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Abstract 

Due primarily to changes in land management practices, eastern redcedar (Juniperus 

virginiana L.), a native Kansas conifer, is rapidly invading onto valuable rangelands. The 

suppression of fire and increase of intensive grazing, combined with the rapid growth rate, high 

reproductive output, and dispersal ability of the species have allowed it to dramatically expand 

beyond its original range. There is a growing interest in harvesting this species for use as a 

biofuel. For economic planning purposes, density and biomass quantities for the trees are needed. 

Three methods are explored for mapping eastern redcedar and quantifying its biomass in Riley 

County, Kansas. First, a land cover classification of redcedar cover is performed using a method 

that utilizes a support vector machine classifier applied to a multi-temporal stack of Landsat TM 

satellite images. Second, a Small Unmanned Aircraft System (sUAS) is used to measure 

individual redcedar trees in an area where they are encroaching into a pasture. Finally, a hybrid 

approach is used to estimate redcedar biomass using high resolution multispectral and light 

detection and ranging (LiDAR) imagery. These methods showed promise in the forestry, range 

management, and bioenergy industries for better understanding of an invasive species that shows 

great potential for use as a biofuel resource. 
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Preface 

“There is not any kind of wood in all these plains, away from the gullies and rivers, 

which are very few.” 

–Francisco Coronado’s journal entry describing a prairie in Kansas as he traversed the 

region in 1541 (quoted in Bragg & Hulbert, 1976).
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Chapter 1 - Introduction 

In recent decades, woody tree invasion has become a serious problem in the tallgrass 

prairie region of Eastern Kansas (Bragg & Hulbert, 1976). Because of rapid human settlement, 

overgrazing, and fire suppression, woody species have invaded sites that were once healthy 

tallgrass prairies (Briggs, et al., 2002).  Among the most invasive of these woody species is 

Juniperus virginiana, commonly known as eastern redcedar (Figure 1.1). 

 

 

Figure 1.1 Eastern redcedar encroaching in a pasture near Russell, KS. 

 Species Description 

Eastern redcedar (known hereafter as “redcedar”) is the only juniper species native to the 

state of Kansas (Pease, 2007). It is a species characterized by its rapid growth and high 

reproductive output (Briggs, et al., 2002). Redcedar is a coniferous species that has sharp, scaly 

leaves that perform photosynthesis (Stevens, et al., 2005) (Figure 1.2). Unlike deciduous trees 
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that lose their leaves during autumn, redcedar retains its leafy material throughout the year. 

Redcedar is a dioecious species—female redcedars can be identified by the presence of small, 

round, waxy blue seed cones (often called “berries”) during certain times of the year (Van 

Haverbeke & Read, 1976; Stevens, et al., 2005).  

 

 

Figure 1.2 Eastern redcedar foliage. 

 

The range of redcedar is extensive, spanning the eastern half of the United States from 

the Atlantic to the High Plains and from Texas in the south to Ontario in the north (Figure 1.3). 

Isolated patches of redcedar have also been reported in Oregon. In Kansas, eastern redcedar 

grows primarily in the eastern two-thirds of the state where conditions are humid enough to 

support it (Stevens, et al., 2005). It is also widely planted as a “backbone” windbreak species in 

Kansas (Strine, 2004). Due in part to these windbreak plantings across the state, the current range 

of redcedar exceeds its historical range (Owensby, et al., 1973). 
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Figure 1.3 Range of eastern redcedar in the United States (derived from Little, 1971). 
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Figure 1.4 An example of redcedar (dark areas on the images) expansion in Riley County, 

KS, 1962 (top) to 2012 (bottom). (Images courtesy of USDA NAIP Program and KSU 

Historical Aerial Photo Archive) 
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 Species Ecology and Human Factors 

Eastern redcedar is a pioneer invader species that will readily spread over a short period 

of time (Van Haverbeke & Read, 1976). Prior to European settlement in Kansas, woody species 

(including redcedar) were primarily located in stream bottoms (lowlands) in the Flint Hills 

region (Bragg & Hulbert, 1976). The Spanish explorer Coronado wrote in 1541 as he travelled 

through the region, “There is not any kind of wood in all these plains, away from the gullies and 

rivers, which are very few” (Bragg & Hulbert, 1976). Before settlement occurred in the region, 

as woody species would spread into upland areas, they were naturally controlled by periodic 

wildfires. Using dendrochronological dating methods, these fires have been shown to have 

burned on average every four years in the Flint Hills prior to European-American settlement 

(Allen & Palmer, 2011). Since Europeans settled the historic range of redcedar, they have 

fragmented the landscape, constructing artificial barriers to fire (primarily roads) that have halted 

the natural progression of prairie fires (Briggs, et al., 2002). Poor land management and 

plantings of redcedar in windbreaks have further accelerated its spread (Owensby, et al., 1973). 

These factors have caused redcedar to become established in upland tallgrass prairies. 

        Redcedar’s invasiveness has become a problem in the Flint Hills region where many 

absentee landowners have acquired land as an investment or for hunting (Kindscher & Scott, 

1997). These landowners may often be unwilling or unable to take the necessary steps—such as 

conducting annual prairie burns—to properly manage their property. As redcedar has spread into 

the uplands due to a lack of fire to control it, it has often turned into dense stands that crowd out 

warm-season (C4) native tallgrass prairie grasses and forbs (Gehring & Bragg, 1992) (Figure 

1.4). Many of these species are important forage plants for grazing animals in Kansas. Valuable 

rangelands can be converted into closed-canopy redcedar stands in as little as 40 years (Briggs, et 

al., 2002). Beef cattle ranching is an important industry in Kansas, representing $8.5 billion out 

of the $14.4 billion agricultural industry in the state (USDA, 2011), and this industry is being 

threatened by the spread of redcedar into rangelands. 

 Another major concern with redcedar is its encroachment into populated areas. Redcedar 

foliage contains flammable volatile oils, and dense stands of redcedar located in urban and 

suburban areas can increase the risk of a wildfire affecting populated areas (Ward, 2013) (Figure 

1.5) (Figure 1.6). 
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Figure 1.5 Eastern redcedar trees catching fire during a prairie burn. Image courtesy of 

the Kansas Forest Service. 
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Figure 1.6 Area of concern in Manhattan, KS, where a neighborhood borders a large 

redcedar stand (outlined in yellow). Redcedar stands encroaching in developed areas pose a 

high risk due to greater wildfire potential. Image courtesy of the USDA NAIP program. 

 

 Redcedar Uses 

Eastern redcedar has been shown to be a useful species in industry and agriculture. It is 

commonly harvested for construction of pencils and wood chests, and it is also chipped into 

mulch for use in landscaping and gardening (Van Haverbeke & Read, 1976) (Figure 1.7). 

Redcedar oil has also been extracted for use in the essential oil industry (Gawde, et al., 2009; 

CAFNRnews, 2008; Semen & Hiziroglu, 2005). It has also been shown to contain a high amount 

of energy for heating. Large individual trees have been shown to contain over twelve million 

British Thermal Units (BTUs) of energy, equivalent to around 106 gallons of heating oil, or 0.6 

tons of anthracite coal (Strauss, et al., 2011; Slusher, 1995). It has been proposed that redcedar 

could be harvested for use as a biofuel, providing an inexpensive, locally-obtained fuel source 
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for Kansas. Redcedar wood can be converted into biodiesel, wood chips for wood burning 

boilers, or “biochar,” a charcoal soil amendment (Teel, 2012; Starks, et al., 2011). 

 

Figure 1.7 Eastern redcedar logs and mulch processed for gardening use near Pratt, 

Kansas. Image courtesy of Larry Biles. 

