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Abstract 

The variance of a response in a one-way random effects model can be expressed as the 

sum of the variability among and within treatment levels. Conventional methods of statistical 

analysis for these models are based on the assumption of normality of both sources of variation. 

Since this assumption is not always satisfied and can be difficult to check, it is important to 

explore the performance of normal based inference when normality does not hold.  This report 

uses simulation to explore and assess the robustness of the F-test for the presence of an among 

treatment variance component and the normal theory confidence interval for the intra-class 

correlation coefficient under several non-normal distributions. It was found that the power 

function of the F-test is robust for moderately heavy-tailed random error distributions. But, for 

very heavy tailed random error distributions, power is relatively low, even for a large number of 

treatments. Coverage rates of the confidence interval for the intra-class correlation coefficient are 

far from nominal for very heavy tailed, non-normal random effect distributions.  
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Chapter 1 - Introduction 

Random effects models are widely used in disciplines such as agriculture, health 

sciences, and production engineering. This report will study the robustness of normal theory 

inference in completely randomized, balanced, one-way random effects models.  

Studies used to compare treatments may be broadly classified along the following lines: 

(1) Inference is desired for a set of treatments specified by the experimenter. (2) The treatments 

studied are sampled from a population of treatments. Statistical models used in these cases are, 

called fixed effects models in (1), random effects models in (2). The goal of inference from (2) is 

to characterize and estimate the magnitude of the variance components. See page 287 of Milliken 

and Johnson (2009) for a fuller discussion of these issues. Almost all standard methods of 

making statistical inference from (2) are based on assumptions of independence and normality. 

But, when analyzing real life data, departures from these assumptions are to be expected. 

Normality for random effects models is an assumption whose validity can be difficult to check 

and to which there are few alternatives. Properties of normal based inference from these models 

have been investigated, but relatively little work has been done on the consequences of 

departures from normality. Therefore, the robustness of statistical inference from random effects 

models when normality does not hold is an important issue.  

 

1.1 Completely Randomized, One-way, Balanced Design 
A statistical model with a completely randomized, one-way balanced design can be used 

to model the response of the jth unit in the ith treatment (Yij) as follows: 

              

                               Yij = µ + ai  + eij      ; i = 1, 2, …., t  ; j = 1, 2, …., r.                                   

(1.1) 

 

µ : overall mean 

ai : random effect common to all responses in the ith treatment 

eij : random error associated with the jth unit in the ith treatment 

        1.1 



2 

σa
2 : among treatment variance component  

σe
2 : within treatment variance component 

a : {ai} is independent of e = {eij}; {ai} are iid(0, σa
2) and {eij} are iid(0, σe

2) , 

 

where (0, σ2) denotes a distribution with location zero and positive scale parameter σ 

The total variation of Yij is σa
2 + σe

2. The usual assumption of normality stipulates that the errors 

and treatment effects have normal distributions. 

 

1.1.1 The Significance Test for Among Treatment Variance Component  

Since the treatment effects here are a sample from a population of effects, differences 

among the means of the treatments actually observed are typically not of interest in situations 

like this. The variability among the treatment effects (σa
2) is typically the main focus in random 

effects models. If σa
2 is zero, then all of the variation in the responses is due to the random error. 

But, if σa
2 is greater than zero, some of the variability is due to differences among the treatments. 

The relevant  hypotheses to be tested are given by  

 

H0: σa
2 = 0 vs  H1: σa

2 > 0. 

 

The analysis of variance table shown in Table1.1 summarizes the variability in the 

observations with entries for sums of squares, degrees of freedom, mean squares and the 

expected mean squares for the among treatments and the within treatments sources of variation. 

It is the same table used in a fixed effects analysis. 
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Table 1.1 Analysis of Variance for the one-way classification with expected mean squares 

for the random effects model 

Source of 

Variation 

Degrees of 

Freedom 

Sums of 

Square 

Mean 

Square 

Expected 

Mean 

Square 
0F  

Total t*r-1 SSTotal    

Among 

Treatment 
t-1 SSA MSA 22

ear σσ +  MSA/MSW 

Within 

Treatment 
t*(r-1) SSW MSW 2

eσ   

 

Moment estimators of the variance components are expressed as solutions to the 

following equations:  

                                                                      22
earMSA σσ += ,                                                 (1.2) 

                                                                    2
eMSW σ= .                                                            (1.3) 

The solutions are 

                                                             MSWe =2σ̂ ,                                                      (1.4) 

                                                             
r

MSWMSA
A

)(ˆ 2 −
=σ .                                       (1.5) 

If 0ˆ 2 <Aσ , we typically set 0ˆ 2 =Aσ . 

The statistic computed from the analysis of variance table to test for the presence of a 

treatment effect is  

                                                             
MSW
MSAF =0 .                                                     (1.6) 

Under normality, if H0: σa
2 = 0 holds, the test statistic F0 has the F distribution with (t-1) and 

t*(r-1) degrees of freedom. The null hypothesis is rejected at the  level of significance if 

.)1(),1(,0 −−> NtFF α  Again, note that this F-test of H0: σa
2 = 0 vs H1: σa

2 > 0 is valid if both a and e 

are normally distributed. 
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1.1.2 Intra-class Correlation Coefficient 

The intra-class correlation coefficient ( Iρ ) has a long history of application in several 

different fields of research. In epidemiologic research, Iρ  is commonly used to measure the 

degree of familial resemblance with respect to biological or environmental characteristics. In 

psychology, it plays a fundamental role in assessing the reliability of raters, where observations 

may be collected on a sample of r judges, (Donner, 1986). A third area of application is in 

sensitivity analysis, where Iρ  may be used to measure the effectiveness of an experimental 

treatment (Bradley and Schumann, 1957). 

 

In general terms, the Intra-class correlation coefficient ( Iρ ) is a measure of the 

variability of observations within treatments relative to that among treatments. It is given by   

                                                           22

2

ea

a
I σσ

σ
ρ

+
= .                                                    (1.7)                                                    

 

Iρ  can be estimated by 
})1({

)(ˆ
MSWrMSA

MSWMSA
I −+

−
=ρ .                                                                (1.8)  

  

An exact %100*)1( α−   normal theory confidence interval estimator (Searle, Casella & 

McCulloch, 1992) for Iρ is given by 

                                         
l

l
I

u

u

FrF
FF

FrF
FF

)1()1( 0

0

0

0

−+
−

<<
−+
− ρ                                     (1.9) 

where )1(),1(,2/1 −−−= Ntu FF α  and )1(),1(,2/ −−= Ntl FF α  

The confidence interval in (1.9) for the intra-class correlation ( Iρ ) defined in 1.7 is valid if both 

a and e are normally distributed. Studying the behavior of this interval estimate for Iρ   when 

both or either a and e are not normally distributed is one of the important applied questions that 

motivated this report.  
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1.1.3 Illustration 

Source: Example 5.1 of Kuehl (2000). 

An experiment was conducted to assess the variability in the tensile strengths of bars 

made from high-temperature castings of an alloy taken from three randomly selected castings at 

the same facility. Each casting was broken down into individual bars. Destructive tensile strength 

measurements were obtained on a random sample of 10 bars from each of three castings. The 

tensile strengths for each of the 30 bars in pounds per square inch (psi) are given in Table 1.2. 

