

ANDROID NUMBER GAME

By

MADHUMITHA LOGANATHAN

A REPORT

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department Of Computing And Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Approved by:

Major Professor
Dr.Daniel Andresen

Abstract

Mobile application development is one of the recent trends in computing Industry.

Among several existing platforms for mobile, Android is one of the largest platforms in the

world that run in several smart phones and tablets from various manufacturers like Google,

Motorola, Samsung, HTC etc.

Android number game is a simple game application in android targeting the school

children to train their mathematical skills and help them to think. The application presents a

graphical user interface with several colored bubble balls moving in random directions each with

a number on it. The numbers are generated randomly within a specified range. The application

allows the user to burst a moving bubble by touching it. The user’s goal is to burst all the bubbles

in the ascending order of numbers on them.

The application contains multiple levels and the number of bubbles increase as the levels

increase. Also, the complexity of the set of numbers on the bubbles increases with increasing

levels. Three lives are given to clear all the levels of the game and scores are computed for every

correct shot on the ball. Bonus points are also added for clearing every level. The application

maintains the top 10 players with their scores.

iii

Table of Contents

List of Figures ... v

List of Tables .. vi

Acknowledgements ... vii

Chapter 1 - Introduction .. 1

Chapter 2 - Motivation .. 1

Chapter 3 - Requirement Analysis .. 1

3.1. Requirements Gathering ... 1

3.2. Requirements Specification ... 2

3.2.1. Software Requirements ... 2

3.2.2. Hardware Requirements .. 2

Chapter 4 - Systems Architecture & Design ... 3

4.1. System Architecture ... 3

4.2. Systems Design .. 4

4.2.1. Use case Diagram .. 4

4.2.2. Class Diagram ... 5

4.2.3. Sequence Diagram ... 6

Chapter 5 - Graphical User Interface .. 8

Chapter 6 - Android Components ... 9

6.1. Android Manifest.xml .. 9

6.2. Activities .. 10

6.3. Services .. 10

6.4. Intent .. 11

6.5. Android’s SQLite ... 11

Chapter 7 - Implementation... 12

7.1. StartScreen ... 12

7.2. Middle activity ... 13

7.3. Main activity .. 16

7.3.1 GameView, GameLevel and GameLoopThread .. 18

iv

7.3. DatabaseHelper and Database Adapter .. 21

Chapter 8 - Testing and Logging... 21

8.1. Logging .. 21

8.2. Unit Testing .. 21

8.3. Interface Testing ... 23

8.4. Compatibility Testing... 24

Chapter 9 - Conclusion .. 27

Chapter 10 - Possible Extensions .. 27

Chapter 11 - References: ... 28

v

List of Figures

Figure 4.1 – Use case diagram .. 5

Figure 4.2 – Class Diagram ... 6

Figure 4.3 - Sequence Diagram [Play game] .. 7

Figure 4.4 - Sequence Diagram [List Scores] ... 7

Figure 4.5 - Sequence Diagram [Instructions] .. 8

Figure 7.1 - StartScreen ... 13

Figure 7.2 - Middle Screen .. 14

Figure 7.3- Instructions Screen ... 15

Figure 7.4 - Scores .. 16

Figure 7.5- Main Screen .. 17

Figure 7.6 - Main screen with Menu ... 17

Figure 7.7 - Incorrect input toast message .. 19

Figure 7.8 - Level completion toast message .. 20

Figure 7.9 - Save scores .. 20

Figure 8.1 - Samsung tablet vertical orientation ... 25

Figure 8.2 - Samsung tablet horizontal orientation ... 25

Figure 8.3 - Google Nexus Horizontal orientation .. 26

Figure 8.4 - Google Nexus vertical orientation ... 26

vi

List of Tables

Table 8.1- Unit test results .. 23

Table 8.2 - Interface testing results ... 24

vii

Acknowledgements

This acknowledgement transcends the reality of formality when I would express deep

gratitude and respect to all those people behind the screen who guided and inspired me for the

completion of my project work.

I would like to express my deep gratitude and wholehearted thanks to Dr. Daniel

Andresen for his valuable guidance, precious suggestions and encouragement in completing the

project successfully.

I wish to convey my sincere thanks to my committee members Dr. Gurdip Singh and Dr.

Torben Amtoft for their support throughout the project.

