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INTBODUCTION

This thesis will describe a method of synthesizing a net-

work from a specified gain and/or phase frequency response. If

the response is given in an analytic form, several standard

methods exist which will obtain a network to give this response

(Storer, 16). However, if the response is not given in an ana-

lytic form but in the form of a response curve, it then becomes

necessary to find an analytic form so that synthesis is possible.

Since to try an analytic approach to approximate any but the most

elementary curves would be very difficult and time-consuming, the

author suggests the use of an analogue device.

The problem, then, is to find an analogue to work with, such

that the effect on the response curve by varying parameters can

be predicted more easily than the effect of varying circuit par-

ameters can be predicted. The method used is the potential ana-

logue, where the complex frequency plane will be represented by

a two-dimensional voltage plane on conducting paper. The zeros

and poles of the transfer or gain function of the network will

be represented by charges on this voltage plane. These charges

will be placed on the conducting paper at the same places that

poles and zeros of the gain function would be placed on the com-

plex frequency plane.

The easiest way to describe the analogue is mathematically.

To do this, it is best to discuss properties of networks first,

properties of the two-dimensional potential surface, and then

relate the two.
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For a given network, if the input voltage is denoted by E

and the output is denoted by V, then the ratio, V/E, will be de-

scribed as the transmission ratio. This ratio will have the

following form (Darlington, 6):

P(8) « V/E = e^^e^*^ (1)

cC s gain in nepers

j3 - phase shift in radians

The transmission function will be defined as the logarithm of

this ratio.

G(s) = JCn (V/E) ^ cC ^ l(3> (2)

For a finite lumped element network, the ratio V/E is a rational

fraction and may be expressed as follows:

-jy-Cs - Sn)

V/E = K (3)

^(s - Sj,)

When s = s^* V/E = 0, and when s = Sj^, V may have a value even

when E = 0.

Therefore, the first case w5 11 be known as the zeros and

the second will be known as the poles of the transmission ratio.

Here s is the complex frequency variable associated with the

LaPlace transforms

s = - + j 0)

and K is a constant unaffected by frequency and alters only the

absolute level of the gain, so it will be ignored.

The numerator and denominator of the rational fraction of

Equation (3) are finite polynomials in s. If the network consists

of real elements, the coefficients of these polynomials are real

(Van ValkenbTorg, 18). Therefore the following rules apply to the
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poles and zeros:

1. Poles and zeros must be real or complex conjugates.

2. Poles must have negative real parts for stable operation,

3. There must be at least as many poles as there are zeros.

(m ^ /, Storer, 16)
^

T/ls - Sn)
G(3) = /n (V/E) =/n K ---— (4)

^
77^3 - Sk)

s/n K + £/n (a - Sn) - 2"/"^ ^^ " ^k)

Separating real and imaginary parts gives:

^ = c^o »- 2/n (s - Sj^) - 2^/n (s - sjj) (5)

/^ 58 /3^ + ^ phase (s - s^) - ^ phase (s - s^^)

As previously mentioned, ^n K will be ignored in the following

discussions.

LOGARITHMIC POTENTIALS

In two-dimensional potential theory it is convenient to speak

of a point charge q in a two-dimensional plane (x, y) and to re-

gard this plane as a complex variable plane 2 = x + jy. The

charge and the plane are the result of cutting infinite charged

line filaments. For a point charge q at the origin of this plane,

the voltage at any point is proportional to the magnitude of the

charge and the logarithm of the distance from the charge, i.e.,

V = Ki q ^n /^+ Kg (6)

Here K^ and Kg are constants for a coherent system of electromag-

netic units. In the following statements, the constants will be

omitted for ease of discussion.



If the polar coordinates z = /^e*'^ are introduced, the po-

tential may be considered in complex form.

W = q /n z = q /n /^+ jq (7)

The real part of this last expression is the potential and the

Imaginary part is the stream f\inction.

