

-l e — - —— —— i i s o g s
TNUALID LON APPROVE LMC:;E. APPROVE]
CONTENTE Taname Loanr
T [
T N e e
FRETECTED L

Fig, 21 Form Flow for a simplified loan office

R is given all the loan application forms. It considers those
with invalid contents to be rejected overall and.sends the rest to
PC. PC first sends form low income applicant to PM for approval.
Then PC sends the remaining forms and the forms returned by PM to
CC. CC first sends those of large loans to CM for approval. Then
CC considers the remaining and the forms returned by CM to be
approved overall. PYM and CM either approve or reject the forms

they receive. They return the approved forms to PC and CC

50

respectively and they consider the rejected forms to be rejected

overall.

Each form contains fields for holding data values. An individual
form (instance) carries three components (<5t, Sk, Sec>): it‘s form
type (St = the kind of fields it contains), 1ts form key (Sk - a
permanent unique identifier) and its form contents (SC - the field

values).

Each station (Si) in the form flow model has a set of in-trays
(Tii) and a set of out-trays (Toi) where forms are deposited. The
task of a station is to take a form (<St, Sk, Sc>) from an in-tray
(x (Tii), apply an operation selection function associated with
the in-tray (Rx : {<St, Sk, Sc>} ---> Toi) to determine to which
out-tray (Y (range (Rx)) the form is to be transferred, perform
an operation assoclated with the in-tray-out-tray pair (@xy : {
{S8t, Sk, Sed}=-==--> {<St, Sk, Se¢’>}) and deposit the transferred
form (<St, Sk, Sc’>) in that out-tray {(Y¥). A flow arc ((¥X,¥) (E
i) exists between the in-tray (X) and an out-tray (Y) if it is
potentially possible for the operation seleection function
- associated with that in-tray to select that out-tray (y(range
(Rx)). Each operation flow arc represents an operation, depending
upon the analysis, costs (times, weights, capabilities, etc.) may
be associated with the flow arcs (Ea = U Eai). It may be desirable
to abstract out operation selection functions by estimating the
frequencies of selecting the different flow arcs in the network.

The network alsec designates a subset of all trays (To = UiToi) as

51

final trays (Tw (To) where forms terminate in the network. The
task of the network is to take a form (<St, Sk, Sc>) from a non
final out tray (Y (To - Tw), apply a routing selection function
associated with the out-tray (Ty : {<S5t, Sk, Sed>} =--->Ti) to
determine which in-tray (X (range (Ry)) the form is to be
transferredto, and deposit the form in that in-tray (X). A flow
are ((Y,X) (Ec) exists between a non-final out-tray (Y¥) and an
in-tray(X) if it is potentially possible for the routing selection
function associated with that out-tray to select that in-tray

(X (range (Ry)). Since each routing flow arc represents a
communication link between the two stations, depending on the

analysis, costs may be associated with the flow arcs.

Forms are conserved in the network. They are neither created nor

destroyed, only transferred.

Tsichritzis has also worked on optimal paths of different forms
and the time taken to process them and their frequency. He has
done these in graph-theoretic analysis. Through commodity flow
analysis, a form flow network can be augmented to analyze its
capacity in terms of maximum flow. The problem here is to maximize
subject to constraints,over the capacities of the stations. Each
station is assigned a value indicating the maximum number of work
units it can perform per unit of time. Linear programming can be
used to solve the network problem amidst constraints. He has also
performed queing network analysis on form networks where each form

becomes a job. Fach station becomes a server with a single queu

52

corresponding to its set of in-trays. Each operation in a station
is agsociated with a different job class, The routing frequencies
which correspond to the frequencies of taking the routing flow
arcs must be given, The queing networks can be solved exactly by
analytic techniques provided some further assumptions and

restrictions are made.

The scheduling disciplines are restricted to be FCFS (first come
first served), PS (processor sharing simultaneously among all jobs
in the queu), NQ (no queuing - the server supplies as many
processors running at the full rate as there are jobs in the
queu), or PLCFS (pre~emptive last come first served). If the
scheduling discipline for a server is FCFS, then all service time
distributions for the server are restricted to be identically

exponential.