I am also grateful to all the administrative staff and the technical staff of Computing and

Information Sciences Department who have been helpful throughout my Masters. Lastly, I would

thank all my friends who tested my applications in their mobile devices and gave their

suggestions and valuable comments.

1

Chapter 1 - Introduction

The project is to develop an android number game application targeting children as the

audience. Android is one of the leading and fastest growing mobile platforms today. Android is

an open source software and the Android SDK is available to developers for free. The minimal

setup time and the number of tools available for android SDK to ease the development process

allows the developers to concentrate in the design and implementation details of the application

in the available timeframe. The main objective of this project is to experience developing an

android mobile application which is one of the booming trends in computing industry. The

application helps to improve the concentration of the player with little mathematical knowledge.

Chapter 2 - Motivation

The main motivation of this project is to explore the concepts of mobile application

development in android. Game applications are the most liked and downloaded applications from

android market. A game application that is simple and easy to be used in a mobile handset can

become a hit with millions of mobile users. The motive of this application is to learn and

experience developing a simple game application in android targeting a small set of users. The

knowledge obtained in this process can be applied later in the career to develop any similar kind

of application focusing large group of users.

Chapter 3 - Requirement Analysis

 3.1. Requirements Gathering

The project needed several requirements to be gathered before proceeding to design the

game application. One among them includes gathering information about the suitable

mathematical order that would be easy for a normal user and easy to understand the goal of the

game. To identify this I searched the existing android applications in the market and gathered

information about what kind of application has been done so far and what not has been

attempted.

2

It was also noted that more than 60% of android device users have android operating

system of version 2.1 or later. The functionality requirements of the application is simple and

straight forward where as the technical details involved some research on the available android

technologies.

GUI is critical for any game application and Android has multiple facilities for drawing

GUI for games. Few study materials in android to code with the concepts like surface view and

canvas were also gathered so as to smooth the application development process. These gathered

information helped to provide a clear direction of deciding the software requirements and

hardware requirements.

 To check the feasibility of using these technologies in android for developing the

proposed game, I practiced developing few simple android applications using these concepts.

Some of them include an application to draw and move a bubble, an application to do a read and

write operation with android’s built-in SQlite databases, an application using ‘Services’ concept

in android and so on. The gathered materials and the exercise problems I attempted prepared me

to start designing the actual ‘Android Number Game’ application.

 3.2. Requirements Specification

 3.2.1. Software Requirements

Below are the software requirements for the project:-

Operating System: Android 2.2 or higher versions

Language: Android SDK, Java

Database: SQLite

Technologies used: Java, SQLite, Canvas, Android,

Tools: Eclipse IDE, Astah Community UML diagram tool

Debugger: Android Device Bridge, Android Emulator.

 3.2.2. Hardware Requirements

Device: Android Emulator / Android tablet / Android Handset

Minimum Required Space: 6MB

3

Chapter 4 - Systems Architecture & Design

 4.1. System Architecture

Based on the requirements analysis, the application’s components, modules, interfaces

and interactions of the system modules with other modules have been designed. This chapter

describes the System architecture diagram, Use case diagram, Class diagram and sequence

diagram of this application.

The application is a single-player real time android game that follows a different

architecture than the conventional frameworks followed in web applications. The Android OS

runs on the phone and the application runs on top of the OS. The user input is a touch event

captured by the application which simulates the game logic module. The audio and graphics

module includes the creation of the 2D number bubbles and production of appropriate sounds.

 Figure 4.1: Systems Architecture Diagram

User Input: In our application, the user input is the touch event generated by touching the

screen. The game engine monitors the onTouch event and at every touch, the corresponding

coordinates are captured. If the coordinates are within the defined control areas of the device

screen, the game engine would pass the control to the Game Logic module.

USER

INPUT

 ANDROID HANDSETS/ TABLETS

ANDROID FRAMEWORK

GAME

LOGIC
 Audio

Graphics

 O
 U
 T
 P
 U
 T

 G U I

DATABASE

4

Game Logic: The game logic module is where the state of the game is decided based on the user

inputs. The game logic includes checking any bubble collision to trigger the appropriate actions.

Audio: The audio module produces sounds based on the decisions of game logic. Different

sounds are played to distinguish correct user input from an incorrect one.

