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CHAPTER 1

TNTRQDUCTION

Human beings have been trying to do things in the most efficient

way possible since the beginning of civilization. From the pre-

historic period to the present age the accomplishment of tasks with

the least expenditure of energy or time, has been a motivating factor

for expanding the technological base.

At the beginning of the industrialized age, human labor became an

integral part of what was then "the art of manufacturing." A few

people were able to produce products at a higher rate than others and

they were called "experts." F.W.Taylor [1], in the early 1900' s,

realized that there were certain motions used by these experts that

made them perform their tasks faster than others. Taylor fashioned

and promoted the idea of making others follow similar motions to

optimize the production rate and, hence, developed the science of work

study, which played an important role in the optimization of

production in flow line systems of manufacturing.

As technology changed and flow lines gave way to fully automated

lines, the need to use the most efficient movements of machines has

become a primary concern. The branch of mathematics known as

"optimization" has found many new applications in tuning the



production processes. Optimization mathematics facilitated design of

manufacturing machinery which operated at increasingly higher rates

and efficiencies. However, a drawback of this fixed manufacturing was

that in order to manufacture a different product, the entire assembly

line had to be re -tooled to accomodate the new product. With the

introduction of computers to the manufacturing environment it became

possible to route different products through the same line with

minimal changes. Although computer control made the transition from

one production schedule to another relatively easy, the need to

optimize the production of a single product still remained.

There is a cost of manufacturing associated with any production

schedule. The first task in optimizing or minimizing cost is to

express cost as a function of those quantities which we are free to

vary and can control. The two most accessable of these quantities are

energy and time consumption. We can minimize consumption of energy by

reducing the rate of production or by selecting more efficient drives.

Obviously, reducing production rates too greatly has the undesirable

consequence of curtailing output. Minimizing the consumption of time

can be achieved by minimizing the cycle time of the individual

components of the manufacturing system as discussed above. Time of

production, subject to the available resources, provides a viable area

in which to achieve lower costs. This can be done by optimizing the

cycle time of the individual components of the manufacturing system.

One avenue through which the optimization or in this case

reduction of cycle time can be achieved is to increase the speed at



which the production machinery or, in the context of this work,

robots operate. The problem of cycle time optimization of mechanical

manipulators falls into the general category of minimum time control

problems with or without path constraints. Parenthetically,

production operations have path constraints in order to avoid

collisions with the assembled part or other obstacles in the work

space. On the other hand loading and unloading tasks in metal working

operations and missile interception problems are examples of tasks

without path constraints. Extensive work has been done in determining

the path constrained, minimum time motion [2] - [5]. This work will

deal with the non-path- constrained minimum time problem.

Time optimal control without path constraints can be defined as

the control function which forces a system, described by a system

equation and having bounded control, from one point to another in

minimum time. The system equation is normally a differential

equation. Systems which are defined by linear differential equations

are called linear systems and those defined by nonlinear diffential

equations are called nonlinear systems. The early development of time

optimal control problems without path constraints was done almost

exclusively in terms of linear systems. Nonlinear systems were later

solved by using some of the techniques developed in the solution for

linear systems. Some of the solution techniques developed for linear

and nonlinear systems will be presented here. It should be noted that

even though the theory might look simple, in practice it is difficult

to apply these solution techniques to all systems.



LITERATURE SURVEY

T.TNEAR SYSTEMS

The solution techniques ' developed for linear systems can be

broadly classified as analytical and numerical.

ANALYTICAL MODELS

The early development of the solution techniques for linear

systems involved finding the analytical solution. Significant among

the early analytical models was that presented by Athanassiades and

Smith [6]. Athanassiades and Smith developed a minimum time control

system for an Nth order linear system with negative real poles. They

transformed the state equations into a diagonalized form, solved for

time as a logarithmic function and obtained the switching

hypersurface. Based on the position of the state point relative to

the switching surface, they were able to determine the control. The

control they determined would drive the system from the initial state

to the phase space origin in the least time possible given the

capacity of the available drives. At about the same time, working

independently, Desoer and Wing [7] came up with a similar technique

for discrete systems.

Later, Ryan [8] developed algebraic expressions for the minimum-

time isochronal surfaces for third order systems with real eigen

values and a single saturating input. He integrated the system

equations using simplified controls and solved for the final tii

This becomes difficult for higher order and nonlinear systems.

;ime

.
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Another interesting approach was presented by Fuller [9]. He

computed the time-optimal control required for points where all but

one coordinate are zero by backward tracing of the trajectories for a

linear plant with distinct real eigenvalues and a scalar saturating

control. The trajectory was divided into m time intervals at which

the control changes sign. Backward integration of the system

equations from the origin then provides the optimal control. He

suggested that for state points away from the axes the control can be

determined from the dominant state coordinate. However there is a

possibility of chatter near the switching curve in this case.

Sebakhy and Abdel-Moneim [10] and Rao and Janakiram [11]

presented algorithms to compute the time-optimal control laws to drive

closed loop discrete linear systems to the origin of the phase space.

Sebaky and Abdel-Moneim defined the system by

x(t+l) - A x(t) +b u(t) (1-1)

u(t) - F x(t) (1-2)

where x is an n dimensional state vector, u is the control vector,

and A, b and F are real matrices. The system was assumed to be

controllable. They computed the feedback law F from

(A + b F)'^ - (1-3)

such that r is minimum.

Rao and Janakiraman presented a solution technique for discrete

systems specified in the z - domain of the form,



Uz)_.^J^ ;p<n (1.4)

M(z) n .

I \ ^'

i-0
^

where X(z) and M(z) are the z - transforms of the output and input

respectively. They defined the state variables as the output at n

consecutive time intervals and solved for the input as

[&] [ffl]
- -[b] [x(0)] (1.5)

giving,

[m] - -[a"^] [b] [x(0) ]
(1.6)

where [a] and [b] were obtained by converting the system to its

difference equations. In cases where there was a saturation limit on

the controls, the input was set at that limit.

NUMERICAL MODELS

With the advent of the computer, numerical solution techniques

became popular. The solution methodologies for time -optimal control

problems were directed towards iterative techniques.

Knudsen [12] developed an iterative procedure for computing the

time -optimal controls for the generalized state equations of the form

i - A X + b u (1.7)

where A and b are constant matrices, x the state vector, x the rate of

change of the state vector, and u is the control driving the system.

The control satisfies the inequality constraint of

|u| < 1. (1-8)



He parameterized the minimum time control in terms of the initial

conditions of the system's adjoint equations. Knudsen derived a

function relating the initial state of the system to the adjoint

system's initial condition and to the time required by the optimal

control to drive the state to zero. This function was used to solve

the problem iteratively. Nagata, Kodama and Kumagai [13] developed an

iterative procedure to solve discrete state variable formulations.

Lastman [14] developed a shooting method for two point boundary

value problems arising from bang-bang control problems .
He guessed

the final time and the initial values of the multipliers and

iteratively improved the solution by integrating forward in time. He

also showed that nonlinear systems can be solved by this method.

Another interesting numerical technique developed by Larson [15]

and Yastreboff [16] consisted of iteratively changing the time

interval between switchings. Larson assumed arbitrary switching

intervals and controls and determined an initial trajectory. He then

determined a sequence of trajectories by correcting the previous

trajectory so that the respective sequence of end points of the

trajectories will approach the desired point in state space. The

correction routine used a first order Taylor series approximation

about the present switching interval times and assured that each

trajectory was time optimal from the initial to whatever final point

it reached. The corrections were proportional to the distance by

which the final state was missed. It should be noted that the terms

neglected in the Taylor series expansion are not necessarily small.



The optimal control was obtained when the correction routine brought

the end point of the trajectory near the desired end point in state

space. The method was applied to linear systems with complex eigen

values and to time varying systems.

Yastreboff [16] formulated his time interval adjustment

technique for linear plants with constrained control amplitudes. He

arbitrarily chose n switching times and a control function which

brought the plant to the desired terminal state. The switching times

and control are then adjusted so that the controls approximate a bang-

bang form. He adjusted the control by a linearization technique and a

logarithmic technique. The linearization technique was actually a

variational technique. He took the first variation of the system

equation integrated forward in time and set the variation depending

upon the final state to zero. The problem was then solved

iteratively.. The logarithhmic technique consisted of approximating

the variations with logarithmic functions. The logarithmic approach

converged faster, but determining this function for other systems

would be a difficult task.

NONLINEAR SYSTEMS

Most physical systems are nonlinear in nature. The solution

techniques developed for linear systems are useful in that they can be

used to solve nonlinear systems by linearized approximations in the

case of analytical solutions or by extending them directly in the case

of numerical techniques as in Lastman [14].



LINEARIZED APPROXIMATIONS

Notable among the linearized aproximation techniques used was

that developed by Kahn and Roth [17]. They investigated a three

degree of freedom manipulator and obtained a suboptimal solution to

the minimum time problem by using a linearized set of the equations of

motion. The equations were decoupled using suitable transformations.

Approximations were made to the gravity and velocity terms to reduce

the problem to double integrator formulations on each axis. The

method gave reasonably good results on those axes which were loosely

coupled with others, but on the axes which had a higher degree of

coupling, the error between the actual solution and the solution given

by the linearized equations were as high as 68%. It should, however,

be noted that the state equations were simultaneous coupled nonlinear

differential equations.

Wen and Desrochers [18] also presented two linearized solution

techniques, namely, the method of averaging dynamics and the method

of linear equivalence. The method of averaging dynamics assumed that

the non- linear structure was constant in time and used a double

integrator solution based on this structure. However, velocity

constraints could not be enforced. The method of linear equivalence

assumed that the non-linear structure was known and the system was

decoupled into double integrators. The torque was calculated by using

the non-linear structure.



NUMERICAL TECHNIQUES

Analytical solutions for nonlinear systems are very difficult to

obtain. Numerical techniques are easier to apply, however,

computational time is a major concern in this area.

Kahn and Roth [17] presented a numerical solution technique to

the complete nonlinear problem to verify their linearized equations.

The method involved making a guess on the unknown values of the

adjoint system variables at the final time and integrating both the

state and the costate equations back in time until the initial state

was reached. Iteratively changing this guess on the final value of

the costate variables produced the exact control. This, however,

cannot be used for an on-line control scheme which is required in most

modern production systems due to the length of the calculation.

Shetty [19] presented a finite element approach to the minimum

time problem of a two degree of freedom robot. He formulated a finite

element model of the optimization equations obtained from the

Hamiltonian. The position and velocities of the two axes, the

multipliers and their first derivatives and the elemental time were

used as unknown variables. He used a grid search method to get a

reasonably good guess on the final time and used this in the finite

element model. The nodal variables and the elemental time were

iteratively improved. He used a continuous time method similar to the

technique presented by Lastman [14] to verify his results.

Davison and Monro [20] and Wen and Desrochers [21] presented

time interval optimization techniques for nonlinear systems. Davison

10



and Monro presented a computational technique for finding the time-

optimal controls of non-linear time varying systems with single

inputs. They assumed the number of switchings and the time of each

interval and formulated a composite criterion function, which was

minimized to get the switching times. They assumed an arbitrary

number of switching intervals N for the control input u(t) and made

initial guesses on the switching intervals T^^'s and the initial

control. The response was calculated based on these values and the

values of N and T's were refined using Rosenbrock's Method [22] and a

composite cost function of the form,

J - c T + x'^(t) x(t) (1-9)

where c is some weighting factor (usually c-1) and

N
T- y T, .

(1-10)

i-1 ^

The time interval optimization technique presented by Wen and

Desrochers [21] was developed for nonlinear systems with multiple

inputs. This is significant due to the fact that references [15],

[16], and [20] considered only systems with single inputs. They

guessed the N switching times (t^, ^^, . .. t^) where a switching time

is defined as the time when any one element of the control vector

switches. They also guessed the initial control vector, the final

time and the order in which the controls switch. They iteratively

improved the solutions by change in the final state due to a change in

an earlier switching time. The method worked well when the number of

11



switches assumed is greater than the actual number and with some

correct intuitive guesses.

NOVEL METHODS

A few novel methods have also been presented to reduce the

computational effort of the minimum- time problem. Goor [23] converted

a three degree of freedom robot problem into three separate problems

and defined the path based on the slowest axis. The problem was

converted to one in which the 'jerk', which was caused by the

switching of the controls, was bounded to reduce wear and tear. The

solution to this simplified system was fovind for each of the axis and

the control was defined based on the slowest axis. This does not give

us the actual minimum time control or use the non- linear dynamics to

advantage

.

Luh and Shafran [24] presented another interesting approach.

They used two succesive least-squares-fit approximations to get the

isochrones of the system. The minimum-time isochrones were computed

in a discrete region by using some known method. The isochrones were

approximated by a hyperellipsoidal surface in terms of the minimal

time and the state variables. The coefficients of the

hyperelliposoidal surfaces were then ordered according to their

corresponding minimal times and they were approximated as a set of

continuous functions of time. These approximate functions were used

to generate the controls. The first two least-squares-fits were done

off line and only the approximate function was used for real time

computation purposes. The accuracy of the isochronal hypersurfaces

,

12



however, depends on the number of state points chosen for the initial

leas t - squares - fit

.

PRESENT APPROACH

The solution techniques available for time optimal control

problems without path constraints have been discussed. However, there

is one drawback or another in most of these methods. Analytical

solutions are extremely difficult to obtain except for very simple

systems. The numerical computational techniques work well with linear

systems where the state transition matrix is known. Even then

convergence to the absolute minimum requires intuitive guessing. In

the case of nonlinear systems, the state transition matrix is not

available, the integration interval and stability become greater

factors, and intuitive guessing becomes extremely difficult. These

factors makes numerical techniques more difficult to apply. Sometimes

it takes an enormous amount of time and effort to come up with the

optimal control and hence it can only be used in path planning.

Another important factor to be considered is that the computations

have to be repeated for each initial position.

Due to the problem of computational time and repeated

computations required for various initial positions, it is necessary

to come up with an efficient method for an online control scheme.

Analysis of the problem in the state space domain will reduce

unnecessary computations for changes in initial positions. Luh and

Shafran [24] presented one such approach. However, as stated before,

the accuracy of their analysis depended upon the number of state

13



points chosen. The purpose of this work is to provide an efficient

method to solve the complete minimum time problem for real time

applications and to examine the feasibility of a continuum approach

towards such a solution.

The continuum approach presented here treats the state variables

as independent variables in the state space. The final time is then

evaluated as a function of the state variables. This choice of

variables enables us to treat both linear and nonlinear systems in

essentially the same way. The continuum relations have been derived

and an approximate solution has been obtained for a double integrator

problem using a finite element analysis.

14



CHAPTER 2

THE TIME OPTIMAL CONTROL PROBLEM

OPTIMAL CONTROL THEORY

Classical control systems design is based on acceptable

performances defined in terms of time and frequency domain criteria

such as rise time, settling time, peak overshoot, gain, and phase

margin, and bandwidth. Modern technology demands complex multiple

-

input, multiple -output systems with radically different performance

criteria. With the development of the digital computer, optimal

control theory has been used in the design of these systems.

The objective of optimal control theory [25] is "to determine the

control signals that will cause a process to satisfy the physical

constraints and at the same time minimize (or maximize) some

performance criterion."

In order to evaluate the performance criterion (or index) and to

determine the optimal control, the designer must have a complete

knowledge of the mathematical description (or model) of the process to

be controlled, a statement of the physical constraints, and a

specification of the performance index.

15



THE MATHEMATICAL MODEL

The mathematical modelling of the system is an important aspect

of any control problem. The model should be an accurate, but simple

description of the physical system and should predict the response to

all anticipated inputs within reasonable accuracy. If the states of

the system at any time, t, are Xj^(t) , X2(t), x^Ct) x^(t) and

the r-nntrol inputs to the system at any time, t, are u^(t), U2(t), .
.

,u (t), the system may be described by n first order differential

equations of the form

x^(t) - a^(x^(t), X2(t) '^n^^^'

Uj^(t), U2(t), .... Uj^(t). t),

X2(t) - a2(x^(t), X2(t)
^n^'^^

'

u^(t), U2(t) Uj^(t), t),

(2.1)

3c^(t) - a^(x^(t), X2(t) '^n^^^'

Uj^(t), U2(t), .... u^(t), t)

Then, let

16



x(t)

Xj^Ct)

X2(t)

x^(t)

be defined as the state vector , and let

Uj^Ct)

(2.2)

u(t)

u,
2(t)

(2.3)

be defined as the rnnttrol vector . The system can now be defined in

the vector form as

x(t) - f(x(t), u(t), t), (2.4)

where f is a vector consisting of the functions a^, 32, . ., a^. This

is known as the state space representation of the system.

PHYSICAL CONSTRAINTS

The physical constraints on the state variables and the control

inputs have to be specified to limit the state space to the required

region. Generally, the initial and final states, the range of

controls and states, and time may be specified.

17



THE PERFORMANCE MEASURE

In general, the performance of a system is evaluated by a measure

of the form [25]

t^

J - h(x(tf), tj) + ;^. g(x(t), u(t), t) dt, (2.5)

where t^ and t^ are the Initial and final times, h and g are scalar

functions. The final time t^ may be specified or free.

The performance measure is unique for each set of control and

state variable values. The 'h' function is generally used to specify

constraints to be satisfied at the final time. The 'g' function is

used to specify the time varying and control dependent part of the

performance index. The performance index of the minimum time control

problem, without constraints, can be written as

J-L^ldt. (2.6)

THE OPTIMAL CONTROL PROBLEM

The optimal control problem is to find the admissible control

u*(t) which causes the system described by the set of first order

differential equations (2.4) to follow an admissible traiectory x (t)

that minimizes (or maximizes) the performance measure defined by

(2.5). The control u (t) is called an optimal control and x (t) is

called an optimal trajectory .

18



A history of control Input values which satisfies the control

constraints during the entire time interval from the initial to the

final time [t^, t^] is called an admissible control.

A history of state values which satisfies the state variable

constraints during the entire time interval from the initial to the

final time [tp, t^] is called an admissible trajectory.

CALCULUS OF VARIATIONS

The calculus of variations is a branch of mathematics that is

extremely useful in solving optimization problems. The optimal

control problem is to determine the control, which is a function of

time, that minimizes a performance measure, which is a function of

functions or better known as a functional.

FUNCTIONALS

A functional is best described as a function of a function or

functions. By definition [25], "A functional J is a rule of

correspondence that assigns to each function x in a certain class Q a

unique real number. Q is called the domain of the functional, and the

set of real numbers associated with the functions in is called the

range of the functional .

"

For example, if

yi" fi^^r ^^2^
^^-^^

and 72 ' ^l^^V "^2^
^^"^^

19



where x,, X2 are independent variables and f^, ^2 ^^® scalar

functions, then the quantity

J - gCyp 72)
^2.9)

is a functional.

VARIATION OF A FUNCTIONAL

The variation of a functional is analogous to the differential of

a function in that it helps in the determination of the extreme values

(maximum or minimum) of the functional. The differential, df, of a

function, f, of variables, x^^, X2 x^, is given by

df -f£dx, +!!dx, + . . . +!£dx^- (2.10)

ax^ 3X2 ax^

Similarly, the variation, 5J , of a functional, J, of functions y^, y2,

, . . , y is given by the relation

6J-'' Sy.^'lsy^^ . . . ^'-Sy^- (2.11)

3yi 3y2 dy^

FUNDAMENTAT. THEOREM OF CALCUI -TTS OF VARIATIONS

The fundamental theorem states that the variation should be zero

on an extremal curve, provided there are no bounds on the curves.

Mathematically speaking, if x is a vector function of t in the class

fi, and J(x) is a differentiable function of x, then

«J(x*, 6x)-0 (2.12)

20



for all admissible Sx. An admissible Sx is one which satisfies the

condition (X + 5x) e n. If is a class of continuous functions, then

X and 5x must both be continuous.

CONSTRAINED MINIMIZATION OF FUNCTIONALS

So far, we have discussed functionals involving the state vector,

x(t), with the assumption that they are independent. However, this is

not the case in control problems where the state trajectory is

determined by the state equations (2.4). This involves (n+m)

functions, x(t) and u(t). of which only the m controls are

independent. The state vector is dependent on the controls.

Constrained functionals are generally minimized by the Lagrangian

multiplier method.

THE LAGRANGIAN METHOD FOR CONSTRAINED MINIMIZATION

The Lagrangian method is used to determine the minimization of a

functional, J, of the form

J(x, u) - // g(x(t), u(t), t) dt, (2.13)

where x(t) is the state vector of the order n, and u(t) is the control

vector of the order m, subject to constraints,

c(x(t), u(t), t) - 0, (2.14)

where c is a vector of equality constraints of order n. The method

consists of forming an augmented functional

t^
j(x(t), u(t), A(t), t) - LMg(x(t), u(t), t)

+ A'^(t) c(x(t), u(t), t)]dt, (2.15)

21



where A.(t), i-1. 2 n, are called Lagrangian multipliers
.

The

procedure now allows us to find the function u(t) which extremizes

equation (2.15) and satisfies the constraints simultaneously. Now, if

the constraints are of the form of equation (2.4). then the augmented

functional becomes

j(x(t), u(t). A(t), t) -;/{g(x(t), u(t), t) +A'^(t)

[x(t) - f(x(t), u(t), t)]) dt. (2.16)

When the constraints are satisfied the augmented functional, J, equals

the unconstrained functional, J, for all values of X(t) and time. It

should be noted here that the representation of the state equations in

equation (2.16) is not conventional. If we define

T
g(x(t). x(t), u(t). A(t), t) - g(x(t), u(t), t)+A (t)

[x(t) - f(x(t), u(t), t)] (2.17)

then,

J(x(t). x(t). u(t), A(t). t)-;/i(x(t). x(t). u(t). A(t), t)dt. (2.18)

The functional, J, can be minimized by setting the variation 5J

to zero. The variation, SJ , after simplifying [Appendix 1] is given

by

22



fij - fi (x(t). i(t). u(t), A(t). t)
t-t.

dx(t^)

- [^ (x(t), i(t), u(t), A(t). t) x(t)]

ax

dt.

t-t.

+ g (x(t), x(t), u(t), A(t), t)
t-tf ''"f

+ //{[!! (S(t). x(t), u(t). A(t), t)

^0 ax

^ (!i (x(t), x(t), u(t), A(t), t))] 5x(t)

^^ ax

+^ (x(t), x(t), u(t), A(t). t) 5u(t)

au

+ f! (x(t), x(t), u(t). A(t), t) 5A(t)) dt. (2.19)

aA

For an extremal curve

5J(x*(t), x*(t), u*(t). A*(t). t) - 0. (2.20)

where * signifies the optimal values. For a minimal time control

problem, as stated before by equation (2.6),

g(2c(t), u(t). t) - 1. (2.21)

Therefore

,

|(x(t). x(t), u(t), A(t), t)-l +A'^(t) [i(t) - f(x(t), u(t),t)]. (2.22)
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Substituting equation (2.22) into equation (2.19) produces

5J = A''^(t^) dx(t^) + [1 + A'^(t) (x(t)

f(x(t), u(t), t)) - A'^(t) x(t)] t-t^ f

+ A {[-a'^CO fz (X(t). M(t), t) - i^(t)] 6s(t)
^0 ax

T
+ [-A'^(t) fz (2^(t). u(t). t)] 5u(t)

dn

+[x(t) - f(x(t), u(t), t)] 5A(t)) dt. (2.23)

Since 6J -
, equation (2.23) gives us the necessary conditions for

the optimal control, which are,

S*(t) - f(x*(t), u*(t), t), (2.24)

i*(t) - - f^^x*(t). u*(t). t) A*(t), (2.25)

ax

A*\t) f£ (x*(t). u*(t)) -0. (2.26)

and 1 - A*'^(V x*(tf) - 0. (2.27)

The n equations (2.24) are the state equations. The n equations

(2.25) are called the co-state equations or the multiplier equations.

The m equations (2.26) are the optimality conditions which specify the

control in terms of the state and costate variables. The equation

(2.27) constitutes the boundary condition on the multipliers or the

24



transversality equation. The transversality condition provides one

equation for the unknown final time.

The above conditions are not sufficient to solve the time optimal

control problem. The above equations would lead to an optimal

solution that would approach zero as the controls move towards

infinity. This would require that the control be constrained. In

most practical systems, however, bounds on the control exist in the

form of maximxam force or torque that can be applied by the actuator.
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CHAPTER 3

THE CONTINUUM APPROACH

In Chapter 2 the general time optimal control problem was

formulated. The system state equations, the multiplier equations, the

transversality equation, and the optimality conditions were derived

for a general system. However, bounds on the control were not

specified, whereas physical systems have bounded controls. In this

chapter the minimum time problem with bounded control will be

introduced and the continuvun approach will be developed for the

analysis of one such problem in the phase space domain. The

solution of the system of equations derived by the continuum approach

will be presented in Chapter 4.

MINIMUM TIME MOTION WITH BOUNDED CONTROL

As an illustration of the method by which control bounds are

treated consider an n order linear system in the phase variable

canonical form

x(t) - A x(t) + b u(t) (3.1)

where x(t) is the state vector of order n, u(t) is the scalar control

input, and A is an n x n matrix of the form
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A -

~0 1

1

1

1^1 -^2 ^3 -^ -^5
• •

-a
n

(3.2)

and b is an n X 1 vector given by

b - (3.3)

1

The control magnitude satisfies the constraints

-1 < u < 1. (3.4)

The initial and final conditions, x(0) and x(tj) , are specified. The

system described by equation (3.1) leads to an augmented functional,

J , of the form

J = Jq^ {1 + A^(x - A X - b u) + t^(u - 1) + n'(-u-l)) dt (3.5)

where A is a vector of Lagrangian multipliers of order n and /i and
fj,

are non-negative scalar Lagrangian multipliers used to append the

control magnitude constraints to the functional. It can be shown [26]

that (i^ is greater than zero when u is on the +1 boundary and zero
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otherwise. A similar statement can be made for n' with respect to the

-1 boundary.

The functional, J, can be minimized by setting the variation, 5J

,

to zero. The variation, 5J , is given by

5J - [1 + a"^ (x - A X - b u) + /i"*" (u-1) +/i'(-u-l)]
tf ^^f

^4

^0+ fJ (A^ fix - a"^ A 5x + (/ - p'- A b) 5u

+ (x - A X - b u) 6A + (u - 1) 5^"^ + (-U - 1) 6fi')dt. (3.6)

The second, third, and fourth terms of the dt^ terms go to zero for

all values of t. Integrating by parts, and using 5x(t^) - - x dt^

[26] , we get

6J - [1 - A x] + SJ d^ 6s -
a''^ A 5x + (m"^ - t^'- ^^ b) Su

tj u

+ (X - A X - b u) 5A + (u - 1) 5;i + (-u - 1) Sti'}dt. (3.7)

If we choose A such that the coefficients of 6x go to zero and since

the other variations in equation (3.7) are arbitrary, we get

T '

1 - A^ X
t-t.

T
A A,

0,

/ - /i" - A^ b - 0,

(3.8)

(3.9)

(3.10)
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and i - A X + b u. (3.11)

The last two terms under the integral sign in equation (3.7) indicate

that the control u must have a magnitude of

|u| - 1. (3-12)

Equation (3.10) shows that

and it is seen that the variations Sm"^ and 6^" are not independent.

Combining equation (3.13) with the conditions on the multipliers, ^i^

and /i , we get

u(t) - sgn (A^(t)). (3.14)

which is also demostrated in optimal control texts [25] -[26].

In this work a double integrator problem has been considered.

The double integrator may be defined as one in which the control

specifies the acceleration of the system. The position may then be

calculated by integrating the control twice. The double integrator

problem may be defined by an equation of the form (3.1), where

^ -
[2 J]

"'i^'

and

b-[;]. (3-16)

Equations (3.8), (3.9), (3.11), (3.12) and (3.14) give us

1 - A^(t) X2(t) - A2(t) u(t) - 0, (3.17)
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X^(t)-0, (3.18)

A2(t) - - A^(t). (3.19)

x^(t) -X2(t). (3.20)

X2(t) - u(t). (3.21)

|u(t)| - 1. (3.22)

and u(t) - sgn (A2(t)). (3.23)

Equations [3.8], [3.9], [3.11], [3.12], and [3 . 14] along with the

initial and final conditions on the state variables provide us with a

problem similar to the two point boundary value problem [TPBVP] that

can be solved by numerical techniques. However we lack boundary

conditions on the multiplier values.

As stated in Chapter 1 most workers used some sort of a shooting

technique to solve the problem. However most of these techniques are

time consuming and are unfeasible for the design of an online

controller. Shetty [19] has shown that conventional numerical

techniques in the time domain are unstable unless the initial

estimates are close to the actual solution. The various novel methods

discussed in Chapter 1 either require a linear system or do not solve

the problem completely. The switching curve, which is a map of the

sign of the control at any point in the state space, is the fastest

technique and still the best control method but is not possible for
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higher order systems because it is hard to visualize and only of

limited use for nonlinear systems.

THE CONTINUUM APPROACH

Luh and Shafran [24] developed a method to determine the control

from a least-squares-fit of the distribution of the minimum time

isochrones in the phase space. The isochrones are surfaces of

constant final time. This type of an analysis provides a convenient

method to determine the control for an infinite number of different

problems in an efficient manner. Linear systems require a single

distribution of isochrones, however, nonlinear systems require one

isochrone distribution for each exclusive destination. Whereas Luh

and Shafran determined the distribution from many different solutions

of a linear system, the goal in this work is to determine if this

isochrone distribution could be determined from some balance relation

involving the gradients of the final time.

There are several points which promote this idea and provide an

incentive for the work. These are [27]

1. Any exclusive distribution is a function of the state

variables exclusively, thus eliminating time as the

independent parameter.

2. Since the state variables are the independent parameters, the

steps in finding the isochrones are the same for both linear

and nonlinear systems.
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3. If the isochrone information can be determined quickly then it

may be possible to develop a controller based on these

principles.

A continuum approach in the phase plane is presented for a double

integrator problem.

GOVERNING EQUATIONS

The necessary and sufficient conditions for a minimum time

control problem are given by equations (3.8), (3.9), (3.11), (3.12)

and (3.13). The co-state vector A at the initial time is related to

the final time by [26]

,

A(t^) - - Vtj(s(tj^)). (3.24)

where V is the vector gradient operator given by

rT - (
3 a _ _

a
j^ (3.25)r - (

ax^ 3x2 dx^

for an n^^ order system. Equation (3.25) holds over all the

permissible regions in the phase space where the gradient exists.

Equation (3.24) will be derived for a general system defined by

equation (2.4).

The augmented functional, J, for a minimum time control problem

driving a system to the origin can be written as

J - SJ [1 + k^ (^ £(x,ii))] dt - J(x(t.) - tj(x(tj^).(3.25.1)

This is a continuous function of s(tj^). Integrating equation (3.25.1)

by parts produces
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-j(x(tj^) -Ax ^f
+ /^ [1 - a"^ X - a"^ f(x,u)] dt. (3.25.2)

Applying the gradient operator then produces

V J - 7t^(x(t.) - -A^Ct.) + L^ Y [1 - A^ X - A^ f(x.u)] dt. (3.25.3)

Since V consists of partials with respect to the components of x(t^)

then the integrand in equation (3.25.3) vanishes for all t not equal

to t.. For the case when t is equal to t^^ we have

V[l - A^ X - a"^ f(x,u)] A*^ - A*^ V f(x,u) (3.25.4)

Rearranging equation (3.25.4) produces

A + [V f(x,u)]'^ A - 0. (3.25.5)

which shows that the integrand of equation (3.25.5) vanishes for all t

in the interval (0. tj) . Hence we get equation (3.24) from equation

(3.25.3). It should be noted that due to the choice of signs of

multipliers in equation (3.25), the vector A(t^) points in the

direction of the greatest decreasing final time.

The transversality condition equation (3.8) is usually applied

only at the final time, but it is true everywhere in the phase space

where the gradient exists. The transversality condition evaluated at

the initial state is

1 + S (t^) Vtj(x(tj^)) - 0. (3.26)
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Equation (3.26) is the projection of the gradient of the final time on

the time derivative of the state vector. Equation (3.26) is

insufficient to uniquely specify the components of the gradient of t^

for systems of order two or greater.

NECESSARY CONDITIONS

In order to develop a method to determine the final time field,

t (x(t.)), it is necessary to develop a means of uniquely specifying

the gradient of the final time.

The cost function of the minimum time problem is given by

t,

-f-J

which can be written in the augmented form as

-Jo^ldt, (3.27)

^f
- V (1 - ^ 2C +t X )dt. (3.28)

It should be noted that the final time value is the same as the

augmented functional. The first two terms of the integral constitute

the transversality equation. Equation (3.28) then reduces to

tf -Jq^ A^xdt. (3.29)

As stated earlier in this chapter, the double integrator will be used

to illustrate the problem. Integrating equation (3.29) by parts for

the double integrator and using state and costate equations, produces

T
tf - A X

o'
- Jo^ A^xdt,
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or tf - A X 0^ - Jo^ (Xi '\ + X2 X^) dt.

The first term under the integral is zero, and the second term under

the integral can be rewritten using the state and costate equations.

This gives

T
tj - A X

o' ^ J"o' ^1 ^1 ''^-

Integrating again, we have

t/

tf - A X -^ ^1 ^1 j/ X^ x^ dt.

The term under the integral is zero by equation (3.18). Therefore, we

have

^f
tj - (2 x^ X^ + X2 X^)

•
^^-^^^

If the destination is the origin of the phase plane, equation (3.30)

becomes

t^ - - 2 Xj^(O) A^(0) - X2(0) A2(0),

which gives

tj - [2 x^(0) X2(0)] 7t^(x(0)). (3.31)

Equation (3.31) is the additional, necessary condition to uniquely

specify the gradient.

As stated before, the minimxim time problem is solved in the time

domain approach by the integration of the functional along the phase

trajectory and the functional value is the difference between the

final time and the initial time, i.e. the endpoints of the path of

integration are the initial and final points. Equation (3.30) shows
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that the final time can be described as a function of the local

variables at each end point. Now, equation (3.29) can be written as

tf - Jo^ ^ k dt,

or,

or.

t.-j:
X(tj) ^

x(0)
A dx,

x(t.) „

-J^(0) ^%^' (3.32)

which shows that t^ is a potential function. The path of integration

is arbitrary and the value depends only on the endpoints of the path

of integration.

It is instructive to solve equations (3.26), and (3.30)

simultaneously for the components of the gradient of t^. The solution

IS

^^f
(2 x^ u - X2)

u

-X, 2 X,

^f

-1

(3.33)

"2 " 1

where it can be seen that the coefficient matrix is singular on the

switching curve [26]. Equations (3.26) and (3.30) are used to

determine the final time field. These equations are solved by a

finite element method [28]. The details of the finite element method

are given in Chapter 4.
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CHAPTER 4

FTNTTR ELEMENT MODEL

INTRODUCTION

Engineering problems are invariably nonlinear in nature and

closed form solutions are not available. This necessitates the use of

some form of numerical technique. Two methods which are commonly used

are the finite difference and the finite element methods. The finite

element method uses piecewise continuous approximations of the region

under consideration. The finite element method is more versatile and

easier to use with problems that have irregular geometry or unusual

boundary conditions. The finite element method was used in this work

because of the success of the method in treating other problems based

upon a continuum formulation.

The finite element method discretizes the solution region of a

continuum problem into a finite number of elements. The unknown

solutions within each element are then expressed in terms of

approximating functions. The problem is reduced to one with a finite

number of unknowns, the nodal values, and solved.

The advantage of such a formulation is that it reduces the

complex problem to a greatly simplified problem at an elemental level.

The method provides a variety of different ways in which the elemental
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problem can be formulated. The least-squares method has been used in

this work to produce the element equations.

The finite element method has five basic steps. These are,

1. Discretization of the continuum.

2. Specification of the interpolation function.

3. Development of the element equations.

4. Assembly of the element equations to get the system of

equations

.

5. Application of the boundary conditions and obtaining the

solution of the system of equations.

In this Chapter the finite element model of the double integrator

problem, for which the continuum relations were derived in Chapter 3,

will be presented. The presentation of the results and the pertinent

discussions and conclusions will be deferred until Chapter 5.

FINITE ELEMENT ANALYSIS

As stated before, the finite element method basically consists of

five steps. In this work the analysis was done with the help of

FORTRAN programs executed on both an IBM 370 VM/CMS computer and an

IBM PC microcomputer. The program provides for changes in the size of

the region under consideration and the size of the grid, but it allows

only a rectangular grid with triangular elements. The least squares

technique was used in this analysis so as to provide symmetrical

element matrices for economical storage and faster solution time. The

analysis was performed using single precision arithmetic and is

suitable for implementation on microprocessors. The steps in the
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formulation and analysis of the finite element model will be

presented. The programs are listed in Appendix 2.

DTSCRETIZATTON OF THF. CONTINUUM

The discretization of the continuum has been done with two

FORTRAN subroutines, namely, NODE and GRIDLT. The domain selected is

a square region with the origin at the center. The subroutine NODE

places equispaced nodes in two directions and numbers them. The nodes

are numbered horizontally if the number of nodes in the y-direction is

greater than or equal to the number of nodes in the x-direction or

vertically downwards otherwise (Figure (4.1)). This reduces the

memory required when the element equations are stored in banded matrix

form. It should be noted that there is no overall advantage to any

method when the number of nodes is the same in both directions. The

nodes divide the region into a regular and uniform grid. The

subroutine GRIDLT divides the grid into triangular elements of the

same size and forms a table, called the node table, which contains the

node numbers of each element. The node table has its elements

specified in the counterclockwise direction. This is shown in Figure

(4.2). The triangular element was chosen for ease of application.

INTERPOTATION FUNCTION

The next step is to choose the interpolation function. The nodal

values of the final time, t., are t. . t. ,
and t^ and the nodal

^ ^i j k

coordinates are (x, , x, ) ,
(x, , x, ) , and (x^^

• ^j > •
A li'^ear

^i ^i j j k k
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I 2 3 NX NX+l

CNX+0*l

2CNX*U*l

NY(NX*l)+l

2(NX*U

3<NX*U

<NY*l)0«*l)

NX ° Nunbvr of Rvctangutar Regions n th« x axis

NY = Nunbvr of Rvctangutar Regions » th* y axis

Figure 4.1a; Nunbering of Nodes
Case M NY 1 NX

NY*1

CNY*l>*l aCNY->0»l MX<NY*U*1

2tNY*l) 3CNY*0 (NX*IXNY*U

NX = Nunbrr of rectangular regions in the x axis

NY - nurtoer of rectangular regions •> the y axis

Figure 4.ro: Nunbering of Nodes
Case \u NY < NX
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Figure 4.2a: Basic Element Shape

FiQ'^re 4.2b: Nodal Values of Final Tine
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interpolation formula [28] of the form

t^ - a, + 02 Xj^ + a^ X2

is chosen. The nodal conditions give

^f.
" "1 "* "2 ''l. ^ "3 "^1.'

t^ - a, + a„ X, + a., x„ ,

tc - on + "o X, + a, x« ,

^k ^ "^ k "^ ^k

(4.1)

(4.2)

which yields

"1
-

2 A
[(Xt x„ - x^ X, ) t. + (X., Xj - x^ X2 ) t^

Ij \ \ 2j fi Ik 2i li ^k ^j

+ (x, X„ - X, x„ ) t^ ]

,

^i ^j ^j ^i ^k

a - _]_ [(x, - X2 ) t. + (X2 - X2 ) t^ + (X2 - X2 ) t. .

2 2 A ^j ^k ^i ^k ^i ""j ^1 J k

"3 - J_ [(^1 - x^ ) tf + (x^ - X, ) tf + (x^ - x^ ) t.
,

^ 2 A ^k J ^i ^i "-k "-J J 1 k

where the determinant

1 X, X2
i i

^ ^1. ^2,
J J

1 X, x„
^k "^k

2 A, (4.3)

and A is the area of the triangle.
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Substituting for a^, a^, a^ in equation (4.1) and rearranging, we

get

t. - N. t. + N t. + N, t. ,
(4.4)

f 1 f^ J tj K Ij^

where

N. - ^ [a. + b. X, + c. x, ]

,

(^-5)
^ 2 A

N. - J_ [a. + b. X, + c. x, ], (4-6)
J 2 A -'

^ ^

2 A

and

N.
1

-i - -1. %- X '2j' ^ - "2j- %• ^i -V "^j'

N. and N, are called the shape functions. It may be noted that
J' k

each shape function is one at its node and zero at the others, the sum

of the three shape functions at any point is one, and the shape

function varies linearly between its node and the other two nodes but

is zero on the side opposite its node. The selection of this type of

an interpolation function gives us the final time, t^, as a linear

function of x, and x^ and also gives constant first derivatives in all

elements. The first derivatives of t^ are given by

43



and

^^ = ^ [b. t. + b, t. + b, t. ], (4.8)

^ - 1 fc. t- + c. t. + c, t. ]. (4.9)

2 A i -^ J k

The element nodal coordinates can be transformed into a

dimensionless local coordinate system. Such a transformation is

useful only in that it provides us with a integral relation involving

the shape functions. The details of the transformation are given in

reference [28] and it gives an integral of the form

f nPn^N^ dA - P' '^' ^'
2 A. (4.10)

"'A 1 J k (p+q+r+2)

!

This integral is useful in the determination of the element

properties.

ELEMENT PROPERTIES

The element properties have been derived with the least- squares

technique. Using equations (3.24) and (3.29), we seek the solution,

t^(x-,, X2) , that minimizes the integral

I.. - L (J_fe •'A
(1 + x^ Vtj)^ + K (tj- [2x^ X2] Vt^)^

+ ^i^(n - 1) + /i'(-u - D) dA, (4.11)

where I^ is the performance index measuring the error in the

solution and K is a constant of unit magnitude that insures

consistency of dimensional units. Other formulations were tried,
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however, equation (4.11) produced the results which fit the

requirements and by which the solution could be obtained.

The control can be determined to minimize the performance index,

I . Setting the partial derivative of I^^ with respect to the

control, u, to zero, we get

/i+ - A2(l - X2 A^) - A^ ; u - 1, (^-12)

and m" - -^2(1 - X2 X^) - A^ ; u - -1. (4.13)

Since the multipliers, /i'^and /i' , are always non-negative, we have

A2(l - X2 A^) > A2 ; u - 1, (^-1^)

and -A2(l - X2 A^) > A^ ; u - -1. (4.15)

Equations (4.14) and (4.15) can be combined to give

u A2 (1 - X2 A^) > 0. (4.16)

Solving equation (4.16) for u produces

u - sgn (A2 (1 - X2 A^)). (4.17)

Equation (4.17) is a discrete form of the control. The control, u,

can change for different values of X2 within the element and the

multipliers. A, and A2, are constant inside each element but vary

between elements. This gives us a distinct control at each point in

the phase space region chosen. The control is chosen such that

equation (4.11) is always reduced.

Now, expanding the first term of equation (4.11) gives
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^2X2 x^u

x^u u
dA Vtj, (4.18)

where the integrals are computed over the area of the element. Since

the control may either be constant or vary inside each element, the

integrals involving the control, u, need to be determined separately.

If the control, u, is constant within the element then the integrals

are easily evaluated. However, if the control changes sign within the

element then the integration requires another procedure. Assuming

that the distribution of the final time, t^, is known, it is possible

to determine whether there is a sign change within the element by

evaluating the control equation (4.17) at each node. If there is a

sign change, then at some value of X2 the argument of equation (4.17)

must vanish. This value of x, will be denoted as X2 and is given by,

s

X, -J_-__li__ (^-15)

''s A^ atj / dy.^

which is a function of the nodal values of the final time. Figure

(4.3) shows the two possible distribution of the control, u, inside an

element in this case. It should be noted that the grid was completely

made up of these two types of elements exclusively.

There are two integrals in equation (4.18) that depend upon the

control, u. With reference to Figure (4.3)

;^ u dA - u. 4^dA - u. 4.^^dA - u.(2A, - A). (4.20)
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J

Figure 4.3a: Division of Triangle for Integration Purposes
Case i

Figure 4.3to' Division of Triangle for Integration Purposes
Case ii
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The area A, is a function of the location of the switching line given

by equation (4.19) and is, thus, a function of the nodal values of t^.

The area A^ is given by

A, - A (X, - X. )/(x„ - Xj ) (4.21)
^ ^s ^j ^k '^j

It should also be noted that the quantity u^ in equation (4.20) is the

nodal control value that has a unique sign. The other integral in

equation (4.18) that depends upon the control, u, is

;^ X2 u dA - u. J^^X2 dA - u. !^.^^^2 ^'

4 X2 u dA - 2 u. /^^X2 dA - u . ;^ X2 dA. (4.22)

Now, each of the integrals in equation (4.22) is the first moment of

area of the triangles about the x^ axis, therefore, equation (4.22)

becomes

r, x^ u dA - u.[2 A, (X, + 2 x„ ) - A (x, + X2 + X2 )] / 3 (4.23)
JA 2 J i 2j Zg ^^ ^j ^y.

where x„ is the X2 coordinate of the node having the control u^ while

J

x^ and X, are the x„ coordinates of the remaining nodes. The

^i \
remaining integrals in equation (4.18) give

r x„ dA - A (x„ + X, + X, ) / 3, (4.24)
Ja 2 2^ 2j 2^

and ;^u2 dA-4 dA- A. (4.25)

Defining the vectors and the matrix, d, as
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Now

N^ -
[ N^ Nj Nj^ ]

t^ -
[ t^ tf tf ] ,

^ ^i ^j ^k

-2 [ X^ X,^ Xrt J ,

^i ^j ^k

(4 26)

(4 27)

(4 28)

(4 29)

and d^. \ ^j \
^i ^j '^k

(4.30)

we have

J^ x2 dA - ;^ N^ X2 N^ X2 dA,

or ; x^ dA - ;^ 4 N N^ X2 dA,

or J^xl dA - 4 Ja^ ^ ^^2' (4.31)

;. N N*^ dA - ;,

Ni

N,N2

N^N3

N,N2

^^2

N2N3

N1N3

N2N3

N?

dA.

Using equation (4.10) we have

;^NN^

Defining the matrix G as

dA -

" 2 1 I
A
- 1

1

2

1

I

12 2

2 1 1 "

1 2 1 t

1 1 2

(4.33)

(4.33)
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then equation (4.31) gives

2 ,, A .T
;^ x^ dA - _2. x^ G x^.

Now, the second part of equation (4.11) gives

2 X,

(4.34)

1 J. 1 oT.
Ja -L t^f dA . _^ Y^t, /,

r 2 x^ Xj 1 dA Vtj

4 [ 2 ^1 '^f ^^2 ^f ] ^ ^^f

or I
11 - r

^ t^
fe Ja ^- ''f

t; dA + Jl v^t^ ;
2

-f Ja

4 X, 2 x^ X2

2
2 Xj^ X2 X2

dA Vt

/a [ 2 ^1 '^f ^^2 ^f ]
dA Vtj.

The integral in the first term of equation (4.35) gives

4 4_ t2 dA - _L /^ n'% N% dA.

-"f

(4.35)

or

or

/;, i. t| dA - 1, 4 4 H H^ dA t,,

;.-14dA-i.
'A -2- "f

tf G tf

.

2 12

The integrals in the second term of equation (4.35) give

J^ 4 xj dA - 4 J^ N^^^ N^X]^ dA,

or

or

and

;^ 4 x^ dA- 4 xj ;^N N^ dAx^.

4 4 x2 dA - 4 _^ x^ G X,.

4 2 x^ X2 dA - 2 ;^ n\ N^X2 dA,

(4.36)

(4.37)
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or

or

J^2 x^ X2 dA-2 x^J^N N^ dAx2,

4 2x, X2dA-2_A_x{Gx2.

The integrals in the third term of equation (4.35) give

;^ 2 x^ tf dA - 2 J^ f tf e\ dA.

(4.38)

or

or

and

;^ 2 x^ tj dA - 2 4 ;^ N N^ dA x^.

4 2 ^1 -f
t^ dA - 2

^
tj G X, ,

12

J"a ^^2 ^f ^ -^A
^^ % ^\ ^•

(4.39)

or

or

/,̂
X2 tj dA - tj J"^ N N dA X2,

/a X, t^dA-_^ t^Gx2.
12

(4.40)

Now, from equations (4.8) and (4.9)

and

Vtj

1^1

d tj,

2 A

t^. dj.

2 A

(4.41)

(4.42)

If we define

^1 " 4 ^""2 ""^ '^•

X2U u

(4.43)

(4.44)

L
4 X, 2 X, X2

2
dA. (4.45)
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and ^4-
12

2 G X, G ^2

Then, equations (4.18) and (4.19) can be combined to give

I^ - ^ + ^ P. / t. + ^ _]_ 4 ^ ^2 ^^ if

(4.46)

12 ^ 4 A"^

^
£f £4

^"^ if
2 A

(4.47)

an

In order to minimize the error in the element we have to set the

partial of I^^ with respect to the nodal values t^ to zero. This c

be done by making use of the vector differential properties.

,T
31

fe

atj
- 0.

which gives

1 T 1
d Pj +

2 A 2 A

'^ +
^

d £2 d''' t^

+
^

G t. +
•*•

d P, d'^ t . + _

4A'

1 1

4A

^T , aPo ^T.
tir d 2 d t^

atj

1 T
£4^ % ^ d

pT
t^ - 0, (4.48)

2 A "" ^ 2 A

The second term in equation (4.48) gives

'h d^t.
2 A atj 2 A

1 d t^
ax. atj

(4.49)
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Evaluating the partial differential terms in equation (4.49)

separately, we have

and

3i.
axo (Xo - X, )

2, 2.

ax.

atj
( - 1/ a:^ ) (

J J

1

TX ) b'

(4.50)

or

ax

atj
s - Cj^ b ,

(4.51)

where

2 A a:

(4.52)

Equation (4.49) can be rewritten as

'h d^t,
2 A at^ 2 A

Cj^ b P5 d t^ (4.53)

where

^ 3x2

(4.54)

The sixth term in equation (4.48) gives

1 1

2 2

t^r d 2 d t^
atj

Til
2 4a2

^T , ap, ,T.
tf d I d t^
^ ax..

ax.

at^

^JL_[.^£e^^%^i^-^r.
2 4a2

J^ 1_ c^ b tj d Pg d"^ tj, (4.55)

2 4a2
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where

P - ^^2
^ axo

or ^6

dv2(1.2)

ap

ax.

ax.

2(1.2)

(4.56)

The partial differentials in equation (4.56) can be evaluated as

^^2(1.2) - "i

ax.

2 A

(X2 + X2 )

(x, - x„ )

+ 4 A,

2 u
or X

(X2 + X2 )

j s

(Xo - x« )

+ 2 A, (4.57)

Equation (4.48) can now be rewritten as

[EM(t.)] t. + V(t.) - [0 0]'^ - [RES]^ (4.58)

where

[EM(t^)] - ^ c^bP^/ + _L dP. /+ ^

2 A

1

77

- -2 -

4 A'
12

d Po d^- _^ P4 d^
^ 2 A

1 T^ d P,- —4 (4.59)

2 A

and [V(t )] - _J_ d P{ + jL _^: c^ b t^ d Pg d^ tf (4.60)

2 A 2 / a24 A

This gives us three elemental equations for the three nodal

unknowns. However, the nodal values are also associated with other
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nodes and the problem has to be solved on a global basis. The element

equations are computed in the FORTRAN routine LINTRI.

ASSEMBLY OF THE ELF-MF.NTAT. EQUATIONS

In order to solve for the unknown nodal values of the final time

in the region under consideration. It is necessary to combine or

assemble the element matrix equations to form the global system of

equations. The basis for the assembly procedure is that all the

elements are interconnected at the nodes with adjacent elements and

the value of the unknowns are the same for each element sharing that

node. The assembly procedure is carried out by means of the routine

BUILD.

SOLUTION OF THE SYSTEM OF EQUATIONS

In order to solve the system of equations, the values of final

time, t^, were specified as boundary conditions on the outer

boundaries. This was performed in routine BC. The solution was then

obtained iteratively by using Newton's method. In order to solve the

system of equations the Jacobian has to be calculated. The Jacobian,

[J], can be computed from equation (4.58) and is of the form

[J] - [EM(tj)] + _f_ [EM(tj)] % + _i_ [V(tj)]. (4.61)

The second term in the equation (4.61) gives

' [EM(t,)]t, - ^ bP^dTt._!fl^ + _i_d J^d^ t,

-IT, ' ' ^r^ ' 'at, , ^2 at.

55



A_bPU^£f^^ bT + ^_d J^d^ t^c^b^
2 A ^ AA^ ^ ^2 3x2

^ b P^ / t. _^ b^ + _1 d Pg d^ tf c^b^. (4.62)

TT- -5 AA^ ^^2

The third term of equation (4.61) gives

a

dt^
[V(tf)]

1 azi ^ 1 1

2 A dt^ 2 / a24 A

2 b t^ d Pg d^ c-,^

+ b t^ d ^^6 d^ t. c, + b t'^ d P, / t, ±1
" "f " "atT " ^ ^ ^ ^ at.

or 1 d P, c, b^ -. _i_ ^_
-l-T--' ^ 2 ,^2

+ b t^ d ^-6 d"^ t^, c, ^

2 b t^ d Pg d'^ c^

ax.
'-f

"1
atj

+ b t''^ d P, d''^ t^,
^1 b'^

- - - -6 - f
A A,

(4.63)

The third term in equation (4.63) can be evaluated as

^ ^ b J d i!6. d^ t, c,^
2 / *24 A

ax.
'f "1

atj

L ^
b t^ d P^ / tj cj b''^

2 / a24 A

(4.64)

where

' ax^
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or

2

^^2a.2)
2

2 ax^
£7- ^ ^(1.1) 2s

2
ax2

L ^ J

The non-zero terms in equation (4.65) can be evaluated as

(4.65)

3^^222 - « u.

ax
3 ^ (x^ - X, )

2 'k
s

(4.66)

Equation (4.63) can now be written as

^ [V(tj)] - \ d £5 c^ b*^ + J \
at 2 A 2 4a2

2 b tW P, d c-i

T T 2 T
+ b t^ d P^ d % Ci b

T T C T
+ b t d P, d tr: 1^ b
- - - ^ * A A,

(4.67)

The Jacobian is now given by

[J] = 1 . V .T .1 ^ 1 d P, d^ + / G ->- ^ d P3 d^ - - P, d-

2 A
c, b P^ d +

4 A
12

4 A
2 A

-4 -

^ dpj+ ^ bP^/ t. ^l_b^ + _i_dPg/ tf c^b^

2 A 2 A AA, 4 A

1 T 1
d Pc c, b^ + _

"2"a" ^ ^ 2 4 A

2 b tJ d Pg d"^ c^

2 V.T
b t^ d P, d^ t. cf b' + b t' d P. d^ t. "1 b

A A,

(4.68)
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It should be noted that the Jacobian is symmetric. The

symmetry is obvious in terms two, three, four, seven, nine, eleven,

and twelve of equation (4.68). Terms five and six, and terms one and

nine are the sum of a matrix and its transpose, which is symmetric.

Since the Jacobian was obtained from the element matrix it has to be

calculated along with the element properties and assembled.

In order to solve the problem iteratively the residual equation

is given by

[J] 5% - [RES], (^-69)

where

4-^1-4 - 5tf.
(^-70)

The superscripts in equation (4.70) denote the iteration numbers

.

Equation (4.69) can now be rewritten as

[J] 4""^ " ^^^ 4 ^^^^^- ^""'^^^

The assembled form of equation (4.71) can now be solved iteratively.

The system of equations in each iteration were solved by a FORTRAN

routine SOLVE. The results and conclusions are presented and analysed

in Chapter 5. Recommendations for further study are also presented.
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CHAPTER 5

RESULTS AND RECOMMENDATIONS

In this work a continuum approach to the minimum time problem has

been investigated to approximately determine the isochrone

distribution in the phase plane of a double integrator problem. The

continuum relations were derived and an approximate solution was

obtained using the finite element method. The calculations were done

by FORTRAN 77 programs implemented on an IBM 370 VM/CMS computer and

an IBM PC microcomputer.

A four by four square region was selected to test this technique.

A number of different grids were used in the calculation ranging from

very coarse to very fine. Two such cases are presented here. Figure

(5.1) shows the isochrone distribution for a 21 by 21 grid while

figure (5.2) shows the same distribution for a 41 by 41 grid.

The abrupt change in the direction of the isochrones in these two

figures allows one to approximately trace the switching curve. The

development of the switching line, X2 , causes the switching curve to

s

have a tendency to prefer a horizontal distribution. The true

switching curve passes through the lower righthand and upper lefthand

corners of the grid. The 41 by 41 grid shows that as the element
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sizes is reduced the switching curve approaches the expected

orientation.

The solutions are also presented in tabular form for four cases

along with the actual solutions. A comparison of the actual solution

to the approximate solution shows that the solutions with fine grids

give very good results.

Better isochrone distributions are possible if the grid is made

to conform to the switching curve, however, this defeats the purpose

of the investigation.

The boundary conditions on the outer grid surface were varied to

study the performance. The only set of boundary conditions which

provided a reliable solution was to specify the true final time at

each boundary node. That this is a necessary condition for the

solution was verified by deriving the differential equations

describing the variations of the final time with respect to the state

variables, x^ and X2 , from equation (3.31). These two differential

equations are separable and each requires two boundary conditions

before a unique solution is possible.

An interesting condition occurs when all the boundary conditions

are removed from the problem except the boundary condition at the

origin. The solution which results is

t^ix^.x^) - - UX2 (51)

where u is negative for positive X2 and positive otherwise. Equation

(5.1) produces the control necessary to reduce the velocity to zero in
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minimum time regardless of the initial and final value of x^
.

An

examination of equation (5.1) and equation (4.11) shows that this

simple functional expression causes equation (4.11) to vanish

entirely, thus rendering equation (4.11) an absolute minimum.

Conclusions

Conclusions reached in this Investigation are:

1. The present formulation is necessary but not sufficient to

uniquely specify the minimum time control; other information

is necessary in order to obtain a solution.

2. Coarser grids require very little time to produce an

approximate solution, a point which has provided motivation to

continue the work in this area.

3. Linear and nonlinear problems present the same level of

complexity when approached from this point of view.

4. The method can be used to provide closed loop minimum time

controls by determining the position of the system at each

instant of time and calculating the control at that point.

Problem areas requiring additional investigation include:

1. The determination of additional continuum relations which

would provide a unique solution without the need to specify

the solution on the boundary.

2. Developing a means to treat systems of order greater than two.

3. Determining an alternative analysis by which the continuum

condition is determined directly from the minimum time

functional.
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4. Testing the control produced by this or similar methods to see

if there is not excessive chattering.
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(-2.-2)

(2,2)

Fig-re 5.1: Isochrone Discribucion from the 21x21 Finite
Element Grid

(2,2)

c-2.-:-.

Figure 5.2: Isochr-ne Distribution from the 41x41 Finite
Element Grid
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2.0 4.0 4.8 5.5 6.0

2.2 1.4 2.4 3.4 4.2

2.8 2,0 0.0 2.0 2.8

4.2 3.4 2.4 1.4 2.2

6.0 5.5 4.8 4.0 2.0

Table 5.1a: Approximate Solution from the Continuum Approach
For the 5x5 Grid

2.0 4.0 4.8 5.5 6.0

2.2 1.9 2.2 3.4 4.2

2,8 1.9 0.0 1.9 2.8

4.2 3.4 2.2 1.9 2.2

6.0 5.5 4.8 4.0 2.0

Table 5.1b: Actxial Solution from the Continuum Approach

For the 5x5 Grid
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2.0 3.3 3.9 4.3 4.7 5.0 5.3 5.5 5.8 6.0

2.0 2.2 2.5 2.9 3.4 d.'9 4.3"' 4.6 4.9 5.1

2.1 1.9 1.8 1.9 2.3 2.9 3.4 3.7 4.1 4.3

2.3 2.0 1.6 1.3 1.3 1.9 2.5 3.0 3.3 3.6

2.6 2.3 1.9 1.4 O.a 1.2 1.9 2.3 2.7 3.1

3.1 2.7 2.3 1.9 1.2 0.8 1.4 1.9 2.3 2.6

3.6 3.3 3.0 2.5 1.9 1.3 1.3 1.6 2.0 2.3

4.3 4.1 3.7 3.4 2.9 2.3 1.9 1.8 1.9 2.1

5.1 4.9 4.6 4.3 3.9 3.4 2.9 2.5 2.2 2.0

6.0 5.8 5.5 5.3 5.0 4.7 4.3 3.9 3.3 2.0

Table 5.2a: Approximate Solution from the Continuum Approach
For the 10x10 Grid

2.0 3.3 3.9 4.3 4.7 5.0 5.3 5.5 5.8 6.0

2.0 1.8 2.2 3.0 3.5 3.9 4.3 4.6 4.9 5.1

2.1 1.8 1.5 1.2 2.4 2.9 3.4 3.7 4.1 4.3

2.3 2.0 1.6 1.2 0.7 2.0 2.6 3.0 3.3 3.6

2.6 2.3 1.9 1.4 0.8 1.2 1.9 2.4 2.7 3.1

3.1 2.7 2.4 1.9 1.2 0.8 1.4 1.9 2.3 2.6

3.6 3.3 3.0 2.6 2.0 0.7 1.2 1.6 2.0 2.3

4.3 4.1 3.7 3.4 2.9 2.4 1.2 1.5 1.8 2.1

5.1 4.9 4.6 4.3 3.9 3.5 3.0 2.2 1.8 2.0

6.0 5.8 5.5 5.3 5.0 4.7 4.3 3.9 3.3 2.0

Table 5.2b: Actual Solution from the Continuum .Approach
For the 10x10 Grid
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APPENDIX 1

CONSTRAINED OPTTMIZATTOW OF A FUNCTIONAL

Consider the functional, J, given by equation (2.18)

J(x(t), x(t). u(t), A(t). t)-;^^i(x(t). x(t). u(t). A(t). t)dt (Al.l)

where the initial time. tg. and initial states. xCtp), are fixed and

the final time, t^. is free to vary. The functional
,

J
,

can be

minimized by setting the variation SJ to zero. The variation, 5J
,

is

given by

t,

5J = Jt ^ 5x +!!! 5x + !!! 5u + !L 5A

ax du d\
ax ~

t^+dtp
dt + ;^ g dt. (A1.2)

^f

Integrating the first term of equation (Al.2) by parts, we get

-T

5J = ff (x(t). x(t), u(t), A(t). t)

ax

Sx(tf)

+ g (x(t), x(t), u(t), A(t). t)
t-tf ^^f

+ //{[!! (2i(t). x(t). u(t), A(t). t)

^0 ax
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t. (— (S(t), x(t), u(t), A(t). t))] 5x(t)

dt -
3x

+ !| (x(t), x(t), u(t), A(t). t) 5u(t)

dn

+ !i (x(t), x(t), u(t), A(t). t) 5A(t)) dt. (A1.3)

d\

Since the variation 5x is zero at the initial time equation (Al.3) can

be rewritten as

,-T

5J - ^S (x(t). x(t), u(t), A(t), t)

d£

+ g (x(t), x(t), u(t), A(t). t)

5x(tj)

t-tj ^^f

+ j/([!i (s(t). s(t), u(t), A(t), t)

'^o ax

^ (^ (x(t). x(t), u(t), A(t). t))] 5x(t)

^t
ax

+ fi (x(t). x(t), u(t). A(t), t) «u(t)

au

+ ?| (x(t). x(t), u(t), A(t), t) 5A(t)) dt.

dX

(A1.4)
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If we represent the quantity dx(tj) as the difference between

x(tj+dt^) and x(tj) . Then we have

or

dx(tj) - 5x(tj) + *(tj) dt^

«S(tf) - dx(tj) - x(tj) dtj (A1.5)

Equation (Al.2) can now be rewritten as

-T

5J - ^ (x(t), x(t), u(t), A(t), t)

ak
t-t.

dx(tp

[!l (x(t). x(t), u(t), A(t), t) x(t)]

ax

dt.

t-t.

+ g (x(t), x(t), u(t), A(t). t) t-t^ ^*^f

+ //{[!! (2i(t), x(t), u(t), A(t), t)

ax

i_ (fi (x(t), x(t), u(t), A(t), t))] Sx(t)

d^ ax

+ !f (x(t), x(t), u(t). A(t), t) 5u(t)

au

+ !f (x(t). x(t), u(t), A(t), t) 5A(t)) dt.

dx

(A1.6)
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APPENDIX 2

* PROGRAM MAIN FOR FINITE ELEMENT PACKAGE

PARAMETER (MBAND-43)
PARAMETER (IMAX-441)
PARAMETER (JMAX-IMAX*MBAND)
PARAMETER (NDMAX-6)
PARAMETER (NELMS-450)
PARAMETER (NTLEN-NELMS*NDMAX)
PARAMETER (NJ=NTLEN/3)
PARAMETER (IELMAX-900)
REAL*4 X(IMAX) ,Y(IMAX) ,A(JMAX) ,RSV(IMAX) ,Em(NDMAX,NDMAX) ,

+ PRSV(NDMAX).XI(3),YI(3),NT(NJ,3),ERROR,SUMTS,

+ T ( IMAX) , TEMP , TOLD ( IMAX) , TTEST

INTEGER*4 IDEBUG , NDS , NX , NY , NMAX/IMAX/ , MAXBND/MBAND/

,

+ MAXMAT/JMAX/ , MAXEND/NDMAX/ , MAXELM/NELMS/

,

+ MAXTL/NTLEN/ , NTABLE (NTLEN) , NUMEL , NELM , ITYPE

,

+ TWIDTH,NBANDW,ITABLE(NDMAX) ,NEQ, IT, IB(IELMAX)

CHARACTER*! ANS
CHARACTER*80 FORM
CHARACTER*2 NB
EQUIVALENCE (T(1),RSV(1))
COMMON XL.YL.XH.YH
READ(5,*)XL,YL,XH,YH

10 IDEBUG-0
WRITE(6,100)

, «„ „ xo ,x

100 FORMAT (LX,' DO YOU WANT THE DEBUG SWITCH ON (Y OR N )?:')

READ(5,110)ANS
110 FORMAT (Al)

IF(ANS.EQ.'Y')IDEBUG-1
120 WRITE(6,130)

^ ,^

130 FORMATdX,' SPECIFY THE GRID DENSITY (NX BY NY ) : )

READ (5,*)NX,NY
IF(NX.LT.1.0R.NY.LT.1)THEN

WRITE(6,140) „ , ,^

140 FORMATdX,' ERROR - GRID PARAMETER MUST BE 1 OR GREATER /)

GOTO 120
ELSE IF((NX+1)*(NY+1).GT.NMAX)THEN
WRITE(6,150) ^^„ ^^,^

150 FORMAT (IX,' ERROR - REQUESTED GRID EXCEEDS AVAILABLE STORAGE')

GOTO 120
ENDIF
CALL NODE (X,Y,NMAX, NDS, NX, NY, IDEBUG)

ITYPE-1
CALL GRIDLT (NX , NY , NTABLE , NELM , NUMEL , IDEBUG

)
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ENDIF
CALL BAND (NTABLE , TWIDTH , NUMEL , NBANDW , NELM , IDEBUG)

NEQ-MAXMAT/NBANDW
IF( (NBANDW . GT . MAXBND) . OR .

(NEQ . LT . NDS )) THEN

WRITE (6,*) 'ERROR - INSUFFICIENT MEMORY'

GOTO 10

ENDIF
TTEST-1

.

DO 500 I-1,NDS
T(I)-0.

500 CONTINUE
DO 900 IT-1,20

IF(TTEST.GT.1.E-6)THEN
DO 550 I-1,NDS

T0LD(I)-T(I)

^^°
CALL BUILD (NTABLE, NUMEL, TWIDTH, NELM, A, RSV, NEQ. NBANDW,

+ NDS , ITYPE , X , Y , NMAX , ELM , PRSV , MAXEND , IDEBUG , ITABLE

,

+ IB, TOLD, IT)

CALL BC (A, NBANDW, NEQ, RSV, NMAX, NDS, X.Y, IDEBUG)

CALL SOLVE (A , NBANDW , NEQ , RSV , NMAX , NDS

)

ERROR-O .

SUMTS-0 .

DO 600 I-1,NDS
ERROR-ERROR+ (T ( I

) -TOLD ( I )
) **2

SUMTS-SUMTS+T ( I ) *T ( I

)

600 CONTINUE
TTEST-SQRT ( ERROR/SUMTS

)

WRITE(6,610)IT,TTEST

610 F0RMAT(1X,I5,4X,'TEST - ',E16.8)

DO 700 J-1,NY+1
WRITE(6,950)(T((J-1)*(NX+1)+I),I-1.NX+1)

950 FORMAT(1X.24F5.1.10(/1X,24F5.1))

700 CONTINUE
ENDIF

900 CONTINUE
NBA-NBANDW-1
WRITE (NB, 25) NBA

25 F0RMAT(I2)
WRITE(6,*)' THE SOLUTION IS :'

F0RM-'('//NB//'(lX,F4.1)/)'
WRITE(6,F0RM)(RSV(I),I-1,NDS)
DO 210 J-1,3

DO 220 I-1,NJ
NT(I,J)-NTABLE(NJ*(J-1)+I)

220 CONTINUE
210 CONTINUE

ERROR-O

.

SUMTS-0

.

DO 1100 I-1,NDS
TEMP-GETTEE(X(I) ,Y(I)

)
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ERROR-ERROR+ (TEMP - T ( I )
) **2

SUMTS-SUMTS+TEMP*TEMP
1100 CONTINUE

ERROR-SQRT ( ERROR/SUMTS

)

WRITE (6, 1150) ERROR

1150 F0RMAT(1X,' ERROR- ',E16.8)

WRITE (6, 2000)

2000 F0RMAT(1X,'D0 YOU WANT MAKE A PLOT :')

READ(5,110)ANS
IF(ANS.EQ.'Y')THEN

2050 WRITE(6,2100)
2100 FORMAT (IX, 'HOW MANY CONTOURS DO YOU WANT:')

READ(5,*)I
IF(I.LE.0)GOTO 2050
NUMEL-MAXTL/3
CALL GRIDLT(NX.NY.NTABLE,NELM,NUMEL,IDEBUG) ,,^,^^,^,0,
CALL PLT(X,Y,RSV,NMAX,NDS,NTABLE,NELM,NUMEL,A(l),A(MAXMAT/2)

+ MAXMAT/ ( 2*1) , IDEBUG , I

)

ENDIF
WRITE (6, 10000) ^^ ,^

10000 FORMAT (IX,' DO YOU WANT TO RUN ANOTHER CASE )

READ(5,110)ANS
IF(ANS.EQ.'Y')THEN

GOTO 10

ENDIF
STOP
END
REAL FUNCTION GETTEE(X,Y)
REAL*4 X.Y.U
U-1.
IF((Y.GT.0.0 .AND. X.GT. (-Y*Y*0. 5) ) .OR.

+ (Y.LE.0.0 .AND. X.GT. (Y*Y*0. 5) ) )U— 1.

GETTEE—U*Y+2 . *SQRT ( -U*X+Y*Y*0 . 5

)

RETURN
END

* SUBROUTINE FOR NUMBERING NODES

SUBROUTINE NODE (X, Y, NMAX, NDS , NX, NY, IDEBUG)

REAL*4 X(NMAX),Y(NMAX)
INTEGER*4 NMAX, NDS , NX, NY, IDEBUG

COMMON XL,YL,XH,YH
NDS-(NX+1)*(NY+1)
DELTAX- (XH -XL) /FLOAT (NX)

DELTAY- (YH-YL) /FLOAT (NY)

IF (NY. GE. NX) THEN
DO 10 I-1,NDS

KK-M0D(I,(NX+1))
IF(KK.EQ.O)THEN

X(I)-DELTAX*FLOAT(NX)+XL
ELSE
X(I)-DELTAX*FLOAT(KK- 1)+XL

ENDIF
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IY-(I-1)/(NX+1)
Y(I)-YH-DELTAY*FLOAT(IY)

10 CONTINUE
ELSE
DO 20 I-1,NDS

IX-(I-1)/(NY+1)
KK-M0D(I,(NY+1))
IF(KK.EQ.0)THEN

Y(I)-YH-DELTAY*FLOAT(NY)
ELSE
Y ( I )-YH - DELTAY*FL0AT (KK - 1

)

ENDIF
X ( I )-DELTAX*FL0AT ( IX) +XL

20 CONTINUE
ENDIF
IF(IDEBUG.NE.O)THEN

WRITE(9,*)'THE X AND Y VALUES ARE'

DO 30 I-1,NDS
WRITE(9,40)I,X(I),Y(I)

40 FORMAT(4X,I4,2(4X,F10.6)/)
30 CONTINUE

ENDIF
RETURN
END

* SUBROUTINE FOR FORMING THE NODE TABLE FOR EACH ELEMENT

SUBROUTINE GRIDLT (NX , NY , NTABLE , NELM , NUMEL , IDEBUG)