If the charge is at a point Zj^ instead of the origin, the

complex potential is:

W = q /n (z - Zm) (8)

for a set of point charges, the total potential is the 3\m of

the individual potentials (Stratton, 17).

W « Z^m ^^ (2 - 2m) ^^^

In general, V; is a complex number

W s V + ^ f

where V denotes the potential and ^ the stream function. The

function in Equation (9) is analytic everywhere except at the

points occupied by the charges.

To obtain some of the properties of the potential and the

stream function, it is most convenient to resort to the theory

of analytic fvmctions of a complex variable (Goldman, 9).

First the derivative of W is unique and may be written:

-. = — + j £7- » f-X - j — (10)
dz ^x da dj 37

where V and ^ must satisfy the Cauchy-Riemann relations

f-I. = and ---'- = — (11)
^^ 3 1 61 d ^

The stream function ( "f^ ) and the potential (V) are therefore not

independent. The components of the electric intensity are obtained
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from V by the relation E = -grad V.

^ V 3H^ clW

E^ = « s -Rq (—

dv gf dw

dl dr. dz

Compare (4) and (9):

/ m
G(s) =Z/n (s - Sn) - "^A (s - Sj^) (4)

/+m
-J

If G(s) is identified with the complex potential W, then xmit

negative charges will be located at the zeros (s^) and unit posi-

tive charges at the poles (sj^.) of the transmission fimction F{s).

The complex potential in the s-plane, then, is

W = Z'/n (a - sn) - ?/n (s - s^) (12)

The real part of this fxinction is the potential and the imaginary

part is the stream fiinction. Then, by definition of gain and

phase In Equation (2), the gain of the associated network is given

by the potential on the imaginary axis (real frequency axis) and

the phase by the corresponding stream function.

The poles and zeros of ^(s) locate the charges producing the

complex potential W and they form a discrete set of points. When

P(s) corresponds to practical problems, the set of points are

usually arranged along well defined lines Instead of being dis-

tributed at random in the plane. Recognizing this, it is usually

easier to work in the potential plane using a continuous large

distribution over a convenient contour. However, this contovir

has to be approximated by lumped charges since the poles and zeros
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of G(s) are discrete. This approach is only of value when an

analytic expression is available for P(s) and is of not much use

for an arbitrary P(s) that is not given analytically.

It has been assiimed that the gain (^) corresponds to the

voltage (V) and that the phase ( 3 ) corresponds to the stream

function ( f ) of the complex potential W, but it would have been

just as valid to reverse these two and interpret (<^) as the

stream fvinction of another complex potential jW; then ( f ) would

be the negative of the potential (V). Since it is generally

easier to equate (cjC) to (V) and (/^ ) to ( T ), this discussion

will interpret them in this fashion.

Since the electric intensity (E) is the gradient of the po-

tentlal, is analogous to E in the direction of the negative
d w

frequency axis (jw). Also the variation of ^cC) with frequency

la analogous to the electric intensity (E) in the direction of

the negative real s-axis ((7~).

The analogies most commonly used may be sijmmarized as in

the following table.

Table 1. Comparison of the complex-frequency plane and the po-
tential plane.

Complex-frequency plane : Potential plane

Transmission function G(a) Complex potential W

Gain (^

)

Potential (V)

Phase {(S) Stream function ( ^)
- Field along real frequency
^w axis

- Field across real frequency
<^ w axis



Restating the pole and zero limitations in the complex potential:

1. The charge distribution must be syinmetrical about the

real axis.

2. The positive charges must be in the negative half of

the plane.