Graphics: This module is responsible for rendering the game state on the screen. Android has

several facilities for graphics rendering like canvas, OpenGL, etc. Our application uses 2D

canvas rendering which is refreshed every 100ms and also updated based on the user’s input.

Database: This module is used in saving the scores of the players in a table. SQLite database is

an open source database that is embedded into Android. The game logic module interacts with

this module for data persistence into the tables.

Output GUI: This output is the resulting sound and view rendering based on the game logic.

 4.2. Systems Design

The high-level UML design diagrams are designed using the open source astah

community software. Several entities were identified and the relation between these entities is

described in these diagrams. The various diagrams determined for this game application include:

• Use Case Diagram

• Class Diagram

• Sequence Diagram

These diagrams are discussed in detail in the following sections.

 4.2.1. Use case Diagram

A Use Case diagram is used to represent the actions by the user in a system. It has roles

and actions. Each user/role has different privileges and each perform different actions.

For the Android Number Game, there is only one user ‘the Player’ and the player can do

the below actions:

5

1. Enter the Game

2. View Instructions

3. View Scores

4. Mute/UnMute Background Music

5. Save Scores

6. Check Menu options

7. Touch Bubbles

8. Go to Home screen

The actions the player can do in this application are shown in the below use case

diagram.

Figure 4.1 – Use case diagram

 4.2.2. Class Diagram

A class diagram shows the basic types being built in the system. It forms a prototype for

the application being developed and encompasses the classes, fields, methods and the

relationship between these classes. The main structure of this game application can be

represented by the following class diagram.

6

Figure 4.2 – Class Diagram

 4.2.3. Sequence Diagram

A sequence diagram shows the interaction between the various classes and processes and

the interaction order necessary to perform the functionality of the scenario. It showcases the

classes involved in an interaction and the function calls and sequence of messages exchanged in

that interaction. It forms a prototype to represent the behavior of various modules of an

application. The interaction between the various classes for three major features of this game

application is represented by the following sequence diagrams. The first sequence diagram

explains the ‘game play’ sequence which is followed by the sequence diagrams for ‘list scores’

and ‘view instructions’ functionality.

7

Figure 4.3 - Sequence Diagram [Play game]

Figure 4.4 - Sequence Diagram [List Scores]

8

Figure 4.5 - Sequence Diagram [Instructions]

Chapter 5 - Graphical User Interface

The user interface is made simple and as intuitive as possible. “Keep it Simple” was the

motive behind out UI design. The number bubbles are made big enough to aid easy navigation

on smart phones and hence various sized drawable images are included to support different

device configurations. ‘Krug’s law of Usability’ says, “Any application must be simple and

easily understandable”. Consistent layout with easy navigation and simple instructions ensures

understandability.

Attractive User Interface is very essential for any game application.

1. Decorative fonts are used in the start screen and all over the application.

2. Bright and attractive colors and contrasting color combinations are used in background and

also for the bubbles.

3. Cartoon background images as the application is designed targeting school children.

4. Instead of having 2D circle objects embedded into Canvas renderer, translucent gradient

images that gives a 3D illusion is used for number bubbles. Most of the facebook bubble

games use gradient bubbles that give a 3D appearance rather than a plain 2D circle.

5. Toast messages are used to display when there is a change of levels or when there is loss of

life. These messages are asynchronous messages and are displayed only for the specified

time. They serve as a better option than having dialogs when it is enough to display the

information and do not require any user input.

9

Chapter 6 - Android Components

Though programming in android SDK is using java language, android has its own set of

concepts that make easier to design and code for application development. This chapter briefly

discusses various concepts in android that this game application has used. (Developers Guide,

2011)

 6.1. Android Manifest.xml

An application in android must have an AndroidManifest.xml file in its development root

directory. This xml file presents essential information about the application to the Android

system and the information the android system should have before it can start running the

application's code.

AndroidManifest.xml file contains all the other android components that our application

has used within the application. The components include activities, services, broadcast receivers

and Content providers. The AndroidManifest.xml file also shows which application components

communicate with each other and shows which’ Intent’ and ‘Intent filter’ are tied to which

application component within our application.

More importantly android manifest file specifies the list of permissions that our

application would need to be installed in an android device. The permission model in android

makes sure that an application that has not been granted to access few resources or services

within the device indeed is prevented from accessing them.

