
PREFER:

Small Group Decision Support System Tool

by

NANCY JANE CALHOUN

A.A., Graceland College, 1962

B.S., Colorado State University, 1964

B.S., Kansas State University, 1982

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

U£) A112Q7 gUVbfl

SJolo?

Cyn'aC

1^ Table of Contents

C3V-

Introduction t

I. DECISIONS IN GROUPS 2

II. SMALL GROUP DECISION SUPPORT SYSTEM (SGDSS) 6

III. PREFER TOOL DESIGN u
IV. PREFER TOOL SAMPLE USAGE 20

V. PREFER TOOL SPECIFICS & EVALUATION 27

VI. RESULTS AND FUTURE CONSIDERATIONS 31

BIBLIOGRAPHY . 33

APPENDIX A
Hagmann's Algorithm 34

APPENDIX B
PREFER's Application of Hagmann's Algorithm 36

APPENDIX C
Example Setup Using PREFER.create 39

APPENDIX D
Installing PREFER In a LAN with Unix Operating Systems 42

Appendix E

PREFER. create.c Source Program 44

Appendix F

PREFER.server.c Source Program 53

Appendix G
PREFER.fileserver.c Source Program 82

Appendix H
PREFER.vote.c Source Program gg

Table of Illustrations

ILLUSTRATION PAGE
2.1 The Final Vote Matrix contains a tally of all votes received. The

totals in each cell of the Final Vote Matrix are divided by the

total possible number of votes to obtain the Average Vote Matrix 8

2.2 The matrix obtained from the a-level set where a = .71

shows that the preference of D over A was the only one that

had that high an a level. The matrix for a = .57 set

shows many more alternative pairs having a .57 (or above) average
perference vote o

3.1 Illustration of the distribution of PREFER Tool modules among
the Host computer and the User computers on a LAN 11

3.2 PREFER Server Module data flow diagram 12

3.3 Data flow diagram of expansion of the Handle Input block

of the PREFER Server dataflow diagram (Fig. 3.2) 13

3.4 Data flow diagram of expansion of the Vote Tally and Analysis

block of the PREFER Server data flow diagram (Fig. 3.2) 14

3.5 PREFER Vote Module data flow diagram 15

3.6 Data flow diagram of expansion of the Serve User block

of the PREFER Vote User Process data flow diagram (Fig. 3.5) 16

3.7 PREFER Fileserver Module data flow diagram 17

4.1 Sample terminal display of alternatives

and choices available to users 21

4.2 Sample terminal display of alternatives and
summary of results of completed voting 23

4.3 Complete vote analysis of suggested sample vote as

created by the PREFER Tool 24-25

6.1 Contributions made by this report and implementaion 31

6.2 The type of voting analysis that might be made possible

through the use of the PREFER Tool 32

ACKNOWLEDGEMENTS

1 am grateful to Dr. Elizabeth linger, my major professor, who quided me through the many

requirements necessary to reach my goal. Dr. David Gustafson and Dr. Maarten van Swaay

assisted by being on my committee. I also appreciate the support given to me by other lectur-

ers in the department, the staff personnel, and other graduate students.

Constauza Uagmann was very gracious to let me read her work and implement a small portion

of it. After she designed the model, I was able to follow and give it more substance.

Special thanks must go to my husband who was very supportive, encouraging me, and willing

to adjust to my schedule and routine. He frequently had to pull more than his fair share to

make everything work while I studied.

PREFER:

A Small Group Decision Support System Tool

Introduction:

The potential of computers to be a beneficial tool is being recognized in more and more areas

of human endeavor. Our societies are becoming more centered on information exchange, and

the ability of computers to manage information is seen as both attractive and even necessary

for the future. Currently, computers are widely used as tools by individuals participating in

decision processes, but groups making decisions are more likely to meet in conference rooms

with computer printouts and without computers. The hardware features of networked comput-

ers allow groups of individuals to communicate with each other, but the software support for

effective interaction within a group has not yet appeared.

This report describes an implementation of a Small Group Decision Support System based on a

model developed by Hagmann [HAGM88a]. The report begins with a brief discussion of group

dynamics and of group decision theories. A short discussion of the Small Group Decision Sup-

port System (SGDSS) and its background follows. Then the specifics of this implementation

(referred to hereafter as the "PREFER tool" or as "PREFER") are discussed, with details in-

cluded in Appendices. This report concludes with B discussion of the anticipated usage of

PREFER and further ways in which it could be developed.

Ways to benefit humanity through expanded use of the computer as a tool must be developed

because the future of computers is now.

CHAPTER I

DECISIONS IN GROUPS

Each human must face one decision after another. If one is old enough and smart enough to

read this report, one is probably already well experienced in decision making as an individual

and as part of a group. In infancy, a baby may have to choose only between sleeping and eat-

ing, but later, as a member of a board of directors, that same individual may have to choose

between expanding a business, staying with the status quo, moving the business to a new area,

or going out of business. Some decisions have trivial consequences, while others may have pro-

found impact.

John Dewey [DEWE10] suggests 5 phases of logical thinking:

1. awareness of the existence of a problem
2. definition of the problem
3. the suggestions of possible solutions for the problem
4. the elaboration of the suggested solutions

5. testing and evaluation of selected solution

An individual may frequently make personal decisions alone, but as the problem grows, the

number of people included in the decision process usually grows also. The phases of logical

thinking remain the same, but a group introduces additional complexity. The long-standing

cliches about committees, such as "a camel is a horse designed by a committee", have more

truth than most committees would care to admit!

Ewbank and Auer [EWBA51a] identify certain thinking patterns in individuals and describe

areas where being a member of a group intensifies these individual behavioral tendencies. Ac-

cording to them, in a group one responds more to the leading of others and tends to conform

to group standards in belief and action. One may support a decision because "everyone else is

for it". One is more likely to follow illogical arguments or succumb to personal appeal and the

charisma of someone else in the group. If one has prejudices, one may have those intensified

by expressions of similar prejudices in others. One may let logical-thinking take a back seat to

seeking group approval or one may more easily confuse personal desires with convictions.

The composition of a group colors one's actions and opinions. One is not likely to oppose a su-

perior or a valued co-worker in a face-to-face meeting even if one's convictions would dictate

otherwise. On the other hand, one may find oneself opposing another whose personality con-

trasts with one's own even when both actually agree on an issue. Anyone who has sat through

a long and less-than-productive meeting desires ways to make group decisions easier.

Businesses especially would like to get the best decisions from management groups.

Groups reach agreement in several ways:

1. Authority - "because I said so"

2. Enumeration - majority rules

3. Compromise - I'll give in here if you'll give in there
4. Integration or consensus - you have convinced me that this is the best way

Ewbank and Auer conclude that

"...[consensus] is the ideal one; it can result most easily when group members begin the
analysis of a problem before their opinions are firmly set.... Integration is not a likely
result, however, where external pressures operate on a group, where tensions are high
within a group, or where a deadline for decision must be met.... Before intelligent and
effective problem-solving can result, both leaders and participants must understand the
psychology of group behavior and develop the sensitivities and skills appropriate to
democratic group action." [EWBA51b].

Because of modern-day interest in group decision patterns, researchers are proposing many

theories regarding how groups reach decisions when confronted with multiple criteria. Hag-

mann [HAGM88a] lists several major types of theories: social choice/group decision theory,

expert judgement, game theory, and team theory.

Hagmann chose the group decision theory for her model because of its goal of consensus in the

group through the use of voting, social choice function, and social welfare function. A decision

in Hagmann's model is a consensus of participants with different levels of expertise so it did

not match the expert judgement techniques. Game theory was rejected because of its assump-

tion that participants are pursuing strict personal gain rather than organizational gain. Team

theory was rejected because there was no effective way to generalize the gross pay-off function

based on quality of information available to members of the group.

Since the present SGDSS design is aimed at small groups operating in a situation of a
medium level of conflict, the method used to achieve group consensus should provide
both a means for careful analysis of individual reasoning and input and an impartial
way for the group members to reduce individual preferences to a group choice
[HAGM88b]

Group Decision Theory attempts to enable all individuals of a group to be active participants

in the decision process. Group Decision Support Systems (GDSS) are models utilizing comput-

ers to aid the group decision process. GDSS's can operate on three different levels: communi-

cation, group decision modeling, and machine-induced meeting patterning.

Examples of these levels are contained in Colab, a computer-supported meeting setting being

developed at Xerox PARC [STEF87]. In this setting the networked computers are used to imi-

tate the functions of a blackboard in a meeting, but here each participant can figuratively

stand at the blackboard and input ideas that all can see on individual terminals (GDSS com-

munication level). Another software process in Colab, Cognoter, imitates a meeting style for

collaborative writing by organizing a meeting into three distinct phases~"brainstorming", "or-

ganizing", and "evaluation"-each of which gives emphasis to a different set of activities

(GDSS meeting patterning). The group decision modeling level is part of a Small Group Deci-

5-

sion Support System (SGDSS) developed by Hagmann. The PREFER tool is based on the

SGDSS model, and is a distributed voting server.

One scenario of PREFER usage is to follow an idea-presentation meeting with time for indivi-

dual research on the alternatives selected at that meeting. A local area network can be used

by members of the group to enter individual research which can be reviewed by everyone in

the group before voting. Thus the group ordering of the preferences can be done outside of a

face-to-face meeting resulting in better utilisation of the time of management personnel.

Another style of usage is to add PREFER to Colab. Here PREFER is a tool of the meeting

environment itself. This decision tool is used to narrow brainstormed ideas into alternatives

for final consideration, and then to form the final ordering of the alternatives selected.

PREFER might be particularly beneficial within meetings to modify some of the group dynam-

ic problems such as peer pressure, group think, and disruptive interpersonal relationships.

Each individual may gain some freedom of expression which results in more accurate evalua-

tion of personal preferences.

Still another PREFER usage is in polling. For example, an individual may have several ideas

that seem worthy of a group discussion, but does not want to spend a great deal of time in get-

ting background material until there is some indication of interest. The individual can prepare

a sketchy outline of alternatives and ask the group to indicated interest (take a "straw vote").

With indication of interest the individual can pursue gathering information about the most po-

pular ideas before the next face-to-face meeting.

The SGDSS model is described in more detail in the next chapter.

CHAPTER II

SMAL1 GROUP DECISION SUPPORT SYSTEM (SGDSS)

In this chapter, the aspects of the SGDSS model which are of importance to this report are dis-

cussed. SGDSS is designed as part of a Local Area Decision Network which would be utilized

in a small management group setting of five to nine individuals. An integral part of this sup-

port system is an algorithm, called the fuzzy binary relation algorithm, which is used to obtain

a group decision from individual opinions. Fuzzy set theory was chosen by Hagmann because

the modeling of a preference relation over a set of alternatives can best be achieved in terms of

fuzzy set theory [HAGM88a]. Hagmann's algorithm is a refinement of the fuzzy binary rela-

tions proposed by Blin and Whinston [BLIN74]. It fits into the decision making process at the

point where several alternatives have been defined and the group wants to order them from

most-preferred to least-preferred. The overall group ordering will be based on the individual

personal preference orderings of the group.

The following excerpts from Hagmann's discussion of the algorithm introduce and define some

of the terminology used in explaining the model:

Using the group decision theory definition (see section 4.2.2), in a decision making
situation we have a finite group of n individuals confronted with a set A of m alterna-
tives over which they are to choose jointly in accordance with their individual opin-
ions These individual opinions are simply assumed to be n linear orderings
(°k)l<k< n

ovet A. Thus the total set of all possible linear orderings forms the sym-
metric group of order m! or a subset thereof [Blin, 1974].

Definition 4.3: Social Preference relation

A social preference relation R is a fuzzy subset of A x A characterized by a member-
ship function ^R :

A X A -. [0,1] which associates with each pair (a,,*) its grade of
membership /^(a,^) in R. [Blin,1974].

-7-

Since the SGDSS has as one of its goals to maximize participation of group members,
not only by counting their votes impartially to reach a group consensus but by letting
them see exactly how the group vote has been computed, ^ has been selected as

the social preference relation to be implemented.

Definition 4.5: q-level set

An Q-level set
(R,) of a fuzzy relation R is a nonfuzzy set in A x A denned by

[Zadeh,1971]:

R„ = { (aj.Hj)
|
/iR(^,aj)>a }

These R„ sets form a nested sequence of nonfuzzy relations with Q1>a2—Rct CR,

The Q.level sets (Def.4.5) can be thought of as "agreement levels" for a group of indi-
viduals. They represent a set of thresholds for the acceptance or rejection of a certain
binary preference at the societal level. As we process the binary preferences through

[HAGM88"i
eVel Wter

'

8°me binary PrefereDCeS beCome no lon«er sociall >' acceptable.

The algorithm can be illustrated in this example where seven individuals order four alterna-

tives (a,b,c,d) in the following way:

individual ordering

#1 0, - {a, b, c, d}

#2 2 - {b, c, d, a}

#3 3
- {d, b, c, a}

#4 O, - {c, a, d, b}

#5 5
- {d, a, c, b}

#6 6 - {c, d, a, b}

#7 7 - {b, d, a, c}

Hagmann's algorithm tallys each vote into a matrix showing the number of times the row

alternative is preferred over the column alternative. If this tally in each cell is divided by the

number of authorized voters, then an "average" is obtained which is the membership function

ft, :
A X A - [0,1]. The average tallies are inserted into another matrix. The total and aver-

age matrices for the example orderings are shown in Figure 2.1.

Alt\Alt: A B C D Alt\All

A: 1 3 2 A:

B: 3 4 3 B:

C: 4 3 4 C:

D: 5 i 3 D:

Final total vote average vote:

(MATRIX 1 in algorithm) (MATRIX 2 in algorithm)

A B C D

0.00 0.57 0.43 0.29

0.43 0.00 0.57 0.43

0.57 0.43 0.00 0.57

0.71 0.57 0.43 0.00

Figure 2.1 The Final Vote Matrix contains a tally of all votes
received. The totals in each cell of the Final Vote Matrix are divided
by the total possible number of votes to obtain the Average Vote
Matrix.

Since a group order is a combination of multiple individual linear orderings, there may be

intransitivity problems where, as in the above example, alternative A is preferred over alterna-

tive D by 29% of the group participants, A is preferred over C by 43% and C is preferred over

D by 57%. Transitively, A would be expected to be preferred over D by 43% of the group. If

A is preferred over D by 29% of the group members, then the sequence of preferences from A

through C to D should not be larger than that amount.

The two top Q-level sets of the above example are shown in Figure 2.2. Hagmann's algorithm

maps this fuzzy social preference onto a nonfuzzy group ordering:

D C A B

The algorithm for this mapping is given in Appendix A, and the calculation of this mapping

for this example is given in Appendix B.

R =.71

Alt\Alt: A B c E

A:

B

C:

D: 1

9-

Ra— .57 (all preferences at or above .57)

Alt\Alt: A B C D

A: i

B: 1

C: i 1

D: l 1

Figure 2.2 The matrix obtained from the a-level set where a = .71
shows that the preference of D over A was the only one that had that
high an a level. The matrix for a = .57 set shows many more alterna-
tive pairs having a .57 (or above) average preference vote.

Hagmann states that two requirements for a Decision Support System to be adopted and to be

used consistently are a) that the model be realistic and b) the results of mathematical calcula-

tions be represented in a straightforward manner.

The usage of a decision making tool will be encouraged when certain criteria are met. The tool

must not be cumbersome to use, because if it has a minimum of things to learn about it, new

users will not be discouraged and occasional users will not feel like new users. The tool should

present the information needed without excessive verbiage that could become monotonous to

frequent users. And finally, the tool should also be readily available and should not require

extensive setup.

Since a user may have several levels of use, the tool should allow the level to be chosen. For

example, a user who has missed a background meeting or may be unfamiliar with the options

being voted upon needs to read full descriptions of the alternatives. Another user who has

fully mvestigated the options already needs only to enter a preference vote. The tool should

serve both users according to their respective needs.

-10-

The tool should allow for a limited amount of user changeability; for example, a user should be

allowed to correct input after making a typing error. The tool should allow for an unlimited

number of "What vote did I enter?" inquiries, and also allow a "I've changed my mind" if the

voting has not been completed.

Users should be able to see how results are obtained so that the results can be verified. This

wdl help build user confidence in the results and will thereby encourage usage of the tool.

Administration of the tool must be clear and functional. If the system presents a "secret bal-

lot" appearance to users, then the confidentiality of the user's vote must be protected within

the expected sense. Setup of a particular voting situation must not require much time. Lines

of authority must be clear as to who can enter options, who can change options, who can see a

particular vote history (confidentiality issue), who will be allowed to vote (security considera-

tion), and who can determine the voting period.

The tool should allow multiple voting situations to exist on a LAN at one time. Different

groups may be voting, or the same group may be voting on several separate sets of options.

Each instance of a vote must have its own alternative list, alternative discussion files, voter list

and vote history. If the modularity of object based programming can be maintained then each

voting object can have an independence, compactness, and functionality that would be most

beneficial.

The design of such a tool will be discussed in the next chapter.

CHAPTER III

PREFER TOOL DESIGN

This chapter describes the design of the PREFER tool based on the SGDSS model described in

the previous chapter. The design was decomposed into four software modules which create

separate processes that interact with each other over the network. Figure 3.1 shows the distri-

bution of the modules in the LAN and Figures 3.2 through 3.7 show the data flow in this im-

plementation.

User's Machine Host Machine

PREFER
create

module

|
user

|

1 initiator 1 T>

1

^7 4T~ 1
PREFER

vote module

(generic)

A N
PREFER

server module
(subject specific)

^^ subject
filessi V

I^
t

|\
PREFER

file server
(generic)

A
V \l

Figure 3.1 Illustration of the distribution of PREFER Tool modules
among the Host computer and the User computers on a LAN

An executable voter's PREFER Interface module resides on each computer in the network.

