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Abstract 

This research presents a workflow integrating several post-stack seismic attributes to 

assist in understanding the development history of Weirman Field, Ness County, KS.  This study 

contributes to shaping future drilling plans by establishing a workflow combining analysis of 

seismic attributes and well cuttings to locate a channel fill zone of better reservoir quality, and to 

highlight reservoir boundaries due to compartmentalization.  In this study, I have successfully 

outlined a fluvial channel, which is expected to be significantly different in terms of 

petrophysical properties.  The Pennsylvanian aged Cherokee sandstones that potentially 

comprise channel fill lithofacies, in this study, have been linked to oil production throughout the 

state of Kansas.  It is important to understand channel sandstones when evaluating drilling 

prospects, because of their potential as an oil reservoir and unpredictable shapes and locations.  

Since their introduction in the 1970s, seismic attributes have become an essential part of 

lithological and petrophysical characterization of hydrocarbon reservoirs. Seismic attributes can 

correlate to and help reveal certain subsurface characteristics and specific geobodies that cannot 

be distinguished otherwise.  Extracting and analyzing acoustic impedance, root-mean-square 

amplitude and amplitude attenuation, guided by a time window focused on the top of the 

Mississippian formation, resulted in an understanding of the key seismic channel-facies 

framework and helped to explain some of the disappointing drilling results at Weirman Field.  To 

form a better understanding of these seismic attributes, this study combined certain attributes and 

overlayed them in partially transparent states in order to summarize and better visualize the 

resulting data.  A preliminary study of spectral decomposition, which was introduced in the late 

1990s, was preformed, and a more in-depth study of this multi-resolution attribute is 

recommended for future study of this particular field. This study also recommends integrating 

the revealed compartmentalization boundary and the seismic channel-facies framework in future 

drilling plans of Weirman Field. 
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Chapter 1 - Introduction 

  

 Summary 

 

 The use of seismic attributes, such as amplitude, P-wave attenuation, curvature, and 

coherence, in stratigraphic characterization of hydrocarbon reservoirs have been reported by 

many authors, e.g. Chopra and Marfurt (2008); Lozano and Marfurt (2008); Chopra and Marfurt 

(2007); Russell et al. (2003). Seismic interpreters may have a difficult time in distinguishing 

shale-filled channels vs. sand-filled channels, without attribute-assisted interpretation (Suarez et 

al., 2008).  According to Suarez et al. (2008), the use of different seismic attributes may assist in 

defining a channel fill zones in more detail. In this study, I will use key attributes; acoustic 

impedance, amplitude attenuation, RMS (root-mean-square) amplitude and spectral 

decomposition to pinpoint the location of meandering channel sands in order to further develop 

the Weirman field and its production.  By cautiously selecting and applying independent or a 

combination of seismic attributes, we can discover the depositional systems of a potential 

reservoir (Verma et al., 2009).  Integrating production and well-log data with 3D seismic 

attributes is always of great interest in order to calibrate seismic attributes in a quantitative sense 

or to classify groupings/clusters of variability in seismic attributes.  In this study, production or 

development data of the Weirman field has been integrated with a set of post-stack seismic 

attributes.  This set of seismic attributes, especially attenuation, has been instrumental in 

highlighting channel-fill lithofacies. 

 

 Study Area 

 

 Ness County is located in the western part of the state of Kansas, as shown in Figures 1-1 

and 1-2. The eastern side of the county is situated along the western edge of the central Kansas 

uplift.  Hydrocarbon fields in Ness County are shown in Figure 1-3.  Coral Coast Petroleum 
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began drilling the well, Keith No. 1 in 2003, located in section 18, T16S, R22W as a wildcat 

well.  The target area of production for this well was the Cherokee sandstone, which is contained 

in the Cherokee Group.  Keith No. 1 produced 162 barrels before it was plugged as a dry well 

and abandoned.  Since then, many other wells have been drilled in the Weirman field and have 

failed to produce any oil.  The prospect for Keith No. 1 was based on a 3D seismic survey that 

potentially identified a widespread sandstone reservoir of the Cherokee sandstones.  Walters et 

al. (1979) identifies the Cherokee Group as one, which contains channel sandstones as an oil 

reservoir. 

 

 Background and Significance of Study 
 

 

On the western edge of the Central Kansas Uplift lies Ness County.  Petroleum 

exploration in the county began by the drilling of its first oil well in 1922.  A few years later, in 

1929, Aldrich # 1 was drilled intentionally on the Beeler anticline and began producing 100 bpd 

at a depth of 4,422 feet on top of the Mississippi (Mazin, 2009).  In 2010, according to the 

Kansas Geological Survey, Ness County is home to 1003 oil wells, which produced 1,602,494 

bbls for that particular year with a cumulative production of 108,616,783 bbls of oil.  See Figure 

1-3 for a map of the distribution of oil fields located within the county.  There are some 

structural features that influence the subsurface rocks in Ness County, and may affect oil 

production in the area.  These structural features include the Beeler anticline (T. 17S., R. 25-26 

W.), and the Bazine Anticline located near T. 21 S., R. 24W. and T. 20S., R. 23 W (Kansas 

Geological Survey, 2011).   