The Androidmanifest.xml file for this game application looks like below:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.edu" android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".StartScreen" android:label="@string/app_name"
android:configChanges="orientation"android:launchMode="singleTop"
android:theme="@android:style/Theme.Light.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

10

 </intent-filter>
 </activity>
 <activity android:name=".Main" android:label="@string/app_name"
android:configChanges="orientation">
 </activity>
 <activity android:name=".Middle" android:label="@string/app_name"
android:configChanges="orientation">
 </activity>
 <activity android:name=".Instructions" android:label="@string/app_name"
android:configChanges="orientation">
 </activity>
 <activity android:name=".ListScores" android:label="@string/app_name"
android:configChanges="orientation">
 </activity>
 <activity android:name=".NewHighScore" android:label="Game Over!"
android:configChanges="orientation"android:theme="@android:style/Theme.Dialog
">

</activity>
 <activity android:name=".LostLife" android:label="You lost a life!"
android:configChanges="orientation"android:theme="@android:style/Theme.Dialog
"> </activity>
 <service android:name=".MusicService" android:enabled="true"></service>
 </application>
</manifest>

 6.2. Activities

An Activity is an application component in android providing a screen with which users

can interact in order to do something. The activity with some of the resource files represents the

user interface in android. (Samy, 2010) The android number game application contains several

activities to show different screens within our application as follows:

§ StartScreen, Middle, Main, ListScores, Instructions, MaxLife, LostLife

 6.3. Services

A Service is an application component that can perform long-running operations in the

background and does not provide a user interface. Any component within our application can

start a service and it will continue to run in the background even if the user switches to another

application. It does not affect the performance of the fore ground activities in the user interface

as android handles the services as a separate thread by default and isolates it from the user

interface. (Vogel, 2009)

This component is useful in our application to play the music in background while the

user is playing game. The music is started as a service when the first screen is launched in our

number game application. We will discuss later about other features of number game application

to mute and unmute the music from within our application while playing game.

11

The only service in the number game application is:

§ Music Service – for playing background music

 6.4. Intent

Inter application communication and Intra application communication in android happen

with Intent. Intent is an abstract description of an operation to be performed that can be used to

launch an activity or service from the current application component. An Intent has two primary

attributes namely action and data. Action represents the general action to be performed such as

ACTION_VIEW, ACTION_EDIT etc. Data represents the information to act on when intent is

raised.

There are two types of Intents namely Explicit Intents and Implicit intents. Explicit

intents provide the exact component the intent has to act on and it provides the exact class to be

run when the intent is raised. Implicit intents do not explicitly mention the component that can

handle these intents. Any application component which has an intent filter matching the action,

data category of the intent can handle the intent raised.

The Android Number Game application uses several explicit intents for different

scenarios to launch activities and services.

 6.5. Android’s SQLite

Android has a built in database engine SQLite which helps applications to do database

operations. Any database created by an android application is accessible by name to any class

within the application but not outside the application. Extending the class SQLiteOpenHelper in

android and overriding the method onCreate is the simplest way to create a new SQLite database

in android and execute the queries. (Hipp, 2011)

Android number game creates the following database and tables to keep track of top 10

players and their scores:

Database: APPLICATION_DATA; Table: SCORE

12

Chapter 7 - Implementation

The implementation in android starts with creating an new android project in Eclipse

which creates separate folders for source code, resource files like images, xml files representing

user interface layouts, gen folder that transforms each individual element names in resource file

to unique identifiers that would be referred by the android system and other folders.

This chapter discusses the details of classes implemented for this project, implementation

details of user interface xml files and other intricacies like handling bubble collisions, changing

the moving directions of bubbles when hitting the screen’s boundaries and handling the

orientation change of android devices.

 7.1. StartScreen

This is the first screen shown to the player when the application is launched from the

application tray. The first screen to show is identified by the android system by checking the

android manifest file of the application. The Start screen is a user interface implemented as an

‘Activity’ in android number game application. An activity having an intent filter tag with action

field android.intent.action.MAIN and category android.intent.category.LAUNCHER is the one

that will be shown first when an application is launched from the application tray. In our

application’s androidmanifest.xml file, Startscreen activity is mentioned to be started first when

this application is launched. Below is the piece of code from AndroidManifest.xml file of our

application.