This user interface module is generic and can be used by anyone to interact with any instance

of the PREFER Server. The source code for the PREFER Server module, the executable

PREFER File Server module, and the executable PREFER Setup module can be hosted by

any computer which is chosen to be a server.

12

- eg
o

w
CD

ci>

r,

n o
JC

n
r ra

5
o 3

CO •*

o o

T3
a>
.c
V)

vote

tally

and

analysis

c

c

f

A

o

-C o

*- ra
n! n

= o
ccc
> «-

ra

0)

S3e

CO co3"

§-*
o o w

>>tr

Is!

>>co

— UIO

-ceo
coow
Sf

o
E°
O Q.

CD
O
O E §

S

DC
LU
>
LU
CO

oc
LU
U.
LU
CC
a.

E
ra

oi
ra

3
o

CD

CD

00

LU
rr
o.

CNI

CO

o

D)

LL

O
<

13

co CO CO "*

o o o o

** "D
0) — D!

CO—
CO E CM
u.

c o
•*- CO CD >v CDO Q

~0 Q)

*-

CO

o

o
2 >

O to -»

o
To

.c

o

J*:

s
c
o
o

reate

server

ocess

Q-
O

(0
3

Q.
O

o © £.
s

CO to w *- *- ^
4!". ^ "'

/ i
<r

(0o =
C 3
3 <0

O CD

c
CD

E
E

cr

_a

3
c 3

c

c

o
>

>>

o
CD c u — o

ti-
to a.

a
<D CD O o er

c
o
-> z

CO

CD

>

a.
o

UJ
-4
D
Z
<

mine

ice red

>

IT

iB <- <"
i 0) CD

a
3

X

OJ

a> to T3
(0

CO

k

^. o
^_

^f S.

o fc_

> o

a>
*_

o u o

<D in

>.

,-

<£v

a
co 1— CO
co o c;
0) o) t; o
C <o ra a.
o E en
1-

CDa C)

5 cj

9-m

m EI CD

° s

g 2
CO CO
Q. "D
x »_
<u £
o e

E co

T3 LLI

J a.—
cu

CO £

iZ

14

0)

'to

:e

files

group

iring

>. 0)

2 3
to U)

2 £

CO
O co

c
< _~^

to

CD
>

CD i_ CO— "D -& c W
11 8.s nali

inea
tern 0= O

6 6
Q. Q.

CO
O)

>-iI

than

s

left,

refere

o

ma o — co =i 3 o o 2 CO *""

CO C -t-
CD O

I 1- E
CD COin

tn - a-

05 cd late
prev

ing

DC
o 5 21

> .2
"DCD Q.

-JJ cl) o
«=-sg| elimii

that
order

_l
<
CO

^ 3
o

CO
Tfr <

CD

°

? .a,
.9 "D

c ™< ra 8
a. s

"o 2 X <D

'5 « «. <°

'—

'

<D CO

incrementally

b

a

matrix,

adding

preferences

for

pairs

beginning

the

top

of

order

list

until

at

leas

1/2

of

the

pairs

included

(and

all

pairs

with

same

preferences

are

included)

CD

CO

o cc
LLI

E Lf.

>-
_l
<
z
<

CO UJ

& £
.2
TO CD

3^
J o

CM >
_l

5 o
CO o

_l Q J3

<
HO)

CD .S o
§1 a >

UJ
1-

a;

8 S 2^ 5
o 5) o S

O> CD
la

Q. CD > > <B 3
"O CO CD 9— o c

3 eg I {

D)

ll

>- .. <d

a> S2 <d cd ©T3 •= "D -t; 2-
in

»- co c: o q_ <
/>.

CD

O) X
10 - _
!r <"
CD ~-

nj> O
CO > r

15

CM co tj- IT) CD r-

o C3 C3 C3 O O o

S
CO
3

cd

>
a?
co

s

to o
o ^ o

CD
CD
CO

CD
en in

E

en

in

O

3
o O

E E

<5

to en
CD ,_

> CD
CD c *- to

cd in o 0) 3 B
co

QC
LLI

LL
LU
C
0.

E

D
0)

N

as
Q
O

i- CO E
E

COrJ^
JA Z 8

i—

OC
3

o
a>

CO
HI
O.> CD

= § ic 2 «
.2 — CC

O cu b O
en

o
C

0)D
CO a.

E asm ra

I
c LU a> oc
'T CD CC o UJ
-2£

O
$
x:
o

CO O) 0-
"5

o
3
en
3

H
O
>4k /i.

T3
CD t%-
N

| g£ 3
3

CM <

f 4 \

1

_ ® i_

O O) <D

3 (1 >C to
!r.

w Jg (0

8 E 2 C\J o
t_ o o m

i*^
r*-

•D w CD

> ® c
to C

I

-g
CD

«= o
k> CO O
CD £> fee to £|—

js"5

CD CO

8 2
.. CO ffl

> 7L ® •-

a>
2E
3 *-

a> o B) CD C CD —
(0 CO >

>

CD .5

E
2

D

o

CO

o

a
o

s
o
>
a:
LU
LL
LU
CC
Cl-

io

CO

3

m I
s- w

o o o lo
o

to
o

a in> o
jc £ sC CO £

Q — S a
(0
3

a>
* 0)

o CO

o o
o
to
3

OJ a £

n

in c

A E
O Q. E
3
o

oo

&
CD CD

z
CD

OB

o

C7
0)
CO

to

o

CD
CO

0)

CD

CD O
"2 5 CD

ate
send

ment

CO CO

E
3

CO O
c o —
CO (0 ^ E-g E DC2 o E * -C CD o c o LU

cr
</.

E
CO
O)
CO

o>

to
CD
3
O"

CD
nj o

3* ^ A A
w E c CD

LU
3
cr

c
g
TO

CD
CO

^ *
>
DC
III

1

3

c
o

Qo >

i c
5
E
E
o

tn

w o E o >
3

tabl noth mmi

nk

f
esei

o
o » o
co

E

X
CD

g CM

a> a> o
CD « >

CO

CO CO o = —
CD O ^
A. A

3
>

4
T^

X
0)

r </>

C
« 2

"tt to tu i=
O Q 3
=> (5)

£; as

O" CD
CD —

« to

c «
o g
o b m

y-
ffi

A\

!_

a> H
> CD

o 2 ©
to cWo E

E

22 O CO

o >
> *•-

o
a

j J to 3

o £?

S E
-3 2

CD CO

£ V
5 »»|
a> •«-

£ fl

O 13

c to

o to

CO 8

M- CO
o 3
E m
(0 o
o>>

LU
•o

S

g °-

CD

CO

o
3

17

o o o

(O
O

CD
en
3

CD

CD

2 C/>

d) LU
(/) Li.

E LU

®
cr
Q_

*= co
W CO o

T3
o mjz

C o a
CO ^ ra

E^
IB

I

'
cr
LU
>T3

IB ^J
ID <= oc

pen
ues file

> CD

S E » LU
CO

LU
_l

CO

o cr
CD

CO
s 1

>v* ^.^
,

LL

CD

I

CD
c Q.

I*
2. a
CD <2

CM T3 E

t
Z^

= o>
.2 c $
ra <u o
w to ™ O

^ IB = O
4.pw

^_
CD 03 CD

S in r= c
0> IB —
en

if
ID E

to
CD i_
=> CD

E M
E
~

o
LU
Li_ ill | O

IT o
cr 8

u
>

E
ra

5)

cr
LU
LL
LU
cr
a.

3

- 18-

An initiator who wants to create a voting session must log on the host computer and run the

PREFER setup module which will prompt for information needed to set up a specific instance

server module. The information needed includes topic, number of alternatives, statement of

each alternative, number of authorized voters and login name of each, brief synopsis of each al-

ternative, and final date for voting.

The PREFER setup module takes the "topic" input information and creates a server process

named "topic" and the following files:

subject.

h

- temporarily holds specifications for instance of server
"topic'Uog - initially holds only a copy of this topic's subject.h file

"topic".author - holds the login name, electronic mail computer address,
and an assigned key for each authorized voter

"topic". history - holds the vote history

"topic"jdt.list - the alternatives listed for the screen menu
"topic"_back.A, ...

, "topic"_back.I

- background files for each alternative (maximum of 9)

After the setup has been completed successfully, mail is generated to each authorized voter

giving the information that is needed to reach the PREFER Server. Users are expected to ex-

tract the command line from the mail message and create their own command files. The com-

mand line for the PREFER interface module contains the following information:

PREFER topicname hostmachine socket# voter id#

hostmachine is where the topicname server process resides
socket* is the communications link for this server on its hostmachine
voter_id# is a unique number assigned to the voter

Voting is closed when all voters have entered a vote or when the final date for voting is past.

When the server process is no longer needed, the creator can remove it by using the normal

voter interface. The server recognizes its creator through the key number and the creator is

19-

asked if the server should be removed. If the creator responds affirmatively, the server ap-

pends all its associated files to an archival file, "topic". log, and terminates its own operation.

There are four separate source programs:

1. "PREFER.create.c" creates all instances of the PREFER server. This program

prompts the user who is creating a voting server for information needed to

make the process and necessary support files. It creates all support files, in-

cluding "subject. h" before initiating the compilation of "PREFER.serverx".

2. "PREFER.server.c" is generic source code which when compiled uses the specific

information supplied in the "subject. h" file to create the topic voting server

process.

3. "PREFER.fileserver.c" is a generic file server which acts as a transmitter of

resource files to designated voters. The voting server creates a specific file

server whenever a voter requests to append comments to background files or

to receive information held in files on the server's computer.

4. "PREFER.vote. c", a voter's interface program, acts as the interface between voters

and the vote server. Arguments given on the command line must supply the

information needed to connect to the proper server process.

Source code for each of these four modules is given in Appendices E through H, respectively.

Specific suggestions for installation are given in Appendix D.

Chapter four contains and explains a simulated example of PREFER as used in a specific small

group decision process.

CHAPTER IV

PREFER TOOL SAMPLE USAGE

The following simulated example is developed from a voting situation in the Manhattan, Kan-

sas school board at the time this implementation was designed. Hopefully, by examining the

treatment of this topic, readers can see applications to situations familiar to them. Unfor-

tunately, computers and computer networks are not part of the support environment available

to most school boards, but perhaps some day this will change.

The school board is considering the overcrowding in several of the district school buildings.

After much discussion and community input seven possible solutions are proposed and the

school board must choose among them. The president of the school board initiates the voting

object by typing "PREFER.create" to invoke a process which interactively leads the president

through the setup procedure. A partial transcript of the setup session for this example is con-

tained in Appendix C. Figure 4.1 on the next page shows the list as PREFER displays it on

the terminals.

21-

USD383 School Buildings:

A: Build a new school

B: Rent additional space as needed for overcrowded conditions

C: Redraw the school attendance boundaries

D: Add classroom space to existing school buildings

E: Choose specific groups of students to move out of crowded schools

F: Create split shifts to use the existing buildings more hours

G: Do nothing about current over-crowding at Roosevelt & Bluemont

Choose: D(descriptions), V(vote), P(pro/con comments),
or Q(quit to Op.Sys.) - (J

Figure 4.1 Sample terminal display of alternatives and choices avail-

able to users

The mail message which each school board member receives after the president creates the

vote server process looks like this:

JDoe, you are asked to consider the following topic:

USD383 school buildings.

A PREFER server has been set up and you are asked to

use the following command line to access it:

PREFER school ksuvaxl 3000 1294

For your convenience, please build a executable file with

this line. A suitable name for this file is "school".

After creating the file use,

chmod 700 school

so that only you can use it.

Now when JDoe types "school", the PREFER interface process begins by establishing a socket

connection to the socket link number 3000 on the ksuvaxl, and then prompts for JDoe's login

22-

narae. This login name and the argument key "1294" will be communicated to the PREFER

"school" server on the ksuvaxl. JDoe must use the key given, "1294", to be recognized as an

authorized voter. If the server process detects that she is not an authorized voter for this

topic, no additional information is returned and the communication link between the two

processes will be broken. But if JDoe is verified to be an authorized voter, the PREFER

server sends the number of alternatives, a list of the alternatives, and the current status of the

vote back to her interface process.

The interface process displays this list of alternatives on J Doe's terminal screen, so she can

choose among the options available. When she chooses to see background material, the back-

ground file on the chosen alternative is sent and stored locally; the Unix function "more" pro-

vides a flexible way for her to read such information. After "more" is exited, the file is

removed from the local directory, so she is not aware that it resided temporarily on her

machine. When finished with the background information, she again sees the original alterna-

tive list and options. She can choose to add a comment to any of the alternative background

files. Comments are handled in a similar way.

If JDoe requests to vote, the following prompt appears below the menu:

Type in the alternative letters in the order of your preference.

Please use all letters A through G:

The process makes checks for possible errors in the input, such as duplications or unacceptable

letters, and prompts the user regarding the error and asks the input to be repeated. Possible

error prompts are:

Duplicate B entry, please reenter ordering:

Entry Z out of range, please reenter ordering:

23-

If she has voted previously the prompt is somewhat different:

You have already voted. Your previous vote: A B C F D E G
Do you want to change your vote. (Y/N)

Since the following explanations would be excessively long with seven alternatives, the remain-

ing discussion will be based upon a reduced set of only the first three alternatives.

After all voting has been completed, a different prompt appears at the end of the alternative

listing as shown in Figure 4.2.

USD383 School Buildings:

(subset of original seven)

A: Build a new school

B: Rent additional space as needed for overcrowded conditions

C: Redraw the school attendance boundaries

The voting has been completed: group preference order - B C A
your vote -ABC

Do you want to see the group preference analysis? (Y/N)

Figure 4.2 Sample terminal display of alternatives and
summary of results of completed voting

In this example, the five voters gave the following preference orderings-
voter order

#1 ABC
#2 ABC
#3 B C A
#1 B C A
#5 CAB

Note that in this set of preferences there is a group circular preference: A is preferred over B,

B is preferred over C, and C is preferred over A.

24 -

If the group preference analysis is requested, the calculations are displayed to users as shown

iu figure 4.3. This analysis file is handled in the same manner as background files.

SERVER OUTPUT
of Vote Analysis

In the vote matrix, each position shows the number of voters who
prefer the row alternative over the column alternative. The total
vote looks like this:

AltVlt: ABC
A: 3 2

B: 2 4

C: 3 10
average vote:

,\\lt: A 1! c

A: 0.00 0.60 0.40

B: 0.40 0.00 (I SI]

C: 0.60 0.20 0.00

OBTAIN GROUP PREFERENCE

3 non-zero matrix positions are needed to achiev<

a group preference order, currently have so:

Insert preference level 1.00

Insert preference level 0.80

Insert preference level 0.60

Alt\Alt: ABC
A: 0.00 0.60 0.00

B: 0.00 0.00 0.80

C: 0.60 0.00 0.00

25-

Total preferences: B > A (0.80 > 0.60)

Eliminate any preference for A over B:

since MATRIX[A][B] = 0.60, zero that position.

3 non-zero matrix positions are needed to achieve
a group preference order, currently have 2 so:

Insert preference level 0.40

AltWt:

A.

B:

C:

A

0.00

0.40

B

0.00

0.00

0.60 0.00

c

0.40

o.so

0.00

Total preferences: C > A (0.60 > 0.40)
Eliminate any preference for A over C:
since MATRIX[A][q = 0.40, zero that position.

Alt\Alt: A B c

A: 0.00 0.00 0.00

B: 0.40 0.00 0.80

C: 0.60 0.00 0.00

DISPLAY RESULTS:

MATRIX array: Totals:

Alt\Alt: A B C sums entries

B: 0.40 0.00 0.80 : 1.20 2

C: 0.60 (J. 00 0.00 : 0.00 1

A: 0.00 0.00 0.00 : 0.00

Group preference: B C A

Figure 4.3 Complete vote analysis of suggested sample vote i

created by the PREFER Tool

26-

Since renting of additional space was the most popular option from the first decision, another

PREFER voting object can be set up easily with all rental possibilities being listed as the

alternatives.

The ease of using voting objects should make the mechanics of their use become automatic so

that attention can be focused on the decisions being made. PREFER should help the group

have equal access to any research being done. Also pro and con comments can be entered

without others knowing exactly who held a particular opinion. This would allow arguments for

one solution or another to stand on merit alone.

The environment where PREFER was developed and tested is explained in the next chapter.

CHAPTER V

PREFER TOOL SPECIFICS Sc EVALUATION

SPECIFICS

PREFER was tested on a local area network at Kansas State University which included a DEC

VAX 11/780, a Harris HCX-9, two AT&T 3B15's, and numerous AT&T 3B2/400's. The

machines were interconnected with Ethernet hardware and TCP/IP software protocol. All of

the machines were running under some version of the UNIX operating system. The program

modules were written in the C programming language for ease of interfacing with the operating

systems and TCP/IP. TCP/IP sockets were used for inter-process communication. Any one of

the machines could have been used as the server processor, and users could contact the server

from any machine on the network.

Certain programming considerations affected the resulting programs. Since human discrimma-

tion limitations make ordering of items more and more difficult as the number of items

increases, the number of alternatives to be considered at any one time has an upper limit of

nine. This limitation also facilitates the listing of all options in one screen presentation.

The list, description, and support information files must all reside on the server machine.

They are not distributed for local machine storage to avoid duplication of support files and to

facilitate the deletion of old files once a voting instance becomes obsolete.

28-

The creator of voting servers must know the basic information about the authorized voters:

their login names and electronic mail addresses. A small amount of security is provided by the

fact that each voter is given a key number which must be used when voting; however, this is

not a major security check for environments where confidentiality is highly critical. A message

is mailed electronically to each voter giving the necessary information on how to access the

voting object. This message contains the command which the voter must use, and the message

suggests that this command line be extracted from the mail message and made into an execut-

able file. In this way the need to memorize a socket number and a key is eliminated.

Care must be taken when putting the compiled code files on the system in order to give users

execution rights, but to prevent anyone and everyone from having access to the voter authori-

zation and vote history files. The system administrator should be consulted on where to store

files and what the access modes should be for both subdirectories and files. What was done for

this implementation is discussed in Appendix D.