 

 Redcedar Mapping 

To facilitate development of an eastern redcedar biofuel industry in Kansas, redcedar 

cover and biomass estimates are needed on a detailed scale for economic planning purposes. The 

purpose of this thesis is to explore three methods of measuring redcedar biomass and cover: 

1. To classify redcedar cover on the landscape using moderate spatial resolution (30-

meter) Landsat TM satellite imagery in order to identify large stands where 

commercial harvesting could be viable. 

2. To quantify the biomass of individual redcedar trees in an automated fashion using 

high spatial resolution aerial imagery collected using a small unmanned aircraft 

system. 

3. To map redcedar biomass across a large area (e.g. a county) using a fusion of satellite 

imagery, LiDAR data, and high spatial resolution color-infrared aerial photography. 
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Chapter 2 - Multi-temporal Classification of Eastern Redcedar 

(Juniperus virginiana) in Eastern Kansas Using a Support Vector 

Machine (SVM) Classifier 

 Introduction 

In recent decades, woody tree invasion has become a serious problem in the tallgrass 

prairie region of Eastern Kansas (Bragg & Hulbert, 1976). Because of rapid human settlement, 

overgrazing, and fire suppression, woody species have invaded sites that were once healthy 

tallgrass prairies (Briggs, et al., 2002).  Among the most invasive of these woody species is 

Juniperus virginiana, commonly known as eastern redcedar (Figure 1.1). 

Eastern redcedar is a pioneer invader species that will readily spread over a short period 

of time (Van Haverbeke & Read, 1976). Prior to European settlement in Kansas, woody species 

(including redcedar) were primarily located in stream bottoms (lowlands) in the Flint Hills 

region (Bragg & Hulbert, 1976). The Spanish explorer Coronado wrote in 1541 as he travelled 

through the region, “There is not any kind of wood in all these plains, away from the gullies and 

rivers, which are very few” (Bragg & Hulbert, 1976). Before settlement occurred in the region, 

as woody species would spread into upland areas, they were naturally controlled by periodic 

wildfires. Using dendrochronological dating methods, these fires have been shown to have 

burned on average every four years in the Flint Hills prior to European-American settlement 

(Allen & Palmer, 2011). Since Europeans have settled the historic range of redcedar, they have 

fragmented the landscape, constructing artificial barriers to fire (primarily roads) that have halted 

the natural progression of prairie fires, allowing redcedar to expand its presence (Briggs, et al., 

2002). Poor land management and plantings of redcedar in windbreaks have further accelerated 

its spread (Owensby, et al., 1973). These factors have caused redcedar to become established in 

upland tallgrass prairies. 

        Redcedar’s invasiveness has become a problem in the Flint Hills region in north-central 

Kansas where many absentee landowners have acquired land as an investment or for hunting 

(Kindscher & Scott, 1997). These landowners may often be unwilling or unable to take the 

necessary steps—such as conducting annual prairie burns—to properly manage their property. 

As redcedar has spread into the uplands due to a lack of fire to control it, it has often turned into 
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dense stands which crowd out warm-season (C4) native tallgrass prairie grasses and forbs 

(Gehring & Bragg, 1992). Many of these species are important forage plants for grazing animals 

in Kansas. Valuable rangelands can be converted into closed-canopy redcedar stands in as little 

as 40 years (Briggs, et al., 2002). Beef cattle ranching is an important industry in Kansas, 

representing $8.5 billion out of the $14.4 billion agricultural industry in the state (USDA, 2011), 

and this industry is being threatened by the spread of redcedar into rangelands. 

 Another major concern with redcedar is its encroachment into populated areas. Redcedar 

foliage contains flammable volatile oils, and dense stands of redcedar located in urban and 

suburban areas can increase the risk of a wildfire affecting built-up areas (Ward, 2013). 

Despite its invasiveness, eastern redcedar has been shown to be a useful species in 

industry and agriculture. It is commonly harvested for construction of pencils and wood chests, 

and it is also chipped into mulch for use in landscaping and gardening (Van Haverbeke & Read, 

1976). Redcedar oil has also been extracted for use in the essential oil industry (Gawde, et al., 

2009; CAFNRnews, 2008; Semen & Hiziroglu, 2005). It has also been shown to contain a high 

amount of energy for heating. Large individual trees have been shown to contain over twelve 

million British Thermal Units (BTUs) of energy, equivalent to around 106 gallons of heating oil, 

or 0.6 tons of anthracite coal (Strauss, et al., 2011; Slusher, 1995). It has been proposed that 

redcedar could be harvested for use as a biofuel, providing an inexpensive, locally-obtained fuel 

source for Kansas. Redcedar wood can be converted into biodiesel, wood chips for wood burning 

boilers, or “biochar,” a charcoal soil amendment (Teel, 2012; Starks, et al., 2011). To facilitate 

development of a redcedar biofuel industry in Kansas, accurate acreage estimates and location 

data are needed so that harvesting resources may be efficiently allocated. 

 Classification of Eastern Redcedar Land Cover with Remote Sensing 

In the past, systematic random ground surveys have been conducted in Kansas to evaluate 

forest resources (Moser, et al., 2008). These surveys have taken place on an intermittent basis in 

Kansas since 1936 (Raile & Spencer, 1984). Ground sampling schemes are slow and costly, and 

can be inaccurate at characterizing forest species composition at a regional or county level, due 

to the spatially random nature of the sampling scheme (Bechtold & Patterson, 2005). Remote 

sensing methods can be used to improve upon ground sampling methods (Jensen, 1983).  
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Satellite remote sensing is used extensively as a land use/land cover measurement tool 

(Anderson, et al., 1976), and has been shown to be invaluable for identifying and monitoring 

changes in vegetated land cover, such as rangelands and forests (Jensen, 2007; Booth & Tueller, 

2003; Briggs, et al., 2002). Remote sensing techniques have been widely used for monitoring the 

expansion of invasive plant species, including Juniperus species like eastern redcedar (Sankey & 

Germino, 2008; Sankey, et al., 2010; Everitt, et al., 2001; Starks, et al., 2011; Thayn & Price, 

2006).  

 Support Vector Machine (SVM) Classifier 

The problem of classifying land covered by eastern redcedar necessitates the use of an 

appropriate classification algorithm. Redcedar stands tend to cover small areas (generally less 

than 10 ha in size) where the land has been poorly managed. Redcedar may be present on one 

parcel and absent on adjacent parcels, and large, homogeneous training areas are difficult to find, 

making the most common classification algorithms (ISODATA, Maximum Likelihood) less than 

ideal because they work best when large training datasets are available (Richards & Jia, 2006). 

The most common classifiers also tend to be designed for normal (parametric) datasets (Richards 

& Jia, 2006), and satellite imagery often contains non-parametric data with multiple peaks in the 

histogram that represent different land cover types (Figure 2.1). It has been shown that 

classifications of non-normal datasets perform better when non-parametric classifiers (such as 

SVM) are used.  

 

 

Figure 2.1 Histogram from Landsat TM Band 4 (NIR band) for Riley County, Kansas from 

August 1, 2011.  
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The use of SVM classifiers for land cover classification has increased in popularity 

within the remote sensing community over the past several years (Melgani, et al., 2004; Pal, et 

al., 2005; Mountrakis, et al., 2011). An SVM is a non-parametric classifier that handles small 

training samples well and often returns higher accuracies than traditional image classification 

methods. The SVM algorithm separates data into classes by placing a hyperplane between 

“support vectors” to represent the boundaries between two classes in a spectral feature space 

(Mountrakis, et al., 2011; Richards & Jia, 2006) (Figure 2.2). Because of the characteristics of 

redcedar cover within the study area, SVM was considered to be an appropriate classification 

algorithm for this study. 