 

Table 1.2 Tensile strengths of bars from three separate castings of a high-temperature alloy 

                              Castings 

1 2 3 

88.0 85.9 94.2 

88.0 88.6 91.5 

94.8 90.0 92.0 

90.0 87.1 96.5 

93.0 85.6 95.6 

89.0 86.0 93.8 

86.0 91.0 92.5 

92.9 89.6 93.2 

89.0 93.0 96.2 

93.0 87.5 92.5 

 

Original source: G.J. Han and T.E. Rag Nathan (1988), which combined various other sources 

 

The castings are treated as random effects here since they are randomly selected from a 

population of castings.  The investigators were interested in studying the variation in tensile 

strength among castings produced by the facility. Also, the individual bars are a random sample 

of bars from a single casting and differences among them are also a random effect.   Thus, there 

are two sources of variations present in this experiment, variation in castings and variation in 

bars within a casting.   
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Figure 1.1 Normal Probability Plots 

 
The points on the normal probability plots of casting two and casting three closely follow 

a straight line. Therefore, these plots do not provide evidence of a departure from normality of 

tensile strengths from castings two and three. Although the points in the plot from casting one do 

not follow a straight line as closely as the other two plots, the departure from linearity does not 

appear to be big enough to raise questions about the assumption of normality.  

If the among castings variance (σa
2) is zero, then all of the variation in tensile strengths in 

bars produced at this facility is due to differences among bars. But, if σa
2 > 0, some of this 

variability is due to differences among the castings. Since the casting effects here are a sample 

from a population of effects, the differences between the casting means are typically not of 

interest and as stated above, it is the variability among the casting effect (σa
2) that is the main 

interest in a situation like this. See page 151 of Kuehl (2000) for a further discussion of this 

issue. Table 1.3 gives the analysis of variance table for the tensile strength data in Table 1.1. 
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Table 1.3 The Analysis of Variance table for the tensile strength data under normality 

Source of Variation Degrees of 

freedom 

Sums of Square Mean Square F Pr > F 

Total 29 304.99    

Among Treatment 2 147.88 73.94 12.71 0.0001 

Within Treatment 27 157.10 5.82   

 

 

The moment estimate of the variance component for bars within castings is 2ˆ eσ = MSW = 

5.82 and the moment estimate of the variance component for among castings is 2ˆaσ  = (MSA-

MSW)/10 = 6.81. The estimated total variance of an observation on tensile strength is then given 

by 2ˆ yσ =  2ˆaσ + 2ˆ eσ  = 12.63. The F0 ratio to test H0: σa
2 = 0 vs H1: σa

2 > 0 is 12.71. Under the 

assumption of normality, the null hypothesis would be rejected with a p-value at most equal to 

0.0001. Therefore, it could then be concluded that differences among castings contribute to the 

variation in the tensile strengths of bars. The estimate of intra-class correlation for castings of 

high-temperature alloys is  

 Iρ̂ = (73.94-5.82) / {73.94+ 9*(5.82)} = 0.54. With F0 = 12.71, Fu = F.025,2,27 = 4.242 and Fl = 

F.975,2,27 = 0.025, the 95% normal theory confidence interval estimate for Iρ  is (0.17, 0.98).    

 

In the past, most studies of robustness in this setting have dealt with the one-way fixed 

effects model. That is, taking {ai, i = 1, 2,…., t} to be constants and defining ∑
= −

−
=

t

i

i
a t

aa
1

2
2

)1(
)(

σ , 

so that the question of normality pertains only to error terms {eij}.   

Inkyung Jung and Pranab Kumar Sen (2008) conducted a simulation study to compare 

the behavior of different tests based on normality and a non-parametric test that they proposed 

for testing the significance of the among treatment variance component. A relatively small 

number of treatments and different distributions for the random effects were used in this study. It 

was found that the classical F-test is the most powerful for normal random errors in the 



8 

homoscedastic case, regardless of the distribution of the random effect. But, it is not powerful 

under other distributions of the random errors. This study suggests that their proposed test is 

robust against non-normality of random errors in terms of the actual significance level and well 

behaved in terms of the power in the unbalanced case. 

 

1.2 Aims and Objectives  
The objective of my simulation study is to explore how the classical normal theory F-test 

for the treatment variance component in the random effects model (1.1) described above 

performs in terms of the actual significance level and the power of the test when the treatment 

components { }ia  and/or the within treatment terms { ije } are not normally distributed.  

Additionally, attention will be given to the coverage rates and median lengths of the exact 

normal theory confidence interval for the intra-class correlation coefficient. The impact of the 

number of treatments and the number of observations per treatment will also be considered. 
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Chapter 2 - Simulation Procedure 

R software was used to carry out the simulation study of the size and power of the F-test 

of 2
0 : 0aH σ =  vs 2

1 : 0aH σ >  , the coverage rate and the median width of the confidence interval 

for the intra-class correlation coefficient Iρ  under a variety of conditions  when the assumption 

that both the random effects  { }ia  and error terms { ije } are normally distributed is not satisfied. 

Without loss of generality, the error variance component (σe
2) was taken to be one and the 

overall mean ( µ ) set equal zero throughout the entire simulation study. Hence, 2
aσ  represents 

the ratio of the among to the within variance components. 

The independent variables of the factorial design used in my simulation experiment were: 

the number of treatments (t), the number of replications per treatment (r), among treatment 

variance component (σa
2) and the distributions of the random effects and error terms. The levels 

of the factors I used are given below. I relied on the random number generator used by R to 

provide an effective randomization of all 1640 treatment combinations in my study. 

 

The values chosen for the parameters are listed below.  

 

Table 2.1 Levels of Factors Used in Simulation Study 

Parameter Values 

t 5, 10, 50, 100, 500 

r 5, 10 

σa 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5 

σe
2 1 

 0 
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2.1 Densities Used for Both Random Effects 
 

• Normal  







 −
−= 2

2

2 2
)(exp

2
1),;(

σ
µ

πσ
σµ xxf , 

 

  µ : location parameter,  σ : scale parameter. 

 

 

• Logistic  

2})/)(exp{1(
}/)(exp{),;(
θµθ

θµθµ
−−+

−−
=

x
xxf , 

 

µ  : location parameter, θ : scale parameter. 

              

 

• Double Exponential 

,||exp
2
1),;(







 −

=
β
µ

β
βµ xxf  

 

µ : location parameter,  β : scale parameter. 

 

 

• Cauchy 

 







+−

= 22
0

0 )(
1),;(

γ
γ

π
γ

xx
xxf , 

 

 x0: location parameter,  γ : scale parameter. 
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The values for the scale parameters of the logistic, the double exponential and the Cauchy 

were selected such that these distributions have the same inter-quartile range as the 

corresponding normal distribution. The location parameters were all set to zero. 

 

Table 2.2 Inter-Quartile Range for the Distributions in terms of the Scale Parameter 

Distribution Inter-quartile range 

Normal 1.349σ  

Logistic 2.197θ  

Double Exponential 2ln(2) β  

Cauchy 2γ  

 

 

Table 2.3 Values taken for the Scale Parameters in Order to Have Same Inter-quartile 

Range as the Corresponding Normal Distribution 

Distribution Scale 

Logistic 197.2/349.1 σθ =  

Double Exponential )2ln(2/349.1 σβ =  

Cauchy 2/349.1 σγ =  

 

 

2.1.1 Generating data from Double Exponential Distribution 

The R software package does not have a direct function for generating random numbers 

from a double-exponential distribution. Instead, I implemented an algorithm based on the 

following facts.  

A random variable X has a double-exponential (0, 1) distribution if its probability density 

function is 
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The CDF of f(x) 

For , 

F(x)  =  

=   

            =  

= ;   

 

For , 

        F(x) =  

 =         

 =  

 =   

 =         

 

 

 

Let the random variable U~Uniform(0,1), then 

U=F(X)        X = (U), as given by 

 

                                                                                            (2.1)  

         

                                                .                            (2.2) 
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2.1.1.1 Algorithm: Generate random numbers from double-exponential (location=0, scale) 

distribution 

• Generate random numbers {Ui}from a uniform (0, 1)  

• For 
2
10 <<U  and, 1

2
1

<≤U , use (1) and (2) respectively to obtain X 

• Transform X to 
)2ln(2

349.1 σ X  so that it has the same inter-quartile range as the  

Normal (0, 2σ )  distribution  

• Transformed values ~double-exponential (location=0, scale=
)2ln(2

349.1 σ  ) 

 

To illustrate the procedures I used to generate data, ten thousand random numbers were 

generated from each normal, logistic, double exponential and Cauchy distributions and the 

corresponding histograms are shown Figure 2.1 below. Only data in the interval from -10 to 10 

(9336 values) was used in constructing the histogram of Cauchy distribution to make for a less 

distorted comparison with the other histograms. 
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Figure 2.1 Histograms of 10,000 random numbers generated from Normal, Logistic, 

Double-Exponential and Cauchy distributions 
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Double Exponential(location=0,sca
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Cauchy(location=0,scale=1)
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Compared to the normal distribution, the logistic distribution has heavier tails. The 

double-exponential distribution is more peaked and has heavier tails than the normal distribution.  

Simulating the Cauchy distribution resulted in data with a minimum of -3028.698 and maximum 

of 3185.403. Like the normal, all three non-normal distributions are symmetric and all three have 
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heavier tails than the normal. Data generated from the logistic, double-exponential and Cauchy 

distributions were used to explore the behavior of inferences based on the assumption of 

normality as described in Chapter 1. 

One thousand independent sets of data were generated for each combination of parameter 

values and the distribution of the two random effects. Then, power of the normal theory F test, 

coverage rate and the median width for the confidence interval for the intra-class correlation 

coefficient were estimated for each combination and stored in a file.  

 

2.2 Power Calculation  

The number of times the F-test rejected H0: 
 

2
aσ = 0  at the 5% nominal significance level 

out of 1000 data sets was recorded at each parameter combination. Then, the average number of 

rejections was calculated for each treatment combination and it was taken as the estimated power 

of the F-test for the case where 2
aσ  values are greater than zero and as the estimated actual size 

of the test for the case where 2
aσ  is equal to zero. 

 

2.3 Coverage Rates and Widths of Confidence Intervals for the Intra-class 

Correlation Coefficient 
 

An exact %100*)1( α−  normal theory confidence interval estimator for the Intra-class 

Correlation Coefficient ( Iρ ) is given by 
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where   : Observed test statistic for the F-test, 
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2.3.1 Calculate the Coverage Rate  

According to (1.8), there might be situations where  estimate is negative and according 

to (1.9) the lower limit of the confidence interval is negative or both lower and upper limits are 

negative. But by definition (1.7),  is nonnegative. One course of action suggested by (Searle, 

1970, p.407) is to replace the negative  estimates by zero. Therefore, the following steps were 

taken when estimating the coverage rate for the confidence interval for the intra-class correlation 

coefficient. 

• If the upper limit of the confidence interval is negative for a particular data set, then that 

data set was deleted from further analysis. 

• Among the remaining data sets, if the lower limit of the confidence interval is negative, 

the lower limit was set to zero.  

• Next, the number of times the population intra-class correlation coefficient falls within 

the nominal 95% confidence interval for the intra-class correlation for remaining number 

of data sets of each design point was recorded. Then, the average number of times the 

population intra-class correlation coefficient falls within the confidence interval was 

calculated for each design point and was considered as the estimated coverage rate. 

 

2.3.2 Width 

• Similarly, widths of the 95% confidence interval for the intra-class correlation were 

calculated for each data set remaining after deleting the data sets which results negative 

upper limit for the confidence interval and the average width was computed for each 

parameter combination. Since the distributions of the confidence interval widths were 

highly skewed in some cases, the median width instead of the mean width was used to 

summarize the widths obtained for each parameter-distribution setting.  
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Chapter 3 - Simulation Results 

 The results of the simulated samples of data for each of the parameter and distribution 

combinations for the two random effects are presented and discussed in this chapter.  Results 

only five representative values of Aσ  (0, 0.5, 1, 1.5, 2 and 2.5) are presented in the Tables in this 

chapter and in the Appendix A because the general pattern is visible from a portion of Aσ  values 

considered in the study. 

3.1 Size of F-test for the Significance of the Among Treatments Variance 

Component  
The F-test was conducted using a nominal size of 0.05 for the simulated data for each 

design point. The estimated actual size of the F-test for different random effect distributions for 

different numbers of treatments and replications are shown in the Table 3.1. The standard errors 

of the estimates in Table 3.1 are bounded above by 0081.0
1000

)07.01(07.0
=

− . 

 

Table 3.1 Actual Size of the F-test for Different Distributions of Random Error  

(Nominal Size = 0.05)  

Number of 
Treatments  

Replicates 
per 

Treatment 

Actual Size 
eij 

~Normal 
eij 

~Logistic 
eij ~Double 
Exponential 

eij 
~Cauchy 

5 5 0.055 0.061 0.036 0.014 
5 10 0.049 0.048 0.049 0.018 

10 5 0.045 0.041 0.034 0.018 
10 10 0.039 0.054 0.048 0.021 
50 5 0.062 0.048 0.043 0.017 
50 10 0.055 0.051 0.05 0.02 
100 5 0.054 0.044 0.048 0.016 
100 10 0.052 0.042 0.058 0.017 
500 5 0.058 0.059 0.043 0.022 
500 10 0.053 0.063 0.047 0.011 

 

As expected, when the random error is normally distributed the actual size of the F-test is 

close to the nominal value of 0.05 in all of the situations considered. An interesting fact to 
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observe from this table is that when random error has a Cauchy distribution, the actual size of the 

test is very conservative. In the situations where random error has a logistic or double 

exponential distribution, the test has an acceptable size close to 0.05. 

 

3.2 Power Analysis 
Table 3.2 consists of the estimated power values for 5 and 100 treatments, and 5 and 10 

replications per treatment, for different Aσ  values ranging from 0.5 to 2.5. Table 3.2 shows that 

for a fixed number of treatments and replications per treatment, power increases with Aσ  in all 

cases. It can be observed that double exponential errors give higher power compared to the other 

distributions of random errors irrespective of the treatment effect distribution. The F-test has a 

lower power on average for each Aσ  value when the random error is distributed as Cauchy 

compared to other error distributions while the treatment effect is either normal, logistic or 

double exponential. This is consistent with the results in Table 3.1 where it was seen that the test 

was very conservative when the error terms had a Cauchy distribution. But, when both random 

effects are Cauchy, power is somewhat higher. According to Table 3.2 it can be seen that lowest 

powers here resulted with double exponential treatment random effects and Cauchy random 

errors. Also, this table shows that power of the test approaches one as Aσ  increases, all other 

factors remaining fixed except for the case where random errors are Cauchy. It can be observed 

from Table 3.2, for 100 treatments, that except for the case where the random error is Cauchy, 

other combinations of distributions considered for both random effects give almost perfect power 

here. When the random errors are Cauchy, an interesting observation is that for Cauchy treatment 

random effects, the F-test performs better than for normal treatment effects.  
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Table 3.2 Estimated Power for the F-test for Treatments= (5, 100) and Replications = (5, 10) 

 

1

                                                 
1 Boldface numbers indicate low estimated power values in Cauchy random error cases. 
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Observing the power curves for all the combinations of distributions of the treatment random 

effect and the random error in Appendix A, it can be seen that power increases when the number 

of treatments increases, the other factors remaining fixed, except for the cases where the random 

error is Cauchy and random effect is either normal, logistic or double exponential. Figure 3.1 

below shows the power curves for the F-test for differing numbers of treatments when the 

treatment random effect and the random error are both normal. It can be seen that the rate at 

which power approaches one, increases as the number of treatments increases. Figure 3.2, Figure 

3.3 and Figure 3.4 show the power curves for the F-test when the random error is Cauchy and the 

treatment random effect is normal, logistic and double exponential for different combinations of 

treatments and replications per treatment. From Figures 3.2, 3.3 and 3.4 it can be observed that 

contrary to what would be desired, the powers of the F-test for different Aσ  ‘s actually decrease 

when the number of treatments increases and the number of replicates is held fixed. 

 

Figure 3.1 Power Curves for the F-test when Treatment Random effect and Random Error 

are both Normal for Fixed Number of Replications and Varying Number of Treatments 
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Figure 3.2 Power Curves for the F-test when Treatment Random Effect is Normal and 

Random Error is Cauchy Fixed Number of Replications and Varying Number of 

Treatments 

 

 

 

 

Figure 3.3 Power Curves for the F-test when Treatment Random Effect is Logistic and 

Random Error is Cauchy Fixed Number of Replications and Varying Number of 

Treatments 
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Figure 3.4 Power Curves for the F-test when Treatment Random Effect is Double 

Exponential and Random Error is Cauchy Fixed Number of Replications and Varying 

Number of Treatments 

 

 

Figure 3.5 shows the power curves for the case where 5 and 10 number of replications while 

number of treatments is fixed when both random effects are normal. Figures 3.6, 3.7and 3.8 

display the power curves for the case where 5 and 10 number of replications for fixed number of 

treatments when random error is Cauchy and treatment random effect is normal, logistic and 

double exponential respectively. Observation of Figure 3.5 indicates that when the number of 

replications increases the power also increases for a fixed number of treatments and power 

curves for the two replication sizes tend to overlap as the treatment size increases while power 

values approach to one. This pattern of the power curves is closely followed by all the other 

random effect combinations of the distributions except for the cases where random error is 

Cauchy and random effect is either normal, logistic or double exponential. When random error 

has a Cauchy distribution and random effect has any other distributions considered in this study, 

power values are approximately equal and very low for 5 replications and for 10 replications 

when the number of treatments and Aσ  are fixed. This can be observed from Figures 3.6, 3.7 and 

3.8. 
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Figure 3.5 Power Curves for the F-test when both Random Effects are Normal for Fixed Number of Treatments and Varying 

Number of Replications 

 
Figure 3.6 Power Curves for the F-test when both Treatment Random Effect is Normal and Random Error is Cauchy for 

Fixed Number of Treatments and Varying Number of Replications 
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Figure 3.7 Power Curves for the F-test when both Treatment Random Effect is Logistic and Random Error is Cauchy for 

Fixed Number of Treatments and Varying Number of Replications 

 
Figure 3.8 Power Curves for the F-test when both Treatment Random Effect is Double Exponential and Random Error is 

Cauchy for Fixed Number of Treatments and Varying Number of Replications 
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3.3 Intra-class Correlation Coefficient 

A 95% normal theory confidence interval for the intra-class correlation coefficient ( Iρ ) 

was computed for each combination of parameter values and the distributions of random effects. 

The estimated coverage rates and the median widths of the confidence interval for each design 

point were obtained.  As mentioned in 2.3.1 and 2.3.2, coverage rates and median widths were 

estimated for the remaining data sets after deleting the datasets which gives negative estimates 

for both limits of the confidence interval. This deletion rate of data sets that resulted in negative 

limits for the confidence interval was low for every parameter and distribution combination. Out 

of the thousand data sets generated for each design point, not more than forty data sets have been 

deleted in each case due to the negative upper limit of the confidence interval. Appendix A.2 

contains the number of data sets used for estimation of coverage rate and width for different 

design points. 

 

3.3.1 Coverage Rate 

The estimated coverage rates of the nominal 95% confidence interval for ( Iρ ) closely 

achieves 0.95 when both random effects are normally distributed (Table A.2). Iρ  is equal to zero 

at Aσ equals zero and, as mentioned in Chapter 2, when the estimated lower limit of the 

confidence interval is a negative value, it is set to zero.  Hence, the observed hundred percent 

coverage for the case Aσ = 0 correspond to cases where all the lower limits were negative. Since 

there was a decreasing pattern of the coverage rate when the number of treatments were 

increasing for all design points except when both random effects are normal, only 5 treatments to 

represent a small treatment size and 100 treatments to represent large treatment size are 

displayed in this chapter. The estimated coverage rates for the confidence interval when the 

number of treatments is equal to 5 and 100, and the replications per treatment are 5 and 10 is 

given in the Table A.2. As a whole, coverage rates have a decreasing pattern when Aσ  increases. 

This is visible in Table A.2 where for fixed number of treatments and replications, coverage rate 

decreases as Aσ  increases from 0.25 to 2.5. Observed coverage rates of approximately 0.95 are 

obtained when the treatment random effect is normal and the random error is normal or logistic 
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for treatment size equals 5. Logistic treatment effects with normal or logistic errors gave 

acceptable coverage rates for small number of treatments. For Cauchy treatment effects, 

coverage is comparatively lower than the normal, logistic or double exponential errors. In the 

case where large number of treatments is considered, a coverage rate of approximately 0.95 

resulted only when both random effects are normal. Also, when both random effects are logistic 

the coverage rate was around 0.90 on average for 100 treatments. When (i) ai ~ normal and eij ~ 

logistic (ii) ai ~ logistic and eij ~ normal (iii) both ai and eij ~ double exponential, the coverage 

rate is moderate for large treatment size. All the other distribution combinations give 

approximately zero coverage rate when number of treatments is one hundred. All of these 

observations about the coverage rates are clearly visible from the graphs shown in Figure 3.9 and 

Figure 3.10. 

 

 

Figure 3.9 Estimated Coverage Rates for the 95% Confidence Interval for the Intra-class 

Correlation Coefficient when treatments=5, replications=5 
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Figure 3.10 Estimated Coverage Rates for the 95% Confidence Interval for the Intra-class 

Correlation Coefficient When Treatments=100, Replications=5 
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3.3.2 Width 

Median width instead of mean width was used to summarize the widths of the confidence 

intervals because the distribution of width was highly skewed for some cases. Table A.3 shows 

estimated median widths when both the treatment random effect and the random error are 

normal. Also, it shows the relative median widths for different distribution combinations for two 

random effects. Relative median width is obtained by dividing the median width by the 

corresponding median width for the same values of t, r, and Aσ  with both random effects being 

normally distributed. A small relative median width is only desirable for a parameter setting if 

the coverage rate is close to nominal. In many cases described below, small relative median 

widths actually corresponds to cases where the coverage rate is unacceptably low and therefore 

represent situations where the uncritical experimenter would incorrectly believe the interval gave 

precise information about Aσ .  
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Table A.3 shows that, as a whole, when the treatment random effect is normal or logistic 

and the random error is double exponential, the median width is narrower compared to the case 

where both random effects are normal for treatment size is 5 and treatment size is 10. For a 

Cauchy treatment random effect and either normal, logistic or double exponential random error 

relative median width is smaller compared to the situation when both normal random effects and 

this median width decrease with the increase of treatment size.  But, when both random effects 

are Cauchy, the relative widths are larger than when only treatment random effect is Cauchy. 

Figure 3.11 shows the relative median widths for different combinations of distributions 

for the two random effects changes with Aσ  for number of treatments equals 5 and number of 

replications per treatment equals 5. There appear to be three groups of curves with regard to the 

variation of relative median width. When both ai and eij are logistic or both ai and eij double 

exponential, relative median width stays approximately closer to one which indicates that it is 

not much different from the median width when both ai and eij are normal. An upward trend in 

the relative median width when Aσ  increases approximately from 0.5 above can be seen in the 

cases where eij is Cauchy and ai is any of the distributions considered here.  In contrast, when eij 

double exponential and ai is normal, logistic or Cauchy a decreasing pattern of the relative 

median width for increasing values of Aσ  can be seen. Figure 3.12 shows the relative median 

widths for different combinations of distributions for the two random effects changes with Aσ  for 

number of treatments equals 100 and number of replications per treatment equals 5. It appears 

that upward, downward and straight patterns visible in Figure 3.11 can be observed similarly in 

Figure 3.12. Relative median width is close to zero for Aσ  values greater than 0.5 when ai is 

Cauchy and eij is normal, logistic or double exponential. 
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Figure 3.11 Relative Median Widths for the 95% Confidence Interval for the Intra-class 

Correlation Coefficient when treatments=5 and replications per treatment=5 
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Figure 3.12 Relative Median Widths for the 95% Confidence Interval for the Intra-class 

Correlation Coefficient when treatments=100 and replications per treatment=5 
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Chapter 4 - Conclusions 

The objectives of this report were to investigate the behavior of the actual size and power 

of the F-test to test for the presence of an among treatment variance component in a one-way, 

balanced, random effects model and assess the performance of the normal theory confidence 

interval for the intra-class correlation coefficient with respect to coverage rate and width, when 

one or both of the random effects are not normally distributed. A number of different data sets 

were simulated allowing, the treatment random effect and random error to have a variety of 

symmetric distributions, the logistic, double exponential, Cauchy and normal. 

 

Analysis of simulated data sets showed that when random error is normal, logistic or 

double exponential, the actual size of the F-test was close to the nominal significance level. For 

Cauchy random errors, the F-test was very conservative in the sense of having type I error rates 

which  were considerably less than the nominal  value, α = 0.05. An examination of the 

estimated power values of the normal theory F-test indicated that power is more sensitive to non-

normal random errors than to non-normal treatment random effects. Cauchy random errors 

resulted in the lowest power values compared to the other distributions of random errors for each 

case where the treatment random effect is normal, logistic, double exponential or Cauchy. Except 

for Cauchy random errors, in all other cases, power approached one as the among variance 

component increases for the larger number of treatments used in this study.  

The coverage rate of the normal theory confidence interval for the intra-class correlation 

coefficient depends on the distribution of the random effects and also on the treatment size. The 

distributions with heavier tails for the random effects resulted in low coverage rates. When the 

number of treatments is large, these coverage rates get even lower, sometimes approaching zero.  

Smaller widths for the confidence interval for the intra-class correlation coefficient were 

obtained when the assumption of normality was violated in one or both effects, especially if the 

random effects have heavy tailed distributions. Also, the coverage rates are low in these cases. 

Since a smaller width is desirable only if the actual coverage rate is close to its nominal value, 

non-normal random effects may mislead researchers into incorrectly believing that their results 

have led to a precise estimate of the intra-class correlation coefficient.  
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In conclusion, researchers should be cautious about the results of the F-test for the 

presence of the among treatment variance component in completely randomized one-way 

balanced random effects models when random errors are non-normal and have heavy tails since 

the power of the test can then be very low, even for a very large number of treatments.  Also, the 

researcher should not rely on the nominal, normal theory coverage rate or the observed width of 

the confidence interval for the intra-class correlation coefficient when random effects are heavy 

tailed because narrow widths can occur with coverage rates much lower than nominal.   
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Appendix A - Additional Plots and Tables 

Figure A.1 Power Curves for the F-test when Treatment Random Effect is Normal and 

Random Error is Logistic 

 

 

 

Figure A.2 Power Curves for the F-test when Treatment Random Effect is Normal and 

Random Error is Double Exponential 
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Figure A.3 Power Curves for the F-test when Treatment Random Effect is Logistic and 

Random Error is Normal 

 
 

 

Figure A.4 Power Curves for the F-test when Treatment Random Effect is Logistic and 

Random Error is Logistic 
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Figure A.5 Power Curves for the F-test when Treatment Random Effect is Logistic and 

Random Error is Double Exponential 

 
 

 

 

Figure A.6 Power Curves for the F-test when Treatment Random Effect is Double 

Exponential and Random Error is Normal 
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Figure A.7 Power Curves for the F-test when Treatment Random Effect is Double 

Exponential and Random Error is Logistic 

 
 

 

 

Figure A.8 Power Curves for the F-test when Treatment Random Effect is Double 

Exponential and Random Error is Double Exponential 
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Figure A.9 Power Curves for the F-test when Treatment Random Effect is Cauchy and 

Random Error is Normal 

 
 

 

Figure A.10 Power Curves for the F-test when Treatment Random Effect is Cauchy and 

Random Error is Logistic 
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Figure A.11 Power Curves for the F-test when Treatment Random Effect is Cauchy and 

Random Error is Double Exponential 

 
Figure A.12 Power Curves for the F-test when Treatment Random Effect is Cauchy and 

Random Error is Cauchy 
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Table A.1 Estimated Coverage Rates for the 95% Confidence Interval for Intra-class 

Correlation Coefficient when Both Random Effects are Normal for Different Treatment 

Sizes 

t=5, r=5 t=5, r=10 t=10, r=5 t=10, r=10 t=50,r=5 t=50,r=10 t=100, r=5 t=100,r=10 t=500,r=5 t=500,r=10
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.965 0.940 0.946 0.957 0.947 0.950 0.956 0.949 0.952 0.956
1 0.944 0.950 0.951 0.939 0.944 0.948 0.938 0.940 0.940 0.947

1.5 0.946 0.943 0.942 0.949 0.938 0.955 0.948 0.971 0.947 0.950
2 0.961 0.943 0.954 0.938 0.945 0.945 0.945 0.943 0.951 0.942

2.5 0.953 0.963 0.958 0.937 0.947 0.952 0.927 0.942 0.932 0.944

ai~N  eij~N
Aσ

 

t= Number of treatments, r= Number of replicates per treatment 
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Table A.2 Estimated Coverage Rates for the 95% Confidence Interval for the Intra-class Correlation Coefficient for 

Treatments= (5, 100) and Replications = (5, 10) 

 

2

                                                 
2 Boldface numbers indicate estimated coverage rates close to nominal 0.95 coverage rate. 
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Table A.3 Relative Median Widths for the 95% Confidence Interval for the Intra-class Correlation Coefficient Number of 

treatments = (5,100) and Number of replications = (5 &10) 

Number of 
Treatments 

Replicates 
per 

Treatment 

 
 

Median 
Width Relative Median Width 

ai ~Normal 
eij~Normal 

ai ~ Normal ai ~ Logistic ai ~ Double Exponential ai ~ Cauchy 
eij 

~Logistic 
eij ~Double 
Exponential 

eij 
~Cauchy 

eij 
~Normal 

eij 
~Logistic 

eij ~Double 
Exponential 

eij 
~Cauchy 

eij 
~Normal 

eij 
~Logistic 

eij ~Double 
Exponential 

eij 
~Cauchy 

eij 
~Normal 

eij 
~Logistic 

eij ~Double 
Exponential 

eij 
~Cauchy 

5 5 0 0.566 1.009 1.010 1.056 1.012 1.006 1.019 1.053 0.996 1.016 1.015 1.053 1.012 1.034 1.025 1.060 
5 5 0.5 0.683 1.048 1.089 0.899 1.091 1.072 1.062 0.898 0.919 0.915 1.055 0.885 0.970 0.942 0.709 0.932 
5 5 1 0.710 1.067 0.705 0.904 1.033 1.053 0.647 0.903 1.004 1.010 1.000 0.867 0.671 0.780 0.288 0.908 
5 5 1.5 0.616 1.097 0.518 1.113 0.997 1.051 0.476 1.091 1.192 1.202 1.014 1.002 0.514 0.531 0.188 1.003 
5 5 2 0.502 1.125 0.386 1.363 0.910 1.017 0.342 1.362 1.434 1.476 1.155 1.293 0.395 0.481 0.116 1.232 
5 5 2.5 0.418 1.059 0.312 1.631 0.841 1.001 0.281 1.611 1.642 1.684 1.032 1.539 0.368 0.413 0.094 1.398 
5 10 0 0.378 1.072 1.057 1.116 0.988 1.011 1.041 1.102 0.994 1.002 1.030 1.103 0.988 1.049 1.074 1.117 
5 10 0.5 0.627 1.079 1.098 0.688 1.111 1.089 1.066 0.697 0.817 0.802 1.022 0.677 0.950 0.982 0.733 0.771 
5 10 1 0.661 1.064 0.700 0.718 1.030 1.042 0.685 0.731 0.991 0.953 0.997 0.661 0.688 0.769 0.291 0.824 
5 10 1.5 0.563 1.092 0.500 0.980 0.986 1.065 0.438 0.980 1.209 1.194 1.041 0.791 0.506 0.590 0.162 0.937 
5 10 2 0.458 1.116 0.419 1.272 0.920 1.029 0.358 1.305 1.473 1.484 1.116 1.006 0.438 0.480 0.125 1.151 
5 10 2.5 0.380 1.058 0.335 1.603 0.827 0.977 0.292 1.621 1.657 1.721 1.054 1.287 0.381 0.382 0.097 1.393 

100 5 0 0.072 0.961 0.998 0.978 0.972 0.987 0.965 0.977 0.980 0.995 1.004 0.973 0.972 0.980 0.926 0.978 
100 5 0.5 0.175 0.968 1.055 0.408 1.035 1.004 1.021 0.408 0.827 0.758 1.005 0.404 0.193 0.254 0.060 0.620 
100 5 1 0.181 1.033 0.603 0.409 0.968 1.005 0.530 0.411 0.987 0.952 1.007 0.395 0.049 0.067 0.014 0.742 
100 5 1.5 0.141 1.102 0.436 0.548 0.893 1.005 0.364 0.564 1.336 1.332 1.006 0.509 0.029 0.029 0.008 1.027 
100 5 2 0.103 1.127 0.370 0.825 0.869 0.997 0.305 0.868 1.742 1.802 1.011 0.717 0.024 0.027 0.007 1.308 
100 5 2.5 0.075 1.161 0.334 1.244 0.845 1.010 0.273 1.291 2.113 2.257 1.003 1.007 0.022 0.025 0.005 1.749 
100 10 0 0.036 0.954 0.970 0.967 0.931 0.966 0.940 0.965 0.947 0.948 0.967 0.968 0.931 0.938 0.931 0.970 
100 10 0.5 0.131 0.936 1.225 0.271 1.061 0.998 1.206 0.271 0.673 0.628 0.990 0.269 0.276 0.296 0.090 0.468 
100 10 1 0.159 1.015 0.640 0.232 0.978 1.006 0.567 0.233 0.847 0.800 1.002 0.224 0.060 0.069 0.017 0.518 
100 10 1.5 0.129 1.087 0.450 0.313 0.903 1.009 0.382 0.313 1.234 1.203 1.015 0.278 0.028 0.040 0.008 0.713 
100 10 2 0.095 1.141 0.380 0.454 0.883 1.009 0.315 0.461 1.656 1.682 1.022 0.388 0.023 0.032 0.007 1.025 
100 10 2.5 0.071 1.157 0.343 0.661 0.852 1.007 0.280 0.724 2.037 2.150 1.024 0.539 0.018 0.025 0.005 1.436 
3

                                                 
3 Boldface numbers indicate estimated median widths when the both random effects are normally distributed. 

 

Aσ
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Table A.4 Number of data sets where upper bound of the 95% confidence interval is non-

negative for all the combinations of parameters & distributions when treatments=5, 

replications per treatment = (5,10) 

 

ai~N  
eij~N

ai~N  
eij~L

ai~N  
eij~DE

ai~N  
eij~C

ai~L  
eij~N

ai~L     
eij~L

ai~L  
eij~DE

ai~L  
eij~C

ai~DE  
eij~N

ai~DE  
eij~L

ai~DE  
eij~DE

ai~DE  
eij~C

ai~C 
eij~N

ai~C 
eij~L

ai~C 
eij~DE

ai~C  
eij~C

5 5 0 973 979 984 984 975 974 974 988 975 967 990 984 975 979 982 988
5 5 0.5 994 991 998 990 993 995 998 990 988 983 989 985 996 996 999 993
5 5 1 1000 998 1000 992 1000 998 1000 994 994 992 998 989 1000 999 1000 996
5 5 1.5 1000 999 1000 992 999 1000 1000 995 995 991 998 990 999 1000 1000 995
5 5 2 1000 1000 1000 998 1000 1000 1000 994 1000 996 999 992 1000 999 1000 995
5 5 2.5 1000 1000 1000 997 1000 1000 1000 998 999 995 1000 988 1000 1000 1000 997
5 10 0 970 970 983 990 971 983 982 986 969 981 980 985 971 977 979 981
5 10 0.5 1000 996 1000 992 998 999 1000 990 982 989 991 980 998 997 1000 994
5 10 1 1000 1000 1000 991 1000 1000 1000 993 993 997 999 992 1000 1000 1000 998
5 10 1.5 1000 1000 1000 993 1000 1000 1000 996 997 998 999 987 1000 1000 1000 995
5 10 2 1000 1000 1000 997 1000 1000 1000 997 998 997 998 995 1000 1000 1000 996
5 10 2.5 1000 1000 1000 997 1000 1000 1000 997 999 996 1000 993 1000 1000 1000 994

Number of 
Treatments

Replications 
per Treatment

Number of data sets

Aσ

 

N=normal, L=logistic, DE=double exponential, C= Cauchy 

 

 

Table A.5 Number of data sets where upper bound of the 95% confidence interval is non-

negative for all the combinations of parameters & distributions when treatments=10, 

replications per treatment = (5,10) 

ai~N  
eij~N

ai~N  
eij~L

ai~N  
eij~DE

ai~N  
eij~C

ai~L  
eij~N

ai~L     
eij~L

ai~L  
eij~DE

ai~L  
eij~C

ai~DE  
eij~N

ai~DE  
eij~L

ai~DE  
eij~DE

ai~DE  
eij~C

ai~C 
eij~N

ai~C 
eij~L

ai~C 
eij~DE

ai~C  
eij~C

10 5 0 975 975 963 987 973 984 982 983 973 974 974 985 973 973 978 984
10 5 0.5 998 998 1000 982 998 999 1000 982 994 990 999 985 1000 1000 1000 990
10 5 1 1000 1000 1000 989 1000 999 1000 994 995 997 1000 988 1000 1000 1000 992
10 5 1.5 1000 1000 1000 997 1000 1000 1000 993 997 997 1000 990 1000 1000 1000 994
10 5 2 1000 1000 1000 997 1000 1000 1000 999 999 999 1000 990 1000 1000 1000 996
10 5 2.5 1000 1000 1000 998 1000 1000 1000 997 999 1000 1000 992 1000 1000 1000 997
10 10 0 977 969 975 980 972 975 974 982 978 981 983 978 972 971 983 992
10 10 0.5 999 999 1000 984 1000 999 1000 985 992 995 998 987 1000 1000 1000 992
10 10 1 1000 1000 1000 995 1000 1000 1000 989 999 997 1000 989 1000 1000 1000 993
10 10 1.5 1000 1000 1000 993 1000 1000 1000 992 1000 999 1000 993 1000 1000 1000 998
10 10 2 1000 1000 1000 997 1000 1000 1000 993 1000 1000 1000 993 1000 1000 1000 996
10 10 2.5 1000 1000 1000 992 1000 1000 1000 998 1000 1000 1000 989 1000 1000 1000 999

Number of 
Treatments

Replications 
per 

Treatment

Number of data sets

Aσ

 

N=normal, L=logistic, DE=double exponential, C= Cauchy 
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Table A.6 Number of data sets where upper bound of the 95% confidence Interval is non-

negative for all the combinations of parameters & distributions when treatments=50, 

replications per treatment = (5,10) 

ai~N  
eij~N

ai~N  
eij~L

ai~N  
eij~DE

ai~N  
eij~C

ai~L  
eij~N

ai~L     
eij~L

ai~L  
eij~DE

ai~L  
eij~C

ai~DE  
eij~N

ai~DE  
eij~L

ai~DE  
eij~DE

ai~DE  
eij~C

ai~C 
eij~N

ai~C 
eij~L

ai~C 
eij~DE

ai~C  
eij~C

50 5 0 962 970 978 980 971 979 974 983 982 977 973 985 971 959 958 989
50 5 0.5 1000 1000 1000 983 1000 1000 1000 984 998 1000 1000 984 1000 1000 1000 993
50 5 1 1000 1000 1000 989 1000 1000 1000 995 999 1000 1000 985 1000 1000 1000 998
50 5 1.5 1000 1000 1000 990 1000 1000 1000 996 1000 1000 1000 990 1000 1000 1000 999
50 5 2 1000 1000 1000 993 1000 1000 1000 997 1000 1000 1000 988 1000 1000 1000 998
50 5 2.5 1000 1000 1000 997 1000 1000 1000 997 1000 1000 1000 992 1000 1000 1000 996
50 10 0 985 980 968 979 971 970 979 990 976 976 979 991 971 982 980 987
50 10 0.5 1000 1000 1000 985 1000 1000 1000 983 1000 1000 1000 982 1000 1000 1000 993
50 10 1 1000 1000 1000 993 1000 1000 1000 992 1000 1000 1000 990 1000 1000 1000 996
50 10 1.5 1000 1000 1000 992 1000 1000 1000 996 1000 1000 1000 988 1000 1000 1000 1000
50 10 2 1000 1000 1000 991 1000 1000 1000 994 1000 1000 1000 987 1000 1000 1000 996
50 10 2.5 1000 1000 1000 998 1000 1000 1000 996 1000 1000 1000 993 1000 1000 1000 995

Number of 
Treatments

Replications 
per Treatment

Number of data sets

Aσ

 

N=normal, L=logistic, DE=double exponential, C= Cauchy 

 

Table A.7 Number of data sets where upper bound of the 95% confidence interval is non-

negative for all the combinations of parameters & distributions when treatments=100, 

replications per treatment = (5,10) 

ai~N  
eij~N

ai~N  
eij~L

ai~N  
eij~DE

ai~N  
eij~C

ai~L  
eij~N

ai~L     
eij~L

ai~L  
eij~DE

ai~L  
eij~C

ai~DE  
eij~N

ai~DE  
eij~L

ai~DE  
eij~DE

ai~DE  
eij~C

ai~C 
eij~N

ai~C 
eij~L

ai~C 
eij~DE

ai~C  
eij~C

100 5 0 982 976 971 987 976 960 972 984 975 975 962 978 976 971 975 983
100 5 0.5 1000 1000 1000 987 1000 1000 1000 998 1000 1000 1000 979 1000 1000 1000 989
100 5 1 1000 1000 1000 987 1000 1000 1000 986 1000 1000 1000 989 1000 1000 1000 995
100 5 1.5 1000 1000 1000 990 1000 1000 1000 993 1000 1000 1000 987 1000 1000 1000 995
100 5 2 1000 1000 1000 994 1000 1000 1000 994 1000 1000 1000 989 1000 1000 1000 997
100 5 2.5 1000 1000 1000 992 1000 1000 1000 993 1000 1000 1000 995 1000 1000 1000 999
100 10 0 975 973 965 981 977 981 971 985 981 977 975 982 977 981 972 990
100 10 0.5 1000 1000 1000 984 1000 1000 1000 987 1000 1000 1000 986 1000 1000 1000 995
100 10 1 1000 1000 1000 986 1000 1000 1000 988 1000 1000 1000 987 1000 1000 1000 997
100 10 1.5 1000 1000 1000 994 1000 1000 1000 989 1000 1000 1000 982 1000 1000 1000 996
100 10 2 1000 1000 1000 998 1000 1000 1000 994 1000 1000 1000 991 1000 1000 1000 999
100 10 2.5 1000 1000 1000 995 1000 1000 1000 993 1000 1000 1000 991 1000 1000 1000 1000

Number of 
Treatments

Replications 
per 

Treatment

Number of data sets

Aσ

 

N=normal, L=logistic, DE=double exponential, C= Cauchy 
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Table A.8 Number of data sets where upper bound of the 95% confidence interval is non-

negative for all the combinations of parameters & distributions when treatments=500, 

replications per treatment = (5,10) 

ai~N  
eij~N

ai~N  
eij~L

ai~N  
eij~DE

ai~N  
eij~C

ai~L  
eij~N

ai~L     
eij~L

ai~L  
eij~DE

ai~L  
eij~C

ai~DE  
eij~N

ai~DE  
eij~L

ai~DE  
eij~DE

ai~DE  
eij~C

ai~C 
eij~N

ai~C 
eij~L

ai~C 
eij~DE

ai~C  
eij~C

500 5 0 970 966 970 989 963 972 973 993 975 974 970 995 963 971 968 986
500 5 0.5 1000 1000 1000 993 1000 1000 1000 993 1000 1000 1000 986 1000 1000 1000 998
500 5 1 1000 1000 1000 992 1000 1000 1000 991 1000 1000 1000 991 1000 1000 1000 1000
500 5 1.5 1000 1000 1000 991 1000 1000 1000 992 1000 1000 1000 987 1000 1000 1000 998
500 5 2 1000 1000 1000 991 1000 1000 1000 995 1000 1000 1000 992 1000 1000 1000 1000
500 5 2.5 1000 1000 1000 993 1000 1000 1000 996 1000 1000 1000 991 1000 1000 1000 999
500 10 0 969 973 972 989 975 964 975 991 965 982 969 989 975 975 977 990
500 10 0.5 1000 1000 1000 994 1000 1000 1000 993 1000 1000 1000 992 1000 1000 1000 996
500 10 1 1000 1000 1000 989 1000 1000 1000 990 1000 1000 1000 995 1000 1000 1000 997
500 10 1.5 1000 1000 1000 988 1000 1000 1000 991 1000 1000 1000 991 1000 1000 1000 1000
500 10 2 1000 1000 1000 993 1000 1000 1000 990 1000 1000 1000 991 1000 1000 1000 999
500 10 2.5 1000 1000 1000 994 1000 1000 1000 995 1000 1000 1000 996 1000 1000 1000 998

Number of 
Treatments

Replications 
per Treatment

Number of data sets

Aσ

 

N=normal, L=logistic, DE=double exponential, C= Cauchy 
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Appendix B - R Code 

##ai~Normal, eij~Normal## 

 

set.seed(32111) # nn 

T <- c(5,10,50,100,500) # number of treatment groups 

R <- c(5,10) # number of replications per trt group 

sd.Err <- 1 # the error stand deviation 

SD.TRT <- c(0,0.25,0.50,0.75,1.00,1.25,1.50,1.75,2.00,2.25,2.5) 

out1=NULL 

out11=NULL 

out2=NULL 

out3=NULL 

out4=NULL 

out6=NULL 

out7=NULL 

out8=NULL 

outd=NULL 

 

for (t in T){ 

a <- numeric(t) 

for (r in R){ 

 Y <- matrix(0, nrow=r, ncol=t) 

for (sd.trt in SD.TRT) { 

for (N in 1:1000) {  

   for (i in 1:t) { 

    ai] <- rnorm(1,0, sd.trt) 

     for (j in 1:r) { 
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      Y[j,i] <- a[i]+rnorm(1,0,sd.Err) 

     } 

    } 

x <- as.vector(Y) 

trt <- as.factor(rep(1:t, each = r)) 

 

X <- t(Y) 

X.bar <- apply(X, 1, mean) #trt sample means 

A <- sum(X^2) 

B <- sum(apply(X, 1, sum)^2)/r 

C <- (sum(X))^2/(r * t) 

dfT <- t-1 

dfE <- t*(r-1) 

crit <- 0.05 # critical value 

MS.trt <- (B - C)/(t - 1) 

MS.Error <- (A - B)/(t * (r - 1)) 

 

est.sigmaAsq=(MS.trt-MS.Error)/r 

if (est.sigmaAsq<0) neg=1 else neg=0  #negative sigmaA-squared 

estimates 

 

#----------power------------------------------- 

F.ratio <- MS.trt/ MS.Error 

Falpha=qf(.95,dfT,dfE) 

if (F.ratio>=Falpha) rej=1 else rej=0    #number of rejections 

 

#---------Intra-class correlation-------------- 

ICC=(sd.trt)^2/((sd.trt)^2 + (sd.Err)^2) 
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est.ICC=(MS.trt-MS.Error)/(MS.trt+(r-1)*MS.Error) 

FL=qf(0.05/2,t-1,t*r-1) 

FU=qf(1-0.05/2,t-1,t*r-1) 

if (F.ratio<FL)delete=1 else delete=0   

 

if (delete==0){ 

UL=(F.ratio-FL)/(F.ratio+(r-1)*FL) 

if (F.ratio<FU) LL=0 else LL=(F.ratio-FU)/(F.ratio+(r-1)*FU) 

if (F.ratio<FU) negLL=1 else negLL=0 

if (LL<ICC & UL>ICC) cover=1 else cover=0  #coverage 

width=UL-LL 

mid.CI=(LL+UL)/2 

chk=abs(ICC-mid.CI)/(UL-LL) 

if (mid.CI>=ICC) above=1 else above=0 

} else{ 

UL=NA 

LL=NA 

negLL=NA 

cover=NA 

width=NA 

mid.CI=NA 

chk=NA 

above=NA 

} 

 

out1=rbind(out1,c(t,r,sigmaA=sd.trt,pop.ICC=ICC,LL=LL,UL=UL 

,width=width)) 
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out2=rbind(out2,c(trt=t,rep=r,sigmaA=sd.trt,power=rej)) 

out3=rbind(out3,c(trt=t,rep=r,sigmaA=sd.trt,delete=delete 

,ICC=ICC,coverage=cover,above.ICC=above,width=width)) 

}}}} 

 

#------counting deleting datasets---------- 

outd=rep(0,1) 

l=1:1000  # N=1000 

for(m in 1:110) {         #t*r*sigma=110  

#test=out3[l+(m-1)*1000,4] #N=1000 

outd=rbind(outd,1000-sum(out3[l+(m-1)*1000,4])) 

} 

outd=outd[-1,] 

out33=na.omit(out3)   #omit NA's 

 

#------getting coverage rate, avg.width of the test------ 

out7=rep(0,10) 

for(k in 1:110) {         #t*r*sigma=110  

if (k==1){ 

test1=out33[1:outd[1],] 

} else { 

test1=out33[(sum(outd[1:k-1])+1):(sum(outd[1:k])),]  

} 

z1=apply(test1,2,mean) 

out7=rbind(out7,z1) 

} 

out7=out7[-1,] 
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out7 

#------------------medain------------------- 

out8=rep(0,4) 

for(k in 1:110) {         #t*r*sigma=110  

if (k==1){ 

test2=out33[1:outd[1],7:10] 

} else { 

test2=out33[(sum(outd[1:k-1])+1):(sum(outd[1:k])),7:10]  

} 

z2=apply(test2,2,median) 

out8=rbind(out8,z2) 

} 

out8=out8[-1,] 

out8 

 

#----------------power------------------- 

out6=rep(0,4) 

l=1:1000 # N=1000 

for(m in 1:110) {         #t*r*sigma=110  

test=out2[l+(m-1)*1000,]  #N=1000 

z=apply(test,2,mean) 

out6=rbind(out6,z) 

} 

out6=out6[-1,] 

out6 

 

#-----------power curves------------------ 
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par(mfrow=c(2,2)) 

nn=read.csv("F:\\MS\\report\\simulation\\4_4\\new\\data2nn.csv",

header=TRUE) 

r=5 

plot(nn$sigmaA,nn$power,type="n",xlab="sigma 

A",ylab="Power",sub="Replications per Treatment=5") 

lines(nn$sigmaA[1:11],nn$power[1:11],col="black") #t=5 

lines(nn$sigmaA[23:33],nn$power[23:33],col="red")#t=10 

lines(nn$sigmaA[45:55],nn$power[45:55],col="blue")#t=50 

lines(nn$sigmaA[67:77],nn$power[67:77],col="green")#t=100 

lines(nn$sigmaA[89:99],nn$power[89:99],col="magenta")#t=500 

legend("bottomright",c("t=5","t=10","t=50","t=100","t=500"),lty=

c(1,1,1,1,1),col=c("black","red","blue","green","magenta"),cex=.

75) 

 

#r=10 

plot(nn$sigmaA,nn$power,type="n",xlab="sigma 

A",ylab="Power",sub="Replications per Treatment=10") 

lines(nn$sigmaA[22:22],nn$power[22:22],col="black") #t=5,r=5 

lines(nn$sigmaA[34:44],nn$power[34:44],col="red") #t=10 

lines(nn$sigmaA[56:66],nn$power[56:66],col="blue")#t=50 

lines(nn$sigmaA[78:88],nn$power[78:88],col="green")#t=100 

lines(nn$sigmaA[100:110],nn$power[100:110],col="magenta")#t=500 

legend("bottomright",c("t=5","t=10","t=50","t=100","t=500") 

,lty=c(1,1,1,1,1),col=c("black","red","blue","green","magenta"),

cex=.75) 

        

#---------------------------------------------------------- 

write.csv(out1,file="F:\MS\report\simulation\\data1nn.csv") 
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write.csv(out6,file="F:\MS\report\simulation\\data2nn.csv") 

write.csv(out7,file="F:\MS\report\simulation\\data3nn.csv") 

write.csv(out8,file="F:\MS\report\simulation\\data4nn.csv") 

write.csv(outd,file="F:\MS\report\simulation\\datadnn.csv") 

 


	Chapter 1 -  Introduction
	1.1 Completely Randomized, One-way, Balanced Design
	1.1.1 The Significance Test for Among Treatment Variance Component 
	1.1.2 Intra-class Correlation Coefficient
	1.1.3 Illustration

	1.2 Aims and Objectives 

	Chapter 2 -  Simulation Procedure
	2.1 Densities Used for Both Random Effects
	2.1.1 Generating data from Double Exponential Distribution
	2.1.1.1 Algorithm: Generate random numbers from double-exponential (location=0, scale) distribution


	2.2 Power Calculation 
	2.3 Coverage Rates and Widths of Confidence Intervals for the Intra-class Correlation Coefficient
	2.3.1 Calculate the Coverage Rate 
	2.3.2 Width


	Chapter 3 -  Simulation Results
	3.1 Size of F-test for the Significance of the Among Treatments Variance Component 
	3.2 Power Analysis
	3.3 Intra-class Correlation Coefficient
	3.3.1 Coverage Rate
	3.3.2 Width


	Chapter 4 -  Conclusions
	Appendix A -  Additional Plots and Tables
	Appendix B -  R Code