PREFER TOOL EVALUATION

This implementation meets the criteria of ease of use by prompting for user input. Each

prompt indicates acceptable responses, and when an unrecognizable input is entered, a bell

rings to draw the user's attention to re-enter the response. Most information displayed to the

user is specific to that particular voting instance. There are no large generic menus-only brief

prompts at the bottom of topic-related listings.

29-

Server connections are brief because all are based on exchange of a few bytes of information.

The longest exchange between a user and the server occurs when the alternate list is sent (no

more than about 2000 bytes). The communication link is never delayed by user response time

because user input is done outside of connection time. Although TCP/IP protocol may queue

up to five users for communication over one socket, the wait time should be insignificant for

most users in most systems.

Prompts allow users to proceed straight to a vote or to ask for available background on the

alternatives. When a user requests to see background material or to append a comment to

background files, the server sets up a secondary process with a dedicated socket connection

between the host machine and the user's machine for file transfer. The number of sockets the

host machine can establish at one time is limited, but this should not be a problem when back-

ground material is accessed by self-scheduled users.

When a vote is completed, users see the resulting group ordering and can ask for detailed

analysis of the results if there is interest. The analysis, which shows in a step-by-step fashion

how the final group preference was derived, can help build confidence in users. Thus, users can

utilize the PREFER tool with several levels of feedback according to need.

PREFER allows users to check a vote at several stages. It asks for a verification of the vote

after it is entered to allow users to catch typing errors. Until all voting is finished, users may

choose to change a previously entered vote. After all voters have voted or the voting deadline

arrives, the server uses Hagmann's algorithm to determine the group preference if one exists.

If invoked after the voting is finished, the server displays the group preference and the inquir-

ing user's preference and asks if the vote analysis should be displayed. The process then

-30-

returns users to the operating system. Users can choose to return to the operating system at

several points in the program.

CHAPTER VI

RESULTS AND FUTURE CONSIDERATIONS

A summary of the contributions of this implementation are given in Figure 6.1. The result was

the creation of PREFER, a voting tool, which can be used for reaching group decisions.

* refined Hagmann's algorithm

* designed a system that embodies the Hagmann algorithm and the goals of the
SGDSS model proposed by Hagmann

* designed components that would allow a voting system to be distributed

* designed a voter serving "object" that can be used alone or incorporated into a more
extensive implementation of Hagmann's SGDSS model

* implemented and tested this design in a LAN environment

Figure 6.1 Contributions made by this report and implementation

The SGDSS model looks very attractive for management decisions that need to be made by

widely separated individuals who do not have the ability to hold a face-to-face meeting. If

PREFER were considered for a wide area network, more attention would need to be given to

security considerations. Encrypting of all transmitted messages and stored files should be con-

sidered even in a LAN where security is important.

Prefer could be used to help create a whole group decision support system which can then be

studied to see how such an environment affects the decision making process. The existence of

this tool can enable researchers to analyze the dynamics of a changed pattern of arriving at

decisions by examining such questions as those given in Figure 6.2.

32-

Will peer pressure take different forms?

Will members of a group find different ways to communicate
their desire to influence the vote of other persons, or let their
coworkers know that "I voted with you"?

Will usually quiet members of a group have more influence on
the group decision?

Will such an environment affect the decisions that are made:
are the decisions more or less risk taking?.

Will meetings become more productive?

Will long face-to-face meetings become less necessary?

Will this tool even be accepted-will managers be willing to
give up any of their perceived "power" to influence others or
sway a group decision?

Figure 6.2 The type of voting analysis that might be made
possible through the use of the PREFER Tool.

This is only one small tool and its use is somewhat dependent on a decision making environ-

ment like "Colab" where the whole meeting process can be aided with computer tools. For

example, if after the group chooses its alternatives, it would be helpful if the voting system

could analyze the impact of each alternative decision through access to organizational data-

bases. If the "what if" scenarios could be projected and a synopsis of the impact of that choice

could be automatically generated for inclusion in the background information displayed,

PREFER would be more valuable to the user.

Just as electronic mail has enhanced intra-office communications, perhaps PREFER will brii

computer support to groups of users who need to make major decisions.

BIBLIOGRAPHY

[BLIN74] Blin, J. M. and A. B. Whinston. "Fuzzy Sets and Social Choice." Journal of
Cybernetics

, Vol. 3, Nunber 4, 1974.

[DEWE10] Dewey, John. How We Think
, D. C. Heath k Co., Boston, 1910, pp. 68-78.

[EWBAola] Ewbank, Henry Lee and J. Jeffery Auer. Discussion and Debate , 2nd edition
Appleton-Century-Crofts, Inc., New York, 1951.

[E\VBA51b] ibid., p. 223.

[HAGM88a] Hagmann, Constanza. "An Object Oriented Design For Local Area Decision Net-
work (LADN) Small Group Decision Support Systems", Unpublished Doctoral
Dissertation, Kansas State University, 1988.

[HAGM88b] ibid., p.86.

[HAGM88c] ibid., pp. 95-100.

[STEF87] Stefik, Masrik, et al. "Beyond the Chalkboard: computer support for collabora-
tion and Problem Solving In Meetings", Communications of the ACM Vol
30, Number 1, January, 1987, pp. 32-47.

APPENDIX A

Hagmann's Algorithm

1. Create 2 initial matrices:

Matrixl -» elements in this matrix are the number of votes for each pair taken from
all individual { h }.

Matrix2 —» elements in this matrix are the

/R, (ai>aj) relation components (i.e., l/nNtoy)).

Matrixl and Matrix2 are filled in as votes come in but group members would not be
able to see them.

When all votes are in and/or computation date and time arrives, then if no 50/50 split
in voting has occurred,

2. R„-level sets are created by sorting the ^ (a^) relation values in descending order.

3. Create one additional matrix:

Matrix3 -. elements in this matrix are all the binary pairs selected from the R„ sets
above that have been added at every stage of the computation. This
matrix, in interaction with its related total columns, helps in finding
and eliminating pairs that cause intransitivity....

Total and Entries Columns: The "Entries" column keeps count of the number of
entries in each row of matrix3; the "Total" column adds up the a
values for each row in matrix3.

The computation of the linear ordering is as follows: in order to maximize

EWl(ai,aj),

(ai.a>)fl

The Ra sets are examined from the highest a value to the lowest.
Pairs at each R^-level are included in matrix3 as follows:

4. Start with first binary pair found at highest a-level .

4.1 Repeat until final group ordering obtained:

Present a -level s present (a,,
a,) pair's a -level.

4.2 Do while present (a,,aj) pair's a-level = present a-Ievel
Place (aj.a,) pair in Matrix3; add 1 to entries column for a, ; add a to Total
column for a, .

Present (i|,aj
) pair — next (a,,aj) pair,

enddo

Compute summation of total number of entries in matrix3;

35-

4.3 If total number of entries in matrix3 ^ (number of alternatives * (number of
alternatives- 1)/2), sort total and entries columns in descending order, accord-
ing to total column figures {Note: this allows for the maximization of the
total fuzzy "votes" that each alternative gets from participants}.

4.3.1 If entries column is not in strict descending order from (number of alterna-
tives - 1) to (i.e., each row is one less than the previous one), a total
strict linear order does not exist. Then,

Start with highest ranked alternative (the one with the largest number in
Totals column).

Do while not last alternative.

Examine this alternative (called HR-for Highest Ranked-from here
on) against next alternative down in sequence (called LR for Lower
Ranked—from here on).

Do while any LR left for this alternative:

If totals for HR and LR are the same, and matrix3 shows a
preference for LR over HR (LR.HR) then,

If (LR.HR) is higher than (HR.LR) then delete (HR.LR)
preference pair from matrix3 and total and entries

columns; re-sort;

If order changed, make the alternative that is

now LR the next one to be checked against

HR;

Endif

Endif

Else,

If (total for HR) > (total for LR) and there is a (LR.HR)
preference pair in matrix3, then delete that preference
from matrix3 and corresponding total and entries
columns; re-sort.

If order changed, make the alternative that is now LR
the next one to be checked against HR-

Endif

Endif

Endif

go to next LR
Enddo

Go to next HR alternative

Enddo
Endif

Endif

If summation of number of entries in matrix3 = (number of alternatives * (number
of alternatives-l)/2) and "number of entries" column is in strict descending
order, then ordering is complete.

Endif

End repeat.

APPENDIX B

PREFER's Application of Hagmaiin's Algoritlun

When Hagmann's algorithm is applied to the example, the process depicted below occurs:

OBTAIN GROUP PREFERENCE

6 non-zero matrix positions are needed to achieve
a group preference order, currently have so:

Insert preference level 1.00

Insert preference level 0.71

Insert preference level 0.57

Alt\Alt: A B C D

A: 0.00 0.57 0.00 0.00

B: 0.00 0.00 0.57 0.00

C: 0.57 0.00 0.00 0.57

D: 0.71 0.57 0.00 0.00

Total preferences: D > C (1.29 > 1.14)
Eliminate any preference for C over D:
since MATRIX[C][D] = 0.57, zero that position.

Total preferences: C = B (0.57 = 0.57)
so check the pairings of these alternatives:

since MATRIX[B][C] > MATRIX[C][B] (0.57 > 0.00),
zero MATRIX[C][B] if not already zero.

6 non-zero matrix positions are needed to achieve
a group preference order, currently have 5 so:

Insert preference level 0.43

Alt\Alt: A B C D

A: 0.00 0.57 0.43 0.00

B: 0.43 0.00 0.57 0.43

C: 0.57 0.43 0.00 0.00

D: 0.71 0.57 0.43 0.00

-37-

Total preferences: D > B (1.71 > 1.43)

Eliminate any preference for B over D:

since MATRIX[B][D] = 0.43, zero that position.

Total preferences: B = A (1.00 = 1.00)

so check the pairings of these alternatives:

since MATRIX[A][B] > MATRJX[B][A] (0.57 > 0.43),
zero MATRJX[B][A] if not already zero.

Alt\Alt: A B C D

A: 0.00 0.57 0.43 0.00

B: 0.00 0.00 0.57 0.00

C: 0.57 0.43 0.00 0.00

D: 0.71 0.57 0.43 0.00

Total preferences: A = C (1.00 = 1.00)

so check the pairings of these alternatives:

since MATRJX[q[A] > MATRIX[A][C] (0.57 > 0.43),
zero MATRIX[A][C] if not already zero.

Alt\Alt: A B C D

A: 0.00 0.57 0.00 0.00

B: 0.00 0.00 0.57 0.00

C: 0.57 0.43 0.00 0.00

D: 0.71 0.57 0.43 0.00

Total preferences: C>B (1.00 > 0.57)
Eliminate any preference for B over C:

since MATRIX[BJ[C] = 0.57, zero that position.

DISPLAY RESULTS:

MATRIX array: Totals:

Alt\Alt: A B C D sums entries

D: 0.71 0.57 0.43 0.00 : 1.71 3

C: 0.57 0.43 0.00 0.00 : 1.00 2

A: 0.00 0.57 0.00 0.00 : 0.57 1

B: 0.00 0.00 0.00 0.00 : 0.00

Group preference: D C A B

APPENDIX C

Example Setup Using PREFER.create

The following is a partial transcript from the setup session for the school board simulated
example: (user input is underlined and inserted editorial comments are in parentheses)

What is the title of this discussion topic?

School Crowding

What is a one word description of the subject? school

How many voters are there? 5

How many alternatives? 7

Enter the last day votes are allowed (YYMMDD): 881001

You will be building the "menu" that all voters will see. Each alternative should be described
in one line:

School Crowding ALTERNATIVES

A: Build a new school

B: Rent additional spaceas needed for overcrowded conditions

C: Redraw the school attendance boundaries

D: Add classroom space to existing school buildings

E: Choose specific groups of students to move out of crowded schools

F: Create split shifts to use the existing buildings more hours

G: Do nothing about current over-crowding at Roosevelt fc Bluemont

The following menu will be displayed:

(the alternatives are repeated here as they will appear so that the user can verify them)

-40-

Enter the letter of any description you would like to change.
Enter zero if the menu is okay.

creating hie schoolback.A

The background file will be opened for you to insert the synopsis of the alternative (using 'vi').

Press any key to continue.

(the file vi enters already contains:)

School Crowding Solutions:

ALTERNATIVE BACKGROUND
A: Build a new school

SYNOPSIS:

COMMENTS (pro/con):

(continues after user exits vi) _

creating file examback.B

The background file will be opened for you to insert the synopsis of the alternative (using
'

Press any key to continue.

(the file vi enters already contains:
)

School Crowding Solutions:

ALTERNATIVE BACKGROUND
B: Rent a building for all sixth graders for a temporary period

SYNOPSIS:

COMMENTS (pro/con):

(
e'c. until all background files have been opened)

-41-

You are setting up a vote server. Please enter your
login name and host computer:

Your login name: RBoss

computer name: ksuvaxl

Please enter the login name and computer mail address
of everyone who is authorized to vote on this topic.

voter #1 (login name): ADall
computer name: phobos

voter #2 (login name): JDoe
computer name: Harris

(etc. until all voter information has been entered)

You have entered the following information:

voter e-mail addr

1 ADall phobos
2 JDoe harris

3 PBuck echo
4 RBoss ksuvaxl

5 BNice deimos

Enter the number of any voter information you would like
to change. Enter zero if the list is okay.

WAIT WHILE PREFER COMPILES 'school' VOTING OBJECT

ENABLE 'school' VOTING OBJECT

Socket has port #3000

Sent mail to ADall@phobos
Sent mail to JDoe@harris
Sent mail to PBuck@echo
Sent mail to RBossOksuvaxl
Sent mail to BNice@deimos

You have created school voting object and informed the i

APPENDIX D

Installing PREFER In a LAN with Unix Operating Systems

A directory should be established to hold all of the files related to PREFER's performance.

This directory should be owned by the manager of the PREFER system, and this individual

would be the only one to have direct access to the voting objects and related support files.

By placing command files in a directory that is commonly in user's .login path specification,

access to PREFER can be made by simply typing the command file name. The system on the

KSU network is in a personal account so users give the full pathname when invoking the com-

mand files.

The following is the command file (PREFER) which initiates a voting session:

#!/bin/csh

clear
run under c shell

mesS n # users can't read owner's msgs
nancy/PREFERfiles/PREFER.vote.x $1 $2 $3 S4 # topic host socket* userid

clear

mesg y # turn messages back on

The following is the command file (PREFER.create) which initiates a voting server creation:

#!/bin/csh

nKSS n # outside users can't get owner's msgs
chdir /usrb/nancy/PREFERfiles # directory where all PREFER activity is kept
clear

PREFER.create.x

chdir /usrb/nancy

mes8 y # turn messages back on for owner

-43-

Since the voting server's history and authorization files should not be available for anyone to

browse, the following listings of directories show access modes that are used in this setup:

Access mode
U G O

Command Files:

-rwxr-xr-x

-rwsr-sr-x

nancy

nancy

nancy

nancy

size filename

325

554

PREFER
PREFER.create

Directory:

drwxrwxrwx

Files:

-rwsr-sr-x

-rwxr-xr-x

drwxrwxr—

Application

Files:

-rwx

-rw

-rw

-rw

-rw

-rw

-rw

-rw

-rw

-rw

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

nancy nancy

1536 PREFERMes

17676 PREFER.create.c

34816 PREFER.create.x

8755 PREFER.fileserver.c

41984 PREFER.fileserver.x

39487 PREFER.server.c

26873 PREFER.vote.c
43008 PREFER.vote.x

512 expired

54272 school

144 school, author

154 school.history

358 school.log

1624 school-results

201 school alt. list

1374 school back.

A

1729 school back.B

1289 school back.C

343 subject.

h

APPENDIX E

PREFER.create.c Source Program

This program was written as part of the implementation of a
Small Group Decision Support System designed by C. Hagmann.
It implements a distributed voting server called PREFER. The
programming was done by Nancy Calhoun as part of a Master's
Report project in the summer of 1988.

This is the source file for the PREFERcreate module. It is used
to set up all instances of the voting server. This program prompts
the user who is creating a server for information needed to make
the process and necessary support files. It creates all support
files, including "subject.h" before initiating the compilation
of'PREFER.server.c".