 

The problem with channel sands is that they are very often below seismic temporal 

resolution; they also meander, twist, and never follow exact patterns; therefore they are 

unpredictable and difficult to locate.  Figure 2-3 is a modern analog image of the distribution of 

sediments in a fluvial setting, located in Deep Creek, Manhattan, KS.  Here in this modern 

analog it is evident the high spatial frequency variability of facies of sediments.  Nevertheless 

integrating knowledge of depositional model influencing the area with careful selection of time-



3 

 

window seismic attributes, seismic patterns related to channel deposits could be highlighted.   To 

this end I carried out a multi-resolution 3D seismic attributes analysis in a time window guided 

by and including the seismic horizon of the top of the Mississippian.  The preformed analysis is 

in conformity with the depositional model, which describes the unconformity at the top of the 

Mississippian at the depositional surface of the channel sands.  According to my preliminary 

results, the area of interest is predicted to have lithofacies compartmentalization related to faults 

and depositional surface gradient irregularities.  This is strongly evidenced by interpreted seismic 

attenuation patterns shown in Figure 4-1.  The preliminary results supporting this 

compartmentalization are in close agreement with production history of the field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 United States map.  Red star indicates state of Kansas and approximate location 

of the study area. (Adjusted from Kansas Geological Survey, 2011) 

 

 

 

 

 

 

 



4 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 Kansas County map.  Blue star indicates study area in Ness County (Adjusted 

from Kansas Geological Survey, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Map of oil and gas fields, Ness County, KS.  Includes blue square indicating 

study area. Map obtained and modified from distribution of oil and gas fields of Ness 

County, Kansas (Kansas Geological Survey, 2011). 
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Chapter 2 - Geological Setting 

The area of interest in this study includes the Cherokee Group, which was deposited 

during the Desmoinesian Stage of the Pennsylvanian System, occurring after the Mississippian 

unconformity.  This group is comprised of mostly shale and sandstone, with minute quantities of 

limestone.  The thickness of the Cherokee Group ranges from 5-200 feet, (Stoneburner, 1982).  

The Cherokee Group was transitionally deposited from a continental environment to marginally 

marine environment when the receding of the Hugoton Sea caused the Mississippian 

unconformity onto the Central Kansas uplift (Cuzella, 1991).  Figure 2-1 represents the 

stratigraphic relationships of the Cherokee Group to the older and younger rock units in the 

section.  The study area is roughly located between wells 9 and 10 in the cross section.  The 

Cherokee Group appears to be thicker towards the southwest, and thinner towards the northeast, 

closer to the Central Kansas uplift.  The Cherokee sandstones are mostly deposited along the 

Mississippian unconformity, which is overlain by a sequence of tilted resistive rocks and shales, 

along with underlying clastic sequences.  The Mississippian unconformity controls the trend and 

distribution of sandstones, which ultimately produces a series of escarpments and valleys.  Later, 

streams have proceeded to cut into the less resistant strata thus enabling the formation of channel 

sands, Stoneburner (1982).   

Analysis of my study area using Gamma ray logs has shown characteristics of channel 

sandstones.  Figure 2-4 exhibits a SP and Neutron log, where I have highlighted the zone of 

interest on the top of the Mississippian formation.  Characteristics of channel sandstones were 

exhibited by analysis performed on the Gamma ray logs taken from the study area. These 

characteristics were due to an increase in radioactivity readings, which indicate course sandstone 

fill at the bottom of the channel and more fine sandstone fill at the top (Figure 2-4).  The process 

of gradual grain size changes as we move up and down the channel is based on Walter’s Law. 

These changes correspond to lateral facies changes as you move across a channel, beginning 

with shales and siltstones of the flood plain facies to fine-grained sandstones in the point-bar 

facies, then finally observed coarser grained sandstones and conglomerates within the channel 

facies itself (Stoneburner, 1982). Any channel effects will be compounded with the reflection 

event of the top of the Mississippian Formation in the 3D seismic data.  
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 Upper Mississippian 
 

 

Figure 2-6 shows a portion of a larger stratigraphic column published by the Kansas 

Geological survey, which shows the classification of rocks in Kansas.  The Mississippian System 

rocks occur in the subsurface of the state of Kansas and cover the majority of its entirety.  The 

exclusions to this statement occur on the crests of the Central Kansas uplift, Cambridge arch and 

the Nemaha anticline.  The Upper Mississippian series is the group in which holds most value for 

this study.  The Upper Mississippian series in Kansas consists of mostly limestone and dolomite, 

with scattered beds of sandstone and shale, along with minor amounts of chert (Goebel, 1968).  

The Meramecian Stage rocks of the Upper Mississippian series lie on a disconformity at the top 

of Osagian rocks that include mostly marine limestones (oolitic and fossiliferous) and some 

interbedded dolomitic limestone and chert.  A vast majority of these limestone formations were 

eroded prior to the Pennsylvanian.   

 

 Cherokee Group 
 

 

The Pennsylvanian System outcrops in Kansas only in the eastern part of the state; in the 

western part of the state the Pennsylvanian rocks, which include the Cherokee Group, lie below 

the surface.  The Cherokee Group rocks were deposited during the Desmoinesian Stage of the 

Middle Pennsylvanian series (Figure 2-6).  These particular rocks are important stratigraphic 

indicators of widespread unconformities.  The Cherokee Group includes both marine and non-

marine rocks and consists mainly of sandstone and sandy shale.  The sandstone portion of the 

Cherokee is present as elongated “shoestring” sandstones that are intercalated with Cherokee 

shales (Van Dyke, 1976).  Based on the stratigraphy, the sandstone is of fluvial origin with 

coupled channel and overbank facies.  Van Dyke (1976) classifies the Cherokee sandstones as 

litharenites, having seventy percent quartz, twenty percent metamorphic rock fragments, and ten 

percent accessory minerals.  Not relevant to this study, but just as important, the most significant 

coal beds of the state reside in this group of rocks.  The Middle Pennsylvanian, Desmoinesian, 



7 

 

rocks are described as having a cyclic nature, consisting of shales and limestones with alternating 

non-marine strata.  The Desmoinesian Stage is the lower segment of Pennsylvanian rocks that 

outcrop in Kansas.  This Cherokee Group within this stage varies greatly from the overlying 

Marmaton Group and the underlying Mississippian rocks.  The formations within the Cherokee 

Group include; Krebs Formation, which consists of mainly shale, limestone, underclay and coal, 

and its members: Warner Sandstone Member, Bluejacket Sandstone Member, Seville Limestone 

Member.  The other formation included in this group is the Cabaniss Formation, which is 

composed of mostly shale, some sandstone, limestone and coal; its members are: Chelsea 

Sandstone Member, Verdigris Limestone Member, and the Breezy Hill Limestone Member.   

