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Abstract 

Sedimentation of Federal reservoirs in Kansas has been identified as a critical issue 

affecting municipal and industrial water supplies, flood control, recreation, and aquatic life. 

Eroding streambanks are major sources of sediment. Many streambank stabilization projects 

have been installed over the past 20 years, but there has been very little follow-up monitoring of 

the effectiveness of these practices. The project goal is to quantify the environmental benefits of 

government-sponsored streambank stabilization and restoration projects in northeastern Kansas, 

with a focus on six sites in which tree ad rock revetments were installed. Several of the sites had 

stabilized reaches and similar un-stabilized reaches as controls. Macroinvertebrate 

bioassessments were conducted at two sites, on the Delaware River and Plum Creek on the 

Kickapoo reservation, to compare eroding and stabilized stream reaches. Biotic Index, Biological 

Monitoring Working Party (BMWP), Average Score per Taxon (ASPT), and Elmidae – 

Plecoptera – Trichoptera (EIPT) were calculated to compare the stabilized sites performance for 

water quality and aquatic habitat. The biological indices showed habitat quality on stabilized 

reaches compared to control reaches. Alfa diversity Shannon-Wiener and Simpson indices were 

calculated and improve in habitat quality and macroinvertebrate diversity was shown in 

stabilized reaches. Two new cedar revetments were established in 2017 on Little Grasshopper 

and Wolfley creeks. These cedar revetment installations resulted in heavy sediment deposits after 

high flow events with the revetments retaining 121 and 48 cubic meters, respectively. A novel 

method of using exposed roots was used successfully to quantify erosion on Axtell-Schmidt 

Dairy farm creek and Wolfley creek, where we found an average yearly erosion of 3.39 and 

10.26 cm respectively. Other sites also showed reduced erosion on stabilized reaches and a 

development of vegetation cover along the riparian areas near the streams. Cedar revetments are 



  

shown to be a cost-effective stabilization method on smaller streams. Also, these practices and 

evaluation methods are a good opportunity for community and stakeholder involvement because 

it is possible to train community members in the monitoring practices. It is recommended to 

continue monitoring these sites to compare them with the designated control in order to 

document long-term effects. 
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Chapter 1 - Introduction 

Rivers are dynamic components of the landscape. Over time, environmental factors such 

as heavy rain and geomorphological features cause changes on a river’s course. Under extreme 

events, such as a flood, the movements of the river over the landscape increases the erosion of 

the streambanks. Erosion from streams may cause loss of land, influences agricultural activities, 

and destruction in urban areas. Also, the river’s sediments may contain contaminants that 

potentially affect water quality and sediments may eventually reach water reservoirs reducing 

water availability and causing a detrimental effect in the aquatic habitat.  

An excessive amount of sediment can be harmful in streams and can cause biological 

impairment of rivers. A report by the EPA (2018) lists 1,264 rivers that have been declared 

impaired by different causes such as pathogens, nutrients, metals, organic contaminant, and 

sediment.  

In Kansas, there are 24 federal reservoirs, and residents depend on reservoirs for 

drinking, domestic and recreational water use. Reservoir water storage capacity is decreasing 

14.3 Mm3/ year and on average these reservoirs have lost an average of 17% of their original 

capacity, some reservoirs have lost much more, such as Peery (20%) and Tuttle Creek (45%) 

(Rahmani et al., 2018).  

Among the indicators used for national rivers and streams assessment is biological 

benthic macroinvertebrates, physical streambed sediments, and riparian vegetative cover. The 

indicators provide insight to ecological conditions that may negatively affect the health of stream 

biological communities (EPA, 2014). 

 The main idea of a Stream Restoration Project (SRP) is to modify the river so it will 

reach a steadier state, in which the amount of water and sediment coming in and out from the 
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stream reaches its correct balance. As a result, all the components of the river (bankfull width, 

bankfull depth ratio, the sinuosity, the slope of the channel and the dominant bed material) are 

controlled allowing the river to develop over time without degradation or aggregation (Dutnell, 

1998). “Bankfull discharge is the maximum peak flow that occurs momentarily several days in a 

year” (Rosgen, 1994). The project funds differ from state to state, but the main effort of the SRP 

is to protect water quality and availability for residents, industry, and farmers.  

During the restoration process different type of stream bank stabilization practices can be 

done to help the stream to correct their thalweg, the stabilization practices is defined as the 

engineering design that changes the physical components of the river to protect the bank from 

erosion. Some stabilization practices may or may not help the stream restoration process, 

therefore, it importance on evaluating the stabilization projects.  

Stabilization projects have been practiced since 1997 in the state of Oklahoma and 

Mississippi to reduce stream bank erosion (Dutnell, 1998). Rivers in these states have been 

altered by the construction of dams and straightening of channels, without the full knowledge of 

the effects that these changes could cause to stream habitat and the quality of water. Currently, 

Barden has developed over 20 streambank stabilization projects during the last 19 years in 

northeast Kansas (personal communication, 2018).  

However, the effectiveness of river stabilization projects needs monitoring and 

evaluation. More comprehensive and technical knowledge will help improve the restoration 

projects. This literature review addresses the practices of using Eastern redcedar (Juniperus 

virginiana) trees in the revetment projects for bank protection on smaller creeks and rock vanes 

projects for flow deflection and bank protection on river in northeast Kansas. The review aims to 
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assess the feasibility for using surveys of macroinvertebrates as an estimator of the effectiveness 

of different types of restoration practices comparing stabilized sites to non-stabilized sites. 

 

 Stream Restoration Projects (SRP) 

 There are many different restoration practices such as rootwad (cedar revetment) or rock 

weir to be applicable in many restoration projects alone or simultaneously (Brown, 2000). In the 

application of SRP, each stream is expected to experience problems such as bank erosion, grade 

control, and flow deflection or concentration. Designers engineers must design projects to 

encounter these specific issues. Fluvial geomorphology is used by stream restoration specialists 

to provide a rational understanding of stream issues through the study of the tendencies of the 

natural stream system and incorporating those into the implementation design. In 1994 Rosgen 

introduced the methodology of natural-channel-design (NCD). This methodology tries to mimic 

natural biological conditions of streams by significantly increasing abundance and biomass 

habitat for aquatic life (Ernst, Warren, & Baldigo, 2012). NCD and fluvial geomorphology 

knowledge are used in revetment practices to target the problem of bank erosion. Designers are 

constantly modifying practices and experimenting with techniques to adapt restoration 

challenges to the stream environment (Brown, 2000). When implementing revetment practices is 

important to reduce the cost of the revetment with materials based on the availability in the area. 

Examples in Kansas include the use of native Kansas rock and redcedar trees. 

 Redcedar Revetment 

Redcedar revetments work by decreasing the water velocity during high flows and 

deflecting the current at low flows. Both functions reduce the force in which the water hits the 

bank. The effect of a cedar revetment is observed over time when the vertical bank will attain a 
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more gradual slope as the sediment material is caught and held by the revetment (Goard, 2006). 

An advantage of using redcedar trees is their singular characteristic of having many multiple 

branches and fine twigs that serve as a filter that can capture sediments; Also, redcedar trees 

have decay resistant wood and are found in abundance throughout Kansas. 

 Recommendation for Installation of Redcedar revetments  

The ideal time for a revetment to be installed is in spring before a heavy rain event. 

Larger trees are better at covering the bank but harder to get into the position. Trees from 4.6 to 6 

meters is an appropriate size. Trees should be cut close to the day of the establishment in order to 

maintain the density of foliage on the twigs. The revetment should start from downstream of the 

selected outer meander bend. It is necessary to fill gaps with small cedar trees cabled to the 

larger ones already in place. The revetment should be stablished as shown in Figure 1. It is also 

recommended to plan a buffer zone (Goard, 2006).  

 

Figure 1 A. Cross section of redcedar revetment drawing the placement of tree in the toe of the 

bank. B. Diagram showing the plans for a final revetment project with vegetation cover and a 

riparian buffer. Taken from Goard (2006). 