#include <stdio.h>

#include <strings.h>

#include <ctype.h>

#include <sys/types.h>

#include <sys/time.h>

#include <sys/wait.h>

/* system dependent definitions

#define HARRISdir "/u/grads/ms/nancy/"
#define VAXJBdir "/usrb/nancy/"
#define VI "/usr/ucb/vi"
#define CC "/bin/cc"

PREFER create definitions

***************(

/* paths to include files vary so check */
/* the requirements of your system */

/* the system time definitions */

V

I*—
#define FALSE
#define TRUE
#define LOGINlen
#define MAILADDRlen
#define MAXalt
#define MAXFILENAME
#define OKAY

typedef char line[80];

typedef struct verify
{

1

9

9

9

256

99

int votekey;

char user[LOGINlen];

char where[LOGINlen];

/* maximum length of login names */

/* maximum length of email addr. */

/* maximum number of alternatives */
/* maximum filename string length */

/* safe number for a flag */

/* define a line of 80 characters */
/* user information */

/* end of PREFER create definitions */

/* create a flag file to prevent multiple uses of the create module
/* at the same time.

openingf)

{

FILE fd; /* generic file descriptor */

/* check to see if create session should proceed */
if ((fd = fopen("create.busy","r")) != NULL)
{ printf("\n\007 **** PREFER.create is busy at this time,\n");
printf(" please try again later. ****\n");
fclose(fd); /* dose existing create.busy file */
exit(O);

}

else

{ /* Make the create.busy file to prevent two create sessions at once */
if ((fd = fopen("create.busy","w")) == NULL)
{ perror("opening create.busy file");

exit(5);

}

fprintf(fd,"The PREFER create process is currently in use.\n"V
fclose(fd);

}

} /* end of opening */

all purpose closing function so that create.busy will be destroyed

closing(type)

int type;

{

lnt rval
; /* function return value */

if ((rval = unlink("create.busy"))< 0) /* remove create.busy file */
perror("in unlinking create.busy file");

exit(type);

} /* end of closing */

* create the subject. h file that contains the specification for this
* particular voting object

header(title, subject, voters, number)
char *title; /* tit]e of topic under djscussion <y
char 'subject; /* one word for topic */
int *voters; /* number of voters */

-46-

{

hit *number;

{

double deadline;

char *filename[MAXFILENAME];
nit flag = FALSE;
int i;

FILE *lf;

FILE »sf;

i = 0;

syslem("clear");

printf("\Vliat is the title of this discussion topic? \n ");

title[i++] = getchar();

if (title[0) = V)

/* number of alternatives */

/* last day for voting */

/* structure for building filenames */

/* "same name" file descriptor */

/* subject.h file descriptor */

/* discard leftover carriage return */

/* this is the hard way to get a */

/* string, see below for easy way */

do { title[i++] = getcharf);

} while (title[i-l] != '\n')i

title[i-l] = '\0';

,1m

{

printf("\nYV'hat is a one word description of the subject? ");

scanf("9U",subject);

/* check to make sure this name is not already in use */
strcpy(filename,subject);

strcat(filename,".log");

if ((If = fopen(filename,"r")) != NULL)
{ printf("\n\007 *** This word describes an existing voting object, ");

printf("please choose another word.\n");

fclose(lf); /* c IOSe existing .log file */
flag = TRUE;

}

else

{

/* Create the subject. h file for this topic */

sprintf(filename,"%s"
, "subject.h");

if ((sf = fopen(filename,"w")) == NULL)
{ perror("opening subject. h file");

closing(5);

}

flag = FALSE;

}

} while (flag);

printf("\uIIow many voters are there? ");

scanf("%d", voters);

printf("\u How many alternatives? ");

scanf("%d", number);

printf("\nEnter the last day votes are allowed (YYMMDD) "V
9can£("%f,

,&deadline)i

/* Create temporary subject.h file */
fprintf(sf," /» these are the particular subject definitions */\n\n"V
fprintf(sf,"#define title \"%s\" \n",title);

fprintf(sf,"#define subject \
M
%s\"\n",subject);

fprintf(sf,"#define voters %d%25c /* number of voters */\u" 'voters ")•
fpnntf(sf,"#denne n %d%25c /* total number of alternatives */\n",

'number,' ');

fprintf(sf,"#define deadline %.0f%19c/* last day (TOMMDD) for voting /\n"
deadline, ' ');

fclose(sf);

} /* end of header */

creates background files for each alternative

backgrnd(where, subject, title, altern)

in
' "he 'e: /* letter of alternative /

char ^subject;

char 'altera; /* a | ternative description */
char 'title;

'

{

F
u

LE
,^

f;

,
/* background file descriptor */

char *nlename[MAXFILENAME]; /* structure for budding filenames */
!"' ™>

I* function return value */
lnt P1* /* child process id */
union wait status; /* chiW status ,j

static char ntc[MAXalt+l] = {' '.'A'.'B'.'C'/D'/E'.'F'.'G'.'H'.'r};

printf("\n\n");

sprintf(filename,"%s%s%c",subject,"_back.",ntc[where]);

printf("creating file %s\n", filename);

/* Create the background file for this alternative */
if((bf = fopen(filename,"w")) == NULL)
{ perror("opening background file");

closing(2);

}

fprintf(bf," %s: ALTERNATIVE BACKGROUND\n\n" title)-
fpnntf(bf,"%j\n\n", altera);

fprintf(bf,"SYNOPSIS:\n\nCOMMENTS(pro/con);\n\n")-
fclose(bf);

printf("The background file will be opened for you to insert the \n");

-48-

printf("synopsis of the alternative (using 'vi').\n\n");

printf(" Press any key to continue. ");

getchar();

if (fork() !=0) /* parent process */

{ if ((pid = wait(&status)) == -1)

{ perror("wait for child");

closing(2);

)

i

e ^se /* child process */

/* open background file so synopsis can be entered */
if ((rval=execl(VI,VI,filename,0))==-l)

{ perror("cannot start vi process \n");

closing(2);

}

} /* end of backgrnd */

* used to build alternative menu

7
****************** + *** +++% * ************************ **

list(subject, title, n)

char 'subject;

char 'title,

lnt "' /* number of alternatives */

static char *alpha = " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxya''
static char ntc[MAXalt+l] = {' ','A','B','C','D','E','F','G','H','r};

/* number to letter conversion table */

int convert[256]; /* vote conversion table */
int i,j;

line menu[MAXalt+l]; /* alternative menu array /
FILE »mf;

J* menu file descriptor *j
int number; /* menu array pos i tion */

char °P'; /* user's input */
char this_line[74]; /* maximum input line length */
char *filename[MAXFILENAME]; /* structure for building filenames */

/* sets up the character conversion table for vote recognition */
for (i=0; i<256; i++)

convert[i] = 0;

for (i=l j=27; i<27; i++j++)
{ convert[alpha[i]] = i;

convert[alpha[jj] = i;

};

sprintf(menu[0],"%10c%s ALTERNATIVES \n\n", '
'.title);

-49-

priulf("\u\nYou will be building the \"menu\" that all voters will see.\n");

|>riutf("Each alternative should be described in one line:\n\n");

printf("\n%10c%s ALTERNATIVES \n", '
'.title);

for (i=l; i < n+1; i++)

{

sprintf(menu[i]," %c: ",ntc[i]);

printf("\n%s",menu[i]);

3 = 0;

thislinefj] = getchar();

if (thisjine[j] != '\n') /* discard any leftover carriage return */

do
{

this_line[j-l-+] = getcharQ;

} while
(thisjine[j-l] != '\n*);

thislinefj-1] = '\0';

strcat(menu[i],this_line);

}

do { system("clear");

printf("The following menu will be displayed:\n \n\n");
for (i=l; i < n + 1; i++)

printf("%s\n\n",menu[i]);

printf("
\n ")

;

printf("\nEnter the letter of any description you would like to change.\n");
printff

1

Enter zero if the menu is okay. ");

do { opt = get_choice();

if(opt == '0')

number = OKAY;
else

{ number = convert[opt]; /* convert option to index */
if ((number<l)

||
(number>n)) /* check for valid entry */

{ printf("User input not valid, reenter. ");

number = 0;

}

}

) while (number==0);
if (number == OKAY) /* create alternative menu file */

sprintf(filename,"%s%;", subject, "_alt.list");

if ((mf = fopen(filename,"w")) == NULL)
{ perror("opening file");

closing(8);

}

fprintf(mf,"%s\n\n", menu[0]);

for (i=l; i<n+l; i++) /* create background files */

{ fprintf(mf,"%s\n", menu[i]);

if (n<8) fprintf(mf,"\n");

backgrnd(i, subject, title, menu[i]);

fclose(nif);

50-

returii;

)

e 'se /* prompt for change in menu */

sprinir(menu[number]," %c: ",ntc[number]);

printf("\n%s",menu[number]);

j = 0;

do{
this_line[j++] = getchar();

} while (thisjine[j-l] != '\n');

this_line[)-l] = '\0';

strcat(menu[number],this_line);

} while (opt != '0');

printf("\n\n\nYou have completed the design of the alternative menu\n\n"V
I /* end of list */ \ \ ><

/************************t ***** t *tttttttttmttttttttttttttt„tttttttfttttttt
used to get any one letter response from user

int getchoiceQ '

I char °P'i /* users first input character */
char eat

' /* eats rest of input line */

opt = getchar();

while ((opt == "\n')
II
isspace(opt))

opt = getchar();

eat = getchar();

while (eat != '\n')

eat = getchar();

return(opt);

) /* end of get_choice */

I* this function gives a randomly generated number for a kev to an object. /
/ It uses the current seconds of the computer time for the initial seed */

int get_number()

{

. .

S

f
e

'
,

/* se<=d for first random number */
s rue Umeval tp; /* structures for fe ;

'

struct tm *now; '

•Uic int NEW = TRUE; /. flag for first time through t/

if (NEW)

{

-51-

/* GMT time and date 7
/* gives a variable seed */

/* give seed to random # generator */

/* no longer first time through */

gettimeofday(&tp, 0);

now = localtime(&tp.tv_usec);

seed = now->tm_sec;

srandom(seed);

NEW = FALSE;

}

return (randomQ);

}

* obtain voter name and e-mail address

void get_info(v, record)

int v;

struct verify *record;

{

int length;

do

{

if(v)

printf("\n voter #%d (login name): ",v);

else

printf("\n Your login name: "); /* object creator */

scanf("%s",record->user);

if ((length = strlen(record->user)) > LOGINlen)
{ length = 0;

printf("\007 login name is wrong length, enter again: ");

} while (Hength);

do

{ printff" computer name: ");

scanf("%s",record->where);

if ((length = strlen(record->where)) > MAILADDRlen)
{ length = 0,

printf("\007 mail address is wrong length, enter again: ");

} while (Hength);

printf("\n");

} /* end of getjnfo */

* create subject.author file with authorized voter information and
* set up the initial subject. history file (with no votes)

52-

sample authorization file (5 voters): explanation:

3626

6586

6948

5230

7870

7831

nancy

ADall

J Doe

PBuck
RBoss

BNice

ksuvaxl

phobos

harris

echo

ksuvaxl

demois

creator's information

voter identification

id.#

login

name
e-mail

addr.

sample history file:

(5 voters, 3 alternat ves)

explanantion:

row col

3626

1 6586 1

2 6948 1

3 5230 1

4 7870

5 7831 1

0000

1

3

1

2

3

2

1

2

3

1

3

2

3

1

2

1

1-5

last

0-5

1-5

I
1-5

3-5

1

2

3-5

the creator's "row" (no vote

holds order position

voter's rows

the group order row

identification numbers
a "1" flags a stored vote

stores any vote ordering

1 2 3 4 5

column numbers

who_votes(subject,voters, n)

char 'subject;

hit voters;

int n;

{

char *filename[MAXFILENAME];
int choice;

int i,j;

FILE *af;

FILE *vhf;

struct verify *ids;

char null_vote[3*MAXalt+l];
int seed;

*******+*************

,

ids = (struct verify *) calloc (voters,sizeof(struct verify)),
system("clear");

prmtf(" You are setting up a vote server. Please enter your\n")
prmtf(" login name and host computer:\n");

/* structure for building filenames */
/* user input */

/* authorization file descriptor */

/* voter history file descriptor */

/• user id. information */

/* string to hold an empty vote */
/* holds newly create identification number */

53-

get_info(0,&ids[0]);

system("clear");

printff'Please enter the login name and computer mail address \n");

printf(" of everyone who is authorized to vote on this topic.\n");

for (i=l; i<voters+l; i++)

get_info(i,&ids[i]);

do

{ system("clear");

printf("You have entered the following information:\n\n");

printf("%8c# voter e-mail addr \n",' ');

printf("%8c- \n",' ');

for (i=l; i<voters+l; i++)

printf("%8c%d %8s %s\n\n",
' \i, ids[i].user, ids[i]. where);

printf("\nEnter the number of any voter information you would like \n");

printf(" to change. Enter zero if the list is okay. ");

do {

choice = get_choice();

choice = choice - '0';

if ((choice < 0) ||
(choice > voters))

{ printf(" invalid choice, try again: \007");

choice = -1;

}

} while (choice == -1);

if (choice !=0)

get_info(choice,<fcids[choice]); /« get each voter's info */

} while (choice != 0);

/* Create the authorization file for this subject */

printf(filename,"%s%s", subject, ".author");

if((af = fopen(filename,"w")) == NULL)

{ perror("opening authorization file");

closing(6);

}

/* create the voter history file for this subject */

sprintffnlename/'^Js^s", subject, ".history");

if((vhf = fopen(filename,"w")) == NULL)
{ perror("opening history file");

closing(6);

}

strcpy(null_vote," 0"); /* hasn't voted flag /
for (i=0; i<n; i++) /* one for each alternative vote */

strcat(null_vote," 0");

for (i=0; i<voters+l; i++)

{

do

-54-

{ /* assign unique id to each voter */

seed = get_number();

ids[i].votekey = (seed/4096)%10000; /* get 4 digits from middle */

for (j=l; j<i; j++) /* check for unique number */

{ if (ids[i].votekey == ids[j].votekey)

seed = 0;

}

} while (!seed);

fprintf(af,"%4d %9s %s\n",

ids[i].votekey, ids[i].user, ids[i]. where);

fprintf(vhf,"%d %4d %s\n", i, ids[i].votekey, null_vote);

fclose(af);

fprintf(vhf,"%d %d %s\n", 0, 0, null_vote); /* group ordering line */

fclose(vhf);

} /* end of who_votes */

{

/* network name of host computer */

/* number of voters */

* this module actually activates a voting object

int rnake_object(subject, title,host,voters)

char ^subject;

char *title;

char *host;

int voters;

[

int i;

char *filename[MAXFILENAME];
char *nIename2[MAXFILENAME];
FILE *mf;

int pid;

int rval;

int 8 locate;

FILE *sf;

union wait status;

char user[9];

int votekey;

char where [9];

/* structures for building filenames */

/* menu file descriptor */

/* child process id */

/* function return value */

/* socket port number */

/* subject file descriptor */

/* child status */

/* voter's login name */

/* voter's ident. number */

/* voter's e-mail address */

sprintf{ filename, "%s'\ subject);

printf{"\n\n WAIT WHILE PREFER COMPILES '%s' VOTING OBJECT\n\n",
subject);

/* Create the unique server file for this topic */

if (fork() !=0) f* parent process */

{ if ((pid = wait(&status)) == -1)

{ perror("wait for child");

closing(2);

}

55-

}

else /* child process: */

/* compile PREFER.server.c with subject information */

{ if ((rval=execl(CC
lCC)

"-o
n
,filename,"PREFER.server.c ,,

,0))==-l)

{ perror(" cannot start compilation process \n");

closing(2);

}

}

/* Enable the topic voting daemon */

if (fork() !=0)
; /* parent process - does not wait */

else /* child process - start topic server in background */

if ((rval=execl(subject,subject,"fc",0))==-l)

{ perror("cannot start voting process in background\n");
closing(2);

}

}

printf("\n\n ENABLE '%,' VOTING OBJECT\n\n",subject);
sprintf(filename2,"9fe%s", subject, ".log");

printf("\n"); /• funny Unix fix */
while (TRUE) /* read socket port number as soon as it is available */

{

if ((sf = fopen(filename2,"r")) == NULL)
perror("waiting to get socket. port information");

else break;

I

fscanf(sf,"%*s %*s %*s %*c%d",&s_locate);
printf(

M
socket port = %d\n",sJocate);

fclose(sf);

strcat(filename
r
". author");

if ((sf = fopenffilenarae/Y')) == NULL)
{ perror("opening authorization file");

closing(6);

}_
1 = "li /* start below zero so creator message doesn't count */

/* create and mail messages to voters */
while ((rval=fscanf(sf,"%d %s %s",&votekey,user,where))!=EOF)

sprintf(filename2,"%s", "tmp.mail.file");

if ((mf = fopen(filename2,"w")) = NULL)
{ perrorf'opening tmp.mail.file");

closing(6);

}

if (' == -1) /* first one in file is the creator */

{ strcpy(host, where);

fprintf(mf,"# %s, you have just created a voting server for\n",user);

fprintf(mf,"# %s.\n",title);

fprintf(mf,"# Use the following command line to retire it:\n\n");

-56-

}

else

{

fprintf(mf,"# %s, you are asked to consider the following topic: \n" user)-
fprintf(mf,"# %s.\a", title);

fprintf(mf/# A PREFER server has been set up and you are asked to \n");
fpnntf(mf,"# use the following command line to access it:\n\n");

if ((strcmp(where,"harris")) == 0)
fprintf(mf," %sPREFER %s %s %d %d\n\n",

HARRISdir,subject, host,s_loc ate, votekey);
else

fprintf(mf," %sPREFER %s %s %d %d\n\n",

VAX_3Bdir,subject,host,sJocate,votekey);
fprintf(mf,"# For your convenience, please build a executable file with \n");
fprmtf(mf,"# this line. A suitable name for this file is \"%s\".",subject)-
fpnntf(mf,"\n# After creating the file use,\n");
fprintf(mf,"# chmod 700 %s\n",subject);
fprintf(mf,"# so that only you can use it.");

fclose(mf);

sprintf(filename,"mail %s@%s < %s", user, where, filename2);
if ((system(filename)) == 127)

{ perror("sending mail");

printf("stopped on message #%d\n",i);
closing(o);

}

printff'Sent mail to %s@%s\n",user,where);
'++; /* i is count of voter's mail */

if (i != voters)

printf("**** Incorrect number of messages were sent\n");
if ((rval = unlink(filename2))< 0)

perror("in unlinking tmp.mail.file");

printf("\n\n\nYou have created the '%s' voting object. \n\n", subject);
printf("Authorized users have been notified. \n\n");

} /* end of makeobject */

main() '

{

. »°f ' '' /* host computer's network name */
char *fiiename[MAXFILENAME]

; f. structure for buiWing fiienames £f
, '. .,., /* number of alternatives */

t" ^mS 1; /'subject -one word label */Ch
,

ar
" le

[
8°] ; /* subject title for menu list */

int voters; /* * .. ,
'

/' number of authorized voters */

°Pening();
/* check for create.busy file */

• 57-

header(title, subject, tvoters, fai);

list(subject, title, n);

who_votes(subject, voters, n);

make_object(subject, title, host, voters);

sprintf(filename,"cat subject.h » %3.1og" .subject);

system(filename);

closing(O);

} /* end of main */

/* CREATE: subject.h file /
/* "topic"_alt.list file */

/* "topic".author file & */

/* "topic". history file */

/* "topic" voting daemon */

/* "topic".log */

/* destroy create.busy file */

********************************„,********************** *************
/******

/********* Nancy J, Calhoun, programmer **************************************/
/*********************************4********** ±m /
/ *»»**.*********,***»,*

Se tembe lg88 ***,»,*„*»»,

/
.*.,. t„„„„„„„,»„,M,w,„„„,„„„tttt]ltlKMKtMttttMtMtt(|(ttt/

*/

APPENDIX F

PREFER.server.c Source Program

This program was written as part of the implementation of a Small Group Deci-
sion Support System designed by C. Hagmann. It implements a distributed vot-
ing server called PREFER. The programnung was done by Nancy Calhoun as
part of a Master's Report project in the summer of 1988.