<activity android:name=".StartScreen" android:label="@string/app_name"
android:configChanges="orientation"android:launchMode="singleTop"
android:theme="@android:style/Theme.Light.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

StartScreen activity performs the following three tasks when shown to the player:

§ Starts playing music as a ‘Service’ in the background

§ Background image is set

13

§ Displays an ‘ENTER’ Button for the game

Figure 7.1 - StartScreen

StartScreen activity binds the ENTER button to the onclick listener. When the player clicks the

ENTER button , an intent is raised to launch the next activity ‘Middle’ which we will discuss

below.

 7.2. Middle activity

The Middle Activity is the class that is launched by touching the ENTER button in the

StartScreen activity by the player. This class sets the user interface to the user with the following

buttons.

14

Figure 7.2 - Middle Screen

§ Play, Instructions, Mute, Scores, Back

On touching the Play button the player is taken to MainScreen UI for playing the game.

Before taking the player to the main screen, MiddleActivity is pushed to the back stack of the

task automatically. This concept of back stack is useful when this activity is called again from

any other activity in the application. The behavior of the activity in the back stack when

launched back to the same view is decided by the task mode affinity parameter of the activity set

in AndroidManifest.xml file.

On touching the Instructions button, the rules and goal of the game is shown to the user

in a new activity. This is useful for the user who plays this game for the first time. On touching

the mute button, the player can stop the music that is playing in the background. Some players

15

find it difficult to play the game when music is run in the background. Some others prefer to

listen to music while playing. When the music is running in the background this button shows

Mute and when the music is not running it shows UnMute which on touching would start the

music again.

Figure 7.3- Instructions Screen

On touching the Scores button, the player can check the top 10 scores and the player

names. When the user clicks this button, this class and the Database helper classes checks if

applicationdata.db is present or not. If it is not present the database is created by invoking the

methods in DatabaseAdapter class. Once the database is created a table named ‘score’ is created

in the database. The details of the database table, their fields are discussed in the subsections

later on. If the database and the table were already present with fewer or more entries, then the

rows are all fetched and ordered by descending scores and top 10 scores and players are shown

to the user by populating the screen in the form of a table. If the table has no scores, an

appropriate message to indicate that there are no available scores is displayed.

16

Figure 7.4 - Scores

On touching the Back button the player is taken back to the MiddleScreen Activity.

 7.3. Main activity

The Main Activity is launched by the user by touching the Play button in MiddleActivity.

Main activity sets its content by instantiating the GameView class. GameView class extends the

Android’s SurfaceView class and encompasses the main screen for the game play. GameView

also includes for the implementation of the game’s logic and it acts like the engine of the

application. MainActivity works with GameView, GameLevel and GameLoopThread and takes

corresponding action for user’s input.

17

Figure 7.5- Main Screen

This activity also set two menu items ‘Home’ and ‘Mute/UnMute’. On touching the

‘Home’ menu current activity is destroyed and user is taken to MiddleActivity. On touching the

‘Mute’ menu the music in the background is stopped and the text is changed to ‘UnMute’. When

‘UnMute’ is touched music will be started again as a service in the background.

Figure 7.6 - Main screen with Menu

18

The application flow is based on two threads: main thread created with every Android

application and a rendering thread. Rendering thread draws a frame as frequent as possible

and Android Canvas renderer is used to draw the two dimensional number bubbles.

 7.3.1 GameView, GameLevel and GameLoopThread
GameView is a surfaceview object and it closely works with GameLoopThread class and

the GameLevel class in this Main activity. (A basic game architecture, 2010)

GameLevel: The GameLevel class decides the number of bubbles to be drawn at each level and

the numbers that have to be embedded on top of each bubble. The complexity of the set of

numbers to be embedded on bubbles increase as the levels increase.

GameView: The main responsibility of the GameView class is to create the bubbles and embed

numbers on each bubble and prepare them to move on the screen. The resource folder contains

several bubble images in different colors. GameView class picks the colored bubbles randomly

and the numbers returned by GameLevel class are drawn on each bubble. Once these bubbles are

generated it starts GameLoopThread class.