 Rock Revetment 

In rock revetments, rocks are placed as vanes or weirs located downstream of the point 

where the stream flow encounters the streambank at acute angles (Figure 2). Vanes protect the 

streambank by redirecting the stream flow away from the streambank and towards the center of 

A B 
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the channel helping to improve in-stream habitat through scouring, oxygenation, and cover 

(Harman & Smith, 2017). According to the  USDA (2013) rock revetments are more effective in 

gravel and cobble-bed stream with slopes less than 3%, and they may be not adequate for sand 

bed streams, but Kansas has many rock revetments working well on sand bed stream on the Big 

Blue River and Little Blue River (Balch, 2007).  

 More Stream stabilization structures.  

There are many different types of structures according to the need of the rivers for flow 

resistance and energy dissipation. These structures include Stream Barbs, Vanes, Bendway 

weirs, Spur Dikes, Toe Wood, Log Jams, Rock Walls and Riprap. Stream Barbs, Vanes, and 

Bendways weirs shift the helicoidal flow patterns away from the banks by forcing overtopping 

flow perpendicular to the structure alignment, this way diminishing flow velocity near the bank 

(USDA-NRCS, 2012). These structures are built using rock and are low structures that get 

completely overtop the during a channel forming flow event (Figure 2). They can be built in 

spaces in between the exposed rock near the middle of the channel for fish passages, called 

Porous weirs and Solid weirs are continuous, both are planned in a “V” or “U” with the 

orientation upstream (US Department of Agriculture, 2013). The stream has a path with the 

maximum depth and velocity, referred to as, thalweg. This path can move along the streambed 

near to the edges of the bank, so the main idea of these structures is to direct the thalweg in to the 

center of the stream.  
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Figure 2. Plan for building a rock weir. The figure is taken from the US Department of 

Agriculture, (2013). 

A spur dike (Figure 3A) are a salient feature from the bank into the channel, with a 

horizontal surface that is above the high flow water level. Toe wood is the construction of a 

bankfull bench using primarily un-milled woods for structure, soil lifts to create bankfull surface 

and vegetation. The logjam (Figure 3C) is log structures that deflect flows, give flow resistance 

to the bank and increase deposition. Rock wall and rip rap (Figures 3B and 3D) are basic bank 

protection tools used where infrastructure structure protection is required near buildings or roads 

(USDA-NRCS, 2012). Some structures are better for promoting vegetation, such as, log jams 

and cedar revetment that leave aside space for vegetation growth, or structure like porous weirs 

that protect aquatic habitat by leaving available space for them. Other structures like riprap can 

have negative ecological consequences on streams because they stop the sediment and wood 

input and reduce vegetation growth (Reid & Church, 2015). 
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Taken from: (Karami, Basser, Ardeshir, & 

Hosseini, 2014)  

Taken from: (Julien, 2018) 

 

Taken from: (Gallisdorfer et al., 2014)  
 

Taken from: (USDA-NRCS, 2012)  

 

Figure 3.  Different streambank stabilization practices. A. Spur dikes, B. Riprap, C. Logjam D. 

Rock wall.  

 

 Monitoring of Restoration Practices 

A previous study on restoration practices by Kondolf and Micheli (1995) established the 

general objectives that a stream restoration project should accomplish. Their evaluation criteria 

A B 

C D 
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required that the channel bankfull and stability should be maintained, there should be an 

improvement of aquatic habitat, riparian habitat, and water quality, and there should be 

opportunities for recreation and community involvement. To evaluate channel stability and 

bankfull geomorphology the Rosgen (1994) classification system is generally used for 

monitoring. This classification is based on the assumption that dynamically stable streams have a 

morphology that provides appropriate distribution of flow energy during storm events. The 

Rosgen classification identifies eight dependent variables that affect the stability of a stream: 

channel width, channel depth, flow velocity, discharge, channel slope, the roughness of channel 

materials, sediment load and sediment particle size distribution. The measuring of these variables 

helps to monitor and evaluate stream health, because it gives the parameter for a healthy steady 

stream. However, Brown, (2000) after evaluating 24 past restoration projects concludes that a 

study of the aquatic communities’ response to the stream restoration is also a good measurement 

of success. 

Little updated monitoring of success or failure of streambank stabilization practices has 

been reported until 2017 when Dave and Mittelstet (2017) quantified the effectiveness of several 

practices such as jetties, cedar tree revetments, rock vane, rock toe, and retaining wall and gravel 

banks on the Cedar River in Nebraska. They quantified erosion and deposition from 1993-2016 

using National Agricultural Imagery Program (NAIP) aerial photographs in the program ArcGIS 

10.3. The median streambank erosion rate was significantly different between stabilized and 

control reaches, with control sites showing more erosion. A flood that occurred in 2010 caused 

significantly more erosion on control sites. Jetties successfully increased deposition upstream as 

compared with the control sites. Even though tree revetment was least successful post 

stabilization, other practices presented more erosion during and post-flood, like rock vanes. 
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Comparing the most cost-effective practice jetties were the most cost-effective practice with a 

reduction of 2.93% per dollar spent per meter compared to Tree revetment that only had a 

reduction in average 0.50%. They found that the most cost-effective practices where jetties, rock 

toe and tree revetment.  

Uses of Macroinvertebrates to Assess Water Quality. 

Benthic macroinvertebrates are commonly used to quantify water quality because many 

macroinvertebrates start to develop their early formation stages in the stream before migration to 

terrestrial zones. The use of macroinvertebrates to evaluate water quality is a type of 

bioassessment (Barbour, 1996). The main idea of macroinvertebrate biotic indices is that the 

assessment of stream integrity could be achieved by evaluating the aquatic invertebrate 

community structure (Dos Santos, et al. 2011).  

Using biotic indices for bio-assessing streams started in Europe prior to use in the United 

States by the Biological Monitoring Working Party (BMWP) (Armitage, Moss, Wright, & Furse, 

1983). These indices are based on the absence or presence of species that give information about 

pollution status. Bio-indices have been recognized as suitable criteria for understanding the 

quality of the aquatic environment. The BMWP system considers the sensitivity of invertebrates 

to pollution: macroinvertebrates families are assigned a score between 1to10, accordingly. The 

score is the sum of the values for all families and values higher than 100 are associated with 

clean streams. Another index is the Average Score Per Taxon (ASPT) and is determined by 

dividing the BMWP by the number of taxa present. A high ASPT is considered a clean reach. 

Two more commonly used indices are, Ephemeroptera-Plecoptera-Trichoptera (EPT) and 

Elmidae-Plecoptera-Trichoptera (EIPT), which are similar to each other but differ on the specific 

pollution sensitive taxa used to measure water quality.  
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Specifically, ASPT is a useful tool for monitoring areas impacted by diffuse factors such 

as, patchy landscapes, pastures, and crops. The EIPT is more suitable for areas that receive 

significant sediment loads (Fossati, Wasson, Héry, Salinas, & Marin, 2001), and BMWP 

performs the best in highly affected areas of sediment (Dos Santos et al., 2011). The BMWP is 

mainly used for establishing a baseline for rivers, and it needs to be adjusted to the specific area 

that is being used to achieve higher versatility than the other indices.  

Habitat Changes and Macroinvertebrates.  

 The dynamic nature of streams sustains ecosystem habitat, since some bank erosion is 

natural and provides a sediment source that creates riparian habitat, maintains diverse structure 

and habitat functions. Riparian vegetation promotes bank stability and contributes large woody 

debris, while bank erosion modulates changes in channel morphology and pattern (Florsheim, 

Mount, & Chin, 2008). 

Physical stressors like poor riparian vegetative cover and high levels of riparian 

disturbance are widespread stressors, contributing to erosion and allowing more pollutants to 

enter the waterway. The sediments can smother the habitat gradually where many aquatic 

organisms live or breed. Poor biological condition is twice as likely in rivers and streams with 

excessive levels of streambed sediments (EPA, 2014). 

Mažeika, et al. (2004) suggested that changes in the physical structure and condition of 

the stream influence the biological communities and processes. If the physical structure of the 

stream affects the biological communities, it will reflect poor water quality and reduce the 

biodiversity of benthic insects. However, 60% of the sites assessed by Brown (2000) did not 

achieve all objectives for habitat enhancement successfully. 
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When erosion is occurring in a stream, an erosional zone and a depositional zone form 

along the meander of the stream. As a result, the sediment will move from the erosion zone to the 

depositional zone. The interaction between erosional zones and depositional zones and nutrients 

(soluble and particulate) and sediment can negatively affect aquatic life. Riffles zones are 

typified by the contents at the bottom of the stream (stones, gravel, and sand) and because the 

water flow faster, sediment particles move on the streambed. This type of zone is often expected 

to have diverse insect fauna. On the other hand, the depositional zones are characterized by 

slower water and small sediment particles. In addition, these zones have a fewer number of 

insect than those found in erosional zones but may have many individuals of dominant species 

(McCafferty, 1998). 

Ernst et al., (2012) investigated the influence of the stream-reach geomorphic state on in-

stream habitat and aquatic macroinvertebrate communities and compared measures of habitat 

conditions and macroinvertebrate community composition in stable and unstable stream reaches. 

Their results suggest that the use of this macroinvertebrate bioassessment is not effective since it 

does not necessarily respond to physical changes in the rivers. On the other hand, Sudduth and 

Meyer, (2006) indicated the results always tend to be beneficial for restoration projects that 

imitate the macroinvertebrate habitat.  

On the overall sites studied by Sudduth et al. (2006) and Mažeika et al., (2004), sites that 

used rock revetment had smaller number of macroinvertebrates compare to sites that used tree 

revetment; however, the sites using rock revetment had higher numbers of macroinvertebrates 

compare to the control sites. These reaches had an length for 250 to 330 meters on a basin water 

catchment of 18 kilometers (Sudduth & Meyer, 2006). This result may suggest that tree 

revetments tend to have more organic habitat and diversity compared to rock revetment. Mažeika 
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et al., (2004) found no difference in macroinvertebrates abundance between stabilized and non-

stabilized sites but the insect communities on stabilized sites tended to be dominated by higher 

percentages EPT.  

 Quantifying erosion rates 

The erosion of streams and river is a natural process in landscapes, so the quantifying of 

erosion rates is more commonly done by researchers unlike the monitoring of streambank 

stabilization projects. There are different methods to quantify erosion rates, this section describes 

two such methods. The first method is a classical technique while the second is novel to this 

research. 

 Reinforcement bar for bank erosion analysis 

Besides the new techniques of quantifying or monitoring stream bank erosion, several 

researchers have used erosion pins to date historical erosion rates (Couper, Stott, & Maddock, 

2002). Erosion pins are a classic and useful tool to collect data of the spatial and temporal 

variations of streambank since erosion is not evenly distributed along the bank. These pins are 

inserted horizontally into the eroding bank (Thorne, 1981). 

Erosion pins are used to measure on-site erosion, unlike the other techniques that use 

spatial imaginary to collect streambank erosion data. The erosion pins provide a reference point 

to interpret from its exposed length the bank erosion. The first pins were made from wood 

however, they decayed, so plastic or metal is more commonly used, although this last one may 

suffer from severe corrosion (Haigh, 1977). Concrete reinforcement bar (rebar) is commonly 

used as erosion pins.  

Pope & Odhiambo (2014) used pins to analyze erosion in the Ni reservoir located in, 

Virginia, USA.  They discovered that severity of bank erosion increases with proximity to the 
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dam of Cool spring lake and that the results varied in respect to the different heights that the pins 

were established. The use of pins can have some disadvantages as well, such as, disturbance of 

the bank when inserting the pins, something that is almost impossible to avoid when putting a 

rebar on a slope (Haigh, 1977). Hupp et al. (2009) documented bank erosion along the Roanoke 

River in North Carolina. This large-scale study used more than 700 bank erosion pins installed 

along 66 bank transects, concluding that erosion rates are greater in the middle reaches with a 

mean of 63 mm/yr. Erosion pins have been used successfully to document erosion by several 

researchers. 

 Dendrogeomorphic approach to estimate erosion rates 

Dendrogeomorphology is the science that combines dendrology (the study of trees) with 

geomorphology (the study of the surface of the earth) to estimate with accuracy soil erosion or 

deposition (Ballesteros-Cánovas et al., 2013). Dendrogeomorphology uses the growth anomalies 

in tree-ring records from roots instead of stem samples to infer about past geomorphic 

conditions. In 1960’s exposed roots were used as an indicator of ground surface at the time of 

germination of Pinus aristata in California (Stoffel, et al. 2017), now the method has evolved for 

the analysis of sheet-erosion (Rubiales, et al. 2008) and to estimate erosion rate of streambanks 

(Stotts, et al 2014) .  

Dendrogeomorphology is a useful tool to analyze long-term historical erosion, as this 

method can obtain more information on the distribution and timing of past flood events, which 

could help communities prepare for severe climate events (Stoffel et al., 2017).  For example, 

Spain had been using dendrogeomorphic research for successfully applied flood risk analysis 

(Díez-Herrero, Ballesteros, Ruiz-Villanueva, & Bodoque, 2013).  
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When geomorphic changes happen in the landscape, it can leave tree roots exposed. This 

exposure causes the loss of the soil cover of the root and cellular anatomical changes occur in the 

growth rings. The anatomical changes of the growth rings are explained by the variation in soil 

temperature and humidity, reduction in pressure of soil cover and mechanical stress (Corona et 

al., 2011). In more simple words, without the soil cover, the roots produce protective bark, and 

scars can be seen in cross sections cut of the root (Figure 4). 

 

Figure 4. Photo showing cross section cut of a root and it scars. 

Analysis can be done from a macroscopic or a microscopic level. The microscopic 

technique can yield more information about the floods but is much more expensive and requires 

special equipment to prepare the examining slides. For microscopic analysis it is necessary to cut 

microsections from the root sample and follow the procedures from Schweingruber (2006) for 

microsection slide preparation, a highly equipped laboratory is necessary to obtain the perfect 

image of the root cells in order to and find the scars. Although, both macroscopic and 

microscopic analysis may be used together in soil erosion analysis (Rubiales et al., 2008; Corona 

et al., 2011; Sun, Wang, & Hong, 2014) on a limited budget macroscopic analysis can be used 

alone to calculate annual erosion rates.  
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This literature review supports the use of macroinvertebrates to evaluate sediment 

sensitivity in streams subject to human influences like pastures and crops. Although, 

macroinvertebrates do not show a strong correlation with habitat changes, the literature expresses 

the importance of monitoring water quality and aquatic habitat conditions in streams that have 

been stabilized. Monitoring the sites is important because biological recovery is expected to 

occur at a slow pace over the years. This literature review also supports the use of the erosion pin 

method and the newer technique, using exposed roots to measure and quantify streambank 

erosion.  

The use of restoration practices is becoming more popular over time and helps to mitigate 

the effects of extreme water events (Brown, 2000). They might not directly improve the quality 

of the water, but these practices help to ensure the availability of water by reducing sediment 

loads entering reservoirs. Even when conclusions concerning the best practice for achieving a 

good ecological status are unclear, the literature provides information about which practices are 

most likely to succeed and how to manage further monitoring of these specific streams. 

Continuing research and assessment of past restoration practices will improve the design of 

restoration practices, allowing for improved decisions on implementation and assessment of the 

practices.  

 

 Purpose of study 

Kansas water supply reservoirs have an annual depletion rate range from 0.02% to 0.84% 

and an estimated range of 0.5 to 1% of capacity loss (Rahmani et al., 2018). A sediment-filled 

reservoir is not able to support municipal and industrial water use and will not be able to meet 

demands during drought events (Juracek, 2015). Therefore, it is necessary to validate strategies 
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and actions to provide a reliable water supply. Achieving a reliable water supply will include 

actions to conserve and extend the useful life of reservoir storage. The Kansas Water Office 

stated in 2012 “Kansas needs plans to improve water quality; reduce vulnerability to extreme 

events, such as from floods and drought; develop and maintain water infrastructure; loss of 

arable land; and improve recreational opportunities available to our citizens" (KWO, 2013).  