This is the source file for the PREFER.server module. It is used by
PREFER.create to make the voting server daemon

/* paths to include files vary so check the requirements of your system */

#include <ctype.h>

#include <signal.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>

#include <netdb.h>
#include <stdio.h>

#include <sys/stat.h>

#include <strings.h>

#include <sys/wait.h>

#include <sys/time.h>

#include <sgtty.h>

#include "subject.h" /« application specific information */

/**«*****»»M*WM*****«***«»w+»«M„#M»»w„„,)lwMlww#iMi]WtOT
/*- These are adjustable Prefer definitions */

I

*d fin nrnnr S '
Set t0

°
if want Port# to be -W^ * **« 7#define DEBUG /* set to I for debug printouts «/ '

#define D1 /* fine level debug flag */

' PREFER server definitions * /

#define TRUE i

#define FALSE
#define DOWN 1

#define UP n

/ sizing definitions */

#define BUFFERSIZE 1024 /* temporary storage buffer */
#define Dlen 4 /* size of identification number */

SI"' » a v i

9 /J maXimUm len«th °f '°Sin na™ V#define MAXalt g /* maximum number of alternatives */

#define MAXFILENAME 256

#define MAXVSIZE 30

#define N_pairs n*n

/* maximum length of a filename */

/ space for status information Sc previous vote */

/* n is defined in the include file subject. h */

action codes —/•

#define LEAVE
#define ENTERVOTE 1

#define BACKGROUND 2

#define GET_RESULTS 3

#define CHECKIN 4
#define COMMENT 5

7
/* wants to exit voter process */

/* wants to enter a vote */

/* wants to see a background file */

/* wants to see the results file */

/* msg contains voter ident. */

/* wants to attach a comment */

I*

typedef double

typedef char

typedef double

typedef struct verify
{

type definitions - -7

/*-

int convert[256];

array[n+l][n+l];

buffer[BUFFERSIZE];

narrow_array[n+l][4];

int votekey;

char user[LOGINlen];

char where[LOGINlen];

end of definitions

/* structure of authorization */

-7

/* global vote conversion table */

***********************+********

/

/***»***************«»*»*»,»„»„„»„
* blanks out the voting array

void blankvote (0,V)
int 0[n+l];

array V;

{ int iJi

printf("\n");

for (i=0; i < n+1; i++
)

{ for (j = ljj <n+l;j++)
V[i]D] = 0;

0[i] = 0;

}

} /* end blankvote */

/* index variables */

* establish a communication link - a "listening socket"
this is an interface to the transport level protocol (TCP/IP)

int socket_setup()

{

*********+*******/

char *filename[MAXFILENAME];
int length;

FILE *sf;

/* structure to hold filenames */

/* "subject.log" file descriptor */

60-

int sock; /* socket descriptor */

struct sockaddrjn server; /* holds socket information */

/* Create socket - an endpoint for communication */

sock = socket(AF_INET, SOCK_STREAM, 0);

/* AFJNET - ARPA internet addresses */

/* SOCK_STREAM - sequenced 2-way */

/* connection based byte streams */
if (sock < 0)

{ perror("server: opening stream socket");

exit(l);

}

server.sinfamily = AFJNET; /* Name socket using wildcards */
server.sin_addr.s_addr = INADDR_ANY;
server .sin_port = htons(SETPORT);

/* the SETPORT number must be converted to network byte order so
* that the proper port will be requested. If SETPORT is zero the
* system assigns a port number.

7

length = sizeof(server);

if (bind(sock. feserver, length)) /* binds a name to the socket */

{ perror("server: binding stream socket");

exit(l);

}

/* Find out assigned port number and print it out •/

if (getsockname(sock, Aiserver, ^length))

{ perror("server: getting socket name");
exit(l);

}

sprintf(filename,"%s.log" .subject); /* socket port # is put in file */
if

(
(sf = fopen(filename,"w")) == NULL

)

{ perror ("server: *** file for socket info, could not be opened. \n"V
exit(l);

}

fprintf(sf,"Socket has port #%d\n", ntohs(server.sin_port));

fclose(sf);

printf("Socket has port #%d\n", ntohs(server.sin_port));

/* Start accepting connections */

listen(sock, 5);

/* release terminal initiating this daemon */
ioctl(0,TIOCNOTTY,0); /» system call so daemon will not •/

/* continue to tie up a terminal */
if (DEBUG) /» diagnostic print */

el*e

printf("server: Socket has port #%d\n", ntohs(server.sin_port));

61

{ fclose(stdin);

fclose(stdout);

fclose(stderr);

}

return(sock);

} /* end of socket setup */

* this bubble sorts either XX or TE array into nonascending order on given
* column. The array named is sorted, and since the only difference in the
* the two arrays, is the size, the size must be given as a paramater.

void sortfname, size, column, direction)

lilt

lilt

{

int

column;

direction;

count;

nit

doubl

int.

e temp[3+l]

which;

double name[N_pairs][3+l]; /* the maximum array is declared but /
mt slze

' /* this is the size of array named */

/* sort array on this column */

/* sort order-ascending or descending */

/* counts switches for debugging info.*/

/* index variables */

/* temporary storage during switch */

/* results of comparsion for sort */

count = 0;

'f (Dl) /* fine detail diagnostic printing */

{ printf("before sort\n");

for (i=l; i < size+1; i++)
printf("%.2f %.2f %.2f\n", name[i][l], name[i][2], name(i][3]);

printf("\n\n");

}

for (k=l; k < size; k++)
for (i = k; i > 0; i-)

{ count++;

which = (direction < DOWN ? (name[i][column] > name[i+l][column])
: (name[i][column] < name[i+l][column]));

if (which)

for (j=l; j<3+l; j++)
{ tempp] = namep]p]; /* switch */
name[i]tj] = name[i+l][j];

name[i+l]p] = tempp];

}

else i = 0;

}

'f (Dl) /* fine detail diagnostic printing */

printf(" count = %d\n",count);
printf("after sort\n");

-62-

for (i=l; i < size+1; i++)

printf("%.2f %.2f %.2f\n", name[i][l], name[i][2], name[i][3]);

printf("\n\n");

}

} /* end of function sort */

* check to see if the TE array show a strict linear ordering of alternatives

int ordered(TE)

narrow_array TE;

{

int checkflag, i;

i = 1;

checkflag = TRUE;
if (TE[1][3] != n-1) /* top item must have n-1 elements */

checkflag = FALSE; /* for ordering to be complete */
while (checkflag kk (i < n))

/* fine detail diagnostic printing */
if (Dl) printf("TE[%d][3] = %.2f, TE[%d][3] = %.2f\n",

i, TE[i][3], (i+1), TE[i+l][3]);

if(TE[i][3]==TE[i+l][3] + l)

i++;

else

checkflag = FALSE;

}

return(checkflag);

} /* end function ordered */

rearranges MATRIX array for final output to show group preference..o..,«,,„„,,tm„,„„„„„„„„H„„„„tt„MHttt)it(t(i)t(tt(M<it(
int resort(MATRIX,T)

array MATRIX;
narrowarray T;

{

lnt '. J.k; /* looping variables */
double *X;

/* Note: Must be dimensioned to hold largest -- (n+2) or (voters+1) */

int dimen; /* for holding largest dimension */

dimen = ((n+2) < (voters+1) ? (voters+1) : (n+2));
X = (double *) malloc (dimen*sizeof(double));
for (i = 1; i < n; i++)
for (j = i+l;j <n+l;j++)

if (T[i][l] < Tfj][l]) /* exchange the rows */

-63-

{ for (k = 0; k < n+1; k++)

{ X[k] = MATRIX[i][k];

if(Dl)

printf("MATEIX[%d][%d] = %.2f then », i, k,MATRIX[i][k]);

MATRIX[i][k] = MATRIXIjp];
MATRIX[j][k] = X[k];

if (Dl) printf("%.2f\n",MATRIX[i][k]
);

for (k = 1: k < 3; k++)

{ /* prints are for debugging onlv */

X[k]=T[i][k];

if(Dl) printf("T[%d][%d] = %.2f then ",i, k,T[i][k]);

T[i][k] = T[j][k];

Tfj][k] = X[k];

if(Dl) printf("%.2f\n", T(i][k]);

if(Dl) printf("i=%d\n",i);

} /* end function resort */

* generic array printout
t*»..«t.ttt„«»,t,„„,w,„„„M,M„„„,„,tMtBttMW(M(MMMttt)
void writearray (where,arrayname.type,T)

KILE *where; /* where output will be directed */
array arrayname;

int 'yPe ^ /* type: 0, integer format,

1, floating point format,

2, floating pt. and add totals */
uarrow_array T; /* totals */

{

int Ul /* index variables */

static char ntc[MAXalt+l] = {' ','A','B','C','D','E','F','G','H','r};

fprintf(where, "\n");

if (type == 2) /. print tit(e line */

{ fprintf(where,"MATRIX array: ");

for (i=l;i<n;i++)

fprintf(where,"%s"," ");

fprintf(where,"Totals:\n\n");

for (i=0; i < n+1; i++
)

{ for
(j=0;j <n+l; j++)

if(i==0)
if (J == 0) fprintf(where, "Alt\Alt: ");

else

{ fprintf(where,"%c ", ntc[j]);

-64-

if (type != 0)

fprintf(where," ");

}

else

if(j==0)

{ fprintf(where," %c: ",ntc[(int)arrayname[i][j]

if (type ==0)
fprintf(where," ");

}

else if (type==0)

fprintf(where,"%.Of ", arrayname[i][j]);

else

fprintf(where,"%.2f ", arrayname[i][j]);

if (type ==2)
{ if(i==0)

fprintf(where," sums entries");

else

{ fprintffwhere,": ");

fprintf(where,"%.2f %.0f", T[i][l], T[i][2]);

}

fprintf(where. "\n\n");

} /* end of function writearray */

* read in past history

int get_history(H)
'

int H[voters+2][n+3]; /* history matrix */

char *filename[MAXFILENAME]; /» structure to hold filenames */
FILE *h; /* history file descriptor */
lnt ''Ji /* index variables */
int voted /* number of votes in history */

strcpy(filename, subject);

strcat(filename, M
. history");

if ((h = fopen(nlename,"r")) == NULL
)

{ perror ("server: *** history file could not be opened \n"V
exit(l);

V "

}

else

{ voted = 0;

for (i=0; i < voters+2; i++)

{ for (j=0; j < n+3; j++)
fscanf(h,"%d ", &H[i][j]);

65-

voted += H[i][2]; /* H[row][2] is 1 if user has voted */

}

fciose(h);

return(voted);

} /* end of getJiistoryQ */

* update history file

void write_history(H)

hit H[voters+2][n+3]; /* history matrix */

FILE *h;

char *nlename[MAXFILENAME]; /* structure to hold filenames */
lnt »>J; /* index variables */

strcpy(filename, subject);

strcatffilename,". history");

if ((h = fopen(filename,"w")) == NULL
)

{ perror("server: »* History file could not be opened for updating.\n");
exit(l);

}

for (i = 0; i < voters +2; i++)

{ for (j=0; j < n+3
; j++)

if a==D
fprintf(h,"%4d ", H[i][j]);

else

fprintf(h,"%d ", H[i][j]);

fprintf(h,"\n");

}

fclose(h);

} /* end of writehistory */

* initializes the arrays with zeros and alternative numbers

void blankarray(arrayname)

array arrayname;

{
lnt ' J; /* index variables */

for (i=0; i < n+1; i++)

{

for (j = 0; j < n+1; j++) /* fi]J arrays „ith zeros */
arrayname[i][j] = 0;

arrayname[i][0] = i; /* store alternative number in column */

} /* end of blankarray */

* Hagmann's algorithm obtains a group preference from individual
* preference orderings:

void algorithm! M2, results)

array M2;

FILE 'results;

int H[voters+2][n+3];

array MATRIX;
narrow_array T;

narrow_array TE;

double XX[N_pairs+l][3+l];

double RLEVEL;
double ALPHA;
int 1=0, J=0, K=0, M=0, P=
int SUMENTRIES = 0;

double CHECK1;
double CIIECK2;

int ij;

int count;

int COMPLETEFLAG = 0;

int DOCHECK = FALSE;
int temp;

double dtemp;

int al, a2;

/* matrix holding "average" votes */

/* vote analysis fde descriptor */

/* history array */

/* working matrix */

/* matrix row totals */

/* column 1 contains alternative 1 .. n */

/* column 2 contains total of preferences */

/* column 3 - # of preferences for alt. n */

/* column 1 & 2 represent (al,a2) pairs */

/* column 3 - alpha associated with pair */

/* alpha level being examined */

/* alpha value for pairs */

/* index variables */

/* number of pairs entered in matrix */

/* flags for checking for any */

/* change after adjustment */

/* loop variables */

/* used to generate pairings */

/* set when ordering achieved */

/* nag »/

/* used to avoid repeat */

/* indexed lookups */

/* alternative (al,a2) in pair */

static char ntc[MAXalt+l] = {' '.'A'.'B'.'C'^D'.'E'/F'.'G'.'H'.T}

blankarray(MATRIX);
for (i=0; i < n+1; i++

)

{for(j=0;j <4;j++)
{ TE[i][j] = 0;

THE] = 0;

}

TE[i][l] = i;

mm = i;

}

count = 0;

for (i=l; i < n+1; i++)

{ for 0=1; j < n+l;j++)

count++;

XX[count][0] = count;

XX[count][l] = i;

/* blank all arrays used */

/* column 1 holds alternative # */

/* column holds alternative # */

/* array of all possible pairs (al,a2) */
/* col: 12 3 */
/* al a2 avg preference vote */

/* pair row */

/* al */

67-

XX[count][2] =j; /» a2 «/

XX[count][3] = M2[i][j]; /* a l preferred over a2 vote */

}

sort(XX, N_pairs, 3, DOWN); /* sort by decreasing pair vote */
/* set variables to begin at alpha level 1 and at the first of array */

RLEVEL = 1;

K = 1;

I = XX[K][1];

J = XX[K][2];

ALPHA = XX[K][3];

if (DEBUG) printf("I = %d, J = %d, ALPHA = %.2f\n",I,J .ALPHA)-
COMPLETEFLAG = FALSE;
fprintf(results, "\n OBTAIN GROUP PREFERENCE \n\n");

/* loop so long as all pairs have not been examined, alpha level has not */

/ reached zero, and the completeflag has not been set to true. */

while ((K <= N_pairs) kk (ALPHA > 0) kk (1COMPLETEFLAG))

/* inner loop 1 do as long as have not reached last pair, the number of pairs */
/* represented by alpha levels in the matrix is less than n*(n-l)/2, and */
/* the alpha level is greater than zero. */

fpnntf(results,"%d non-zero matrix positions are needed to achieve\n"
n"(n-l)/2);

fprmtff results," a group preference order, currently have %d so:\n",

SUMENTPJES);

while ((K < Njairs) kk (1DOCHECK) kk (ALPHA > 0))

/* inner loop 2, do as long as this pair's alpha level is the same as the */
/* level we are inspecting, insert the alpha value into the matrix and */
/* add this value into the sum of all alpha values for the preferred */
/* alternative. Also increment the count of the entries for this alter- */
/* native and the count for the total number of pairs examined. */

sort(TE, n, 1, UP);

while (ALPHA == RLEVEL)

MATRIX[I][J] = ALPHA;
TE[I][2] = TE[I][2] + ALPHA;
TE[I][3]++;

SUMENTPJES++;

/* examine the next pair */

K++;
I = XX[K][1];

J = XX[K][2];

68-

ALPHA = XX[K][3];

}

/* a new alpha value has been encountered so set the examination level to it */

fprintf(results,"Insert preference level %.2f\n",RLEVEL);
RLEVEL = ALPHA;
if (SUMENTRIES >= n*(n-l)/2)

DOCHECK = TRUE;

} /* end while K<N_pairs and !DOCHECK, and ALPHA>0 */

writearray(results,MATRJX,l,0);

/* if the numbers of pairs examined has reached this value, enough pairs have */
/* been examined to have a possible ordering. */

if (DOCHECK)

{

sort(TE, n, 2, DOWN);
if ((SUMENTRIES == n*(n-l)/2) kk (ordered(TE))

)

COMPLETEFLAG = TRUE;
else

{

M = 0;

P = 0;

/* compare alternate M with all alternatives at equal or lower overall alpha
* levels to find anomalies where the alternative pairings show reversing
* of preference

7
while (M < n-1)

{ M++;
P = M;

while (P < n)

{ P++;
CHECK1 = TE[P][1];

CHECK2 = TE[M][1];

al = TE[M][1];

a2 = TE[P][l]
;

if (DEBUG) printf("compare %d : %d\n", al, a2);

/* if overall preference is the same and alternative P preferred over M,
* drop vote for M over P */

if (TE[M][2] == TE[P][2])

{ if (MATRIX[a2][al] > MATRIX[al][a2])

fprintf(results,"Total preferences: %c = %c (%.2f = %.2f)\n",

ntc[al],ntc[a2],TE[M][2],TE[P][2]);

fprintf(results, "so check the pairings of these alternatives:\n");

fprintf(results," since MATRIX[%c][9k] > MATRIX[%c][%c] (%.2f > %.2f),\n"
ntc[a2],ntc[al],ntc[alj,ntc[a2],MATRJX[a2][al],MATRIX[al][a2]);

fprintffresults," zero the MATRIX[%c][%c] position. \n",ntc[al],ntc[a2]);

if(MATRIXfal][a2] !=0)