 

 

Figure 2.2 Illustration of Support Vector Machine (SVM) operation in a spectral feature 

space. From Mountrakis, et al., 2011. 
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 Multi-temporal Classification 

The seasonal characteristics of eastern redcedar introduce another challenge to accurate 

land cover classification. Eastern redcedar is an evergreen species, so its spectral characteristics 

remain relatively constant throughout the year when compared to surrounding cover types, such 

as deciduous forest. A single-date classification may confuse redcedar with other 

photosynthetically-active cover types (deciduous forest, grasslands, and crops in the summer, 

and winter wheat in the winter).  

Multi-temporal (or multi-seasonal) classifications have been shown to be effective for 

improving classification accuracy of vegetated land cover types (Price, et al., 1997). These 

methods introduce a “stack” of images from different dates (e.g. summer and winter dates) in 

order to account for seasonal variability in the spectral characteristics of vegetation within a 

given year. Multi-temporal classification has been used in other studies to overcome the problem 

of single-date class confusion, improving classification accuracies for various land cover types, 

including agricultural lands and rangelands (Price, et al., 1997; Langley, et al., 2001; Guo, et al., 

2003). Similar multi-temporal classification techniques have previously been applied to forest 

classifications with varying degrees of success (Raines, et al., 2008; McCleary, et al., 2008; 

Wolter, et al., 1995).  

The goals of this study were to: 

1) Develop automated classification methods for mapping eastern redcedar land cover 

using a support vector machine classifier, and 

2) Determine if a multi-temporal approach improved classification accuracy.  

 Methods 

 Study Area 

The project study area, Riley County, Kansas, was identified by the Kansas Forest 

Service as a county of concern due to its high rate of redcedar encroachment. An unpublished 

study estimated a 23,000% increase of redcedar cover in Riley County between 1965 and 2005 

(Grabow & Price, 2010). Riley County lies within the Flint Hills ecoregion. Portions of the 

county are topographically rugged, with steep stream banks punctuating rocky upland areas. The 

native vegetation consists of tallgrass prairie species—primarily big bluestem (Andropogon 

gerardii), indiangrass (Sorghastrum nutans), and little bluestem (Andropogon scoparius)—in the 
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uplands. Trees, including hackberry (Celtis occidentalis), American elm (Ulmus americana), 

green ash (Fraxinus pennsylvanica), and black walnut (Juglans nigra) are found along the stream 

bottoms (Owensby, 2014). The elevation ranges from 298 meters in the Kansas River Valley to 

464 meters in the west-central portion of the county. Tuttle Creek Reservoir (along the Big Blue 

River) is a dominant feature in the county. Manhattan, the county seat and home of Kansas State 

University, is the largest city. The total area of the county is 1611 km2 (U.S. Census Bureau, 

2013), the majority of which is utilized for cattle grazing and crop production. The climate in 

Riley County is classified as humid continental (Köppen Dfa) (Peel, et al., 2007). 

 Classification 

Cloud-free 30-meter resolution Landsat TM imagery was acquired for Riley County, 

Kansas for January 5, 2011 (winter) and August 1, 2011 (summer) (Figure 2.3). For each image 

date, Landsat TM bands 1–5 and 7 were layer stacked, clipped to a county boundary Shapefile, 

and radiometrically calibrated using the Dark Object Subtraction tool in ENVI 5®. To combine 

data from both dates, the resulting stacked and calibrated images were integrated into a single 12 

band TIFF image using ENVI 5 (Figure 2.4). The thermal band was excluded from the dataset. 

Training samples were then selected from U.S. Department of Agriculture (USDA) 

National Agricultural Imagery Program (NAIP) imagery (1.0 meter spatial resolution) because 

homogeneous training areas could be more easily delineated using NAIP imagery versus Landsat 

TM imagery. A modified version of the Anderson classification scheme (Anderson, et al., 1976) 

was used to categorize the training samples, which represented Agricultural Land, Deciduous 

Forest, Evergreen Forest (primarily consisting of eastern redcedar in the study county), 

Rangeland, Urban, Water, and Wetland.  

The training data were used as the input in the Support Vector Machine Classifier tool in 

ENVI 5, and the process was repeated for each image—summer, winter, and multi-seasonal—for 

comparison purposes. Input parameters were unchanged from the default values—a radial basis 

function was used as the kernel type, the gamma value was 0.083 (inverse of the number of 

computed attributes), the penalty parameter was 100.0, and the probability threshold was zero, 

meaning that all pixels would be classified. Classification times ranged from two to five minutes 

using these settings on a typical workstation computer. Following classification, 25 random 
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samples representing each of the seven classes were selected from the classified images and 

compared with NAIP imagery in order to evaluate the accuracy of each classification. 
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Figure 2.3 False-color composite (4-3-2) Landsat TM images of Riley County, Kansas from 

January 5, 2011 (top) and August 1, 2011 (bottom). 
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 Results 

Of the three classifications (summer, winter, and multi-seasonal), the multi-seasonal 

classification performed best for classifying eastern redcedar cover, yielding a producer’s 

accuracy of 93% and a user’s accuracy of 100%. The overall accuracy of the classification 

(including non-forested land cover classes) was 81% (Table 2.1) (Figure 2.5). Between the 

summer and winter classifications, the summer classification performed best for classifying 

redcedar cover, yielding a producer’s accuracy of 94% and a user’s accuracy of 68%, with an 

overall accuracy of 73%. The winter classification produced redcedar cover producer’s, user’s, 

and overall accuracy values of 79%, 76%, and 69%, respectively. Kappa statistics for the 

classifications were 68% (summer), 64% (winter), and 77% (multi-seasonal). 

 

 

Figure 2.4 Illustration of multi-temporal image stacking method. 
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Table 2.1 Confusion matrices for each classification: winter (top), summer (middle), and 

multi-date (bottom). 
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Figure 2.5 Multi-temporal Support Vector Machine (SVM) classification of Riley County, 

KS. 
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 Discussion 

The underlying assumption behind the multi-seasonal classification approach was that 

eastern redcedar cover would be confused with other photosynthetically-active vegetation cover 

types in a single-date classification. Redcedar is an evergreen species, so it retains 

photosynthetically-active leafy material throughout the year. It is therefore more spectrally stable 

than other land cover types that go into senescence during winter (e.g. summer crops, deciduous 

forest). Using multi-temporal data in this classification offered a way to separate redcedar cover 

from other land cover types that show greater spectral variation through the course of the year. 

Other studies showed varying degrees of success with multi-temporal classifications, and it was 

decided that it would be an appropriate method for this particular situation. 

It was learned that the spectral properties of eastern redcedar caused it to be confused 

most often with shadowed areas (such as along steep stream banks), rather than other vegetation 

types in single-date classifications. This characteristic appears to be related to “microshadows” 

inherent in redcedar’s coniferous canopy structure that cause redcedar to appear spectrally darker 

than broadleaf trees (Figure 2.6). Classifying multi-temporal image datasets helped to account 

for the seasonal variability in spectral characteristics of each land cover type and also helped to 

distinguish between shadowed areas and redcedar cover. 

SVM dramatically improved the accuracy of redcedar classifications over earlier attempts 

using traditional classifiers. Eastern redcedar cover represented a relatively small portion of the 

total classified area, making it more difficult to find redcedar training sites than it was for other 

cover types. SVM gave an accurate classification of eastern redcedar cover, despite the small 

number of training pixels provided. Another one of SVM’s strengths is its lack of assumptions 

about the normality of the data. The imagery we used showed a multi-modal histogram 

distribution because certain land cover types (e.g. water and rangeland) were more prominent 

than others. These characteristics of SVM allowed it to perform better than earlier attempts using 

supervised (Maximum Likelihood) and unsupervised (ISODATA) parametric classifiers.  