GameLoopThread: The GameloopThread invokes the onDraw method once every 100

milliseconds. This onDraw method is responsible for calculating the position of each bubble

once every 100ms. This implementation of drawing the bubbles once in every 100ms at new

position (either x co-ordinate or y co-ordinate or both co-ordinates are incremented by 1) creates

an illusion to the user that the bubbles are moving. The calculation of x and y positions of each

bubble in this two dimensional screen in the onDraw method takes care of changing the direction

of each bubble when it hits the boundaries of the screen.

The GameView class handles the onTouchEvent of the moving bubbles in MainActivity.

When the bubble with the least number on it in the current set of bubbles is touched by the

player, the bubble bursts and score increases for every such correct touch. When a wrong bubble

is touched, a life is reduced. If all three are used, the game ends and Player will be prompted an

Activity that displays the user’s current score and the highest score and prompts to collect the

19

name of the user. On collecting the user name the score and player name is saved in the score

table of the database.

If the user has cleared a level i.e. all the bubbles in a level have been burst, the

GameLoopThread is invoked again with a new level number. The GameLoopThread works with

GameLevel and GameView classes to repeat the same process again.

The application is designed to have a maximum of ten levels with complexity increasing

with each level. If all the levels are cleared, the MaxLife activity is invoked, the user details are

received and the user score is saved in the scores database.

Toast messages are displayed if the user losses a life and after clearing every level. These

are asynchronous messages and are displays for the specified time interval. (2 sec)

Figure 7.7 - Incorrect input toast message

20

Figure 7.8 - Level completion toast message

Figure 7.9 - Save scores

21

7.3. DatabaseHelper and Database Adapter

The DatabaseHelper is a class that creates the database ‘APPLICATION_DATA when

the player clicks the Scores button for the first time or when the user wishes to save the data after

he finishes playing the game. The table called ‘SCORE with two columns username and score is

created. This table holds the list of players and their scores.

DatabaseAdapter is the class that provides API to execute queries from other classes to

insert entries to the table and fetch entries from the table. (Hipp, 2011)

Chapter 8 - Testing and Logging

The Android SDK consists of a virtual mobile device emulator that helps to test the

application without having a physical device as it provides all the functionalities of a typical

physical mobile device.

 8.1. Logging

Logging and debugging in android is done with the tool Android Device Bridge (ADB).

ADB is one of the useful tools that come with the Android SDK. The system level logs and user

defined logs are shown when ‘adb logcat’ command is executed while the application is running

in emulator or in the device. Also, the Dalvik Debug Monitor Server [DDMS] which comes

integrated with Android plugin for Eclipse helps to read the log messages for a specific emulator

instance running our application.

ADB tool also provides the shell access to the android system of the device connected to

system via USB cable. This tool provides access to SQLite database and the tables created and

can be used to display the entries in the table. (Sugrue, 2010)

 8.2. Unit Testing

In Unit testing each independent unit is tested separately, by isolating it from the remainder of

the code to ensure parts of the code are working properly. Unit is the smallest testable part of the

code, as in here the classes are treated as the base unit. Since the game application involves

threading concept, it is not possible to leverage the jUnit tool for testing the individual

components.

22

Unit Testing - Android Number Game

S.No Test
Modules Test Case Expected Result Result

1 GameLevel Check the numbers on the bubbles Random numbers are
generated in the bubbles
and no duplicates are
allowed

Pass

2 GameLevel Check the count of bubbles after
each level

The number of bubbles
should increase
proportionately with
increasing levels

Pass

3 GameLevel Check the number range on the
bubbles after each level

The number range on the
bubbles should increase
proportionately with
increasing levels

Pass

4 GameView Check the behavior of bubbles
when they touches the screen edges

The direction of the
bubble should reverse.

Pass

5 GameView Bubble behavior on press of the
next high numbered bubble

The bubble should burst
and right sound is played.

Pass

6 GameView Bubble behavior on press of an
incorrect bubble

Sound for wrong input is
played and the bubble is
not burst

Pass

7 GameView Scores updation on press of the
correct bubble

The score has to increase
at every correct input

Pass

8 GameView Score updation and lives on press
of an incorrect bubble

The score should remain
same as before the input
and number of lives is
reduced

Pass

9 GameView Bubble behavior on pressing
overlapping bubbles

The lower valued bubble
is taken as the clicked
bubble

Pass

10 MusicService Mute/UnMute behavior in Menu If the music is being
played currently, the
display text is UnMute
else the display text is
Mute in the Menu.
Pressing UnMute should
start the music and
pressing mute should stop
the music

Pass

11 GameView Toast message behavior for every
level

After every level, toast
messages should be
displayed

Pass

23

12 Generic Application behavior when there is
an exception.

The music service should
be terminated

Pass

Table 8.1- Unit test results

 8.3. Interface Testing

Interface testing is done to check whether the individual modules are communicating

properly one among each other as per the specifications. This testing is critical for any mobile

application as they involve many interfaces and navigation between the various interfaces. The

main idea is to check the consistency of the application, navigation and applications behavior for

any or every possible set of user inputs.