  

Figure 2-1  SW-NE stratigraphic cross section, showing both the Mississippian and 

Cherokee formations.  Area of interest is located approximately between wells 9 and 10 

(Adjusted from Marriam, 1963). 
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 Depositional Environment 
 

 

The Cherokee Group was deposited during a time of transgressing and regressing seas.  

The rock sequences observed in the Pennsylvanian rocks show certain sedimentary processes 

that were active during the time period.  These processes help explain the deposition of sand in 

slender “shoestring” groups that are associated with fluvially dominated delta systems among 

other similar environments.  These sandstone bodies seem to be where the sediment entered the 

seaway from a river system to the seaway margins (Brenner, 1989).  Figure 2-2 shows diagrams, 

which represent a potential depositional system of the Cherokee group in a fluvial dominated 

delta lobe, including an overview of the lobe as well as a zoomed-in image of the channel itself. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Potential Depositional 

Environment for Cherokee Group: 

A) Overview of system B) Facies of 

channel (Adjusted from Brenner, 

1989). 
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Figure 2-3 Modern analog of Deep Creek, Manhattan, KS to show variability in sediment 

facies. 
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Figure 2-4 Exhibits the relationship between an SP/Neutron log and a stratigraphic section 

in study area; the blue box marks the channel sand facies (Adjusted from Stoneburner, 

1982).
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Figure 2-5 Map of Weirman Field wells and surrounding areas (Kansas Geological Survey, 

2011). 
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Figure 2-6 Kansas Stratigraphic Column showing the Cherokee Group (Adjusted from 

Kansas Geological Survey, 2011). 
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Chapter 3 - Data and Methods 

 

 Data Loading 

 

Seismic data and well logs were uploaded into Kingdom Suite software (Figure 3-1) 

licensed by Seismic Micro-Technology, Inc., and a workflow was created.  Coral Coast 

Petroleum executed the seismic acquisition survey in 2002, in the Weirman field, Ness County, 

Kansas.  The survey parameters include 136 (west to east) in-lines and 61 (south to north) cross-

lines.  The sampling rate for this survey was approximately 2.0 milliseconds.  The survey 

boundaries are located 0.9 mi from the west side of sec. 18 T. 16 S., R. 22 W., and about 2.1 

miles from the northern edge of sec. 18 T. 16 S., R. 22 W.  It was uploaded as a SEGY file into 

Kingdom Suite and detailed as a Pre/Post-Stack Migrated Volume (Abbas, 2009).  The data were 

uploaded using a Seismic Reference Datum of 2700 feet and a replacement velocity of 9000 feet 

per second.  The survey was projected to a specific location using parameters for the projection 

system of NAD 27, Southern Zone, US Foot.   

 

 Data Collected 
 

 

Kingdom Suite by Seismic Micro-Technology is a PC-based software that provides 

seismic interpretation, reservoir modeling, geo-modeling, seismic to simulation and many other 

workflows to the user.  Companies of all sizes use Kingdom; multinational, national and regional 

independent companies all choose Kingdom Suite to be their seismic interpretation software of 

choice.  To learn more about Kingdom Suite by SMT visit: www.seismicmicro.com.  3D seismic 

data for this study, provided by Coral Coast Petroleum, were uploaded into Kingdom Suite and a 

workflow was created for this study (Table 1). 
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Step  Description 

Step 1 Upload seismic to Kingdom; create new project 

Step 2 Generate synthetic seismograms 

Step 3 Pick formation tops and track horizons 

Step 4 Generate seismic attributes and perform spectral decomposition 

Step 5 Qualitative seismic attribute interpretation 

Step 6 Log and well cutting analysis  

 

Table 1 Kingdom Suite workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Kingdom Suite loading screen. 
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 Methodology 
 

 Synthetic Seismograms 

 

Synthetic seismograms were generated for each oil well in the area of interest Ness, 

County, KS (Figure 3-5).  The seismograms are generated using density logs from each well and 

a wavelet derived from the seismic data.  Well logs provide a smaller sampling interval than the 

vertical resolution within the seismic data when measurements of velocity and density of the 

borehole are taken.  The velocity and density information from the well log are then configured 

to produce acoustic impedance (frequency).  When the acoustic impedance is combined with the 

velocity information, a reflection coefficient series is produced in relation to time.  This series is 

then convolved with the wavelet extracted from the seismic data to produce the synthetic 

seismogram.  The purpose of creating synthetic seismograms is to see the relationship between 

rock properties of a borehole within an oil well, and the seismic reflection data. A synthetic 

seismogram produces seismic traces that we can expect to see from a specific series of layers in 

the earth, when one produces an actual seismic pulse.  There are both advantages and 

disadvantages to using synthetic seismograms to predict hydrocarbon reservoirs.  In petroleum 

exploration, synthetics are used to tie changes in rock properties in a borehole to seismic 

reflection data at the same location.  Synthetic seismograms are commonly used to identify 

reflectors; in order to tie these desired reflectors to well log data.  One of the main purposes of 

synthetic seismograms is to show what a hydrocarbon reservoir would look like using the 

comparison of the waveform and amplitude of the reflector, to the subsurface lithology.  This is 

accomplished with a sonic and/or density log from a well of interest.  Synthetic seismic modeling 

may be used to reduce different uncertainties in interpretation.  Before describing the 

convolutional model, which is essential in obtaining synthetic seismograms, one must understand 

convolution as an operation.  Convolution is a process that involves replacing inputs with 

outputs; which are scaled according to the original input.  This filtering process occurs in the 

time-domain of a dataset.  Convolution is used as a method of filtering 3D seismic data by 

convolving the data, then summing the inputs and outputs that occur at the same time.  An 

example of this filtering process is shown in Figure 3-2.  Using these individual, linear, elements 
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or reflectors we are able to superimpose them, using convolution, in order to see the effect of the 

filter.   

