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An Evolutionary Approach to Designing Complex
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Abstract—This paper proposes a novel evolutionary approach
to spreading code design in direct sequence code division multi-
ple access (DS-CDMA). Specifically, a multiobjective evolutionary
algorithm (EA) is used to generate complex spreading sequences
that are optimized with respect to the average mean-square cross-
and/or autocorrelation (CC and/or AC) properties. A theoretical
model is developed in order to demonstrate the optimality of the
generated codes. The proposed algorithm enables spreading code
design with no constraints on the code length. Furthermore, it is
possible to generate K > NN codes of length N with very little
cost in correlation properties. This results in significant capacity
enhancement in DS-CDMA systems.

Index Terms—Direct sequence code division multiple access
(DS-CDMA), evolutionary algorithm, mean-square correlation,
multiobjective optimization, Pareto front, spreading sequences.

1. INTRODUCTION

NE of the most significant limitations in multiple access
communication over a finite bandwidth channel is the
interference introduced by competing users of the channel.
This multiple access interference (MAI) reduces the practical
channel capacity and leads to reduced performance as a result
of increased bit-error rate (BER) for individual users. In an
asynchronous direct sequence code division multiple access
(DS-CDMA) system, the MAI is combated by employing
spreading codes with good cross correlation (CC) properties
[1]. The autocorrelation (AC) properties of a set of codes are
important for spectrum spreading as well as for initial timing
synchronization and tracking [1]. It has been noted in many
publications that the AC properties of a set of spreading codes
come at the expense of CC properties and vice versa ([2]).
Spreading code design has been a widely studied topic over
many years ([3]-[5]). But the focus was primarily on real
codes for DS-CDMA systems, while the code design work on
complex codes was focused primarily on periodic correlation
properties [6], [7]. Also, prior works on code design provide
binary or complex spreading codes that have restrictions on
the code length N (i.e., N is limited to 2n or 2n £ 1, where
n is an integer, or N is prime). Furthermore, most of these
methods provided a limited set of K codes, e.g., K = N for
Hadamard-Walsh (HW) codes [8]; K = N + 2 for Gold codes
[8]; K = N — 1 for Oppermann codes [2].
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In this paper, we employ a multiobjective evolutionary ap-
proach to design complex spreading codes of any length N as
well as to generate K > N codes. Multiobjective evolutionary
algorithms (EAs) allow the search for solutions that satisfy a
set of simultaneous objectives. We believe that a meaningful
objective in DS-CDMA code design is one that considers the
average BER of all users rather than the worst case BER
associated with the peak interference values between individual
users. The average BER in a DS-CDMA system is dependent
on the average interference produced by the mean-square ape-
riodic CC (as pointed out in [2]). Similarly, the average mean-
square aperiodic AC that combines the odd and even periodic
correlations is a much more reasonable measure for the AC
properties of a code set. Instead of defining complex spreading
codes and evaluating the CC and AC properties (as in [2]), we
use the multiobjective EA to search the phase space for a set
of complex phase codes that simultaneously attempt to satisfy
the objectives of minimizing the average mean-square CC
and AC.

The proposed approach yields a large number of spreading
code sets with a wide range of correlation properties. We
compare the average mean-square CC and AC properties of
the EA-based code sets with other code sets such as HW,
Gold, EOE-Gold, Frank—Zadoff—Chu (FZC), Oppermann, and
the recently introduced carrier interferometry (CI) codes [9].
The EA-based codes demonstrate better CC and AC properties
relative to these code sets while offering flexibility in code
length. Furthermore, we demonstrate that the EA-based code
sets can be expanded to provide up to 100% increases in
capacity with little cost in correlation properties.

II. CORRELATION MEASURE

Pursley [10] showed that the average signal-to-noise ratio
(SNR) for the %" user in an asynchronous DS-CDMA em-
ploying binary phase-shift keying (BPSK) is a function of
the average interference parameter (AIP) and the additive
noise power. Specifically, the SNR degradation of the y*" user
strongly depends on the squared absolute value of the aperiodic
CC of the y'" user’s code with every other user’s code in
the system.