3.4 OTHER RESEARCH - TSICHRITZIS (18, 19)

In another paper Tsichritzis writes about a small editor
associated with filling entries on forms to allow correction of
mistakes. The system guides the user to f11ll all the neccessary
fields and retains the station number. In this prototype system
there is no form deletion operation. By controlling form instance
deletion one can impose a law of conservation on forms. Forms
originate in particular stations. Forms terminate only in disposal
stations. There is no other way for a form to exit the system,

Hence, at any point in time the system can find out exactly how

53

many form instances there are and, using the locate commands
determine where the forms are at any moment in the processing
cycle. He talks about a very important set of commands which

deal with moving forms between stations. These operations maintain
an electronic mail facility which keeps a running account of

where all the forms are for both original and official

copies, These logs provide three functions in the system. First,
they can be used to give the overall status of the system
regarding bottlenecks in communication or overloading the of
stations. Second, they can be used for locating forms in stations.
Third, they can be used for recovery when a station malfunctions.
All mailed forms in this system pass through a control node where
a log is kept about the movement of the forms. This log enables
the system to locate and trace forms. A trace command provides a
complete path that a form took from its originating station up to

where it is at the moment.

Forms also should be available for database operations. All form
instances in this implementation can be accessed using relational
commands. The operations are similar to SQL and are provided by a
relational database system called MRS. A command can be as simple

as.:

SELECT Customer name FROM Invoice WHERE Status = payable

Database operations are in the format of such a relational query

language. Hence, database operations alongwith form operations are

54

easlly realized in terms of forms. There is a facility for the
system to handle distributed queries whereby a global query can
be issued from a station and this in turn translates to a series

of local queries on local stations,

The specification of an automatic procedure in this prototype
system is provided by the TLA (Toronto Latest Acronym). Every form
manipulated by a form procedure usually has a precondition sketch
and an action sketch. A form ‘precondition sketch’ indicates a
request to the system to find “a form that looks like this’. An
‘action sketch’ indicates a request to modify a form that has
already been obtained. Restrictions are placed on the values of
form instances, and the which of which causes automatic

procedures to be called.

The working set of form procedures is abstracted in terms of a
sketch graph. The authors talk of other models for form flow
operations such as flow analysis and station restructuring, the
mathematical details of which are not pertinent to the scope of

this paper.

2,14,5 KITAGAWA AND KUNII

In their paper ‘Form Transformer’ Kitagawa and Kunii have
proposed a new model called the Nested Table Data Model (NTD). Imn
this model they call forms nested tables and they have given

different names to the fields that occur on the form. They have

55

described four Form Transformer operators: Column Ennest (CE)
operator; Column Denest (CD) operator; Row Ennest (RE) operator
and Row Denest (RD) operator. The first two operators handle
column nesting; the ‘ennest’ column operators nest columns or
rows, and the ‘denest’ operators reduce the nests. They are also
called form transformer operators and some of them are included as
other names in the language CONVERT described earlier in this
paper. The authors have shown some propositions and corollaries on
the basic properties of forms, placing emphasis on the assurance
of reversability and commutability of form transformation., They
also clarified that, in certain conditions, nested tables can be
supported as user views to flat tables without tedious view update
problems. The authors are currently developing a prototype form
handling system based on NTD especially aiming at software

management office automation.

56

Chapter 4

CONCLUSION

This paper has basically surveyed different aspects of forms
processing from papers written on this subject as late as
1983. The methodology of specification was discussed in detail and
data and process descriptions were researched. Several form
operations applied to forms giving results as another set of forms
were highlighted, The paper also surveyed a procedure definition
language and how form operations could be triggered or routed.
Since forms may operate in a heterogenous distributed environment
a high level Tranglation Definition Language for Data Conversion
neccessary at different nodes of the network was described, This
translation definition language is CONVERT with powerful data
restruecturing capabilities. The mapping between different nodes
with heterogenous systems is made simpler through the medium of
forms which permit a common interface between nodes, since a form
is the same for different systems and for different nodes. The
data translation is much simpler and simple operations to produce
resultant forms can be affected with relative ease making possible

communication hetween two heterogenous nodes of a forms network.

