A MEASURE OF SOFTWARE COMPLEXITY
by
LLOYD DAVID BORCHERT

B.S., Oglethorpe University, Atlanta, Georgia, 1972

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

Approved by:

Vgt 0T

Major P essor

SPEC
oLl

1 O

Abl?
R4

1931
BL7
&k

All200 Ob&99y
TABLE OF CONTENTS

Chapter 1.
.‘-
B.

c.

Chapter 2.

Chapter 3.

Chapter 4.
Chapter 5.
Chapter 6.

Introduction

Overview of Report 1
Importance of complexity measurment 1
Definition of program complexity 2
Characteristics of msur'euent. criteria 3

Some current methods for measuring program complexity
McCabe (Graph theory cyclomatic number) 5

Chapin (Set theory index of module complexity) 5

McClure {Control variable and module complexity) 12
Halstead {Measure of program effort) 24
Basis of proposed measurse

Characteristics measured 29

Computation of measure 31

Example of computation 31

Other examples and comparative analyses

Conculsions

Future work

Appendix A

References.

29

33
39
%0
3
12

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Chapter 1

Iatroduction

A. Overview of Report.

This report describes several coaplexity measures and illustrates
how each can be used to quantify the complexity of a sample progranm.
Tne purpose of the reporﬁ is to present several different and unique
approaches to prozram complexity measurement, each using a different
program characteristic, and then to present an alternative approach
to complexity measurement. The report is structured to first give
the reader an introduction to prozram coamplexity, coamplexity
measurement, and the types of characteristics used in wmeasuring
program ' complexity. Next, the reader is presented several current
methods for measuring prozram complexity with the basis of each
measure, the wmethod _of computation, and an example of computation,
each using the same sample program. Then, a new complexity metric is
presented with the basis of the proposed measure, the computation of
the measure, and the example of compubation. This is followed by
additional examples, a comparative analysis of all the metrics
presented, some conslusions, and the future work that is required on

this proposal.
B. Importance of complexity measurement.

Anyone who has studied sofiware engineering has had the

opportunity to recognize that there are many different ways to dﬁatgn
and code a program that will accomplish the same basic function. The
programming style wused by most programmers is individualistic and
generally based upon their own experiences and education. It 1is
these diverse approaches to design and programning style that give us
our traditional problems in developing, testing, and wmaintaining
computer software. As demonstrated by many authors on this subject,
often over half of the development Lime is spent 1in testing.
Additionally, the total cost of a large software system is dominated
by program maintenance., The inoreased cost of software development
and software wmaintenance and the decreased cost of hardware has
caused a shift in emphasis from concerns of machine efficiency to the
production of clear and structured programs that can be easily

maintained.
C. Definition of Program Complexity

Program complexity 1is an objective measure of how simple or how
difficult a program is to understand when the coded instructions for
that program are examined by an individual who is proficient in the
language in which thé coded instructions are written. Although
related, the wmeasure of program complexity is separate from the
inherent complexity of the total prcblem. The inherent complexity of
a problem 1is determined by the nature of the problem. Program
complexity is a function of the process used to solve the problea.
In the past, individuals have generally relied on intuition and

conmon sense Lo measure what appeared to be simple and what appeared

t0o be complex; however, program complexity must be independent of
individual style and based upon measurement methods which will always
perform satisfactory, which have no built-in prejudices, which can be

aaatgnéd quantitative values, and which are conveanient to use.
D. Characteristics of measurement criteria

Software that is Cfunctionally equivalent, that is different
programs that accomplish the same functions, can have many major
differences. These differences are derived from the software
characteristics of each program. It is the quantitative ameasurement
of these characteristics and their ocomparison that will make it
possible to deteramine which programming techniques produce software
that will reduce the current problems of understandability,
maintainability, and reliability. It is important to make a
distinction between Gthe types of characteristics used in measuring
complexity. Subjective characteristics such as testable,
understandable, and malntainable are difficult to standardize and are
dependent on programming language. Zolonowski [1] 1identifies four
wain categories of measurable characteristics:

GE&ERAL TYPES OF VARIABLES
CATEGORY MEASURED
1. Instruction mix -Progran size data
-Nusbers and types of instructions
-Specific attributes of instructions
2. Data reference -Numbers and types of variables

=Number of refersnces to and span of each

variable
-Parameter nesting data
3. Interaction/ -Numbers and types of subprograms refereanced
Interconnection -Nesting levels of subprograms
-Number of entry points
-Nesting levels of parameters
-tyhes and numbers of parameters
-How data is connected between modules
4. Structured/ -Counts attributes of branching instructions
Control flow -Flow graph of program
-Basic flow graph variables such as numbers
and sizes of basic blocks and intervals
-Detailed Loop analysis
-Detalled strongly connected rezion data
Therg have bDeen complexity measuring techniques advanced for all
of these characteristics and others not mentioned here. The most
popular measurement techniques are based on structurad
characteristios such as the nuamber of 1independent circuits in a
program, Gthe number of source statements in a program, the number of
decision nodes or the number of operands in a program. Structured
characteristics are 'used because they are more measurable, less
dependent on programaing language, and easier to use 1in the

development of a complexity measure.