 

A one-dimensional model in which seismic energy is transmitted and reflected along a 

single ray-path at normal incidence to reflecting interfaces is called the convolutional model 

(Henley 2004).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Filtering as an example of convolution (Sherriff, 1995). 

 

One of the most common uses of synthetic seismic modeling is to identify reflections 

with certain interfaces, then compare these points of interest to actual seismic data.  Synthetic 

seismic modeling is frequently used to differentiate primary reflectors from multiples and other 

events.  Synthetic seismic modeling can also help stratigraphic interpretation of seismic data, 

because it assists the interpreter in obtaining an improved idea of what to look for, as well as the 

ability to administer necessary change.   The interpretation of seismic reflection profiles is a 

difficult concept because individual reflections have complex behaviors, especially near geologic 

structures.  A simple, one-dimensional synthetic seismogram is created from a convolved 

wavelet of reflectivity, when offset and horizontal layering, are assumed as zero.  They may also 
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include velocity and density values which are incorporated into the seismogram from borehole 

logs in a well.  Two-dimensional seismograms are not limited to the same restrictions that one-

dimensional seismograms are.  They are able to model different diffractions and the dependence 

on offset of arrival times, waveform, and amplitude (Yilmaz, 2001).   

 

 In order to accurately evaluate a synthetic seismogram, we must understand the 

steps expressed by equations that are crucial in producing a synthetic seismogram.  We must first 

determine the seismic impedance associated with a horizontal subsurface layer.   

Seismic impedance is expressed below: 

 

 
 

where, p is density and v is the velocity within the layer.  The subscript k, is denoted as 

the variable layer in which seismic impedance is determined.  From this equation, we produce 

the pressure amplitude reflection coefficient and therefore, with the knowledge of the reflection 

coefficients we can form an impulse response or a reflection coefficient log. Using a source 

wavelet and convolving the reflection coefficient log we can produce a synthetic seismogram.  

Using the convolutional model we produce the following equation: 

 

  

when convolving a seismic wavelet, w(t) with the reflection coefficient e(t)  to produce 

the synthetic seismogram x(t).  The type of synthetic seismogram one produces is based on the 

information that you have.  In order to produce a proper synthetic seismogram, both sonic and 

density data are used.  Figure 3-3 has three different examples of how synthetic seismograms are 

created using a lack of data, using three different equations and their combinations.  These 

techniques include, the Gardner equation, the Faust equation, and an inverse Gardner 

relationship.  The Gardner equation relates density and velocity and the Faust equation relates 

resistivity and velocity.  The inverse Gardner relationship should be used if you have density 

information but no sonic data.  This figure is a good example of how information is taken from 
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density and sonic logs in order to form synthetic seismograms.  One may also see the differences 

and similarities between the three synthetic seismograms.  

 

 

Figure 3-3 Comparison of three synthetic seismograms for a deep Yeuga well.  The left-

hand panels show the comparison of true sonic and density and the logs calculated using 

Faust, Gardner and Inverse Gardner (IG).  All logs and synthetics are displayed in time 

and are corrected by velocity and survey (the uncorrected IG-sonic was considerably too 

high).  The deep, porous gas sandstone depresses density but not sonic, leading to errors 

using IG (Ewing, 2007).   

 

 

It is also important to understand how a synthetic seismogram comes together 

incorporating each reflector, which are represented by the reflection coefficient log.  Figure 3-4 

shows individual reflection pulses at the appropriate time, strength and sign denoted by the 

reflection coefficient log.  They are furthermore added together to obtain a synthetic 

seismogram.  
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Figure 3-4 Steps of seismic response to the given lithologic log (Anstey, 1982). 
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Figure 3-5 Generated synthetic seismogram for well KEITH 1; Ness County, KS, r-value 

(0.707) indicates reasonable correlation of time depth conversion of data. 

  

 Formation Tops and Horizon Tracking 

 

In order to determine where the formations are present within the seismic data, one must 

input formation-top data into Kingdom Suite (Figure 3-6).  These formation tops for each well 

are then mapped and picked manually, so that they are automatically tracked throughout the 

entire seismic section.  This way, one is able to focus on a specific area of interest within the 

seismic data.  For example, the top of the Mississippian formation is shown in Figure 3-7, as 

mentioned previously, the area of interest is approximately 10 milliseconds above the top of the 
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Mississippian into the Cherokee Group.  The Mississippian formation top allows us to focus on 

the crucial area of study.  The formation top information is vital to this study along with 

information about each well that is included in the seismic area.  Table 2 shows information 

gathered from the Kansas Geological Survey website, to aid in characterizing this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Inputting formation top data gathered from the Kansas Geological Survey 

(2011) for wells located in seismic data. 

