# BIOINFORMATIC ANALYSIS OF PEA APHID SALIVARY GLAND TRANSCRIPTS

by

# MATTHEW STEPHEN AKSAMIT

B.S., Kansas State University, 2012

## A THESIS

submitted in partial fulfillment of the requirements for the degree

# MASTER OF SCIENCE

Biochemistry and Molecular Biophysics Graduate Group

KANSAS STATE UNIVERSITY Manhattan, Kansas

2014

Approved by:

Major Professor Gerald Reeck

# Copyright

MATTHEW STEPHEN AKSAMIT

# Abstract

Pea aphids (*Acyrthosiphon pisum*) are sap-sucking insects that feed on the phloem sap of some plants of the family *Fabaceae* (legumes). Aphids feed on host plants by inserting their stylets between plant cells to feed from phloem sap in sieve elements. Their feeding is of major agronomical importance, as aphids cause hundreds of millions of dollars in crop damage worldwide, annually.

Salivary gland transcripts from plant-fed and diet-fed pea aphids were studied by RNASeq to analyze their expression. Most transcripts had higher expression in plant-fed pea aphids, likely due to the need for saliva protein in the aphid/plant interaction.

Numerous salivary gland transcripts and saliva proteins have been identified in aphids, including a glutathione peroxidase. Glutathione peroxidases are a group of enzymes with the purpose of protecting organisms from oxidative damage. Here, I present a bioinformatic analysis of pea aphid expressed sequence tag libraries that identified four unique glutathione peroxidases in pea aphids. One glutathione peroxidase, ApGPx1 has high expression in the pea aphid salivary gland. Two glutathione peroxidase genes are present in the current annotation of the pea aphid genome. My work indicates that the two genes need to be revised.

# **Table of Contents**

| List of Figures                                                     | vi   |
|---------------------------------------------------------------------|------|
| List of Tables                                                      | vii  |
| Acknowledgements                                                    | viii |
| Dedication                                                          | ix   |
| Chapter 1 - RNASeq Analysis of Pea Aphid Salivary Gland Transcripts | 1    |
| Introduction                                                        | 1    |
| Materials and Methods                                               | 4    |
| Salivary Gland Dissection                                           | 4    |
| Salivary Gland RNA Isolation for RNASeq                             | 5    |
| Thermal Cycler Programs for cDNA Library Preparation                | 6    |
| Purification and Fragmentation of mRNA                              | 6    |
| Synthesis of First Strand cDNA                                      | 7    |
| Synthesis of Second Strand cDNA                                     |      |
| Purification of Double Stranded cDNA                                |      |
| End Repair and Reaction Clean Up                                    |      |
| Adenylation of 3' Ends, Adapter Ligation, and Reaction Clean Up     | 9    |
| Enrichment of DNA Fragments                                         |      |
| Clean Up of PCR Products                                            |      |
| Validation of RNASeq Libraries                                      |      |
| Mapping of RNASeq Reads                                             |      |
| Calculation of RPKM and Fold Change Values                          | 11   |
| Results/Discussion                                                  | 11   |
| Figures and Tables                                                  |      |
| Chapter 2 - Bioinformatics Analysis of Glutathione Peroxidase       |      |
| Introduction                                                        |      |
| Materials and Methods                                               |      |
| Results                                                             |      |

| Top Pea Aphid EST Hits to the Eight Human Glutathione Peroxidases Reveal Two Disting | ct |
|--------------------------------------------------------------------------------------|----|
| Pea Aphid Glutathione Peroxidase Candidates                                          | 26 |
| Identification of Genomic Locations for Pea Aphid Glutathione Peroxidases Suggests   |    |
| Current Genome Annotations Need Revision                                             | 27 |
| EST Evidence Indicates Three Pea Aphid Glutathione Peroxidases Exist, and Suggests   |    |
| Salivary Gland Specific Production of ApGPx1                                         | 28 |
| RNA-Seq Data Further Supports that ApGPx1 is Highly Expressed in Salivary Glands     | 29 |
| Discussion                                                                           | 30 |
| Figures and Tables                                                                   | 32 |
| References                                                                           | 47 |

# List of Figures

| Figure 1-1 Bioanalyzer Profile of Plant-Fed Pea Aphid Salivary Gland RNA               | 19 |
|----------------------------------------------------------------------------------------|----|
| Figure 1-2 Bioanalyzer Analysis of Diet-Fed Pea Aphid Salivary Gland RNA               | 20 |
| Figure 1-3 Bioanalyzer Profile of Plant-Fed Pea Aphid Salivary Gland cDNA Library      | 21 |
| Figure 1-4 Bioanalyzer Profile of Diet-Fed Pea Aphid Salivary Gland cDNA Library       | 22 |
| Figure 1-5 Log <sub>2</sub> (Fold Change) Plot of Pea Aphid Salivary Gland Transcripts | 23 |
| Figure 2-1 Sequence Alignment of the Translated Top Pea Aphid EST Hits to Human GPxs   | 38 |
| Figure 2-2 Sequence Alignment of Pea Aphid GPxs                                        | 39 |
| Figure 2-3 The Current and Revised Gene Structures of Pea Aphid GPxs                   | 40 |
| Figure 2-4 Sequence Alignment of Human, Pea Aphid, Drosophila, and Hemiptera GPxs      | 41 |
| Figure 2-5 Phylogenetic Tree of Human, Pea Aphid, Drosophila, and Hemiptera GPxs       | 45 |

# List of Tables

| Table 1-1 Composition of the Artificial Diet (Akey and Beck, 1972)                     | 15    |
|----------------------------------------------------------------------------------------|-------|
| Table 1-2 Comparative Analysis of Plant-Fed and Diet-Fed Pea Aphid Salivary Gland Libr | aries |
| by RNASeq                                                                              | 16    |
| Table 2-1 The Eight Human Glutathione Peroxidases                                      | 32    |
| Table 2-2 The Top Pea Aphid EST Hits to Human Glutathione Peroxidases                  | 33    |
| Table 2-3 Exons of the Two Current Annotated Glutathione Peroxidase Genes              | 34    |
| Table 2-4 Pea Aphid Glutathione Peroxidase Mapped to Reference Genome                  | 35    |
| Table 2-5 ESTs Matching Pea Aphid Glutathione Peroxidases                              | 36    |
| Table 2-6 RNASeq Reads Mapping to Pea Aphid Glutathione Peroxidases                    | 37    |

# Acknowledgements

I would like to thank my major professor, Dr. Gerald Reeck for all of his support over the last four years. First, I would like to thank him for giving me the opportunity to work for him as an undergraduate research assistant, and for taking me on as a Master's student for the past two years. Without his unending support, advice, and encouragement, I would not be where I am in my academic career.

Special thanks goes out to Dr. Chandrasekar Raman, for the aphid salivary gland dissections. His expertise and ability was crucial in the completion of this project.

I would also like to thank the Integrated Genomics Facility at Kansas State University, specifically Dr. Alina Akhunova, Yanni Lun, and Hanquan Liang. Their Bioanalyzer, cDNA library synthesis, and RNASeq work were critical in my research.

Last, I would like to thank two of my friends and colleagues, James Balthazor and Jarrod Bechard. It has been a pleasure working with you two over the last couple of years. We are all in the same boat as graduate students, and your emotional support and scientific input have greatly impacted me.

# Dedication

I would like to dedicate this thesis to my parents, Stephen and Debra Aksamit. Over the years, your love and support has driven me to become the man that I am today. Without you, I would be nothing. You've listened to my problems and offered solutions. You've given me way more than I have needed, or ever deserved. You provided me with the opportunity to go off to college and get the education that I have always craved. I would not be me, without you. You have been my greatest advocates over the years, and you will never know how much I appreciate that. I love you, Mom and Dad.

Second, I would like to dedicate this to my family and friends who have gone on before me, specifically my grandpa, Clarence Blaha, my aunt, Julie Blaha, and my good friend, Randon Regnier.

Grandpa, I miss the days we spent fishing together, watched TV or played games, or just browsed the internet for "useless knowledge". I never knew how much that knowledge would pay off in my life.

Aunt Julie, your persistence and encouragement was one of the main reasons that I joined the Marching Band at Kansas State. Joining that organization was one my biggest life changing experiences, and I have met some of my best friends, and traveled many places because of it.

Randon, though we are not blood relation, you and your brothers have always been family to me, and always will be. Your unconditional love to everyone around you made you a special person, and I aspire to love others like you did.

Ad astra per alas fideles, to the stars on the wings of the faithful ones. You three were always faithful to me, and I cannot thank you enough for that. I carry you in my heart, always.

When you walk through the storm, Hold your head up high, And don't be afraid of the dark. At the end of the road, There's a golden sky, And the sweet silver song of a lark.

Walk on through the wind, Walk on through the rain, Though your dreams be tossed and blown. Walk on, walk on, With hope in your heart, And you'll never walk alone. You'll never walk alone.

Rodgers and Hammerstein, 1945

With all of you, I know that I will never walk alone.

# Chapter 1 - RNASeq Analysis of Pea Aphid Salivary Gland Transcripts

#### Introduction

The pea aphid (Acyrthosiphon pisum) is a sap-sucking insect that feeds on the phloem sap of some members of the plant family Fabaceae (legumes). Aphids feed on host plants by inserting their stylets between plant cells to feed from phloem sap in the sieve elements. During feeding, aphids are believed to deliver protein effectors in their saliva into their plant host to circumvent plant defense responses and moderate host cell processes, much as in plant-pathogen interactions. Therefore, aphid feeding is of major agronomical importance, as aphids cause hundreds of millions of dollars in crop damage annually.

Numerous saliva protein components and salivary gland enriched transcripts have been identified in aphids. A proteomics study on green peach aphid (Myzus persicae) saliva identified several saliva protein components, including glucose dehydrogenase,  $\alpha$ -amylase,  $\alpha$ -glucosidase (sucrase), and glucose oxidase (Harmel et al., 2008). The same authors found glucose oxidase activity by an assay that monitored the liberation of hydrogen peroxide from glucose.

Proteomic analysis of saliva from pea aphids identified nine protein components, including regucalcin, M1-zinc metalloprotease, glucose-methanol-choline oxidoreductase, and a dipeptidyl carboxypeptidase, and five non-annotatable proteins. Based on amino acid sequence, one protein, ACYPI009881 was suggested to be a putative sheath protein that could protect aphid mouthparts from plant defense systems (Carolan et al., 2009).

Protein C002 has been identified as a component of pea aphid saliva, and its transcript is salivary gland enriched. Knockdown of the C002 transcript in pea aphids rapidly decreased

aphid survival. Half of the pea aphids injected with siC002-RNA died at 3 days, in comparison to 11 days for siGFP-RNA injections and uninjected aphids (Mutti et al., 2006). Protein C002 was shown to be crucial to pea aphid feeding. C002 knockout pea aphids were subjected to plant feeding, monitored by electrical penetration graph (EPG). C002 knockouts were found to have very short amounts of contact with phloem sap in sieve elements compared to the control, suggesting that C002 is crucial for aphid foraging and feeding. C002 was also found in plants fed on by aphids, indicating that the protein is transferred from the aphid to the plant during feeding (Mutti et al., 2008).

A functional genomics study of EST libraries for M. persicae identified three candidate effector molecules, notated as Mp10, Mp42, and MpC002. Overexpression of Mp10 in Nicotiana benthamiana by agroinfiltration assays was found to induce chlorosis in the plants. Green peach aphids were subjected to feeding on leaf discs from plants that had transient overexpression of 48 candidate effectors, which three of the effectors changed aphid fecundity. Mp10 and Mp42 reduced aphid fecundity, while MpC002 enhanced aphid fecundity (Bos et al., 2010).

Saliva from the Russian Wheat Aphid (Diuraphis noxia) has also been collected and studied via proteomics. Analysis of saliva by mass spectrometry revealed a zinc-binding dehydrogenase, a protein phosphatase, a RNA helicase, and two unknown proteins. In addition to their proteomics work, phosphatase activity in aphid saliva was confirmed by enzymatic assays (Cooper et al., 2010).

A dual transcriptomics and proteomics approach to predict effector molecules in pea aphid salivary glands identified a large list of transcripts that are supported by EST data (Carolan et al., 2011). Proteomic studies of proteins from salivary glands confirmed the presence of

previously identified proteins from other aphid studies, like M1-zinc metalloprotease, glucose dehydrogenase, and C002, but also revealed other possible effector molecules, including Golgiassociated protein R-1, disulfide isomerases, calreticulin, Armet, and trehalase. The transcriptomics portion of this study was from the Reeck lab, with informatics contributed by Professor Doina Caragea of the Department of Computing and Information Sciences at Kansas State University.

Saliva proteins from the English grain aphid (Sitobion avenae) and the rose-grain aphid (Metopolophium dirhodum) have been probed by proteomics as well (Rao et al.,2013). Since the two aphids in that study do not currently have genomes sequenced, proteins found in MS analysis were searched against the proteome for pea aphids. The analysis revealed 12 identifiable proteins in S. avenae, and 7 proteins in M. dirhodum. Three proteins, two paralogs of glucose dehydrogenase and ACYPI009881 (a putative sheath protein identified in previous aphid studies), were found to be in common between S. avenae, M. dirhodum, and A. pisum. In S. avenae, two additional proteins were found that had not been found in previous studies: carbonic anhydrase II, and a  $\beta$ -galactosidase precursor.

Next generation RNA sequencing (RNASeq), also known as whole transcriptome shotgun sequencing, provides a comprehensive look at mRNA amounts in a given sample. Analysis of RNASeq data for two different conditions, such as plant-fed or diet-fed pea aphids, as in this study, provides a view of differential transcript expression in an organism. Next generation sequencing results have not been reported on aphid salivary gland RNA. Only one RNASeq study of aphid RNA has been published, in which the soybean aphid and its associated endosymbionts were studied (Liu et al., 2012).

Here, I present an RNASeq analysis of the salivary gland transcripts of plant-fed and diet-fed pea aphids. A list of 71 transcripts from the above studies that have been suggested or confirmed as salivary gland enriched transcripts, or secreted proteins of aphid saliva were chosen for RNASeq analysis. Relative transcript abundance was determined in both plant-fed and diet-fed pea aphid salivary glands. Each transcript sequences was analyzed for the presence of a signal sequence for secretion and an ER retention signal, and based on these analyses, I propose a list of possible protein components of saliva (marked as green in the Secreted (Prediction) column of Table 1-2).

## **Materials and Methods**

#### Salivary Gland Dissection

Salivary glands from pea aphids, *Acyrthosiphon pisum* clone LSR1, were dissected from plant-fed and diet-fed insects by Dr. Chandrasekar Raman.

Plant-reared adult, wingless, asexual pea aphids were collected in sterile Petri dishes directly from faba bean plants, *Vicia faba*. Three sets of 50-70 pea aphids were placed in aliquots of 600µL of RNAlater (Qiagen #76106) and dissected over the course of about 1 h. The dissection area and dissection slides were cleaned with a solution of 0.1% DEPC treated water, followed by application of RNAseZap (Sigma-Aldrich #R2020), and subsequent drying of all surfaces. RNALater (100-200µL) was placed on top of dissection slides. An aphid was placed in the RNAlater on the surface of the slide. The aphid was held by forceps at the abdomen, and the antennae were removed with a small needle. A needle with a bent tip was used to remove the exoskeleton from the head of the aphid, exposing the salivary glands. Both pairs of primary and accessory salivary glands from 120 aphids were removed and placed in RNAse/DNAse-free centrifuge tubes containing 50µL of RNAlater.