{ TE[M][2] = TE[M][2] - MATRJX[al][a2];

MATRIX[al][a2] = 0;

TE[M][3]-;

SUMENTRIES-;

}

sort(TE, n, 2, DOWN); /* readjust ordering */

}

else

/* if overall M alternative is preferred over P, drop any vote for P over M */
if(TE[M][2] >TE[P][2])

if (MATRIX[a2][al] > 0)

{

fpnntf(results, "Total preferences: %c> %c (%.2f > %.2f)\n",

ntc[al],ntc[a2],TE[M][2],TE[P][2]);

fprintf(results,"Eliminate any preference for %c over %c:\n",

ntc[a2], ntc[al]);

fprintf(results," since MATRIX[%c][%c] = %.2f, zero that position.\n\n",

ntc[a2],ntc[al],MATRIX[a2][al]);

TE[P][2] = TE[P][2] - MATPJX[a2][al];

MATRIX[a2][alJ = 0;

TE[P][3]-;

SUMENTRIES--;
sort(TE, n, 2, DOWN); /* readjust ordering */

if (CHECK1 !=TE[P][1])

{ °*"i /* change so recheck same position */

writearray(results,MATRIX,l,0);

if (CHECK2 !=TE[M][1])

{ P = M; /* change so recheck against ALL */

/* lower positions */

writearray(results,MATRIX,l,0);

} /* end while P < n */

} /* end while M < n-1 */

if ((SUMENTRIES == n*(n-l)/2) kk (ordered(TE))
)

COMPLETEFLAG = TRUE;
else

{

sort(TE, n, 1, UP);

DOCHECK = FALSE;

}

} /* end else if SUMENTRIES == .. k ordered »/

} /* end enough SUMENTRIES k ALPHA > */

} /* while (K <= N_pairs kk ALPHA > kk 1COMPLETEFLAG) */
get history(H);

H[voters+l][0] = 1; /* shows group preference has been calculated */

70-

if (COMPLETEFLAG == TRUE)
{

fprintf(results,"\nDISPLAY RESULTS:\n");

/* print out final array arranged in group preference order with details */

for (i = 1; i < n+1; i++)

forU = l;j < n+l;j++)

{

dtemp = MATRIX[i][j]; /* use dtemp to avoid extra index lookup */
if (dtemp > 0)

{

T[i][l] = T[i][l] + dtemp;

T[i][2]++;

}

}

resort(MATPJX,T);

writearray(results,MATRIX,2,T);

fprin tf(results, " \n\n M
);

fprintf(results,"Group preference: "); /* print to results file */
for (i = 1; i < n+1; i++)

{

temp = TE[i][l];

H[voters+l][i+2] = temp;

fpriutf(results,"%c ", ntcjtemp]);

fprintf(results,"\n\n");

if(Dl) for (i =1; i<voters+2; i++)

{ for (j=0u<n+3J++)
fprintf(results,"%d ",H[i][j]);

fprintf(results,"\n\n");

}

}

else

{ fprintf[results," *** STRICT LINEAR ORDERING NOT POSSIBLE \n\n")-
if (DEBUG) printf("*« STRICT LINEAR ORDERING NOT POSSIBLE.\n\n");

fprintf(results,"\f\n\n");

fclose(results);

write_history(H); /* update history file with group ordering */
} /* end of algorithm */

* create an instance of a file server to take care of this request

void create_fs(msgsock)

int msgsock;

{

buffer buf
i

I* input buffer »/
char *filename[MAXFILENAME]; /* structure to hold filenames */

71

FILE *
fe

: /* socket info, file descriptor */
lnt P>d; /* child id */

"' rval
; /* function return value */

struct stat file_status; /» socket info, file status */

union wait status; /* child process return status */

if (DEBUG) printf("user wants to get resource file\n");

if (fork() 1=0) /» pare nt process */

(if ((pid = wait(fcstatus)) == -1)

{ perror("server: wait for child");

exit(2);

}

I

e'se /* child process - create a fileserver process */
if ((rval=execl("PREFER.fileserver.x","PREFER,fileserver.x",subject,0)) == -1)

{ write(l, "cannot start second process \n",34);

exit(2);

}

/* After being created the fileserver writes its socket id. into a file. The */
/* voting server must read this file to get the information for the voter. */

strcpy(filename,"prefer.fs");

do { fs = fopen(filename,"r"); / open socket information file */

} while (fs == NULL);
do { /* anything in file yet? */

if ((rval = stat(filename,&file_status)) < 0)

{ perror("server: file status");

exit(l);

}

} while (file_statu9.st_size == 0); /* loop until fs has length */

bzero(buf, sizeof(buf));

if ((rval = fread(buf, sizeof(char), 1023, fs)) < 0) /* read into buffer */

{ perrorf'server: reading socket id");

exit(l);

}

/* send fileserver socket information to voter */
if (write(msgsock, buf, strlen(buf)) < 0)

{ perror("server: writing on stream socket");

exit(l);

}

fclose(fs);

if ((rval = unlink(filename))< 0) /* remove temporary info, file */
{ perrorf'in unlinking prefer.fs");

exit(l);

}

} /* end of createjs */

72-

* this is an authorized user who can vote
* server must send to authorized user: # of alternatives,

if votes are completed,

if this user has voted,
* i

user s previous vote

group vote

void serve_user(what,voted,msgsock,H,row,thisvote,day)

mt ffhat
i /* what authorized user wants to do */

int *voted; /* voted can be changed within this module */
int msgsock;

int H[voters+2][n+3]; /* history matrix */
int row;

char *thisvote;

double day;

{

buffer buf; /* message buffer */
char *filename[MAXFILENAME]; /* structure for building filenames */
int finished = FALSE; /* set to 1 when voting is finished */
mt

>. Ji /* index variables */
FILE "list; /* Hjt of the subjects alternatives */
int hstflag; /* signals completion of reading file */
char 'order; /* used to hold vote */

static char convert_vtc[10] = { '@7AyB','C','D','E','F','G','H',T
} ;

if (('voted == voters)
||
(day > deadline))

finished = TRUE;

if (what == CHECKIN)

order = (char *)malloc((4*n+2)*sizeof(char));

for (i=l; i< 4*n+2; i++) /» blank new allocated memory /
order[i] = ' ';

/* convert to output string array that lists vote stored */
for (i = 1; i < n+1; i++

)

{

order[i+(i-l)] = convert_vtc[H[row][i+2]];

j = i + n + 1;

order[j+(j-l)] = convert_vtc[H[voters+l][i+2]];

order[2*n+l] = '\0'; /* end of string */
order[4*n+2] = '\0'; (* end of string */

if ((H[voters+l][0]==l) kk (H[voters+l][3]==0))
sprintf(buf,"%d %d %d %s %s", n, finished, H[row][2],

&order[l],"COULD NOT ORDER");
else

-73-

sprintf(buf,"%d %d %d %s %s",

n, finished, H[row][2],&order[l],&order[2*n+3]);

if (write(msgsock, buf, 1024) < 0) /* send info, to user */

{ perror("server: writing on stream socket");

exit(l);

}

strcpy(filename, subject); /* setup to send alternative list */
strcat(filename, M

_alt. list");

if
((list = fopen(filename,"r")) == NULL

)

{ perror ("S: *** alternative list file could not be opened. \n");
exit(l);

}

else

{ listflag = TRUE;
while (listflag) /* rea(j |j,t *j

bzero(buf, sizeof(buf));

if ((listflag = fread(&buf[l], sizeof(char), 1023, list)) < 0)

{ perror("server: reading list file");

exit(l);

}

else if (listflag < 1023)

/* tell user another read is unnecessary */

{ listflag = FALSE;
buffp] = '0';

}

else buf[0] = T;
if (write(msgsock, buf, 1024) < 0) /+ send menu list msg */

{ perror("server: writing on stream socket"),

exit(l);

}

}

fclose(list);

}

} /* end of checking in */

else

if (what == ENTER_VOTE) /* user has sent a vote */

{ /* store it in history array */
if(H[row][2] ==0)
{ H[row][2] = 1;

(*voted)++;

}

for (i=0; i<n; i++)
H[row][i+3] = convert[thisvote[i]];

write_history(H);

}

e*8e /* fileserver is needed */

74-

if ((what == BACKGROUND)
||
(what == GET^RESULTS)

||
(what == COMMENT))

createfs(msgsock);

} /* end serve user - the user has completed session */

/**************** ************ * ++1(t++ .<

* calculate vote with input from users
**********************************,,.

void tally()

i

char *filename[MAXFILENAME];
int H[voters+2][n+3];

int i, j, row;

array Ml;

array M2;
int 0[n+l];

FILE "results;

int split = FALSE;

array V;

'H'*********************************^**

*****************************++******,

/* place to build specific file name */

/* history matrix */

/* index variables */

/* matrix Ml holds total vote */

/* matrix M2 holds average vote */

/* input orderings */

/* file for vote analysis */

/* return flag to caller, zero normally, */

/• 1 if there are 50/50 splits in voting */

/* matrix V holds individual vote */

/* create vote analysis results file */

SERVER OUTPUT\n");
of Vote Analysis\n\n");

/* begin with zeroed arrays */

gethistory(II);

strcpy(filename, subject);

strcat(filename,". results");

iff (results = fopen(filename,"w")) == NULL
)

{ perror ("server: *** results file could not be opened \n"V
exit(l);

}

system("clear");

fprintf(results,"

fprintf(results,"

blankarray(Ml);

blankarray(M2);

/* analyze vote history file */
for (row = 1; row < voters + 1; row ++)
{

blankvote(O.V);

/* convert individual vote to array that lists alternatives in ordering */
for(j = 3;j < n+3;j++

)

0[j-2J = H[row][j]; /* Set up an intermediate array */

/* construct individual vote array */
for (i=l; i < n+1; i++

) /* fin array5 with otdering t,

for (j =i+l; j < n+l; j++)

V[0[i]][0[j]] = 1;

if (DEBUG) /* debug printout of array */
{ pnntf("[ndividual vote #%d array: (as used in analysis)\n\n",row);

•75-

writearray(stdout,V,0,0);

}

for (i=l; i < n+1; i++
)

for (j = 1; j < n+1; j++)mm =mm + vpn
i

/* add in individual ordering */

/* to make composite vote array */

for (i = 1; i < n+1; i++
)

for (j = 1; j < n+l;j++)
M2[i][j] = Ml[i][j]/voters;

for (i = 1; i < n; i++)
for (j = i+1; j <n+l; j++)

if(M2[i][j]==M2[j][i])

split = TRUE;

/* construct average vote array */

/* check for any 50/50 splits */

fprintf(results,"In the vote matrix, each position shows the ");

fprintf(results,"numbers of voters who \nprefer the row alternative ");

fprintf(results,"over the column alternative. The total\n");
fprintf(results,"vote looks like this:\n\n");

writearray(resuIts,Ml,0,0);

fprintf(results,"\n\n average vote: \n\n");
writearray(results,M2,l,0);

if (split)

{

fprintff results,"A 50/50 split has occurred and a group preference \n");
fprintf(results, "ordering cannot be constructed from the individual\n")j
fprintfjresults," preferences. \n\n");

if (DEBUG)

{

printf("A 50/50 split has occurred and a group preference ordering\n");
printff' cannot be constructed from the individual preferences.\n\n");'

fclose(results);

H[voters+l][0] = 1; f* shows group preference has been calculated */
write_history(H);

}

e 'se /* apply Hagmann's algorithm to data */
algorithm(M2,results); /* putting analysis in results file */

} /* end of construction of the total tally */

* incoming message is from a potential voter

void V_who(buf,finished,H,row,voted,msgsock,day)

buffer buf;

-76-

int finished;

int H[voters+2][n+3];

int row;

int *voted;

int msgsock

;

double day;

int i,j;

char thisvote[n];

int what;

what = buf[l] - '0';

if (what == ENTER_VOTE)
{

j = 0;

for (i=2;i<n+2;i++)

thisvote[j++] = buf[i];

/* flag for indicating end of voting */

/* history matrix */

/* user's history row */

/* number who have voted */

/* socket identifier */

/* current system day */

/* index variables */

/* user's vote */

/* user's option choice */

/* extract choice from msg. */

/* extract vote from message */

serve_user(what, voted, msgsock, H, row, thisvote, day);

if (*voted == voters)

finished = TRUE;

/* do if all votes are in and group preference has not been calculated */
if (finished kk (H[voters+l][0] == 0))

tallyQ;

}

} /* end V_who */

communicate with users who call - handle incoming messages
**********/************** **

oid communicate(msgsock,voter_table)

int msgsock;

struct verify *voter_table;

/* socket identifier */

buffer buf;

double day;

char filenamefMAXFILENAME];
int finished;

int H[voters+2][n+3];

int

int key = 0;

/* message buffer */

/* current system day */

/* structure to hold filename */

/* is voting complete */

/* history matrix:

* row k col are used only to label array
* H[row][l] holds voter's identification #
* H[row][2] flags is a vote is stored
* H[row][3-(n+3)l stores any vote

7,
/* index variables */

/* users identification */

77-

char logname[LOGINlen]; /* holds userlogin name */
nlt row; /* row # if user matches authorized voter */
int rva'i /* function return value */
struct timeval tp; /* system's GMT time k date */
struct timezone tzp; /* loca i tirne 20ne adjustment */

/* struct, to hold local time */
struct tm *now;

int voted
; /* number of votes in history */

int what; /* user
-

s ch ice */

/* start a communication session */

bzero(buf, sizeof(buf));

if ((rval = read(msgsock, buf, 1024)) < 0)

{ perror("server: reading stream message");
exit(l);

}

else if ((rval == 0) kk (DEBUG))
printf("Ending connection\n");

else

i /* calculate today's date */
gettimeofday(&tp, fetzp);

now = localtime(&tp.tv_sec);

day = 10000*(now->tm_year)+100*(now->tm_mon+l)+(now->tm_mday);

if (DEBUG) /* optional debug printouts */

printf("day = %.0f\n",day);

if (day > deadline)

printf("Voting has been completed. \n");
else

printf("keep on voting. \n");

voted = get_history(H); /* bring in vote history »/

/ if everyone has voted or the deadline has been reached, voting is finished */
if ((voted == voters)

||
(day > deadline))

finished = TRUE;
else

finished = FALSE;
if (buf[0] == 'V') /* incoming message is from a vote process */

what = buf[l] - '0'; /* extract user's option choice */
if (what == EN'TERVOTE)

1 = n+2
; /* enter_vote has a long message */

else /* all other messages are shorter */
1 = 2

' /* extract user id. from message */
if ((rval = sscanf(&buf[i],"%4d%s",&;key,Iogname)) < 0)

{ perror("server: sccanf);
exit(l);

}

-78-

if(DEBUG) printf("server->voter %s, key = %d\n", logname, key);
row = 0;

for (i=0; i<voters+l; i++) /* see if user is in authorized list */

{

if ((rval = strcmp(voter_table[i]. user. logname)) == 0)
if ((rval = strcmp(voter_table[i].votekey,key)) == 0)

{ if(i==0)

row = 99; I* creator's id. is in row 0, flag as 99 */
else

row = i;

break;

}

}

if (!row)

{ /* unauthorized user - return no information */
sprintf(buf," ");

if (write(msgsock, buf, strlen(buf)) < 0)

{ perror("server: writing on stream socket");

exit(l);

}

}

if (row == 99)

{ /* creator - ask if voting object should be retired */
sprintf(buf,"%d ",row);

if (write(msgsock, buf, strlen(buf)) < 0)

{ perror("server: writing on stream socket");

exit(l);

}

if ((rval = read(msgsock, buf, 1024)) < 0)

{ perrorf'server: reading stream message");
exit(l);

}

if(buf[0]=='V)

{ strcpy(filename,subject);

if ((rval = unlink(filename))< 0) /* remove server */

{ perror("server: in unlinking voting object");

exit(l);

}

/* save support files in log: */

/* copy k remove .author, .history, .log k .results files */
sprintf(buf,"cat %s.* » temp. %s.log" .subject, subject);
system(buf);

sprintf(buf,"/bin/rm%s.*",subject);

system(buf);

/* copy and remove subjectalt.menu k subjectback.A... */
sprintf(buf,"cat %s_* » temp.%s.log",subject, subject);
system(buf);

sprintf(buf,"/bin/rm%s_*",subject);

system(buf);

}

79-

/* move logged files to expired sub-directory */

sprintf(buf,"mv temp. %s. log expired/%s.log.%.Of",

subject, subject, day);

system(buf);

sprintf(buf,'"%s%s\n %s\n '%s.log.YYMMDD' %s\n", subject,
"' is now obsolete. Information regarding this voting object",
" is stored with other expired objects under the filename",
subject, "where YYMMDD is today's date.\n\n");

if (write(msgsock, buf, strlen(buf)) < 0)

{ perror("server: writing on stream socket");

exit(l);

}

exit(0);

}

e 'se /* creator does not want to retire server */
strcpy(buf,"Goodbye - no change in status");

if (write(msgsock, buf, strlen(buf)) < 0)

{ perror("server: writing on stream socket");

exit(l);

}

}

V_who(buf,finished,H,row,&voted, rnsgsock, day);

if (buf[0] 'F') /* fileserver message regarding a user's comment */

if (DEBUG) printf("FS has a file to concatenate^ ");

sprintf(filename, "cat %s » %s_back.%c", febufp], subject buffi])-
if (DEBUG) printf("filename = %s", filename);
system(filename);

sprintf(filename,"/bin/rm %s", &buf[2]);

system(filename);

}

} /* end of else- successful read */
close(rnsgsock);

} /* end of communication */

main() '

{

h
"f"

h"1
} I* temporary storage buffer */

t[Lh '* /* file descriptor */
char *filename[MAXFILENAME]; /» structure to hold filenames */
lnt 'Ji /* index variables */
int rnsgsock; /* socket identifier */
fd_set ready; /* socket check variab ,e t/
lnt rval; /* function return value */

80-

int sock
; /* socket identifier */

struct timeval to; /* system clock structure */

struct verify *voter_table;

/* sets up the character conversion table for vote recognition */

strcpy(&buf[lj,"ABCDEFGIIIJKLMNOPQIlSTUVWXYZabcdefghijklmnopqrstuvwxy
Z ")-

for (i=lj=27; i<27; i++j++)
{ convert[buf[i]] = i;

convert[buf[j]] = i;

};

/* set up table of authorized voters and associated key */
strcpy(filename, subject);

strcat(filename,".author");

if ((fd = fopen(filename,"r")) < 0)

{ perror("server: opening authorization file");

exit(l);

}

voterjable = (struct verify *)calloc(voters+l, sizeof(struct verify));

for (i=0;i<voters+l;i++)

if ((rval = fscanf(fd,"%d %b %*s",

&voter_table[i].votekey, voter_tab!e[i].user)) < 0)
{ perror("server: getting votekey & user");

exit(l);

}

}

fclose(fd);

sock = socket_setup()
; /* establish a socket connection */

do {

FDZERO(tready);
FD_SET(sock, &ready);

/* This program uses selectQ to check that someone is trying to connect
before calling accept(). Select is synchronous i/o multiplexing.

if (select(sock + 1, fcready, 0, 0, (char *)0) < 0)

{ perror("server: select");

continue;

}

if (FDJSSETfsock, feready)) /• ready to accept a caller */
{ msgsock = accept(sock, (struct sockaddr *)0, (int *)0);

if (msgsock == -1)

{ perror("server: accept");

exit(l);

}

else

-81-

communicate(msgsock, voterjable); /* handle communication */

} while (TRUE); /* after vote is completed it continues to give
* out results until the adminstrator removes
* process from system */

} /* end of main */

/***********************,****** t ,**tttfttttt ,ttttttttt„ t, ttlttttttttttttttt
/******** Nancy J. Calhoun **

/
/***************************m******»m*******a»*A „ .