 

 

 

 

 

 

 

 

 

 



22 

 

 

 

 

Well Name Elevation Total Depth Well Logs Tops Status 
Keith # 1 2455 KB 4520 Yes Yes Plugged & A 

Keith # 2 2456 KB 4510 Yes No Plugged & A 

Wanda Judeen 2445 KB 4530 Yes Yes Plugged & A 

W & K # 1 2430 KB 4530 Yes Yes Plugged & A 

Squier #1-18 2446 KB 4578 No No Producing 

Weirman ‘A’ #1-19 2440 KB 4520 No No Plugged & A 

Weirman ‘B’ #1-17 2444 GL 4530 No No Spudded 

Snodgrass ‘C’ #1 2456 KB 4510 No Yes Plugged and A 

Squier ‘A’ #1-18 2455 KB 4520 No No Plugged and A 

Snodgrass # 1 2442 KB 4466 Yes Yes Plugged and A 

 

Table 2 Data available in each well 
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Figure 3-7 Seismic section (crossline) with the top of the Mississippian formation top 

horizon labeled in green. 
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 Spectral Decomposition and Wavelet Transform 
 

In this study, wavelet transform is utilized for spectral analysis at various levels of 

resolution to pursue seismic patterns that may have stratigraphic significance. Spectral 

decomposition, also known as time-frequency decomposition, is used to characterize the time-

dependent frequency responses of reservoirs and subsurface rock formations.  There are many 

different methods for achieving spectral decomposition.  By applying different bandwidths to the 

seismic wavelet, one is able to adjust the time-frequency spectrum and to highlight different 

aspects of the seismic data.  Greg Partyka introduced spectral decomposition in 1999, to allow 

interpreters to use frequency dependent components of the seismic bandwidth to interpret small 

changes in subsurface stratigraphy otherwise unseen (Chopra, 2006). 

 

 The wavelet transform allows the decomposition of a signal into various levels of scales 

or “resolution.”  Different analyzing wavelets could be used in the decomposition process.  

Multi-resolution analysis has the potential to detect sub-seismic resolution channel sand bodies 

through some experimental attributes synthesis, which would also enhance subtle litho-facies 

related interpretive seismic patterns.  Ojo and Sindiku (2003) used the seismic application of 

spectral decomposition to 3D seismic data from Southern Nigeria to map the geometry of incised 

channels.  The spectral response of this study showed the lateral channel complex clearly and 

indicated fault trends.  Wavelet transform is used in this study over the traditional Fourier 

transform function mainly because it has the ability to localize seismic information in the time-

frequency domain simultaneously (Miao and Moon, 1999).  The Fourier transform: 

   

extracts signals from a function f(t) of infinite time which cannot be associated with the 

frequency information.  The Fourier transform is only limited to analysis and processing of 

signals in either the time or the frequency domain.  Fourier transform applies to many stages of 
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seismic data analysis and processing.  A seismic trace is collected from a receiver during the 

acquisition of seismic data.  This trace is a function of time and has a unique amplitude, 

frequency, and phase.  The Fourier transform is a way to break down or decompose a wave field 

into its plane-wave components.  Fourier analysis basically compares wavelets with sine waves.  

A wavelet is a waveform that has an average of zero and can be shaped irregularly and 

asymmetric.  Sine waves have a limited duration from minus to plus infinity and are smooth and 

usual in shape.  The process of analysis breaks up the wavelet into sine waves of different 

frequencies and cross correlates them to seismic data at predetermined frequencies.   

 

The Short-Time Fourier Transform (STFT) is also called spectral decomposition.  It can 

be used for the purpose of attenuating low frequency ground roll, cultural noise, and high 

frequency noise. STFT is an adaptation of the Fourier transform to analyze a smaller area of a 

selected signal.  This technique is appropriately called windowing the signal.  The STFT maps a 

specific signal into a 2D function of time and frequency.  The size of the selected window 

determines the information you can receive about time and frequency of the event.  The STFT is 

most often used when an interpreter wishes to analyze the frequency of particular events in a 

fixed time window across multiple frequencies.  This practice provides the interpreter with a 

horizontal localization of frequency content.  A potential disadvantage is that once the size of a 

time window is selected, it is the same for all frequencies.  If the selected window is long, it 

prevents time localization of high frequency components and if the window is short, it limits the 

spectral resolution of the low frequency components.  The fixed time window also limits the 

technique’s temporal resolution.  Many interpreters require a more accommodating method that 

is able to vary the window size to inspect signals more accurately. 

 

Wavelet transform is commonly called instantaneous spectral analysis.  The continuous 

wavelet transform (CWT) differs from the STFT when it comes to pre-determining window size.  

The CWT does not require a particular window size therefore it does not have a fixed time-

frequency resolution over the time-frequency space.  This is crucial in determining instantaneous 

spectral attributes from seismic data, such as frequency-dependent rock properties, because 

seismic data are non-stationary and have changing frequencies in time.  The wavelet transform is 
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able to localize crucial information with a “zoom-in and zoom-out” ability, meaning that the 

window function is not fixed.  The wavelet transform of a signal S(t): 

 

               

 

where  is a group of wavelet functions that were constructed from a 

mother wavelet by parameters a and b which are defined as the scale which is related to 

frequency, and the position, respectively (Sinha et al., 2005).  The goal of using wavelet 

transform is to be able to break down a signal into varying frequencies in order to enhance 

different properties.  Figure 3-8 shows the seismic signal of the 3D seismic data in red, below are 

7 wavelet transformations of the same signal using varying frequencies, beginning with the 

lowest approximate formation.  This process allows the interpreter to take the 1D signal or single 

trace and detail the data into sub-bands, thus potentially revealing rock properties of interest.   
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Figure 3-8 Initial spectral decomposition using the wavelet transform of seismic signal from 

Ness County, KS.  Attributes analysis will be carried out at these various levels of spectral 

decomposition. 