It should be noted that the goal of the study was to accurately classify eastern redcedar 

cover, so overall classification accuracies were considered secondary in importance to accurate 

classification of redcedar cover. Of the two measures of redcedar classification accuracy 

(producer’s and user’s accuracies), the user’s accuracy was considered most important because it 

indicated the likelihood that redcedar would be present in a classified pixel, rather than the 
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likelihood of confusing redcedar with other cover types. We wanted to produce a map that 

accurately showed the locations of large, harvestable redcedar stands that are commercially 

viable. In our study area, the multi-seasonal SVM classification did this perfectly with a 

measured user’s accuracy of 100%. 

 

 

Figure 2.6 High-resolution (1-meter spatial resolution) false-color composite of a 

neighborhood in Manhattan, Kansas, showing spectral difference between Eastern 

redcedar cover and broadleaf deciduous tree cover in June 2012. Redcedar cover is 

outlined by a 30m (spatial resolution) multi-temporal Landsat classification (yellow). Note 

dark spectral characteristics of redcedar versus bright appearance of neighboring 

broadleaf tree cover. Image courtesy USDA NAIP program. 

 Conclusion 

Multi-temporal classification using a Support Vector Machine classifier offered a marked 

improvement in accuracy over single-date summer and winter classifications. Using this 

classification scheme for separating eastern redcedar cover from other land cover types in Riley 

County, Kansas yielded high producer’s and user’s accuracies (93% and 100%, respectively).  
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Multi-temporal classification using SVM shows great potential for classifying eastern 

redcedar and other coniferous species. Future work would include expanding this method to 

other areas prone to redcedar encroachment, both in Kansas and in other parts of the Great Plains 

region. 
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Chapter 3 - Evaluation of Eastern Redcedar (Juniperus virginiana) 

Biomass in Eastern Kansas with a Small Unmanned Aircraft System 

(sUAS) 

 Introduction 

In recent decades, woody tree invasion has become a serious problem in the tallgrass 

prairie region of Eastern Kansas (Bragg & Hulbert, 1976). Because of rapid human settlement, 

overgrazing, and fire suppression, woody species have invaded sites that were once healthy 

tallgrass prairies (Briggs, et al., 2002).  Among the most invasive of these woody species is 

Juniperus virginiana, commonly known as eastern redcedar (Figure 1.1). 

Eastern redcedar is a pioneer invader species that will readily spread over a short period 

of time (Van Haverbeke & Read, 1976). Prior to European settlement in Kansas, woody species 

(including redcedar) were primarily located in stream bottoms (lowlands) in the Flint Hills 

region (Bragg & Hulbert, 1976). The Spanish explorer Coronado wrote in 1541 as he travelled 

through the region, “There is not any kind of wood in all these plains, away from the gullies and 

rivers, which are very few” (Bragg & Hulbert, 1976). Before settlement occurred in the region, 

as woody species would spread into upland areas, they were naturally controlled by periodic 

wildfires. Using dendrochronological dating methods, these fires have been shown to have 

burned on average every four years in the Flint Hills prior to European-American settlement 

(Allen & Palmer, 2011). Since humans settled the historic range of redcedar, they have 

fragmented the landscape, constructing artificial barriers to fire (primarily roads) that have halted 

the natural progression of prairie fires, allowing redcedar to expand its presence (Briggs, et al., 

2002). Poor land management and plantings of redcedar in windbreaks have further accelerated 

its spread (Owensby, et al., 1973). These factors have caused redcedar to become established in 

upland tallgrass prairies. 

        Redcedar’s invasiveness has become a problem in the Flint Hills region in north-central 

Kansas where many absentee landowners have acquired land as an investment or for hunting 

(Kindscher & Scott, 1997). These landowners may often be unwilling or unable to take the 

necessary steps—such as conducting annual prairie burns—to properly manage their property. 

As redcedar has spread into the uplands due to a lack of fire to control it, it has often turned into 
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dense stands which crowd out warm-season (C4) native tallgrass prairie grasses and forbs 

(Gehring & Bragg, 1992). Many of these species are important forage plants for grazing animals 

in Kansas. Valuable rangelands can be converted into closed-canopy redcedar stands in as little 

as 40 years (Briggs, et al., 2002). Beef cattle ranching is an important industry in Kansas, 

representing $8.5 billion out of the $14.4 billion agricultural industry in the state (USDA, 2011), 

and this industry is being threatened by the spread of redcedar into rangelands. 

 Another major concern with redcedar is its encroachment into populated areas. Redcedar 

foliage contains flammable volatile oils, and dense stands of redcedar located in urban and 

suburban areas can increase the risk of a wildfire affecting built-up areas (Ward, 2013). 

Despite its invasiveness, eastern redcedar has been shown to be a useful species in 

industry and agriculture. It is commonly harvested for construction of pencils and wood chests, 

and it is also chipped into mulch for use in landscaping and gardening (Van Haverbeke & Read, 

1976). Redcedar oil has also been extracted for use in the essential oil industry (Gawde, et al., 

2009; CAFNRnews, 2008; Semen & Hiziroglu, 2005). It has also been shown to contain a high 

amount of energy for heating. Large individual trees have been shown to contain over twelve 

million British Thermal Units (BTUs) of energy, equivalent to around 106 gallons of heating oil, 

or 0.6 tons of anthracite coal (Strauss, et al., 2011; Slusher, 1995). It has been proposed that 

redcedar could be harvested for use as a biofuel, providing an inexpensive, locally-obtained fuel 

source for Kansas. Redcedar wood can be converted into biodiesel, wood chips for wood burning 

boilers, or “biochar,” a charcoal soil amendment (Teel, 2012; Starks, et al., 2011).  

To promote a redcedar biomass harvesting industry, accurate surveys of redcedar stands 

are needed to estimate available biomass. An understanding of the allometric relationships 

between various plant metrics (diameter at breast height, canopy area, and height) and total 

aboveground biomass allows for accurate redcedar biomass estimates when ground 

measurements are performed. These allometric relationships have been detailed in multiple 

studies involving eastern redcedar and other juniper species (Norris, et al., 2001; Starks, et al., 

2011; Strauss, et al., 2011; Ansley, et al., 2012). Total aboveground biomass can be used to 

calculate the British Thermal Unit (BTU) potential of the trees (Strauss, et al., 2011, Slusher, 

1995) 
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 Remote Sensing with sUAS 

sUAS have gained popularity in recent years in a wide variety of applications in the 

environmental sciences. Rangeland monitoring and grassland species mapping, including 

classification of invasive species, have been performed extensively using aerial imagery from 

sUAS (Laliberte, et al., 2010; Hardin & Jackson, 2005; Hardin, et al., 2007). sUAS have also 

been utilized for remote sensing of forested lands (Wing, et al., 2013), although no studies were 

found that utilized sUAS for remote sensing of eastern redcedar. 

An sUAS offers several advantages over traditional aerial photography platforms 

(satellites and manned aircraft). First, recent advancements in technology are allowing sUAS 

components (autopilot, receiver, etc.) to cost less than ever before, allowing unmanned aircraft to 

be a viable low-cost solution for remote sensing. Second, sUAS are typically flown at low 

altitudes (< 200 m), enabling ultra-high resolution imagery to be collected. This imagery can be 

of extremely high detail, allowing for analysis of features that would not be visible in coarser 

spatial resolution imagery. The low altitudes at which sUAS are flown also help to mitigate the 

effects of the atmosphere on remotely sensed data. Third, sUAS are easily deployable, meaning 

that they can be flown by a trained user at a desired location whenever weather conditions are 

suitable, without relying upon the availability of a manned airplane and professional pilot. 