'

/*,....,,..-
****************»„*»

September, 1988 *********»/

APPENDIX G

PREFER.fiJeserver.c Source Program

This program was written as part of the implementation of a Small Group Deci-
sion Support System designed by C. Hagmann. It implements a distributed
voting server called PREFER. The programming was done by Nancy Calhoun
as part of a Master's Report project in the summer of 1988.

This is the source file for the PREFER.fileserver module. It is a generic file
server which acts as a transmitter of resource files to designated voters. The
voting server creates a specific file server whenever a voter requests to append
comments to background files or to receive information held in files on the
SPTVPr s rnmniilo?server's computer.

********************************* ********************************

/' paths to include files vary so check the requirements of your system */
#include <ctype.h>
#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>

#include <netdb.h>
#include <stdio.h>

#include <sgtty.h>

/*

#define DEBUG 1

#define FALSE
#define TRUE 1

#define MAXFILENAME 256
#define BACKGROUND 2

#define GETRESULTS 3

#define COMMENT 5

PREFER definitions «/

/* if debugging, set to 1 for message output */

/* maximum length for filenames */

/* user options handled by fs. */

/*-
• end of definitions -

+**++***************/***************************

sets up the socket on this end of the interprocess communication
** +++,^„+++++
int sckt_setup(host,port)

,

char *host;

int port;

/* host computer network name */
/* socket id. */

struct hostent *hp, *gethostbyname();
struct sockaddr in server;

int sock;

83-

/* communications socket id */

sock = socket(AF_INET, SOCKSTREAM, 0); /* Create socket */
if (sock < 0)

{ perror("fs: opening stream socket");

exit(3);

}

server.sinjamily = AFJNET; /* AFJNET = ARPA internet addresses */
hp = gethostbyname(host); /* get network id of host name sent by user »/
if (hp == 0)

{ fprintf(stderr, "%s: unknown host", host);

exit(3);

}

bcopy(hp->h_addr, teerver.sinaddr, hp->h_length);

server .sin_port = htons(port); /* htons = host byte order to network */

/* byte order short integer */

/* connect to specified socket: */

if (connect(sock, Arserver, sizeof(server)) < 0)

{ perror("fs: connecting stream socket setup");

exit(3);

}

return(sock); /» return socket identifier */

} /* end of scktsetup */

* receive the file over the socket

char receive_file(sock,filename)

int sock
; /* socket id. */

char filenamefMAXFttENAME]; /* structure for building filenames •/

char buf[1024]; /» message buffer */
FILE *fd : /* file descriptor */
int listflag = TRUE; /* USed to signal end of file transfer */

fd = fopen(filename,"w");

if (DEBUG)
J* diagnostic print */

printf("%s has just been opened for w\n",filename);
while (listflag) /* catch detail file and store locally */

bzero(buf,1024); /» c lean slate for next communication »/
if (readfsock, buf, 1024) < 0)

{ perrorf'fs: reading message");

exit(3);

}

fprintf(fd,"%s",&buf[2]); /* store what server sent */
if (buffO] == '0')

listflag = FALSE; /* have completed list */

84-

}

fclose(fd);

return(buf[l]); /* alternative id was stored in 2nd position */

} /* end of receive_file */

/** *************************** *****************************

main(argc,argv)

int argc;

char *argv[];

******/

char buf[1024];

char *filename[MAXFILENAME];
FILE *fd;

FILE »fs;

int listflag;

char host[10];

int msgsock;

int port;

int rval;

fd_set ready;

int sock, sock2;

int length;

struct sockaddrjn server;

struct timeval to;

int what;

int which;

message buffer */

structure for building filenames */

file descriptor */

file descriptor */

used to signal end of file transfer */

computer network name */

socket identifier */

socket identifier */

function return value */

socket information

socket identifiers

socket information

socket information

system clock value

what the caller wants */

to which alternative this comment belongs */

*/

7
7
7
7

/ this process is the chUd of the voting server daemon. Since it is much
^
shorter lived than it's parent, if it does its work directly, it becomes
a zombie after dying. To prevent zombies from clogging up things this

^
process immed 1ately forks off a child to do the work and it dies. The

* "grandchild" will not become a zombie when it finishes the work because
* it will be taken care of by the svstem.

7

/* parent process - does not wait */
if (fork() !=0);

/* empty option */

e,se /* child process - does all the work of fileserver */

/* Create socket */

sock = socket(AF_INET, SOCKSTREAM, 0);

/* AFJNET is ARPA internet addresses. SOCK-STREAM */

/ is sequenced 2-way connection based bvte stream */
if (sock < 0)

'

{ perror("fs: opening stream socket");

exit(3);

}

-85-

server.sinjamily = AFJNET; /* Name socket using wildcards */
server.sin_addr.s_addr = INADDRANY; /* accept call from anyone */

server.sin_port = 0; /* let system assign socket id */
length = sizeoffserver);

if (bind(sock, feserver, length)) /* bind a name to the socket */

{ perror("fs: binding stream socket");

exit(3);

}

/* Find out assigned port number and print it out '*/

if (getsockname(sock, tserver, fclength))

{ perror("fs: getting socket name");
exit(3);

}

if ((6 = fopen("prefer.fs","w")) == NULL
)

{ perror ("fs: socket id file could not be opened. \n");
exit(3);

}

/* put socket info, in file for voting user to read */

fprintf(fs,"%d",ntohs(server.sin_port));

fclose(fs);

/* Start accepting connections */
listen(sock, 1); /* wi || make one contact */

ioctl(0,TIOCNOTTY,0); /* system call so daemon will not */

/* continue to tie up a terminal */

if (DEBUG)
printf("fs: Socket has port #%d\n", ntohs(server.sin_port));

else

{ fclose(stdin);

fclose(stdout);

fclose(stderr);

}

* This program uses selectQ to check that someone is trying to connect
* before calling accept().

7
FD ZERO(fcready);

FD_SET(sock, feteady);

to.tv_sec = 5; /* fileserver will check regularity */
if (select(sock + 1, feready, 0, 0, &to) < 0)

{ perror("fs: select");

exit(3);

}

if (FD_ISSET(sock, Already))

msgsock = accept(sock, 0, 0);

if (msgsock == -1)

{ perror("fs: accept");

exit(3);

/*

}

else

do {

bzero(buf, sizeof(buf));

if ((rval = read(msgsock, buf, 1024)) < 0)

{ perror("fs: reading 2nd stream message");
exit(3);

}

else if (rval == 0)

{ if (DEBUG) printf("\nEnding 2nd connection\n");
}

else

{

what = buf[0J - '0'; /* extract caller's choice »/
if (what == COMMENT) /« caller wants to send comment */

sscanf(buf,"%d %d %s %s ",&what,&port,host,filename);
which = receive_file(msgsock,filename); /* get comment */
spr.ntf(buf,"%c%c%s",'F', which, filename);

/* let vote server append the comment to the proper */
/* file so establish socket to vote server */

sock2 = sckt_setup(host,port);

if (write(sock2, buf, 1024) < 0)

{ perror("fs: writing on stream socket to server")-
exit(3);

}

close(sock2);

}

else

{ if (what == BACKGROUND)
{ /* caller wants to get a background file */
strcpy(filename,argv[l])

;
/* build file name */

strcat(filename, "_back.");

strcat(filename,&buf[l]); /* which alternative */

else

if (what == GETRESULTS)
{ /* caller wants to get vote analysis file */
strcpy(filename,argv[l]);

strcat (filename, ".results");

fd = fopen(filename,"r");

listflag = TRUE;
while (listflag)

J* read list
I,/

bzero(buf, sizeof(buf));

if (fd == NULL
)

{ strcpy(buf,"0** resource file could not be opened.\n");

87-

listflag = FALSE;

}

else

if ((listflag=fread(&buf[l],sizeof(char),1022,fd)) <0)
{ perror("fs: reading background file");

exit(3);

}

else

{

if (Iistflag < 1022)

/* tell user whether another read is unnecessary */

{ Iistflag = FALSE;
buf[0] = '0';

}

else

{ buf[0] = T;
buf[1023] = '\0';

}

}

if (write(msgsock, buf, 1024) < 0)

{ perror("fs: sending background over stream socket")'
exit(3);

}

bzero(buf, sizeof(buf));

fclose(fd);

}

}

} while (rval !=);

close(msgsock);

} /* if socket is ready */

} /* end of child process */

} /* end of file server */

/******** Nancy J. Calhoun, programmer **************»*********»******«»*»/
/™"™"**""«"**«««"*"*««*

September, 1988 **********J,

APPENDIX H

FREFER.vote.c Source Program

This program was written as part of the implementation of a Small Group Deci-
sion Support System. It is the implementation of part of the SGDSS design by
C. Hagmann. The programming was done by Nancy Calhoun as part of a
Master's Report project in the summer of 1988.

This PREFER. vote module is a generic process to act as the voter's interface to
the vote server. Arguments given on the command line must supply the infor-
mation needed to connect to the proper server process.

This program creates a socket and initiates a connection with the socket number
given in the command line. The form of the command line is:

PREFER topic hostname portnumber userlDnumber

/* include files required for definitions */
/* paths to include files vary so check the requirements of your system */

#mclude <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#include <ctype.h>

#include <strings.h> /* needed for index function pointer */
#include <sys/wait.h>

#define MORE "/usr/iKb/more"
#define VI "/usr/ucb/vi"

J basic definitions */

#define FALSE
#define TRUE 1

#define MAXalt 9 /* maximum # of alternatives allowed */
#define MAXFILENAME 256 /* maximum size of filenames */

/ message buffer choice flags */

#define LEAVE
#define ENTER_VOTE 1

#define BACKGROUND 2

#define GET_RESULTS 3

#define CHECKIN 4
#define COMMENT 5

#define ERASE

/* g jze limitations

#define BUFFERSIZE
#define IDlen

#define LOGINlen
#define LMSGIen
#define S_MSGlen

1024

4

8+1

2+MAXalt+lDlen+LOGINlen
2+lDlen+LOGlNlen

-*/

/* size of message buffer */

/* digits in id. number */

/• length of login name */

/* length of long message */

/* length of short message */

/*

#define ARGcount
#define TOPICpos
#define HOSTpos
#define SOCKpos
#define IDpos

- command line constants */

5 /* # arguments on line */

1 /* topic word position */

2 /* host computer name pos.*/

3 /* socket number position */

4 /* user's id. # postion */

/ type definations and globals */

typedef char buffer[BUFFERSIZE];
typedef struct vote rec

mt n;

int finished;

int havevote;

char *prev_vote;

char *group_vote;

/* number of alternatives */

/* if all votes are in */

/* if this user has voted */

/* user's previous vote */

/* the group preference vote */

int convert[256];

static char ntc[MAXalt+l] = {'
'

/****

/* vote letter/number conversion tables */

'A7B7CyD7E7F7G\'H\T};
/* ntc - number to letter conversion */

sets up the character conversion table for vote recognition.

void table_setup()

{

****/

buffer buf;

int i,j;

/* storage buffer */

/* indexing variables */

for {i=0; i<256; i++)
convert[i] = 0;

strcpy(&buf[l],"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")'
for(i=lj=27;i<27;i++j++)

{ convert[buf[i]] = i;

convert[buffj]] = i;

};

90-

} /* end of table_setup */

* sets up the socket on this end of the interprocess communication

inl sckt_setup(host, port)

char *host; /* pointer to host name */
int POrtl /* socket identifier */

struct hostent *hp; /* socket functions */
struct hostent *gethostbyname();

struct sockaddr_in server;

int sock; /* communications socket */

sock = socket(AF_INET, SOCK_STREAM, 0); /* Create socket */
/* AFJNET = ARPA internet addresses. */

/* SOCK_STREAM = sequenced 2-way connection based byte stream */
if (sock < 0)

{ perror("v: opening stream socket 1

');

exit(2);

}

server.sinJamily = AFJNET; /* Connect socket using name */
lip = getho»lbyname(host); /* specified by command line */
if(hp==0) '

{ fprintf(stderr, "%s: unknown host", host);

exit(2);

)

bcopj(hp->h_addr, &server.sin_addr, hp->h_length);
server.sin_port = htons(port);

/* htons = host byte order to network */
/* byte order short integer */

/* atoi = covert string to integer */
if (connect(sock, iiserver, sizeof(server)) < 0)

{ perror("v: connecting stream socket");

exit(2);

}

return(sock);

] /* end of scktsetup */

* used to get any one letter response from user

hit getchoiceQ '

<
char °P'; /* users first input character */
char eat

' /* eats rest of input line */

opt = getcharQ;

while ((opt == '\n') || isspace(opt))

91-

opt = getcharQ;

eat = getcliar();

while (eat t= '\n')

eat = getchar();

retutn(opt);

} /* end of get^choice */

* receive the file over the socket

void receiveJile(sock2)

int sock2;

{

int listflag = TRUE;
FILE *fd;

buffer buf;

union wait status; /* child status */

if
(
(fd = fopen("tmp.vote.detail","w")) == NULL

)

{ perror ("v: socket id file could not be opened. \n");

exit(2);

}

while (listllag) /* catch detail file and store locally */

bzero(buf,1024); /* clean slate for next communication */
if (read(sock2, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

}

fprintf(fd,"%s",Jcbuf[l]); /* store what server sent */
if (bu([0] == '0')

listflag = FALSE; /* have completed list */

fclose(fd); /* use "more" to read the detail file that is */

/* temporarily stored in user's directory */
if (fork() !=0) /* parent process */

{ if ((wait(fcitatus)) == -1)

{ perrorf'v: wait for child");

exit(2);

}

}

else /* child process */

if ((execl(MORE, MORE, "-20", "tmp.vote.detail", 0))==-l)
{ perror("v: cannot start second process \n");

exit(2);

.
}

if ((unlink("tmp.vote.detail"))< 0) /* destroy temporary file */

{ perror("v: in unlinking tmp.vote.detail");

exit(2);

92-

printf("\n end of resource file **** Press <RETURN> key to continue.
getchar();

system("clear");

/* end of receive_file */

/** ******+********************************»*#********#*
create socket for receiving file details from file server

. ********************************,,

void read_details(which, n,host,sockptr)

************* ******

int. which;

int n;

char *host;

int *sockptr;

buffer buf;

int flag;

int opt;

int port;

int sock2;

int temp;

/* where output should be printed */

/* number of alternatives */

/* socket information */

/* pointer to current socket # */

/* message buffer */

/* flag for */

/* user's option */

/* socket port identification */

/* another communications socket */

/* flag for */

bzero(buf,sizeof(buf)); /* clean slate for next communication */
if (read(*sockptr, buf, 1024) < 0)

{ perrorf'v: reading message");

exit(2);

}

close(*sockptr);

port = atoi(buf);

sock2 = sckt_setup(host,port); /* set up socket to talk to fileserver */

if (which == BACKGROUND) /* user wants to read a background file */
{ printf("\nWhat alternative do you want described? (A - %c) ",

ntc[n]):
do

{ °P' = get_choice();

temp = convert[opt]; /» get number of choice */
if ((temp < 1) ||

(temp > n)) /* is it in correct range? */

{ printf("Enter your choice again. \007");
temp = 0;

}

} while (Itemp);

printf("\n\n");

bzero(buf,sizeof(buf)); /» clean slate for next communication */
sprmtf(buf,"2%c",ntc[temp]); /* opt in capital form */
if (wnte(sock2, buf, sizeof(buf)) < 0)

{ perror("v: writing on stream socket");

-93-

exit(2);

}

printf("\u\nPlease wait for resource file to be sent.\n\n");

receive_file(sock2);

}

else if (which == GET_RESULTS) /» user wants to see results hie */

bzero(buf,1024); /* clean slate for next communication */
buf[0] = '3';

buf[l] = '\0';

if (write(sock2, buf, sizeof(buf)) < 0)

{ perror("v. writing on stream socket");

exit(2);