28 

 

  
Figure 3-9 Spectral Decomposition 30 Hz Step 10 Hz: Mississippi Horizon 
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Figure 3-10 Spectral Decomposition 40 Hz Step 10 Hz: Mississippi Horizon 
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Figure 3-11 Spectral Decomposition 50 Hz Step 10 Hz: Mississippi Horizon 
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Figure 3-12 Spectral Decomposition 60 Hz Step 10 Hz: Mississippi Horizon 
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Figure 3-13 Spectral Decomposition 70 Hz Step 10 Hz: Mississippi Horizon 
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 Qualitative Seismic Attributes 
 

 In this part of my study, I correlate the calculated set of seismic attributes maps 

with each other and compare with available well information to understand and map reservoir 

facies heterogeneities.  This section ensures the understanding of each particular attribute and its 

contribution to reservoir characterization.  The generation and analysis of seismic attributes has 

become a vital practice of seismic interpreters in order to gain knowledge about the subsurface 

structures and lithology of a particular area.  Table 3 provides a guide to each seismic attribute 

completed in this study.  All of these attributes may assist when characterizing the subsurface of 

the Weirman Field, located in Ness County, Kansas.   

 

 Amplitude Attenuation 

 

  Amplitude Attenuation can be defined as a gradual loss of amplitude intensity through 

the  subsurface.  In  some  areas  of  the  subsurface,  amplitude  attenuates  more  or  less 

depending  on  the  medium  it  is  travelling  through.    Amplitude  attenuation  B(f,t)  is 

expressed by: 

 

  where Qi and Δti are quality factor and travel time in layer i.  Signals will attenuate as a 

function of travel time and offset.   

 

  

 RMS Amplitude 

 

Root-mean-square (RMS) Amplitude is a computed seismic attribute that is a measure of 

reflectivity within a time window.  This attribute is used to map hydrocarbon indicators within a 

zone.  It is defined as the square root of the sum of the squared amplitudes divided by the sample 

size of data within the time window desired.  The RMS amplitude is calculated according to: 
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where N is the number of samples in the calculation window. 

 

 Acoustic Impedance 

 

Acoustic Impedance (AI) is the product of density and acoustic velocity.  Well logs 

record measurements of both density and interval velocity therefore dividing the density log by 

the traveltime (sonic log) an acoustic impedance log may be generated (Chopra, 2007). This 

attribute emphasizes the velocity of rock formations rather than the distinctions between them, 

therefore accentuating rock properties (Sheriff, 1995).  It was contributed during the middle of 

the 1970s, converting post-stack amplitudes into acoustic impedance, allow interpreters to study 

the physical property of rocks, including lateral changes in lithology and information about 

porosity of the subsurface (Chopra, 2007).   

 

 Coherency Map 

 

A coherency map is used for 3D seismic interpretation of structural features or 

stratigraphy.  Coherence is defined as a quantitative measure of the similarity or dissimilarity of 

nearby seismic traces (Bahorich and Farmer, 1994; 1995) and is typically calculated as a post-

processing seismic attribute.  Coherence is a measure of waveform similarity and integrates 

information from neighboring, adjacent traces in a nonlinear manor, which allows the extraction 

of information that may not have been seen on an individual time slice.  Coherency maps allow 

the interpreter to see both structural and stratigraphic features and geometries of the desired 

window. Coherency can be given by: 
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where  is the correlation coefficient at time t milliseconds and for a specified geologic 

dip d ms/trace, G and H are the correlated traces and N is the number of samples in the 

correlation time window.  The continuity attribute is a very efficient means for illuminating 

geologic discontinuities that emerge as low-continuity zones. 
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Table 3 3D Seismic Attribute descriptions 

 

 

 

 

Attribute Definition Implication Figure 

Amplitude 

Attenuation 

Gradual loss of 

amplitude intensity due 

to frequencies above and 

below point of interest 

Higher seismic P-wave 

attenuation would 

correlate with better 

reservoir properties 

4-1  

(Left) 

RMS 

Amplitude 

Measure of reflectivity 

within a time window. 

Calculated by square 

root of the sum of the 

squared amplitudes  

Higher RMS amplitude 

in the extraction window 

indicates higher 

proportions of channel 

sands or better reservoir 

facies, especially when 

coupled with higher 

attenuation levels 

4-1  

(Middle) 

Acoutic Impedance Product of density and 

acoustic velocity 

Higher average AI 

correlates with lower 

proportions of channel 

sands 

4-1  

(Right) 

Coherency Similarity or difference 

of nearby seismic traces 

Show potential 

compartmentalization or 

structural features within 

study area 

4-2 
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Chapter 4 - Discussion and Results 

 Discussion  
 

The P-wave attenuation (Figure 4-1 (left)) shows the result of amplitude attenuation in 

the 3D seismic data.  An outline area is characterized by higher level of attenuation. I have 

interpreted this area to be dominated by channel sands of thickness below seismic resolution and 

lies directly above the Mississippian limestone. In the interpreted channel outline (Figure 4-1 

(left)), I have distinguished the attenuation patterns into four different sections labeled with 

roman numerals. The first section (I) shows a greater attenuation than the rest of the data.  This 

section holds the highest reservoir potential, especially in areas with higher RMS amplitudes 

(greater acoustic impedance contrast with the underlying limestone) (Figure 4-1 (middle)) with 

and lower acoustic impedance (Figure 4-1 (right)). Section II is where the initially producing 

Keith No. 1 was drilled, and is shown in the Figure 4-1.  As we travel from section I, to section 

IV, one will notice a decrease in attenuation response based on amplitude.  I can conclude that 

this response is due to a change in facies of the formation or a decrease in the quality of the 

reservoir.  This figure shows very strong compartmentalization and is not continuous.  This could 

be a major factor as to why none of the other wells in the Weirman field were productive.   