Broadly, each instance in a form would be stored in an

integrated directory/dictionary. But copying of parts of this

57

integrated directory/dictionary at various nodes depending on
frequency of accesses would depend on the system. Some guidelines
as to when this would be done have been discussed in the paper,
Embley has discussed these form instances as data frames and has
said if there is a directory of data frames then forms processing
becomes simple. He has also described the schematics of automatic
program generation. These programs are automatically generated
upon invocation by form processes. These invocations are done by
an operating system written specially to handle them. Thus, with a
library of data frames at its disposal, it is conceivable that a
forms based programming system could select the appropriate frame
for each item on the form and define relationships among items

without any intervention from the application programmer.

Some office flow models describing the business environment as a
network of stations through which forms flow were discussed. In
particular, the pioneering work of 0. Tsichritzis was highlighted
especially his work on the optimal flow paths of differnt forms
in a network and the time taken to process them based upon their
frequency. His graph theoretic, commodity flow and queuing network

analysis as related to forms were briefly described in the paper.
As such this paper is an up-to-date research on work done on
forms programming systems and incorporates all major publications

on this paper to date.

It is possible to show, that a good solution to heterogeneity in

58

a distributed database system is to make it transparent from an
operational viewpoint, by providing each local database with a

standard interface i.,e. forms, for distributed operation.

Indeed, forms allow access through a common query facility to
data at any node of a decentralized network of databases with
non-homogenous data models, non-homogenous data model

implementations and non-homogenous database management systems.

The above survey lends credence to a proposal, put forward by
many authorities on heterogenous database management systems, of
having as a query language, a language built around documents or
forms. Clearly, in the business or data processing environment,
documents serve as an all purpose media for communicating
information. A document environment with spread sheet capabilities
and which uses either global or local names provides a recadily
acceptable format, a transparent mechanism without regard to
existing database structures, and a representation which is
translatable or mappable into any number of database models. The
global and local names will be handled as specified by the data
dictionary system (DICS) / directory system (DIRS). This also
minimizes the redundancy of data duplication at several nodes of a

distributed network.

Using this standard mechanism of documents as a query language,
it is relatively casy to provide a mapping from the document

itself to an actual query. One can derive programs to satisfy

39

information requests from the document format. In some cases, the
mapping from the document may be a simple request in a standard

query language; in other cases where the data is distributed over
several systems or models, the request may be mapped into a more

complex form such as programs.

10.

il.

12.

13.

BIBLIOGRAPHY

Chen, P, 8., The entity-relationship model: toward a unified
view of data, ACM Transactions on Database Systems, Vol. 1,
No. 1, March 1976.

deJong, S. P., The system for business automation (SBA): a
unified application development system, Information
Processing 80,Tokyo, Japan, and Melbourune, Australia,
October 1980, pp. 469-474,

deJony, S. P., and Byrd, Roy J., Intelligent forms creation

in the system for business automation (SBA), Research Report
RC8529, IBM T. J. Watson Research Center, Yorktown Heights,

New York, October 1980.

Brmbley, D. W., A forms-based nonprocedural programming system,
Technical Report, Department of Computer Science, University
of Nebraska, Lincoln, Nebrasks, October 1980a.

Embley, D. W., A forms-based programming system, to appear in
Advances in Database Systems Management, Vol II, P. Figher, J.
Slonim, and E. A. Unger (eds.), Heyden & Sons, 1984.

Embley, D. W., Forms-based automatiec programming, ACM 78
Proceedings, Washington, D,C., December 1978, pp. 972-979.