Fourth, they can be programmed to fly imagery of exactly the same location on a repeatable 

basis, such as during different periods of the growing season, to offer multi-temporal imaging 

capability. In this study, the nature of the problem—accurately measuring canopy area of 

individual redcedar trees—required very high spatial resolution (<0.5 m pixel size), making 

sUAS an ideal aerial photography platform for detecting redcedar.  

The goals of this study were to: 

1) Measure the canopy area of individual redcedar trees that are encroaching into a 

tallgrass prairie in order to estimate their total aboveground biomass using aerial 

imagery from an sUAS.  

2) Establish a simple workflow that can be used for rapid acquisition of ultra-high 

spatial resolution aerial imagery over a relatively small area (260 ha imaged in 20 

minutes of flight time) using an sUAS. This workflow can be effective for evaluating 

trees from the air in an automated fashion, avoiding the cost and inefficiency of 

extensive ground surveys. 
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 Methods 

 Study Area and Ground Reference Data Collection 

The study area was located six kilometers SE of Manhattan, Kansas at the Rannells Flint 

Hills Tallgrass Prairie Preserve (39.136°, -96.532°). The Rannells Preserve is a rangeland 

research area managed by Kansas State University to test various grazing and burning regimes 

and their impacts on the tallgrass prairie ecosystem. This site was chosen because of the presence 

of redcedar trees expanding into an upland area from a stream bottom, as well as the availability 

of a certificate of authorization (COA) from the Federal Aviation Administration (FAA) 

allowing us to fly a sUAS in this location.  The site is located in the Flint Hills region of Kansas, 

and therefore contains steep, rocky topography. The elevation of the study area ranged between 

370 m and 420 m. Common grasses at the site include big bluestem (Andropogon gerardii), 

indiangrass (Sorghastrum nutans), little bluestem (Andropogon scoparius), and Kentucky 

bluegrass (Poa pratensis). Perennial forbs are also common at the site, including ironweed 

(Veronia baldwinii), western ragweed (Ambrosia psilostachya), white sagebrush (Artemesia 

ludoviciana), and slim flower scurfpea (Psoralea tenuiflora) (Owensby, 2014). Trees are present 

in the lowland portions of the site, such as osageorange (Maclura pomifera) and the species of 

interest, eastern redcedar. 

Prior to the flight, 14 redcedar trees across a broad size gradient were measured and 

weighed in various locations around Manhattan, Kansas to verify the allometric relationships 

between various tree measurements (canopy area, diameter at breast height, and height) and 

biomass. We found a strong relationship between canopy area and total aboveground biomass (r2 

= 0.90) (Figure 3.1).  The resulting regression equation was used to calculate the biomass of each 

redcedar in the study area based upon its canopy area. 
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Figure 3.1 Graph showing the allometric relationship between redcedar canopy area (m2) 

and wet total aboveground biomass (kg). The resulting regression equation is also shown. 

 

 Flight Preparation 

Prior to the flight, permission was requested from the Federal Aviation Administration 

(FAA) to operate an sUAS at the study location. The FAA granted permission in the form of a 

COA, which stipulates that the unmanned aircraft must be flown under the following restrictions: 

 Altitude must not exceed 400 feet (122 meters) above ground level (AGL) 

 A “pilot in command” must be present who is a licensed pilot 

 The aircraft may not approach within five miles of the nearest airport 

 The aircraft must be flown via line-of-sight, i.e. the pilot must be able to see the aircraft 

at all times with the unaided eye and direct it to avoid obstacles 

 Contact must be made with the nearest airport control tower to advise them of sUAS 

operations in the area 
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Our sUAS flight team included a licensed pilot, and we followed each of these requirements as 

we performed this study. The nearest controlled airport (KMHK) was notified at the start and 

conclusion of the flight. 

 Zephyr II sUAS 

The imagery was flown on August 7, 2013 using a Ritewing© Zephyr II platform paired 

with an ArduPilotMega (APM) 2.5 autopilot system (Figure 3.2), operated with firmware version 

2.73. This platform is a 54-inch wingspan delta wing design, constructed with lightweight EPOR 

foam. The platform was custom-built from a kit sold by the manufacturer. A hole was cut in the 

center of the airframe in order to mount a downward-facing color infrared camera for nadir 

imaging. The platform is hand-launched and lands on its belly, preferably on a soft, flat, grassy 

strip. The total weight of the Zephyr II, including electronic components and imaging sensors, is 

around 2.3kg.  

The APM 2.5 system is an inexpensive, open-source autopilot solution that allows the 

user to adjust all flight parameters and to program repeatable waypoints for a given mission 

using the APM Mission Planner software package. This capability was utilized in this study to 

set up 10 flightlines to achieve complete coverage (50% sidelap) over the study area and 

maintain a constant altitude of 122 meters above ground level (the maximum allowed by the 

COA, and greater than the altitude necessary to achieve 50% forward overlap between images). 

A laptop computer was used as a ground station in the field to monitor the progress of the 

mission and the status of flight parameters. A series of waypoints were programmed using the 

ground station software to achieve complete coverage of the study area. The APM Mission 

Planner ground station software communicates with the APM autopilot system via a 915 MHz 

telemetry data link. Direct and redundant control was provided through a 2.4 GHz transceiver 

radio control system. To initiate autopilot control, the APM is powered up and monitored until a 

GPS signal is acquired. The aircraft is hand-launched and manually piloted via radio control. 

Next, the autopilot is activated, and the system guides the aircraft to a series of consecutive 

waypoints. When the aircraft has finished flying to each waypoint, it is programmed to return to 

“home,” or the coordinates where the APM initially achieved a GPS lock, and circle overhead. 

Finally, the pilot deactivates the autopilot and manually lands the aircraft. 
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Figure 3.2 UAS pilot (Dr. Deon van der Merwe) preparing the Ritewing Zephyr II sUAS 

for flight. Photograph courtesy of Joel Prince. 

 Sensors 

A modified Canon PowerShot S100 12.1 MP digital camera was used to image the study 

area. The camera was modified by LDP, LLC© (Carlstadt, New Jersey, USA) to record images 

in near-infrared, green, and blue wavelengths. These wavelengths are desirable for calculating 

vegetation indices and for differentiating between vegetated and non-vegetated land cover types.  

Redcedar trees were easily distinguishable from other tree species in the imagery due to 

their low reflectance in the near-infrared wavelengths compared to deciduous trees (Figure 3.3). 

Images were captured in the camera’s RAW+JPEG mode, using fixed shutter speed, aperture, 

and ISO settings (1/2000 second, f/2, ISO-200) We used the Canon Hack Developer’s Kit 

(CHDK) intervalometer script to trigger the camera’s shutter at 3.5-second intervals during flight 
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(the fastest interval possible for this camera model). A forward-looking GoPro HD Hero2 video 

camera was also used to acquire high definition video footage of the flight (Figure 3.4). 

 

 

Figure 3.3 Sample color-infrared image taken by the Canon PowerShot S100 camera over 

the study area showing redcedar trees (A), deciduous forest (B), and tallgrass prairie areas 

(C). 
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Figure 3.4 Video frame from the GoPro HD Hero2 video camera taken over the study area. 

 Image Processing 

196 useable images were captured with the PowerShot S100 during the flight. A few 

images were considered unusable due to blurriness or an oblique viewing angle when the shutter 

trigger occurred during banked turns. These images were excluded from the final mosaic. After 

collecting the images, it was decided that the lower-quality JPEG format was suitable for the 

project because there was not a need for precise spectral measurements in this study. RAW 

format images contain “pure” sensor data that has not been compressed, but they are much larger 

in size than their JPEG counterparts. RAW images are generally recorded by the camera in a 

brand-specific proprietary format (e.g. Canon .CR2 format) that needs to be converted to a 

generic format (such as TIFF) for analysis in most image processing software packages. This 

requires extra time and computer processing power that were deemed unnecessary to achieve the 

goals of this study. 