Chapter 2
Some Current Methods for Measuring Program Coamplexity
A. McCabe (Graph theory cyclomatic number)

BASIS OF MEASURE

McCabe's complexity metric [2] {s based on the decision structure
of a program and the number of linearly independent control paths
comprising the program. McCabe's mebvl; counts the number of basic
control path segments which, when combined, wlll generate every
possible path through the program; he presented this as a measure of
program complexity.

COMPUTATION OF THE MEASURE

McCabe's V(g) metriec, the cyclomatic number is defined as:

v(g) = NUMBER OF EDGES - NUMBER OF NODES + 2(NUMBER OF CONNECTED
COMPONENTS). McCabe presents two simpler methods calculating V(g).
McCabe's V(g) can be computed as the number of predicate nodes plus
i, or as the number of regions in a planar graph of the control flow.
EXAMPLE OF COMPUTATION

Using the sample procedure in appendix A and its associated
directed graph (figure 1) V(g) is computed as follows:

NUMBER OF EDGES = E = 11

NUMBER OF NODES = N =-9

NUMBER OF CONNECTED COMPONENTS - P = 1

Vig) = E = N + 2% = §

B. Chapin [Set theory index of module complexity)

Vig) =11 =-9+23z}4

c=3, 2+ I(0,0)

Figure 1

BASIS OF MEASURE

Chapin's measure of software complexity .3], which he labels 'Q',
is .a quantitative value for the difficulty people have in
understanding the function of the softwars. His measure |is
quantitative, it shows reasonable vélidtty, and it is easily computed
when his system of prozgram documentation is used.

Chapin's basis for his Q measure springs from the set theoretic
definition of a function. His function is a correlation between
different sets of input data of a specified domain and different sets
of output data of a specified rarge. He expresses a difference in
funotions as a difference in the input or in the output or both.

There are two foras of differences - one difference is in the
wembership Lln the sets and the other difference is in the domains and
ranges. Since a change in domain of the imput data or in the range
of the output data is usually of smaller impact on the function of a
program than the actual changes in the input or output, his measure
of software complexity ignores domains and ranges and concentrates on
the input and output.

Chapin further classifies data by the role that the data plays in
the progran. Input data that is needed for processing and the
production of output data is called 'P' data, The data that is
created, or modified in value or identity by the execution of the
program function is called 'M' data., The data used to control which
functions are executed is called 'C' data., The data which passes
through a function unchanged in value or identity, that {is just

passed from one part of the software to another, is called 'T' data.

The coatrol data coatributes the most to program complexity. The
data which plays a modification role is also a major contributor to
program complexity, The data which plays a processing role
contrioute some complexity. The data that only passes through a
function contributes the least to software complexity.

The modules of the software may communicate data among
themselves; data may start as 'M' data in one module, becoming 'T'
data as they are communicated through other modules, and then
terminating as 'C' or 'P' data in a using module. The more modules
that are 1involved in communicating any item of data, the higher the
complexity of the software.

The communication of data among modules can be further
complicated by the presence of iteration, Iteration control is the
most difficult aspect of complexity in modularized programs and
systens.‘ While modularization can reduce the total complexity it
will not reduce the complexity of iteration when more than one module
is involved, If the extent of iteration 1is determined by control
data which ocomes from modules other than the loop exit module; then
the complexity of the software increases, but not in a linear manner.
COMPUTATION OF THE MEASURE

Chapin states that the high reliability of his measure comes from
the simple computational procedure used on the documentation for the
program or system., A measure 1is reliable when different peopie
consistently come to the same result when they use the same
computational procedure,

The ten steps in the computational procedure for the measure 'Q'

are:

1.

2.

b,

6.

For each module, count the number of data items shown in
C', 'P', or 'T' roles as input, and in 'M' or 'T' roles as
output. When one data item appears in multiple roles or
has wmultiple sources or destinations, each is to be
counted, Data serving as program wide or system wide
constants or literals are nét counted,

Multiply for each module the total count for each role by
the appropriate weighting factor 'W', as follows: 3 for
'C'y, 2 for 'M'. 1 for 'P', and .5 for 'T'.

Sum the weighted counts by module.

Assign an initial 'E' value‘of 0 to all modules. Then
examine the documentation to determine which modules are to
contain the exit tests for iteration where subordinate
modules are part of the iteratively invoked loop body. The
loops or iterations are 1ignored when they are to be
performed entirely within a module with no subordinate
modules 1terat;vely invoked.

For each iteration-exit module identified in step 4,
examine the 'C' items to determine which are to serve in
the exit test.for the iteration of the subordinate modules
that comprise the Lloop body. Determine where these 'C'
data come from, If they come from within the subordinate
loop body, add 1 to 'E' for each such 'C' data item. If
they come from outside of the loop body, add 2 to 'E' for
each such 'C' data item.