Embley, D. W., Programming with data frames for everyday data
items, NCC 80 Proceedings, Vol 49, Anaheim, California, May 19%980b
pp. 301-305,

Gehaui, N. H., "The Potential of Forms in Office Automation,"”
1EEE Transactions, Vol, Com=-30, No, 1, Jan 1982,

Hogg, J., Nierstrasz, 0. M,, and Tsichritzis, D.C., Form
procedures, in Omega alpha, Tsichritzis (ed.), Technical Report
CSRT-127, Computer Systems Research Group, University of Toronto,
Toronto, Canada, March 1981, pp. 103-133,

Kitagawa H., Kunii T. L., "Form Transformer - Formal Aspects of
Table Nests Manipulation," Department of Information Science,
University of Tokoyo, Japan, 1980.

Kitagawa, H., Kunii, T. L., Harada, M., Kaihara, 5., and

Ohbo, N., A language for office form processing (OFP) - with
application to medical forms, Department of Information Science,
University of Tokyo, Tokyo, Japan, 1980,

Ladd, I. and Tsichritzis, D.C.,, An office form flow medel, NCC 80
Proceedings, Anaheim, California, May 1980, pp. 533-539,

Luo, D. and Yao, S. B., Form operation by example - a language
for office information processing, Proc. International

14,

15,

16'

17.

18'

19.

Conference on Management of Data, Ann Arbor, Michigan, May 1981.

Lum, V., Y., Shu, N. C., Tung, ¥. C., and Chang, C. L. Automating
business procedures with form processing, Research Report RJ3050,
IBM Research Lab., San Jose, California, March 1981.

Shu, N, C., Hourel B. C., Lum V. Y., "CONVERT: A [igh Level
Transaction Definition Language for Data Conversion,"
Communications of the ACM, Vol 18, No. 10, October 1975.

shu, N. C., Lum, V. Y., Tung, F. C., and Chang, C. L., Specifi-
cation of forms processing and business procedures for office
automation, Research Report RJ3040, IBM Research Lab., San Jose,
California, February 1981.

Shu N. C., Wong H. K. T., Lum V. Y., "Forms Approach to
Application Specification for Database Design" IBM Research
Report RJI2687 (34432), IBM Research Laboratory, San Jose,
California, February 1980,

Tsichritzis, D, C,, OFS5: an integrated form management

system, in A panache of DBMS ideas III, Tsichritzis, D. C. (ed.)
Technical Report CSRG-111, Computer Systems Research Group,
University of Toronto, Toronto, Canada, April 1980, pp. 1-17.

Tsichritzis, D. C., Form management, in Omega Alpha,
Tsichritzis, D. C., (ed.), Technical Report CSRG~127, Computer
Systems Research Group, University of Toronto, Toronto, Canada,
March 1981, pp. 26-100.

Zloocf, M. M., Query-by-example: a data base language, IBM
Systems Journal, Vol. 16, No. 4, December 1977, pp. 323-343.

Zloof, M. M., A language for office and business automation,
Research Report RC8091, Yorktown Heights, New York, January 1980,

A SURVEY OF FORMS PROCESSING TECHNIQUES

By
RAJIV KAPOOR

MBA, KANSAS STATE UNIVERSITY, 1982

ABSTRACT OF A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

- 1984 -

ABSTRACT

The objective of this rescarch is concerned with the
development and use of forms as a design specification for network
utilities which allow access through a common query facility to
lata at any node of a decentralized network of databases with
non-homogenous data model implementations and non-homogenous

database management systems (DBMS) query facilities.

The fact that the query language syntax varies widely is a
najor problem in a network of distributed databases. Some queries
ire meaningless to other data models; they only have relevance in
nodels with a particular structure. To solve this problem, a

normalized query facility/ user interface is required.

A language built around documents would resolve the above
sroblem., Documents serve as an all-purpose media for communicating
information. A document environment with spread sheet capabilities
aind which uses either global or local names provides a readily
icceptable format, a transparent mechanism without regard to
axisting database structures, and a representation which is
translatable or mappable into any number of database models. The
:lobal and local names will be handled as specified by the DD/DB

facility.

Using a forms based query language, it is easy to provide a

mapping from the document to the actual query. One can derive

programs to satisfy information requests from the document format.
In some cases, where the data is distributed over several systems
or models, the request may be mapped into a more complex form such

as a4 programe.