}

printf("\n\n\nPlease wait for analysis file to be sent.\n\n\n");
receive_file(sock2);

}

close(sock2);

} /* end of readdetails */

/**********«*»***+*»*******»»*****«»#*„**,««„„„,„,,w+^t„,MW<lM<#:((
* identifies user on this end to server on the other end of connection.
******»«******»***«****»»*******»«*******»**»*****«»*••**********

,

void identify(s_msg,v,sockptr)

char s msg[S_MSGlen];

struct voterec *v;

int *sockptr;

{

buffer buf; /* message buffer */
ilU d"; /* notation for (2*v->n) */
lnt °a8! /* set when user enters incorrect response */
char opt; /* users option */

if (write(*sockptr, s_msg, strlen(smsg)) < 0)

{ perror("v: writing on stream socket");

exit(2);

}

bzero(buf,sizeof(buf)); /» c iean the slate »/
if (read(*sockptr, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

I /* does server recognize this user? */
if ((sscanf(buf,"%d %d %d", &v->n, &v->finished, &v->havevote)) <= 0)

{ perrorf'v: No conversion of string input");

exit(2);

}

if (v->n == 0)

{ printfC********* You are not an authorized user. ***********\n ti).

close(*sockptr);

exit(l);

}

else if (v->n == 99)

{ printft "Since you ate the creator, do you want to remove the\n");
printf(" voting server at this time? (Y/N) ");

do

{

opt = get_choice();

flag = FALSE;
if ((index("YyNn",opt)) == NULL)
{ printf(" Please choose T or 'N'. \007");

flag = TRUE;

}

else

{ if ((opt == y) ||
(opt == 'Y'))

strcpy(buf,"Y ");

else

strcpy(buf,"N ");

if (write(*sockptr, buf, strlen(buf)) < 0) /* send it */

{ perror("v: writing on stream socket");

exit(2);

}

if (read(*sockptr, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

}

pri.itf("%s",buf); /« print server
'

s reply */
exit(0);

}

} while (flag);

}

else /* authorized user gets more information from server */

{ dn = 2*v->n; /* dn used to make notation easier */

/* get memory space for votes */
if ((v->prev_vote = (char •) calloc(dn+2,sizeof(char))) == NULL)
{ perror("v: allocating memory for string");

exit(2);

}

if ((v->group_vote = (char *) calloc(2*MAXalt.sizeof(char))) == NULL)
{ perror("v: allocating memory for string");

exit(2);

}

strncpy(v->prev_vote,&buf[6],dn);

strncpy(v->group vote,fcbuf[6+dn+l],2*MAXalt);

} /* end of identify */

•95-

/********************

* server displays the alternative listing to user
************************ ***++++ *+ **++++++J

int alt_menu(v,sockptr)

struct vote_rec *v;

int *sockptr;

{

buf;

*************** ******

buffer

nit

int

int,

listflag :

opt;

TRUE;

********/

/* message buffer */

/* flags incorrect user input */

/* signals end of file transfer */

/* user's option */

while (listflag)

{

printf("\n\n");

bzero(buf,1024);

if (read(*sockptr, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

}

printf("%s",&:buf[l]);

if (buf[0] == '0') listflag.

}

close(*sockptr);

FALSE:

/* clean the slate */

/* print list server sent */

/* have completed list */

/* clean the slate */
bzero(buf, 1024);

if (v->finished)

{

printf("\n\n");

printff The voting has been completed: ");

prmtf("group preference order - %s\n", v->group_vote);
printf("%45c your vote - %s\n",' ', v->prev_vote);

while (!v->finished)

printf("\nChoose: D(descriptions), V(vote), P(pro/con comments) \n"V
pnntf(" or Q(quit to Op.Sys.) - (_)\b\b")

;

opt = get_choice();

if ((index("Qq",opt)) != NULL)
retutn(LEAVE);

if ((index("Dd",opt)) != NULL)
return(BACKGROUND);

if ((index("Pp",opt)) != NULL)
returu(COMMENT);

96-

if ((index("Vv",opt)) != NULL)
return(l);

else printf("\r\007 M
); /* unacceptable character */

} /* end while Ifinished */

if (v->finished)

{

printf("\nDo you want to see the group preference analysis? (Y/N) ");

do

{

opt = get_choice(); /* capture user response */
flag = FALSE;
if ((index("YyNn",opt)) == NULL)
{ printf(" Please choose Y' or 'N'. \007"V

flag = TRUE;

}

else if ((opt == y) ||
(opt == Y'))

return(GETRESULTS);
else

return(LEAVE);

} while (flag);

} /* end of if finished */

return(LEAVE);

} /* end of alt_menu */

check to see if user wants to change the recorded vote

int no_change(prev_vote)

char *prev_vote;

{ int opt;

printf("\nYou have already voted. ");

printf("Your previous vote: %s\n",prev_vote);
printf(" Do you want to change your vote.\007 (Y/N) ");

do

{ opt = get_choice();

if ((index("YyNn",opt)) == NULL)
printf(" Please choose 'Y' or 'N'. \007");

else if ((opt == 'y')
||
(opt == Y'))

return(FALSE);

else

return(TRUE);

} while (TRUE);

} /* end of nochange */

* check this vote for duplicate k out-of-range preferences

int incorrect(n,l_msg)

97-

char l_msg[LJvlSGlen];

(.

int value;

int flag = FALSE;
int i,j;

/* contains users vote */

/* integer representation of vote */

/* flags incorrect user input */

for (i = 2; i < n+1; i++)

{ for(j = i+l;j < n+2;j++)
if (l_msg[i] == l_msg[j])

{ flag = TRUE;
printf(" Duplicate '%c' entry, please reenter ordering:\007 ",

}

}

for (i = 2; i < n+2; i++)

{

value = convert[l_msg[i]]

;

if ((value > n)
||
(value < 1))

{ flag = TRUE;
prmtf(" Entry '%c' out of range, please reenter ordering:\007 ",

l_msg[i]);

}

}

return(fiag);

} /* end of incorrect */

* get users vote from stdin

***********************************;+ +*************************** + + +. + +

void receive_vote(l_msg,n)

char l_msg[L_MSGlen];

int n;

{

int check;

int count;

int flag;

•nt i. j;

buffer opinion;

int opt;

/* flags incorrect user input */

/* count of letters entered */

/* flags incorrect user input */

/* index variables */

/* catch user's vote */

/* user option */

flag = FALSE;
l_msg[l] = ENTERVOTE + '0'; /* indicates a vote is included */

/* building a vote message */

printf("Type in the alternative letters in the");

printf(" order of your preference. \n\n");

printf(" Please use all letters A through %c: ",ntc[n]);

do

{ count = 0;

gets(&opinion[l]);

for (i=l, j=2; i< 1024; i++j++) /* prepare to send vote */

{ while (isspace(opinion[i])) i++;
if (opinion[i] != '\0') /* have not encounted end of input */

if (count < n)

{ l_msg[j] = opinion[i];

count++;

}

else break;

}

else break;

/* compact vote to send */

/* vote has become too long */

/* end of input */

if ((count != n)
||

(opinion[i] != '\0')) /* invalid input */

{ printf(" Your vote has the wrong number of entries, ");

printf("please try again. \007 ");

flag = TRUE;

}

else

flag = incorrect(n,l_msg); /* incorrect returns 1-bad, 0-good */

/* no obvious errors in input */

/* echo vote entered to user */

if (!flag)

{

printf("\n%25c Is "',' ');

for (i=2; i<n+2; i++)

printf("%c ",l_msg[i]);

printf("' correct? (Y/N) ");

do

{ opt = get_choice();

check = FALSE;
if ((index("YyNn",opt)) == NULL)
{ printf(" Please choose V or 'N', \007");
check = TRUE;

}

else if ((opt == 'n')
||

(opt == 'N'))

{ flag = TRUE; /* allows reentry of vote */
printf(" Your preference order is; ");

else

printf("\n\n THANK YOU FOR VOTING.\n");
} while (check);

} /* end if (!9ag) */

} while (flag);

} /* end of receivevote */

^***«»,**»»*t»»m„»,t»tttt4ttt„ tt1, tttt:t<ti|i:)i%t]|it])i:t:(rtijiiiii<i|!i(i<ii]ttttt)|]|i

99-

* user inputs desired ordering of alternatives
****##**4*******4***#****4****«»**#•#******##************

int get_vote(l_msg,v)

char l_msg[L_MSGlen];

struct vote_rec *v;

{
.

if (v->havevote)

{.
if (no_change(v->prev_vote))

return(O);

else

receive_vote(I_msg,v->n);

}

else

receive_vote(l_msg,v->n);

return(l);

} /* end of get_vote */

•7

/* long message */

/* has user already voted? */

/* nothing to be done */

/* user wants to change vote */

/* get new vote 7

/* send the comment over the socket to a file server */

void send_file(sockptr, n, filename)

int *sockptr;

int n

char * filename;

buffer buf;

FILE *fd;

int listflag;

int opt;

int pid;

int. rval;

union wait status;

int temp;

/* message buffer */

/* file descriptor */

/* signals the end of file transfer */

/* user option */

/* child process id */

/* function return value */

/* child status */

/* number representation of user choice */

printf("To what alternative do you want to add a comment? (A - %c) ",

ntcfnl);

do

{ opt = get_choice();

temp = convert[opt]; /* get number of choice */
if ((temp < 1) ||

(temp > n)) /* is it in correct range? */

{ printf("Enter your choice again. \007");
temp = 0;

}

} while (Hemp);

if ((fd = fopen(filename,"w")) == NULL)
{ perror("** resource file could not be opened for writing.");

100 -

exit(2);

}

else

{
/* put blank line into file it is not empty */

fprintf(fd," \n");

fclose(fd);

}

printf("\ii");

printf("A file will be opened for you to insert the \n");

printf("comment on alternative %c (using Vi').\n\n", opt),

printff' Press <RETURN> key to continue. ");

getchar();

if (fork() !=0) /* parent process */

if ((pid = wait(tstatus)) == -1)

{ perror("v: wait for child");

exit(2);

}

}

else /* child process - create file using "vi" */

if ((rval=execl(VI,VI,nlename,0))==-l)

{ perrorf'v: cannot start second process \n");

exit(2);

}

printf("\n\n\nPlease wait for comment file to be sent.\n\n\n");
if ((fd = fopen(filename,"r")) == NULL)
{ perror("** resource file could not be opened for sending.");

exit(2);

}

listflag = TRUE;
while (listflag) /* read list */

bzero(buf, sizeof(buf));

buf[l] = ntc[temp]; /* choice in capital letter */

if ((listflag = fread(&buf[2], sizeof(char), 1021, fd)) < 0)

{ perror(M
v: reading comment file");

exit(2);

}

else

{

if (listflag < 1021) /* tells fs that this is end of file */

{ listflag = FALSE;
buf[0] = '0';

}

else /* tell fileserver that another read is necessary */

{ buf[0] = T]
bufT.1023] = '\0';

}

101 -

}

if (wrile(*sockptr, buf, st.rlen(buf)) < 0)

{ perror("v: sending comment file to file server on stream socket");

exit(2);

}

bzero(buf, sizeof(buf));

}

fclose(fd);

if ((unlink(filename))< 0) /* remove temporary file */

{ perror("v: in unlinking k#.comment");
exit(2);

}

} /* end of send_file */

/******* +***************+*

main(arg c, argv)

int argc;

char *argvQ;

{

buffer buf;

int flag;

int fs_socket;

char host[10];

int i;

char *keep[ARGcount];

char *keep2[ARGcount];

/* keep & keep2:

+
I

7

char

int

me[80];

n;

int

char

char

int

opt;

1 msg[L MSGIen];

s_msg[S_MSGlen];

server socket;

int sock, sock2;

char

tut

topic [80];

user id;

struct vote rec *v;

/* message buffer */

/* used to control menu loop */

/* fileserver socket id */

/* host computer name */

/* index variable */

char filename[MAXFILENAME];

* keep[0]

* keep[TOPICpos]
* keep[HOSTpos]
* keep[SOCKpos]
* keep[IDpos]

= "prefer"

= topic

= hostmachine

= socket #
= user's ID #

/* 80 character line */

/* number of alternatives */

/* user's option

/* two sizes of messages

/* long and short

/* server socket ident.

7
: 7
7
7

/* communications sockets */

/* topic title for menu */

/* user identification # */

/* voting status information */

102-

v = (struct vote_rec *) malloc (sizeof(struct voterec));

server_socket = atoi(argv[SOCKpos]);

strcpy(topic,argv[TOPICpos]);

strcpy(host,argv[HOSTpos]);

userjd = atoi(argv[IDpos]);

v->finished = FALSE; /* initial settings */
v->havevote = FALSE;

table_setup();

/* open first socket to vote server */
sock = sckt_setup(host, server_socket);

printf("\n\nv-> Enter your login name: ");

if((scanf("%s",me)) != 1)

{ perror("v: user input");

exit(2);

}

sprintf(s_msg,"V%d %d %s",CHECKIN,user_id,me);
identify(s_msg,v,&sock); /* identify process to vote server */
n = v->n; /» n used to simplify notation */

/* build long message for vote: V9ABC.n9999.XXXX */

/* consisting of */
l_msg(0] = 'V; /• 'V to flag voter »/

l_msg[l] = ENTER_VOTE + '0'; /* what - ENTER_VOTE */
/* (entered later) «/ /* alternatives */

strcpy(tl_msg[n+2],argv[IDpos]); /* user ID # */
strcpy(&l_msg[n+6],me); /* login name */

do

{ flag = FALSE; /* get alternative menu */
if ((opt = alt_menu(v,&sock)) == ENTER_VOTE)
{ opt = get_vote(l_msg,v); /» user wants to vote */

sock = sckt_setup(host,server_socket);

if (opt)

if (write(sock, l_msg, strlen(lmsg)) < 0) /* send it */

{ perror("v: writing on stream socket");

exit(2);

}

}

else if ((opt == BACKGROUND)
||

(opt == GET_RESULTS))

s_msg[l] = opt + '0'; /* build short message */
sock = sckt_setup(host,server_socket);

if (write(sock, s_msg, strlen(srnsg)) < 0) /* send reply */

{ perror("v: writing on stream socket");

exit(2);

}

103-

read_details(opt,v->n,host,&;sock); /* receive file from fileserver */
if (opt == BACKGROUND)
{

sock = sckt_setup(host,server_socket); /* return to vote server */
s_msg[l] = CHECKIN+ '0';

identify(s_msg,v,&sock);

flag = TRUE;

}

}

else if (opt == COMMENT)

s_msg[l] = COMMENT + '0'; /* build short message */
sock = sckt_setup(host,server_socket);

if (write(sock, s_msg, strlen(s_msg)) < 0) /* send reply */

{ perror("v: writing on stream socket");

exit(2);

}

bzero(buf,sizeof(buf)); /* clean slate */
if (read(sock, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

}

close(sock); /* c iose socket to vote server «/

/* open socket to file server */
fs_socket = atoi(buf); /» i nser t file server id */
sock2 = sckt_setup(host,£s^socket);

strcpy(filename, "k");

strcat(filename, argv[IDpos]);

strcat(filename,".comment");

/* tell fileserver where attach this comment and */
/* where to find this topic's vote server */

sprintf(buf,"%c %d %s %s",

COMMENT + '0', server_socket, host, filename);
if (write(sock2, buf, 1024) < 0)

{ perror("v: writing #1 on stream socket to file server")-
exit(2);

}

send_file(&sock2, n, filename);

close(sock2);

sock = sckt_setup(host,server_socket); /* return to vote server */

»JMg[l] = CHECKIN+ '0'; / build short message */
identify(s_msg,v,&sock);

flag = TRUE;

} /* end of pro/con comment option */

else if (opt == ERASE) /» creator is using voter interface */
{ s_msg[0] = 'A'; /« build short message */

s_msg[l] = ERASE + '0';

104-

sock = sckt_setup(host, server_socket):

if (write(sock, s_msg, strlen(s_msg)) < 0)

{ perrorf'v: writing on stream socket");

exit(2);

}

bzero(buf,1024); /* clean slate for next communication »/
if (readfsock, buf, 1024) < 0)

{ perror("v: reading message");

exit(2);

1

printf("%s",buf); /* print servers return message */

else if (opt == LEAVE)
printf("\n\n Exiting to operating system.\n\n");

} while (flag);

close(sock);

} /* end of main */

/******** Nancy Calhoun, programmer **/
/.*«*».*«»*****»,**„.„**„,**„„„»,„„»«„„»,„

September, 1988 ******

PREFER:

Small Group Decision Support System Tool

by

NANCY JANE CALHOUN

A.A., Graceland College, 1962
B.S., Colorado State University, 1964

B.S., Kansas State University, 1982

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

A Group Decision Support System uses computers to aid groups in the decision process.

C. Hagmann's doctoral work was the development of a Small Group Decision Support System

(SGDSS). Her SGDSS included an algorithm for extracting a group preference ordering from

individual orderings of alternatives.

This report describes an implementation of a distributed voting system, PREFER, which uses

Hagmann's fuzzy binary algorithm. Some general background material regarding group deci-

sions is included, followed by an overview of Hagmann's development of the algorithm.

This implementation develops voting objects which are designed to reside as daemons in

machines on a local-area network. Included m the report are data-flow diagrams of the

PREFER voting system, a chart showing how the modules of the system are distributed across

the LAN, and examples of screen displays created by the software. One large example follows

the creation of a specific PREFER voting object, its use, and the final results obtained from

applying the algorithm to a completed voting session. Source code for all of the programs is

included in Appendices of the report.

This implementation was tested in a LAN environment at Kansas State University. The LAN

is connected with Ethernet hardware, has Unix operating systems on all machines, and uses

TCP/IP software protocol. The machines include a DEC Vax 11/780, a Harris HCX-9, several

ATfcT 3B15's, and several AT&T 3B2's.

The report concludes that PREFER could be very useful in assistmg the decision process of a

small group. It could also be used in a research environment to see how computerization

might change group dynamics.