Convert 'E' for each module into a repetition factor 'R' by

adding 1 to the square of one-third of 'E'.

7. Multiply the sum of the weighted counts from step 3 by the
module's respsctive 'R' valuses.
8.. Find the square root of the products from step 7. This is
'Q', the index of module complexity. The computation in
this step is a computation of the geometric mean of the
total weighted counts anxi the inter-module iteration
control.
9, Calculate the 'Q' of the program by finding the arithmetic
mean {average) of the component modules.
10, Calculate the 'Q' of the system by finding the arithmetic
mean of the component modules within the component .
programs, or by weighting the programs 'Q' from step 9 by
the relative sizes (in terms of modules) of the prograams.
The practical lowsr bound on module complexity is 1.0, No upper
bound exists for 'Q', but values beyond 11.0 are uncommon with
structured programming and structured design,
EXAMPLE OF COMPUTATION

Using the data in the sample pr_ocedure in appendix A and
constructing the input-output table as shown in figure 2 the index of
module complexity *'Q' 'would be computed as follows:

Step 1 Raw-counts C =5, P=s 3, M5, T =3

Step 2 Weighted-counts 3 # C = 15, 1 #P =3, 2 ¥ M = 10

‘5 %7T=z1,5

Step 3 Weighted-total 15 + 3 + 10 + 1.5 = 29.5

Step 4 E = 0 (no subordinate modules)

Step 5 Not applicable in this case

Stepﬁﬂ:l+(.333'3)8q=l+(_}=1

10

Input-Qutput Table

Input Type From Output Type To
Procedure Test
Check CcPT Current-node Check M Proc-Test
1 c Proc-Test none M Proc-Test
Fair c Proc-Test none M Proc-Test
A CPT " Proc-Test | List-Pointer| M Proc-Test
Last CPT Proc-Test | List-Pointer| M Proc-Test
Figure 2

1"

SI’-GD T Pl‘Dd = 29-5 L 1 2 29-5

C. McClure (Control variable and module complexity)

BASIS OF MEASURE

McClure (4], (5] states that program complexity is, "a function
of the number of possible execution paths in the program and the
difficulty of determining the path for an arbitrary set of input
data.® Thus, a program in which there are no alternative paths has
no complexity.

MoClure ©presents a method of quantitatively measuring the
complexity of interaction between modules., It includes two measures;
the measure of control variable complexity and module complexity.

c°ntfol variable complexity is a measure of the effect a control
variable has on the interaction between modules, It quantifies the
difficulty of understanding how a control variable will affect the
module and how that ocontrol variable is used in the interaction
between modules.

The coamplexity of a control variable is a function of the set of
all the modules which use the control variable and the calling
relationship among these modules., The more modules which use the
same control variable the more diffisult it is to understand the
interactions of each module using the control variable.

A module uses a control variable if the value of the control
variable is modified and/or referenced in the module., Let the set of

modules in a program that uses control variable V be denoted by AV.

12

Then, AV can be divided into two disjoint sets:
1. The set of modules in which the value of control variable V
ls modified, denoted by MV,

2. .The set of modules in which the value of control variable V

is referenced but not modified, denoted by RV.

Another set of modules which must se considered when measuring
the complexity of a ocontrol variable is the set of modules whose
invocation is dependent upon the value of the control variable,
denoted by EV. Modules in the set EV may or may not use coatrol
variable V.

The complexity of control variable V 1s determined by looking at .
the amembership of 4the sets AV, RV, MV, and EV. The complexity of
control variable V is divided into two factors; Tane degree of
ownership for the control variable V and the complexity of the
interaction of the control variable V among the members of the sets
MV, RV, and EV.

The degree of ownership for a control variable is a measure of
the complexity of the relationship betwsen the module that owns the
control variable and the modules that modify the value of this
control variable,

It is defined to be one of the following four cases:

DEGREE 1: The control variable is modified exclusively by its

owner or never modified in the progranm,

DEGREE 2: Tne control variable is modified by its owner and at

least one descendant of its owner.

DEGREE 3: The control variable is only referenced by its owner

and modified by at least one descendant of its owner,

13

DEGREE 4: The control variable is not referenced by its owner
and is modified by at least one descendant of its
owner. '

As the degree of a control variable increases, its use in the program
becomes more difficult to understand.

Module complexity 1ls a measure of the invocation of one module
relative to the other modules in the program. It evaluates the
difficulty of determining how program control is passed among each
module, Module coaplexity measures the difficulty of understanding
how program control is passed among modules in a structured program.

The analysis necessary to calculate module complexity includes an
evaluation of the control structures and the complexity of the
control variables referenced in the calling of a module or a branch
to a routine which will terminate the program. The four possible
sources for module complexity in a structured program are:

1. The first source for module complexity is the complexity of
the control ?ariables upon whose values module calling is
dependent.