The useable JPEG images were geometrically corrected for lens barrel distortion using 

Canon Digital Photo Professional software, and mosaicked using Agisoft Photoscan 

Professional. This software package uses a photogrammetric splicing algorithm to automatically 
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stitch the images into a seamless orthophoto mosaic. As the images are stitched together, the 

algorithm averages the pixel values for a given location using the values from each individual 

image that contains that location (Figure 3.5). The mosaic process required several hours of 

computer processing time. 

After the mosaic was completed, ESRI ArcGIS 10.1© was used to georegister the 

orthomosaic. Total RMS error was 0.36 meters. Individual redcedar trees were then identified 

based upon knowledge of the study area, as well as the trees’ darker appearance in the imagery 

versus deciduous species. These trees’ canopies were digitized as polygon features and their 

areas were calculated using the field calculator tool in ArcGIS (Figure 3.6). 

 

 

Figure 3.5 Orthophoto mosaic of the study area produced by Agisoft Photoscan 

Professional software. This mosaic incorporates data from approximately 180 individual 

images that represented approximately 93 ha of ground area. Note the presence of 

seamlines in portion of the mosaic caused by variable cloud conditions. 
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Figure 3.6 Polygons are drawn around the canopy of each redcedar to measure their 

canopy area using ArcGIS software. 

 Discussion 

The strength of the correlation between canopy area and total aboveground biomass 

indicated that aerial measurement of canopy area using high resolution orthorectified imagery 

acquired using an unmanned aerial vehicle is a reliable means of estimating redcedar biomass. 

This approach is limited, however, to situations where individual trees are growing apart from 

other trees. When trees have grown together into a coalescing stand, this method will no longer 

be appropriate. In a situation where the canopies of multiple trees have coalesced, a model 

should be developed where some other measurement is used to predict biomass (e.g. percent 

cover). 

The secondary goal of this study was to perform a proof of concept to determine if 

imagery from a small unmanned aircraft would be useful for quantifying redcedar biomass. We 
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developed a workflow (Figure 3.7) for acquiring imagery that we found to be simple and fast, 

and it is a workflow that could be used for a multitude of applications when accurate ground 

measurements are needed. 

 

Figure 3.7. sUAS remote sensing workflow used in this project. 

 

Future work would include improving the canopy area versus biomass allometric 

equation so it works well across a larger area (e.g. at the state or regional level). This would 

require measuring and weighing trees along a biomass gradient across the region of interest. If 

the proper allometric models are developed for different regions, this method could be utilized to 

rapidly estimate the biofuel potential of invading trees in any area of concern.  
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Chapter 4 - Assessment of Eastern Redcedar (Juniperus virginiana) 

Biomass Using LiDAR and Multispectral Imagery 

 Introduction 

For over 50 years, the invasion of woody plant species into rangelands throughout the 

tallgrass prairie ecoregion has been a serious concern to ranchers and conservationists (Owensby, 

et al., 1973). Among the most prominent of these species is Juniperus virginiana L., often called 

eastern redcedar (Owensby, et al., 1973; Norris, et al., 2001) (Figure 4.1). Eastern redcedar has a 

large range encompassing most of the eastern United States. (Norris, et al., 2001) The species is 

fast-growing, and birds can transport its seeds over many miles (Briggs, et al., 2002). 

Historically, prior to the widespread suppression of natural prairie fires in the region, periodic 

burning of the prairie prevented eastern redcedar overexpansion (Briggs and Gibson, 1992; 

Briggs, et al., 2002). Anthropogenic fire suppression has now resulted in the drastic expansion of 

its range (Strine, 2004; Owensby, et al., 1973). This expansion has become an economic threat to 

the cattle ranching industry due to the loss of rangeland available for cattle grazing in much of 

the Great Plains (Schmidt, 2002). Along with economic impacts caused by redcedar expansion, 

there are also environmental impacts, including losses in plant and animal community diversity 

(Chapman, 2004; Horncastle, 2005; Briggs, et al., 2002). Closed-canopy redcedar forests also 

present a wildfire danger where redcedar expansion occurs near urban areas (Ward, 2013). 

A potential solution to the problem of redcedar invasion is to find a large-scale 

commercial use for redcedar biomass. Since eastern redcedar is a plentiful species that is “out of 

place” (Blatchley, 1912) in the prairie ecosystem, there has been interest in harvesting redcedar 

stands for a variety of uses. Traditionally, redcedar wood has been used in fence posts and 

furniture, and it is commonly turned into mulch for gardening use. The wood can also be chipped 

and burned in wood-burning stoves or boilers, and methods are being developed to convert 

redcedar material into liquid biofuel products (Hemmerly, 1970; Lam, 2012; Ramachandriya, et 

al., 2013). Redcedar oil has also been utilized in the essential oil industry and reportedly has 

antibacterial and anti-cancer properties (Gawde, et al., 2009; CAFNRnews, 2008; Semen & 

Hiziroglu, 2005). 
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Figure 4.1 Eastern redcedar in Riley County, Kansas. 

 

Before redcedar can be harvested for use as a biofuel or other product, it must be 

determined if there is enough redcedar biomass in an area to allow a harvesting industry to be 

economically viable in that area, especially considering the costs of transporting the trees from 

harvest locations to a refinery. In order for harvesting to be cost-effective, it is best that large 

numbers of trees be clustered tightly together within an economically sustainable distance of 

processing facilities. While estimates of the overall scope of redcedar invasion and general 

estimates of biomass exist (Grabow and Price, 2010; Moser, et al., 2008), there is little 

information on the spatial distribution of this biomass within Kansas. The existing biomass 

information was collected using a random ground sampling technique (Bechtold & Patterson, 

2005), and has been shown in many cases to be inaccurate at a county level. 
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In light of eastern redcedar’s detrimental environmental and economic impacts, as well as 

its potential commercial benefits, the major objectives of this project were to: 

1) Establish an allometric equation using various plant metrics (diameter at breast height 

and tree height) to predict redcedar biomass at the individual tree and study plot 

(225m2) levels. 

2) Use LiDAR imagery, along with multispectral image data, to classify redcedar stands 

across a large area (e.g. county) and estimate redcedar biomass across that area. 

 Use of LiDAR and multispectral imagery in forest inventories 

While there are general volumetric and areal estimations of redcedar invasion, there is 

little information on the exact spatial extent and density of biomass. In order to determine the 

cost benefit of redcedar harvest, there must be accurate estimates of standing biomass within 

areas under consideration for harvest operations. Multispectral imagery has been used in the past 

to assess redcedar extent and biomass. Wylie et al. (2000) used Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) data to map eastern redcedar in the Nebraska sand hills. Starks, 

et al. (2011) found a strong correlation between derived metrics from high-resolution satellite 

imagery (0.42 m/pixel) and aboveground redcedar biomass.  

In addition, studies have shown that Light Detection and Ranging (LiDAR) is a powerful 

tool for assessing forest biomass due to its ability to generate multiple returns (height 

measurements) within a single pulse when that pulse penetrates gaps in tree canopy (Figure 4.2). 

As a result, LiDAR data have been used extensively in surveys of native or highly managed 

forest stands. In 2003, Drake, et al. conducted a study where plot-level mean height of median 

energy derived from waveform LiDAR was combined with a linear regression technique to 

model aboveground biomass in neo-tropical forest. Popescu and Wynne (2004a) utilized a 

method of individual tree extraction based on a local maxima variable window approach. This 

method also utilized spectral data to differentiate between coniferous trees and deciduous trees 

when calculating window size based on a canopy-size-to-height ratio of the two tree types. In 

2005, Bortolot and Wynne used an individual tree-based approach to estimate the biomass of a 

forest in Virginia. These studies all focused on either estimating biomass of single species in 

homogenous forest, or estimation of total aboveground biomass within a heterogeneous forest. 

When an estimate of the biomass of a single tree species within a heterogeneous area is 



38 

 

necessary, it becomes advantageous to combine LiDAR with multispectral imagery to 

differentiate biomass of different species. Recently, multiple attempts have been made to use 

LiDAR in conjunction with multispectral or hyperspectral imagery to map the biomass of 

invasive woody species in a mixed landscape. Swatantran, et al. (2011) found that incorporating 

hyperspectral classification improved their ability to predict biomass of a specific species when 

using waveform LiDAR in the Sierra Nevada. Another study utilized a data fusion of LiDAR and 

leaf-off ATLAS imagery to improve the performance of individual tree delineation and biomass 

estimation of deciduous and coniferous trees (Popescu & Wynne 2004b). These studies showed 

that the fusion of LiDAR and multispectral imagery can be beneficial for accurate biomass 

estimation of target species and tree types. 

 

 

Figure 4.2 Illustration of multiple returns from a LiDAR pulse within a tree canopy. From 

Stoker (date unknown). 

 

For this project, we used a plot-based regression technique utilizing LiDAR-derived 

canopy height, together with a classification derived from multispectral data, rather than an 

individual tree-based approach. The reasons for this hybrid methodology include the relatively 

sparse point spacing of the available LiDAR data (1.4 meters) and the variable nature of redcedar 

tree crown shape. Window size calculations necessary for individual tree extraction require 
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knowledge of crown structure and differ by tree species. Redcedar trees can show a wide variety 

of crown structures (e.g. conic or columnar), making individual tree extraction problematic when 

attempted over large areas. 

 Methods 

 Study Area 

The project study area, Riley County, Kansas, was identified by the Kansas Forest 

Service as a county of concern due to its high rate of redcedar encroachment. An unpublished 

study estimated a 23,000% increase of redcedar cover in Riley County between 1965 and 2005 

(Grabow & Price, 2010). Riley County lies within the Flint Hills ecoregion. Portions of the 

county are topographically rugged, with steep stream banks punctuating rocky upland areas. The 

native vegetation consists of tallgrass prairie species—primarily big bluestem (Andropogon 

gerardii), indiangrass (Sorghastrum nutans), and little bluestem (Andropogon scoparius)—in the 

uplands. Trees, including hackberry (Celtis occidentalis), American elm (Ulmus americana), 

green ash (Fraxinus pennsylvanica), and black walnut (Juglans nigra) are found along the stream 

bottoms (Owensby, 2014). The elevation ranges from 298 meters in the Kansas River Valley to 

464 meters in the west-central portion of the county. Tuttle Creek Reservoir (along the Big Blue 

River) is a dominant feature in the county. Manhattan, the county seat and home of Kansas State 

University, is the largest city. The total area of the county is 1611 km2 (U.S. Census Bureau, 

2013), the majority of which is utilized for cattle grazing and crop production. The climate in 

Riley County is classified as humid continental (Köppen Dfa) (Peel, et al., 2007). 

Collection of in situ ground reference data 

Our data collection, image classification, and biomass assessment workflow is outlined in 

Figure 4.3. We collected in situ data in seventeen ground reference plots throughout Riley 

County, Kansas across a redcedar cover and biomass gradient (Figure 4.4). Plots were 

approximately 15 by 15 meters for an approximate total area of 225 m2 per plot. A GPS position 

was collected for the center of each plot and the four corners were measured out and situated at 

NE, NW, SE, and SW compass directions. The plots were digitized in ArcGIS® to facilitate 

extraction of percent cover metrics (derived from classification of multispectral imagery) and 

height metrics derived from LiDAR for each plot. 
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Figure 4.3 Redcedar classification and biomass mapping workflow. 

 

Biomass was estimated for each tree within the plot using diameter at breast height 

(DBH) as an input into an allometric equation based on our own data and data collected by the 

students of the Kansas State University Natural Resources and Environmental Sciences capstone 

course. DBH has been found to be a reliable predictor of individual tree total aboveground 

biomass when it is not possible to weigh each tree (Figure 4.5)—a similar equation was used by 
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Norris, et al. (2001) to estimate redcedar biomass. Total biomass estimates for each plot were 

calculated by summing the estimated biomass of every tree with a DBH of greater than two 

inches. The two-inch threshold was chosen because trees with DBH smaller than two inches 

were considered to have negligible biomass from a harvest standpoint and were also considered 

too small to be easily detectable in the aerial image data used in this project (1-meter spatial 

resolution). Age and height estimates of five trees in each plot were also collected to further 

characterize the sites and for validation of remotely sensed height models. These trees were 

selected using a modified point-center quarter method, where the tree closest to the center point 

and each of the four midpoints between the center and the four corners of the sample site was 

selected for height and tree age estimation (Mitchell, 2010) (Figure 4.6). Height was calculated 

using a clinometer, and tree age was estimated for some sites by taking core samples using an 

increment borer. (It was quickly realized that tree age would not improve biomass prediction, so 

average ages were not calculated for all sites.) Canopy density was measured using a 

densiometer facing each of the four cardinal directions from each of these points. Densiometer 

measurements were averaged for each site and used to help validate remotely sensed percent 

cover estimates. Site characteristics are summarized in Table 4.1.  

 

Table 4.1 Summary of site measurements for each ground reference plot. 
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Figure 4.4 Map of Riley County, Kansas showing study plot locations. 
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Figure 4.5 Allometric equation relating diameter at breast height (DBH) to biomass.  

 

 

Figure 4.6 Aerial schematic of the modified point-center quarter sampling method at a 

study site. 
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 LiDAR pre-processing 

LiDAR data were obtained from the Kansas GIS Data Access Support Center (DASC) in 

raw .LAS format. The LiDAR data were collected in spring of 2010. Nominal point spacing was 

between 1 and 1.4 meters and vertical error was less than 18 centimeters. The distributer had 

classified ground returns within the dataset, but no further classification had been performed. 

LiDAR LAS files were processed using the Merrick® Advanced Remote Sensing 

software package (MARS®), provided to us for temporary use by Merrick, Inc. The MARS® 

software allows several different methods for raster interpolation from an LAS point cloud 

(Merrick and Company 2013). One method interpolates raster cell values from a triangulated 

representation of the point cloud generated as an intermediary. Due to time constraints, this 

computationally intensive method was deemed impractical. The other method uses a binning 

process to assign grid cell values from point values: when more than one value is present, the 

software allows the user to select whether to use a minimum, maximum, or average value. Gaps 

smaller than one meter are then filled using a linear interpolation. Bare earth and first return 

rasters were created using this procedure with the averaging option selected for cells with 

multiple values. Both of these maps were exported in the ESRI® grid format for import into 

ArcGIS®. Both rasters were gridded at 1-meter per pixel resolution. 