Despite the increasing commitment of resources to stream restoration, post-monitoring of 

stream restoration projects has generally been neglected and few project have undergone 

assessments to determine which perform best under various conditions ( Brown, 2000). 

Evaluation is useful for determining whether project objectives have been satisfied, these 

evaluations can also help stakeholders to improve restoration practices (Kondolf & Micheli, 

1995). If the bioassessment is conducted, usually macroinvertebrates are used to determine the 

environmental benefit. Just a few studies especially focus on quantification of streambank 

erosion as a part of monitoring the stabilization (Dave & Mittelstet, 2017).  Lenhart (2018) 

established that farming is the most important reason for protecting water quality according to 

population surveys, it also establishes that farmers need the evidence that practices will work in 

the long-term for cost-benefit motivated decisions. Lenhart’s surveys also suggest that 

stakeholders need the demonstration projects and the opportunity to have an open information 

exchange with researchers and the government. This project aimed to have an open relationship 

with landowners and used newly stabilized sites as successful demonstration projects for future 

extension education.  

The purpose of this study was to quantify the environmental benefits of government-

sponsored streambank stabilization and restoration projects in northeast Kansas, with a focus on 

sites within the Kickapoo Tribe in Kansas and Prairie Band Potawatomi Nation Indian 
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Reservations. Specific objectives were to document the erosion and deposition rate of existing 

streambank stabilization sites and conduct bio-assessment surveys to document aquatic organism 

presence at the stabilized sites compared to nearby un-stabilized reaches. 
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Chapter 2 - Materials and Methods 

The following chapter will review the materials and study methods used in the 

assessment of streambank stabilization projects in northeast Kansas. Two main evaluations were 

conducted: the evaluation of capability of the stream for supporting aquatic life using 

bioassessment of macroinvertebrates and measurements of erosion rates using exposed tree roots 

and erosion pins. The evaluation analysis methods correspond to the restoration projects 

objectives; channel stability, improve aquatic and riparian habitat while encouraging community 

involvement, as suggested by Kondolf & Micheli, 1995. This chapter will also give a brief 

description of the selected sites and locations.   

 

 Description of sites. 

Seven sites were selected in five main locations distributed in the northeast Kansas: 

Potawatomi Reservation, Kickapoo Reservation, Atchison County, Marshall County, Jackson 

County, and Nemaha County (Table 1). These streams have been stabilized with redcedar 

revetment or rock revetment in the past years. Several sites have a stabilized reach and a non-

stabilized reach that serves as a control for the study.  

Figure 5 shows the study site of Axtell Dairy farm; the creek is located Marshall County 

at 30°49.695’ North and 96°16.397’West. This creek has a drainage area of 14.09 square 

kilometers and a mean annual precipitation of 84.84 centimeters. A cedar revetment was 

installed in 2007, the revetment was placed to prevent further incision into the farmstead and the 

street. This site is being monitored with root exposure methodology. There is a narrow area of 

tree and vegetation cover around the creek and dairy cow pasture around the creek. 
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Figure 5. Map of location with stabilized did not have control site in the Axtell Dairy farm. 

 

 

Figure 6. Map of location with stabilized and control sites in the Little Soldier creek.  
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Little Soldier creek (Figure 6) is located in Jackson County inside the Potawatomi 

Reservation at 39°21.275’North and 95°48.107’West. This creek has a drainage area of 25.25 

square kilometers and a mean annual precipitation of 90.93 centimeters. A cedar revetment was 

installed in March 2000, it has a length of 60.96 meters. This site was monitored using 

reinforcement bars.  

 

Figure 7. Map of location with stabilized and control sites in the Little Grasshopper Creek.  

Little Grasshopper Creek (Figure 7) is located in Atchison County at 39°34.935’ North 

and 95°26.337’West. This creek has a drainage area of 58.20 square kilometers and a mean 

annual precipitation of 92.96 centimeters. The texture of the site soil is silt loam. This site was 

monitored using reinforcement bars. We installed a new cedar revetment in March, 2017. This 

revetment is 115.82 meters long and the cut bank is 6.10 meters high. We placed the first tree at 

the base of the eroding bank, with the cut end of the tree pointing upstream. An anchor was used 

to attach a 3.6 meters cable where the top of the first tree was located. A tractor was used to 

move the trees to the bank.  Once, the tree is located at the toe of the bank, we held it against the 
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bank and attached the cable to the top of the tree using a cable clamp. Another anchor was placed 

where the butt of the second tree was located. Then we anchored the tree tightly against the bank 

moving the next tree into place with its top overlapped by 1/3 the butt of the first tree. Secure 

cable was used to anchor the butt of the first tree to the top of the second tree. This process 

continued upstream until the entire base of the streambank was covered with trees. Salix sp. 

stakes were placed above the cedar tree revetment in order to promote vegetation cover (Figure 

8).  

 

Figure 8. Photo of cedar revetment establishment on Wolfley Creek. 
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Figure 9. Map of location with stabilized and control sites in the Wolfley creek.  

Wolfley Creek (Figure 9) is located in Nemaha County at 39°43.040’North and 

95°52.604’West. This creek has a drainage area of 43.98 square kilometers and a mean annual 

precipitation of 87.38 centimeters. We also installed a new revetment in April, 2017. This 

revetment is 88.4 meters long and 9.14 meters in depth. The texture of the soils is silt loam. This 

site was being monitored by reinforcement bars and macro analysis of exposed roots.  
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Figure 10. Map of location for Bioassessment in Delaware River section.  

Delaware (River Figure 10) in the Kickapoo reservation located at 39°39.287’ North and 

95°38.510’West. This river has a drainage area of 381.14 square kilometers and a mean annual 

precipitation of 87.63 centimeters. A rock revetment was installed in 2015. The method of 

monitoring on this site is Macroinvertebrate Bioassessment.  
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Figure 11. Map of location of Bioassessment in Plum Creek.  

Plum Creek (Figure 11) in the Kickapoo reservation is located at 39°41.423’ North and 

95°41.694’ West. This creek has a drainage area of 48.90 square kilometers and a mean annual 

precipitation of 87.88 centimeters. A cedar revetment was installed in 2010. The method of 

monitoring this site is, Macroinvertebrate Bioassessment. The estimated length of the reach in 

the study is of 40 meters with a bank height of 7.5 meters. The land is used for crops and has a 

riparian zone containing 12 meters wide of grass and cottonwood trees and 5 meters of 

vegetation before the crop field. One more site is represented here as a future possible site where 

we took roots samples, this site named Cross Creek (Figure 12) located in Jackson county 

39°14.854’ North and 95°59.784’ West. This creek has a drainage area of 306.89 square 

kilometers and a mean annual precipitation of 88.40 centimeters. 
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Figure 12. Map of location of Cross Creek.  

 

Table 1. Summary of Study sites and monitoring methods used.  

Location Name Revetment Year 

installed Method 

Potawatomi 
Reservation 

Little Soldier 

Creek Cedar 2000 Rebar  

Kickapoo 

Reservation 

Delaware 

River Rock 2015 Bioassessment 

Plum Creek Cedar 2010 Bioassessment 

Atchison 

County 
Little 

Grasshopper 

Creek 
Cedar 2017 Rebar 

Nemaha 

County 
Wolfley 

Creek Cedar 2017 Rebar + Roots 

Marshall 

County 

Axtell-

Schmidt 

Creek 

Cedar 2007 Roots 

Jackson 

County 
Cross Creek None Possible Roots 
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 Macroinvertebrates Bioassessment  

Macroinvertebrates Bioassessment was conducted in two locations in the Kickapoo 

Reservation: Delaware River and Plum Creek. The bioassessment of water quality used 

macroinvertebrates, as designated at three different in-stream habitats to take a collection of 

macroinvertebrates, bank edges, riffles, and pool. Macroinvertebrates were collected using two 

types of nets a bottom kick net for riffles and a D-net for banks edges and pools with 500 µm 

mesh size, following the adapted procedure in the Volunteer Stream Monitoring manual (Hoosier 

Riverwatch, 1997). The collection was conducted during 10 to 15 minutes, also on riffle habitat 

ten rocks were examined and macroinvertebrates collected. Macroinvertebrates were put into 

bottles with a 50/50 ratio of water and ethyl alcohol. The samples were taken to the laboratory 

and identified to family through a stereoscope examination using the Bioindicators of Water 

Quality Quick-Reference guide by Purdue University (Speelman & Carroll, 2012). Temperature, 

pH, and dissolved oxygen were taken in situ with using a Multiparameter Water Quality Sonde 

6600 V2 manufactured YSI ®. The macroinvertebrate bioassessments was performed during late 

spring - early summer (May – June) and were collected twice a year for two years. 

 Data Analysis 

The macroinvertebrate individuals collected were identified by Order and Family to be 

used as the data to calculate the following biotic and diversity indices.  

 

Biological Monitoring Working Party (BMWP): The BMWP, for each site, score was 

calculated by simply summing the individual scores of all the families found (Table 2). Pollution 

intolerant taxa have a high score; therefore, a higher score would indicate a better biological 

condition for macroinvertebrates.  
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Average Score Per Taxon (ASPT): ASPT is calculated by dividing the BMWP score by the 

total number of the scoring taxa. A high ASPT value is characteristic of a clean site, meaning 

that has more number of higher scoring taxa (Armitage et al., 1983). 

Table 2. Table taken from Armitage, Moss, Wright, & Furse, (1993) containing the BMWP 

tolerance.  

FAMILIES SCORE 

Siphlonuridae, Heptageniidae, Leptophlebiidae, Ephemerellidae, 

Potamanthidae, Ephemeridae, Taeniopterygidae, Leuctridae, 

Caprniidae, Perlodidae, Perlidae, Chloroperlidae, 

Aphelocheridae, Phryganeidae, Molannidae, Beraeidae, 

Odontoceridae, Leptoceridae, Goeridae, Lepidostomatidae, 

Brachycentridae, Sericostomatidae. 
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Astacidae, Lestidae, Agriidae, Gomphidae, Cordulegasteridae, 

Aeshnidae, Corduliidae, Libelluiidae 

 

8 

 

Caenidae, Nemouridae, Rhyacophilidae, Polycentropidae, 

Limnephilidae 

 

7 

 

Neritidae, Viviparidae, Ancylidae, Hydroptilidae, Unionidae, 

Corophiidae, Gammaridae, Platycnemididae, Coenagriidae 

 

6 

 

Mesoveliidae, Hydrometridae, Gerridae, Nepidae, Naucoridae, 

Notonectidae, Pleidae, Corixidae, Haliplidae, Hygrobiidae, 

Dytiscidae, Gyrinidae, Hydrophilidae, Clambidae, Helodidae, 

Dryopidae, Elmidae, Chrysomelidae, Curculionidae, 

Hydropsychidae,Tipulidae, Simuliidae, Planariidae, 

Dendrocoelidae 

 

 

5 

 

 

 

Baetidae, Sialidae, Piscicolidae 

 

4 
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Table 2. Continued. 

FAMILIES  SCORE 

Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, Planorbidae, 

Sphaeriidae, Glossiphoniidae, Hirudidae, Erpobdellidae, Asellidae 

 

3 

 

Chironomidae 2 

Oligochaeta (whole class) 

 
1 

 

Elmidae – Plecoptera - Trichoptera: This score is abbreviated as EIPT, the index is calculated 

by identifying the number of species within these taxa Elmidae, Plecoptera and Trichoptera at 

the site of study (Dos Santos et al., 2011). 

Biotic Index: The number found from each family was multiplied by the tolerance value of the 

family established by Speelman & Carroll from the Quick-Reference guide of Purdue University 

(2012). The sum of the family tolerance score is divided by the grand total of the number of 

families founded.  

 

Table 3. Water quality rating for the biotic index (Speelman & Carroll, 2012). 

Biotic 

Index 

Water Quality 

Rating 

0.00-3.75 Excellent 

3.76-4.25 Very Good 

4.26-5.00 Good 

5.01-5.75 Fair 

5.76-6.50 Fairly poor 

6.51-7.25 Poor 

7.26-10.00 Very poor 
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Alpha diversity Shannon-Wiener and Simpson scores were calculated using R® program 

for diversity indices to determine water quality (Moreno, 2001).  

Shannon-Wiener:   𝑯′ = ∑ 𝒑𝒊
𝑺
𝒊=𝟏 𝐥𝐧(𝒑𝒊) 

Simpson:   𝝀 = ∑ 𝒑𝒊
𝟐 

Where:  

𝑝𝑖= Proportion of abundance of the species.  

S= Total number of species.  

 

 Erosion Estimation Techniques 

To measure short-term erosion reinforcement bars 1 cm in diameter and approximated 

60.5 to 121 cm were placed approximately 92 cm vertically apart. Reinforcement bars were 

inserted in the stabilized reach and a non-stabilized reach of each site following the methods of 

Pope et al. (2014) and Couper et al. (2002). Three to four reinforcement bars were placed in 

vertical transect along the eroded bank, depending on the cut bank length, perpendicular to the 

bank face using a hammer. All reinforcement bars were inserted all the way, and a length of 

orange flagging attached to the end, to aid in finding them in the future. We measured the 

exposure or deposition of the reinforcement bar by uncovering the soil o top. Three sites were 

measured using erosion pins: Little Soldier, Little Grasshopper and Wolfley Creek once each 

year. In locations where it was difficult to locate previously placed reinforcement bars, a metal 

detector, ACE 300, manufactured by GARRET ™ was used.  

To measure long-term erosion, a macro analysis of exposed tree root was used. The 

samples were taken from three sites Axtell-Schmidt, Cross Creek and Wolfley Creek. Samples 

were 5-10 cm thick, to avoided disturbances by the stem cross sections were cut 50 – 100 cm 

from the trunk and still living. Before the cross section was cut in-situ details of the root were 
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recorded such as the species, location in the bank and a photo. The length of soil loss at each 

location of roots was recorded using a meter stick oriented perpendicular to the flow and the 

bank (Figure 12), four labeled measurements to record relative bank position were marked as A, 

B, C and D in the cross section with a permanent ink marker following Stotts et al., 2011 

specifications (Figure 13).  

 

Figure 13. Length of the eroded bank EX was obtained by averaging the perpendicular distance 

from the riverside edge of the root to the current bank position. (A) Downstream bottom, (B) 

Upstream bottom, (C) Downstream top, and (D) Upstream top. 

 

Samples were air dried for 1-2 months, cut samples in 2 cm thick sections, and sanded 

smooth using sequentially finer sanding papers 80, 150, P220, P320 and P400 (Corona et al., 

2011; Sun, Wang, & Hong, 2014; Stotts, O’Neal, Pizzuto, & Hupp, 2014). 

 Data Analysis 

Erosion rates were calculated using the following equation modified by Stotts, O’Neal, 

Pizzuto, & Hupp (2014) from Corona et al. (2011): 

𝐸𝑟 =  𝐸𝑥 − (𝐺𝑟1) +
(𝐵1 + 𝐵2)

2
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𝐸𝑟𝑎 =  𝐸𝑟/𝑁𝑅𝑒𝑥 

Where:  

𝐸𝑟: Corrected length of the eroded bank. 

𝐺𝑟1: Root growth after exposure (Figure 14). 

𝐸𝑥: Average distance between the riverside edge of the root and the current bank 

position.  

(𝐵1+𝐵2)

2
 : Average bark width. 

𝐸𝑟𝑎: Annual erosion. 

NRex: number of years the root has been eroded (Figure 14). 