Interface Testing - Android Number Game

S.No Test Modules Test Case Expected Result Result
1 StartScreen Launch the android number

game application
The application should be
launched and the music
service should be started as a
background process

Pass

2 StartScreen Quit the application The application must be
terminated and also the music
service is expected to stop

Pass

3 Main Click the Enter button in the
StartScreen

The application should take
to the next middle screen that
displays five buttons for
various functionalities

Pass

4 Middle,
MusicService

Press the Mute button in the
Middle screen

The music service should be
stopped and the label of the
button should change to
'UnMute'

Pass

5 Middle,
MusicService

Press the UnMute button in
the Middle screen

The music service should be
started and the label of the
button should change to
'Mute'

Pass

6 Middle,
Instructions

Press the Instructions button in
the Middle screen

Instructions activity should
be launched displaying the
game instructions

Pass

7 Middle,
ListScores

Press the Scores button in the
Middle screen

ListScores activity should be
launched displaying the game
top 10 scores from the
database

Pass

24

8 Middle,
StartScreen

Press the Back button in the
Middle screen

The home page must be
launched

Pass

9 Middle, Main Press the Play button in the
Middle screen

Main activity should be
launched and movement of
balls observed

Pass

10 Main Press the Menu button in the
Middle screen

Menu options are displayed Pass

11 Main, Middle Press the Back button from
Menu page

StartScreen activity is
launched

Pass

12 Main, Database
Adapter

Press 'Save' in the dialog
shown when all lives are lost.

User name is received and
table is updated with new
scores

Pass

13 Main Press 'Cancel' in the dialog
shown when all lives are lost.

The dialog is quit and control
goes back to the Main
activity

Pass

14 ListScores,
Middle

Press the 'Back' button from
ListScores page

Middle activity is launched Pass

15 Instructions,
Middle

Press the 'Back' button from
Instructions page

Middle activity is launched Pass

16 Main, MaxLife Check the application
behavior if all the levels are
cleared

MaxLife activity is launched Pass

17 GUI Orientation
Changes - All
modules

Change the orientation from
horizontal to vertical
orientation.

The application should not be
restarted and should continue
from the same state it was
before the changed
orientation.

Pass

18 GUI Orientation
Changes - All
modules

Change the orientation from
vertical to horizontal
orientation.

The application should not be
restarted and should continue
from the same state it was
before the changed
orientation.

Pass

Table 8.2 - Interface testing results

 8.4. Compatibility Testing

Variations in software versions, configurations, display resolutions, servers and Internet

connect speeds can heavily impact the application behavior. Different specifications of devices

can also make the applications to behave differently. People use different android devices and

hence a good application must be 100% reliable and give best visualization effects irrespective of

the device specifications. The application does not require internet hence the speed of internet is

not relevant or necessary scenario in this case. To check the device compatibility, the application

is tested in the both Android tablet and smart phone

or higher versions.

1. Android Samsung Galaxy Tablet 10.1

Android OS v

Dual Core Process

Figure 8.1 - Samsung tablet vertical orientation

Figure 8.2 - Samsung tablet horizontal orientation

2. Google Nexus

Android 2.2, 1 G

25

both Android tablet and smart phone. The application requires Android

Android Samsung Galaxy Tablet 10.1

v 3.1, 10.1” wide screen HD WXGA (1280*800) TFT Display,

Dual Core Processor (1GHz * 2), 16GB

Samsung tablet vertical orientation

Samsung tablet horizontal orientation

1 GHz processor, (123.9 x 63 x 10.9 mm), 16 GB storage

Android SDK 2.2

(1280*800) TFT Display,

6 GB storage

Figure 8.3 - Google Nexus Horizontal orientation

Figure 8.4

3. Android Emulator Testing

Android 2.2 “WVGA800” (800×480)