2. The second source for module complexity Is the control
structures that direct module calling., Module complexity
increases if a module is called within a iteration
structure, In the case of iteration the value of the
control variables used to direct iterative module calling
may be modified by the module that is being called. This
example of iteration will increase the module complexity
value since the called module, as well as the calling

module, must be examined to wunderstand loop termination

14

conditions,
3. The third source for module complexity is when a module has
. multiple calling modules. It 1is more difficult to
understand in this case when and how the module is invoked.
Also, when a change is made to a common module, the
possible effect of this oh#nge on each calling module must
be carefully examined,

4. The fourth source for module complexity is when a branch
from the module is made to a routine which aborts the
progran. In this case, the calling-called invocation
relationship is overridden.

Module complexity then, depends upon the complexity of the

control variables used to invoke a module and select the abort
branch, the control structures used for c¢alling modules and the

nunber of other modules to which a module may branch.

COMPUTATION OF MEASURE

The formula for calculating the control variable complexity,
denoted by C{v), is used to calculate the complexity value of coatrol
variable V in a well-structured program. C(v) is defined as follows:

C{v) = (Dv *# Iv) / N

Where N is the number of different modules in the program, Dv 1s the
degree of ownership for V, and Iv is the interaction complexity for
V.

Dv is assigned an integral value of 1 to 4 according to the
following:

Dv = 1 Lf control variable V has degree 1

15

Dv = 2 if control variable V has degree 2

Dv = 3 if control variable V nas degree 3

Dv.z 4 if control variable V nas degree U

Interaction complexity, denoted by Iv, indicates the complexity
of the interaction between modules using control variable V. The
formula for calculating Iv is: .

Iv = IM1 + IM2 + IM3 + IMU
IM1 measures the complexity of interaction between modules which use
explicitly the control variable V. To calculate the value of IM1,
perform the following steps:

1. Determine the members of the set Mv (The set of modules in
which the value of control variable V is modified).

2. Determine the members of the set EV (The set of modules
whose calling is dependent upon the value of the control
variable V).

3. Count the members in the set intersection of MV and EV and
assign this value to IM1,

IM1 = number of modules in which the value of the control variable is
both modified and whose callinz is dependent upon the value of the
control variable,)

IM2, 1IM3, and IM4 measure the complexity of interaction between
modules which have implicit wuse of the control variable V. To
calculate IM2, perform the followlng steps:

1. Determine the members of the set RV (The set of modules

where the control variable is referenced but not modified).

2. Determine the members of the set MV (The set of modules in

which the value of V is modified).

16

3. Determine the relationship (i.e., calling-called or

non-related) of each member of RV paired with each member
. of MV,

4, Add one to IM2 for each calling-called pair in which the
calling module is a member of RV and the called module is a
member of MV, ‘

IM2 = number of calling-called modules pairs that use control
variable V such that the calling module of the pair is a member of
the set of modules that references V and the called module of the
pair is a member of the set of modules that modifies V.

To calculate IM3 perform the following steps:

1. Determine the members of the set AV (The set of modules in
a program that use control variable V).

2. Determine the members of the set MV (The set of modules
which modify V),

3. List all pairs of modules in AV that are not related.

4, For each pair listed in step 3 such that one module is the
pair is a member of MV and would be above the other in a
structure chart, add 1 %o IM3.

IM3 = number of module pairs that use control variable V such that
one module of the pair is a member of the set of modules that modify
V and is above the other module of the pair in the structure chart.
IM4 measures how intermittently control variable V is used in the
program. To calculate IMU perforam the following steps:

1. Determine the members of the set AV (The set of modules that

use V).

2. Por each module in AV, other than the owner of control

17

variable V, determine if all its calling modules are members
of AV, If not, add 1 to IM4,
IM4 = number of modules which use the control variable V which are
called by modules which do not use the control variable.

The control variables of a program can be compared by means of
their complexity values. Control v;riables with greater complexity
values contribute wmore complexity to the. design than control
variables with Llesser complexity values, When computed the
complexity value of a control variable must be in the range of 0 - 8.

Module complexity is a measure of the difficulty of understanding
how the control in a program is passed from one module to another in
a well-structured program. It ls the sum of three complexity teras:

T1 = The complexity of passing control to module M.

T2 = The coaplexity of passing control from module M to other

'modules that are called by module M.
T3 = The complexity of branching from module M to a routine that
will terminate the program.
M{m) denotes the complexity of module @ and is defined as:
M(m) = (T1 + T2 + T3)
Each of the three complexity terms has two factors:
1. The number of modules involved in either a calling or a
called role.
2. The complexity of the control variables referenced and
whether iteration structures are used or not.
For example, the complexity of passinz control to module m depends
upon the number of modules from which m is called, if iteration

structures are used, and the complexity of the control variables

18

whose valuss are referenced to direct the calling of m. The three
module complexity terms are defined as:

T1 = Fm * Xm
Where Fm is the number of calling modules of module m and Xm 1is the
complexity of the control var!.a.h_les and the iteration structures
referenced in calling module m,

T2 = Sm ¥ Ym
Where Sm is the number of called modules of module m and Ym is the
complexity of the control variables and the iteration structures
referenced by module m in calling the called modules.

T3 =Bn * Zn
Where Bn 1is the number of routines walch will terminate the progranm
to which module m may branch and Zm is the complexity of the control
variable referenced by module m to direct branches from m to these
routines..

The following two definitions explaln how to determine the values
of Xm, YIm, and Zm, which are the complexities of the control
variables in the three module complexity terms T1, T2, and T3:

1. A calling control variable set is the set of control
variables upon whose values a particular ocalling of a
module depends.

2. A branch control variable set is the set of control
variables upon whose values a branch may be made to a
routine that will terminate the program.

The complexity contribution of control variables in each module

complexity term is ocalculated by finding the mean {average)

complexity valus of the appropriate control variable sets. Im, 1Inm,

19

and Zm are all caloulated in a similar manner. Xm is calculated in
three steps:

1.- Determine all the calling control variable sets referenced
by the calling modules of module m in the calling of module
m, If module m is the root module or if module m is always
unconditionally invoked by ;he calling module{s), set Xm
to 0; otherwise perform steps 2 and 3.

2. PFor each such calling control variable set, total the
control variable complexity value C(v) of each coatrol
variable in the set. If this module calling occurs within
a iteration structure, multiply this total by 2.

3. Next, sum the complexity values of all the calling control
variable sets calculated in step 2 above, Find the average
of this sum by dividing it by the number of calling control
variable sets used in the calling of module m,

To calculate Ym, perforam the following three steps:

1. Determine the calling control variable sets used by module
@ to invoke its called modules. If there are no such sets,
either because m has no called modules or because all the
invocations within m are unconditional, set Ym to O3
otherwise, perform steps 2 and 3 below.

2, For each such calling control variable set, sum the control
variable complexity value of each control variable in the
set, If any control variable in the calling control
variable set is used within a iteration structure, multiply
this sum by 2.

3. Next, sum the complexity values for all the calling coantrol

20

variable sets calculated in step 2 above. Find the average
of this sum by dividing by the number of calling control
- variable sets that are used in wmodule @ to invoke the
called modules,
Za is calculated in the following manner:

1. Determine all the branch calling control variable sets that
module m references to direct branches out of this module
to a routine that terminates the program. If there are no
such sets, set Zm to 0; otherwise perform steps 2 and 3
below,

2. For each such branch control variable set, sum the
complexity value of each con%rol variable in this set.

3. Next, sum the complexity values for all the branch control
variable sets calculated in step 2 above. Take the average
of this sum by dividing it by the number of branch control
variable sets that are used in module m.

The module complexity formula, denoted by M{m), for module m in a

well-structured program is defined as follows:
M{m) = (T1 + T2 + T3)
z (Fn ¥ Xm) + (Sa ¥ Ym) + (Ba * Zm)

If module m is the root module, T1 will have a value of zero; if
module m has no called modules, T2 will have a value of zero; and, if
module m contains no branches out of the module to a termination
routine, T3 will have a value of zero.

The range of values for M(m) is 0 - 16 ® S * N, where S is the
total number of control variables and N is the number of unique

modules defined in the design. The greater the value of M{m), the

21

more difficult it is to understand how program control is passed to
and from module m. For example, a module that is unconditionally
Lnvoked, has no called modules, and does not branch to a %ermination
routine has zero module coaplexity.

Module complexity can be divided into four cases based upon
module type as indicated below:

Case 1: A one-module program

Case 2: A root module that calls other modules

Case 3: A module that calls no other modules

Case 4§: A module that has called modules

Module complexity, Just as control variable conplaxity. can be
used as a criterion in comparing programs. Given a set of programs
that perform the same task, the program selected as best may be the
program with the lLowest program complexity value, where the program
complexiiy valuse 1is the sum of the module complexity values of each
uniqus program module.
EXAMPLE OF COMPUTATION

Using the example in appendix A and construction procedure test
as shown in figure 3, the complexity of procedure test is computed as
follows:)
Control Variable Complexity (C(v))}

C(v) = (Dv # Iv) / N
Iv = TM1 + IM2 + IM3 + IM4

Control Variable IM1 IM2 1IM3 IM4 Iv Dv N C(v)
Check (1) 0 0 0 0 0 1 3 0.
Fair 1 2 1 0 4 1 3 1

List-pointer 1 0 0 0 1 1 3 25

22

Procedure Test
Main Routine:
Begin
Integer A, I
Boolean Fair
Fair := True
I :=1
Perform Module A
Perforam Module B
End
Stop
Module A)
While ((Check(I) not equal "P") and (Fair = True)) Do
Begin
Fair := Mateh(I)
I:=1I+1
End
Module B
If Fair = True then
Begin
A := allocate 1
Perfora Module C
Last := A
set LIST1(Last, null)
set LISTA(Last, LIST2(Current-node + 1))
End
Module C
Begin
If List-pointer = null then
List-Pointer := A
else set LIST1(Last, A)
End

Figure 3

23

Module Complexity M{m)
m) 3 {T1 « T2 « T3)
M(m) = (Fn ® Xm) + (Sm * Ym) + (Bm & Zm)
Module Fu ® Xm+ Su* Ym+ Bn # Zm=T1 T2 T3 Mm

Main 0 0 2 o0 o0 o 0 o0 o0 0

A 1 1 0 1 0 0 1 0 o0 1
B 1 1 1 1 0 0 1 1 o 2
c 2 .25 0 .25 0 0 .5 0 0 .5

Total program complexity = 0 ¢+ 1 + 2 + .5 = 3.5
D. HALSTEAD (MEASURE OF PROGRAM EFFORT)

BASIS OF MEASURE
According to Halstead (7], [8], (9] and Gordon ([6] several
metrics lha\re been developed which attempt to provide a gquantitative
measurenent of the different factors which contribute to the quality
of software. One of the important goals in software ressarch is to
measure programming style. This 1s important because significant
improvement in programming style will decrease the effect required to
understand and maintain that software. Gordon states that, "To
accurately assess p;ogranuins style we must be able to accurately
assess the amount of mental effort expended to understand the code."”
All of Halstead's wmetrics are functions of the number and
frequency of the operators and operands occurring in the program,
The mental efforts calculated from these represents the amount of
mental work required to understand the function of the program. This

measure of clarity will not reflect the programmers fluency or

24

familiarity with the program problem area, However, Halstead and
Gﬁrdon assune that the programmer is fluent in the programming
language which is used. There are several factors which influence
how easy or difficult a program is to understand These factors amay be
categorized into three broad areas: programmer ability based on
language fluency and experience; [;rosran form, based on commenting,
the placement of declarations, indentation, and the assignment of
variable names; and program structure which is based on executable
statements, the complexity of the control flow graph, the depth of
statement nesting, clustering of the data references, and the
locality of operations. Gordon's measure of program clarity is .a
simple function of the prograam's structure,.
COMPUTATION OF THE MEASURE
Halstead specifies the following easily obtained properties of a

program:

n1 = The number of distinct operators

n2 = The number of distinct operands

N1 = The total number of operators

N2 = The total number of operands

The developed theories will relate these values to program

properties such as vocabulary, Llength, implementation level, and
volume. Tnese properties are defined to develop a algorithm based on
the four basic parameters specified above, The definition of program

vocabulary n and the program length N is:

n = nl + n2 The nunber of distinct operators plus the
nunber of distinect operands.,

N = N1 + N2 The total number of operators plus the total

25

number of operands.

The program volume V is defined in terms of program vocabulary
and progzram length as the number of the total usages of operators and
operands in the program times the number of bits which would be
required to provide a unique designator for each of the n different
items composing the program vocabukary. The program volume then has
the units of bits.

V =N log2 n

The program length N may be closely approximated as a function of
the number of unique operators and operands used in the program. The
function is defined as:

approx N = n1 (log2 n1) + n2 (log2 n2)

Program level L 1is a measure of the conciseness of an
implementation of an algorithm., Thne highest Llevel at which an
algorithm may be represented is in the form of a called program. The
volume of this representation is called the potential volume., When
the actual volume equals the potential volume, L = 1, When more
lengthly representation are used, those involving several operators
and the repeated use of operands, their level is less than one. Since
the Llogical input aqd output parameters for a program are difficult
to determine the following estimator for determining the valus of the
implementation level is used:

approx L = 2 ¥ n2 / n1 ® N2

Gordon states that the difficulty of programming inoreases as the
volume of the program increases 2nd decreases as the program level
increases. Program style and differences in program structure,

change the measured level and length of the implementation in an

26

inconsistent manner, To minimize the influence of style on the
measure of programming effort, the measure for progrﬁm effort is
defined by Gordon as:
Ep = approx N (log2 n) / approx L

EXAMPLE OF COMPUTATION

Using the example 1in appendix A and figure 4, the measure of
program clarity i1s computed as follows:

n1 = Number of distinct operators s 9

n2 = Number of distinct operands = 14

N1 = Total number of operators = 33

N2 = Total number of cperands = 28

n = Vocabulary = nl1 + n2 = 23

N = Length = N1 + N2 = 61

V = Volume = N log2 n = 255,964
approx N = nl1 1log2 n1 + n2 log2 n2 = 81,833
approx L = Level = 2n2 / n1 N2 = . 1111