 

The RMS amplitude and acoustic impedance of the study area can be seen in Figure 4-1 

(middle and right).  The low areas are shown in greens and blues, while yellows and reds 

indicate the high areas.  The initially productive Keith No. 1 well can be seen in areas of 

moderate attenuation, high amplitude, and moderate acoustic impedance.  The location of Keith 

No. 1 is within the interpreted channel area. The well, Wanda Judeen 1 located in the proposed 

channel facies and producing section, was a dry hole.  According to Figure 4-1, Wanda Judeen 1 

was located in an area of high attenuation, high amplitude and high acoustic impedance.  A 

reason that could explain the non-producing Wanda Judeen 1 is that it was located in an area of 

high impedance, which is a warning to any prospect in terms of reservoir properties.   

 

The interpretation of 3D seismic surveys and integration with other geo-datasets has 

increased the success rate of many exploration and development programs around the world. 
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Among key elements contributing to this success is the high seismic 3D resolution of structural 

and stratigraphic characterization of reservoirs in a wide range of geological settings. There are 

occasions when seismic interpretation of subsurface geology does not conform to the actual 

geology encountered in the drilled well.  This is such an occasion that occurred during the 

drilling of several test wells based upon a 3D seismic survey in Ness County, Kansas, where the 

predicted Cherokee sand did not meet the expectations set by the driller.  The expectations were 

that the Cherokee sandstones were to be reservoir rocks to hydrocarbons. By better integrating 

the analysis of key seismic attributes in this study such as P-wave attenuation, Root-mean-

squared (RMS) amplitude, and acoustic impedance, in addition to seismic coherency (Figure 4-2) 

interpretation, seismic facies heterogeneities and compound lithofacies/faulting 

compartmentalization were evidenced. 
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Figure 4-1 Amplitude Attenuation with four groups areas of different spatial distribution 

and attenuation level, RMS Amplitude, Acoustic Impedance time slices for average over 15 

ms. 
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Figure 4-2 Coherency Map showing interpreted geologic discontinuities enhanced with 

golden color lines.  

 Results 
 

As discussed in previous chapters, it is important to combine different seismic attributes 

to form a better understanding of subsurface facies, rather than looking at just one or two 

attributes.  It was also imperative in this study to look at well cuttings and logs that were 

available for several of the wells in the area of study.  Figure 4-3 shows the beginning of a series 

of attribute overlays, which can help visualize or form a better understanding of the study area 
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and may be helpful in indicating a zone of interest.  This figure shows RMS amplitude 

overlaying amplitude attenuation, and with these particular attributes, higher values (reds and 

yellows) indicate possible zones that have greater potential fluid movement as well as 

hydrocarbon indicators or other geologic features when overlapping.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 RMS amplitude 

transparency overlaid on 

amplitude attenuation  
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Figure 4-4 shows a coherency map on top of the same attenuation map.  This figure may 

be able to correlate areas of greater fracture potential and fluid flow from the attenuation map 

with structural or lithologic features shown by the coherency map.  Linear coherency anomalies 

indicate interpreted litho- or structural discontinuities; further analysis based on core samples and 

production well data is recommended. These anomalies may be interpreted as varying 

topography of the top of the Mississippian formation resulting from a discontinuous depositional 

surface.  The compartmentalization caused by 

these discontinuities may be used to explain 

the lack of reservoir continuity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Coherency transparency 

overlaid on amplitude attenuation 
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Figure 4-5 shows the acoustic impedance attribute in grayscale overlaying the amplitude 

attenuation map.  In this figure, one may observe the low values of acoustic impedance, (light 

gray and whites) which correlate to a better reservoir quality and potentially better porosity 

and/or fluid content.  The amplitude attenuation map again has high values in red that indicate 

better porosity and permeability for a potential reservoir.  All eight wells, which have been 

drilled in Weirman field, have been drilled in areas of high impedance (dark grays) that indicate 

a poor reservoir potential.  This may contribute in part to the disappointing drilling results in the 

field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Acoustic impedance 

transparency in grayscale overlaid on 

amplitude attenuation 
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Figure 4-6 shows the RMS amplitude attribute in grayscale on top of the acoustic 

impedance map.  Looking at the two maps, better reservoir potential is indicated by lower 

acoustic impedance values (blues and greens) and higher RMS amplitude values (dark grays and 

blacks).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 RMS amplitude 

transparency in grayscale overlaid on 

acoustic impedance 
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 Along with the seismic attribute analysis, well logs and cuttings were analyzed for 

a few of the wells located in the seismic survey area.  Gamma ray logs showed characteristics of 

channel sandstones (Figure A-6).  The sandstones from the Cherokee Group display an increase 

in radioactivity, which indicates that the lower portion of the sand is coarser, in reference to grain 

size, and gradually fines towards the surface.  This observation may correspond to the different 

depositional environments sandstones may be involved in.  According to Stoneburner (1982), 

shales and siltstones will correspond to floodplain facies, fine-grained sandstones will 

correspond to point-bar facies, and coarser grained sandstones, similar to those observed in this 

study, may indicate channel facies zones.  Figure 4-7 shows a display of well cutting images at 

the Pennsylvanian aged Cherokee Group and to which well they correlate.   