 I also requested my friends to test the application in their mobiles and got their

feedback as part of user testing. Some of the feedback they gave was:

1. Good color combination

2. Few persons did not like the mu

not like the music were

3. Application was easy to understand

26

Google Nexus Horizontal orientation

4 - Google Nexus vertical orientation

Testing

“WVGA800” (800×480), LCD Density: “240”

I also requested my friends to test the application in their mobiles and got their

feedback as part of user testing. Some of the feedback they gave was:

Good color combination and many of them liked the gradient bubbles.

did not like the music and few others liked them. The persons

not like the music were glad that they had a Mute button.

easy to understand.

I also requested my friends to test the application in their mobiles and got their

and many of them liked the gradient bubbles.

e persons who did

27

Chapter 9 - Conclusion

The application has been designed, implemented and tested with real devices with users

successfully. The project helped in understanding the challenges involved in developing a game

application for android handsets and tablets, the ways to overcome them and in better

understanding the intricacies of mobile application development. The project also helped in

understanding the value of designing the components of overall application before implementing

them. The project has also taught me game programming skills and refining the design and

implementation logic of the software at every phase of the development life cycle to improve the

overall performance of the application.

Chapter 10 - Possible Extensions

This android number game can be extended further in many possible ways and some of them are

listed below:

• The game can be extended to display mathematical query on top of the screen and design

it as a quiz application where the bubbles contain answers to the query and allowing the

player to touch a bubble with the right answer.

• The application can be modified slightly to suit a different set of users. The application

can be modified to have bubbles of different sizes with the same game logic and allowing

the players to touch the bubbles in the order of decreasing or increasing sizes.

• The game can be improved to have different shapes for different levels and to have time

settings for each level.

• With fewer changes the game can be extended to save the scores in a centralized server

and update the high scores comparing with all the players of this game across the world.

28

Chapter 11 - References:

Developers Guide. (2011). Retrieved September 15, 2011, from Android Developers:
http://developer.android.com/guide/index.html

Hipp, R. (2011). sqlite. Retrieved July 17, 2011, from documentation:
http://www.sqlite.org/docs.html

Samy, M. (2010). Android. Retrieved August 5, 2011, from CodeProject:
http://www.codeproject.com/KB/android/AndroidSQLite.aspx

Sugrue, J. (2010, October 20). Debugging Android: Using DDMS To Look Under The Hood.
Retrieved August 4, 2011, from Javalobby: http://java.dzone.com/articles/debugging-android-
using-ddms

Vogel, L. (2009). Android Development Tutorial. Retrieved August 2, 2011, from vogella:
http://www.vogella.de/articles/Android/article.html

widgetguide. (2010). Retrieved October 27, 2011, from Droiddraw:
http://www.droiddraw.org/widgetguide.html

A basic game architecture. (2010, July 26). Retrieved Nov 20, 2011, from Against the grain:
http://obviam.net/index.php/2-1-a-little-about-game-architecture/

	Chapter 1 -
	Chapter 1 - Introduction
	Chapter 2 - Motivation
	Chapter 3 - Requirement Analysis
	3.1. Requirements Gathering
	3.2. Requirements Specification
	3.2.1. Software Requirements
	3.2.2. Hardware Requirements

	Chapter 4 - Systems Architecture & Design
	4.1. System Architecture
	4.2. Systems Design
	4.2.1. Use case Diagram
	4.2.2. Class Diagram
	4.2.3. Sequence Diagram

	Chapter 5 - Graphical User Interface
	Chapter 6 - Android Components
	6.1. Android Manifest.xml
	6.2. Activities
	6.3. Services
	6.4. Intent
	6.5. Android’s SQLite

	Chapter 7 - Implementation
	7.1. StartScreen
	7.2. Middle activity
	7.3. Main activity
	7.3.1 GameView, GameLevel and GameLoopThread

	/
	/
	7.3. DatabaseHelper and Database Adapter

	Chapter 8 - Testing and Logging
	8.1. Logging
	8.2. Unit Testing
	8.3. Interface Testing
	8.4. Compatibility Testing

	Chapter 9 - Conclusion
	Chapter 10 - Possible Extensions
	Chapter 11 - References:

