B 2
A DATAFLOW DIAGRAM GENERATOR”
by
ALICTA ELLEN SPECHT

B. A., University of Georgia, 1977

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by:

Major Professof

Lo

Q{@ME’

Ry

\ A%l CONTENTS
?5&:9

AllL207 2335kk

iterature SUTVeY ciciesveesostscnnrsasansnersnssans 1
I INEroiuotioOn smswrmsme ® aom e m o6 KE w8 56 K % 50350 5w 1
2 The Need for Requirements Enineering ...cesee.s 2
3 Characteristics of a Good Requirement

Specificationuceeterecsrssnsossrscaanaannas 4
4 Formal Requirement Specificationscccvee 8
5 Types of Requirements Methodologiescseeeee 11
6 14
14
15
16
18
20

Dataflow Models ..ceessvsssscsncssssonsossssen
1.6.1 Dataflow Diagrams ...cveceevssseanssnaoss
1.6.2 SADT tuvisecrtanvsnansaresrsssssaseeannsons
1.6.3 PSL/PSA tvveesecnscennonnnossnonsonnnons
.7 Future Trends in Requirements Methodologies ..
LB TONCIUBLON coswsimimiasmsmanmesnsnieen sdme dor ns oid s

-~}

L] . " ¢ = e

Zv REQUATCHEIIEB « wvwsw s we =g mnm v m e ave me @586 %80 8 E» W8 22
2.1 GeNEral cosseerrresstssvrssssnsssasssanssnnsssans 22
2:2 THPUE mo vens ninimsminins B i i eids id i ins R men s 22
2.3 0utput ciccrriererser s et ensanansnns 23

30 DESign LI R N L I I I I T I TN B T Y TNE I I I T IR LU R B R I N B R I R A)
301 IntrOduction LI SN I I DAY IR A N B RO T I T AT T I R B R BN NN BT BTN A

L] * 26
3.2 Overview of System Structurecces000

i 26

Wik % & 26
3.3 Design of the Dataflow Diagram ...cescessossons 27
3.4 Detailed DeSignvvsevrssssrseesvorocnasnosns 31
3.4.1 Parse Requirement Spec Moduleccess- 33
3.4.2 Compare_Inputs_Outputs Module 35
4.3 Column Marklng MOAUYE :isemaaamsissains 38
s 42

‘oo 44

R 45

p— 52

4.4 Row Marklng Module .cc.cvsvensccsnssns
4.5 Row_Spacing Moduleeveeurosenens
4.6 Create_ﬁraph Module scessessssnssesnns
mplementation and Testingcccevvesosnss

3.
3.
3.
3.
I

3.5

4. Conclusions and EXtensionscvieciesecevcccssanss 54
4.1 Conclusions ® 8 B % 4 & 5 % 0 " & & % B e S 4 e P eE PSR SR P e E S 54
4'2 Extensions @ & &8 & & 5 & % P P @ F B B N RS E e NS T T e OSSR N P e 54

References !.l.ll.I...l!l.llll.l..OOIUOIOOOOCIDOOU.OOODO 56

- BNF Description of ERA Specification 59
- Module Specifications ...sceceeiinnienanns 62
Error Messages sssssssescsrsesisansnanntaas 72
-User Guide L A A A N A A A N N N N N NN NN ERE R] 76
- C Language Code for DFD Generator«.. 77
- Sample Output from DFD Generator 111

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

HmEoOQw
I

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

6.

7.

8.

9.

10'

LIST OF FIGURES

Format of dataflow diagram ..ceeseesevas

Dataflow diagram design ...ceeeveens

Hierarchy diagram of main modules ..

Parse requirements SpPecsc..s.

Compare inputs_outputs dataflow
data structure ® % 9 4 & 5 3 4 8 F S E A D PR SN EEN

Column marking «:essseesascnsssnsans

Row marking - column 1 ...cceneveene

Row_marking - columns 2 through n ..

LIRS

Dataflow diagram design .scesveesacearas

Reserved lines data structure

LR B AR O BB BN B A

24

29

32

34

37

39

43

14

47

50

Chapter 1 - Introduction

1.1 Overview

This report describes a tool that produces a dataflow
diagram from a requirements specification in textual form.
This project is one tool in a prototype system for an
advanced software development environment. The dataflow
diagram produced by this tool should be useful in the
requirements analysis phase of the software development

cycile.

The need for adequate requirements.analysis in the beginning
of the software development process has received
considerable attention in recent vyears [YE82] [RO85a]
[RO77b] [TE?77]. This attention has arisen in response to
the growing concern of software developers over the
inability to develop software systems in a predictable time
frame that accurately perform the intended functions of the
system. It has been noted that problems in system
development have become less traceable to the hardware or
the programming [RO77b], inferring that the probiems

resulted from inaccurate requirement specifications.

This paper surveys the literature on requirements
engineering with particular emphasis on dataflow analysis as

a tool in requirements analysis. This paper discusses:

1) the need for adequate regquirements engineering 2) the
characteristics of a good regquirements specification 3) the
benefits of formal requirements specification languages 4) a
survey of existing types of requirements modeling
methodologies 5) a description of specific dataflow model
requirements specification techniques and 6) future goals

for requirements specification methodologies.
1.2 The Need for Requirements Engineering

Requirements engineering is an essential step in the
software development cycle. Requirements engineering is the
iterative process of analyzing thelproblem to be solved by
the proposed software system, documenting the resulting
requirements, and checking the documents for accuracy
[RZ85]. The resulting requirement specification is then
used as a guideline in the software design process. A
requirement specification states the intended functional and
performance attributes of the system without specifying an
implementation plan. Without an accurate requirements
specification, the software designer may solve the wrong
problem, resulting in a system that does not satisfy the

user's needs [R0O85a].

Discrepancies between the system requirements and its

impilementation c¢an result in significant cost overruns and

schedule delays. There are documented cases of +two large
command control systems that needed to have 67% and 97% of
the system rewritten in order to perform their intended
functions. It has been estimated that "design errors”
comprise 36% to 74% to the total error count, with design
errors costing far more to fix than coding errors [YE82].
In large scale systems, a requirements discrepancy detected
in a completed system may cost 100 times more to correct
than a mistake detected in the systems definition process
[RO85]. 1In severe cases, entire projects have been canceled
due to the 1lack of proper requirements and feasibility
analysis. Even changes made uﬁder the heading of system
"maintenance"” are often repairs to correct requirements
discrepancies. The lack of adequate requirements documents
also makes the task of project control more difficult,

resulting in waste and duplication of effort [RO77b].

To prevent the aforementioned problems in software
development, requirements engineering can be used to reach
an understanding between the user and the developer.
Requirement specifications provide a tool for management
review and project control. The benefits o¢of requirements
engineering include project justification, reduced
development cost, reduction in schedule delays and easier

system maintenance. In situations requiring contracts

between the system requester and the developer, requirement
specifications can be used as a basis for contractual

agreements [IE81] [EVBO].

Good requirements documents provide the additional benefit
of being useful throughout the software life cycle. Since
the design of a system is not necessarily an implicit
statement of 1its requirements [RO85a], the requirements
document can be used to trace the necessary functional
attributes of the system design when the need for system

modifications arises.
1.3 Characteristics of a Good Requirement Specification

As stated earlier, a "good" requirements specification can
be used to improve the quality of the software being
developed and reduce the overall cost of the software. This
section of the paper presents guidelines for evaluating the

quality of a requirements specification.

The IEEE Guide to Software Requirements [IEB1] offers the
following fundamental description of a software requirements

specification(SRS):

The SRS shall clearly and precisely describe
each of the essential requirements
(functions, performances, design constraints,
and attributes) of the software and the
external interfaces. Each requirement shall
be defined such that its achievement is

capable of being objectively verified by a

prescribed method, for example, inspection,

demonstration, anaiysis, or test.
This description lays the foundation for the qualities of a
good software requirements specification which will be
discussed in detail in this chapter. This section will
cover the kind of information that should be in a
requirement specification, the kind of information that
should not be in a requirement specification, and general

characteristics of a good requirement specification.

A software requirement specification should specify the
results that must be achieved Iby the software without
specifying design or implementation details. Such
implementation details include partitioning software into
modules, allocating functions to modules, and indicating the
fiow of control between modules. By omitting design
details, with the exception of design constraints, the
developer 1is given maximum flexibility to choose the most

appropriate means to satisfy the requirements [IE81].

The requirements specification should not specify
verification and project management details. Project
management details such as the management of the software
development, delivery schedules, and documentation should be

described in a separate project management document [IEB81].

The requirements that should be specified in the software
requirements specification fall into two categories,
functional requirements and non-functional requirements.
Functional requirements describe the behavior of the
software. They provide a conceptual model of the software
without specifying the design or implementation. Non-
functional requirements restrict the solutions that may be
considered for implementation. Non-functional requirements
may increase the complexity of the design. Examples of some

common non-functional requirements are as follows:

l. Interface constraints - Interface constraints define
the interaction between the software and 1its

environment.

2. Performance constraints - Examples of performance
constraints include time requirements, reliability and

security.

3. Operating constraints - Examples of operating
constraints are personnel availability, skill levels
of personnel, and environmental considerations such as

temperature.

4. Life cycle constraints - Life cycle constraints
include maintainability, enhancability, portability,

and flexibility.

5. Economic constraints - Economic constraints identify

considerations about immediate and long term costs.

6. Political constraints = Political constraints address
policy and legal issues such as unwillingness to use a

competitor's product [RO85a].

The following section identifies and explains some

characteristics of a good requirement specification [IES81]

[RO85a]:

Unambiguous - Each stated requirement should have
only one interpretation.

Complete - All significant requirements should be
included.

Verifiable - For every stated requirement, there
exists a cost effective way to see that
the final product meets the
reguirements.

Consistent - There should be no conflict between
requirements in a specification.

Modifiable - The structure of the requirements

specification should allow changes to be

easily made while preserving the

completeness and consistency.

Traceable - The requirement specification should
record the origin of each regquirement

and identify the essential requirements.

Constructable - The structure should allow people oOr
machines to easily build the
specification.

Analyzable - The higher the degree of formality,
the more adaptable a software

requirement specification is to analysis

by mechanical means.

1.4 Formal Requirement Specifications

Constructing a requirement specification that embodies the
gualities 1listed above is a difficult task. The complexity
of large scale systems makes them difficult to define
without oversights and inconsistencies. The matter 1is
further complicated by the fact that system developers and
users often do not use the same vocabulary. This inadeguate
communication can result in misunderstandings in the
requirements that are not discovered until 1late in the

development process [RO77b].

Requirements specifications 1in a natural language are

particularly prone to problems since natural language is
inherently ambiguous. When writing a requirement
specification in a natural 1language, it is necessary to
define common words per their usage in the requirements
specification. Arriving at a set of terms understandable to
all parties can be complicated. Requirements written in a
natural language prose can be lengthy and time consuming to
read. Without proper structuring, the requirements document
can easily become incomplete, excessive and inconsistent

[RO77b].

The structure of the requirements document should alsco
enforce the exclusion of certain types of information such
as design details. This feature 1is important since the
requirements document is often written by system analysts
who find it difficult not to embed design decisions in their

requirements definition [RO77b].

These problems with constructing a proper requirements
specification have lead to the development of formal
requirement specification languages. Formal requirement
specification languages were derived as a solution to the
ambiguity and imprecision of natural language
specifications. Requirements specification languages
provide formal syntax and semantics which reduce ambiguity.

The formal structure of the language provides a structured

10

way of thinking for the requirements analyst [RO77b].

The higher the degree of formality of the language, the more
adaptable the language is to being automated [RO85a]. The
automated requirements language methodologies have analyzers
that mechanically detect syntax errors and enforce proper
structuring of the requirement specification. With
automated methodologies, the requirements are stored in a
database which allows modifications to be more easily made
and provides the basis for automatic report generation.
Automation provides the means to display aspects of the
requirements in tabular or graphical form. The nouns and
verbs in the requirements that correspond to
entities/actions in the formal requirements language can

easily be tabulated to form a cross-reference table.

A possible disadvantage of wusing a formal requirements
specification language is the high learning curve associated
with some methodologies. Many formal methodologies require
extensive training in order to use the methodology correctly
and gain the expected benefits from the methodology. There
are some considerations for determining whether a formal
requirements methodology may be useful. The size and
complexity of the target system should be considered. If
the target system is relatively small or simple, a formal

requirements methodology may not be worth the investment.

11

If a contract between the specifier and the customer is
necessary, the requirements specification becomes more
important. The specification can be used as a basis for
developing the customer contract. The computer resources
available to support a given methodology are a factor for
consideration. Many automated methodologies reguire
considerable database processing facilities in order to

implement the methodology [IES81].
1.5 Types of Requirements Methodologies

Many different types of regquirement specification techniques
have evolved to solve different élasses of problems. Most
methodologies provide a means of formulating a conceptual
model of the target system and its environment. These
formal modeling methodologies use abstractions to suppress
unnecessary details while specifying the essential

properties of the system [YE82].

While requirements models may be partitioned into many very
specific categories, this paper discusses three general
types of requirements models defined in Yeh's paper on
requirements analysis [YE82]. Those models are data models,

dataflow models, and process models.

A data model specification specifies the different states of

the system and its environment in terms of data structures.

12

The data structures in the requirements specification need
not be implemented, since the data structures are derived
strictly to specify the functional behavior of the system.
Data model requirement specifications have been used
successfully for data processing and business informations

systems.

The dataflow model requirement specification is the most
commonly used requirements model. It uses dataflow diagrams
in conjunction with the data model data structures
specification to identify the major processing activities in
the system, and indicate which data are inputs and outputs
to each activity. The dataflow model is not only suited to
model software requirements, it is also well suited to model
the structure and behavior of most human organizations
[RO8B5a]. The dataflow model is the formal foundation for
the SADT [RO77a] [RO77b] [RO85b], and PSL/PSA [TE77]
requirements methodologies which will be discussed in the

dataflow methodology section of this chapter.

Dataflow models have deficiencies in modeling embedded
systems. The activities of embedded systems are continuous,
they are not activated by the appearance of input. The
activities consist of complex computations which process
concurrently. The dataflow model is not powerful enough to

specify the behavior of a system with continuous, concurrent

13

operations [YEB2].

The process model is appropriate for embedded systems. It
is wused to specify processes rather than activities. A

process is an autonomous computational wunit which is
understood to operate in parallel with, and interact
asynchronously with other processes"” [YE82]. The
specification of a process defines the set of possible
states of the process and a "successor relation® which maps
the predecessor state into the possible successor states.
The processes can represent objects in the target system and

objects in the environment. Performance constraints can

also be included for the processes.

SREM is a well known example of a process model methodology.
It provides an executable model that specifies processing
paths from the input stimulis to the output response. SREM
includes a simulation feature to evaluate performance [Ye82]

[BE77].

No one methodology is egqually suitable to all applications.
The success of a methodology ultimately depends on human
factors. A methodology should be easy to learn and provide
an understandable way of constructing a specification before

it will be a benefit to most users [RO85a].

14

1.6 Dataflow Models

This section of the paper gives a description of dataflow
diagrams in general, and explains their wusage in
requirements analysis. It then presents a summary of two of
the most commonly used commercial dataflow model
requirements methodologies, SADT and PSL/PSA [RO77a] [RO77b]

[rO85b] [TE77].
1.6.1 Dataflow Diagrams

A dataflow diagram is a tool used to analyze the information
flow of a system, portraying the system information flow in
graphic form for increased understandability. It defines
the transformations data undergoes as it flows through the
system, without specifying control information or the
sequence of activities. Transformations are represented
usually by labeled circles or boxes, with the dataflow
between transformations represented by directed 1lines

proceeding from left to right. All data is clearly labeled.

While a dataflow diagram is not a system flowchart, it is
procedural in that it shows the sequence of steps as data is
transformed from input to output. Because it is procedural,
it can be used to assign performance constraints to
information flow paths. A datafiow diagram can also be used

as a starting point for establishing a structure diagram

15

showing the hierarchy of modules in the system [JE79].
l.6.2 SADT

The following information about SADT comes from the Ross
references [RO77a] [RO77b] [RO85b]. The SADT structured
analysis and design technique methodology uses the format of
dataflow diagrams to define the functional architecture of a
system. SADT is a Dblueprint-like language that stresses
accurate communication of ideas through graphical
representation. It combines the nouns and verbs of any
other 1language with 1its rigorous graphical structure to

present a gradual decomposition of detail.

The SADT system model consists of a set of diagrams that are
organized in a hierarchical, top-down structure. There are
two types of diagrams in the SADT methodology, one that
shows the decomposition of activities, the other that shows
the decomposition of data in the system. In the SADT
activity decomposition diagrams, activities are represented
by labeled boxes with the data flowing between activities
represented by 1labeled 1lines. In the data decomposition
graphs, the data is represented by labeled boxes and the
activities that produce and receive the data are represented

by labeled arrows.

Both types of graphs are generated with a rigorous syntax.

16

A given graph may have no more than 6 boxes, each box may
decompose to another graph. A graph must include all of the
information about the viewpoint that it is supposed to
express. There are rigorous labeling standards for the
graphs. These standards stress labeling a box in a graph
and the graph generated from that box with the same
identifier. This feature simplifies +tracing through the

layers of the graphs.

SADT presents an orderly, structured decomposition of the
subject and provides a structured way of thinking about the
subject. The SADT requirements me;hodology is adaptable to
many applications and it incorporates any other language.
One of SADT's primary drawbacks is that it 1is not an

automated system.
1.6.3 PSL/PSA

The following information on PSL/PSA is derived from the
Teichroew reference [TE77]. PSL/PSA is one of the most
commonly used commercial reguirements methodologies. It 1is
an automated system that provides PSL, the Problem Statement
Language, and PSA, the Problem Statement Analyzer. The
system records requirements written in PSL into an internal
database. The PSA software performs syntax validation and

provides the capabilities to generate reports from the

L7

database.

The PSL language offers a predefined set of objects commonly
needed in software requirements definition. The objects are
defined to have properties, and the properties to have
values. The objects are interrelated with a predefined set
of relationships. The PSA software provides consistency

checking to enforce adherence to the relationships.

Within this framework, PSL/PSA allows the specification of
system requirements using eight general categories: system
input and output flow, system structure, data structure,
data derivation, system size and volume, system properties

and project management.

The developers of PSL/PSA claim that it improves the quality
of the requirements documentation and reduces the
development and maintenance cost of the system. Errors are
detected early in the requirements definition process when
they can be corrected at less expense. The effects of a
proposed modification to the sgystem can be more easily

isolated using an automated system.

The aforementioned dataflow requirements methodologies have
become commercially pobular due to their broad
applicability, especially to common business processing.

However, they can be deficient for some applications in

18

their ability to specify knowledge about the environment of
which the software system will be a part. The next section
discusses a new direction in requirements modeling that

focuses on "capturing more worid knowledge" [GR82].
1.7 Future Trends in Requirements Methodologies

The information for this section comes from the Borgida,
Greenspan, and Roman references [B085] [GR82] [ROB5al. A
new direction in requirements methodologies has emerged from
the field of artificial intelligence work on knowledge
representation. It addresses the problem of traditional
functional requirements specificétions that specify the
behavior of a software system, but provide little
information about the environment in which the software will
function. This approach assumes that the software developer
is knowledgeable in the applications area of the target
system, which often is not the case. There is a need to
represent "world knowledge" in the requirements
specification to give the software developer a framework in

which to properly interpret the functional requirements.

This need has 1lead to the development of the RML
requirements modeling language. The RML language allows the
requirements analyst to model the world by defining a real-

world set of objects that are relevant to the environment in

19

which the software will be functioning. An object can be an
entity, activity, assertion, or any concept of the real

world.

A given object is defined to have certain properties, the
objects are grouped into classes on the basis of common
properties. The relationships between the c¢lasses are
defined by decomposing classes into subclasses. Each
subclass inherits the properties of its class; in defining a
subclass, the specifier need only state how the subclass
differs from the class. This technique of generalization
hierarchies allows the specifier to begin by defining the
most general classes, and by "stepwise refinement by
specialization", decompose the classes into more specialized

classes.

It is suggested that the specifier first model the total
environment 1in which the target system will function. The
software system can then be modeled by establishing the
boundaries of the world model that the software system is

supposed to address.

This "world knowledge" approach allows the specifier maximum
flexibility. Inherent in this flexibility is the difficuity
of determining which concepts of the real world are relevant

to the model. The specifier must also deal with the problem

20

of over-abstraction. Useful generalizations in the natural
world will often have contradictions embedded in them, for
example "birds fly" and ‘"penguins don't fly." For this
reason, the designer is allowed to specify exceptional
classes and objects for certain exceptions, with the reason

for the exception also being specified.

The real-world approach to requirements modeling is still in
its infancy. While the RML language has been used to
specify at least one large software system, it does not
enioy widespread commercial acceptance. However, the
artificial intelligence knowledge representation based
requirements research does appear to hold interesting

promise for the future.

1.8 Conclusion

Requirements engineering is a vital part of the software
development 1life cycle. Good requirements specifications
reduce the cost of system development and can be used
throughout the life cycle to improve maintainability of the

system.

The purpose of requirements specifications is to specify the
essential behavior of the target system, not a design for
the target system. Requirements specifications specify both

functional and non-functional requirements such as

21

performance constraints. A good, usable, specification is

unambiguous, complete, consistent and traceable.

Formal requirements specification methodologies have been
developed to improve the quality of requirements
specifications. The requirement specification methodologies
founded on the dataflow model enjoy the most wide spread
usage. They are particularly appropriate for business
information systems applications. The dataflow diagram is a
graphical aid used by these methodologies to depict the

dataflow of a system for increased understandability.

Research for future requirements séecification methodologies
centers around the use of artificial intelligence knowledge
representation theory to specify not only basic functional

requirements, but knowledge of the application area as well.

22

Chapter 2 - Requirements

2.1 General Requirements

This software project produces a dataflow diagram from an
entity- relationship-attribute requirements specification.
It was developed to be used as a tool in an experimental
software development environment that uses software
engineering techniques to improve the quality and efficiency

of the software development process.

This tool reads an input requirement specification in
textual form and produces a file of graphics commands that
represent a diagram of the flow of data between the
activities in the specified system. The diagram is produced
from the input specification automatically, requiring no

additional input from the user.

It was a constraint that the tool be developed to execute on
the UNIX III operating system at Kansas State University,
and that the programs be implemented in Pascal or C

language.

2.2 Input

The input to this tool is a textual requirement
specification that specifies the activities in a system, and

each activity's inputs and outputs. The syntax of the input

23

specification was defined by Dr. David A. Gustafson of
Kansas State University; a BNF description of the input
syntax is provided in Appendix A. All input to this tool is

assumed to be syntactically correct.

This tool is required to parse the input specification,
identifying the activities and their inputs and outputs. It
must then match input names to output names to calculate the

dataflow between activities.

Since there is no limit to the number of activities, inputs
and outputs that this tool is required to accommodate, this
tool uses a dynamically allocated, 1linked list data

structure to store the data fiow information.
2.3 Output

The dataflow diagram produced by this product is intended to
be used as a graphical aid in requirements analysis.
Therefore, the general requirements for the ocutput dataflow
diagram follow the rules of a good graphical aid. The
dataflow diagram produced by this tool must be a complete,
accurate representation of the dataflow of the system. All
activities, inputs and outputs should be 1labeled. The
dataflow diagram must be legible, allowing the user to
easily read activity and data names, and to readily

distinguish dataflow lines.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

24

The display format of the output dataflow diagram is
illustrated in Figure 1. The activities are represented by
labeled boxes, the dataflow is represented Dby 1labeled
arrows. The data flows from left to right unless there is a
loop in the dataflow. It is not a requirement for this
project that the output dataflow diagram be an optimal

solution with minimal crossing of lines.

D7 D6
A3 —0-3 s
Dl D3 D8
A1 A as [
D4
D2 D5 D9
— a2 A6 >

Figure 1: Format of dataflow diagram

Since this tool is required to produce a legible, accurate
diagram no matter how complex the dataflow, the formaﬁ in
which the dataflow diagram is displayed is designed to

accommodate these requirements.

25

The activity boxes are arranged in rows and columns with
enough space between the rows and columns for dataflow
lines. This design insures the ability to draw a iine from
a source activity, an activity that produces a given data
file, to a destination activity, an activity that receives a
given data file, without the lines crossing through activity

boxes or merging with other lines.

To improve the readability of the output dJdataflow diagram,
all inputs go 1into the left side of the activity box, all
outputs come from the right side of the activity box. There
is only one 1line for a given input going into a given
activity box. The input 1line is preceded by an input
collection node into which the dataflow lines from any
number of source activities for that input may flow. There
is only one output line for a given output coming out of an
activity box. An output line begins with the output 1label
line. From the end of the label line, output lines can
diverge to reach any number of destination activities. This
design reduces the number of 1lines going in and out of
activity boxes and allows the user . to readily distinguish

inputs from outputs.

26

Chapter 3 - Design
3.1 Introduction

This chapter begins with an overview of the structure of
this software product and the 1logical flow of its main
functions. This paper then discusses issues that needed to
be addressed in designing the display format of an
automatically generated dataflow diagram and explains how
those 1issues are resolved in the design. An analysis of the
main modules in the system follows which describes the
functions of the main modules and the usage of data

structures.
3.2 Overview of System Structure

This software project 1is designed as one program that
creates a dynamically allocated, linked list data structure
to contain the data flow information in the input
requirement specification. From this data structure, it
produces a file of graphics commands that depict a dataflow
diagram for the requirement specification. The program is
organized into six main modules, one for each ma jor

function.

The dynamically allocated, linked 1list data structure was

chosen for this application because of its flexibility in

27

the number of activities, inputs and outputs that it can
accommodate. The data structure contains one node for each
activity and one node for each data name in the reguirements

specification.

The basic functional flow of the program begins with reading
the requirement specification input file, to extract the
activities and their inputs and outputs. The input data
names are matched to the output data names to calculate the
dataflow between activities. Once the data structure
containing the dataflow information has been created, the
information in the data structure is used by the graphing
algorithms to determine how the dataflow will be graphed. A
file of graphics commands depicting the activity boxes and
dataflow 1lines 1is created according to the graph placement

algorithms.

3.3 Design of the Dataflow Diagram

This section of the paper explains the format in which the
dataflow diagrams produced by the tool are displayed, and

the reasons behind the chosen format.

When drawing a dataflow diagram manually, there are many
types of conflicts that are resolved intuitively. These
conflicts must be resolved in the design of the graph in an

automatic tool. The potential conflicts that are resolved in

28

the design of the dataflow diagram format are listed beiow.

The design must guarantee the ability to get a dataflow line
from a source activity to a destination activity without
crossing through an activity markrr. The dataflow 1lines
must not merge so as to becomeAindistinguishable. The
design must control the placement of input 1lines 1into an
activity and the placement of output 1lines out of an
activity so that the lines remain discernible and the data

labels remain readable.

To assure the ability to produce an accurate, legible
dataflow diagram, the graph designldisplayed in Figure 2 was
adopted. Activities are displayed as labeled boxes arranged
in rows and columns. The program allows enough space
between the rows and columns to graph the 1lines depicting

dataflow.

Input into an activity is graphed in the space between
columns as a horizontal arrow going into the left side of
the activity box. All input lines are the same length, with
input lines in the same column having the same x
coordinates. Except for initial inputs, input 1lines are
preceded by a collection node. There is one input line for
a given input into an activity; dataflow 1lines from any

number of source activities can feed into the input

29

collection node.

D7 D6
A3 O a5
D1 D3 D8
=3 Al o3 a4 [
L
D2 D5 , D9
Y a2 A6 [

Figure 2: Dataflow diagram design

Output lines are graphed in the space between columns as
labeled horizontal lines coming out of the right side of the
activity box. All output lines have the same length, with
output lines in the same c¢olumn having the same x
coordinates. There is one output line for a given output
out of an activity; the dataflow lines to an output's
destination activities diverge from the end of the output

iabel line.

This design for displaying the inputs and outputs of

activities keeps the inputs easily distinguishable from the

30

outputs, and prevents input lines from crossing the labeled

portion of the output lines.

The design must assure the ability to graph a dataflow line
from the output 1label 1line of the source activity to the
input collection node of the destination activity. These

lines must be graphed without crossing through activity

boxes or merging with other 1lines. To accommodate this
constraint, the following line placement design was
developed.

To graph a line that has no potential for crossing through
an activity box, the dataflow line is graphed directly from
the end of the output label line to the collection node for
the input into the destination activity. A line has no
potential for crossing through an activity box if it is
going to a destination activity in the next column to the
right, or if the destination activity is the next activity

in the same row.

For a line that must span more than one column, the line is
graphed as a horizontal line in the space between rows. The
y coordinate of the horizontal line is assigned an unused vy
coordinate in the space immediately above or below the
source activity's row. The x coordinate of the starting

point of the horizontal line is assigned based on a uniform

31

distance to the right of the output label 1line. The x
coordinate of the end point of the horizontal line is
assigned based on a uniform distance to the 1left of the
inpﬁt collection node. The dataflow line is thus graphed in
three segments: 1) from the end of the output label line to
the beginning of the horizontal line between the rows 2)
from the starting point of the horizontal line to the end
point o©f the horizontal 1line 3) and finally from the

horizontal line end point to the input collection node.

This graph design, while not boasting the optimal solution
for a given dataflow diagram, does insure the ability to

provide a legible, accurate dataflow diagram.
3.4 Detailed Design

This section of the paper explains the functions of the main
‘modules of this tool and the data structures used. The
program is divided into the s8ix main modules displayed in

Figure 3.

32

CONTROL
MODULE
PARSE COLUMN ROW
REQUIREMENTS MARKING SPACING
SPEC
COMPARE ROW CREATE
INPUTS MARKING GRAPH
OUTPUTS

Figure 3: Hierarchy diagram of main modules
The six functions of the six main modules are as follows:

1) Parse Requirements_Spec - This module parses the
requirement specification for activities and their inputs

and outputs.

2} Compare Inputs_Outputs - This module compares the input
names to the output names to calculate the data flow and

create the data structure containing this information.

3) Column Marking - This module assigns column numbers to

each activity.

4) Row_Marking - This module assigns row numbers to each

33

activity.

5) Row_Spacing - This module calculates the amount of space

needed between rows for dataflow lines.

€) Create_Graph - This module calculates the coordinates
for the activity boxes and datafiow lines, and creates the

file of graphics commands to graph them.
3.4.1 Parse_Requirements_Spec Module

The Parse_Requirement Spec module extracts the activities
and their inputs and outputs from the input regquirement
specification in the following manner. The module scans the
input specification for activity frames. When an activity
frame is encountered, the module allocates an activity node
and stores the activity name in the name field of the
activity node. The activity node is then 1linked into a
singly linked list of activity nodes. The module parses the
activity frame for the activity's inputs and outputs until

it encounters the beginning of the next frame.

When an input is found, the module writes a record to a
sort_inputs file; the record contains the input name and a
pointer to the current activity node. If no inputs are
found for an activity, a sort_inputs record is created with

the reserved word "NONE" in the input name to be used by the

34

graphing algorithms to identify activities that should be

placed in the first column of the graph.

The same process is used for outputs. A sort outputs €£ile
is created that contains a record for each output, and
destination activity combination. Figure 4 shows the
activity nodes and sort_inputs and sort_outputs records that
are created from the example requirement specification in

the figure.

Al A2 A3
Activity Activity p—— Activity

Node Node Node
SORT INPUTS SORT OUTPUTS
DATAl |AAlL DATA4 (A Al
NONRE A2 DATA3 |4 A2
DATA3 |#4A3 DATAL |4 A3

ACTIVITY : Al ACTIVITY : A2 : ACTIVITY : A3

INPUT : DATAlL OUTPUT : DATA3 INPUT : DATA3

OUTPUT : DATA4 QUTPUT : DATAl

Figure 4: Parse_regquirements_spec

The files of inputs and outputs are sorted by a system sort

35

on the data name field. The sorted files are used in the
input=-output matching algorithm of the

Compare_Inputs_Outputs module.
3.4.2 Compare Inputs Outputs Module

The Compare_Inputs_ Outputs module compares the input records
from the sort_inputs file with the output records from the
sort_outputs file. When a match on the data name field
between the sort_inputs and sort_outputs records is
encountered, the module updates the data structure to
reflect dataflow from the source activity in the
sort_outputs record to the destination activity in the
sort_inputs record. If no match is found for a data name in
the files, then the data name is either an initial input or

a final output.

To contain this information, the module constructs a data
structure which consists of initial input nodes, output
nodes, and pointer nodes. The pointer nodes are used to
peint to activity nodes for 1listing the destination
activities of data, and the source activities £for the

destination activities.

The list of initial input nodes is constructed from those
input names in the sort_inputs file that do not have a match

in the sort_ outputs file. The list of initial input nodes

36

contains one node for each initial input name. The initial
input node contains the input name, a pointer +to the next
initial input node, and a pointer to a list of pointer nodes
which specify the destination activities for that input.
The 1list of destination activities for an initial input is
built from the activity pointers associated with the input

name on the sort_inputs record.

If the sort_inputs file contains records with the input name
"NONE", indicating an activity that receives no input, an
initial input node is allocated with "NONE" in the name
fieild. The "NONE" node points to a list of pointer nodes
that reference all activities that receive no input. The
resuit is a 1ist of inputs that identify the activities
receiving initial inputs or no input. This list is used as
a consideration for placing an activity in the first column

of the dataflow diagram.

For any data name that is not an initial input, an output
node 1is allocated and linked into the list of all outputs.
Figure 5 demonstrates how the initial input nodes, activity
nodes and output nodes are linked together via pointer nodes
to represent the dataflow of the requirement specification.
Each activity node points to a list of output pointer nodes.
Each output pointer node points to an output node of an

output that is produced by that activity. For each record

37

in the sort_outputs file, the activity pointer associated
with the output name is used to update the activity node's
list of output pointer nodes. Thus, each activity points to

a list of its outputs.

NONE AP 1~ | Al %OP 1 | 0l A

AP 2 A2) N oP2

111 a|AP3__—’[A3 | 02

AP APE] }—

>]

112 SJAPS A4 A AP7| [
' A

>1

Figure 5: Compare inputs outputs dataflow data structure

To represent the flow of data of an output to its
destination activities, each output node points to a list of
activity pointer nqdes. Each activity pointer node points
to an activity node receiving that output. The output node's

pointer to its destination list will be null if the output

38

is a final output.

At this point, the representation of the dataflow of the
specified system is complete, with the initial input nodes
pointing to their destination activities, the activity nodes
pointiﬁg to their outputs, and the outputs pointing to their

destination activities.

A list of each activity's source activity nodes is also
created in this module. Each activity node points to a list
of pointer nodes which identify all of the activities which
produce input for the given activity. This structure
provides a quick reference for the' graphing algorithms to

determine where to place an activity in the graph.

Thus, at the end of the Compare Inputs_Outputs module, the
data structure consists of: 1) a 1list of initial input
nodes, each of which points to a 1ist of pointers to its
destination activity nodes 2) a 1ist of output nodes, each
of which points to a list of pointers to 1its destination
activity nodes and 3) a 1list of activity nodes, each of
which points to a list of its output nodes, and to a list of

pointers to its source activity nodes.
3.4.3 Column_Marking Module

The next module to execute is the Column Marking module.

39

This module establishes the column number in which each
activity will be graphed, and creates a list of activities
comprising each column. Each activity node has a column
number field in which the column marking algorithm stores

the activity's column number.

A
Cl c2 Cc3
L
A5 A4 A A2
L L
Al AS . A
A6 b8

Figure 6: Column marking

As Fiqure 6 illustrates, each activity node contains a
pointer to the next activity in the column which is used to
establish lists of the activities by column. Each column

list is pointed to by a column header node which contains

40

the column number and a pointer to the next column header
ncde. The column header nodes are linked together in order

by column number to allow traversal of consecutive columns.

As a starting point for placing the activities in columns,
the module selects the activities to be placed in the first
column. These activities are the activities that have no
input or only initial inputs. To select these activities,
the activity node list is traversed and any activity node
having an empty source activity liét is marked with a "1" in
the column number field and linked into the list of column

one activities.

The subsequent columns are established in a loop that builds
the next column of activities, from the previous column of
activities' destination activities. The output 1list is
traversed for every activity in the previous column. The
output nodes referenced by those output lists are visited,
and their destination activity 1lists are traversed to
identify all of the activities fed by the previous column's
activities. Each destination activity node is visited, if
the activity has not previously been marked, it is marked
with the current column number and added into the current

column list.

If the destination activity node has already been marked as

41

a member of a previous column, it is added to the current
column and removed from its former column unless a loop is
detected in the datafiow. If the activity node being
"bumped" to the current coiumn is in a dataflow loop with
the source activity triggering it to be bumped, the activity
is not remarked. Thus, when dataflow loops exist between
activities in the specified system, the first activity in
the loop encountered by the column marking module will
remain the first activity of the loop to be graphed unless

it is bumped forward by another source activity.

Loop detection is accomplished by maintaining an input path
list for each activity as it is placed in a column. The
input path list for a given activity is composed of a 1list
of pointers to activities that are in an input path to the
given activity. The input path 1list for an activity is
accumulated from the source activities that directly feed an
activity, plus the activities 1listed in those source

activities' input path list.

When an activity is being visited for the purpose of being
bumped, the input path of the source activity triggering the
potential bump is scanned for a match against the activity
to be bumped. If the activity to be bumped exists in the
input path of the source activity, a loop exists in the

dataflow and the activity will not be remarked. The process

42

of marking the next column from the previous column
continues until there are no more activities that can be

bumped.
3.4.4 Row Marking Module

After the Column_Marking module places the activities in
columns, the Row Marking module assigns each activity a row
number within its column and creates lists of the activities
in each row. The activity node contains a field to record
the row number and a pointer to the next activity node 1in

the row.

For the first column of activities, the row numbers are
assigned with the intention of grouping together activities
that produce the same output and therefore, feed the same
destination activities. The module builds a tabile
containing every output produced by a first column activity
(Figure 7). Associated with each output is a list of
activities that produce the output. The activities having
no common outputs are assigned consecutive row numbers
beginning with one. The module then uses the table of
output-activity relationships to mark activities producing a
common output in consecutive rows. An activity belonging to
more than one output grouping retains the first row number

with which it was marked.

43

Al Ol

Common l
Output Table

A3

FR

01 | Al | A3

02| A2 | A3 | A4

A2 02

A4 02

Figure 7: Row marking - column 1

For the subsequent columns, the ac£ivities are assigned row
numbers on the basis of having common source activities in
the previous column (Figure 8). For each activity in the
column being marked, the activity node's source activity
list is scanned to determine the range of row numbers in
which its source activities in the previous column were
placed. The row placement algorithm attempts to center the
activity being marked between the range of row numbers of
its source activities in the previous column. The module
interrogates a table that records the row numbers in the
column that have already been assigned until it finds the
empty row number closest to the center of the source

activities' row range. The activity module is then marked

44

with that row number and the table of assigned row numbers

is updated to reflect that information.

Al 0ol | AS5

A3

A2 Ab

Ad

Figure 8: Row marking - columns 2 through n

The aforementioned scheme positions activities that send and
receive the same data close together in an effort to reduce

the number of lines crossing between columns.

Once all activity nodes have been marked with a row number,
the module establishes the lists of activities in each row.

The row lists are used in the line graphing algorithm.

3.4.5 Row_Spacing Module

Now that the activity nodes have been ordered in rows and

columns, the Row_Spacing module can determine how much space

45

will be needed between the rows for the dataflow lines. The
Row_Spacing module employs the same 1logic as the line
graphing module to identify instances where a horizontal
line Dbetween rows will be needed. The module counts these
instances to determine the number of 1lines that will be
graphed between each pair of rows. If the number of lines
to be graphed between a pair of rows regquires more space
than the default row space, the space between all of the

rows is increased to accommodate the largest demand.
3.4.6 Create_Graph Module

The final module Create Graph, calculates the coordinates of
the activity boxes and dataflow lines, and creates a file of

graphics commands to graph the dataflow diagram.

The module begins by identifying the center activity box of
the graph from the total number of columns and rows. The
coordinates (0,0) are assigned to the lower left corner of
the center activity box. A box is defined by calculating the
coordinates of the lower left corner and the upper right
corner of thé box. The coordinates of the activity boxes
are calculated based on their distance from the center box.
The distance from the center activity box is calculated
using the activity's row and column numbers, the height and

width of the boxes, and the distance between rows and

46

columns. The two points that define an activity box are

stored in each activity node.

Once the coordinates for the activity boxes are established,
the coordinates of the dataflow lines are computed. The
dataflow lines are calculated in three pieces: 1) the
horizontal input line going into the left of the activity
box 2) the output label line coming out of the right of the
activity box 3) and the lines connecting the output label

line to the input line.

47

D7 D6
| S — .
A3 A5

N

D1 D3 Dg
— a1 e I V'
[D4
D2 D5 D9
A2 A6

Figure 9: Dataflow diagram design

An input line is graphed as a labeled, horizontal arrow
going into the left side of the box. The x coordinates of
the input lines going into activity boxes in the same row
will bYbe the same, since they are calculated from the x
coordinate of the left side of the activity box. and the
input 1line length. The y coordinate of the input line is
calculated from a field in the activity node in which the
value of the last y coordinate for an input line into that
box is stored. The field is initjalized to the y coordinate
of the top of the box, and the y coordinate of a new input
line is calculated by subtracting the distance between input
lines from the y coordinate of the last input line., The

resulting v coordinate is used to update the input 1line

48

field in the activity node.

For intermediate inputs, inputs generated from within the
specified system, a collection node 1is graphed at the
‘beginning of the input line. Dataflow lines from all source
activities feed into the input collection node for that
data. The location of an input line for a given input into
a given activity is stored in the output 1ist node that
points the ocutput to the source activity. This structure
makes the 1location of an existing input 1line into an
activity readily available for the algorithm that graphs the
line connecting output label 1lines to the input lines.
Therefore, only one input 1line for a given input and

activity is necessary.

An exception to the input lines that go into the left side
of the box is the case of an initial input that goes to an
activity that is not in the first column. These inputs are
graphed as horizontal lines in the space between rows going
into the top of the box. The y coordinate for the
horizontal line is computed from a data structure that keeps
track of the next available y coordinate in that row space.
The x coordinate for the line's entry point into the top of
the box is calculated from the last entry point into the top
of the box, which is recorded in a field in the activity

node.

49

The output label line is graphed as a labeled, horizontal
line coming out of the right side of the activity box.
There is one output line for a given output coming out of a
given activity. From the end of the output label line,
lines may diverge to reach multiple destination activities.
If the output is a final output, an arrow is added to the

end of the output label line.

To graph a line from an output label 1line to an input
collection node, the following methodology is used. For a
line going to a destination activity one column to the
right, or for a line going to a destination activity that is
the next activity to the right in the same row, the line is
graphed directly from the output label line to the input
collection node. The direct line is possible because, under
the aforementioned conditions, there can be no activity
boxes between the source activity and the destination
activity. The 1list of activities in each row is used to
determine when a direct 1line is possible between two
activities in the same row; the direct line is graphed when
the destination activity is the next activity in the source

activity's row.

For connecting dataflow 1lines that must span several
columns, the dataflow line is graphed in the space between

rows to avoid crossing through other activity markers. The

50

y coordinate of the line between the rows is calculated from
the data structure that records the last y coordinate used
in that row space (Figure 10). The reserved lines data
structure is an array that contains two entries for each row
space. The first entry is used when graphing a line going
to a destination activity that is below the source activity.
In that case, the horizontal line is graphed in the row
space directly below the source activity, the y coordinates
for 1lines are assigned proceeding from the top of the row

space down towards the center of the row space.

Reserved 1 (50,100)
y coordinates
11100 ROW1
2 50
2 (50,50)
31 -50
4 |-100
3 (50,-50)
ROW2

Figure 10: Reserved lines data structure

The second entry in the reserved lines data structure tracks

51

the y coordinates for the 1lines going to destination
activities that are aﬁove their source activities. These
lines are graphed in the row space immediately above the
source activity. The y coordinates for those 1lines are
assigned proceeding from the bottom of the row space up
towards the center of the row space. The y coordinates of
the two entries in the reserved lines data structure for
that row space should never overlap since the Row_Spacing

model has allowed enough room between rows for all of the

lines.

The x coordinate for the start of the horizontal line is a
fixed distance to the right of the output label line. The x
coordinate for the end of the horizontal 1line is a fixed
distance to the left of the input collection node. Once the
coordinates for the horizontal 1line between rows are
calculated, 1lines are graphed connecting the output label

line and the input collection node to the horizontal line.

The graphics commands for all the figures in the dataflow
diagram are written to an output Vfile for display on a
graphics terminal or plotter. Thus, the design provides a
means to automatically produce an accurate, legible dataflow

diagram.

52

3.5 Implementation and Testing

This system was developed on the UNIX system III Operating
System at Kansas State University. The tool consists of one
program written in C language. The program is approximately
2500 1lines of source code. The project was designed and
implemented primarily in a five-week period at Kansas State

University.

The design was implemented using a modular structure which
was conducive to a top-down testing approach. The control
module, which orders the execution of the six main modules,
was first tested with dummy moduleé in place of the six main
modules. The six main modules were then added and tested

one at a time.

As an aid in program validation, print statements were added
at strategic points to display the values of internal data
items. This information was used to track the control fiow
of each execution, to verify the correctness of the internal
data structure, and to validate the coordinates written by

the graphics commands.

The program was tested against requirement specifications
provided by Dr. D. A. Gustafson that represented fairly
complex data dataflow problems. The dimensions of the

components of the dataflow diagram, for example box height

53

and row width, were adjusted to produce a 1legible dataflow

diagram for a congested example.

54

Chapter 4 - Conclusions and Extensions
4.1 Conclusions

This tool produces a dataflow diagram that accurately and
readably depicts the dataflow of the input requirement
specification. The dataflow diagram may be used as a
graphical aid to increase understanding of the dataflow of
the system for requirements analysis. The tool is easy to
use, and is completely automatic, requiring no intervention
from the user. The tool is flexible in the number of

activities, inputs and outputs that it can handle.

The dimensions of the components of the dataflow diagram are
fairly easily adjustable. All values for the dimensions of
the dataflow diagram components are implemented using the C
language facility #define, which allows the components'
dimension values to be specified once for use throughout the
program. If different dimensions are desired for the boxes,
lines, and spacing between boxes and 1lines, the dimension

values could be changed quickly.
4.2 Extensions

While the automatic nature of the dataflow diagram should
encourage use of the tool, it may be desirable to provide an

additional tool to allow the user to modify the output of

55

the first tool. This facility would allow the user to
modify the placement of the original dataflow diagram's

activities and lines to suit the user's preference.

Another possible extension would be adding the ability to
pass the dimensions of the dataflow diagram components as
parameters into the program. The current implementation,
while fairly easy to change, does require the program to be
edited and recompiled in order to experiment with the size
of the dataflow diagram components. Parameterization of
those values would allow the user to "tailor make" the

dataflow diagram to suit each input.

One source of potential confusion when reading a dafaflow
diagram produced by the current tool, is the length of the
data name labels. In order to label each data line at its
source activity without the text taking up an inordinate
amount of space on the diagram, the data names are truncated
after ten characters. In the event of two data names that
are not unique within ten characters, the names will become
indistinguishable. A number could be added to each data
name to distinguish these cases, and ‘a report could Dbe
provided to match the dataflow diagram data names with the

input data names.

[BA79]

[(BE77]

[BLB3]

[BO85]

[DA82]

[EV80]

[GAa77]

[GRrR82]

[1IEB1]

56

REFERENCES

Balzer, R. and N. Goldman, "Principles of Good
Software Specification and their Implications for
Specification Languages, " Proceedings on the
Specification of Reliable Software, April 1979, pp.
58-67.

Bell, T. E., P, C. Bixler and M. E. Dyer, "An
Extendable Approach to Computer-Aided Software
Regquirements Engineering", IEEE Transactions on
Software Engineering, Vol. S8E-3, ©No. 1, January
1977, pp. 49-60.

Blank, J. et al.,Software Engineering: Methods and
Technigques, John Wiley and Sons, New York, 1983.

Borgida, A. et al., "Knowledge Representation as the
basis for Requirements Specification," Computer,
Vol. 18, No. 4, April 1985, pp. 82-104

Davis, A. M., "The Design of a Family of
Application-Oriented Requirements Languages, "

Everhart, C. R., "A Unified Approach to Software
(System) Engineering,"” Proceedings Compsac, 1980.

Gane, C. and T. Sarson, Structured Systems Analysis:
Tools and Techniques, IST, 1977.

Greenspan, S. J. et al., “Cépturing Mcre World
Knowledge in the Requirements Specification",

Proceedings Sixth International Conference on
Software Engineering, September 1982, pp 225-234.

IEEE Software Requirements Guideline, July 17, 198l.

[JE792]

[LE8B2]

[Mu79]

[PrRB2]

[rO85a]

[rRO85Db]

[RO77a]

[RO77b]

[RrRz85]

[sc85]

57

Jensen, R. W. and Cc. C. Tonies, Software
Engineering, Prentice-Hall, New Jersey, 1979.

Levene, A. A., and G. P. Mullery, "An Investigation
of Requirement Specification Languages: Theory and
Practice", Computer, May 1982, pp 50-59.

Mullery, G. P., "CORE - A Method for Controlled
Reauirement Specification,"” Proceedings Fourth
International Conference on Software Engineering,
September 1979, -

Pressman, R. A., Software Engineering: A
Practitioner's Approach, McGraw-Hill, 1982.

Roman, G., "A Taxonomy of Current Issues in
Requirements Engineering," Computer, Vol. 18, No. 4,
April 1985, pp. 14-24.

Ross, D. T., "Applications and Extensions of SADT",
Computer, Vol. 18, No. 4, April 1985, pp. 25-35.

Ross, D. T., "Structured Analysis (SA): A Language
for Communicating Ideas"”, IEEE Transactions
K.6Software Engineering, Veol. SE-3, No. 1, January
1977, pp. 16-34.

Ross, D. T. and K. E. Schoman, Jr., "Structured
Analysis for Regquirements Definition", IEEE
Transactions on Software Engineering, Vol. SE-3, No.
1, January 1977, pp .

Rzepka, W. and Y. ©Ohno, "Requirements Engineering
Environments," Computer, Vol. 18, No. 4, April 1985,
pp. 9-13.

Sceffer, P. A. et al., "A Case Study of SREM,"
Computer, Vol. 18, No. 4, April 1985, pp. 47-55.

[TE77]

[w179]

{YEB2]

58

Teichrow, D. and E. A. Hershey, III, "PSL/PSA: A
Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing
Systems", IEEE Transactions on Software Engineering,
Vol. SE-3, No. 1, January 1977, pp. 41-48.

Wilson, M. L., "A Semantics-Based Method for
Regquirements Analysis and System Design",
Proceedings Compsac, 1979.

Yeh, R. T., "Regquirements Analysis - A Management
Perspective", Proceedings Compsac, 1982.

Appendix A BNF Description of ERA Specification

Syntax Description

<era_spec> ::=

<era_title> <era body> <mode table>
<era title> ::=
PROCESS : <text>

<era_body> ::=
<frame> | <frame> <era body>

<frame> ::=
<NL> <NL> <frame header> <frame_body>
| <NL> <NL> Comment : <text_ lines>

<frame_header> ::=
<i o data header>

O B <i o data name>
| <function header>

<CAPITAL_ WORD>

<i o data header> ::=
Type | Input | Output | Input output | Data
| constant | <CAPITAL_WORD>

<function header> ::=
Activity | Periodic function | <CAPITOL_ WORD>

<frame_body> ::=
<relation> | <relation> <frame_ body>

<relation> ::=
<NL B> <relation_type> : <realtion_value>
<relation type> ::=
keywords | input | output | required mode
necessary condition | occurence | assertion
action | comment | media | structure | type
enumeration | range | units
subpart_is | subpart of | uses | <WORD

<relation_value> ::=

<text_lines> | <structure>
<structure> ::=

<struct> | <struct> <NL B> : <structure>
<struct> ::=

<name> | <text> | <name> <structure> | <text>

59

<structul

Appendix A BNF Description of ERA Specification 60

<mode_name> | <i_o data name>

<i o data name> ::=
$ <WORD> §

<mode name> ::=
* <WORD> *

<mode table> ::=

<NL> <NL> MODE_TABLE <mode_1ist> <initial mode>

<mode list> ::=
<mode> | <mode> <mode list>

<mode> ::
<NL B> Mode : <mode name>
<initial mode> :

<NL>» <NL

-
.

<transition body> ::=

<NL> <NL B> Allowed Mode Transitions

<transition> ::=

B> Initial Mode : <mode name>

<transition lisi

<NL B> <event> : <mode_name> -> <mode_pame>

<i_o_data name>
<i o data_name> = ' <text> °
<function header>

<event>

"

<text_ lines> :
<text>

<text> <text_cont>

<text> ::=
<WORD> | <WORD> <text>

<text_cont> ::=

<NL_B> : <text> | <NL> : <text> <text_cont>
<NL> ::=

'O | 'O <NL>
<NL_B> ::=

<NL> * 1
<WORD> ::=

<char> | <char> <WORD>

Appendix A BNF Description of ERA Specification

<CAPITAL WORD> ::=
<capital letter> <WORD>

<char> ::=
<lower case_char> | <symbol>

<lower case char> ::=
a|b]..]lz]O]1] ...]09

<symbol> ::=
el s C]1)] 2]

<capital_ letter) ::=
A|B] ... |z

Reserved Words:
kevboard
crt
internal
secondary storage
NONE

every
mode

61

Appendix B Module Specifications

II.

IXII.

Iv.

CONTROL MODULE

DESCRIPTION

62

This module is the main control module for the program.
The control module opens and closes all files, executes
the UNIX system sort to sort the input name file and

the output_name file, and calls the six main submodules

in the following order:

parse_regspec
compare_inputs outputs
column marking
row_marking
row_spacing

create graph

The six main submodules are documented in
module specifications.

INPUTS

era system specification
input name file
output name file

OUTPUTS

input name file
output name file
dataflow_diagram file

SUBMODULES

parse regspec
compare inputs outputs
column marking
row_marking

row spacing

create graph

subsequent

Appendix B Module Specifications 63

II.

I11I.

Iv.

PARSE_REQSPEC

DESCRIPTION

The parse regspec module reads the era specification
file scanning for activity frames (see BNF in appendix
A). The module creates a linked 1list of activity
nodes with one node per activity in the era
specification. The module parses the activity frames
to identify each activity's inputs and outputs and
creates a record for each input and output to be
written to the input name file and the
output name file, respectively. B

INPUTS
era specification file
OUTPUTS

input name file
output name file

SUBMODULES

scan nlnl - searches for the beginning of the
next frame in the era specification

parse activity - parses an activity frame for inputs
and outputs

get keyword - parses the first word on a line and
stores it in a key word array

getname - parses the name of an activity,
input or output

scan 1nl - searches for the beginning of the
next line

crt_actnode -~ allocates an activity node for the

current activity and 1links it in to
the activity list

crt input sort - creates a record for the input name
- - file

Appendix B Module Specifications 64

crt output sort - creates a record for the output name
file

Appendix B Module Specifications 65

II.

III.

Iv.

COMPARE INPUTS OUTPUTS

DESCRIPTION

The compare_ inputs outputs module reads the sorted
input name and output name files, matches the input
and output names, and calculates the dataflow between
activities. The module creates a data structure to
represent the dataflow and a list of each activity's
source activities.

INPUTS

input name file
output name file

OUTPUTS

none

SUBMODULES

read inputs_file - reads the sorted input name
file

read outputs_file - reads the sorted output name
file

initial input - <creates a linked list of

initial input nodes

match inputs_outputs - matches input names with output
names to create the dataflow data
structure

make sa list - creates a list of each
activity's source activities

£ind sa end - finds the final node of a
source activity list

final output - creates a linked 1list of the
- output nodes

link _act_to out - creates an output list for each
-7 source activity

Appendix B Module Specifications 66

II.

III.

Iv.

COLUMN_MARKING

DESCRIPTION

The column marking module assigns a column number to
each activity node and c¢reates a linked 1list of
activities in each column. Each column list is headed
by a column header node, the column header nodes are
linked together in order by column number.

INPUT

none
OouUTPUT

none

SUBMODULES

mark column - links an activity node into a new

column list

add _input tolist - adds a source activity to the input
path list of a destination activity

search_path_list -~ searches an input path list for the
presence of a given activity

copy_prev path - copies the input path 1list of a
source activity to the input path
list of its destination activity

loop check - searches the input path list of an
activity to be column marked for a
dataflow loop

unmark prev cols - removes an activity from its
current column when it is moved to a
new column

shift col hdrs - reorganizes the column header node
- list when the last activity in a
column is removed

Abpendix B Mcdule Specifications 67

II.

III.

Iv.

ROW MARKING

DESCRIPTION

The row_marking module assigns a row number to each
activity and creates linked lists of the activities in
each row. Each row is headed by a row header node,
the row header nodes are linked together in order by
row number.

INPUTS

none

OUTPUTS

none

SUBMODULES

find output - searches the table of column
one activities for the location
of a given output

add sa - add a source activity to the
column one output table

establish row links - creates the 1linked 1lists of
activities in each row

find next inrow - finds the next activity in the

row to be linked in to a row list

Appendix B Module Specifications 68

ROW_SPACING

I. DESCRIPTION

The row_spacing module calculates the space needed
between rows to graph the dataflow lines. The module
traverses the dataflow data structure +to count the
number of lines that will need to be graphed in the

space between rows. If the 1line space required
hetween any pair of rows exceeds the default line
space, the space between rows is increased to

accommodate the largest demand.
ITI. INPUTS
none
III. OUTPUTS

none

IVv. SUBMODULES

none

Appendix B Module Specifications 69

II.

III.

Iv.

CREATE_GRAPH

DESCRIPTION

The create graph module produces a file of graphics
commands that depict a dataflow diagram of the input
specification. The module traverses the dataflow data
structure and calculates the coordinates of the
activity boxes and the dataflow lines between activity
boxes. The commands to graph the dataflow diagram are
written to the final output file.

INPUTS
none
OUTPUTS

dataflow diagram graphics file

SUBMODULES

graph_line - writes the graphics commands to graph
dataflow lines

graph box - writes the graphics commands to graph the
activity boxes

put label - writes the graphics commands to graph the
: line and box labels

arrow - writes the graphics commands to graph the
dataflow arrows

ceire - writes the graphics commands to graph the
input collection nodes

Appendix B Module Specifications 70
MAINTENANCE INFORMATION

To compile the program, use the following command:

cc dfd.c -1lm *1libs*

The numeric constants in the program are defined using the
#define facility in C language so that they may be modified
easily. An explanation of the numeric constants is provided
below.

TEXTS - size of the text in the output dataflow diagram

INP ILABEL - length of the input line between the collection
node and the activity box

RADI - radius of the input collection node circle
NEWLINE - newline character

WORD LIMIT - maximum length allowed for a keyword in the era
specification

NAME LIMIT - maximum length allowed for an activity, input
or output name in the era specification

NBR COMMON SAS - maximum number of common source activities
allowed for an output in the rowl placement table

MAX ROWS - maximum number of rows allowed
MAX COLS - maximum number of columns allowed

POINT DIST - vertical distance between the horizontal lines
in the space between rows

COME_OUT - horizontal distance between the right side of an
activity box and the beginning of a horizontal line
in the space between rows

LABEL LENGTH - length of the output label line coming out of
an activity box

COL_WIDTH - horizontal distance between columns

BOX HEIGHT - height of the activity boxes

Appendix B Module Specifications 71

BOX WIDTH - width of the activity bozxes
OUT DIFF - horizontal distance between the left side of an

activity box and the end of a horizontal line in the
space between rows

CDIST - INP LABEL length plus an arbitrary distance used to
make the column width large enough for all of the
data line components

UNSET - value of a y coordinate that has not been determined

ROW _WIDTH - vertical distance between rows

LABEL DIST - vertical distance between output 1label lines
out of an activity box

ARRHT - length of the height of an arrow head at the end of
an input line

ARRBS - length of the base of an arrow head at the end of an
input line

NBR OUTPUT COLl - maximum number of outputs for column 1
activities

Appendix C Error Messages 72

All errors, except those numbered 25 - 28, are fatal errors
and will cause the program to terminate.

ERROR MESSAGES

errl - can't open [filename]

Program was unable to open the era specification
file for input.

err2 - can't open [filename]

Program was unable to open the sorted input name
file for output.

err3 - can't open [filename]

Program was unable to open the sorted output name
file for output.

err4d - can't open [filename]

Program was unable to open the sorted input name
file for input.

err5 - can't open [filename]

Program was unable to open the sorted output name
file for input.

err6é - can't open [filename]

Program was unable to open the dataflow diagram
output file.

err7 - cannot allocate memory

Program could not allocate memory for an activity
node.

err8 - cannot allocate memory

Program could not allocate memory for an input
destination node.

err? - cannot allocate memory

Appendix C Error Messages 73

errl0

errll

errl?2

errl3

errld

errlb

errl®d

errl?

errl8

Program could not allocate memory for an initial
input node,

cannot allocate memory

Program could not allocate memory for an input
destination node.

cannot allocate memory

Program could not allocate memory for an output
destination node.

cannct allocate memory

Program could not allocate memory for an output
destination node.

cannot allocate memory

Program could not allocate memory for a source
activity node.

cannot allocate memory

Program could not allocate memory for an output
node.

cannot allocate memory

Program could not allocate memory for an output list
node.

cannot allocate memory

Program could not allocate memory for a column
header node.

no initial inputs found, cannot proceed

There were no activities having initial inputs or no
inputs. The program cannot select any activities to
be placed in the first column.

cannot allocate memory

Program could not allocate memory for a c¢olumn
header node.

Appendix C Error Messages 74

errl®

err20

err2l

err22

err23

err24

err2b

err26

cannot allocate memory

Program could not allocate memory for an input path
node.

cannot allocate memory

Program could not allocate memory for an input path
node,

number of columns exceeds MAX COLS

There were more columns in the dataflow diagram than
the row_table matrix could hold. The number of
columns in row_table can be expanded by increasing
the value of #define MAX COLS.

number of rows exceeds MAX ROWS

There were more rows in the dataflow diagram that
the row table matrix could hold. The number of rows
in row table can be expanded by increasing the value
of #define MAX ROWS.

number of outputs in coll_table exceeded

The number of outputs for column 1 activities
exceeded the coll_table. The coll table can be
expanded by increasing the value of #define
NBR_QUTPER_COLl.

number of common sa's for output exceeded

The number of common source activities for an output
exceeded the coll table limit. The coll_table limit
can be expanded by increasing the value of #define
NBR_COMMON_SAS.

unable to graph input line for [input name] into
[activity name]

There was not enough space along the side of the
activity box for [activity name] to graph all of its
initial input lines.

unable to graph input line for [input name] into
[activity name]

There was not enough space across the top of the

Appendix C Error Messages 75

err27 -

err28 -

activity box for [activity name] to graph all of its
initial input lines.

unable to graph output line for [ocutput name] out of
[activity name]

There was not enough space along the side of the
activity box for [activity name] to graph all of its
outputs.

unable to graph input line for [input 1line] into
lactivity name]

There was not encugh space alcong the side of the
activity box for [activity name] to graph all of its
inputs.

Appendix D User Guide 76

To execute the dataflow diagram generator, use the following
command:

dfdgen [filel] [file2] [file3] [file4]

The program name is dfdgen, an explanation of the files is
as follows:

filel - input file containing the era specification to be
diagramed

file2 - work file for sorting input names
file3 - work file for sorting output names

file4 - output file for containing the graphics commands
depicting the dataflow diagram

If errors are detected during program execution, error
messages will be written to stderr. (See Appendix C for an
explanation of error messages.)

To view the output dataflow diagram,- enter UNIX graphics
mode and either use command td [file4] to display the output
on the screen or to send [file4] to the plotter.

Appendix

#define
Hdefine
#idefine
fidefine
#define
#idefine
fidefine
#define
#define
#define
#define
fidefine
#define
#define
#define
f#idefine
f#define
#define
#define
#define
#define
#define
#define
f#define

#include
#include
#include
#include
#include
#include
#include
#include
#include

E C Language Code for DFD Generator 77

TEXTS 100

INP_LABEL 200

RADT 25

NEWLINE '\n'

WORD LIMIT 10

NAME LIMIT 35

NBR_COMMON_SAS 10

MAX_ROWS 10

MAX"COLS 10

POINT_DIST 140

COME_OUT (LABEL_LENGTH + (LABEL_LENGTH / 3))
LABEL LENGTH 800

COL_WIDTH (2 % LABEL_LENGTH + CDIST)
LINE DIST 300

BOX_HEIGHT (4 % LABEL_DIST)

BOX WIDTH (4 % LABEL_DIST)

OUT DIFF ((COL_WIDTH - COME_OUT - CDIST) / 2+4CDIST)
CDIST C(INP_LABEL + 300)

UNSET 99999

ROW_WIDTH (COL_WIDTH / 2)

LABEL_DIST 140

ARRHT (INP_LABEL / 2)

ARRBS (LABEL_DIST / 2)
NBR_OUTPER_COL1 (2 * MAX_COLS)

<stdio.h>

<ctype.h>
"/usrb/att/specht/graf/debug.h"
“fusrb/att/specht/graf/errpr.h”
"fusrb/att/specht/graf/font.h"
“"Jusrb/att/specht/graf/gpl.h"
“"Jusrb/att/specht/graf/gsl.h"
"fusrb/att/specht/graf/setop.h”
"/usrb/att/specht/gqraf/util.h"

FILE *eraptr,*sortin,*sortout,*dfdout *rtnin, *xrtnout;

int eof_
char *st
char key
char *no
struct g
char ina
int c,x,

curr
struct a

in=FALSE,eof out=FALSE;
rcpy();

wordCWORD_LIMIT + 1];
dename;

stparm gp;
me[NAME_LIMIT + 11;

y,nbr_ cols= 0,nbr_rows=0,nbr_acts= 0 ,already there,
col_no=1;

Ttivity ¢

char name[NAME_LIMIT + 11;
struct outlist *olist_ptr;
struct input *inp_ptr;

int row;

int acol;

Appendix E ¢ Language Code for DFD Generator

};

struct activity *next_inlist;
struct activity #*next_inrow;
struct activity *next_incol;
struct dest_source *sas;
struct dest_source *inp_path;
int LLl_x;

int L y;

int ur_x;

int ur_y;

int coup_y;

int codn_y;

int Ls_y;

int topls_x;

int toprs_x;

int btls_x;

int btrs_x;

struct activity *first_act = NULL;
struct activity *last_act = NULL,*aptr,*act_ptr;
struct output {

¥

struct output *last out = NULL,*optr,*first_out=NULL;

char name[NAME LIMIT + 11];
struct dest_source *odest;
struct output *next out;
int rowmin;

int rowmax;

int need_Lline_space;

struct input {

}

char name CNAME_LIMIT + 1]1;
struct dest_source *idest;
struct input *next_input;

*first_inp;
struct dest_source {

3;

struct activity *da_ptr;
int in_y;
struct dest_source *next_dest;

struct inp sort {

¥

char name CNAME_LIMIT + 13;
char colon;

struct activity *da;

char ni;

this_inp;
struct out_sort {

char name O[NAME_LIMIT + 11;
char colon;

78

Appendix E C Language Code for DFD Generator 79

b

struct activity =da;
char nl;

this_out;
struct outlist {

struct output *out_ptr;
struct outlist *next_ol;

} *olptr;
struct column {

int col_no;

struct activity *fst incol;
struct column *next_col;
int nbr incol;

} xfirst_col,*col_ptr;

struct col1_table {

struct output *op;
struct activity *common_salNBR_COMMOM_SAS];
} row_calcINBR_OUTPER CDL1], xrptr;

struct activity *row_ tabLeEMAx ROWS + 11 CMAX _CtoLs + 11;
int rsv_points[MAX_ ROWS = 21, rou width;

int rlinesC2 * MAX _ROWS1;

main (argc,argv)

int argec;

char *argvi];

nodename = *argv;

if (C(eraptr = fopen (argv[11,"r")) == NULL)

{
fprintf (stderr,"”err - can't open Xs\n",argv[11);
exit O);

}

if ((sortin = fopen (argvE2],"w")) == NULL)

{
fprintf (stderr,"err2 - can't open X%s\n",argv(21);
exit ();

¥

if ((sortout = fopen (argv[3]1,"w")) == NULL)

{
fprintf (stderr,"err3 - can't open Xs\n",argv[31);
exit ();

)

parse_reqspec();

fclose(eraptr);

fclose(sortin);

fclose(sortout)?;

system("cp inpsort newsort");

system ("sort +0 =-o inpsort inpsort");
system ("sort +0 =-o outsort outsort');
if ¢{rtnin = fopenlargv[2],”"r")) == NULL)

Appendix E ¢ Language Code for DFD Generator

{
fprintf (stderr,"err4 - can't open %¥s\n",argv[2]);
exit ();

3

if ({rtnout = fopen(argv[31,"r")) == NULL)

{
fprintf {(stderr,"err5 = can't open %s\n",argvi3]);
exit ();

>

compare_inputs_outputs();

column_markingQ);

row_marking();

row_spacing();

if ((dfdout = fopen(argv[4],"w")}) == NULL)

{
fprintf (stderr,"erré - can't open Zs\n" _,argvl4l);
exit();

>

create_graph();

fclose(rtnin);

fclose{rtnout);

fclosel{dfdout);

}
parse_reqgspec()
{
short Looping=TRUE;
scan_nlnl();
while (looping && (c != EQF))
{
get_keyword();
if (!{(strncmp(keyword,"Activity",8)))
parse_activity();
else if (!(strncmp(keyword,"MODE_TABLE",10)))
Looping=FALSE;
else
scan_nlnl();
}
3
scan_nilnl ()
{

short scanning=TRUE;
c = getcleraptr);
while (scanning && (¢ != EOF))
{
if (c == NEWLINE)
{
¢ = getc{eraptr);
if (¢ == NEWLINE)
{

80

Appendix E ¢ Language Code for DFD Generator 81

scanning = FALSE;

)
else
c=getcleraptr);
)
else
¢ = getcleraptr);
)
b
get_keyword()
{
int i=0;
short scanning=TRUE;
while (1 {isalnum(c)))
{
¢ = getc{eraptr);
b
while (scanning && (¢ != EOF))
{
keywordl[il = ¢;
++5;
if (i > (HORD_LIHIT - 1))
scanning = FALSE;
else
{
c = getc(eraptr);
if (¢ == ' V)
scanning = FALSE;
)
2
keywordf il = '"\0';
}

parse_activity ()

{

short input_found = FALSE;
short parsing = TRUE;
getname(};
crt_actnode();
while (parsing)
{
scan_1nl();
¢ = getcleraptr);
if (¢ == "' ")
{
get kevyword();
if ({(strncmp{keyword,"input”,5)))
{
input_found = TRUE;
getname{);

Appendix E € Language Code for DFD Generator

}

crt_input_sort();

82

}
else if (!(strncmp(keyword,"output",6)))
{
getname{);
crt_output_sort();
)
else continue;
b
else
if (c == NEWLINE)
parsing = FALSE;
}
if (! input_found)
{
strcpy(iname,"NONE") ;
crt_input_sort();
>

last_out = NULL;

getname ()

{

>

int i = 0;
short scanning = TRUE;
while (i(¢isalnumi(c)))

{
¢ = getc(eraptr);
b
while (scanning)
{
inamelil] = ¢;
++1i;
if (i > (NAME LIMIT - 1))
scanning = FALSE;
else
{
c = getc{eraptr);
if ((lisalnumc)) B& (¢ !=
scanning = FALSE;
)
3

fnameli] = '\0';

scan_1nlL Q)

{

short scanning = TRUE;
¢ = getcl{eraptr);
while (scanning)

')

Appendix E

if (c == NEWLINE)
scanning

else

¢ Language Code for DFD Generator

FALSE;

¢ = getc(eraptr);

>
E
crt_actnode()
{

act_ptr = (struct activity *)

malloc(sizeof(struct activity));

if (act_ptr == NULL)
{

fprintf (stderr,"err7 - cannot allocate memory");

exit();
)
++nbr_acts;

strcpy(act_ptr->name,iname);

act ptr-)olist _ptr = NULL;
act _ptr=>inp ptr = NULL;
act ptr->rou = 0;

act _ptr=>acol = 0;

act ptr->next inList = NULL;
act_ptr->next_inrow = NULL;
= NULL;

act_ptr->next_incol
act_ptr->sas = NULL;
act ptr->inp_path = NULL;
if (first_act == NULL)

first_act = act_ptr;
last_act = act_ptr;

last_act->next_ inlist
last act = act_ptr;

>
crt_input_sort()
{
strcpy(this_inp.name,
n

strcpy(this_inp.name,iname);

this_inp.da = Last_act;
this_inp.nl = '\n';
this _inp.colon = ':';

fpr1ntf(sort1n,"xs %d\n",th1s inp.name,this_inp.da);

}
crt_output_sort()

= act_ptr;

");

83

Appendix E € Language Code for DFD Generator B84

}

strcpy(this_out.name,
" u);
strcpy(this out.name,iname);
this_out.da = last_act;
this_out.nl = 'nl';
this_out.colon = ':';
fprintf(sortout,"Xs Xd\n",this_out.name,this_out.da);

compare_inputs_outputs()

{

>

read_inputs_file();
read_outputs_file(};
while ((leof_in) && (leof_out))

{
if ({c = strcmp{(this_inp.name,this_out.name)) > 0)
{
final_output();
read outputs_file();
b
else if ({(c = strcmp(this_inp.name,this_out.name)) < 0)
%
initial input(};
read_inputs_file();
}
else
match_input_output();
)

if (leof_in)
while (leof_in)
£
initial_input();
read_inputs_file();
>
if (leof_out)
while (leof_out)
{
final_output();
read outputs_fite();
}

read inputs_file()

{

3

if (fscanflrtnin,"%s %d",this_inp.name,&this_inp.da}
== EOF)

eof in = TRUE;

read outputs_file()

{

Appendix E C Language Code for DFD Generator 85

if (fscanfl(rtnout,"%s Xd",this_out.name,&this_out.da)
== EOQOF)
eof_out = TRUE;
)
initial_input()
{
static struct input *xlast_inp = NULL;
static char prev_name[NAME_LIMITI;
static struct dest_source *last_dest = NULL;
struct dest source *dest ptr = NULL;
struct input *iptr = NULL;
if ((c = strecmp{this_inp.name,prev_name)) == 0)
{
dest_ptr = (struct dest_source *)
malloc(sizeof(struct dest_source));
if (dest_ptr == NULL)
{fprintf(stderr,"err8 - cannot allocate memory\n'");
exit();
}
dest_ptr=->da_ptr = this_inp.da;
dest ptr->next dest = NULL;
last dest->next _dest = dest_ptr;
last dest = dest_ptr, .
b
else
{
iptr = (struct input *) matloc(sizeof{struct input));
if (iptr == NULL)
{
fprintf(stderr,"err9 - cannot allocate memory\n");
exit();
b
else
{
strcpy(iptr->name,this_inp.name);
iptr=>next_input = NULL;
iptr=->idest = NULL;
dest_ptr=(struct dest_source *)
malloc(sizeof(struct dest_source));
if (dest_ptr == NULL)
{
forintf(stderr,
"err10 = cannot allocate memory\n");
exit();
}
else
{
iptr=>idest = dest_ptr;
dest_ptr->da_ptr = this_inp.da;

Abpendix E C Language Code for DFD Generator

dest_ptr->next_dest = NULL;
if (first_inp == NULL)

{

first_inp = iptr;

last_inp = iptr;

}
else

{

last_inp->next_input = iptr;

Last_inp = iptr;

}
strcpy(prev_name,this_inp.name);
last_dest = dest_ptr;

)
}

)

act_ptr=last_dest->da_ptr;
}

match_inputs_outputs()

{
char prev out[NAME LIMNIT];
char prev_inpINAME_LIMITI;

struct dest source *dest _ptr,*dest_Llist,*xlast_dest;

int same 1np~TRUE same out TRUE;
final output();
strcpy(prev_out,this_out.name);
strcpy(prev_ 1np,th1s _inp.name);
dest ptr'(struct dest source *)
malloc{sizeof(struct dest_source));

if (dest_ptr == NULL)

{

8é

fprintf{stderr,"”err11 - cannot allocate memory\n");

exit();
)
dest_List = dest_ptr;
dest ptr->da ptr = this_inp.da;
dest ptr—>1n _Yy = UNSET;
dest_ptr->next_dest = NULL;
last_dest = dest_ptr;
optr~>odest = dest_ptr;
while (same_inp)
{
read_inputs_file();
if (eof_in)
same_inp = FALSE;
else
if ((c = strecmp(this_inp.name,prev inp))
same_inp = FALSE;
else

(4D

Appendix E C Language Code for DFD Generator 87

{
dest_ptr=(struct dest_source %)
malloc(sizeof(struct dest _source));
if (dest_ptr == NULL)
{
fprintf(stderr,
"err12 - cannot allocate memory\n");
exit();
2
dest_ptr=>da_ptr = this inp.da;
dest_ptr->next_dest = NULL;
dest_ptr=>in_y = UNSET;
last dest >next _dest = dest_ptr;
Last_dest = dest_ptr;
act_ptr = last_dest->da_ptr;
by
b
make sa List(dest_List,optr);
while (same out)
{
read_outputs_file(d;
jf (eof out)
same_out = FALSE;
else
if ((c = strcmp(this_out.name,prev_out)) 1=)
same_out = FALSE;
else
{
Link_act_to_out();
make _sa_ L1st(dest List,optr);
)
3
>
make_sa_ List{dptr,optr)
struct dest_source *dptr;
struct output *optr;
{
struct dest source *sa_ptr,+d,*last_dest, *find_sa_end();
while (dptr != NULL)
{
sa_ptr = (struct dest_source *)
malloc(sizeof(struct dest_source));
if (sa_ptr == NULL)
{
fprintf(stderr,”err13 - cannot allocate memory\n");
exit();
b
sa_ptr->da_ptr = this_out.da;
sa_ptr->next_dest = NULL;

Appendix E C Language Code for DFD Generator 88

aptr = dptr->da_ptr;
if (aptr—->»>sas == NULL)
aptr->sas = sa_ptr;
else
{
Last_dest = find_sa_end(aptr->sas);
last dest *next dest = sa_ptr;
)
d = dptr=>next_dest;
dotr = d;
b
}
struct dest source *find sa_end(d)
struct dest _source *d;
{
struct dest_source *last_sa;
while (d !'= NULL)

{
last_sa = d;
d = last_sa->next_dest;
}
return(last_sa);
}
final output()
{

static struct output *last_out;

static char prev_name[NAME LIMITJ

if ({c = strcmp(th1s out. name,prev name)) != 0)
{

optr = (struct output *) malloc(sizeof(struct output));

if (optr == NULL)
{

forintf(stderr,”err14 - cannot allocate memory\n");

exit();

)
strcpy(prev_name,this_out, name) ;
strcpy(optr->name this _out.name);
optr=->odest = NULL;
optr->next_out = NULL;
optr=>rowmin = MAX_ROWS + 1;
optr=>rowmax = 0;
optr->need line_space = FALSE;
if (first_ out == NULL)

{

first_out = optr;

last_out = optr;

)

else
{

Appendix E € Language Code for DFD Generator 89

last_out=->next_out = optr;
last_out=optr;
}
¥
Link_act_to out();
>
Link_act_to_out()
{
struct outlist *olptr,*ol, *last_ol;
olptr = (struct outlist) malloc(sizeof(struct outlist));

if (olptr == NULL)
{
fprintf(stderr,”err15 - cannot allocate memory\n");
exit();
>

olptr->out_ptr = optr;
olptr=>next_ol = NULL;

ot = this_out.da->olist_ptr;
if (ol == NULL)

{
this_out.da->olist_ptr = olptr;
}
else
{
while (ol != NULL)
{
last ol = ol;
ol = last_ol->next_ol;
)
Lastﬂpl—>next_ol = olptr;
}
}
column_marking (3

{
short col1_§ct_found=FALSE,marking=TRUE,found_one“incol;
struct column *cptir;
struct activity *a,*last_incol;
int no_loop;
struct output *o;
struct input *iptr,*ip;
struct dest_source *dptr,*d;
struct outlist *olist,*ol;
col ptr = (struct column *) malloc(sizeof(struct column));
if Ccol_ptr == NULL)
{
fprintf(stderr,"err16 - cannot allocate memory\n');
exit{);
>
col_pte->col_no = 1;

Appendix E € Language Code for DFD Generator 90

col_ptr->fst_incol = NUL
col_ptr->next_col = NULL;
col_ptr=->nbr_incol = 0;
first_col = col_ptr;
iptr = first_inp;
while (iptr != NULL)
{
dptr = iptr->idest;
while (dptr != NULL)
{
col1_act_found = TRUE;
act_ptr = dptr->da_ptr;
if Cact_ptr=>acol != 1)

{
act_ptr=>acol = 1;
if (col_ptr=>fst_incol == NULL)
{
col_ptr=>fst_incol = act_ptr;
ltast_incol = act_ptr;
b
else
{
last_incol->next_incol = act ptr;
Last_incol = act_ptr;
>
>
d = dptr=>next_dest;
dptr = d;
}
ip = iptr->next_input;
iptr = ip;
¥
if (lcol1_act_found)
{
forintf(stderr,
"eppr17 - no initial inputs found, cannot proceed\n");
exit();
}
cptr = first_col;
while (marking)
{

found_one_incol = FALSE;

col_ptr = (struct column *)
malloc(sizeof{struct column));

if (col_ptr == NULL)
{
fprintf(stderr,"”err18 - cannot allocate memory\n");
exit{);
}

Appendix E C Language Code for DFD Generator

curr_col_no++;
col_ptr=>col_no = curr_col_no;
col_ptr=->fst_incol = NULL;
col_ptr=>next_col = NULL;
col_ptr=>nbr_incol = 0;
act_ptr = cptr=>fst_incol;
while (act_ptr != NULL)
{
olptr = act_ptr->olist_ptr;
while (olptr != NULL)
{
optr = olptr->out_ptr;
dptr = optr->odest;
while (dptr != NULL)
€
aptr = dptr=->da_ptr;
if Captr->acol == 0)
.
found_one_incol = TRUE;
++(col_ptr=>nbr_incol);
mark_column(curr_col_no);

)

else if (aptr->acol == curr_col_no)
mark_columncurr_col_no);

else
{

no_Loop = Loop_check();

if (no_Lloop)
{
found_one_incol = TRUE;
unmark_prev_col{);
++(col _ptr=>nbr_incol);
mark_column(curr_col_no);

)
3
d = dptr=>next_dest;
dptr = d;

}
ol = olptr=>next_ol;
olptr = ol;
3
a = act_ptr=>next_incol;
act_ptr = a;

>
if (!found one_incol)
{
nbr cols = cptr=>col_no;

marking = FALSE;
free(col_ptr);

91

Appendix E C Language Code for DFD Generator 92

}
else
{
cptr=>next_col = col_ptr;
cptr = col_ptr;

}
>
cptr = first_col;
nbr_rows = cptr=~>nbr_incol;
while (cptr != NULL)
{
if (cptr=>nbr_incol > nbr_rows)
nbr_rows = cptr=>nbr_incol;

col_ptr = cptr->next_col;
cptr = col_ptr;
}
)
mark_column{curr_col_no)
int curr_col_no;
{
static struct activity *last_incol;
struct dest_source *d;
if Captr->acol != curr_col_no}
{
aptr->acol = currfcol_no;
if (col_ptr=>fst_incol == NULL)
{
col_ptr=>fst_dincol = aptr;
Last_incol = aptr;

)

else
{
tast_incol=->next_incol = aptr;
Last_incol = aptr;
}

)

if (aptr->inp_path == NULL)
{
d = (struct dest source *)

malloc(sizeof(struct dest_sourcel));
if (d == NULL)
{
fprintfi(stderr,"err19 - cannot allocate memory\n");
exit();
X
aptr=>inp_path = d;
d->da_ptr = act_ptr;
d->next dest = NULL;
copy prev_path();

Appendix E ¢ Language Code for DFD Generator 93

b
else
{
add_input_tolist(act_ptr);
copy_prev_ “path();
}
>
add_input_tolist{inp_val)
struct activity *inp_val;
{
struct dest_source *d,*last_d,*search_path_List();
Llast d = search _path_ L1st(aptr,1np val);
if ('aLready there)

{
d = (struct dest_source *)
malloc(sizeof(struct dest sourcel));
if (d == NULL) -
{
fprintf (stderr,"err20 - cannot allocate memory\n");
exit();
}
d->da_ptr = inp_val;
d=->next dest = NULL;
Last_d=>next_dest = d;
¥
}
struct dest_source *search_path_List(a,inp_val)
struct activity *a,*xinp_val;
{
int searching=TRUE;
struct dest_source *d,*last_d=NULL;
d = a=>inp_path;
already_there = FALSE;
if (d !'= NULL)

{
while (searching)
{
if (inp_val == d->da_ptr)
{
already_there = TRUE;
searching = FALSE;
}
else
{
Last d = d;

d = Tast _d=>next_dest;
if (d == NULL)

searching = FALSE;
>

Appendix E ¢ Language Code for DFD Generator 94

)

)

return(last_d);

}

copy_prev_path()

{

int adding=TRUE;

struct dest_source *d,*dptr;

if (act_ptr->inp_path == NULL)
{
return;
}

d = act_ptr->inp_path;

while (d != NULL)
{
add_input_tolist(d->da_ptr);
dptr = d->next_dest;

d = dptr;
}
3
Loop_check ()
{

int no_Lloop=TRUE;
if (act_ptr == aptr)
no_Loop = FALSE;
else
L
search_path_Llist(act_ptr,aptr);
if C(already_there)
{
no_lLoop = FALSE;
by
3
return(no_Lloop);
}
unmark_prev_col()
{
struct column *tc,*c;
int n,searching=TRUE,prev_col;
struct activity *prev_act_incol=NULL,*curr_act_incol;
prev_col = aptr~>acol;
tc = first_col;
¢ = first_col;
n = first_col=>col_no;
whi

hile (n T= prev_col)
{
tc = ¢;
¢ = tc->next_col;
n = ¢=>col_no;

Appendix E € Language Code for DFD Generator 95

2
(¢c=>nbr_incol)=--;
curr_act_incol = c~>fst_incol;
while (searching)

{

if (curr_act_incol == aptr)
searching = FALSE;

else
{
prev act_incol = curr_act_incol;
curr_act_incol = prev_act_incol=->next_incol;
b

X

if (prev_act_incol == NULL)
{

c->fst_incol = aptr->next_incol;
aptr->next_incol = NULL;
}
else
{
prev_act_incol->next_incol = aptr->next_incol;
aptr->next_incol = NULL;
>
if (c->fst_incol == NULL)
" shift_col_hdrs(c,tc);
shift_col_hdrs{c,prev_c)
struct column *c,*prev_c;
{
struct column *c¢urr, *next;
int n=0;
if (c == first_col)
first_col = c=>next_col;
else
prev c->next_cal = c=>next_col;
freelc);
curr = first_col;
while C(curr != NULL)
{
n++;
curr=>col_no = n;
next = curr=>next_col;
curr next;
)}
curr_col_no = ++n;
col_ptr=>col_no = curr_col_no;
>
row_marking ()
{

Appendix E C Language Code for DFD Generator 96

struct dest_source *d,*dptr;
struct activity *sa_ptr;
struct column *c¢cptr;
struct outlist *olptr,*ol;
int n=0,center_row,searching,prev_i,top,bot;
int op_not_there,sa_not_there,i,looping, more_acts,j;
int act_min=MAX_ROWS,act_max=1;
if (nbr_cols > MAX_COLS)

{

fprintf(stderr,

"err21 - number of columns exceeds MAX_COLS\n");

exit();
}

if (nbr_rows > MAX_ROWS)
{

fprintf(stderr,
“err22 - number of rows exceeds MAX_ROWS\n");
exit();
}
for (i=0;i <= MAX_ROWS;i++)
for (j=0;j <= MAX_COLS;j++)
row_tablefilLjl = NULL;
for (i=0;7 < MAX_COLS;i++) .
for (j=0;j < NBR_COMMON_SAS;j++)
row caltclil.common saljl = NULL;
rptT = &row_calcl0T;
aptr = first_col->fst_incol;
while Captr != NULL)
{
olptr = aptr->olist_ptr;
if (olptr == NULL)
{
++n;
aptr-~>row = n;
row_tablelnl[1] = aptr;
)
else
{
while (olptr != NULL)
{ .
find output(olptr=->out_ptr,
&op_not_there);
if (op_not_there)
{
rptr=>common_sal0] = aptr;
rptr=>op = {olptr->out_ptr);
optr = olptr->out_ptr;
)
else

Appendix E { Language Code for DFD Generator

{

add_sa();

>
cl = olptr=>next ol;
olptr = ol; -

)
}
act_ptr = aptr->next_incol;
aptr = act_ptr;
}
rptr = &row_calclO0J;
looping = TRUE;
while (looping)
{
i=0;
more_acts = TRUE;
while (more_acts)
{
aptr = rptr->common_saslil;
if Captr->row == @)
{
aptr=>row = ++n;
row_tablel(nl[11 = aptr;
)
++1;
if (i > (NBR_COMMON_SAS - 1))
more_acts = FALSE;
else if (rptr=>common_salil] ==
more acts = FALSE;
b
++rptr;

NULL)

if (rptr > &row_calc[MAX_COLS - 11)

lLooping = FALSE;
else if {(rptr=->o0p == NULL)
looping = FALSE;
}
col_ptr = first_col->next_col;
while (col_ptr != NULL)
{
aptr = col_ptr=>fst_incol;
while (aptr != NULL)
{
act_min = MAX_ROWS;
act_max = 1;
d = aptr=->sas;
while (d != NULL)
{
sa_ptr = d->da_ptr;

if (sa_ptr->acol == (aptr->acol - 1))

97

Appendix E

{

€ Language Code for DFD Generator

98

if (sa_ptr=>row < act_min)

act_min =

sa_ptr=>row;

if (sa_ptr=>row > act_max)

act_max =

}
dptr =
d =

d=->next dest;

dptr;

X

if (act_max == act_min)
center_row = act_max;

else

{

center row =

sa_ptr->row;

(act_max = (act_min =1))/2;

if (Cact_max - Cact_min - 1) X 2)

center_rowt+;
)
searching = TRUE;
i = center_row;
prev i = center_row;
top = center_row;
bot = center row;
while (searching)

{
if (row_tablelillaptr=>acol]
{
searching = FALSE;
row_tablelillaptr->acol]
aptr->row = 1i;
>
else
if ((prev_i > i) && (bot
{
prev_i = i;
i = ++bot;
}
else if (top = O)
{
prev i = i
i = ==top;
>
b J
act_ptr = aptr->next_incol;
aptr = act_ptr;
>
cptr = col_ptr=->next_col;
col_ptr = cptr;

)
establish_row_Links();

NULL)

aptr;

t= (MAX_ROWS + 1)))

Appendix E ¢ Language Code for DFD Generator 99

b 4
find_output(optr,op_not_there)
struct output ¥optr;
int *op_not_there;
{
int searching=TRUE,i=0;
*op_not_there = TRUE;
rptr = &row_calcl0J;
whiLe (searching)

{
if (rptr=>o0p == oaptr)
{
searching = FALSE;
*op not_there = FALSE;
b
else
if (rptr=>o0p == NULL)
searching = FALSE;
else
if (++i == NBR_OUTPER_COL1)
{
fprintf(stderr,"err23 - number of outputs",
" in col1_table exceeded\n");
exit();
X
else
++rptr;
)
}
add_sa()
{

int i=0,searching=TRUE;
while (searching)

{
if (rptr->common_salil == aptr)
searching = FALSE;
else
if (rptr=->common_salil == NULL)
{
searching = FALSE; _
rptr=>common_salil = aptr;
}
else
jf (+#+i == NBR_COMMON_SAS)
{

fprintf(stderr,"err24 - number of common ",
"sa's for output exceeded\n");

exit();

)

Appendix E C Language Code for DFD Generator

>
>
establish_row_Links ()
{

100

int more_rows=TRUE,more_cols=TRUE,i=0,j,prev_i,prev j;

while (more_rows)
{
i = =1;
more_cols = TRUE;
j=find next_inrow(i,j,&more_cols);
prev_i = 1i;
prev j = j;
while (more_cols)
{
j=find_next_inrow(i,j,&more_cols);
if (more_cols)
{
aptr = row_tablelillprev_jl;
act_ptr = row_tableli1(j1l;
aptr->next_dinrow = act_ptr;
prev_j = j;
)
}
if (#43 > MAX_ROWS)
more_rows = FALSE;
>
>
find_next_inrow(i,j,more_cols)
int i,j,*more_cols;
{
int searching=TRUE;
while {(searching)

{
++j;
if (i > MAX_COLS)
{
searching = FALSE;
*more_cols = FALSE;
}
else _
if (row_tabtefi3[j] != NULL)
{
searching = FALSE;
}
)

return(j);
3
row_spacing()
{

Appendix E € Language Code for DFD Generator 101

int row_countIMAX _ROWS +11,i,j;
struct output #%o;
struct column *cptr,*c;
struct dest_source *d,*dptr;
struct outlist *%ol;
struct input *ip,*iptr;
for (i=0;1 <= MAX_ROWS; i++)
row_countlil] = 0;
for (i=0; i < (MAX_ROWS * 2); i+4+)
rsv_pointsl[il = D;
optr = first_out;
while (opter != NULL)
{
dptr = optr->odest;
while {(dptr != NULL)
{
act_ptr = dptr->da_ptr;
if (optr->rowmin > act_ptr->row)
optr=>rowmin = act_ptr=->row;
if (optr->rowmax act_ptr=>row)
optr->rowmax =act_ptr->row;
d = dptr->next_dest;
dptr = d;
3
o = optr=>next_out;
optr = 0;
)
cptr = first_col;
while (cptr != NULL>
{
aptr = cptr->fst_incol;
while C(aptr != NULL)

A

{
olptr = aptr->olist_ptr;
while (olptr != NULL)

{
optr = olptr->out_ptr;
if (loptr->need_Lline_space)
{
dptr = optr->odest;
while (dptr != NULL)
{
act ptr = dptr->da ptr;
if Tact_ptr=>acol T= aptr->acol +1)
if ({act_ptr=~>row != aptr->row) £f£
(aptr->next_inrow != act_ptr))
optr=->need_Line_space = TRUE;
d = dptr=>next_dest;
dptr = d;

Appendix E C Language Code for DFD Generator 102

>
X
if (optr->need line_space)
{
if (Captr->row <= optr=>rouwmin) &%
(aptr=>row <= optr=>rowmax))

{

i = aptr=>row;
++row_countlil;
>

else if ((aptr=>row > optr=>rowmin) &%
(aptr=>row > optr=~>rowmax))
{
i = aptr->row =-1;
++row_countl[il;

}

else if Captr=>row <= (nbr_rows / 2))
{
i = aptr=->row - 1%;
++row_countlil;
>

else
€

i = aptr=>row;
++row_countlil;
)
2
ol = olptr=>next_ol;
olptr = ¢ol;
}
act_ptr = aptr->next_incol;
aptr = act_ptr;
)
c = cptr=>next_col;
cptr = ¢;
3
ip = first_inp;
while (ip != NULL)
{
dptr = ip->idest;
while (dptr != NULL)
{
aptr = dptr->da_ptr;
if (aptr=>acol != 1)
{
i = aptr=>row - 1;
row_count[id++;
3
d = dptr=>next_dest;

Appendix E € Langu

dptr
}
iptr =
ip = ip
3
row_width =
for (i=0; 1

if (row_
row
row_width =
if Crow _wid
rou_u1d
}

create_graph()

{

int end_label_Li
mid row;
int i,j,co_assig

int coming_out_x;

int no_errs_inpu
struct column *¢
struct outlist »
struct activity

struct input *ip
struct dest_sour

gp.fp = dfdout;
ap.x0 = 0.0;
gp.y0 = 0.0;
gp.x = 0.0;
gp.y = 0.0;
gp.xs = 1.0;
gp.Ys = 1.0;
gp.ux = 0.0;
gp.uy = 0.0;

initgsl (&gp);
mid_row = nbr_ro
mid_row = nbr_ro
if (nbr_rows % 2
++mid_row;
mid col = nbr co
if Tnbr_cols X 2
++mid_col;
act_ptr = “first
act ptr->LL X
act_ptr=>L1L_y
act ptr—>ur X
act_ptr 2ur_y
cptr = first_coL
white {(cptr I= N

age Code for DFD Generator 103

= d;
ip=>next_input;
trs

0;

<= MAX ROWS; i++)

countfi] > row width)

u1dth = row_ countLil;

rou width * LABEL _DIST + 2 * LABEL_DIST;
th < ROW _WIDTH)
th = ROW_ HIDTH'

ne_x,lLabel_Lline_y,end point_x,mid_col,

ned,consol x,co_y,center_c;
r

t;

ptr,*c;

ol;

*a;

tr,*ip;

ce *dptr,¥d;

ws / 2;
ws / 2;
)

ls / 2;
)

col=>fst_dincol;

0 - ((m1d col-1) » (BOX HIDTH+COL HIDTH)),
{(mid row = 1) * (BOX HEIGHT+row u1dth)),
{act_ptr=>LLl_x + BOX_WIDTH);

(act ptr-)LL y + BOX_HEIGHT);

uLLd

Appendix E

{
aptr
whil

c =

cptr

)
ipter = f
while (j

{

if (

t Language Code for DFD Generator 104

= cptr->fst_dincol;

e (aptr != NULL)

{

aptr=>Ll_x = act_ptr=>LL_x +
((aptr=>acol=1)*(BOX_WIDTH+COL+WIDTH));

aptr=>Ll_y = act_ptr=->LL_y -
(Captr=>row=1)*(BOX_HEIGHT+row width));

aptr=>ur_x = (aptr=>Ll_x + BOX_WIDTHJ;

aptr=>ur_y = (aptr=>LLl_y + BOX_HEIGHT);

graph_box(); -

aptr->topls_x = aptr=>LL_x;

aptr=>toprs_x = aptr=>ur_x;

aptr->btls_x aptr=>L1_x;

aptr->btrs_x aptr=>ur_x;

aptr=>coup_y aptr=>ur_y;

aptr=>codn_y aptr=>LL_y;

aptr=->ls_y = aptr->ur_y;

i = (aptr=->row * 2) =-T1;

rlinesCil = aptr=>LLl_y;

i = (aptr=>row * 2) - 2;

rlinesCil = aptr=->ur_y;

a = aptr->next_incol;

aptr = a;

}

cptr=>next_col;

= ¢}

irst_inp;
ptr != NULL)

(x = strcmp(iptr->name,"NONE")) != D)
{

dptr = iptr=>idest;

while (dptr != NULL)

{
a = dptr->da_ptr;
if (a~>acol == 1)

{
a=>ls_y = a=>ls_y - LABEL_DIST;
if (a->ls_y < a=>Ll_y)
{
fprintf (stderr,
"err25 - unable to graph input Lline
fprintf (stderr,"for %¥s into %s\n",
iptr->name,a=>name);
>
else

ll);

Appendix E C Language Code for DFD BGenerator 105

end_label_Lline_x =
a=>LLl_x = LABEL_LENGTH - ARRHT;
graph_ L1ne(end Label _ Line X,
a=>ls y,a >UL _x,a=>ls_y);
put_Llabel(end_ Label Line _X,
a->ls“y,1ptr->name);
arrow(a->ll_x,a->ls_y,0);
)
)}
else
{
a->topls_x = a=->topls_x + LABEL DIST;
if (a=>topls_x > a->ur_x)
{
fprintf (stderr,
“Yerr2é - unable to graph input Lline ");
fprintf (stderr,"for Xs into Xs\n",
iptr->name,a~>name);
}
else
{
i = (2 * a=>row) - 2;
a->coup_y = a->coup_y + LABEL_DIST;
if (a=>coup_y > rlinesCil)
rlinesCi] = a=->coup_y;
end_Llabel_Lline_x = a- >topls x~LABEL_LENGTH;
graph line(end label Line x,a->coup Y,
a- >topls X,a=>coup _y),
graph_Line(a->topls_x, a->coup_y,
a~>topls_x,a=>ur_y);
put_label(end_Label_Line_x,a=>coup_y,
- jptr=>name);
arrow(a->topls_x,a=->ur_y,270);

>
>
d = dptr=>next_dest;
dptr = d;
)
}
ip = iptr->next_input;
iptr = ip;
)
cptr = first_col;
while (cptr != NULL)

{
aptr = cptr->fst_incol;
while C(aptr != NULL)
{
end_Llabel_Line_x = aptr->ur_x + LABEL_LENGTH;

Appendix E € Language Ccde for DFD Generator 106

coming out_x = aptr=>ur_x + COME_OUT;
label_Line_y = aptr->ur_y;
olptr = aptr->olist _ptr;
while Colptr != NULL)
{
optr = olptr->out_ptr;
label Line_y = Label Line_y - LABEL_DIST;
jf (Label Tine _y < aptr=>T1 B2
{
fprintf (stderr,
“"err2? - unable to graph output Lline");
optr->name_,aptr=>name);

>
else
£
graph_Lline(aptr~>ur_x,label_Line_y,
end label_Line x,LabeL Line y)
put__ LabelC¢aptr->ur x,label Tine y,optr >name) ;
dptr = optr->odest;
if (dptr == NULL)
arrow({(end_label_Line_x + ARRKT),
Label_Line_y,0);
else

co_assigned FALSE;
while (dptr != NULL)
{
no_errs_input = TRUE;
a = dptr->da _ptr;
consol_x = a- >ll x=-INP LABEL=-2#RADI;
if (dptr->in Y == UNSET)
{
a=>ls_y = a->ls_y =~ LABEL_DIST;
if (a=>ls_y < a=>Li_y)
{
no_errs_input = FALSE;
fpr1ntf (stderr,
“"err28 - unable to graph",
"input Line ");
fprintf{stderr,
""for %¥s into %s\n",
optr=>name,a->name);
>
else
{
dptr=>in_y = a=>ls_y;
center_c = a=->LLl _x =
- INP_LABEL - RADI;
ccirc(center_c,a->ls_y,RADI);

Appendix E

C Language Code for DFD Generator 107

graph_Lline((a=>L1_x - INP_LABEL),
dptr->in _ys,a=>L1L x,dptr->1n y);
arrow(a=>tl_x,dptr->in_y,0);

)
h
if (no_errs_input)
{
if (a=->acol == aptr=->acol + 1)

{
graph_Line(end_Llabel Lline_x,
label “line y,consol x,dptr >in_y);
3
else if ((a~->acol > aptr->acol) &%
(a=>row == aptr->row) &%
(aptr->next_inrow == a))
{
graph_Line(end_lLabel_ Lline_x,
LabeL line y,consol X dptr->1n ¥
X
else
{
if ((aptr=>row <= optr->rowmin) &8&
(aptr=>row <= optr=>rowmax))

{
if (lco_assigned)
{
i = (aptr=>row * 2) =1;
rlines(il =
rlinesCil - POINT_DISTY;
co_y = rlinesfil;
co ass1gned = TRUE;
graph line(end_ Label Line_x,
Label line_y,coming_ out _X,
co“y);
)
)

else if {((aptr->row >=
optr=->rowmin) &%
(aptr=>row >= aptr->rowmax))
{
if (lco_assigned)
{
i = (aptr=>row * 2) - 2;
rlinesCil] =
rltinesCil] + POINT_DIST;
co_y = rlineslCil);
co assianed = TRUE;
graph line(end_ Label line_x,
label_line_y,com1ng_out X,

Appendix E

¢ Language Code for DFD Generator 108

co_y);
3
}
else
if (aptr->row <= (nbr_rows/2))
{
if (lco_assigned)
{
i = (aptr=>row * 2} =2;
rlinesCi] =
rlinesCil + POINT_DIST;
co_y = rlineslil;
co_assigned = TRUE;
graph Line(end_Label_Line x
label “Lline y,coang out_x,
co_y)
)
>
else
{
if (lco_assigned)
{
i = (aptr->row * 2) - 1;
rlinesCi] =
rlinesCil = POINT_DIST;
co_y = rlinesCil;
co_assigned = TRUE;
graph Line{(end_label_Line_x,
Label Line y,com1ng out_x,
co_y)'
)
)
end point_x = a=>Ll_x = OUT_DIFF;
graph_ L1ne(com1ng out x,co Y,
end po1nt _X,c0_Y);
if (coming out_x < end point_x)
arrow(2 * com1ng out X -
end_Llabel_ Lline . x,co y,0);
else
arrou(end Label_tine_x,
co y,180),
ccirc(coming_out_x,co_y,10);
ccirc{end po1nt X,C0 y,10),
graph_ Line(end po1nt _X,C0_Y,
consol_x,dptr >in_y);
>
}
d = dptr->next_dest;
dptr = d;

Appendix E C Language Code for DFD Generator

>
b2
ol = olptr->next_ol;
olptr = ol;
)
a = aptr=>next_incol;
aptr = a;
X
¢ = cptr->next_col;
cptr = ¢;
}
)}
graph_Line(x1,y1,x2,y2)
int x1,y1,x2,y2;

{
double larray[4];
larray[0] = (double) x1;
Larray[1] = ({(double) y1;
larrayl2] = {double) x2;
Larray[3] = {(double) y2;
tines(larray,4,0,BLACK,NARROW,SOLID);
b]

graph_box ()
{
int i = 0;
char ¢;

for (i=0; i< NAME_LIMIT;i++)

{

if (aptr=>nameli] == '_")
{
aptr->nameli] = NEWLINE;
b

¥

textbox((double)aptr=->LL_x,(doubledaptr->LL y,
(double)aptr=>ur_x, (doubledaptr->ur _Ysaptr=>name,
0, BLACK NARROW,SOLID,TEXTS,BLACK,D);

>
put_Llabel(x,y,name)
int x,y;
char namelNAME LIMIT + 13];
{
char short_nameC10];

x = x + 100;
y =y + 70;
strncpy(short name,name,10);

text((double)x,(double)y,short_name,0,TEXTS,BLACK,0);

}

109

Appendix E ¢ Language Code for DFD Generator 110

arrow(x,y,ang?
int x,y,ang;
{
double arrowaf81;
int x2,y2,x3,y3;
arrowal0] X3;
arrowal1] Y3
if (ang == 0

{

x2 = x = ARRHT;

y2 = y — ARRBS / 2;

x3 = x2;

y3 = y2 + ARRBS;

>
else if (ang == 180)

{

x2 = x + ARRHT;

y2 = y = ARRBS [/ 2;

x3 = x2;

y3 = y2 + ARRBS;

)
else

{

x2 = x - ARRBS / 2;

y2 = y + ARRRT;

x3 = x2 + ARRBS;

y3 = yé;

)
arrowal2] = (double) x2;
arrowal3] = (double) y2;
arrowal4] = (double) x3;
arrowal5] = (double) ¥3;
arrowal6] = (double) x;

arrowal7] {double) y;
L1nes(arroua 8,0,BLACK,NARROW SOLID);
)}

ccirc(x,y,rad)
int x,y,rad;
{
double sx,sy,srad;
s X (double) x;
sy (double) y;
srad = rad;
circle(sx,sy,srad,BLACK,NARROW,SOLID);
b

Appendix F

Sample Output from DFD Generator

ERA Specification for Chess Program

Activity
Output

Activity
Input
Ooutput

Activity
Input
Output
OCutput

Activity
Input
Cutput
Cutput
Cutput

Activity
Input
Input
Output

Activity
Input
Input
Output

Activity
Input
Input
Output

Activity
Input
Output

as =% s W s s ae

e as &F ap sa

s 38 ma

8 sp B e 49 am s ¥

Initialize board
chess_board

Create special board
board description
chess_board

Retrieve board
name_of game
chess board
retrieve_move

Compute Move
chess board
chess board
computer move
status

Update_board
move
chess_board
chess_board

Validate user move
move - -
chess board
move_message

Store_board
name_of game
chess board
store_message

Display_ board
chess_board
board_display

111

112

Sample Output from DFD Generator

Appendix F

Output data flow diagram for Chess Program

<Yggeu 65075 |

Bs

e

N

pJeo
m_ammH

g Bne! 118

pJeoq
84075

BNnou
Jesn

epiien

Jeoq s8eyo

pJeoq
810y0y

&

11

e METE
8epd NuTJejnduos
SEBUD Jeoq 68843

pJeoq
8| oeds
81B0.)

558D poeog”

Bn

JE0q 5567]

pJeoq
81}1U]

Appendix F Sample Output from DFD Generator 113

ERA Specification for Calculating Halstead's Metric

Activity : Print Halstead Heading
Output : H table headlng
Activity : Complete_ Head

Cutput : hk_head msg

Activity : Store Entity

Input : attribute

Input : entity tab
Input : nl n2 switch
Input : line_of_ spec
Cutput : eof

Output : line_of spec
Qutput ¢ spec_ "nl line

Output : spec_n2“llne

Activity : Calc_Est length
Input : num spec “nl
Input : num_spec_ “n2
Output : est “len _msg
Output : est length
Activity : Scan Spec

Input : entity tab
Input : line_of spec
Output : eof

Output : line_of spec
Activity : Ignore Attribute
Input : line_of spec
Activity : Ignore Entity
Input : line of spec
Output : eof =
Activity : Read_Spec_Title
Input : line of _spec
Cutput : analyzer o
Output : title T
Activity : Store_Attribute
Input : fan_in table
Input ¢ fan_out_table
Input : nl n2 switch
Input : verb table

Input line of spec

Appendix

Output
Output
Qutput
Output

Activity
Input
Input
Input
Input
Output
Output
Output
Output

Activity
Input
Input
Cutput
Output

Activity
Input
Input
Output
Output

Activity
Input
Input
Output
Output

Activity
Input
Input
Output
Output
Output
Output

Activity
Input
Input
Cutput
Output

Activity
Input

F

LTI L TR T]

0 sa B8R 99 B BE 6 PR 08

8 @2 sy e WS

= 00 ee ¥ ab

s 20 ¥

o

Sample Output from DFD Generator

entity in
entity nl
entity out
spec_nl line

Print N1N2 Heading
hum spec nl

num spec n2
spec_nl line
spec_n2 line
length nl
length_n2

nln2 msg
spec_length

Entity P Vol
entity in
entity out
mod_pot_vol
pot_vol msg

Calc_Volume
spec vocab

spec_length
spec_vol_msg
spec_volume

Calc Est Time
num_spec nl
num spec n2
est _time

est time msg

Calc_HK Metric
mod pot vol
num_ent_in
hk_calc_msg

hk one

hk pot vol
num_ent_in

Comb_Pot Vol
num_mods
mod_pot_vol
comb p vol

comb_pot_vol

Calc_Level
comb_pot_vol

114

Appendix

Input
Output
Output

Activity
Input
Input
Cutput
Output

F

% s 08

e s sa 8 08

Sample Output from DFD Generator

spec_volume
level msg
spec_prgm

Calc Effort
spec_volume
spec_prgm
effort
effort_msg

115

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

Appendix F Sample Output from DFD Generator 116

Output data flow diagram for Halstead's Metric Program

e
(3

4

A DATAFLOW DIAGRAM GENERATOR

by

ALICIA ELLEN SPECHT

B. A., University of Georgia, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

Abstract

This project is a software tool that produces a dataflow
diagram from a reguirements specification. The input
specification specifies the activities in the system, and
each activity's inputs and outputs. The tool matches the
input data names with the output data names to determine the
dataflow between activities. A data structure is created to
store this information. From this data structure, the tool
creates a file of graphics commands that depict a dataflow

diagram of the specified system.