 Areas of high attenuation and low impedance have a lower shale content within the well 

cuttings (well Keith #2) than areas of low attenuation and higher impedance (wells Keith #1 and 

W&K #1).  Well W&K #1 had the most shale content of the three wells at the area of interest 

and well Keith #2 had the least amount of shale content of the three wells.  Well Keith #1 had 

minor amounts of sand and a lesser amount of shale than well W&K #1.  These well cuttings can 

possibly be an unreliable source for accurate information about reservoir stratigraphy due to the 

lack of isolated cuttings at certain depths.  When well cuttings are collected per ten feet (which is 

standard) it is possible that fragments of rock from above formations may fall or be collected 

with the sample recorded at a different depth.  The wells in Weirman field have limited resources 

in lieu of well cuttings and core samples, but a correlation was made from the well cuttings to the 

geologists report from the wells (Figure A-5).  At well Keith #2, sandstone clusters were 

collected at the depth of the Cherokee sandstone, and these clustered sandstones mostly likely 

have a quartz cement, which could explain the lack of oil production of the well due to a 

decrease in permeability of the formation.  Well Keith #1 cuttings at Cherokee depth contained 

loose sand, which could potentially explain why it produced oil, but stopped after only 162 

barrels, due to the lack of continuity of the channel itself when compared to nearby Keith #2.   
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Figure 4-7 Well cuttings correlate to Mississippian horizon amplitude map 
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Chapter 5 - Conclusions 

 Conclusions 
 

The identification of seismic lithofacies is based on seismic attributes and differential 

attenuation analyses, which add useful insight into the integration of seismic lithofacies in future 

development plans for Weirman Field; Ness County, Kansas. Seismic P-wave attenuation in 

addition to RMS amplitude and acoustic impedance attributes are key attributes in the process of 

understanding the subsurface lithofacies heterogeneities, prospect generation and evaluation in 

the subject area.  The purpose of generating seismic attributes and completing spectral 

decomposition analysis was to potentially come up with observations based on qualitative results 

in order to identify a zone with potential hydrocarbon recovery. The channel facies is highly 

variable as referenced previously in the text as well as observed by the well cutting analysis.  The 

lithofacies of a channel is very diverse and it is difficult to generalize the subsurface from a well 

log or well cuttings themselves.  For future drilling plans of the Weirman field, the combined 

attribute and well cutting analyses need to be considered when prospecting new locations to drill.  

It is concluded that Weirman field is home to meandering channel sands, which are 

compartmentalized by lithographic or structural features causing a decrease of permeability 

within the reservoir.  The analyses completed in this study are vital to its reservoir 

characterization and future production of the field.   
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Appendix A - Appendix  

 

 

The first group of spectral decomposition figures are included to show testing was done 

to determine optimum testing parameters.  The parameters chosen in the text are the continuous 

wavelet transform at 20-70 Hz with a step of 10.  The parameters tested include continuous 

wavelet transform at 20-70 Hz step 5 and 20-70 Hz step 20.  These parameters were tested for 

the top of the Mississippian horizon as well as time slice 902 milliseconds.  Time gate tests were 

also introduced to test attribute evaluation at varying frequencies. 

Geologist report of well Keith #2 and porosity log of well Keith #1 are also included to 

provide supplemental information for the reader regarding observations made within the text of 

this study.  These figures were used in some of the analysis and discussion and are therefore 

included as supporting documentation.   
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Figure A-1 Spectral Decomposition 20Hz Step 20Hz: Mississippi Horizon 
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Figure A-2 Spectral Decomposition 40 Hz Step 20 Hz: Mississippi Horizon 
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Figure A-3 Spectral Decomposition 60 Hz Step 20 Hz: Mississippi Horizon 
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Figure A-4 Spectral Decomposition 80 Hz Step 20 Hz: Mississippi Horizon 
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Figure A-5 Keith #2 Geologist's Report and Drilling time Log (Adjusted from Kansas 

Geological Survey, 2011). 
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Figure A-6 Keith #1 

Porosity Log (Adjusted 

from Kansas Geological 

Survey, 2011). 
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Figure A-7 Time slice with Mississippi Horizon at approximate inline # 902 
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Figure A-8 Time slice overhead view of inline # 902 
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Figure A-9 Spectral Decomposition at Timeslice 30 Hz Step 10 Hz 
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Figure A-10 Spectral Decomposition at Timeslice 40 Hz Step 10 Hz 

 



62 

 

Figure A-11 Spectral Decomposition at Timeslice 50 Hz Step 10 Hz 
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Figure A-12 Spectral Decomposition at Timeslice 60 Hz Step 10 Hz 
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Figure A-13 Spectral Decomposition at Timeslice 70 Hz Step 10 Hz 
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Figure A-14 OpenDtect Attribute generation homescreen 
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Figure A-15 RMS amplitude at Spectral Decomposition 50 Hz Step 10 Hz 
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Figure A-16 Attribute Evaluation using varying time gates 
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Figure A-17 RMS amplitude Spectral Decomposition 50 Hz Step 10 Hz and time gate (-9,9) 
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Figure A-18 RMS amplitude Spectral Decomposition 40 Hz Step 10 Hz 
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Figure A-19 Attribute Evaluation using varying time gates 
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Figure A-20 RMS amplitude Spectral Decomposition 40 Hz Step 10 Hz time gate (-7,7) 
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Figure A-21 RMS amplitude Spectral Decomposition 30 Hz Step 10 Hz 
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Figure A-22 Attribute Evaluation using varying time gates 
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Figure A-23 RMS amplitude Spectral Decomposition 30 Hz Step 10 Hz time gate (-9,9) 
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Figure A-24 RMS amplitude Spectral Decomposition 60 Hz Step 10 Hz, time window of (-

15,10) 

 



76 

 

Figure A-25 Attribute evaluation using varying time gates 
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Figure A-26 RMS amplitude Spectral Decomposition 60 Hz Step 10 Hz time gate (-7,7) 
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Figure A-27 RMS amplitude Spectral Decomposition 70 Hz Step 10 Hz, time window of (-

15,10) 
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Figure A-28 Attribute evaluation of varying time gates 
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Figure A-29 RMS amplitude Spectral Decomposition 70 Hz Step 10 Hz time gate (-9,9) 

 