Ep = Measure of program clarity = approx N log2 a / approx L

Ep = 3332.247

a7

' Operators Frequency Operands Frequency

Do-While 1 Cheok(I) 1
While 1 npu 1
Not Equal 1 MATCH(I) 1
:s (assignment) 7 Fair 4
= (equality) 3 True 3
+ (plus) 2 A 3
: 15 allocate 1 1
If-then 2 List-Pointer 2
else 1 null 2
set LISTi(Last,A) 2
nl =9 N1 =33 I 3
Last 4
set LISTA(Last,LIST2

(Current-node + 1)) 1

. n2 = 14 N2 = 28

Figure 4

28

Chapter 3
Basis of Proposed Measurs
A. Characteristics Measured

The goal of this project is to identify and present a program

complexity measure that has the following properties:

Reliable - The measure can always be expected to perform its
intended functions satisfactorily and each time the
metric 1s applied to the same program it will return
the same results, |

Objective - There is no prejudice or preconceived bias built in
to the measure,

Quantitative - Characteristics that can be assigned quantitative
values,

Easy-to-use - Fulfills its purpose without wasting the wuser's
time and energy or degrading his morale.

Language-Independent - Can be consistently and purposefully

- applied to programs written in different programming
languages.

In addition to these properties, a good complexity measure should be
a predicter of error occurrences and possible maintenance costs.

My starting hypothesis was that understanding of a program
depended upon the complexity of the algoritha and the clarity of the
coding. Based upon previous work by other authors, outlined in

Chapter 2, and upon other program complexity examples, I determined

29

that complexity was generally derived from three basic prﬁsran
properties: |

1. Program control structure

2.- Program control flow

é. Program data usage

When the different oomplexity measures, which are derived from
the three basic program properties above, are evaluated against the
identified complexity measure properties a clear division of the
three basic program properties was found. Those complexity measures
which were derived from the wuse of program control structure and
program data usage 1 found to be difficult to use and difficult ¢to
understand. For that reason my efforts were Llimited to
characteristics of program control flow,

Program control flow is characterized by measurements taken from
a control flow graph of a progranm, A control flow graph is a
directed graph with nodes corresponding to the straight-line section
of code and arcs indicating the sequence of control. The graph is
connected and unreachable nodes are ignored. The graph has a single
entry node and a single exit node (e.g., figure 1).

The control tlow.graph is used to develop the program complexity
measure, Three simple graph measures, which are sensitive to the
configuration of the graph, are applied to the graph. The first
measure is the count of the possible lLinear paths through the graph.
1 define a linear path through the graph to be any connected sequence
of nodes, from the entrance node to the exit node ignoring iteration.
The second measure is the count of the maximum number of simple

predicates encountered while traversing any of the possible linear

30

paths. The maximum number of simple predicates is defined as thé sum
of all the simple predicates in each of ¢the decision nodes
encountered in a possible path, Examples of decision nodes are If,
Do Whnile, and the iterative Do statements. A N-way case statement is
counted as N = 1 simple predicates, The third measure is the count
of the possible linear paths and, the maximum number of simple
predicates encountered in a possible path as a result of each

different iteration.
B. Computation of Measure

The proposed measure of program complexity C is expressed as the
tuple of the possible Linear paths through a coatrol flow graph (P)
and the maximum number of simple predicates (D) encountered while
traversing any possible path, plus the interval of the effects of
each different iteration (In(P ,D })), P and D are for the path
within the iteration.

¢ s(P, D) + In(P, D)

C. Example of Computation

Using the sample procedures in appendix A and its associated
directed graph (figure 1), C is computed as follows:
P = The count of the possible linear paths through the graph = 4
D = The maximum number of simple predicates encountered while
traversing any of these paths sz 3
In{P, D) = The count based on the effect of iteration = I(4, 3)

3

(this is because there is only one iteration and it
affects all the prssible paths and decision nodes
encountered)

c‘l“, 3#1(“.3)

32

Chapter 4§
Other Examples and Comparative Analyses

fhe examples in figure 5 demonstrate the ocomputation of the
proposed complexity measure C when there is iteration that affects
different segments of the gbaph and compares the results with the
McCabe metric, V(g):

The example in figure 6 demonstrates the computation of the
proposed complexity measure when there is a Case statement and
compares the results with the McCabe aetric., Another difference
between the proposed measure C and the DMcCabe metric is in the
measurement of simple predicates versus the decision node itself,
This is best described by Myers [10; in the following example:

Code
If A =1 then

else ,... cs=2,1

"
[\M]

vig)

if (A H 1) and (B > 3) then .ees

else ,... C= 2' 2
vig) = 2
If A =1 then
Ifa)abhﬂn..-. Cl3,2
else vig) = 3

gl” [N R]

33

P=3
D=2
I; P=3,D=2
.IZ; P=2,D=1
Cs3, 2+ I1(3, 2) + 12(2, 1)

Vvig) =5

(a)

Pigurals

Ps=si
D=3
I; P=0,D=0

I2; P=4,D=3

C =4, 3+ 110, 0) +« I2(4, 3)
vig) = 6
(b)

34

P =13

D=7 <(case statement D = N =1
for a N-way statement)

Cs 13| 7
V(g) = 8 -

Figure &

35

Another difference arises from ihe repeating of code segments and
the changes in complexity when identical segments are used. This is
desoriﬁed in the examples in figure 7. Figure 7 demonstrates that
unde; the proposed measure repeating the same code will not increase
the complexity. When this condition is examined from the testing and
maintenance point of view, this is what would be expected.

The example in figure 8 demonstrates the computation of the
proposed complexity measure when there is nested iteration. Each
iteration is treated separately and only adds the amount of
complexity which is effected by that iteration,

The overall comparison of each complexity measure as it relét§s

to the sample program is appendix A is as follows:

McCabe Chapin McClure Halstead Proposed
Measured
Complexity i 5.43 3.5 3332.247 4, 3 « T(4, 3)

36

C=4,2

vig) = 4

37

C=6,3+1(2,1) +1I (5,3)
vig) =5

Figure 8

38

Chapter 5
Conclusions

Several complexity measures. have been presented with
demonstrations of their application to a sample program., Each of the
measures presented derives complexity from one of three basic program
properties; contrel structure, control flow, and data usage, I found
that those complexity measures which are derived from the control
structure and data usage properties were difficult to understand and
diffioult to apply. '

Using program control flow as the property best suited for
deriving program complexity a proposed measure was presented and
compared to the oyclomatic number advocated by McCabe. Several
examples were presented which demonstrated the ability of the
proposed measure to overcome the shortcomings of McCabe's cyclomatic

number and better rank programs according to their complexity.

39

Chapter 6

Future Work

The future work that still needs to be accomplished is :

1.

3.

Implement the proposed measure and test more sample
programs collecting a broader base of data from which to
Judge how well the proposed measure actually predicted
error occurrences and maintenance difficulties.

Identifying a mathematical representation of the proposed
measure which would yleld a single numerical quantity.

The determination of a more comprehensive method for

evaluating complexity measures in general.

40

Appendix A
PROCEDURE TEST
comment Test all conditions for member identified by Current-node;
comment if all conditions are true add member to linked list;
Begin
Integer A, I;
Boolean Fair;
Fair := True;
I := 13
While ((Check{I) not equal "P") and (Fair = True)) Do
Begin
Fair := Matoh(I);
I := I+1;
End;
End Do While;
If Fair = True then
Begin
A := Allocate 1;
If List-Pointer = null then
List-Pointer = A
else set LIST1(last, A);
Last := A;
set LIST1(last, null);
set LISTA{last, LIST2(Current-node + 1));
End;

End Test;

31

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8l

(9]

REFERENCES

Zolnowski, Jean C., and D. B Simmons, "Measuring program

complexity,” Proceedings of the 1977 Fall CompCon, IEEE, Long
Beach CA, 1977, pp. 336 - 340.

McCabe, Thomas J., "A complexity measure,"” IEEE Trans. Software

Eng., vol. SE-2, pp. 308 - 320, Dec. 1976.

Chapin, Ned, "A measure of software complexity," Proceedings of

the National Computer Conference 1979, InfoSei Inc., Menio Park,
CA, 1979, pp. 995 - 1002.

McClure, C. L., "Reducing COBOL Complexity through structured

programming,” Van Nostrand Reinhold, New York, 1978.

MeClure, C. L., "A Model for program complexity analysis,”

Proceedings of 3rd Int Conf of S.E., pp 149 - 15%.

Gordon, Ronald D., "A measure of mental effort related to

program clarity,” Ph.D. dissertation, Comput. Sci. Dep., Purdue
University, 1977.

Halstead, M. H., "Towards a theretical basis for estimating

programming effort,” Proceedings of ACM 1975, ACM New York, pp
222-224,

Halstead, M. H., "Advances in software science,"™ Department of

Computer Science, Purdue = University, Lafayette, Indiana.
Halstead, M.H., 'Elémeuts of Software Science,"” Elsevier

North-Holland, New York, 1977.

[{10] Myers, G.J., "An extension to the cyclomatic measure of program

complexity,” SIGPLAN sotices, Vol 12, WNo. 10, Oect. 1977. pp. 61 =
614,

32

A MEASURE OF PROGRAM COMPLEXTTY

by

LIOYD DAVID BORCHERT
B.S., Oglethorpe University, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Marthattan, Kansas

1981

This paper describes a program complexity measure and
describes how it can be used. The paper first defines program
complexity and discusses possible measurable program character-
istics. The paper next reviews four different authors and
their approach to providing a measurement of program complex-
ity. The paper next explains the basis for the proposed
complexity measure, describes how it is computed, and gives
examples of computation. The next section of the paper gives
a comparative analysis of the proposed complexity measure and
the other measures reviewed. The last section of the paper out-

lines areas for possible future work in this area.