 

Figure 14. Several years since root exposure, annual rings were counted between (A) the 

exposure indication this case a scar and (B) the outside edge of the root. Gr1 is the measurement 

in centimeter from A to B. 
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Chapter 3 - Results and Discussion 

The following chapter will present the result of the data collected over the course of two 

years. The data presented is described as case studies for each site, starting with the 

bioassessment and finishing with the quantification of erosion rates. Unfortunately, there was 

insufficient data to establish true statistical comparisons between the stabilized and un stabilized 

stream reaches erosion or bioassessment. Several other studies indicate at least five years of 

repeated measures are needed for statistical analysis (Arslan et al., 2016; Selvakumar, O’Connor, 

& Struck, 2010).  

The cost estimated for the cedar revetment in these projects is $4,000 for a 76.20 meters 

long revetment, or approximately $52.49 per meter. This estimate is similar to the calculation per 

Dave (2017) of a tree revetment $72 per meter. To calculate the estimated cost for a rock 

revetment, the Delaware stabilization project total cost of $563,295 with 11 sites was used. This 

project had a length between 152.5 meters to 76.2 meters. Delaware River rock revetment was 

estimated to cost $335.8 per meter with a length of 152.5 meters similar to the $205 per meter 

calculated by Dave (2017).  The cost of a rock revetment is higher because this technique 

requires an engineer to design the project, cost of material and the use of heavy equipment. 

 

 Macroinvertebrate bioassessment 

The streams are of the warm water type. The water parameters for Delaware river 

averaged a temperature of 25.01C°, 10.15 ppm of dissolved oxygen, 18.85 ppm 𝑁𝑂3− , a 

conductivity of 0.79 ms /cm with a turbidity of 8.55 NTU and pH 8.22. For both rivers, more 

species found were in the riffle habitat while the least number of species in the pool habitat, this 
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is expected because of the suitability for reproduction of the sessile aquatic insects, due to the 

increase water flow in the riffle (McCafferty, 1998).   

The most dominant taxa were Hydropsychidae followed by Chironomidae and 

Leptohyphidae, representing 54.26% and 50.4% of riffle species on stabilized and control 

reaches respectively (Table 4). The substrate created by restoration is suitable for the attachment 

of net-spinning Hydropsychidae and Chironomidae and are tolerant of silt and sand (Selvakumar 

et al., 2010). The least represented families for the riffle on stabilized reach were Corydalidae, 

Veliidae, and Calopterygidae, these were just 0.48% of the total taxa. On the control reach the 

least represented families where Potamanthidae, Stratiomyidae, Lepidostomatidae, Corydalidae, 

and Mesoveliidae these were 0.57%. 

Table 4. Delaware river macroinvertebrates communities recorded from data in Stabilized 

and Control reaches. Average over two years and 4 collections. 

Delaware Stabilized Control  

Order Family Riffle Pool 
Cut 

bank 
Riffle Pool 

Cut 

bank 
Total 

Ephemeroptera 

Baetidae 29 2 5 62 1 33 132 

Heptageniidae 28 8 1 55 2 0 94 

Ephemerellidae 34 0 0 22 0 4 60 

Potamanthidae 8 0 3 1 3 0 15 

Isonychiidae 30 10 0 63 0 4 107 

Baetiscidae 4 2 0 2 0 0 8 

Siplhonuridae 4 0 0 6 0 8 18 

Leptophlebiidae 4 0 7 2 0 1 14 

Caenidae 4 2 0 8 0 0 14 

Leptohyphidae 114 4 0 14 1 3 136 

Diptera 

Culicidae 8 0 0 0 0 0 8 

Stratiomyidae 0 0 0 1 0 1 2 

Chironomidae 60 5 7 101 15 57 245 

Empididae 0 0 0 5 0 2 7 

Muscidae 0 0 0 6 0 0 6 

Simuliidae 0 0 0 34 0 7 41 

Culicidae 8 0 0 0 0 0 8 

Psychodidae 0 1 0 0 0 0 1 
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Table 4. Continued.  

Delaware Stabilized  Control 

Order  Family Riffle Pool  
Cut 

bank 
Riffle Pool  

Cut 

bank 
Total 

Diptera 

Stratiomyidae 0 0 0 1 0 1 2 

Chironomidae 60 5 7 101 15 57 245 

Empididae 0 0 0 5 0 2 7 

Muscidae 0 0 0 6 0 0 6 

Simuliidae 0 0 0 34 0 7 41 

Psychodidae 0 1 0 0 0 0 1 

Tipulidae 6 0 0 0 0 0 6 

Sciomyzidae 0 0 0 0 0 2 2 

Atherecidae 0 0 0 2 0 0 2 

Ceratopogonidae 0 0 0 6 0 0 6 

Dixidae 8 0 0 2 0 0 10 

Plecoptera 
Perlidae 0 0 0 4 0 0 4 

Capniidae 4 0 0 2 0 0 6 

Trichoptera 

Philopotamidae 38 0 0 24 0 0 62 

Lepidostomatidae 0 0 0 1 1 0 1 

Brachycentridae 5 0 0 0 0 0 5 

Glossosomatidae 6 0 0 0 0 0 6 

Hydroptilidae 6 0 0 10 0 6 22 

Leptoceridae 4 0 0 0 0 0 4 

Hydropsychidae 160 0 2 321 0 62 545 

Coleoptera 

Dryopidae 37 0 0 23 1 13 74 

Haliplidae 0 0 3 0 0 0 3 

Dytiscidae 0 0 0 0 1 0 1 

Hydrophilidae 0 0 1 2 1 1 5 

Elmidae 10 0 0 73 1 6 90 

Odonata 
Coenagrionidae 0 2 0 0 0 0 2 

Calopterygidae 2 1 0 6 0 0 9 

Megaloptera Corydalidae 1 0 0 1 0 0 2 

Hemiptera 

Corixidae 0 13 13 0 32 19 77 

Gerridae 0 0 3 0 0 6 9 

Mesoveliidae 0 0 0 1 0 0 1 

Notonectidae 0 0 0 4 0 0 4 

Veliidae 1 0 12 0 0 0 13 

Total specimens 615 50 57 864 59 235 1879 

Total families 26 11 11 30 11 19 108 
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Plum Creek was found with a good diversity of tree species in the riparian area like Celtis 

occidentalis, Morus rubra, Parthenocissus quinquefolia, Ribes missouriense, and others. For 

Plum Creek the average water parameters were: temperature 25.11C°, 8.39 ppm of dissolved 

oxygen, 20.57 𝑁𝑂3− content, 4.4 NTU of turbidity, with 0.71 ms/cm of conductivity and pH 

8.12. The most dominant taxa found in Plum Creek were Chironomidae, Baetidae, and 

Heptageniidae which represented 50.34% and 56.03% of species found in the riffle habitat on 

stabilized and control reaches respectively (Table 5). Chironomidae and Baetidae are often 

found to be the dominant species in other similar macroinvertebrate bioassessments studies, 

because they are resistant to habitat changes and contamination (Arslan et al., 2016). The least 

dominant families in the riffle on Plum Creek where Mesoveliidae, Capniidae, Coenagrionidae, 

Ephemeridae, Caenidae, Empididae, Philopotamidae and Leptoceridae representing 2.83% of 

the stabilized reach compare to control reach the least dominant were Culicidae, Perlidae, 

Capniidae and Philopotamidae representing 2.4%.  

Table 5. Plum Creek macroinvertebrates communities recorded from data in Stabilized 

and Control reaches.  

Plum Stabilized Control  

Order Family Riffle Pool 
Cut 

bank 
Riffle Pool 

Cut 

bank 
Total 

Ephemeroptera 

Baetidae 61 16 29 13 9 13 141 

Baetiscidae 0 0 1 0 0 0 1 

Heptageniidae 32 0 5 24 4 6 71 

Ephemerellidae 19 9 3 0 6 6 43 

Potamanthidae 10 0 2 6 0 0 18 

Isonychiidae 11 10 0 9 4 1 35 

Ephemeridae 1 0 0 0 0 0 1 

Siphlonuridae 12 0 2 12 4 0 30 

Lepthophlebiidae 4 0 0 0 0 1 5 

Caenidae 1 8 0 0 4 1 14 

Leptohyphidae 1 0 0 5 3 0 9 

Diptera 

Chironomidae 67 126 45 56 30 19 343 

Psychodidae 0 0 1 0 0 0 1 

Culicidae 0 0 0 1 0 0 1 
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Table 5. Continued. 

Plum Stabilized Control  

Order Family  Riffle Pool 
Cut 

bank 
Riffle Pool 

Cut 

bank 
Total 

Diptera 

Stratiomydae 0 0 2 0 0 0 2 

Empididae 1 0 0 2 2 0 5 

Dixidae 2 6 0 0 2 0 10 

Ephydridae 0 0 0 1 0 0 1 

Tipulidae 0 2 0 0 0 0 2 

Simuliidae 17 0 1 2 0 0 20 

Plecoptera 

Perlidae 6 0 0 1 0 0 7 

Perlodidae 2 0 0 0 0 0 2 

Capniidae 1 0 0 1 0 0 2 

Odonata 

Calopterygidae 4 1 6 0 0 0 11 

Aeshnidae 0 0 1 0 1 0 2 

Gomphidae 0 1 0 0 0 0 1 

Coenagrionide 1 0 0 0 0 0 1 

Lepicloptera Pyralidae 2 0 0 0 0 0 2 

Trichoptera 

Philopotamidae 1 0 0 1 0 0 2 

Leptoceridae 1 0 0 0 0 0 1 

Hydroptilidae 0 0 1 0 0 0 1 

Hydropsychidae 30 0 1 18 0 0 49 

Coleoptera 

Dryopidae 10 0 0 11 0 0 21 

Haliplidae 0 1 0 0 0 0 1 

Gyrinidae 0 0 0 0 0 1 1 

Elmidae 18 10 1 3 0 0 32 

Hydrophilidae 2 0 0 0 0 0 2 

Hemiptera 

Corixidae 0 12 3 0 0 0 15 

Gerridae 0 1 4 0 0 0 5 

Nepidae 0 1 0 0 0 0 1 

Mesoveliidae 1 0 0 0 0 0 1 

Total specimens 318 204 108 166 69 48 913 

Total families 27 14 18 17 11 8 95 

 

On the Delaware River Macroinvertebrate Biotic index indicated good habitat quality for 

stream aquatic species on the riffle and poor habitat quality for the cut bank and pool habitat, 
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thus the overall quality quality is fair for stabilized reach to compare to control reach that 

resulted in good habitat quality for riffle, fairly poor for cut bank and very poor for pool habitat 

(Table 6). Stabilized reach shows higher habitat quality than the control reach meaning that 

stabilized reach provided better substrate for creating a suitable macroinvertebrate habitat, 

although statistical significance of these observed differences cannot be determined. 

When measuring BMWP and ASPT index stabilized and control reaches have similar 

overall water quality although, within the habitat riffle and cut bank the stabilized reach had 

indication of higher water quality than control. EIPT were more highly represented in stabilized 

reach on the riffle habitat and was double the value of the control. Simpson index for riffle 

habitat on the stabilized reach resulted higher than control 0.86 and 0.80, respectively. Simpson 

index produces values from 0 to 1, meaning the closer to 1, there is more diversity species. So, if 

two more macroinvertebrates individuals were randomly selected on the stabilized site, the 

probability of these two different species is 3% higher than in the control site. The results show 

that there is slightly more species diversity presented in the stabilized reach than the control site.  

Table 6. Average Macroinvertebrate Indices, BMWP, ASPT, EIPT, Shannon-Wiener and 

Simpson Biodiversity Indices from Delaware river site in stabilize and control reaches.  

 Stabilized Control 

Channel Unit Riffle Cut Bank Pool Riffle Cut Bank Pool 

Biotic Index 4.50 5.78 5.95 4.28 5.14 7.45 

BMWP 127.00 61.00 34.00 132.00 77.00 61.00 

ASPT 4.88 5.55 3.09 4.40 4.05 5.55 

EIPT 12.00 1 0 6 3 2 

Shannon-Wiener (H’) 2.41 2.02 2.16 2.21 2.25 1.40 

Simpson  0.86 0.83 0.84 0.80 0.86 0.61 

 

The Biotic Index on Plum Creek indicated good habitat quality for riffle and cut bank, 

fair for the pool on stabilized reach, on control reach all habitat resulted in good habitat quality 

the overall both reach presented good water quality (Table 7). Using the BMWP and ASPT score 
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the stabilized reach resulted in good quality and the control was of moderate quality. EIPT were 

more highly represented on the stabilized reach while on the control reach resulted in only five 

taxa on riffle habitat. Simpson index for riffle habitat on stabilized reach resulted in higher than 

control index of 0.88 and 0.81. Meaning that, if two more macroinvertebrate were randomly 

taken in the stabilized site, the probability of these being different species is 4% higher than to 

the control reach. Similar to the Delaware River stabilized reaches present more evenness in the 

distribution of macroinvetebrate community.  

Table 7. Average Macroinvertebrate Indices, BMWP, ASPT, EIPT, Shannon-Wiener and 

Simpson Biodiversity Indices from Plum Creek site in stabilize and control reaches.  

 

In this particular  case study we are comparing how the stabilization practices affect the 

sediment balance for suitable habitat for the development of macroinvertebrate as an indicator of 

good water quality, EIPT measures the most taxa of sediment sensitive macroinvertebrates (Dos 

Santos et al., 2011). Figure 15 shows the overall average EIPT from both sites comparing the 

stabilized and control reaches. Stabilized reach results were higher for riffle and cut bank except 

for the pool habitat, which, is not a common habitat for macroinvertebrates. At both sites, the 

stabilized reach pool was considerably shallower than the control reach pool.  

 Stabilized  Control 

Channel Unit Riffle Cut Bank Pool Riffle Cut Bank Pool 

Biotic Index 4.40 4.99 5.65 4.91 4.44 4.81 

BMWP 165.00 85.00 61.00 84.00 38.00 51.00 

ASPT 6.11 4.72 4.36 4.94 4.75 4.64 

EIPT 7 3 1 5 0 0 

Shannon-Wiener (H’) 2.51 1.87 1.40 1.98 1.56 1.89 

Simpson  0.88 0.74 0.55  0.81 0.74 0.76 
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Figure 15. Overall average EIPT comparing control reaches and stabilized reaches on the 

Delaware River and Plum Creek.  

 

The abundance and equity of a community can tell us about the health of the environment 

in which they are found. In order to compare the stabilized and control reaches the average 

Shannon-Wiener was calculated and resulted in higher abundance and distribution for the 

stabilized compared to the control. Even though the Shannon-Wiener (H’) was 2.5 in the riffle, 

which is lower than the maximum diversity expected for that community (H’ max) 3.3, it still 

represents more abundance and equity of species than the control site that has a Shannon-Wiener  

(H’) of 2.09 with a maximun diversity expected for the controls community (H’ max) of 3.2. The 

Shannon-Wiener index clearly shows the difference between all three habitats.  

This studies’ results show a slight improvement in habitat conditions on stabilized sites 

compared to control sites, these are similar results of the Selvakumar et al., (2010), study which 
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found statistically significant change using VASCI, HBI and EPT indices between before and 

after restoration at α=0.1.  

 

Figure 16. Overall average Shannon-Wiener index comparing control and stabilized reaches 

from Delaware and Plum Creek. 

 

 Erosion Estimates Case Studies 

 Case study Little Grasshopper Creek 

After the installation on March 2017, within a month a high flow event occured, with a 

water discharge of approximately of 254 cubic meters per second and a depth approximately of 6 

meters which exceed bank full flows. The cedar revetment was successful in capturing sediment 

by retaining and causing deposition of 121 cubic meters of sediment, showing the efficiency of 

cedar revetment on capturing sediment. Salix sp. stakes sprouted and became established as a 

vegetation cover similar to  Šlezing, Jana, & Lenka (2017).  According to the reinforcement bars 

placed in August 2017, the overall erosion that occurred during the last year is similar for both 

the control and stabilized reach (Figure 17), however, the difference between them is where the 

erosion is occurring. On the stabilized reach, the erosion occurred in the upper bank and 
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deposition on the lower bank, creating a more gently sloping bank appropriate for vegetation 

establishment. The erosion on the control reach is occurring in the middle bank position, this 

happened from undercutting the upper bank which will cause slumping and more erosion in the 

future.  

 

Figure 17. Streambank erosion estimates from reinforcement bars at two control reaches and a 

stabilized reach. From Little Grasshopper Creek after one year. Negative values indicate 

deposition. 

  

 Case Study Wolfley Creek 

After the installation in April 2017, the cedar revetment was successful in capturing 

sediment by retaining and causing deposition of approximately 48 cubic meters of sediment. On 

this case study, the difference between the stabilized and control reach is notable after one year 

of monitoring. The stabilized site did not result in any erosion, and a minor amount deposition of 

0.5 cm on the top reinforcement bar (Figure 18). Wolfley Creek control sites resulted with more 

erosion a total of 6 cm and 3.3 cm on transects one and two, respectively. Transect one has an 

erosion similar to the control of the Little Grasshopper, which had erosion in the middle of the 

bank position.  This erosion is dangerous for the bank because it will cause future extreme 
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erosion during a high flow event. Control two had more severe erosion than control one because 

erosion is occurring on the bottom of the bank and this is caused by the helical flow of the water 

under bankfull events (Whipple, 2004). 

 

 
Figure 18. Streambank erosion estimates from Reinforcement bars at two control transects and 

stabilized reach from Wolfley creek after one year. Negative values indicate deposition. 

  

 Case Study Little Soldier Creek. 

The cedar revetment was established on March 2000 (Figure 19 A and B) with the main 

objective to stop erosion that is causing the creek to move towards the family house in the 

Potawatomi reservation. After five years the revetment shows recovery of vegetation and growth 

of riparian buffer (Figure 19 C). During the next years sediment is trapped by the cedar branches 

and vegetation continues to grow. During 2007, captured sediment was measured within the 

60.96-meter-long cedar revetment resulted on 65.75 cubic meters (Figure 19 D). Over the past 17 

years of documentation archive, erosion resulted on 140 cm, meaning approximately 8.24 cm per 

year of sediment was lost and the revetment is still in a functioning state (Figure 19 D). As 

indicated in Figure 19 E, erosion occurred between March-April 2017 floods and Figure 19 F 

shows the recent exposure of roots denoted by the change in root color.  
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Figure 19. Photographic documentation of Little Soldier Creek. A. Before revetment, B. After 

revetment, C. After 5 years, D. 2007 sediment deposition, E. Bank erosion from 2017 and F. 

Root exposure 2017.  
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 Case Study using exposed tree roots.  

The novel methodology was ideally used to evaluate the Axtell dairy farm because no 

reinforcement bars installed in 2008 were found. Exposed tree roots methodology was used as an 

alternative. Ten exposed roots samples were collected from the stabilized reach (Table 8). 

Erosion on an average was 3.39 cm/year around the stabilized reach, since this site does not have 

an established control, it was compared to the control transect found on Wolfley Creek site. 

Transect one resulted in an average erosion of 10.26 cm/year, similar to the erosion found using 

reinforcement bars from the past year (6 cm).  Erosion will change according to the flow events 

of each year. The overall results from this project are similar to Dave & Mittelstet (2017), where 

they found a reduction on erosion rates after streambank stabilization of  45 cm/year and 16 

cm/year, respectively. They also found more erosion on control sites as compared to stable sites 

after flood event 0 cm/year and 17 cm/year, respectively. Cross Creek has no stabilization 

practice and presented the most average erosion rate of 14.84 cm/year. It is important to consider 

this site because it represents an ideal site for establishment of a cedar revetment practice as we 

will have pre-establishment erosion rates documented, this site will continue to be monitored for 

future reference if the landowner is willing to pay for the project in the future.  

The tree roots found on Axtell dairy farm, Wolfley Creek and Cross Creek were from 

deciduous species, other studies have also used deciduous tree root successfully to quantify 

erosion (Stotts et al., 2014; Scuderi, 2017).   
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Table 8. Estimates of yearly erosion according to exposed roots on Axtell dairy farm, Wofley 

Creek study sites and Cross creek  posible study site.  

Site / Creek 

name 

Sample 

Name 
Tree Sp. 

Years 

exposed 

NREX 

ERA 

(cm/y) 
Average 

Axtell-Schmidt 1 Ulmus pumila 8 6.03 

3.39 

Axtell-Schmidt 2 Ulmus pumila 7 0.37 

Axtell-Schmidt 3 Ulmus americana 7 7.15 

Axtell-Schmidt 4 Ulmus americana 5 0.08 

Axtell-Schmidt 5 Ulmus americana 8 5.60 

Axtell-Schmidt 6 Ulmus americana 7 0.31 

Axtell-Schmidt 7 Ulmus americana 7 4.34 

Axtell-Schmidt 8 Ulmus americana 6 0.38 

Axtell-Schmidt 9 Ulmus americana 10 5.18 

Axtell-Schmidt 10 Ulmus americana 8 4.53 

Wolfley 1W Fraxinus sp. 4 10.56 

10.26 

Wolfley 2W Celtis occidentalis 4 12.61 

Wolfley 3W Ulmus americana 10 7.49 

Wolfley 4W Ulmus americana 7 10.36 

Cross 1D Ulmus americana 18 2.51 

14.84 

Cross 2D Ulmus americana 11 4.6 

Cross 3D Quercus macrocarpa 1 37.4 
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Chapter 4 - Conclusions and Recommendations 

Our assessment of stream restoration practices found that cedar revetment is effective at 

capturing sediment and both rock vanes and cedar revetments are effective at stabilizing stream 

reaches.  Restoration practices were successful in stabilizing the stream bank and preventing 

further erosion into property. Macroinvertebrates results show a positive influence on improving 

habitat for benthic insects. It will depend upon the main objectives established for the restoration 

to include the evaluation of environmental benefits that the restoration project may provide. 

Therefore, it is recommended to take the time when planning future assessment projects and 

establishment of the monitoring protocol from the beginning, according to the main objectives.  

Shannon-Wiener and Simpson successfully complemented the information provided by 

the biological indices, and they provided stronger indicators of the aquatic community. The alfa 

diversity index explained that the macroinvertebrate communities on the stabilized sites have 

slightly more evenness and abundance of species. The increase of environmental benefits such as 

improve macroinvertebrate habitat is expected to continue in the coming years of monitoring.  

Cedar revetment and establishment of willows (Salix sp.) along the streambanks allow 

the process of vegetation recovery by protecting the streambank. On these case studies, it is 

shown that the establishment of vegetation is a key point for the stream to develop a bank with a 

gentle slope.  

The use of exposed tree roots is an effective alternative to reinforcement bars and photo 

image methods to quantify yearly and historical erosion. Reinforcement bars can present 

challenges in the search for them when collecting data, hence, the use of macro analysis of the 

exposed roots is a useful method that can help to be prepared for the yearly erosion of the 

streams and monitor the possible increase or decrease of the average estimated erosion. To use 
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this to document stabilization effects roots should be sampled before stabilization, and at least 5-

years after.  

It is recommended to do a thorough photographic documentation to monitored through 

the years the changes of the stream. In this study, the photo documentation helped to show the 

results on sedimentation in Little Soldier, Little Grasshopper and Wolfley creek sites. 

Photographs, when practical would be helpful when using exposed root methodology to know 

how the location of the roots sampled on the streambank and where erosion is occurring.   

In order to collect enough data for statistical between stabilized sites and control sites, 

repeated assessment of macroinvertebrates, erosion, and deposition is necessary. Also, this 

information will help to inform the improvement of future “Best Management Practice” and for 

future preparation of landowners for extreme weather events. Also, these case studies showed 

that it is possible to work and train students and stakeholders in cedar revetment installation and 

basic monitoring techniques to increase documentation in the future. 

The lack of sufficient data to make valid statistical comparisons is a serious shortcoming 

of this case study approach. This project has laid the foundation for further long-term data 

collection which will enable future statistical analysis. These case studies where almost all 

already established before the author began their graduate program. 
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