 Classification of multispectral imagery 

Two types of multispectral imagery were used to assess the range and density of 

redcedar. Initially, a coarse (30-meter spatial resolution) Landsat classification was used to 

identify areas of redcedar cover. This classification ensured that areas of significant closed-

canopy redcedar cover would be identified. It also provided a means of delineating the areas to 

be classified within the higher resolution data. The second round of multispectral classification 

involved the hybrid use of U.S. Department of Agriculture National Agricultural Imagery 

Program (NAIP) 4-band (NIR-R-G-B) data and LiDAR. Within areas already identified as 

containing redcedar based on the coarser Landsat classification, a second classification was 

derived from the higher resolution NAIP data. This allowed for a more accurate estimate of 

redcedar density and resulted in a 1-meter spatial resolution classification of redcedar that was 

subsequently used to identify the target species in a 1-meter LiDAR-derived canopy height 

model. 
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Unsupervised classification of Landsat imagery 

A multi-temporal classification technique was performed using cloud-free Landsat TM 

images from January 5, 2011 and August 1, 2011, which represented winter and summer dates, 

respectively. Six bands from each image (omitting the thermal band) were stacked using ERDAS 

Imagine© software. The resulting 12-band image (see Figure 2.3) was used as the input in the 

ISODATA unsupervised classifier tool in ERDAS Imagine. We specified that the output be 50 

clusters with a confidence interval of 0.95. The resulting 50 spectral clusters were manually 

interpreted by comparing them with ground truth data and high-resolution NAIP imagery. We 

used a modified Anderson Level I classification scheme (Anderson, 1976) to classify each 

cluster. We separated the Level I “forest land” class into “deciduous forest land” and “evergreen 

forest land” as indicated in level 2 of the Anderson scheme. This separation was preferred since 

evergreen forest in the study area is almost exclusively comprised of eastern redcedar, the target 

land cover type. The clusters that were interpreted to include redcedar cover were identified and 

extracted. In an iterative process known as “cluster busting,” ISODATA was used again to 

further refine the redcedar classification (Jensen, 2005).  

During cluster busting, the analyst identifies the clusters that include or that are most 

spectrally similar to the target land cover type. All other clusters are masked out, and ISODATA 

is performed a second time. This process often finds “hidden” spectral information that can 

reveal other land cover types in the image that were not evident in the initial ISODATA 

classification. Multiple iterations of cluster busting are sometimes necessary to accurately extract 

a particular land cover type, as was the case in extracting redcedar cover. For this study, two 

iterations were necessary to separate redcedar from other cover types. After redcedar was 

accurately classified, the classification accuracy was assessed using a simple random sampling 

scheme to visually compare the classified Landsat pixels with high resolution NAIP imagery in 

which redcedar cover was more obvious. 

Classification of higher spatial resolution NAIP imagery 

USDA NAIP four-band data from 2008 were obtained from DASC. NAIP data were not 

available with a near-infrared band in the raw format for the same time period as the LIDAR 

collection and therefore a decision was made to use the closest possible collection. The spatial 

resolution of the data was 1-meter and the data had been orthorectified. Multispectral data were 
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co-registered to the LiDAR canopy models to ensure proper alignment (RMS error smaller than 

one pixel). Prior to classification of NAIP data, all areas within the imagery corresponding with 

areas in the canopy height model below 0.5 meters were masked out. This removed any 

remaining water pixels and shadow on the ground, both of which were easily confused with dark 

shadowed redcedar spectral values in the data. An unsupervised classification was then 

conducted for all areas classified as redcedar in the initial Landsat classification. 

Once again, the ISODATA classification algorithm was used to produce 50 clusters. 

Clusters were visually interpreted and assigned to redcedar and non-redcedar classes. User’s 

accuracy was calculated using 100 randomly selected validation samples, which were evaluated 

using a combination of site survey and imagery interpretation. Percent cover by redcedar was 

calculated from the classified NAIP data for each of the 17 study sites using the ArcGIS® zonal 

statistics tool. 

 Redcedar canopy model development 

Development of a biomass prediction model for redcedar first necessitated the removal of 

other aboveground structures and tree species from the canopy height raster. This was 

accomplished by the creation of a 1-meter resolution redcedar binary mask from the classified 

image data. The application of this mask resulted in a canopy height model representative of only 

redcedar canopy height. 

The ArcGIS® zonal statistics tool was used to calculate the following summary statistics 

of the canopy height model for each of the 17 study sites: sum of canopy height, mean canopy 

height, median canopy height, maximum canopy height, minimum canopy height, and standard 

deviation of canopy height. Zeros were not included in the calculation of zonal statistics 

pertaining to the canopy height model. The exclusion of zeros allowed for the calculation of a 

more accurate measure of mean canopy height. 

 Biomass predictive model and map development 

Development of a predictive statistical model for biomass began with the extraction of 

metrics for each field site area from both the canopy height model and redcedar classification. 

These metrics were: percent cover by redcedar derived from classification map, sum of canopy 

height, mean canopy height, median canopy height, maximum canopy height, minimum canopy 

height, and standard deviation of canopy height. Stepwise linear ordinary least squares regression 
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was used to determine the most accurate model for biomass prediction using these parameters. 

Models were evaluated on Root Mean Squared Error, Bayesian information criterion, and 

coefficient of determination. 

After a predictive equation was developed, a map of redcedar biomass was calculated 

using ArcGIS® spatial modeler. First, the ArcGIS® block statistics tool was used to calculate 

percent cover of redcedar within a 15x15-meter window. The same procedure was also used to 

calculate mean canopy height within a 15x15-meter window. A weighted overlay was then used 

to calculate a 15-meter resolution biomass raster. The resulting map was resampled to 30-meter 

and 60-meter resolution in both short (imperial) tons and metric tons for dissemination to 

interested parties. 

 Results 

 Redcedar Canopy Model 

Figure 4.5 shows the resulting equation relating diameter at breast height (DBH) to tree 

biomass. This equation was used to calculate biomass for each ground control site. Statistics 

include average tree age, maximum tree age, and mean tree height of selected trees as well as 

percent cover by redcedar (calculated from densiometer readings) and biomass (calculated as a 

sum of tree biomass for each site derived from diameter at breast height and the allometric 

equation).  

A strong relationship was found between the redcedar canopy height model (derived from 

a LiDAR-based canopy height model and classification of NAIP imagery) and the mean tree 

height of selected trees in ground reference plots (Figure 4.7). The strength of this relationship 

suggests that LiDAR is a reliable measure of canopy height and that the use of NAIP to remove 

non-target species was not detrimental to this relationship. There was also a strong relationship 

between the percentage of redcedar cover as calculated from the classified NAIP data and the 

percentage estimated on the ground using densiometer readings (Figure 4.8). 
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Figure 4.7 Redcedar canopy height model (LiDAR) vs. mean redcedar height in ground 

reference plots. 
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Figure 4.8 Aerial percent cover vs. ground canopy cover (measured with densiometer). 

 Biomass Predictive Model 

Stepwise model selection using a forward and backward model selection with AIC as the 

selection criterion found that mean canopy height, derived from LiDAR, and percent cover, 

derived from classified imagery, were the best predictors of redcedar biomass. This model also 

produced the lowest residual sum of squares and subsequently the lowest root mean square error 

(RSME). 

An accuracy assessment of the final model is shown in Table 4.2. The final model was 

developed and tested in the Weka® data mining software and k-folds cross validation was used 

to test model accuracy. The model’s root-mean squared error was approximately 35 megagrams 

(metric tons) per hectare. 
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Table 4.2 Accuracy assessment summary of the redcedar biomass prediction model. 

 

 

 Conclusion 

The combined use of LiDAR and multispectral remotely sensed data was again shown to 

be an effective method of assessing the biomass of a target species within a heterogeneous 

landscape. It is therefore well-suited for monitoring the encroachment of undesirable woody 

species. Model error, as measured by root mean square error, was within the range of previous 

models developed to predict biomass using LiDAR data (Drake et al., 2003). A possible source 

of error includes the incongruence between the dates of collection for remotely sensed and 

ground reference data. Another potential source of error is the coarse point spacing of the 

LiDAR. Future work includes expanding the study to other areas prone to redcedar 

encroachment, improving model accuracy by simultaneous collection of ground reference and 

remotely sensed data, and exploration of other LiDAR-based forest inventory techniques such as 

individual tree extraction. Tighter LiDAR point spacing could allow for better characterization of 

crown shape and allow for individual tree-based approaches to be used. 
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