3. The net charge must be non-negative.

FILTER NETViORKS

Now that the analogue has been justified mathematically, it

Is necessary to restrict the discussion so that analytic and ex-

perimental results may be compared. This is necessary since a

general discussion and experimental data for general networks is

nebulous and out of the scope of this paper. Filters are members

of an important class of networks. To discuss filters, it is

convenient to discuss the steady-state conditions of filters

since they are primarily frequency sensitive devices. When this

restriction is made

s = jo)

P(s) = P(ja))

To facilitate the discussion, the low-pass filter case only

will be mentioned. The transmission ratio F(j(*)) and the cutoff

frequency (oJc^ will be normalized to linity. These restrictions

do not affect the generality of the discussion of filters since

by utilizing frequency transformations and multiplying constants,

it is possible to discuss any filter type in any steady-state

situation.
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The "ideal" filter gain characteristic is shown in Plate I.

It is desirable to approximate this characteristic closely since

It is impossible to duplicate it (Goldman, 9). Two very impor-

tant classes of functions are used to perform this approximation.

These two functions are the Butterworth and Chebyshev functions.

Butterwarth response is a "flat - flat" or maximally flat

response. That is, the transmission ratio will be one that has

the most possible derivatives with respect to w of its absolute

value equal to zero (Van Valkenburg, 18), i.e.,

dn F(Jco)
-- = n = 1, 2, (13)

dojn

The result will be a transmission ratio that will appear as

1
P(J'^p)

Yl + CO
''^^

(14)

where co_ is normalized to one, i.e., at the cutoff frequency
^

1
0)-. = 1 and F( jWr,) = -:=lj: = .707 and n = order of filter.
P ^ S

Notice that as n increases, the approximation to the ideal

curve becomes better (Plate I). To find the positions of the

poles of transmission ratio that will give an absolute magnitude

function of the form of Equation (14), let s = JWp or Wp = s/j.

The square root factor of Equation (14) then becomes:

1 - s^n if n is odd (15)

1 + s^'^ if n is even

Then the corresponding fxanctions are:

1
Q(a) » =- n is even (16)

1 + s^n
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H(a) =
1-32n

n Is odd (17)

The poles of Q(s) will occur at s^" = -1. The poles of H(s)

will occur at s^n = 1. Taking the 2n*^ root of these poles, one

obtains for Q(s):
2in - 1

±j( )^
2n

Sjjj - e

for H(s):

Sk =

Kit

±j -
e ^

m = 1, 2, 3, . . . . n (18)

k = 0, 1, 2, n (19)

These equations locate the poles for Q(s) when n is even and

H(s) when n is odd. Both Q(s) and H(s) have symmetry about both

axes and no roots occur on the imaginary axis regardless of

v/hether n is odd or even. These poles lie on the locus of a

circle of unity radius.

These roots are the poles of Q(s) and H(s) as defined by

Equations (16) and (17). They a re not, however, necessarily

network functions. Transmission ratios for networks cannot have

poles in their right half plane as Q(s) and H(s) have.

Because of the symmetry of Q(s) and H(s) about both axes,

there are as many poles in their right half plane as there are

in the left half plane. If the poles in the right half plane

were grouped together and called fr(s) and the poles in the left

half plane called t^ (s), it Is possible to write

Q(s) = fy(8) t£ (s). In steady-state analysis (s = JWp),

|:fr^J"p)| = k/ U"p)| (19)

Therefore [Q(jWp)| = k/(JWp)|^ (20)

or If/ (jwp)! «/|Q(JWp)



EXPLAIUTION OF PLATE I

Pig. 1, Gain of Butterworth filters plotted versus w.

Fig. 2. Gain of Chebyshev filters plotted versus <»),
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1
Q{ja)_) = ( --) (21)

1 + 01
2n

P

Substituting into Equation (21), one obtains

1
f.(ja) ) = -, =- (22)
^ ^ /l + t0p2n

The same technique and the same form would result for the poles

of H(s). Therefore only the poles In the left-hand plane are

necessary to give the Butterworth or "flat-flat" responses.

This shows, then, that the poles of this Butterworth trans-

mission ratio lie on the locus of a semicircle in the left half

portion of the s-plane. It is also apparent, as in the case of

ordinary transmission ratios, that this has symmetry about the

real axis.

The Chebyshev or "equal ripple" filter improves one of the

disadvantages of the Butterworth filter. The disadvantage of

the Butterworth filter is that as w increases the approximation

of the ideal becomes poor. The Chebyshev filter spreads this

error over the whole pass band. The transmission ratio is (18):

1
P(jco) « -r^ ---- (23)

/l +£Cj,2(a))

where £ is a constant (£<;1), Cj^ is an nth order Chebyshev

polynomial.

The n above will be related to the number of poles, and

hence their locations. To find the location of the poles and

their function in Equation (23), start with the definition of

the Chebyshev polynomial.

Cn(w) = cos (n cos"-*^) for w < 1 (24)

Cj^(co) = cosh (n cosh"^) for to > 1



13

When w < 1, then C^lw) < 1 and the magnitude of F( jw) var-

1
Ifls he-hween 1 nnd , When CO ^ 1, then Cjj(o)) increases

/l + £

without bo\ind and F(ja))| approaches zero.

To find the poles of Equation (23), set the denominator

equal to zero.

1 + Cn^ (cOp) = Let s = jWp or cOp = s/j (25)

1 + ^r? (s/j) = or 0^2 ( s/ j ) = -l/£

Cn(s/j) = ±j/rr

where 0^(8) = cos (n cos"-^ x) (26)

Since the inverse cosine of a complex number is, in general.

complex, let

cos-l(s/j) = (OC - jd) (27)

such that (from Equaticms (25) and (26))

cos (noC-Jnd) = ±j//T (28)

Expand Equation (27) to obtain:

cos n oc cosh nd + j sin n oc sinh nd = +j//€

The following identities may be written.

cos n oCcosh nd = and sin n oc sinh nd = +l/?T

cos no<;« 0, since cosh nd ^^ 1 always

« 2N + 1
Therefore OC = ( -)Tr N=:0,1, 2, ..., n (29)

2n

For these values of oC, sin n cX. - +1. Therefore

sinh nd = ±\/fe or d = +l/n sinh"! (l//^) (30)

From Equation (27),

s = j cos (oC - jd) (31)

If Equation (31) is expanded, the following is obtained:
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found from the roots of the Butterworth by the following steps.

1, Change the radius of the circle for the Butterworth from

unity to cosh d.

2. Multiply the real part of the poles located for the

Butterworth case by tanh d.

This relationship holds because b' has been set equal to b.

The poles of the equal ripple (Chebyshev) response are located

on an ellipse. This can be shown by noting from Equation (33)

that 3 = Cr^ + joop with (T^ - -sinh d cos b, and u)_ = cosh d

sin b. Then:

n- * CO ^^P
4- ._.?.- = 1 (36)

sinh^ d cosh^ d

This is the equation of an ellipse with its major axis along the

jw axis and having a major semi-axis of length cosh d and a minor

semi- axis of length sinh d.

Another point of similarity between the Chebyshev and

Butterworth responses may be noted. If a frequency w
^^

is chosen

such that

tOp]^ = cosh d, Wp-L P'

1

(37)

it is then possible to write the following:

C«('^T^T ) = C„(cosh d) = cosh (n cosh"-'- cosh d) = cosh nd
^ ^^ (38)

Replace the value of d from Equation (30) into Equation (38).

Cn(Wpl) ='cosh (sinh-1 I/TT ) (39)

If sinh X s= l//^, then cosh x = /l + 1/6 , (since cosh^ x -

sinh2 X = 1). Therefore sinh"^ VfC = cosh"^ /m/^. Plac-

ing this in Equation (39) gives
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Cn(Wp^) = cosh (cosh-1 ii + 1/ € ) = ji + l/€.

Therefore,

1 1

If £.<:<1, then

|F(ja)pi)l 4 1//2" = .707

This corresponds to w = 1 for the Butterworth response.

The summary of equal ripple frequency response character-

istics indicates that specifications are complete if given in

terms of £ and n.

DESCRIPTION OP EQUIPMENT

The next step is to find the most convenient form to work

with for experimental work. Hanson and Lundstrom (12), in 1945,

discussed the use of a large circular surface with the edge of

the surface being a conductor set at the same potential as the

center. Since the equations for the analogue assume an infinite

surface, this introduces errors due to the finite size of the

siirface. This means that correction factors must be introduced

to reduce the error. Since the application of these correction

factors introduces complexity into the system, it is undesirable

because this will defeat the whole purpose of the analogue, that

is, simplicity.

In 1948, Hugglns (13) showed a way to circumvent this draw-

back by using a logarithmic conformal transformation. To obtain

this transformation, the circular siirface is transformed into a



17

rectangular one by the following method.

-For the circular surface

s = (T + jw = /^e^'

For the rectangular surface

M =s P + jQ = /n s = /n /s/ + j{P + 2nTr)

When this transformation is made, the surface becomes an infi-

nite series of rectangular surfaces in the Q direction to take

care of the branch points. The two sides of this rectangular

surface corresponding to /^= and /^ =r o^ become conducting

strips. Since any point on the S plane has an infinite number

of points spaced 2Tr distant on the M plane in the Q direction,

one might suspect that a certain amount of symmetry would help

reduce the number of branch points necessary. Another point to

be noted is the symmetry of the charges about the axis in the S

plane (Pule 1). When mapped on the M plane, these points form a

symmetry with the other points already mentioaed. This symmetry

is around the lines V s 2nTr (n = 0, +1, +2, ...) (Plate II). If

these are charges, notice that if insulating strips are placed

along the lines Q = 0, and Q = rr, in no way will the field be-

tween these two insulators be affected since no current will cross

these lines because of the symmetry of the charges about these

lines. This also means that the whole surface is not necessary

so that using just the portion between the two imaginary insu-

lators is sufficient. Expanding this strip will make a plane of

infinite extent in the P direction with a finite heigjht. Notice,

however, that in the P direction the distance is the logarithm

of the radius of a circular tank so that by increasing the



EXPLANATION OF PIA TE II

Pig. 1. Representation of complex s plane with a

pole at X and its conjugate at o.

Pig. 2. Representation of complex M plane where

M ss £n s = P + j Q with the pole (x) and its conjugate

(o) shown.

Pig. 3. Representation of portion of M plane with

the pole (x) shown to be used for experimental work.
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PLATE II

FiR. 1.

+ oO

Q

4 TT

3 TT

2 TT

TT

<3>

-^

^
^
v^

-TT

-2 TT

-3 TT

- oo

-A

Fig. 2.

V^
^
^
^

oo
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frequency scale (jw) by a decade essentially Increases the diam-

eter of the circular surface by 10.

The correction factors are fairly small for the circular

surface if the distance from the center to the edge of the s\ir-

face is large compared to the distance from the center to the

furthest charge. If the ratio of these distances is 10, the

error or correction factor is about one per cent. If this ratio

is 100, the error would be about .01 per cent (Hanson and Lund-

strom, 12). This, then, shows how the rectangular surface can

be constructed so that the errors can be made negligible. This

can be done by maintaining reasonably large spacing between

charges and still using a surface of manageable size.

Even though this paper is restricted to the discussion of

two special types of transmission ratios, the conformal trans-

formation mentioned above is perfectly general. These restricted

cases, however, make it quite clear why such a transformation v/as

used. The poles that lie on a circle in the s-plane lie on a

straight vertical line in the log plane. The poles that lie on

an ellipse in the s-plane do not, however, lie on a straight

line in the log plane. There are other transformations that will

give convenient contours for the ellipse. However, all of these

transformations become cumbersome in analysis, since there is no

intuition about the experimental results.

The most natural transformation for the potential analogue

is the logarithmic transformation. This is due to the ease with

which numerical values can be obtained both mathematically and

experimentally. Also, this transformation gives results that
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come out directly as i'n-Db type response curves.

To experimentally determine pole and zero locations on the

rectangular surface, a sheet of Teledeltos conducting paper was

cut in a rectangular shape 40 Inches by 36 centimeters. One

decade of frequency is represented by 10 Inches and 90 degrees

of phase shift is represented by 18 centimeters.

To facilitate the use of a rectangular surface for the ana-

logue, a scanning device was constructed so that one decade of

frequency could be scanned and displayed on an oscilloscope.

This produced quicker observation of the effect on the gain of

adding or moving a charge. To do this, ten separate probes were

placed on the jco axis. The ten probes were equally placed. A

mechanical commutator was Inserted so that the voltages at these

points could be displayed on an oscilloscope. To faithfully re-

produce these voltages, an external sweep for the oscilloscope

was constructed. The sweep was obtained by mechanically commu-

tatlng ten equal voltages. This was done so that the distances

between the traces on the oscilloscope would conform with the

physical distances between the probes.

To synchronize these two commutations, the sweeping (or

scanning) arms were connected to the same shaft. This shaft was

then connected to a small series motor (Plate III).

To obtain the phase (^) of the transmission fvmction (P(s)),

an analytic approach may be used as Goldman (9), p. 244, has

done.

This, however, is not necessary since the potential analogue

embodies a method for finding the phase shift directly. From
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Table 1, where the analogue is outlined in detail, the following

relation is used to find the phase shift,

2/3
- £._> ^ field across jw axis (E^^)

E_ = - VV =

Therefoi»e, ——

>

This means that in the approximation

To obtain the phase at any given frequency, two rows of

probes were placed along the jw (real frequency) axis. The volt-

age between any two probes on opposite sides of this axis is pro-

portional to ----- at that value of o). An analogue integration
Aco

from zero to w, will then give the phase shift at o)^.

CALIBRATION OP EQUIPMENT

Calibration of the gain is obtained by adjusting the volt-

age read from the probes to six decibels per octave when a probe

is placed on the right-hand conductive strip and an opposite po-

larity probe is placed on the left-hand conducting strip. This

corresponds to a transmission ratio with a pole at zero (Plate III)



EXPLANATION OF PLATE III

Pig. 1. Diagram of equipment used.

Fig. 2. Calibration curve of surface for six deci-

bels per octave slope when a "pole" is placed at /^ =

and a zero at P = oO ,
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PLATE III

Poles
-rr "TT Zero

I H

AA/wvVVVVyVYVvVW

To oscilloscope
vertical input

To oscilloscope
horizontal Input

Fig. 1.

To oscilloscope
ground
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For calibrating the phase another known relationship of

transmission ratios was employed. The phase of a second-order

Butterworth filter has a 180-degree shift at w = 1 (Plate IV).

The calibration then consists of setting the voltage across the

jw axis at w = 1 to a value that corresponds to 180 degrees.

Then the voltmeter will be calibrated to read the phase shift.

EXPERIMENTAL RESULTS

The experimental results consist of graphical comparison of

the calculated and experimental values for gain and phase for

two Butterworth and two Chebyshev filters. (Plates IV, V, VI,

and VII.) Also an arbitrary transmission function was chosen

and a network was synthesized using the analogue. The results

are shown on Plates VIII and IX. The synthesis was accomplished

with a minim\jm number of probes. This was done by first observ-

ing the general shape of the curve (Plate VIII, Pig. 2), and

using intuition as to where probes would likely be needed.

The intuition consists of listing the possible areas where

poles and zeros can exist. The shape of the c\irve is such that

these areas have fairly wide limits, which discounts the possi-

bility of easily predicting the actual locations of the poles and

zeros. The easiest way to handle this problem is in a tabular

form (Table 2).

The curve indicates that there is either a double order pole

or two single poles in the range .4 < w < ,7.

The response curve shown on Plate VII was not chosen completely



EXPLANATION OF PLATE IV

Pig. 1, Actual and experimental values of gain in

db plotted versus /n o) for Butterworth (n = 2) filter.

Fig. 2. Actual and experimental values of phase

in radians plotted versus J^n co for Butterworth (n = 2)

filter.



PLATE IV
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Fig. 1.

Fig. 2.



EXPLANATION OP PLATE V

Pig. 1. Actual and experimental values of gain in

db plotted versus /n w for Butterworth (n = 3) filter.

Pig. 2. Actual and experimental values of phase

in radians plotted versus £n w for Butterworth (n = 3)

filter.
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PLATE V

3

Fig. 1.

Fig. 2.



EXPLANATION OP PLATE VI

Fig. 1. Actual and experimental values of gain In

db plotted versus /n to for Chebyshev {n = 2) filter.

Fig, 2. Actual and experimental values of phase

in radians plotted versus ^n co for Chebyshev (n = 2)

filter.
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EXPLANATION OP PLATE VII

Pig. 1, Actual and experimental values of gain in

db plotted versus in co for Chebyshev (n = 3) filter.

Pig. 2. Actual and experimental values of phase

in radians plotted versus ^n w for Chebyshev (n = 3)

filter.
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Table 2. The pole and zero locations of the transmission func-
tion shown with ranges of w.

0) Poles : Zeros

0-.4 1

.4-.

7

2

.7-1.1 1

oo

arbitrarily. An attempt was made to make it very time consuming

to try a trial- and- error method for curve fitting without using

the analogue.

The results of trial-and-error adjustment using the analogue

are shown on Plate VIII, Pig. 2. The complete synthesis is car-

ried out on Plate IX.

The maximum error experienced for all the transmission ra-

tios was less than five per cent, which is well within the accur-

acy of circuit components used for S3rnthesis. This indicates

that if the pole and zero locations are known, the gain and

phase of a transmission ratio may be found and plotted in a

matter of minutes. If the pole and zero locations are not known,

then with a little experimental v/ork the gain may be determined

and plotted directly, and the phase shift may be determined ex-

perimentally and plotted easily.



EXPLANATION OF PLATE VIII

Fig, 1. Arbitrary response curve showing gain

plotted versus co.

Fig. 2. Arbitrary response curve of Pig. 1 with

gain in decibels plotted versus £r\. w. The point on

Fig. 1 where w = 1,000 has been normalized to unity for

this figure. Also plotted are the experimental points,

from zeros at w = .32, o) = .9, and poles at co = ,5,

w = .6.
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EXPLANATION OF PLATE IX

Schematic diagram synthesized from the zeros and

poles discovered experimentally for the arbitrary re-

sponse curve. Circuit element values are also shown.
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R,

—AAA/VW

E I
R-

^2

rA/WWi

R. I V

V/S = (S + 320) (S + 900)/(S + 500) (S + 600)

Rq = 1,000 ohms R-|_ = 2,450 ohms

R2 = 18,500 ohms R3 = 1,360 ohms

R4 = 27,500 ohms G-^ = 0.45 mfd

C2 = 0. 1625 mfd
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For electric networks the ratio of the input to output

voltages l3 of interest. This ratio is called the transmission

ratio of a network, and it has the following form:

P(s) = v/E = e^ ei^

OC = gain in nepers

/^ = phase shift in radians

The transmission function is defined as the logarithm of this

ratio:

G{3) = /n P{a) ^ oC -^ i/3

For a finite lumped element network, this transmission function

is of the same form as the voltage equation for a two-dimensional

surface with positive and negative charges on it.

The restrictions that exist for transmission ratios must

be employed with the potential plane.

To facilitate experimental work that would minimize errors

due to a finite plane, logarithmic conformal transformation was

used, which gave results of a "^n-db" nature. The maximiim

error encountered in the experimental work was less than five

per cent, which is well within the range of accuracy of ordinary

circuit elements.