INTEGER*4 NX , NY , NTABLE (NUMEL , 3 ) , IDEBUG , Nl , N2 , N3 , N4

NELM-0
DO 10 I-1,NY

DO 20 J- 1,NX
IF (NX. GE. NY) THEN

N1-(I-1)*(NX+1)+J
N2-N1+1
N4-I*(NX+1)+J
N3-N4+1
ELSE
N1-(J-1)*(NY+1)+I
N4-N1+1
N2-J*(NY+1)+I
N3-N2+1

ENDIF
NELM-NELM+1
IF (NELM. GT. NUMEL) GOTO 50

NTABLE (NELM, 1)-N1
NTABLE (NELM, 2 )-N4
NTABLE (NELM, 3 )-N2
NELM-NELM+1
IF (NELM. GT. NUMEL) GOTO 50

NTABLE (NELM, 1)-N2
NTABLE (NELM, 2 )-N4
NTABLE (NELM, 3 )-N3
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20 CONTINUE
10 CONTINUE

TFfTDEBUG NE O^THEN
WRITE(9.*)' THE NUMBER OF ELEMENTS REQD. FOR THE PROBLEM :',

+
' NELM

WRITE(9,25)
25 FORMAT(//' THE NODE TABLE IS :'//)

WRITE(9 , 30)1 .NTABLEd . 1) .NTABLECI , 2) ,NTABLE(1 . 3)

30 F0RMAT(1X,I4,3(2X,I4)/)
40 CONTINUE

ENDIF
RFTURN

50 WRITE(5,*) 'ERROR *** NUMBER OF ELEMENTS REQD. EXCEEDS MEMORY

+ ' RESERVED'
STOP
END

* SUBROUTINE FOR BUILDING THE GLOBAL MATRIX

SUBROUTINE BUILD(NTABLE,NUMEL,TWIDTH,NELM.A,RSV.NEQ,NBANDW NDS

,

+ ITYPE,X,Y.NMAX,ELM,PRSV,MAXEND,IDEBUG,ITABLE,
TR TOT n TT^

^INTEGER*4 TWIDTH, ITABLE(MAXEND) ,NTABLE(NUMEL,TWIDTH) . IT , IB(NUMEL)

REAL*4 ELM(MAXEND,MAXEND) ,PRSV(MAXEND) ,RSV(NMAX) ,A(NEQ,NBANDW)

,

+ X(NMAX),Y(NMAX),TOLD(NMAX)

DO 10 I-1,NDS
DO 20 J-1,NBANDW

A(I.J)-0.
20 CONTINUE

RSV(I)-0.
10 CONTINUE

DO 30 I-1,NELM
DO 40 J-1, TWIDTH

ITABLE (J ) -NTABLE ( I , J

)

40 CONTINUE
Xl-X( ITABLE(D)
X2-X(ITABLE(2))
X3-X(ITABLE(3))
Yl-Y ( ITABLE (1))
Y2-Y(ITABLE(2))

SlL^UNTRI(Xi!x2.X3.Y1.Y2,Y3,ELM,PRSV,MAXEND,IDEBUG IB(Ih

+ T0LD(ITABLE(1)).T0LD(ITABLE(2)),T0LD(ITABLE(3)),IT)

DO 60 K-1, TWIDTH
IJ-ITABLE(K)
DO 50 J-1, TWIDTH

II-ITABLE(J)
IF(II.LT.IJ)GOTO 50

IK-II-IJ+1
A(IJ,IK)-A(IJ,IK)+ELM(K,J)

50 CONTINUE
RSV ( IJ ) -RSV ( IJ ) +PRSV (K)
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60
30

21

22

C

C

C

C

C

C

C

C

CONTINUE
CONTINUE
IF(IDEBUG.NE.O)THEN

WRITE(9,*)' THE GLOBAL MATRIX IS :'

WRITE(9,21)((A(I,J),J-1.TWIDTH).I-1,NDS)
F0RMAT(3(F8.4,1X)/)
WRITE(9,22)(RSV(I),I-1,NDS)
F0RMAT(5(F8.4)/)

ENDIF
RETURN
END
SUBROUTINE LINTRI (XI , X2 , X3 , Yl , Y2 , Y3 , ELM , ERSV , NM , IDEBUG , IB

,

& T1,T2,T3,IT)

LINTRI FOR IS FOR THE SOLUTION OF THE TRANSVERSALITY CONDITION

IN THE XI -X2 PHASE PLANE FOR THE DOUBLE INTEGRATOR PROBLEM. THE

EQUATIONS ARE NONLINEAR AND THE SOLUTION IS OBTAINED THROUGH

NEWTON METHOD THIS SUBROUTINE BUILDS THE ELEMENT JACOBIAN MATRIX

AND EVALUATES THE RESIDUALS ON AN ELEMENT BASIS. INCLUDED WITH THE

THE TRANSVERSALITY CONDITION IS A CLOSED FORM EXPRESSION FOR THE

MINIMUM TIME FUNCTIONAL. THE ELEMENT EQUATIONS ARE DETERMINED FROM

THE LEAST SQUARES PROCESS.

INTEGER*4 NM, IDEBUG, IB, IT

REAL*4 XI, X2, X3 , Yl, Y2, Y3, ELM(NM,NM), ERSV(NM)

REAL*4 Tl, T2, T3

LOCAL VARIABLES
INTEGER*4 I, J, lU, lUl

REAL*4 A(3), B(3) , C(3) , U(3) . X(3), Y(3), LI, L2
,
DEL2

,
X2S

REAL*4 UJ, Al, UINT, X2UINT, DUINT, DDUINT, DX2U, DEL, DDX2U

REAL*4 Hll, H12, H22, CI, C2, C3 , C4, C5 , C6
,
C7

,
C8

,
09

REAL*4 T(3), XAVE, YAVE, H(3,3), Gil, G12, G22, F(3), XXX

A(l)
A(2)
A(3)
B(l)
B(2)
B(3)
0(1)
C(2)
0(3)
Y(l)
Y(2)
Y(3)
X(l)
X(2)
X(3)
T(l)
T(2)

X2*Y3 - X3*Y2
X3*Y1 - X1*Y3
X1*Y2 - X2*Y1
Y2 - Y3
Y3 - Yl
Yl - Y2
X3 - X2
XI - X3

XI- X2
- Yl
- Y2
- Y3
- XI
- X2
- X3
- Tl
- T2
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80

T(3) - T3
XAVE - (Xl+X2+X3)/3.0
YAVE - (Yl+Y2+Y3)/3.0

DEL2 - A(l) + A(2) + A(3)

IF(DEL2 .LE. 0.0) THEN
WRITE(*,80) DEL2

, ^^ ^ ^^
FORMAT (IX, 'ERROR IN GRID : 2 * TRIANGLE AREA -',F12.6)

STOP
ENDIF

DEL - 0.5 * DEL2
LI - (-B(1)*T1-B(2)*T2-B(3)*T3)/DEL2

L2 - (-C(1)*T1-C(2)*T2-C(3)*T3)/DEL2

Hll - DEL2* (Y1*Y1+Y2*Y2+Y3*Y3+Y1*Y2+Y1*Y3+Y2*Y3
) *2 . 0/24 .

H22 - DEL
DO 100 I - 1, 3

U(I) - 1.0
IF( IT .EQ. 1) THEN „ ^^ ^„

IF( YAVE GT. 0.0 .AND. XAVE .GT. (-YAVE*YAVE*0. 5) .OR.

& YAVE .LE. 0.0 .AND. XAVE .GT. ( YAVE*YAVE*0 . 5 ) ) THEN

U(I) - -1.0

ENDIF
ELSE

IF( L2*(1.0 - L1*Y(I)) .LT. 0.0 ) U(I) - -1.0

ENDIF
100 CONTINUE

DO 200 I - 1, 3

DO 180 J - 1, 3

H(I,J) - 2.0 * X(I) * B(J) + Y(I) * C(J)

180 CONTINUE
200 CONTINUE

DO 220 I - 1, 3

F(I) - 0.0
DO 210 J - 1, 3

F(I) - F(I) + H(J,I)

210 CONTINUE
220 CONTINUE

Gil - DEL2*(Xl*Xl+X2*X2+X3*X3+Xl*X2+Xl*X3+X2*X3)/3.0

G12 - DEL2*(2.0*(X1*Y1+X2*Y2+X3*Y3)+X1*Y2+X2*Y1+X1*Y3+X3*Y1+

^ X2*Y3+X3*Y2)/12.0

G22 - DEL2* (Y1*Y1+Y2*Y2+Y3*Y3+Y1*Y2+Y1*Y3+Y2*Y3 ) /12 .

DO 250 I - 1, 3

ELM(iTj)'- DEL2/24.0 - (H(I,J)+H(J,I)+F(I)+F(J))/24

ELM(I J) - ELM(I.J) + (B(I)*B(J)*G11+(B(I)*C(J)+B(J)*C(I))

4 *G12+C(I)*C(J)*G22)/(DEL2*DEL2)

IF(I .EQ. J) THEN
ELMd.I) - ELMd.I) + DEL2/24.0
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ELSE
ELM(J,I) - ELM(I,J)

ENDIF
240 CONTINUE
250 CONTINUE

DO 270 I -1, 3

ERSV(I) - 0.0
DO 260 J - 1, 3

ERSV(I) - ERSV(I) - ELM(I,J)*T(J)

260 CONTINUE
270 CONTINUE

IF( U(1)*U(2) .LT. 0.0 .AND. IT .NE. 1 .OR.

& U(1)*U(3) .LT. 0.0 .AND. IT .NE. 1 .OR.

& U(2)*U(3) .LT. 0.0 .AND. IT .NE. 1 ) THEN

IF( U(l) .NE. U(2) .AND. U(l) .NE. U(3) ) lU - 1

IF( U(2) .NE. U(l) .AND. U(2) .NE. U(3) ) lU - 2

IF( U(3) .NE. U(l) .AND. U(3) .NE. U(2) ) lU = 3

X2S - 1.0 / LI

UJ - U(IU)
lUl - lU - 1

IF(IU1 .EQ. 0) lUl - 3

Al - DEL * (X2S - Y(IU))/(Y(IU1) - Y(IU))

UINT - UJ * (2.0*A1 - DEL)

X2UINT - UJ*(2.0*Al*(2.0*X2S+Y(IU))-DEL*(Yl+Y2+Y3))/3.0

DUINT - UJ/((Y(IU1)-Y(IU))*L1*L1)
DDUINT - DUINT / (DEL * LI) .. „ «^.-,x /

DX2U - UJ*(DEL*(2.0*X2S+Y(IU))/(Y(IU1)-Y(IU))+2.0*A1)/

& (3.0*DEL*L1*L1)

DDX2U - 2.0*UJ/(3.0*(Y(IU1)-Y(IU))*DEL*(L1**4))+DX2U/(DEL*L1)

CI - (DUINT+X2UINT/DEL2)/DEL2
C2 - 1.0/(DEL2*DEL2)
C3 - -DX2U/DEL2
C4 - -L2*DDUINT + L1*L2*DDX2U

C5 - CI + LI * C3

C6 - C2*H11 + C3*2.0*L2 + C4
P7 ^ P9^H22
C8 - (Y1+Y2+Y3 ) /6 . - L1*H11/DEL2+ (Ll*DX2U-X2UINT/DEL2 - DUINT ) *L2

C9 - (UINT - L2*H22 - Ll*X2UINT)/DEL2

DO 500 I - 1, 3

ERSV(I) - ERSV(I) - C8*B(I)-C9*C(I)

DO 300 J - I, 3

ELM(I,J)-ELM(I.J)+C5*(C(I)*B(J)+C(J)*B(I))+

& C6*B(I)*B(J)+C7*C(I)*C(J)

ELM(J,I)-ELM(I,J)
300 CONTINUE

DO 400 J - 1, 3

ERSV(I) - ERSV(I) + ELM(I,J)*T(J)

400 CONTINUE
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500 CONTINUE
ELSE

IF( IT .EQ. 1) THEN

IF("yAVE GT 0.0 .AND. XAVE .GT. (-YAVE*YAVE*0 . 5) .OR.

& YAVE '.LE. 0.0 .AND. XAVE .GT. ( YAVE*YAVE*0 . 5 ) ) THEN

UJ - -1.0

ENDIF
ELSE

UJ - U(l)
ENDIF
H12 - UJ*DEL*(Yl+Y2+Y3)/3.0
UINT - UJ*DEL

^°
^ERSV(I)^- ERSV(I) - B(I)*(Yl+Y2+Y3)/6.0 - G(I)*UINT/DEL2

DO 600 J - 1, 3

XXX - (B(I)*B(J)*H11+(C(I)*B(J)+C(J)*B(I))*H12+

& C(I)*C(J)*H22)/(DEL2*DEL2)
ERSV(I) - ERSV(I) - XXX * T(J)

ELM(I,J) - ELM(I,J) + XXX

600 CONTINUE
700 CONTINUE

DO 900 I - 1, 3

DO 800 J - 1, 3

ERSV(I) - ERSV(I) + ELM(I,J) * T(J)

800 CONTINUE
900 CONTINUE

ENDIF

IF(IDEBUG . NE. 0) THEN
WRITE(*,2000) XI, X2, X3 , Yl, Y2, Y3

2000 FORMAT (IX, 'LINEAR TRIANGLE' , 6F12 . 5)

DO 2500 I - 1, 3

WRITE(*,2200) (ELM(I,J),J-1,3), ERSV(I)

2200 F0RMAT(1X,3F12.5, lOX, F12.5)

2500 CONTINUE
ENDIF

RETURN
END

* SUBROUTINE FOR INCLUDING THE BOUNDARY CONDITIONS

SUBROUTINE BC (A , NBANDW , NEQ , RSV , NMAX , NDS , X , Y , IDEBUG

)

INTEGERS NBANDW , NEQ , NMAX , NDS , IDEBUG

REAL*4 A(NEQ, NBANDW) ,RSV(NMAX) ,X(NDS) ,Y(NDS)

CHARACTER*80 FORM
CHARACTER*2 NB
COMMON XL,YL,XH,YH
DO 10 I-1,NDS

, ^ ^^ „„
IF(((ABS(X(I)-XL)).LE.l.E-3).OR.((ABS(X(I)-XH)).LE.l.E-3).OR.

+ ((ABS(Y(I)-YL)).LE.l.E-3).OR.((ABS(Y(I)-YH)).LE.l.E-3).OR.

+ ((ABS(X(I)).LE.1.E-3).AND.((ABS(Y(I))).LE.1.E-3)))THEN
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IF(((Y(I).GT.0.0).AND.(X(I).GT.(-Y(I)*Y(I)*0.5))).OR.

+ ((Y(I).LE. 0.0).AND.(X(I).GT.(Y(I)*Y(I)*0.5))))THEN

U— 1.0
ENDIF
SQA—U*X(I)+Y(I)*Y(I)*0.5
IF(SQA.LE.l.E-6)SQA-0.
RSV(I)—U*Y(I)+2.*SQRT(SQA)
IF(RSV(I).LT.O.)RSV(I)—RSV(I)
RSV(I)-RSV(I)*A(I,1)*1.E20
A(I,1)-A(I,1)*1.E20

ENDIF
10 CONTINUE

WRITE(NB,5)NBANDW
5 FORMAT (12)

FORM-' (
'
//NB//' (E12 . 3 , IX)/)

'

IF(IDEBUG.NE.O)THEN
WRITE(9,*)' THE GLOBAL MATRIX IS :'

WRITE(9 , FORM) ( (A(I , J) , J-1 .NBANDW) , I-1,NDS)

WRITE(9,112)(RSV(I).I-1,NDS)
112 F0RMAT(5(E14.4,1X)/)

ENDIF
RETURN
END

* SUBROUTINE FOR SOLVING THE GLOBAL MATRIX

SUBROUTINE SOLVE (A, HBANDW, NEQ, RSV, NMAX, NDS)

INTEGER*4 HBANDW, NEQ, NMAX, NDS, I, J, K, MAXCOL

REAL*4 A(NEQ, HBANDW), RSV (NMAX) , DENOM, TERM, SUM

C REDUCE MATRIX
C LOOP ON COLUMNS TO BE REDUCED

DO 300 I - 1, NDS-1
DENOM - 1.0/A(I,1)
MAXCOL - NDS - I + 1

IF (MAXCOL .GT. HBANDW) THEN
MAXCOL - HBANDW

ENDIF
DO 200 J - 2, MAXCOL

IF(ABS(A(I,J)) .GT. 1.0E-20) THEN

TERM - A(I,J) * DENOM
IF(ABS(TERM) .GT. l.OE-25) THEN

DO 100 K - J, MAXCOL
IF(ABS(A(I,K)) .GT. l.OE-25) THEN

A(I+J-1,K-J+1)-A(I+J-1,K-J+1)-TERM*A(I,K)

ENDIF

100 CONTINUE
RSV(I+J-1) - RSV(I+J-1) - TERM * RSV(I)

ENDIF
ENDIF

200 CONTINUE
300 CONTINUE
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C BACK SUBSTITUTE
DO 500 I - NDS, 1, -1

SUM - RSV(I)
DO 400 J - 2, HBANDW

K - I + J - 1

IF(K .LE. NDS) THEN
IF(ABS(RSV(K)) .GT. l.OE-25) THEN

IF(ABS(A(I,J)) .GT. l.OE-25) THEN

SUM - SUM - RSV(K) * A(I,J)

ENDIF
ENDIF

ENDIF
400 CONTINUE

RSV(I) - SUM / A(I,1)

500 CONTINUE
RETURN

* SUBROUTINE FOR DIVIDING THE REGION INTO CONTOURS

SUBROUTINE PLT(X, Y, T, NMAX, NDS, NTABLE, NELM, NUMEL, XS

,

& YS, MAXP, IDEBUG, NLINE)

INTEGERS I. NLINE. NMAX, NPP(IOO) , J. K. Kl, K2
,
IMIN IMAX

INTEGER*4 NDS, IDEBUG, NELM, NUMEL, MAXP. NTABLE (NUMEL 3)

REAL*4 X(NMAX), Y(NMAX) , XS (MAXP, NLINE ) , YS (MAXP, NLINE)

1^1*1 T(NMAX); TMAX. TOIN. XX. YY. RATIO, TINC. ETMAX

REAL*4 ETMIN
CHARACTER*1 ANS
IF (IDEBUG .NE. 0) THEN

DO 10 I - 1, NELM
WRITE(9,5)I.(NTABLE(I.J),J-1,3)

5 F0RMAT(1X.I4.5X,3I6)

10 CONTINUE
DO 20 I - 1, NDS

WRITE(9,15)I,X(I).Y(I). T(I)

15 F0RMAT(1X,I5,3F12.5)
20 CONTINUE

ENDIF
11 TMAX - T(l)

TMIN - T(l)
DO 50 I - 2, NDS

IF(T(I) .GT. TMAX) TMAX - T(I)

IF(T(I) .LT. TMIN) TMIN - T(I)

50 CONTINUE
DO 1000 I - 1, NLINE

NPP(I) -
TINC - FLOAT(2*I-l)*(TMAX-TMIN)/FLOAT(2*NLINE) + TMIN

IF(IDEBUG .NE. 0) WRITE(9,55) TINC

55 FORMAT (IX, 'TINC - ',E16.8)

DO 500 J - 1, NELM
ETMAX - T(NTABLE(J,1))
ETMIN - T (NTABLE (J, D)
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IMAX - 1

IMIN - 1

DO 100 K - 2, 3

IF(T(NTABLE(J,K)).GT. ETMAX) THEN

ETMAX - T(NTABLE(J,K))
IMAX - K

ENDIF
IF(T(NTABLE(J,K)) .LT. ETMIN) THEN

ETMIN - T(NTABLE(J,K))
IMIN - K

ENDIF
100 CONTINUE

IF(TINC .GE. ETMIN .AND. TING .LE. ETMAX) THEN

DO 400 K - 1, 3

Kl - K
K2 - K + 1

IF(K2 .EQ. 4) K2 - 1

IF(ABS(T(NTABLE(J ,K1) ) -T(NTABLE(J ,K2) )

)

& LT 1 OE-5 * ABS(TINC) .AND. ABS(T(NTABLE(J ,K1) )

-

& TING) .LT. l.OE-5 * ABS(TING)) THEN

XS(NPP(I)+1,I) - X(NTABLE(J,K1))
XS(NPP(I)+2,I) - X(NTABLE(J.K2))
YS(NPP(I)+1.I) - Y(NTABLE(J.K1))
YS(NPP(I)+2,I) - Y(NTABLE(J.K2))

NPP(I) - NPP(I) + 2

ELSE
ETMIN - T(NTABLE(J,K1))
ETMAX - T(NTABLE(J,K2))
IF (ETMIN .GT. ETMAX) THEN

XX - ETMIN
ETMIN - ETMAX
ETMAX - XX

ENDIF
IF(TING .GT. ETMIN .AND. TING .LT. ETMAX) THEN

RATIO - (TING-T(NTABLE(J,Kl)))/(

& T(NTABLE(J,K2)) - T(NTABLE(J ,K1) )

)

XX - RATIO * (X(NTABLE(J,K2))-

& X(NTABLE(J.K1))) + X(NTABLE(J ,K1)

)

YY - RATIO * (Y(NTABLE(J,K2))-

& Y(NTABLE(J.K1))) + Y(NTABLE(J ,K1)

)

NPP(I) - NPP(I) + 1

XS(NPP(I),I) - XX
YS(NPP(I),I) - YY

ENDIF
ENDIF

400 CONTINUE
ENDIF

500 CONTINUE
IF(NPP(I) .GT. MAXP) THEN

WRITE(6,600)
600 FORMAT (IX, 'MORE DATA POINTS REQUIRED FOR PLOT THAN'

,
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& • AVAILABLE - USE FEWER LINES')

READ(5,111)ANS
GOTO 11

ENDIF
1000 CONTINUE

CALL PLOT(XS,YS,NPP,NMAX,T,NLINE,MAXP)

112 WRITE(5,*)' DO YOU WANT ANOTHER PLOT:'

READ(5,111)ANS
111 FORMAT (Al)

IF(ANS.EQ.'Y')THEN
WRITE (5,*)' ENTER NO. OF CONTOURS:'

READ(5,*)NLINE
GOTO 11
ELSE IF(ANS.NE.'N')THEN
GOTO 112

ENDIF
RETURN
END

SUBROUTINE T04014
INTEGER ARRAY(2)/27,49/

C CHARACTER ICHRS

C ICHRS - '
'

CALL KAS 2AM (2, ARRAY, ICHRS)

WRITE(6,555) ICHRS

555 FORMATC '
, A2)

RETURN
END
SUBROUTINE TOANSI
INTEGER ARRAY(2)/27,50/

C CHARACTER ICHRS

C ICHRS - '
'

CALL KAS 2AM (2, ARRAY, ICHRS)

WRITE(6,555) ICHRS

555 FORMATC '
, A2)

RETURN
END

* SUBROUTINE FOR PLOTTING THE ISOCHRONES

SUBROUTINE PLOT (XS ,YS ,NPP,NMAX,T,NLINE,MAXP)

REAL*4 XS(MAXP,NLINE) ,YS(MAXP,NLINE) ,T(NMAX)

INTEGER*4 NLINE,NPP(100)
COMMON XL,YL,XH,YH
CALL T04014
CALL GRSTRT(4014,1)
CALL NEWPAG
CALL WINDOW (XL, XH.YL.YH)
CALL VWPORT(0. ,130. ,0. ,100.)

CALL CMOPEN
CALL MOVE (XL, YL)

CALL CMCLOS

88



CALL CMOPEN
DO 10 I-1,NLINE

DO 20 J-l,NPP(I)/2
CALL MOVE(XS(2*J-l,I),YS(2*J-l.I))
CALL DRAW(XS(2*J,I).YS(2*J,I))

20 CONTINUE
10 CONTINUE

CALL MOVE(XL,YL)
CALL DRAW(XH,YL)
CALL DRAW(XH,YH)
CALL DRAW(XL,YH)
CALL DRAW(XL,YL)
CALL CMCLOS
CALL GRSTOP
CALL TOANSI
RETURN
END
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ABSTRACT

A continuum approach to the minimum time problem has been taken

in order to approximately determine the isochrone distribution in the

phase plane of a double integrator problem. The approximate solution

and the actual solution have been provided.

In this analysis the system state variabiles have been treated as

independent variables and time has been eliminated from the analysis.

This choice of variables enables us to treat both linear and nonlinear

systems with the same methods of solution. Moreover, the costate

variables can be determined directly from the gradient with respect to

the state variables of the final time at any point in state space in

accordance with the Hamilton-Jacobi-Bellman equation. The continuum

relations have been derived and an approximate solution has been

obtained for a double integrator problem by using a finite element

technique

.

The approximate solution has been compared with the actual

solution and a plot of the isochrones has been provided.