Diet-fed aphids were reared on Akey-Beck diet (Table 1-1) (Akey and Beck, 1972) for 48h. Approximately 70 aphids were placed in each feeding apparatus, which consisted of a 1oz. container (Dart #100PC) with a piece of Parafilm thinly stretched over the top of the container. The diet (200µL) was spread over the surface of the Parafilm, and another thin layer of Parafilm was stretched over the top of the diet. The containers were then inverted, and placed on top of a piece of yellow paper, to attract the aphids to the diet. The aphids feed by piercing the first layer of Parafilm with their stylets, and sucking the diet from between the two layers of Parafilm. After 48h, the aphids were removed from the feeding apparatus, and salivary glands were dissected as described above.

#### Salivary Gland RNA Isolation for RNASeq

Dissection of the salivary glands was followed immediately by RNA isolation. After surface sterilization of the lab bench and instruments with RNaseZap, 100µL of QIAzol reagent (Qiagen #79306) was added to the salivary glands from 120 aphids in 50µL of RNAlater. The glands were homogenized with a pestle attached to a rotating tissue homogenizer for 2-3 min until no tissue remained intact. Addition of 900µL of QIAzol followed, and the samples stood for 3 min at room temperature. After 3 min, 1µL of gDNA Eliminator from an RNeasy Kit (Qiagen #74104) was added to reduce genomic DNA contamination from the aqueous phase during phase separation. Chloroform (200µL) was added to the sample, and vortexed several times to ensure even distribution of reagents in the sample. The sample was stored at room temperature for 10 min, and then centrifuged at 12000xg for 15 min at 4°C. The sample formed two distinct layers, a clear, aqueous layer at the top, and a pink, organic layer on the bottom. The clear layer was pipetted into a new, RNAse/DNAse free centrifuge tube, and the organic layer was discarded. Chilled isopropanol (500µL) was added and the sample was allowed to stand for 10 min at room temperature to precipitate the RNA. The sample was centrifuged at 12000xg for 15 min at 4°C, forming a pellet of RNA. The liquid was removed, and the RNA pellet was washed twice with 500μL of chilled ethanol. The sample was then air dried at room temperature for approximately 15 min to evaporate any excess ethanol. After drying, the RNA pellet was dissolved in 30μL RNase-Free water (Qiagen #129112). To analyze the RNA sample to determine if RNA quality was suitable for RNASeq by the Illumina Mi-Seq platform, 3μL was removed for Bioanalyzer analysis. The remaining 27μL was used in the generation of the cDNA library.

#### Thermal Cycler Programs for cDNA Library Preparation

The Integrated Genomics Facility at Kansas State University used the following programs in a thermal cycler for the synthesis of the cDNA library:

mRNA denaturation: 65°C for 5 min; hold at 4°C

*mRNA elution 1:* 80°C for 2 min; hold at 25°C

*Elution 2-Frag-Prime:* 94°C for 8 min; hold at 4°C

*I<sup>st</sup> strand:* 25°C for 10 min; 42°C for 50 minutes; 70°C for 15 min; hold at 4°C

2<sup>nd</sup> strand: 16°C for 1h; hold at 16°C

*End repair:* 30°C for 30 min; hold at 4°C

ATAIL70: 37°C for 30 min; 70°C for 5 min; hold at 4°C

Ligation: 30°C for 10 min

*PCR*: 98°C for 30 s; (15 cycles of) 98°C for 10 s, 60°C for 30 s, 72°C for 30 s, 72°C for 5 min; hold at 10°C

#### Purification and Fragmentation of mRNA

RNA isolated from pea aphids was sent to the Kansas State University Integrated Genomics Facility for cDNA synthesis in preparation for RNASeq. The synthesis of the cDNA library was performed using the TruSeq RNA Sample Preparation Kit (Illumina #RS-122-2001). To the total RNA isolated from plant-fed and diet-fed pea aphids, 50µL of magnetic RNA Purification Beads were added to bind poly-A tails of the mRNA, and mixed. The sample was incubated in the thermal cycler under the program *mRNA denaturation*. Once the sample reached 4°C, it was incubated at room temperature for 5 min. The tube was then placed on a magnetic stand for 5 min to isolate the RNA-bound magnetic beads, and the supernatant was discarded. The beads were washed with  $200\mu$  of bead washing buffer. The tube was then placed back on the magnetic tube rack for 5 min. The supernatant was removed from the sample and discarded. To the sample, 50µL of elution buffer was added and mixed, followed by incubation in the thermal cycler under the program *mRNA elution 1*. Once the sample reached 25°C, 50µL of bead binding buffer was added and mixed, followed by incubation at room temperature for 5 min. The sample was placed in the magnetic tube stand for 5 min, and the supernatant was removed and discarded. The beads were washed with 200µL of bead washing buffer, followed by 5 min on the magnetic stand. The supernatant was discarded, and 19.5µL of Elute, Prime, Fragment mix was added and mixed. The sample was incubated in a thermal cycler on the program *Elution-2-Frag-Prime* to elute RNA from the beads. When the sample reached 4°C, it was centrifuged briefly. The sample was placed on a magnetic stand for 5 min, and the supernatant was removed and placed in a fresh PCR tube.

#### Synthesis of First Strand cDNA

From the supernatant that contained the fragmented and primed mRNA,  $17\mu$ L was removed and placed in a new PCR tube, and 1<sup>st</sup> Strand Master Mix (+SuperScriptII) was added and mixed. The tube was incubated in the thermal cycler under the program 1<sup>st</sup> Strand. Following incubation, the tube contained single stranded cDNA.

#### Synthesis of Second Strand cDNA

Once the above sample reached 4°C,  $25\mu$ L of 2<sup>nd</sup> Strand Master Mix was added to the single stranded cDNA and mixed. The tube was incubated in the thermal cycler under the program 2<sup>nd</sup> Strand. After incubation, the tube contained double stranded cDNA.

#### **Purification of Double Stranded cDNA**

Once the double stranded cDNA reached room temperature, it was transfer to a 1.7mL tube, and 90 $\mu$ L of AmpureXP beads were added to ds cDNA and mixed. The sample was incubated at room temperature for 15 min, and then placed on a magnetic stand for 5 min. The supernatant was removed and discarded, and 200 $\mu$ L of 80% ethanol was added to the tube without disturbing the beads, incubated for 30 s, and then the supernatant was discarded. The washing step was repeated one more time. After the tube was dried for 15 min, 62.5 $\mu$ L of Resuspension buffer was added, and the sample was removed from the magnet and mixed. The tube incubated at room temperature for 2 minutes, and then placed on the magnet for 5 min. A 60 $\mu$ L fraction of purified ds cDNA supernatent was then removed and added to a new tube.

# End Repair and Reaction Clean Up

To the purified double stranded cDNA,  $40\mu$ L of end repair mix was added and mixed, followed by incubation in the thermal cycler under the program *End Repair*. The sample was then transferred to a new tube, and 160µL of AmpureXP beads were added and mixed, followed by incubation at room temperature for 15 min. The sample was then placed on the magnetic stand for 5 min, and then the supernatant was discarded. To the tube, 200µL of 80% ethanol was added without disturbing the beads, and incubated for 30 s. The supernatant was removed, and the ethanol wash was repeated once more. The sample was air dried for 15 min, then 20µL of Resuspension buffer was added and mixed. Incubation at room temperature for 2 min followed, and the sample was placed in the magnetic stand for 5 min. A  $17.5\mu$ L fraction of the supernatant was removed and placed in a new PCR tube.

#### Adenylation of 3' Ends, Adapter Ligation, and Reaction Clean Up

To adenlyate the 3' end of the cDNA library,  $12.5\mu$ L of A-Tailing Mix was added to the sample and mixed. The sample was incubated in a thermal cycler under the program *ATAIL70*. Once the sample reached 4°C, it was removed.

Adapters must be added to the cDNA library so that it may be sequenced on the Illumina Mi-Seq platform. To ligate the sample,  $2.5\mu$ L of Resuspension buffer and  $2.5\mu$ L of ligation mix was added to the tube and then mixed. The tube was incubated in a thermal cycler under the program *Ligation*, and was then removed, and  $5\mu$ L of Stop ligation buffer was added and mixed.

To clean up the reaction mixture,  $42\mu$ L of AmpureXP beads were added to the sample and mixed, followed by 15 min of incubation at room temperature. The tube was placed on a magnetic stand and the supernatant was removed and discarded. Without disturbing the beads, 200 $\mu$ L of 80% ethanol was added, incubated for 30 s, and the supernatant was removed and discarded. The ethanol wash was repeated one more time, and the sample was dried for 15 min. Following drying, 62.5 $\mu$ L of resuspension buffer was added, mixed, and then the sample incubated at room temperature for 2 min, and placed on a magnetic stand for 5 min. The supernatant was removed and 50 $\mu$ L was transferred to a new 1.7mL centrifuge tube. AmpureXP beads (50 $\mu$ L) were then added for a second clean up. The sample incubated at room temperature for 15 min, then placed on a magnetic stand for 5 min. The sample incubated for 30 s, and the wash was repeated once more. After drying the sample for 15 min, 22.5 $\mu$ L of Resuspension Buffer was added, incubated for 2 min, and then placed on the magnetic stand for 5 min. A  $20\mu$ L sample of the supernatant was transferred to a new PCR tube.

#### **Enrichment of DNA Fragments**

The purified, 3' polyadenylated, ligand adapted, cDNA library was then enriched by PCR. To the library,  $5\mu$ L of PCR primer cocktail and  $25\mu$ L of PCR master mix was added and mixed. The sample was incubated in the thermal cycler under the program *PCR*.

#### Clean Up of PCR Products

After the tube is removed from the thermal cycler, 50µL of AmpureXP beads were added and mixed, followed by 15 min of incubation at room temperature, and then placed on a magnetic stand. The supernatant is removed and discarded, and the sample is washed with 200µL of 80% ethanol, and incubated for 30 s. The supernatant is removed, and the ethanol wash is repeated. The sample is air dried for 15 min, and 32.5µL of Resuspension Buffer is added and mixed. After 2 min of incubation at room temperature, the sample is placed on a magnetic stand for 5 min and 30µL of the supernatant was transferred to a new 1.7mL centrifuge tube. This product was the final cDNA library that was then sequenced by RNASeq on the Illumina Mi-Seq platform.

#### Validation of RNASeq Libraries

Before sequencing, our cDNA libraries were verified by an Agilent Bioanalyzer 2100. DNA dye and DNA gel matrix were equilibrated to room temperature for 30 min, and then 25µL of the dye was added to the DNA gel matrix, and the solution was mixed and spun down at 1500xg for 10 min. The Gel-Dye Mix (9µL) was loaded into a specific well denoted as "G" on a DNA 7500 chip on the priming station.

#### Mapping of RNASeq Reads

RNA-Seq reads were mapping using the Assemble program in the software package Geneious. The mRNA transcripts for the proteins listed in Table 1-2 were used as a "reference genome". Reads were mapped to the reference genome under Medium-Low Sensitivity, which allows 10 gaps per read, requires 18 consecutive bases to be identical to match a read to the genome, and allows a mismatch percentage for single bases of up to 20%.

#### Calculation of RPKM and Fold Change Values

Reads per kilobase of exon per million reads mapped values (RPKM) were calculated using the following equation, where  $R_M$  is reads mapped to a reference sequence,  $L_T$  is the length of the reference transcript, and  $R_T$  are the total number of RNA-Seq reads.

$$RPKM = 10^9 * \left(\frac{R_M}{L_T * R_T}\right)$$

Fold change values (FC) were calculated using the following equation, where RPKM<sub>P</sub> is the RPKM for plant fed aphids, and RPKM<sub>D</sub> is the RPKM for diet fed aphids.

$$FC = \frac{RPKM_P}{RPKM_D}$$

#### **Results/Discussion**

Salivary gland RNA from pea aphids reared on faba beans or Akey-Beck diet (composition of diet found in Table 1-1) was isolated and submitted to the Integrated Genomics Facility at Kansas State University (IGF-KSU) for quality analysis by Agilent 2100 Bioanalyzer. The bioanalyzer profiles for plant-fed (Figure 1-1) and Akey-Beck diet fed (Figure 1-2) show good quality RNA, suitable for RNASeq cDNA library synthesis. The cDNA library was prepared by the IGF-KSU using the procedure described above. Bioanalyzer profiles for the sonicated plant-fed and diet-fed salivary gland cDNA libraries used for sequencing appear in Figure 1-3 and Figure 1-4, respectively. Sequencing of the cDNA libraries at IGF-KSU on the Illumina Mi-Seq platform generated 39,968,294 paired-end reads for the plant-fed cDNA library, and 43,395,650 paired-end reads for the diet-fed library. All reads were 250 bases in length.

The RNA-Seq reads from plant-fed and diet-fed salivary gland libraries were assembled to mRNA transcripts, using each as a "reference genome". I selected predicted or confirmed proteins of pea aphid saliva. After the reads were mapped, RPKM values for each transcript were calculated. The plant-fed to diet-fed RPKM ratios were calculated. The results of these analyses are found in Table 1-2.  $Log_2$  of the fold change is plotted in Figure 1-5.

The majority of the transcripts studied had higher expression in plant-fed salivary gland libraries. The range of the fold change was 1.12 to 4.69. The five highest fold changes were for unannotated proteins. These results were expected, as aphid feeding on plants is more complex than their feeding on artificial diets. Plants have numerous defense mechanisms that protect them from invading pathogens or insect pests, and many pea aphid saliva proteins may help circumvent these systems.

Several of the transcripts that had higher expression in plant-fed pea aphids have been studied as saliva components. Armet, also called MANF, has been found to have both intracellular and extracellular functions in humans. Armet can be localized to the endoplasmic reticulum, where it is believed to be a member of the unfolded protein response (Apostolou et al., 2008). Armet is also found to be secreted into the plant when aphids feed (Cui and Reeck, personal communication). In the ER, Armet is suspected to be a chaperone protein that assists with protein folding (Lee et al, 2003). The Armet transcript is represented at 3.2 fold higher in plant fed salivary gland libraries in comparison to diet-fed libraries.

C002 is another protein known to be secreted during aphid feeding on plants, and is required for pea aphids to successfully feed (Mutti et al., 2006 and Mutti et al, 2008). The transcript for C002 is 2.7 fold higher in plant-fed aphid salivary glands.

A transcript for a putative sheath protein (NM\_001162218) had the highest number of reads in both plant-fed and diet-fed salivary gland libraries. This transcript has 2-fold higher expression in plant-fed insects.

Ten transcripts were found to have higher expression in diet-fed pea aphid salivary glands than in plant-fed pea aphid salivary glands. The transcripts expressed at higher levels in diet-fed pea aphid salivary gland libraries are cadherin, a CLIP-domain serine protease, cathepsin-B and cathepsin-L, juvenile hormone binding protein, multi-copper oxidase 1, sucrase, chorin peroxidase H6, maltase, and RNA helicase.

Interestingly, the transcript level of sucrase was found to be nearly 300 times higher in diet-fed salivary glands versus plant-fed salivary glands. The Akey-Beck diet contains 0.35g/mL sucrose (Akey and Beck, 1974). These results suggest that pea aphids can sense diet composition, and that manipulation of the diet can change gene expression in pea aphid salivary glands. To further explore this hypothesis, it would be interesting to modify the Akey-Beck diet by replacing sucrose with other sugars, such as glucose or trehalose, which may stimulate glucose dehydrogenase or trehalase transcript expression.

The encoded amino acid sequences for all studied transcripts were analyzed to determine the presence of a signal secretion peptide or ER retention signal. The sequences were processed through the SignalP 3.0 server (http://www.cbs.dtu.dk/services/SignalP-3.0/), and the probabilities that a signal peptide existed were calculated through the Hidden Markov model within the program, the results of which can be seen in Table 1-2. All but three encoded proteins

were predicted to have signal secretion peptide. The lack of a signal secretion peptide in an M1 zinc metalloprotease, unannotated protein 27, and  $\beta$ -galactosidase suggests that these three proteins should not be included in a list of pea aphid saliva components. ER retention signals (KDEL, KEEL, HDEL, KHEL, KEDK, HTEL) were found in nine of the transcripts: two forms of calreticulin (ACYPI002622, ACYPI007677), four forms of protein disulfide isomerases (ACYPI009755, ACYPI005594, ACYPI008926, ACYPI000119), unannotated protein 7 (ACYPI001271), and a protein annotated as Contig\_37 (NM\_001126135) (Table 1-2). Armet was also found to have an ER retention signal, however, in humans it is known to be both intracellular (localized in the ER as a member of the unfolded protein response), and extracellular. Unpublished studies have shown that Armet is secreted into plants during pea aphid feeding (G.R. Reeck and F. Cui, personal communication). The presence of an ER retention signal in a transcript indicates their expressed proteins may be critical to the salivary gland during feeding; however, they might not be components of pea aphid saliva.

Of the 71 salivary gland transcripts studied, I identify 61as likely components of aphid saliva (marked green in Secreted (Prediction) column in Table 1-2). To further confirm the presence of these proteins in pea aphid saliva, I suggest a top-down proteomics approach. In this approach, saliva secreted into Akey-Beck diet would be collected, and the saliva proteins would be separated from the diet by HPLC through a protein binding C18 column. After separation, column fractions would be analyzed by MALDI-TOF, or ion mobility spectrometry. This study differs from all previous mass spectroscopy approaches, which have all been bottom-up proteomics, in which proteins are isolated by electrophoresis, digested into small fragments by a protease, and identified by tandem mass spectrometry and peptide mass fingerprinting (Carolan et al., 2009, Carolan et al., 2011, Cooper et al., 2010, and Rao et al., 2013). The top-down

approach is recommended because separation of saliva proteins by gel electrophoresis followed by trypsin digestion decreases the sensitivity to detect protein components in saliva. Only proteins that showed visible bands in a gel are subjected to mass spectrometry analysis, so proteins of low concentration could be easily missed.

# **Figures and Tables**

## Table 1-1 Composition of the Artificial Diet (Akey and Beck, 1972)

Pea aphids were reared for 48 hours on an artificial diet, referred to as Akey-Beck diet throughout this thesis. The composition of this diet appears below (Akey and Beck, 1972).

| 1)Amino acids and vitamins  | From Akey and Beck, 1971              |                   |
|-----------------------------|---------------------------------------|-------------------|
| 2) Trace metals as chloride |                                       | μg/100 ml of diet |
| salts                       |                                       |                   |
|                             | Cu <sup>2+</sup>                      | 120               |
|                             | Fe <sup>3+</sup>                      | 920               |
|                             | Mn <sup>2+</sup>                      | 220               |
|                             | Na+                                   | 1000              |
|                             | Zn <sup>2+</sup>                      | 400               |
| 3) Other                    |                                       | Amount/100mL diet |
|                             | Calcium citrate                       | 10 mg             |
|                             | Cholesterol benzoate                  | 2.5mg             |
|                             | Magnesium sulfate (7H <sub>2</sub> O) | 242mg             |
|                             | Potassium phosphate                   | 250mg             |
|                             | monobasic                             |                   |
|                             | Sucrose                               | 35g               |
|                             | pH 7.5, adjusted with KOH             |                   |
|                             | Distilled-deionized water to          |                   |
|                             | make 100mL of diet                    |                   |

# Table 1-2 Comparative Analysis of Plant-Fed and Diet-Fed Pea Aphid Salivary Gland Libraries by RNASeq

Reads generated by RNASeq were mapped to each individual transcript open reading frame as a "reference genome". RPKM, fold changes, and log<sub>2</sub>(fold change) values were calculated as described in the text. Signal peptides and their probabilities were calculated using SignalP 3.0. Transcript names are highlighted in different colors: purple: pea aphid transcripts corresponding to transcripts studied in Russian Wheat aphids (Cui et al., 2012), blue (with white text): transcripts of proteins identified in (Bos et al., 2010), red: pea aphid transcripts of proteins identified in green peach aphid (Harmel et al., 2008), dark green: pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in Russian Wheat aphids, blue (with black text): pea aphid transcripts of proteins identified in English grain aphid, rose grain aphid, and pea aphid (Rao et al., 2013), light green: pea aphid salivary gland enriched transcripts (Carolan et al., 2011).

| 1000                     |             | 010000  |         | 100001  | 0.0014  | 000  | 0000 |     | 000   |               |     |       |
|--------------------------|-------------|---------|---------|---------|---------|------|------|-----|-------|---------------|-----|-------|
| CUUZ                     |             | 320622  | C.CC121 | C20051  | 4539.8  | 660  | 2.68 | Yes | 0.82  | NO            | Yes | 1.42  |
| Dipeptidyl Carbox        | <pre></pre> | 182432  | 2392.3  | 77692   | 938.3   | 1908 | 2.55 | Yes | 0.962 | No            | Yes | 1.35  |
| Armet                    |             | 4729    | 225.4   | 1608    | 70.6    | 525  | 3.19 | Yes | 0.99  | Yes (KEEL)/No | Yes | 1.67  |
| Cadheri                  | i           | 750     | 9.3     | 3370    | 38.4    | 2022 | 0.24 | Yes | 0.957 | No            | Yes | -2.05 |
| Calreticu                | lin         | 43878   | 894.7   | 23101   | 433.9   | 1227 | 2.06 | Yes | 0.951 | Yes (HDEL)    | No  | 1.04  |
| Calreticu                | lin         | 23518   | 480.7   | 10449   | 196.7   | 1224 | 2.44 | Yes | 0.971 | Yes (HDEL)    | No  | 1.29  |
| <b>CLIP-domain serir</b> | ne protease | 1531    | 16.3    | 6597    | 64.7    | 2349 | 0.25 | Yes | 0.924 | No            | Yes | -1.99 |
| Disulfide isor           | nerase      | 51048   | 836.4   | 19733   | 297.8   | 1527 | 2.81 | Yes | 0.888 | Yes (KDEL)    | No  | 1.49  |
| Disulfide isor           | nerase      | 11282   | 191.6   | 4773    | 74.7    | 1473 | 2.56 | Yes | 0.693 | Yes (KHEL)    | No  | 1.36  |
| Disulfide isor           | nerase      | 8670    | 166.2   | 4916    | 86.8    | 1305 | 1.91 | Yes | 0.926 | Yes (KEEL)    | No  | 0.94  |
| Disulfide isor           | nerase      | 12605   | 256.4   | 4644    | 87      | 1230 | 2.95 | Yes | 866   | Yes (KEEL)    | No  | 1.56  |
| Glucose Dehydi           | rogenase    | 154141  | 1785.5  | 81892   | 873.6   | 2160 | 2.04 | Yes | 0.968 | No            | Yes | 1.03  |
| Glucose Dehyd            | rogenase    | 128339  | 932.4   | 70736   | 473.3   | 3444 | 1.97 | Yes | 0.883 | No            | Yes | 0.98  |
| Inositol Monoph          | osphatase   | 429     | 11.6    | 250     | 6.2     | 927  | 1.87 | Yes | 0.95  | No            | Yes | 06.0  |
| Lipophorin pr            | ecursor     | 312028  | 892.4   | 222263  | 585.5   | 8748 | 1.52 | Yes | 0.999 | No            | Yes | 0.61  |
| M1 zinc metallo          | protease    | 34370   | 510.9   | 12528   | 171.5   | 1683 | 2.98 | Yes | 0.992 | No            | Yes | 1.57  |
| M1 zinc metallo          | protease    | 13408   | 121     | 7669    | 63.7    | 2772 | 1.90 | No  | 0.199 | No            | No  | 0.93  |
| Golgi-Associated         | Protein R-1 | 266027  | 3838.5  | 114806  | 1525.7  | 1734 | 2.52 | Yes | 0.995 | No            | Yes | 1.33  |
| Trehalas                 | se          | 10880   | 149.5   | 5944    | 75.2    | 1821 | 1.99 | Yes | 0.968 | No            | Yes | 0.99  |
| Unannotated P            | rotein 10   | 613137  | 38449.9 | 220577  | 12739.2 | 399  | 3.02 | Yes | 0.969 | No            | Yes | 1.59  |
| Unannotated P            | rotein 11   | 17771   | 1001.4  | 5682    | 294.9   | 444  | 3.40 | Yes | 0.94  | No            | Yes | 1.76  |
| Unannotated P            | rotein 12   | 190375  | 2945.7  | 77573   | 1105.5  | 1617 | 2.66 | Yes | 0.725 | No            | Yes | 1.41  |
| Unannotated P            | rotein 13   | 87733   | 4461.5  | 22295   | 1044.2  | 492  | 4.27 | Yes | 0.996 | No            | Yes | 2.10  |
| Unannotated P            | rotein 14   | 85995   | 3131.8  | 36573   | 1226.7  | 687  | 2.55 | Yes | 0.905 | No            | Yes | 1.35  |
| Unannotated P            | rotein 15   | 198860  | 6052.9  | 93344   | 2616.8  | 822  | 2.31 | Yes | 0.991 | No            | Yes | 1.21  |
| Unannotated P            | rotein 16   | 21741   | 197.1   | 16289   | 136     | 2760 | 1.45 | Yes | 0.595 | No            | Yes | 0.54  |
| Unannotated P            | rotein 17   | 288654  | 19895.5 | 113870  | 7228.6  | 363  | 2.75 | Yes | 0.82  | No            | Yes | 1.46  |
| Unannotated P            | rotein 18   | 174780  | 5521.4  | 53810   | 1565.6  | 792  | 3.53 | Yes | 0.997 | No            | Yes | 1.82  |
| Unannotated P            | rotein 19   | 40836   | 1968.6  | 11174   | 496.1   | 519  | 3.97 | Yes | 0.976 | No            | Yes | 1.99  |
| Putative Sheat           | h Protein   | 2116651 | 44465.4 | 1150729 | 22264.6 | 1191 | 2.00 | Yes | 0.992 | No            | Yes | 1.00  |
| Unannotated P            | rotein 20   | 315882  | 20581.5 | 122407  | 7345.6  | 384  | 2.80 | Yes | 0.824 | No            | Yes | 1.49  |
| Unannotated P            | rotein 21   | 62894   | 549.8   | 21396   | 172.3   | 2862 | 3.19 | Yes | 0.998 | No            | Yes | 1.67  |
| Unannotated P            | rotein 22   | 16632   | 983.8   | 6876    | 374.6   | 423  | 2.63 | Yes | 0.997 | No            | Yes | 1.39  |
| Unannotated P            | rotein 23   | 52413   | 543     | 18802   | 179.4   | 2415 | 3.03 | Yes | 0.999 | No            | Yes | 1.60  |
| Unannotated P            | rotein 24   | 45444   | 3644.2  | 26653   | 1968.5  | 312  | 1.85 | Yes | 0.833 | No            | Yes | 0.89  |
| Unannotated P            | rotein 25   | 16868   | 1153.1  | 3902    | 245.7   | 366  | 4.69 | Yes | 0.96  | No            | Yes | 2.23  |
| Unannotated P            | rotein 26   | 15276   | 343.1   | 9866    | 206.6   | 1114 | 1.66 | Yes | 0.999 | No            | Yes | 0.73  |

| log <sub>2</sub> (Fold Change) | 1.49                   | 1.26                   | 1.90                   | 1.46                  | 0.30                   | 1.03                   | 1.27        | 1.47                  | 1.28                  | 1.80                  | 1.59                              | 1.55                  | 1.11                  | 1.17                         | -0.83        | -0.29        | -0.44                            | -1.24        | 0.49             | -8.12        | 1.44         | 0.99           | 1.52         | -1.79                | 1.25                   | 1.43                        | 1.05         | 1.64         | -7.47        | 0.32                                   | 0.16                   | 0.80                       | 0.39         | -0.68        | -0.35        |
|--------------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------------------|-----------------------|-----------------------|------------------------------|--------------|--------------|----------------------------------|--------------|------------------|--------------|--------------|----------------|--------------|----------------------|------------------------|-----------------------------|--------------|--------------|--------------|----------------------------------------|------------------------|----------------------------|--------------|--------------|--------------|
| Secreted (Prediction)          | No                     | Yes                    | Yes                    | Yes                   | Yes                    | Yes                    | Yes         | Yes                   | Maybe                 | No                    | Yes                               | Yes                   | Yes                   | No                           | Yes          | Yes          | Yes                              | Yes          | Yes              | Yes          | No           | Yes            | Yes          | Yes                  | Yes                    | Yes                         | Yes          | Yes          | Yes          | Yes                                    | Yes                    | Yes                        | Yes          | Yes          | Yes          |
| ER Retention Signal            | No                     | No                     | No                     | No                    | No                     | No                     | No          | No                    | Maybe (RELL)          | Yes (KEDK)            | No                                | No                    | No                    | No                           | No           | No           | No                               | No           | No               | No           | Yes (HTEL)   | No             | No           | No                   | No                     | No                          | No           | No           | No           | No                                     | No                     | No                         | No           | No           | No           |
| Probability                    | 0.407                  | 0.964                  | 0.962                  | 0.999                 | 0.938                  | 0.975                  | 0.95        | 0.978                 | 0.828                 | 0.988                 | 0.969                             | 0.983                 | 0.522                 | 0.206                        | 0.713        | 0.747        | 0.991                            | 0.988        | 1                | 0.909        | 0.981        | 0.665          | 0.97         | 1                    | 0.967                  | 0.969                       | 0.906        | 0.98         | 0.95         | 0.997                                  | 0.989                  | 0.999                      | 0.996        | 0.999        | 0.905        |
| gnal Peptide                   | No                     | Yes                    | Yes                    | Yes                   | Yes                    | Yes                    | Yes         | Yes                   | Yes                   | Yes                   | Yes                               | Yes                   | Yes                   | No                           | Yes          | Yes          | Yes                              | Yes          | Yes              | Yes          | Yes          | Yes            | Yes          | Yes                  | Yes                    | Yes                         | Yes          | Yes          | Yes          | Yes                                    | Yes                    | Yes                        | Yes          | Yes          | Yes          |
| Fold Change Si                 | 2.82                   | 2.40                   | 3.74                   | 2.76                  | 1.23                   | 2.04                   | 2.42        | 2.77                  | 2.43                  | 3.49                  | 3.02                              | 2.94                  | 2.16                  | 2.25                         | 0.56         | 0.82         | 0.74                             | 0.42         | 1.40             | 0.004        | 2.72         | 1.98           | 2.87         | 0.29                 | 2.38                   | 2.69                        | 2.08         | 3.12         | 0.01         | 1.25                                   | 1.12                   | 1.74                       | 1.31         | 0.62         | 0.79         |
| <b>Franscript Length</b>       | 1521                   | 405                    | 513                    | 1098                  | 1800                   | 696                    | 465         | 783                   | 426                   | 645                   | 399                               | 609                   | 830                   | 1923                         | 1020         | 1026         | 759                              | 2154         | 4893             | 1773         | 666          | 3486           | 2757         | 1794                 | 1635                   | 1914                        | 780          | 405          | 1875         | 810                                    | 1152                   | 1311                       | 1005         | 2151         | 702          |
| Diet Fed RPKM 7                | 991.8                  | 705.4                  | 1204.8                 | 3068.7                | 753.1                  | 0.19                   | 8225.8      | 4964.5                | 10300.5               | 1090.7                | 12739.2                           | 3760.3                | 258.7                 | 0.4                          | 3602         | 258.3        | 224.9                            | 4.5          | 3.5              | 138.9        | 90.3         | 7723.9         | 294.6        | 11.4                 | 80                     | 786.8                       | 61.6         | 340.1        | 35.5         | 4.8                                    | 17                     | 9.2                        | 8.6          | 13           | 1702         |
| Diet Fed Reads                 | 65465                  | 12398                  | 26822                  | 146221                | 58826                  | ∞                      | 165989      | 168688                | 190421                | 30529                 | 220577                            | 99378                 | 9318                  | 37                           | 159438       | 11503        | 7407                             | 424          | 752              | 10684        | 2610         | 1168453        | 35254        | 885                  | 565                    | 65347                       | 2088         | 5977         | 2891         | 168                                    | 850                    | 524                        | 376          | 1214         | 51847        |
| Plant Fed RPKM                 | 2792.7                 | 1694.7                 | 4509.9                 | 8454.9                | 927.5                  | 0.387                  | 19891.9     | 13747.5               | 24997.3               | 3805                  | 38449.9                           | 11040.1               | 559.3                 | 0.9                          | 2022.5       | 211.5        | 165.9                            | 1.9          | 4.9              | 0.5          | 245.6        | 15300.6        | 845.9        | 3.3                  | 19                     | 2114.8                      | 127.9        | 1060.6       | 0.2          | 9                                      | 19                     | 16                         | 11.3         | 8.1          | 1339.2       |
| Plant Fed Reads Mapped         | 169772                 | 27433                  | 92469                  | 371047                | 66726                  | 15                     | 369697      | 430231                | 425616                | 98092                 | 613137                            | 268723                | 18553                 | 71                           | 82453        | 8674         | 5032                             | 167          | 955              | 36           | 6537         | 2131828        | 93214        | 237                  | 1244                   | 161782                      | 3988         | 17169        | 16           | 193                                    | 875                    | 840                        | 453          | 698          | 37577        |
| Transcript Name                | Unannotated Protein 27 | Unannotated Protein 28 | Unannotated Protein 29 | Unannotated Protein 3 | Unannotated Protein 30 | Unannotated Protein 31 | Me10        | Unannotated Protein 5 | Unannotated Protein 6 | Unannotated Protein 7 | Unannotated Protein 8 (Guo, 2014) | Unannotated Protein 9 | Carbonic anhydrase II | Beta-galactosidase precursor | Cathepsin B  | Cathepsin L  | Juvenile Hormone Binding Protein | MCO1         | Endoribonuclease | Sucrase      | Contig_37    | Sheath Protein | Peptidase    | Chorin Peroxidase H6 | Transmembrane 87B-like | Dipeptidyl Carboxypeptidase | EMP24 like   | Mp42         | Maltase-L    | 3-hydroxyacyl-CoA dehydrogenase type-2 | Unannotated Protein 32 | Zinc binding dehydrogenase | PAMP         | RNA Helicase | ApGPx1       |
| Accession                      | ACYPI55148             | ACYP143360             | ACYPI007553            | ACYPI000472           | ACYPI001152            | ACYPI38795             | ACYPI008224 | ACYPI000490           | ACYPI006346           | ACYPI001271           | ACYPI39568                        | ACYPI007406           | ACYPI23752            | ACYPI007650                  | XM_003240454 | NM_001163097 | NM_001204960                     | XM_003241838 | XM_003240062     | NM_001126135 | NM_001162218 | BAH72296       | XM_001944729 | XM_001947380         | XM_001950168           | NM_001135912                | NM_001246005 | XP_001948510 | XM_003246839 | NM_001246102                           | XM_001948922           | XM_001948134               | XM_001947715 | XM_001945136 | NM_001162003 |

# Figure 1-1 Bioanalyzer Profile of Plant-Fed Pea Aphid Salivary Gland RNA

RNA isolated from pea aphid salivary glands reared on faba bean plants was analyzed on an Agilent 2100 Bioanalyzer for determination of RNA quality.



# Figure 1-2 Bioanalyzer Analysis of Diet-Fed Pea Aphid Salivary Gland RNA

RNA isolated from pea aphid salivary glands reared on Akey-Beck diet for 48 h was analyzed on an Agilent 2100 Bioanalyzer for determination of RNA quality.



# Figure 1-3 Bioanalyzer Profile of Plant-Fed Pea Aphid Salivary Gland cDNA Library

The cDNA library generated from salivary gland RNA isolated from pea aphids reared on faba beans was submitted for Bioanalyzer analysis.



# Figure 1-4 Bioanalyzer Profile of Diet-Fed Pea Aphid Salivary Gland cDNA Library

The cDNA library generated from salivary gland RNA isolated from pea aphids reared on Akey-Beck diet for 48 hours was submitted for Bioanalyzer analysis.



# Figure 1-5 Log<sub>2</sub>(Fold Change) Plot of Pea Aphid Salivary Gland Transcripts

Log<sub>2</sub> of the fold change (plant-fed RPKM/diet-fed RPKM) was plotted below. Positive values are transcripts of higher expression in plant-fed pea aphid salivary gland libraries, while negative values are expressed at higher levels in diet-fed pea aphid salivary gland libraries.



# **Chapter 2 - Bioinformatics Analysis of Glutathione Peroxidase**

#### Introduction

Glutathione peroxidases (GPxs) protect organisms from oxidative damage (Brigelius-Flohe et al., 2013). In *Homo sapiens,* eight isozymes of glutathione peroxidase have been discovered, five of which contain selenium (Table 2-1). Glutathione peroxidases are identified in part by a conserved catalytic tetrad consisting of selenocysteine (or cysteine), glutamine, tryptophan, and asparagine. In human GPx1, these are residues U49, Q84, W162, and N163 (Tosatto et al., 2008).

The various human GPx isozymes have different tissue or organ (and intracellular) locations, as well as substrate specificities. In humans, GPx1 is the most abundant isoform (Forgione et al., 2002), located in almost all tissues, and in the cytoplasm, serving to break down hydrogen peroxide. GPx2 is localized to the gastrointestinal system (Chu et al., 1993). GPx4 breaks down phospholipid hydroperoxides into alcohols (Yant et al., 2003), while GPx3 is found to be abundant in plasma (Olson et al., 2010).

The prototypical reaction catalyzed by glutathione peroxidase is as follows, where GSH is monomeric glutathione, GS-SG is oxidized glutathione disulfide:

$$H_2O_2 + 2GSH \rightarrow GS - SG + 2H_2O$$

In the case of GPx4, hydrogen peroxide is replaced by a lipid hydroperoxidase (LHP), and a lipid alcohol is formed as a product:

$$LHP + 2GSH \rightarrow GS - SG + lipid alcohol$$

The catalytic mechanism for selenium-containing GPxs has three steps (Prabhakar et al., 2005). In the first step (1), the active GPx with the selenocysteine in selenol form reacts with

hydrogen peroxide to create the selenenic acid form of GPx (E-SeOH) and water, reducing hydrogen peroxide in the process, the crucial step in limiting oxidative damage by hydrogen peroxide.

(1) 
$$(E - SeH) + H_2O_2 \rightarrow (E - SeOH) + H_2O_2$$

Next (2), a molecule of glutathione forms a selenenic acid-glutathione molecule (E-Se-SG), again creating water as a product.

(2) 
$$(E - SeOH) + GSH \rightarrow (E - Se - SG) + H_2O$$

In the final step (3), active GPx (E-SeH) is regenerated when GSH is oxidized to form the glutathione disulfide (GS-SG) by glutathione peroxidase.

$$(3) \qquad (E - Se - SG) + GSH \rightarrow (E - SeH) + GS - SG$$

NADPH can reduce the glutathione disulfide in a reaction catalyzed by glutathione reductase to regenerate monomeric glutathione.

Non-selenium dependent GPxs act by a similar mechanism, except that selenocysteine in the active site is replaced by cysteine, and the sulfur acts as the nucleophile instead of selenium.

*In silico* studies of EST and genomic libraries of invertebrates revealed genes similar to phospholipid glutathione peroxidase (human GPx4) in all genomes surveyed (Bae et al., 2009). In nematodes and platyhelminths, genes similar to human GPx3 and GPx7 were discovered as well. Selenium dependent GPxs were exclusively found in nematode and platyhelminth species. The analysis of Bae et al. (2009) suggested that selection pressure to conserve the selenocysteine codon in glutathione peroxidases seemed to be relaxed during the evolution of the gene.

In *Drosophila melanogaster*, five glutathione peroxidases have been identified at the transcript level (Peroxibase, http://peroxibase.toulouse.infra.fr). However, one *Drosophila* GPx family member is known to have thioredoxin reductase activity, rather than GPx activity

(Missirlis et al., 2005). Therefore, it is critical to note that while putative transcripts may be classified as a member of the glutathione peroxidase family on the basis of their conserved residues, studies at the protein level are required to determine substrate specificites.

A dual proteomics and transcriptomics approach has shown a salivary gland enriched transcript encoding a glutathione peroxidase (referred to as ApGPx1 throughout this thesis) (AphidBase #ACYPI002439-PA). Mass spectrometry analysis of pea aphid salivary gland proteins confirmed the presence of this GPx (Carolan et al., 2011).

Here, I present a bioinformatics analysis that identified three pea aphid glutathione peroxidases. EST evidence supports the presence of all three GPxs, and in conjunction with RNASeq analysis, indicates high production of ApGPx1 in the salivary gland. While current annotations of the pea aphid genome indicated two ApGPx genes, my analysis of pea aphid EST libraries indicate that the annotations should be revised.

#### **Materials and Methods**

All materials and methods are as described previously in Chapter 1 of this thesis.

## Results

# Top Pea Aphid EST Hits to the Eight Human Glutathione Peroxidases Reveal Two Distinct Pea Aphid Glutathione Peroxidase Candidates

The amino acid sequences of the eight *H. sapiens* GPxs (Table 2-1) were run individually, as query sequences, through the NCBI BLAST program tblastn under default parameters, restricting searches to expressed sequence tag libraries of *A. pisum* (taxid: 7029). The top hit for each protein query is shown in Table 2-2. Each encoded the characteristic GPx catalytic tetrad. Multiple sequence alignment of the encoded open reading frame of the hits apparantly revealed three distinct glutathione peroxidase sequences, one best matching human GPx 2 and 4, one best matching human GPx3, and the last best matching human GPx1, GPx5, GPx7, and GPx8. However, the hits for GPx1, GPx5, GPx7, and GPx8 were incomplete ESTs matching in sequence for hits to GPx2, GPx4, and GPx6. The top hits for human GPx6 and GPx7 were omitted because they matched the top hits for human GPx2 and GPx1, respectively. All of the top hits contained a region of 165 identical amino acid residues that ended at the C-terminus of the open reading frame. The hits for human GPx2, GPx3, and GPx6 had additional residues at the 5' end of the open reading frame, and revealed two unique glutathione peroxidase sequences. The EST FF308178.1 open reading frame (hit for human GPx3) showed an additional sequence 5'-MVNISTSSILFVLVLVVALVFSFYLSFQSKNLSSITNK-3' at the N-terminus of the sequence (immediately before the conserved 165 residue region), while the ESTs FF310179.1 (hit for human GPx2 and GPx6) and CV846368.1 (hit for human GPx4) had the sequence 5'-MGLLFRRLLPSTVVVSSSLIFQSKNLSSITNK-3' before the conserved 165 residues. Therefore, only two unique GPx amino acid sequences and their encoding transcripts from these searches, were identified and considered for further studies.

# Identification of Genomic Locations for Pea Aphid Glutathione Peroxidases Suggests Current Genome Annotations Need Revision

The two identified pea aphid GPx family members from the previous section (arbitrarily called ApGPx2a, ApGPx2b, which will be justified later) (Figure 2-2) and ApGPx1, the protein discovered in mass spectrometry studies (Carolan et al., 2011), were used to identify the glutathione peroxidase genes in the current version of the pea aphid genome (pea aphid genome assembly version 2, www.aphidbase.com). Each amino acid sequence was run through the Aphidbase blast server under the program tblastn, default settings, restricted to Genome assembly version 2 scaffolds.

The current version of the pea aphid genome has two genes annotated as glutathione peroxidase, with gene accession numbers ACYPI38240-RA and ACYPI002439-RA (Table 2-3, Figure 2-3). ACYPI38240-RA annotated has 7 exons, labeled Exons 1-7, while ACYPI002439-RA has 12 exons, labeled as Exons 1-12. While both genes have exons 1-7 in common, it is crucial to note that ACYPI38240-RA has an annotation for a shorter exon 7 than ACYPI002439-RA.

My three GPx sequences mapped to the same scaffold in the assembly (Aphidbase #GL35049831) (Table 2-4). ApGPx1 makes use of the 3'-end of exon 7, all of exons 8-11, and the 5'-end of exon 12, where exons refer to the current GPx gene annotations. ApGPx2a and ApGPx2b both use the full lengths of exons 3-6, and the 5'-end of exon 7, however they differ in that ApGPx2a uses a small, unannotated region approximately 200 nucleotides upstream of exon 3 to code for the N-terminal region of the protein, while ApGPx2b uses the 3'-end of exon 2 for its N-terminus. Mapping the ApGPx amino acid sequences to the reference genome indicated that revisions to the gene structure is needed (Figure 2-4). Therefore, EST databases were explored to find all ESTs that encoded each of the pea aphid GPxs.

# EST Evidence Indicates Three Pea Aphid Glutathione Peroxidases Exist, and Suggests Salivary Gland Specific Production of ApGPx1

To identify all ESTs that encoded for each of our pea aphid glutathione peroxidases, the amino acid sequences of ApGPx1, ApGPx2a, and ApGPx2b were run through BLAST using tblastn under default settings, restricting searches to pea aphid EST libraries. Table 2-5 summarizes the number of EST hits to each individual ApGPx. The searches identified 74 hits to ApGPx1, 2 hits specific to ApGPx2a, and 27 hits specific to ApGPx2b. EST search results

from ApGPx2a and ApGPx2b revealed 38 overlapping ESTs that could not be distinguished between the two GPxs.

Interestingly, 68 of 74 EST hits for ApGPx1 were from salivary gland EST libraries, while only one EST hit for ApGPx2b was from salivary gland libraries, and neither of the ApGPx2a ESTs were from salivary gland libraries.

#### RNA-Seq Data Further Supports that ApGPx1 is Highly Expressed in Salivary Glands

I mapped the plant-fed and diet-fed RNASeq reads from the previous chapter of this thesis to the nucleotide sequences for ApGPx1, ApGPx2a, and ApGPx2b. For ApGPx1, the nucleotide sequence encoding the full protein was used as a reference template. The nucleotide sequence encoding the protein sequences unique for ApGPx2a and ApGPx2b (residues boxed in blue and red, respectively in Table 2-6) were used as reference templates. Approximately 38,000 and 58,000 reads mapped to ApGPx1 for plant-fed and diet-fed samples, respectively. The number of reads unique to ApGPx2a and ApGPx2b were approximately 600 and 1,600 in plantfed samples, and about 900 and 1,800 in Akey-Beck diet-fed samples. To compare transcript expression of ApGPx1, ApGPx2a, and ApGPx2b in plant-fed insects, the first 70 nucleotides of the open reading frame of ApGPx1 was also used as a reference template, resulting in about 21,000 reads mapped. Comparison of RPKM values for the first 70 nucleotides of ApGPx1, and the unique regions of ApGPx2a and ApGPx2b showed that ApGPx1 had about 40-fold higher transcript level than ApGPx2a, and 12-fold higher transcript levels than ApGPx2b. Combined with EST data, these results suggest that ApGPx1 is exclusively produced in the salivary glands. Also, RNASeq data suggests that there is low expression of ApGPx2a and ApGPx2b in salivary glands.

#### Discussion

I have identified three glutathione peroxidases family members, ApGPx1, ApGPx2a, and ApGPx2b. EST evidence in conjunction with RNASeq analysis indicates that ApGPx1 is highly expressed in pea aphid salivary glands. ApGPx2a and ApGPx2b show some expression in salivary glands based on RNASeq evidence, and they may be expressed at low levels.

The current gene annotation has two pea aphid genes encoding pea aphid glutathione peroxidase (Figure 2-3). Analysis of pea aphid ESTs encoding glutathione peroxidases indicates that revisions to the genome are required. My work indicates that two genes, called ApGPx1, ApGPx2 encode GPx in the pea aphids. The revised gene structure for pea aphid glutathione peroxidase can be seen in Figure 2-3. ApGPx1 encodes the most abundant salivary gland GPx, ApGPx1. The revised gene structure for ApGPx1 contains seven exons. Exon 1 codes for the 5' UTR, while the tail of exon 1 and exons 2 through exon 7 encode for the rest of the transcript. The ApGPx2 gene consists of seven exons, and encodes for two differential spliced transcripts, ApGPx2a and ApGPx2b. Exon 2 encodes the 5' UTR for ApGPx1, while exon 2 through exon 7 code for the open reading frame. The tail of exon 7 encodes the 3'UTR for ApGPx1. ApGPx2b is encoded by the gene ApGPx2 as well, a gene made up of seven exons, where exon 1 encodes the 5' UTR, the tail of exon 7 encodes the 3'UTR, and exon 3 through exon 7 encode the open reading frame.

The amino acid sequences for ApGPx1, ApGPx2a, and ApGPx2b were run individualy as queries through NCBI Blast program tblastn, restricting to *Hemiptera* nucleotide, protein, and whole genome shotgun contig databases. The search results found eight *Hemiptera* glutathione peroxidases, from potato aphid (Accession #JX134493.1), Hackberry psyllid (Accession #GAOP01093491.1), black-faced leafhopper (Accession #GAQX01031228.1), cowpea aphid (Accession #GAJW01003579.1), assassin bug (Accession #GAHY01001921.1), bean bug (Accession #GAJX01009604.1), green peach aphid (Accession #EE261230.1), and cotton aphid (Accession #DR396163.1). Glutathione peroxidases from *Drosophila melanogaster* were identified from UniProt (www.uniprot.org). The five unique GPxs are referred to as DmGPx1-5 throughout this thesis, for Uniprot Accession #Q8IRD3, Q8IRD4, Q4V4T9, Q4V6H2, and Q9VZQ8, respectively.

A multiple sequence alignment (Figure 2-4) and phylogenetic tree (Figure 2-5) was created for the eight human, three pea aphid, five *D. melanogaster*, and eight *Hemiptera* glutathione peroxidase amino acid sequences. The catalytic tetrad was identified in all sequences.

Analysis of the amino acid sequences and the phylogenetic tree identified orthologs of ApGPx1 in three species, potato aphid, green peach aphid, and cotton aphid. Orthologs of proteins produced by gene ApGPx2 were found in hackberry psyllid, black-faced leafhopper, cowpea aphid, assassin bug, and the bean bug. Orthologs of pea aphid glutathione peroxidases were not detected in human or *D. melanogaster*.

Reactive oxygen species are known to elicit defense-signaling pathways as a response to aphid attack (Boyko et al., 2006). Aphid salivary enzymes assist in the degradation of linolenic acid, which in combination with plant peptide hormones trigger the release of hydrogen peroxide (Gatehouse, 2002). The role of glutathione peroxidase in pea aphid saliva is unknown, however, glutathione peroxidase could serve to help circumvent plant defense responses by reducing hydrogen peroxide to water.

# **Figures and Tables**

# Table 2-1 The Eight Human Glutathione Peroxidases

Eight human glutathione peroxidases have been identified and studied. ER retention signals were identified by the motif KDEL or KEDL at the C-terminal end of the protein. Signal peptides were predicted by the CBS *SignalP 4.1 Server*. Protein location information was obtained from each individual gene page from NCBI.

| Name               | Accession    | Intracellular<br>Location | Tissue/Organ<br>Location                           | Function                                                               | Selenium<br>Containing | Signal<br>Peptide | ER<br>Retention<br>Signal |
|--------------------|--------------|---------------------------|----------------------------------------------------|------------------------------------------------------------------------|------------------------|-------------------|---------------------------|
| GPx1               | NP_000572    | Cytoplasm                 | Nearly all<br>mammalian<br>tissues                 | Detoxification<br>of hydrogen<br>peroxide                              | Yes                    | No                | No                        |
| GPx2               | NP_002074    | Extracellular             | Gastrointestinal<br>tract                          | Prevention of<br>inflammation in<br>GI tract                           | Yes                    | No                | No                        |
| GPx3               | NP_002075    | Extracellular             | Blood plasma                                       | Detoxification<br>of hydrogen<br>peroxide                              | Yes                    | Yes               | No                        |
| GPx4               | NP_001034936 | Biological<br>membranes   |                                                    | Phospholipid<br>hydroperoxidase                                        | Yes                    | Yes               | No                        |
| GPx5               | NP_001500    | Extracellular             | Epididymis in<br>the male<br>reproductive<br>tract | Protection of<br>spermatozoa<br>membrane from<br>lipid<br>peroxidation | No                     | Yes               | No                        |
| GPx6               | NP_874360    |                           | Embryos and<br>adult olfactory<br>epithelium       | Detoxification<br>of hydrogen<br>peroxide                              | Yes                    | Yes               | No                        |
| GPx7               | NP_056511    | Endoplasmic<br>reticulum  |                                                    | Oxidation of<br>protein disulfide<br>isomerase                         | No                     | Yes               | Yes                       |
| GPx8<br>(putative) | NP_001008398 |                           |                                                    | Unknown                                                                | No                     | No                | Yes                       |

# Table 2-2 The Top Pea Aphid EST Hits to Human Glutathione Peroxidases

All eight human GPx protein sequences were run individually as query sequences through the NCBI program *tblastn* under default conditions restricted to pea aphid EST libraries. The top pea aphid EST hit for each human GPx is listed below.

| <i>H. sapiens</i><br>GPx<br>isoform | Length in<br>Amino<br>Acid<br>Residues | <i>A. pisum</i><br>EST<br>Accession | EST Length | Query<br>Coverage<br>(%) | Sequence<br>Similarity<br>(%) |
|-------------------------------------|----------------------------------------|-------------------------------------|------------|--------------------------|-------------------------------|
| GPx1                                | 203                                    | FF327487.1                          | 716        | 90                       | 34                            |
| GPx2                                | 190                                    | FF310179.1                          | 692        | 95                       | 30                            |
| GPx3                                | 226                                    | FF308178.1                          | 684        | 83                       | 34                            |
| GPx4                                | 227                                    | CV846368.1                          | 753        | 59                       | 54                            |
| GPx5                                | 221                                    | EX646816.1                          | 701        | 75                       | 38                            |
| GPx6                                | 221                                    | FF310179.1                          | 692        | 92                       | 29                            |
| GPx7                                | 187                                    | EX608478.1                          | 716        | 84                       | 40                            |
| GPx8                                | 209                                    | EX642545.1                          | 785        | 76                       | 39                            |

# Table 2-3 Exons of the Two Current Annotated Glutathione Peroxidase Genes

The current pea aphid genome annotation (AphidBase gene consensus version 2) has two annotated genes for glutathione peroxidase. The exons used in annotations appear below.

| GeneID         | Exon | Start  | Stop   | Length (bases) |
|----------------|------|--------|--------|----------------|
| ACYPI38240-RA  | 1    | 171664 | 172020 | 357            |
| ACYPI38240-RA  | 2    | 172098 | 172400 | 303            |
| ACYPI38240-RA  | 3    | 174282 | 174407 | 126            |
| ACYPI38240-RA  | 4    | 174475 | 174620 | 146            |
| ACYPI38240-RA  | 5    | 175648 | 175794 | 147            |
| ACYPI38240-RA  | 6    | 176783 | 176868 | 86             |
| ACYPI38240-RA  | 7    | 177449 | 177760 | 312            |
|                |      |        |        |                |
| ACYPI002439-RA | 1    | 171767 | 172020 | 254            |
| ACYPI002439-RA | 2    | 172098 | 172400 | 303            |
| ACYPI002439-RA | 3    | 174282 | 174407 | 126            |
| ACYPI002439-RA | 4    | 174475 | 174620 | 146            |
| ACYPI002439-RA | 5    | 175648 | 175794 | 147            |
| ACYPI002439-RA | 6    | 176783 | 176868 | 86             |
| ACYPI002439-RA | 7    | 177449 | 177974 | 526            |
| ACYPI002439-RA | 8    | 189301 | 189531 | 231            |
| ACYPI002439-RA | 9    | 191317 | 191459 | 143            |
| ACYPI002439-RA | 10   | 192235 | 192381 | 147            |
| ACYPI002439-RA | 11   | 192465 | 192550 | 86             |
| ACYPI002439-RA | 12   | 192887 | 193168 | 282            |

# Table 2-4 Pea Aphid Glutathione Peroxidase Mapped to Reference Genome

The three pea aphid GPx amino acid sequences were mapped to the pea aphid reference genome assembly version 2 using *tblastn* on the Aphidbase blast server ((www.aphidbase.com). All three GPxs were mapped to the same scaffold of the genome (GL35049831) but to different regions.

| Name    | Start  | Stop   | Annotated Exon #  |
|---------|--------|--------|-------------------|
| ApGPx1  | 177924 | 177974 | Exon 7            |
| ApGPx1  | 189302 | 189529 | Exon 8            |
| ApGPx1  | 191319 | 191460 | Exon 9            |
| ApGPx1  | 192236 | 192380 | Exon 10           |
| ApGPx1  | 192467 | 192550 | Exon 11           |
| ApGPx1  | 192888 | 192935 | Exon 12           |
|         |        |        |                   |
| ApGPx2a | 174066 | 174143 | No Exon Annotated |
| ApGPx2a | 174283 | 174405 | Exon 3            |
| ApGPx2a | 174477 | 174621 | Exon 4            |
| ApGPx2a | 175649 | 175792 | Exon 5            |
| ApGPx2a | 176785 | 176868 | Exon 6            |
| ApGPx2a | 177450 | 177482 | Exon 7            |
|         |        |        |                   |
| ApGPx2b | 172341 | 172400 | Exon 2            |
| ApGPx2b | 174283 | 174405 | Exon 3            |
| ApGPx2b | 174477 | 174621 | Exon 4            |
| ApGPx2b | 175649 | 175792 | Exon 5            |
| ApGPx2b | 176785 | 176868 | Exon 6            |
| ApGPx2b | 177450 | 177482 | Exon 7            |

# Table 2-5 ESTs Matching Pea Aphid Glutathione Peroxidases

The three ApGPx amino acid sequences were run individually as query sequences through the NCBI program tblastn, restricting searches to pea aphid EST libraries. Library ID two letter codes indicate the first two letters of accession numbers for each individual EST library. The resulting table is a summary of ESTs and their corresponding libraries that match sequence.

| ApGPx      | Library Author | ID | Туре              | Representing<br>FSTs |
|------------|----------------|----|-------------------|----------------------|
| ApGPx1     | Reeck          | HS | Salivary Gland    | 62                   |
| ApGPx1     | Reeck          | DV | Salivary Gland    | 6                    |
| ApGPx1     | Richards       | EX | Whole Body (2008) | 5                    |
| ApGPx1     | Tagu           | FP | Whole Body Males  | 1                    |
|            |                |    |                   |                      |
| ApGPx2a    | Richards       | FF | Whole Body (2007) | 2                    |
|            |                |    |                   |                      |
| ApGPx2b    | Richards       | FF | Whole Body (2008) | 9                    |
| ApGPx2b    | Tagu           | FP | Whole Body Males  | 9                    |
| ApGPx2b    | Richards       | EX | Whole Body (2009) | 6                    |
| ApGPx2b    | Hunter         | CN | Whole Body        | 2                    |
| ApGPx2b    | Reeck          | DV | Salivary Gland    | 1                    |
|            |                |    |                   |                      |
| ApGPx2a/2b | Richards       | EX | Whole Body (2007) | 17                   |
| ApGPx2a/2b | Richards       | FF | Whole Body (2008) | 16                   |
| ApGPx2a/2b | Tagu           | FP | Whole Body Males  | 2                    |
| ApGPx2a/2b | Reeck          | DV | Salivary Gland    | 1                    |
| ApGPx2a/2b | Tagu           | GH | Brain             | 1                    |
| ApGPx2a/2b | Tagu           | CV | Antennae          | 1                    |

## Table 2-6 RNASeq Reads Mapping to Pea Aphid Glutathione Peroxidases

RNASeq reads from pea aphid salivary glands were mapped to full length ApGPx1, the first 70 nucleotides encoding ApGPx1, the first 78 nucleotides encoding the unique region of ApGPx2a, and the first 60 nucleotides encoding the unique region of ApGPx2b as described in the text. A) Table of RNASeq results and statistics. B) Sequence alignment showing the unique regions of ApGPx2a and ApGPx2b. The unique amino acid sequence for ApGPx2a and ApGPx2b are boxed in blue and red, respectively.

A)

| Pea Aphid<br>GPx Name               | Plant-fed<br>Reads<br>Mapped | Plant-fed<br>RPKM | Diet-fed<br>Reads<br>Mapped | Diet-fed<br>RPKM | Fold Change |
|-------------------------------------|------------------------------|-------------------|-----------------------------|------------------|-------------|
| ApGPx1                              | 37,634                       | 1339.8            | 51847                       | 1708             | 0.79        |
| ApGPx1 (first<br>70<br>nucleotides) | 21324                        | 7621.7            | 8656                        | 2849.5           | 2.67        |
| ApGPx2a<br>(unique-blue<br>box)     | 596                          | 191.2             | 924                         | 272.9            | 0.70        |
| ApGPx2b<br>(unique-red<br>box)      | 1585                         | 660.9             | 1802                        | 692.1            | 0.95        |

B)

| ApGPx1  | I      | IKV  | DEAN | LPI  | AA-   | 18   | SFW | AVP | IAA | ARG | SQG | FPY | ESI | DW                | PTS | SAI   | DIS | GSS | $\mathbf{PT}$      | GC | DKS |
|---------|--------|------|------|------|-------|------|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-------|-----|-----|--------------------|----|-----|
| ApGPx2a | MVNIST | rssi | LFV  | LVL  | /VAI  | LVFS | SFY | L   |     |     |     | -SF | QSI | (                 |     | 1     | 4   |     |                    |    |     |
| ApGPx2b |        | MGI  | LFR  | RLLI | PSTV  | VVV  | SSS | L   |     |     |     | -IF | QSI | (                 |     | 1     | 1   |     |                    |    |     |
|         |        |      | :    | :    | :     | • '  | ŧ.  |     |     |     |     | :   | :*  |                   |     |       |     |     |                    |    |     |
| ApGPx1  | SSTGYI | OKS  | SEED | NCDO | GTS C | GN   | IYK | ΥТА | KKI | PNG | QNV | CLK | QYV | GK                | VLI | I V I | /NY | ASA | . <mark>C</mark> G | FT | YDN |
| ApGPx2a | L\$    | SSI  | LNKW | AEDV | /KN/  | AKS  | VYD | FTV | KDI | KGI | DV  | SLE | KYF | (G <mark>C</mark> | VLI | II/   | /NV | ASK | CG                 | YT | SKH |
| ApGPx2b | L\$    | SSI  | LNKW | AEDV | /KN/  | AKS  | VYD | FTV | KD] | KGI | EDV | SLE | KYF | (G <mark>C</mark> | VLI | II/   | ZNV | ASK | CG                 | YT | SKH |
|         |        |      |      | *    |       |      | :*. | :*. | *.  | :*: | :*  | .*: | :*  | *                 | *** | : ; ; | **  | **  | **                 | :* |     |

## Figure 2-1 Sequence Alignment of the Translated Top Pea Aphid EST Hits to Human GPxs

The translated sequences for the top hit of pea aphid ESTs to Human GPxs were aligned via ClustalOmega. Residues highlighted in yellow make up the catalytic tetrad. The top hit for human GPx2 and GPx6 were identical, and therefore combined in the alignment. Hits for human GPx5, GPx7, and GPx8 were incomplete ESTs encoding ApGPx2b. Asterisks (\*) indicate positions that have a single, fully conserved residue.

| FF327487.1_GPx1_Hit<br>FF310179.1_GPx2/6_Hit<br>FF308178.1_GPx3_Hit<br>CV846368.1_GPx4_Hit<br>EX646816.1_GPx5_Hit<br>EX608478.1_GPx7_Hit<br>EX642545.1_GPx8_Hit | RRLLPSTVVVSSSLIFQSKNLSSITNKMAEDWKNAKSVY<br>MGLLFRRLLPSTVVVSSSLIFQSKNLSSITNKMAEDWKNAKSVY<br>MVNISTSSILFVLVLVVALVFSFYLSFQSKNLSSITNKMAEDWKNAKSVY<br>MGLLFRRLLPSTVVVSSSLIFQSKNLSSITNKMAEDWKNAKSVY<br>MAEDWKNAKSVY<br>MAEDWKNAKSVY<br>**********                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FF327487.1_GPx1_Hit<br>FF310179.1_GPx2/6_Hit<br>FF308178.1_GPx3_Hit<br>CV846368.1_GPx4_Hit<br>EX646816.1_GPx5_Hit<br>EX608478.1_GPx7_Hit<br>EX642545.1_GPx8_Hit | DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD<br>DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD<br>DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD<br>DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD<br>DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD<br>DFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKHYKELIELDEKYRD                |
| FF327487.1_GPx1_Hit<br>FF310179.1_GPx2/6_Hit<br>FF308178.1_GPx3_Hit<br>CV846368.1_GPx4_Hit<br>EX646816.1_GPx5_Hit<br>EX608478.1_GPx7_Hit<br>EX642545.1_GPx8_Hit | KGLKILGFPCNQFGG <mark>Q</mark> EPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP<br>KGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP<br>KGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP<br>KGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP<br>KGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP<br>KGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGNDAHP |
| FF327487.1_GPx1_Hit<br>FF310179.1_GPx2/6_Hit<br>FF308178.1_GPx3_Hit<br>CV846368.1_GPx4_Hit<br>EX646816.1_GPx5_Hit<br>EX608478.1_GPx7_Hit<br>EX642545.1_GPx8_Hit | LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKKLE<br>LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLE<br>LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPFGNKVFLF<br>LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLE<br>LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLE<br>LWKYLKSKQGGLLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLE                |
| FF327487.1_GPx1_Hit<br>FF310179.1_GPx2/6_Hit<br>FF308178.1_GPx3_Hit<br>CV846368.1_GPx4_Hit<br>EX646816.1_GPx5_Hit<br>EX608478.1_GPx7_Hit<br>EX642545.1_GPx8_Hit | KY><br>KYL><br>KYL><br>KYL><br>KYL>                                                                                                                                                                                                                                                                                                             |

## Figure 2-2 Sequence Alignment of Pea Aphid GPxs

Sequences for the four Pea Aphid glutathione peroxidases were aligned via clustalW. Residues highlighted in yellow are strictly conserved residues of the catalytic tetrad. Cysteine residues are highlighted in light blue. Asterisks (\*) indicated positions that have a single, fully conserved residue. Colons (:) indicate conservation between groups of strongly similar properties. Periods (.) indicate conservation between groups of weakly similar properties.

| ApGPx1<br>ApGPx2a<br>ApGPx2b | MKVQEYVLPIFAAISFWAVPIAARGSQGFPYESLDWPTSADISGSSPTG <mark>C</mark> DKS<br>MVNISTSSILFVLVLVVALVFSFYLSFQSKN<br>MGLLFRRLLPSTVVVSSSLIFQSKN                                                                                                                              |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ApGPx1<br>ApGPx2a<br>ApGPx2b | SSTGYDKSSEEDNCDGTSCGNIYKYTAKKPNGONVCLKOYVGKVLIVVNYASACGFTYDN<br>LSSITNKMAEDWKNAKSVYDFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKH<br>LSSITNKMAEDWKNAKSVYDFTVKDIKGEDVSLEKYKGCVLIIVNVASKCGYTSKH<br>:: *:*.:*.* :*:*.** * ***:** * ***:**                                     |
| ApGPx1<br>ApGPx2a<br>ApGPx2b | VCTLSEFAQKYRKCGLEILVFPSNDFLQNIGGNIAAEELANNHPEFEVFSEICVNGRA<br>YKELIELDEKYRDKGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGND<br>YKELIELDEKYRDKGLKILGFPCNQFGGQEPGDADSICSFTAKQNVKFDIFEKIDVNGND<br>* *: :***. **:** **.*:* : *: : . *::. :*::*:****                    |
| ApGPx1<br>ApGPx2a<br>ApGPx2b | QHPVYRFLKYKLPGPFNTKTIK <mark>WN</mark> FTKFVVDRNG <mark>C</mark> PVQRYEATDSFKDIEELVQELLKDQ<br>AHPLWKYLKSKQGG-LLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLEKYL><br>AHPLWKYLKSKQGG-LLIDSIKWNFTKFIVDKNGQPVERHAANVSPLGLEKNLEKYL><br>**::::** * * : .:********************** |
| ApGPx1<br>ApGPx2a<br>ApGPx2b | CC>                                                                                                                                                                                                                                                               |

# Figure 2-3 The Current and Revised Gene Structures of Pea Aphid GPxs

The pea aphid genome assembly version 2 (www.aphidbase.com has two current gene annotations, represented by A) ACYPI002439-RA and B) ACYPI38240. C) Proposed gene structure of *ApGPx1*. D) Proposed gene structure of *ApGPx2*. Color codes: Green: 5'UTR and 3'UTR. Red or Pink: protein coding region. Black: Exons.



#### Figure 2-4 Sequence Alignment of Human, Pea Aphid, Drosophila, and Hemiptera GPxs

Sequences for human, pea aphid, *D. melanogaster*, and *Hemiptera* glutathione peroxidases were aligned by Clustal Omega. Residues highlighted in yellow are strictly conserved residues of the catalytic tetrad. Asterisks (\*) indicated positions that have a single, fully conserved residue. Colons (:) indicate conservation between groups of strongly similar properties. Periods (.) indicate conservation between groups of weakly similar properties. Hs: Human, Ag: cotton aphid, Mp: green peach aphid, Ap: pea aphid, Me: potato aphid, Dm: *D. melanogaster*, Ct: bean bug, Pv: hackberry psyllid, Ac: cowpea aphid, Gn: black-faced leafhopper, Rp: assassin bug.

| HsGPx5  |                                                              | 0   |
|---------|--------------------------------------------------------------|-----|
| HsGPx3  |                                                              | 0   |
| HsGPx6  |                                                              | 0   |
| HsGPx1  |                                                              | 0   |
| HsGPx2  |                                                              | 0   |
| HsGPx7  |                                                              | 0   |
| HsGPx8  |                                                              | 0   |
| AqGPx   |                                                              | 0   |
| MpGPx   |                                                              | 0   |
| ApGPx1  |                                                              | 0   |
| MeGPx   |                                                              | 0   |
| DmGPx3  |                                                              | 0   |
| DmGPx4  |                                                              | 0   |
| HsGPx4  |                                                              | 0   |
| DmGPx2  |                                                              | 0   |
| DmGPx1  |                                                              | 0   |
| DmGPx5  |                                                              | 0   |
| CtGPx   |                                                              | 0   |
| PvGPx   | MPRESLPROAKTAAVNELKSLREEAITKPKAKKEVKKKIEKAIKKOTPVKKSPKVKATSK | 60  |
| ApGPx2a |                                                              | 0   |
| ApGPx2b |                                                              | 0   |
| AcGPx   |                                                              | 0   |
| GnGPx   |                                                              | 0   |
| RpGPx   |                                                              | 0   |
| -       |                                                              |     |
| HsGPx5  |                                                              | 0   |
| HsGPx3  |                                                              | 0   |
| HsGPx6  |                                                              | 0   |
| HsGPx1  |                                                              | 0   |
| HsGPx2  |                                                              | 0   |
| HsGPx7  |                                                              | 0   |
| HsGPx8  |                                                              | 0   |
| AgGPx   |                                                              | 0   |
| MpGPx   |                                                              | 0   |
| ApGPx1  |                                                              | 0   |
| MeGPx   |                                                              | 0   |
| DmGPx3  |                                                              | 0   |
| DmGPx4  |                                                              | 0   |
| HsGPx4  |                                                              | 0   |
| DmGPx2  |                                                              | 0   |
| DmGPx1  |                                                              | 0   |
| DmGPx5  |                                                              | 0   |
| CtGPx   |                                                              | 0   |
| PvGPx   | GKNKKEEDDAKIEDEEEEEKEEEDEKNNKNEEDEEKDEKDEDEVDNEKDEKEEVIEKEDI | 120 |
| ApGPx2a |                                                              | 0   |
| ApGPx2b |                                                              | 0   |
| AcGPx   |                                                              | 0   |
| GnGPx   |                                                              | 0   |
| RpGPx   |                                                              | 0   |
| -       |                                                              |     |

| HsGPx5  |                                                                                               | 0   |
|---------|-----------------------------------------------------------------------------------------------|-----|
| HsGPx3  |                                                                                               | 0   |
| HsGPx6  |                                                                                               | 0   |
| HsGPx1  |                                                                                               | 0   |
| HsGPx2  |                                                                                               | 0   |
| HsGPx7  |                                                                                               | 0   |
| HsGPx8  | MEPLAAYPLKC-                                                                                  | 11  |
| AqGPx   |                                                                                               | 0   |
| MpGPx   |                                                                                               | 0   |
| ApGPx1  |                                                                                               | 0   |
| MeGPx   |                                                                                               | 0   |
| DmGPx3  |                                                                                               | 0   |
| DmGPx4  |                                                                                               | 0   |
| HsGPx4  |                                                                                               | 0   |
| DmGPx2  |                                                                                               | 0   |
| DmGPx1  | MSLRQFQNISRQALRCY                                                                             | 17  |
| DmGPx5  |                                                                                               | 0   |
| CtGPx   |                                                                                               | 0   |
| PvGPx   | TAKKSESNEDKDDKPEEEKKEEGEEEKKEESNSKKEEVENDIADDEPAVKKLKKDTPDI-                                  | 179 |
| ApGPx2a | MVNI-                                                                                         | 4   |
| ApGPx2b |                                                                                               | 0   |
| AcGPx   |                                                                                               | 0   |
| GnGPx   |                                                                                               | 0   |
| RpGPx   |                                                                                               | 0   |
|         |                                                                                               |     |
| HsGPx5  | MTTQLRVVHLLPLLLA                                                                              | 16  |
| HsGPx3  | MARLLQASCLLSLLLA                                                                              | 16  |
| HsGPx6  | MFQQFQASCLVLFFLV                                                                              | 16  |
| HsGPx1  |                                                                                               | 0   |
| HsGPx2  |                                                                                               | 0   |
| HsGPx7  | MVAA-TVAAAWL                                                                                  | 11  |
| HsGPx8  | SGPRAKVFAVLLSIVLCTVTLF                                                                        | 33  |
| AgGPx   | YDPFDWQ                                                                                       | 34  |
| MpGPx   | MKIQECILLIFATISFWAEPFSAVNCQQGYSNPLNLNWP                                                       | 39  |
| ApGPx1  | MKVQEYVLPIFAAISFWAVPIAARGSQ-GFP-YESLDWP                                                       | 37  |
| MeGPx   | RVSQ-GFP-YESLDWP                                                                              | 14  |
| DmGPx3  |                                                                                               | 0   |
| DmGPx4  | AFDKEFLFPGLLVAV-ALVVV                                                                         | 20  |
| HsGPx4  | MSLGRLCRLLKPALLCGALAA                                                                         | 21  |
| DmGPx2  | GSVAIAAG-RS-IVHFFLGSVAIA                                                                      | 17  |
| DmGPx1  | SMRRTPGPVLELSRGQRQ-CLRLC-TIMLPVSCAATPMNAIS                                                    | 57  |
| DmGPx5  |                                                                                               | 0   |
| CtGPx   |                                                                                               | 0   |
| PvGPx   | TESKSNGDVGKKEESDENGDKNEEVTSEEDVKKVQSNGKD                                                      | 219 |
| ApGPx2a | STSSSF-YLI-LFVLVLVVALVFSF-YL                                                                  | 25  |
| ApGPx2b | MGSS-SLL-LFRRLLPSTVVVSS-SL                                                                    | 19  |
| AcGPx   |                                                                                               | 0   |
| GnGPx   | KN-ILKN-IL                                                                                    | 9   |
| RpGPx   | MRSI-ILY-YLLIVSLILLATSI-IL                                                                    | 19  |
|         |                                                                                               |     |
| HsGPx5  | CFVQTSPKQEKMKMDCHKDEKGTIYDYEAIALNKNEYVSFKQY                                                   | 59  |
| HsGPx3  | GFVSQSRGQEKSKMDCHGGISGTIYEYGALTIDGEEYIPFKQY                                                   | 59  |
| HsGPx6  | GFAQQTLKPQNRKVDCNKGVTGTIYEYGALTLNGEEYIQFKQF                                                   | 59  |
| HsGPx1  | MCAARLAAAAAAQSVYAFSARPLAGGEPVSLGSL                                                            | 35  |
| HsGPx2  | MAFIAKSFYDLSAISL-DGEKVDFNTF                                                                   | 26  |
| HsGPx7  | LLWAAACAQQEQDFYDFKAVNI-RGKLVSLEKY                                                             | 43  |
| HsGPx8  | LLQLKFLKPKINSFYAFEVKDA-KGRTVSLEKY                                                             | 65  |
| AgGPx   | ${\tt TSRSMMDISKSTSFEYDKF}{\ttGFEN-SNSDEYDYILYENVYDYTVQNL-DGQEVCLRKY}$                        | 89  |
| MpGPx   | $\texttt{TSADIL}{}\texttt{EPSPFGYDK}{}\texttt{SSFESNSDEESCCNLYNFVVKRP}{-}\texttt{NGQDVSLKQY}$ | 87  |
| ApGPx1  | $\texttt{TSADIS}{}\texttt{GSSPTGCDKSSSTGYDKSSEEDNCDGTSCGNIYKYTAKKP}{-}\texttt{NGQNVCLKQY}$    | 93  |
| MeGPx   | $\texttt{TMPDIS}{}\texttt{GSSPTGYDKSSSGYDKSSDEDNCNEDSCGNIYKFTARKP}{-}\texttt{NGQNVCLQQY}$     | 70  |
| DmGPx3  | PCVAY                                                                                         | 30  |
| DmGPx4  | LQTRSRLQQDLQDMRWRLTIHALTVRDT-FGNPVQLDTF                                                       | 58  |
| HsGPx4  | PGLAGTMCASRDDWRCARSMHEFSAKDI-DGHMVNLDKY                                                       | 59  |
| DmGPx2  | LGSYIYFTMQIDMSANGDYKNAASIYEFTVKDT-HGNDVSLEKY                                                  | 60  |
| DmGPx1  | SAAQHSTAAAIDMSANGDYKNAASIYEFTVKDT-HGNDVSLEKY                                                  | 100 |
| DmGPx5  | MSANGDYKNAASIYEFTVKDT-HGNDVSLEKY                                                              | 31  |
| CtGPx   | RSFSIMSDASEINWKEASSVYDFTVKDI-KGNDVPLKDY                                                       | 38  |

| PvGPx      | T-TASTNENSESKKMATEEPSTVYDFTVKNI-KGEDVPLSKY                                                                     | 259   |
|------------|----------------------------------------------------------------------------------------------------------------|-------|
| nGPx2a     |                                                                                                                | 67    |
| por AZu    |                                                                                                                | 01    |
| ApgPx2b    | I-FQSKNLSSITNKMAEDWKNAKSVYDFTVKDI-KGEDVSLEKY                                                                   | 61    |
| AcGPx      | CSKSLSSTTNKMAEDWKNAKSVYDFTVKDI-KGEDVSLEKY                                                                      | 40    |
| CoCDy      |                                                                                                                | 4.0   |
| GIIGFX     |                                                                                                                | 49    |
| RpGPx      | H-YQLTGFYSTEHTMAESEKDASSVYDFTVKDI-AGNDISLEKY                                                                   | 61    |
|            |                                                                                                                |       |
| H - CD - F |                                                                                                                | 110   |
| HSGPX5     | VGKHILFVNVATYCGLT-AQYPELNALQEELKP-YGLVVLGFPCNQFGKQEPGDNKE-IL                                                   | 110   |
| HsGPx3     | AGKYVLFVNVASY <mark>U</mark> GLT-GQYIELNALQEELAP-FGLVILGFPCNQFGK <mark>Q</mark> EPGENSE-IL                     | 116   |
| HSGPX6     | AGKHVI. FVNVAAV <mark>U</mark> GI. A – AOVPEI. NAI. OFEI. KN – FGVI VI. AFPCNOFGK <mark>O</mark> EPGTNSE – TI. | 116   |
| IIBGI XO   |                                                                                                                | 110   |
| HSGPXI     | RGKVLLIENVASL <mark>U</mark> GTTVRDYTQMNELQRRLGP-RGLVVLGFPCNQFGH <mark>Q</mark> ENAKNEE-IL                     | 93    |
| HsGPx2     | RGRAVLIENVASL <mark>U</mark> GTTTRDFTOLNELOCRF-P-RRLVVLGFPCNOFGH <mark>O</mark> ENCONEE-IL                     | 83    |
| HaCDw7     |                                                                                                                | 100   |
| ISGPX/     | KG2A2PAAAPGCLIDGUIKHTÖÖTÖKDTGE-UULUATECNÕLGÕ <mark>O</mark> FED2NKFI                                           | 100   |
| HsGPx8     | KGKVSLVVNVASD <mark>C</mark> QLTDRNYLGLKELHKEFGP-SHFSVLAFPCNQFGESEPRPSKEV                                      | 122   |
| AdGPx      | AGOVLTIVNYAST <mark>C</mark> GETTENVCNLSKLSEKYRR-OGLTILMEPSNDEF <mark>O</mark> NTAGNTAAEML                     | 148   |
| MagDa      |                                                                                                                | 110   |
| Mpgpx      | AGKVLIILNYASG <mark>C</mark> GFTQDNVCTLTEFSNKYRA-CGLEILVFPSNDFS <mark>Q</mark> NFGGNTAAQIF                     | 146   |
| ApGPx1     | VGKVLIVVNYASA <mark>C</mark> GFTYDNVCTLSEFAQKYRK-CGLEILVFPSNDFL <mark>Q</mark> NIGGNIAAEEL                     | 152   |
| MoCDy      | VCKVLTTVNVASACCETVDNVCTLSDFAOPVPK_CCLFTLVFPSNDFLONFCCDTAAFFF                                                   | 120   |
| Medi X     |                                                                                                                | 125   |
| DmGPx3     | KŐH <mark>C</mark> TŐWKIAŁIZADGTKATTEEAED-ŐGTKITUŁACVŐŁGC <mark>Ő</mark> WAEZDGŐEWT                            | 82    |
| DmGPx4     | AGHVLLIVNIASK <mark>C</mark> GLTLSOYNGLRYLLEEYED-OGLRILNFPCNOFGG <mark>O</mark> MPESDGOEML                     | 117   |
| HaCDwA     | DCEVICIUMNUA CONCEMPTINUMOI UDI HADVAE CCI DII AEDCNOECUOEDCENEE I                                             | 116   |
| HSGPX4     | KGFVCIVINVASQUGKIEVNIIQLVDLHAKIAE-CGLKILAFPCNQFGKQEPGSNEEI                                                     | 110   |
| DmGPx2     | KGKVVLVVNIASK <mark>C</mark> GLTKNNYEKLTDLKEKYGE-RGLVILNFPCNQFGS <mark>Q</mark> MPEADGEAMV                     | 119   |
| DmGPx1     | KGKVVLVVNTASK <mark>C</mark> GLTKNNYEKLTDLKEKYGE-RGLVTLNFPCNOFGS <mark>O</mark> MPEADGEAMV                     | 159   |
| Der CDE    |                                                                                                                |       |
| DIIIGPX5   | KGKVVLVVNIASK <mark>C</mark> GLTKNNIEKLTDLKEKIGE-RGLVILNFPCNQFGS <mark>Q</mark> MPEADGEAMV                     | 90    |
| CtGPx      | EGKVLLIVNVASK <mark>C</mark> GLTSNNYKELVNLDEKYRN-EGLRILAFPCNOFAR <mark>O</mark> EPGSAEEI                       | 95    |
| DuCDy      | DCNUT I TUNUA STOCKET THE DET DET DET DET AFDONOFCO                                                            | 316   |
| PVGPX      | KGNATTIANASVCGIISKUIVETAETAETAETAETAETAETAETAETAETAETAETAETAE                                                  | 210   |
| ApGPx2a    | KGCVLIIVNVASK <mark>C</mark> GYTSKHYKELIELDEKYRD-KGLKILGFPCNQFGG <mark>Q</mark> EPGDADSI                       | 124   |
| ApGPx2b    | KGCVLTTVNVASK <mark>C</mark> GYTSKHYKELTELDEKYRD-KGLKTLGFPCNOFGG <mark>O</mark> EPGDADST                       | 118   |
| A - CD-    |                                                                                                                | 110   |
| ACGPX      | KGFVLIIVNVASK <mark>C</mark> GITSKHIKELVELDEKIHD-KGLKILGFPCNQFGG <mark>Q</mark> EPGDAESI                       | 97    |
| GnGPx      | KGHVLLIVNVASQ <mark>C</mark> GLTKDNYKELVELDEKYRESKGLRILAFPCNQFGG <mark>Q</mark> EPGTNADI                       | 107   |
| PnCPv      | PCHVITTVNVASOCCITSTNVKEIVELDEKYPETKCIPTLAEPCNOECSOFDCSPEDT                                                     | 110   |
| RPOLX      | KGIVIIIVAVA56 <mark>-</mark> GIIJIVIKEIVEIDEKIKEIKGIKIIATICAGIG5 <mark>6</mark> EIG5KEDI                       | 11)   |
| •          | • • • • • • • •                                                                                                |       |
|            |                                                                                                                |       |
| HeCDy5     |                                                                                                                | 172   |
| IISGFXJ    | FORVARDOR AND                                                              | 172   |
| HsGPx3     | PTLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWE                                                       | 172   |
| HSGPx6     | LGLKYVCPGSGFVPSFOLFEKGDVNGEKEOKVFTFLKNSCPPTSDLLGSSSOLFWE                                                       | 172   |
| HECE-1     |                                                                                                                | 150   |
| HSGPXI     | NSLKIVRPGGGFEPNFMLFEKCEVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWS                                                   | 153   |
| HsGPx2     | NSLKYVRPGGGYQPTFTLVQKCEVNGQNEHPVFAYLKDKLPYPYDDPFSLMTDPKLIIWS                                                   | 143   |
| HeCDy7     |                                                                                                                | 136   |
| IIBGI X7   |                                                                                                                | 150   |
| HSGPX8     | ESFARKNYGVTFPIFHKIKILGSEGEPAFRFLVDSS                                                                           | 158   |
| AqGPx      | ARSHPEFEVFSOICVNGKDTHPFYRFLKYKLPG                                                                              | 181   |
| MnGPy      |                                                                                                                | 170   |
| MpGI X     |                                                                                                                | 175   |
| ApGPx1     | ANDHPEFEVFSEICVNGRAQHPVYRFLKYKLPG                                                                              | 185   |
| MeGPx      | ANNHPEFEVFSEICVNGRSOHPLYRFLKNKLPG                                                                              | 162   |
| DmCDxr2    |                                                                                                                | 116   |
| DIIIGPX5   | DURKEGANIGULLAKIDAKGAÕADALIKULIKUGANIGULLAKIDAKGAÕADALIKULIKU                                                  | 110   |
| DmGPx4     | DHLRREGANIGHLFAKIDVKGAQADPLYKLLTRHGANIGHLFAKIDVKGAQADPLYKLLTRH                                                 | 151   |
| HsGPx4     | KEFAAGYNVKFDMFSKICVNGDDAHPLWKWMKIOPKGKGK                                                                       | 154   |
| DmCDrr2    |                                                                                                                | 1 5 5 |
| DIIIGFXZ   |                                                                                                                | 155   |
| DmGPx1     | CHLRDSKADIGEVFAKVDVNGDNAAPLYKYLKAKQT                                                                           | 195   |
| DmGPx5     | CHLRDSKADIGEVFAKVDVNGDNAAPLYKYLKAKO                                                                            | 126   |
| C+CD**     |                                                                                                                | 1 2 5 |
| CLGFX      | CSFAERKNARFDFFERINVNGRNAAPLWQILREKKRKKRS                                                                       | 133   |
| PvGPx      | CEFTKKKNVSFDLFEKVNVNGDQAHPLWNFLKQKQG                                                                           | 352   |
| ApGPx2a    | CSFTAKCONVKEDIFEKIDVNGNDAHPLWKYLKSKO                                                                           | 160   |
| hpor h2u   |                                                                                                                | 100   |
| APGPXZD    | CSFTAKQNVKFDIFEKIDVNGNDAHPLWKILKSKQG                                                                           | 154   |
| AcGPx      | CSFTAKKFYCKKNVKFDIFDKVDVNGNDAHPLWKYLKSKQG                                                                      | 138   |
| GnGPy      |                                                                                                                | 143   |
| B. CD.     |                                                                                                                | 110   |
| крегх      | vcrmkyKNASrEmrDKLEVNGSNAHPLWKYLKSKQG                                                                           | 122   |
| : *        | : :                                                                                                            |       |
|            |                                                                                                                |       |
| UcCDv5     |                                                                                                                | 21/   |
| nSGPX3     | rvavadiawn <mark>y</mark> feaflugedgifvm                                                                       | 214   |
| HsGPx3     | PMKVHDIR <mark>WN</mark> FEKFLVGPDGIPIMRWHHRTTVSNVKMDILSY                                                      | 214   |
| HSGPx6     | PMKVHDIRWNFEKFI.VGPDGVPVMHWFHOAPVSTVKSDILFV                                                                    | 214   |
| H=CD: 1    |                                                                                                                | 217   |
| HSGPXI     | PVCRNDVA <mark>WN</mark> FEKFLVGPDGVPLRPAISRRFQT1D1EPD1EAL                                                     | 195   |
| HsGPx2     | PVRRSDVA <mark>WN</mark> FEKFLIGPEGEPFRRYSRTFPTINIEPDIKRL                                                      | 185   |
| HSGPy7     |                                                                                                                | 175   |
|            |                                                                                                                | 115   |
| HSGPX8     | KKEPR <mark>WN</mark> FWKYLVNPEGQVVKFWKPEEPIEVIRPDIAAL                                                         | 197   |
| AqGPx      | AFKSKSIKWNFTKFIIDRNGCPVKRYSTKDSFODIEECTOOL                                                                     | 223   |
| MnCDv      |                                                                                                                | 201   |
| mpgrx      | AF NIKI I NWAF I KF V UDKNGCF I Q                                                                              | 221   |
| ApGPx1     | PFNTKT1K <mark>WN</mark> FTKFVVDRNGCPVQRYEATDSFKDIEELVQEL                                                      | 227   |

| MeGPx   | ACNAKPIK <mark>WN</mark> FTKFVVDR | NGCPVQ    |         | RYAATDSFKDIEDLVQEL        | 204 |
|---------|-----------------------------------|-----------|---------|---------------------------|-----|
| DmGPx3  | QHDIE <mark>WN</mark> FVKFLVDR    | KGNIHK    |         | RYGAELEPVALTDDIELL        | 155 |
| DmGPx4  | QHDIEWNFVKFLVDR                   | KGNIHK    |         | RYGAELEPVALTDDIELL        | 190 |
| HsGPx4  | GILGNAIK <mark>WN</mark> FTKFGHRL | STVPHRQER | LRGEALF | RTHGGAPGDREGPAPLFLAPQVCGP | 212 |
| DmGPx2  | GTLGSGIK <mark>WN</mark> FTKFLVNK | EGVPIN    |         | RYAPTTDPMDIAKDIEKL        | 197 |
| DmGPx1  | GTLGSGIK <mark>WN</mark> FTKFLVNK | EGVPIN    |         | RYAPTTDPMDIAKDIEKL        | 237 |
| DmGPx5  | GTLGSGIK <mark>WN</mark> FTKFLVNK | EGVPIN    |         | RYAPTTDPMDIAKDIEKL        | 168 |
| CtGPx   | GLLGSAIK <mark>WN</mark> FTKFLIDK | EGQPVE    |         | RFGPKDSFEKIDESVSKH        | 177 |
| PvGPx   | GTLFDAIK <mark>WN</mark> FTKFIVDK | NGIPVE    |         | RHAATTSAASLSPNIEKY        | 394 |
| ApGPx2a | GLLIDSIK <mark>WN</mark> FTKFIVDK | NGOPVE    |         | RHAANVSPLGLEKNLEKY        | 202 |
| ApGPx2b | GLLIDSIK <mark>WN</mark> FTKFIVDK | NGOPVE    |         | RHAANVSPLGLEKNLEKY        | 196 |
| AcGPx   | GLLIDSIK <mark>WN</mark> FTKFIVDK | DGOPVE    |         | RHAANVSPLGLEKSLEKY        | 180 |
| GnGPx   | GTLGDSIK <mark>WN</mark> FSKFIVDK | NGOPVE    |         | RFAPTTPPHKLVSSLEKY        | 185 |
| RpGPx   | GTLVDNIKWNFTKFIIDK                | NGOPVE    |         | RHGPMTNPSKLLSSLEKY        | 197 |
| *** * • | •                                 |           | :       | :                         |     |
|         |                                   |           |         |                           |     |
| HsGPx5  | LKOFKTK                           | 221       |         |                           |     |
| HsGPx3  | MRROAALGVKRK                      | 226       |         |                           |     |
| HsGPx6  | LKOFNTH                           | 221       |         |                           |     |
| HsGPx1  | LSOGPSCA                          | 203       |         |                           |     |
| HsGPx2  | LKVAI                             | 190       |         |                           |     |
| HsGPx7  | VRKLILLKREDL                      | 187       |         |                           |     |
| HsGPx8  | VROVIIKKKEDL                      | 209       |         |                           |     |
| AqGPx   | LMDOSC                            | 229       |         |                           |     |
| MpGPx   | LKNONC                            | 227       |         |                           |     |
| ApGPx1  | LKDOCC                            | 233       |         |                           |     |
| MeGPx   | LKDOCC                            | 210       |         |                           |     |
| DmGPx3  | LGR                               | 158       |         |                           |     |
| DmGPx4  | LGR                               | 193       |         |                           |     |
| HsGPx4  | ARAPAHALGAFHRHS                   | 227       |         |                           |     |
| DmGPx2  | L                                 | 198       |         |                           |     |
| DmGPx1  | <br>L                             | 238       |         |                           |     |
| DmGPx5  | <br>L                             | 169       |         |                           |     |
| CtGPx   | L                                 | 178       |         |                           |     |
| PvGPx   | L                                 | 395       |         |                           |     |
| ApGPx2a | L                                 | 203       |         |                           |     |
| ApGPx2b | L                                 | 197       |         |                           |     |
| AcGPx   | F                                 | 181       |         |                           |     |
| GnGPx   | W                                 | 186       |         |                           |     |
| RpGPx   | W                                 | 198       |         |                           |     |
| -       |                                   |           |         |                           |     |

# Figure 2-5 Phylogenetic Tree of Human, Pea Aphid, Drosophila, and Hemiptera GPxs

A phylogenetic tree was constructed using the software program Geneious, which utilized the Jukes-Cantor tree building method. The scale bar below represent a distance of 0.2. Distance values appear in the computational matrix below. Bootstrap values appear on the phylogenetic tree at each clade.



|         | MeGPx | MpGPx | AgGPx | DmGPx5 | DmGPx3 | DmGPx4 | HsGPx4 | DmGPx1 | DmGPx2 | HsGPx7 | HsGPx8 | CtGPx | HsGPx1 | HsGPx2 | HsGPx5 | HsGPx3 | HsGPx6 | PvGPx | GnGPx | RpGPx | AcGPx | ApGPx2a | ApGPx2b |
|---------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------|---------|---------|
| ApGPx1  | 0.14  | 0.3   | 0.54  | 1.01   | 1.4    | 1.26   | 1.24   | 1.03   | 1.03   | 1.36   | 1.42   | 1.08  | 1.34   | 1.48   | 1.44   | 1.47   | 1.55   | 1.14  | 1.04  | 1.1   | 1.08  | 1.08    | 1.08    |
| MeGPx   |       | 0.3   | 0.54  | 1      | 1.4    | 1.25   | 1.24   | 1.03   | 1.03   | 1.36   | 1.42   | 1.08  | 1.34   | 1.48   | 1.43   | 1.47   | 1.55   | 1.13  | 1.04  | 1.1   | 1.08  | 1.08    | 1.08    |
| MpGPx   |       |       | 0.51  | 0.98   | 1.37   | 1.23   | 1.21   | 1      | 1      | 1.33   | 1.39   | 1.05  | 1.31   | 1.45   | 1.41   | 1.44   | 1.52   | 1.11  | 1.01  | 1.07  | 1.05  | 1.05    | 1.05    |
| AgGPx   |       |       |       | 0.96   | 1.36   | 1.22   | 1.2    | 0.99   | 0.99   | 1.32   | 1.38   | 1.04  | 1.3    | 1.44   | 1.4    | 1.43   | 1.51   | 1.09  | 1     | 1.06  | 1.04  | 1.04    | 1.04    |
| DmGPx5  |       |       |       |        | 0.85   | 0.7    | 0.91   | 0.03   | 0.03   | 1.03   | 1.09   | 0.75  | 1.01   | 1.15   | 1.11   | 1.14   | 1.22   | 0.8   | 0.71  | 0.77  | 0.75  | 0.75    | 0.75    |
| DmGPx3  |       |       |       |        |        | 0.21   | 1.31   | 0.88   | 0.88   | 1.43   | 1.49   | 1.15  | 1.41   | 1.55   | 1.5    | 1.54   | 1.62   | 1.2   | 1.11  | 1.17  | 1.15  | 1.15    | 1.15    |
| DmGPx4  |       |       |       |        |        |        | 1.16   | 0.73   | 0.73   | 1.28   | 1.34   | 1     | 1.26   | 1.4    | 1.36   | 1.39   | 1.47   | 1.06  | 0.97  | 1.02  | 1     | 1       | 1       |
| HsGPx4  |       |       |       |        |        |        |        | 0.93   | 0.94   | 1.16   | 1.23   | 0.75  | 1.15   | 1.29   | 1.24   | 1.28   | 1.36   | 0.81  | 0.71  | 0.77  | 0.75  | 0.75    | 0.75    |
| DmGPx1  |       |       |       |        |        |        |        |        | 0.03   | 1.05   | 1.12   | 0.77  | 1.04   | 1.18   | 1.13   | 1.17   | 1.25   | 0.83  | 0.74  | 0.79  | 0.78  | 0.78    | 0.78    |
| DmGPx2  |       |       |       |        |        |        |        |        |        | 1.06   | 1.12   | 0.78  | 1.04   | 1.18   | 1.13   | 1.17   | 1.25   | 0.83  | 0.74  | 0.8   | 0.78  | 0.78    | 0.78    |
| HsGPx7  |       |       |       |        |        |        |        |        |        |        | 0.69   | 1     | 1.03   | 1.17   | 1.12   | 1.16   | 1.24   | 1.06  | 0.97  | 1.02  | 1     | 1       | 1       |
| HsGPx8  |       |       |       |        |        |        |        |        |        |        |        | 1.07  | 1.09   | 1.23   | 1.19   | 1.22   | 1.3    | 1.12  | 1.03  | 1.09  | 1.07  | 1.07    | 1.07    |
| CtGPx   |       |       |       |        |        |        |        |        |        |        |        |       | 0.99   | 1.13   | 1.08   | 1.12   | 1.19   | 0.54  | 0.45  | 0.5   | 0.48  | 0.48    | 0.48    |
| HsGPx1  |       |       |       |        |        |        |        |        |        |        |        |       |        | 0.39   | 0.7    | 0.74   | 0.81   | 1.04  | 0.95  | 1.01  | 0.99  | 0.99    | 0.99    |
| HsGPx2  |       |       |       |        |        |        |        |        |        |        |        |       |        |        | 0.84   | 0.88   | 0.96   | 1.18  | 1.09  | 1.15  | 1.13  | 1.13    | 1.13    |
| HsGPx5  |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        | 0.32   | 0.4    | 1.14  | 1.05  | 1.1   | 1.08  | 1.08    | 1.08    |
| HsGPx3  |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        | 0.34   | 1.17  | 1.08  | 1.14  | 1.12  | 1.12    | 1.12    |
| HsGPx6  |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        | 1.25  | 1.16  | 1.21  | 1.2   | 1.2     | 1.2     |
| PvGPx   |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        |       | 0.42  | 0.48  | 0.36  | 0.36    | 0.36    |
| GnGPx   |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        |       |       | 0.32  | 0.37  | 0.37    | 0.37    |
| RpGPx   |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        |       |       |       | 0.42  | 0.42    | 0.42    |
| AcGPx   |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        |       |       |       |       | 0.08    | 0.08    |
| ApGPx2a |       |       |       |        |        |        |        |        |        |        |        |       |        |        |        |        |        |       |       |       |       |         | 0       |

# References

Harmel, N., Létocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E., and Francis, F. (2008). Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. *Insect molecular biology*, *17*(2), 165-174.

Carolan, J. C., Fitzroy, C. I., Ashton, P. D., Douglas, A. E., & Wilkinson, T. L. (2009). The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. *Proteomics*, *9*(9), 2457-2467.

Bos, J. I., Prince, D., Pitino, M., Maffei, M. E., Win, J., & Hogenhout, S. A. (2010). A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). *PLoS genetics*, *6*(11), e1001216.

Mutti, N. S., Park, Y., Reese, J. C., & Reeck, G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. *Journal of Insect Science*, *6*(38), 1-7.

Mutti, N. S., Louis, J., Pappan, L. K., Pappan, K., Begum, K., Chen, M. S., Park, Y., Dittmer, N., Marshall, J., Reese, J., & Reeck, G. R. (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. *Proceedings of the National Academy of Sciences*, *105*(29), 9965-9969.

Cooper, W. R., Dillwith, J. W., & Puterka, G. J. (2010). Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). *Environmental entomology*, *39*(1), 223-231.

Carolan, J. C., Caragea, D., Reardon, K. T., Mutti, N. S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dossat, C., Tagu, D., Reese, J, Reeck, G. R., Wilkinson, T. L., & Edwards, O. R. (2011). Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. *Journal of proteome research*, *10*(4), 1505-1518.

Rao, S. A., Carolan, J. C., & Wilkinson, T. L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.*PloS one*, *8*(2), e57413.

Liu, S., Chougule, N. P., Vijayendran, D., & Bonning, B. C. (2012). Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts. *PloS one*, *7*(9), e45161.

Akey, D. H., & Beck, S. D. (1972). Nutrition of the pea aphid, < i> Acyrthosiphon pisum</i>: Requirements for trace metals, sulphur, and cholesterol. *Journal of insect physiology*, *18*(10), 1901-1914.

Cui, F., Michael Smith, C., Reese, J., Edwards, O., & Reeck, G. (2012). Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. *Insect Science*, *19*(4), 429-440.

Apostolou, A., Shen, Y., Liang, Y., Luo, J., & Fang, S. (2008). Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death.*Experimental cell research*, *314*(13), 2454-2467.

Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. *Molecular and cellular biology*, *23*(21), 7448-7459.

Brigelius-Flohé, R., & Maiorino, M. (2013). Glutathione peroxidases. *Biochimica et Biophysica Acta (BBA)-General Subjects*, 1830(5), 3289-3303.

Tosatto, S. C., Bosello, V., Fogolari, F., Mauri, P., Roveri, A., Toppo, S., Flohe, L., Ursini, F., & Maiorino, M. (2008). The catalytic site of glutathione peroxidases. *Antioxidants & redox signaling*, *10*(9), 1515-1526.

Blankenberg, S., Rupprecht, H. J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J., & Lackner, K. J. (2003). Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. *New England Journal of Medicine*, *349*(17), 1605-1613.

Chu, F. F., Doroshow, J. A., & Esworthy, R. S. (1993). Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. *Journal of Biological Chemistry*, 268(4), 2571-2576.

Yant, L. J., Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, J. G., Motta, L., Richardson, A., & Prolla, T. A. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. *Free Radical Biology and Medicine*, *34*(4), 496-502.

Olson, G. E., Whitin, J. C., Hill, K. E., Winfrey, V. P., Motley, A. K., Austin, L. M., Deal, J., Cohen, H., & Burk, R. F. (2010). Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells.*American Journal of Physiology-Renal Physiology*, 298(5), F1244.

Prabhakar, R., Vreven, T., Morokuma, K., & Musaev, D. G. (2005). Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. *Biochemistry*, *44*(35), 11864-11871.

Bae, Y. A., Cai, G. B., Kim, S. H., Zo, Y. G., & Kong, Y. (2009). Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals. *BMC evolutionary biology*, *9*(1), 72.

Missirlis, F., Rahlfs, S., Dimopoulos, N., Bauer, H., Becker, K., Hilliker, A., Phillips, J. P., & Jäckle, H. (2003). A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. *Biological chemistry*, *384*(3), 463-472.

Boyko, E. V., Smith, C. M., Thara, V. K., Bruno, J. M., Deng, Y., Starkey, S. R., & Klaahsen, D. L. (2006). Molecular basis of plant gene expression during aphid invasion: wheat Pto-and Ptilike sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). *Journal of economic entomology*, *99*(4), 1430-1445.

Gatehouse, J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. *New phytologist*, *156*(2), 145-169.