Therefore, in this paper, the average mean-square value of
the aperiodic CC is used as the measure of code set performance
(as in [2]). This measure corresponds to
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where K is the number of codes in the code set and C,
is the aperiodic correlation function between two codes in the
set defined as

i\/:_ol_l Uy (k)u
Cuy(l) = oo g (k= D (k),
0, elsewhere

s(k+1), 0<I<N-1

1-N<l<0 @

where u; and u, are the spreading codes of user x and y,
respectively. In (1), Rcc has been normalized by the code
length in order to facilitate comparisons between codes of
different lengths. A similar mean-square measure for Rac is
given by

AC = KN2Z Z |Caa(V)]*. (3)

x=11=1-N,l#0

The relationship between Rcc and Rac is given by the
following theorem.
Theorem 1: For any set of K codes of length N satisfy-

ing Cy,(0) = N for all w’s in the code set, Roc(K — 1) +
Rac > (K —1).
Proof: See Appendix. ]

Ideally, it is desirable to minimize both Rcc and Rac. In
reality, the Rcc and Rac measures have to be traded off for
each other (as demonstrated by Theorem 1). It is observed
that the spectra of complex codes with very low Rcc are
narrowband, and using these code sets in DS-CDMA results in
a system that has frequency division multiple access (FDMA)
characteristics (see [2]). Code sets with very low Rac are
wideband but possess high CC values that significantly degrade
the BER performance. Therefore, it is desirable to avoid the
extreme values of Rcc and Rac in the DS-CDMA spreading
code design. The multiobjective EA-based approach discussed
next offers the freedom to do that.

III. MULTIOBJECTIVE EA

EAs have emerged as one of the most popular approaches
for the complex optimization problems in engineering [11].
They draw upon Darwinian paradigms of evolution to search
through the solution space (the set of all possible solutions).
Each solution, which in this case is a set of codes, is represented
as a chromosome and comprises of smaller units called genes.
Therefore, we shall use the terms solutions and chromosomes
interchangeably. Starting with a set (or population) of chromo-
somes, in each generation of the algorithm, new populations are
created from older ones. The creation of new chromosomes is
accomplished by means of two operators, recombination and
mutation. Mutation is carried out by imparting a small usually
random perturbation to the chromosome. Early experiments
with code design problems suggest that recombination, the
other standard operator, does not improve the performance of
an EA. Hence, in this paper, we have excluded that from our
discussion. In a manner similar to the Darwinian paradigm of
survival of the fittest, only “good” solutions are allowed to re-
main in a population with the degree of optimality (“goodness’)
being assessed through a measure called fitness.
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When dealing with optimization problems with multiple
objectives, the conventional concept of optimality does not hold
good [12]. The simplistic approach of aggregating multiple
objectives into a single one often fails to produce good results.
It produces only a single solution. In multiobjective optimiza-
tion, the concepts of dominance and Pareto-optimality are
applied and an entire set of solutions along the Pareto front
is extracted from the solution space. The concept of Pareto-
optimality is briefly explained below.

Assume that the optimization problem involves the mini-
mization of M objectives ¢, (-), n=1,..., M. A solution p
is said to dominate over another solution ¢ if and only if
cn(p) < cn(q), Yn € {1,..., M}, ie., for every objective, p
is better than ¢. This relationship is represented as p > ¢q. In a
population of solutions, the set of all nondominating solutions
is called the Pareto front. In other words, if P is the population,
the Pareto front I' corresponds to

I'={pe PNgeP,q# p} “)

In recent years, many EAs for multiobjective optimization have
been proposed [13], [14].

In the proposed approach, each chromosome of the popula-
tion is a set of K codes each of length N. The phase angles
of the spreading codes are arranged as a /X by N matrix,
®=1[¢ ] x=1,...,K, where ¢_represents the angles cor-
respondmg to row x and is equal to [qﬁm( ), 02(2), ..., 0z (N)].
Every element of gzb takes on a value between 0 and 2w,
ie., ¢,(i) €10,2x], ¢ =1,...,N. The actual spreading code
corresponding to row z is [eJ¢1(1), el?: ) ei®=(N)] Each
code (row of the matrix) is considered to be a single gene.

The size of the population is kept constant at a value P.
The fitness of each code set is a two-dimensional (2-D) vector
whose elements are Rac and Rcc. The fitness of the pt"
chromosome is normalized and scaled appropriately

max (R(q)) - RX%
max (RXI()J) — min (RX%)
max (Rg%) — R(Cpgj
) max (Rg%) — min (Rg%) - ©

@) —

Here, R(Apgj and Rg)é are the AC and CC of the pth chromosome
and the max(-) and min(-) operations are carried out over all
chromosomes in the population. This linear transformation was
done so that each individual has a fitness F whose entries
lie between zero and unity, with the worst correlation getting
assigned a zero fitness and the best, a fitness of unity, in the
corresponding place.

Maintaining a uniform spatial distribution of chromosomes
in the evolving population has been a core issue in multi-
objective evolutionary optimization. Most current approaches
tend to explicitly enforce population diversity by biasing the
search towards those regions in the Pareto front where the
chromosomes are sparsely populated. One of the common
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techniques to do so is to reduce the fitness values of the
individual chromosomes in such a manner that if the population
contains chromosomes that are very closely spaced together,
their fitness values are reduced appropriately. In this manner,
chromosomes occupying isolated regions in the search space
have a better chance of getting selected by the algorithm for
the next generation. This technique is called fitness sharing
[12]. Fitness sharing is introduced into the algorithm by scaling
down the raw fitness values according to the equation

F®)

F@® —
qu sh(®9

(6)

where p and ¢ are two chromosomes and sh(P ) corresponds
to the sharing function between them. The sharing function is
defined as

F) _Fla)
sh(®9) — 1- [” oo ”
0, otherwise

} . when [F® — FO|| <oy,

(7

In the above equation, ||F(?) — F(9)|| is the Euclidean dis-
tance between the raw fitnesses of two chromosomes p and
q; k and og, are parameters associated with fitness sharing
[12]. ogy is typically a small-valued parameter. Unless there are
other chromosomes present whose fitnesses are within a dis-
tance oy, of any given chromosome, the summation in the
denominator of (6) adds up to unity for the latter since
|F®) — F®)|| = 0. Hence, its scaled fitness becomes identical
to the raw fitness. Otherwise, for each chromosome whose
fitness is within the same distance from the given chromosome,
the sharing function evaluates to a value higher than unity. The
closer the fitness values are, the higher the sharing function
becomes. Therefore, the fitness values of chromosomes having
others with similar values in its vicinity get lowered.

In every generation of the proposed approach, a new popu-
lation is created from an existing population in the following
manner. First, the Pareto front of the existing population of
code sets is determined and reinserted into the offspring pop-
ulation. This helps preserve the best solutions in each iteration.
When the total number of nondominated solutions is less than
a quantity oy, the entire front of size « is included in the
subsequent population. However, when the Pareto front is large,
a total of a4, solutions, picked at random, is used. Early
experiments suggested that randomly picking the solutions
produced results that were not different from selecting them
through other techniques suggested in the literature [15]. If P
is the population size, the remaining P — « solutions are
selected on the basis of fitness. The fitness vector of each
solution is computed and the new population is initialized to an
empty set. Solutions are copied into the new population one at
a time from the parents. The probability of selecting a solution
&®) from the parent population to be copied is given by

Prob (<1><P>) =\ 1-NTF® )
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where ) is chosen randomly from [0,1] with uniform probabil-
ity. A total of (Q = P — « solutions are chosen in this manner.

With the exception of the « Pareto-optimal chromosomes,
the other code sets are subject to mutation, with a probability
1, called the mutation rate in the algorithm. During mutation,
each solution receives a small amount of perturbation. Mutation
is carried out to make the search exploratory. A code ¢
is picked at random from the solution and to it is added a
random perturbation vector whose elements follow a uniform
distribution in [—r, 7].

At the end of each iteration, the new population replaces
the previous one. A predetermined maximum number of iter-
ations Ty Of the multiobjective EA is carried out before the
best solutions are extracted as the final set of codes.

IV. RESULTS

The algorithm is fine tuned for fast convergence. The prob-
ability of a code set undergoing mutation, the mutation rate,
is 0.5. Up to a maximum of auyax = 100 chromosomes in
the Pareto front are taken from the parent population to the
offspring population in each iteration. The quantities oy, and
 associated with fitness sharing are 0.1 and 4. The algorithm
is run for a population size of 200 and for 5000 iterations.
Simulations reveal that the optimization is completed in a
small fraction of this time.

The EA algorithm is first used to generate K = N —1
codes, each with length N = 31 (these values of K and N
are chosen in order to provide a fair comparison with other
complex codes such as FZC, Oppermann, and CI). Table I
compares the Rcc and Rac properties of the multiobjective
EA-based code set with other code sets (N = 31). It is evident
that the EA-based approach not only provides codes that have
“good” correlation properties but also yields a wide range of
codes with intermediate Rcc and Rac values. These interme-
diate codes tradeoff Rcc properties for Rac and are vital for
DS-CDMA system design. It can be observed that the inter-
mediate Oppermann codes are comparable to the intermediate
codes of the multiobjective EA, but the Oppermann codes
cannot be designed for any length N (while maintaining the
K = N — 1 capacity limit). Table II demonstrates the ability
of the multiobjective EA-based approach to generate codes of
different lengths (N =9, 16, 20) each with a wide range of
correlation properties. It is important to remember that since
the EA-based code sets are not parametric (like the FZC, CI,
and Oppermann), it is necessary to allocate memory to store
the code set in use.

Fig. 1 shows the large number of code sets, with code length
8 and a wide range of correlation properties, generated using
the EA and archived at various time instants. The solid lines
represent the theoretical optimum from Theorem 1. Each point
on the Rcc — Rac plane represents a generated code set. It
is clear from this figure that the multiobjective EA-based ap-
proach yields code sets that fall along the optimum theoretical
line. Furthermore, the multiobjective EA-based approach also
enables us to increase K while keeping the length of the code
constant. This is a significant benefit of using the evolutionary
approach as none of the well-known code sets are flexible
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TABLE 1
COMPARISON OF EA-BASED CODES AND OTHER CODES

Code Set

Ree

Rac

GA-Based Code Set

0.334

19.604

0.102

17.839

0.594

12.358

7.440

0.999

0.214

CI Code

0.355

19.677

Gold Codes

0.970

0.900

EOE-Gold

0.950

0.952

FZC

1.000

0.344

Oppermann

0.400

18.200

0.500

19.670

1.000

0.620

TABLE 1I

EA-BASED CODES FOR DIFFERENT N

EA-Based Code Set

Rac

N=9

5.037

0.447

3.670

0.665

2.795

1.000

0.068

N=16

0.356

0.441

0.627

1.000

0.147

N=20

0.350

11.532

0.456

10.647

0.556

8.702

0.999

0.217
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Fig. 1. Correlation properties of EA-based code sets with N = 8.
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Fig. 2. Correlation properties of EA-based code sets with N = 16.

start behaving like an FDMA scheme and hence are not useful

enough to support K > N codes of length N. Fig. 1 demon-
strates that even with this increase in the number of codes,
the genetic algorithm successfully determines the best possible
code sets that lie along the Pareto front. Fig. 2 shows code sets
that are obtained using the proposed method for NV = 16 and for
three different values of K. As before, the codes lie along the
theoretical Pareto front of Theorem 1. This again demonstrates
the efficacy of the algorithm in deriving optimal code sets.

In Figs. 1 and 2, we observe that the best Rcc value achieved
by our simple multiobjective EA increases with increasing
K. This is not a surprise if one considers the fact that when
K > N, the orthogonality among codes (for lag 0) is lost.
Another observation from Fig. 2 is that the minimization of
Rcc ceases when R reaches a certain maximum value. This
is once again easily explained by considering the spectrum of
a code with high Rac. The code sets with maximum Rac

in a wideband DS-CDMA system. Therefore, the algorithm
saturates near the code set that possesses FDMA-like character-
istics. The multiobjective EA provides a large family of codes
that lie along the middle of the theoretical line (see Figs. 1
and 2), and these are the code sets that are most useful for
DS-CDMA design engineers.

The EA-based approach discussed above not only applies to
code design with continuous phase angles but also to code de-
sign with discrete phase angles, e.g., multiples of 27 /N In this
case, the initial population has code sets with discrete phases
and discrete mutation is performed in each iteration. Having
discrete phase angles significantly lowers the implementation
complexity and also reduces the susceptibility to phase jitters.
Since it also results in a finite set of possible code sequences,
it is possible to save memory (required to store large codes) by
storing the index of the sequence instead of the entire sequence.
Fig. 3 illustrates the ability to design EA-based code sets with
discrete phases. Here, the algorithm is used to generate code
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Fig. 3. Correlation properties of EA-based code sets with N = 8, 16, 32 and
64 and discrete phase angles.

sets with length N = 8, 16, 32, and 64 and K = N. For each
N, the discrete phases used are (27 /N)k, k =0,1,...,N — 1.

The complexity of the EA is a function of the desired
Rcc for the DS-CDMA system and the length of code V.
For practically useful Rcc values (between 0.65 and 0.85
representing the mid part of the theoretical line), the algorithm
converges in a few hundred iterations (with discrete phases).
The number of iterations increases linearly with increasing N,
with NV = 64 requiring a few thousand iterations to converge.
As expected, the convergence speed is slower with continuous
phases than with discrete phases. It is important to note
that if the end goal is to obtain a code set with a target Rcc,
the objective function can be appropriately modified to increase
the convergence speed for large values of N.

V. CONCLUSION

In this paper, complex spreading codes for DS-CDMA were
designed using a multiobjective evolutionary algorithm (EA).
This approach offers flexibility in code design that cannot
be achieved with any other technique. The benefits include:
1) the ability to design spreading sequences with no con-
straints on length; 2) the ability to design spreading code sets
with a wide range of correlation properties (while achieving
the theoretical optimum); and 3) increasing the capacity of a
DS-CDMA system by enhancing the number of codes that can
be designed for a given length V.

APPENDIX

We can rewrite (1) as

N-1

K K
RocK(K —1N?=>"3" Y |Coy (1))

rz=1y=1[=1-N

K N
-y C.(OF. ©

1—
r=1[=1-N
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‘We can rewrite (3) as

K N-1 K
RacKN?=>" IC(D = 1C(0)
rz=1[=1-N x=1
K N-1
=Y C2(D)” = KN?
rz=1[=1-N

1

>

> 1C()* = RacKN? + KN?. (10)
rz=11=1-N
Substituting (10) in (9), we get
K K -1
RocK(K —1)N?=>"3" Y |Coy (1))
r=1y=11=1-N
—RacKN? — KN2. (11)

The first term on the right hand side can be further simplified
(see [3]) as
1 1

K K K K
SN N 1P =323 > c.oc

z=1y=11=1-N z=1y=11=1-N

<

N-1 2

K

l=1-N |z=1

N-1 2

K
Yo DG +KN?

I=1-N,I#0 |z=1

2

K
> C.()| - (2)
x=1

N-1
=K°N* 42>
=1

The term on the right side has a lower bound of K2N?. There-
fore, we can conclude that

>y

1

> Cey (D) > KN, (13)
r=1y=11=1-N
Introducing this result in (12) and rearranging, we get
RocK(K —1)N? 4+ RapcKN? + KN? > K*N?
Rcc(K — 1) + Rac > (K — 1). (14)
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