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Abstract

Consider the Schrödinger operator −∇2 + q with a smooth compactly
supported potential q, q = q(x), x ∈ R3.
Let A(β, α, k) be the corresponding scattering amplitude, k2 be the
energy, α ∈ S2 be the incident direction, β ∈ S2 be the direction of
scattered wave, S2 be the unit sphere in R3. Assume that k = k0 > 0
is fixed, and α = α0 is fixed. Then the scattering data are A(β) =
A(β, α0, k0) = Aq(β) is a function on S2. The following inverse scatter-
ing problem is studied:
IP: Given an arbitrary f ∈ L2(S2) and an arbitrary small number ε > 0,
can one find q ∈ C∞0 (D), where D ∈ R3 is an arbitrary fixed domain,
such that ||Aq(β)− f(β)||L2(S2) < ε?
A positive answer to this question is given. A method for constructing
such a q is proposed. There are infinitely many such q, not necessarily
real-valued.
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1 Introduction

Consider the scattering problem:
Find the solution to the equation

[∇2 + k2 − q(x)]u = 0 in R3, (1)

such that

u = eikα·x + A(β, α, k)
eikr

r
+ o

(
1

r

)
, r = |x| → ∞, x

r
= β, (2)
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where α ∈ S2 is a given unit vector, S2 is the unit sphere, k = const > 0, k2

is the energy, α is the direction of the incident plane wave u0 := eikα·x is the
incident plane wave, β is the direction of the scattered wave. The function

A(β, α, k) = Aq(β, α, k) (3)

is called the scattering amplitude corresponding to the potential q(x).
If q(x) ∈ C∞0 (R3) and is a real valued function, then the scattering problem

(1)-(2) has a unique solution, the scattering solution. There is a large literature
on this topic, see, for example, [1], [2], [3], and and references therein. The
scattering theory has been developed for much larger classes of potentials, not
necessarily smooth and compactly supported.

We prove existence and uniqueness of the scattering solution assuming
that Imq ≤ 0, see Lemma 2.5 in Section 2. The inverse scattering problem
consists in finding q(x) in a certain class of potentials from the knowledge
of the scattering data A(β, α, k) on some subsets of the set S2 × S2 × R+,
where R+ = [0,∞). If A(β, α, k) is known everywhere in the above set, then
the inverse scattering problem is easily seen to be uniquely solvable in the
class of L2

0(R
3), that is, in the class of compactly supported square-integrable

potentials, and in much larger class of potentials. If the scattering data is
given at a fixed energy, and k = k0 > 0 for all β ∈ S2 and all α ∈ S2, then
uniqueness of the solution to inverse scattering problem was proved originally
in [4]. An algorithm for finding q(x) from the exact fixed-energy scattering
data and from noisy fixed-energy scattering data was given in [5], where the
error estimates of the proposed solution were also obtained, see Chapter 5 in
[6].

Only recently the uniqueness of the solution to inverse scattering problem
with non-over-determined data A(−β, β, k) and A(β, α0, k) was proved, see [7],
and [8], [12].

The data A(−β, β, k), ∀β ∈ S2 and all k > 0 are the back-scattering data,
the A(β, α0, k),∀β ∈ S2 and ∀k > 0 are the fixed incident direction data. The
scattering data are called ”non-over-determined” if these data depend on the
same number of variables as the unknown potential, that is on three variables
in the above problems.

Note that the data A(β, α, k0), ∀α, β ∈ S2 and a fixed k = k0 > 0 are over-
determined: they depend on four variables while q depends on three variables.

The inverse problem IP with the data A(β) := Aq(β) := A(β, α0, k0) is
under-determined: its data depend on two variables. This problem, in general,
does not have a unique solution in sharp contrast to the inverse scattering
problems mentioned above. The IP was not studied in the literature, except
in the paper [10]. The proofs in the current paper are more detailed, the
potential is allowed to be complex-valued with Imq ≤ 0, and the uniqueness
of the scattering solution is proved for this class of the potentials.
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In this paper the IP is studied further. Assume that D ⊂ R3 is an arbitrary
fixed bounded domain.

Let us formulate the inverse problem:
IP: Given an arbitrary f ∈ L2(S2) and an arbitrary small number ε > 0,

find a q ∈ C∞0 (D) such that

||A(β)− f(β)||L2(S2) < ε. (4)

The IP’s formulation differs from the formulation of the inverse scattering
problems discussed earlier:

i) There is no unique solution for the problem we are discussing,
ii) In place of the exact (or noisy) scattering data a function f(β) on S2 is

given, which, in general, is not a scattering amplitude at a fixed α = α0 and a
fixed k = k0 corresponding to any potential from L2(D).

The main results of this paper include:
a) A proof of the existence of q ∈ C∞0 (D) such that (4) holds;
b) A method for finding a potential q ∈ C∞0 (D) for which (4) holds;
c) An analytic formula for a function h = qu, where u is the scattering solution
at a fixed k and a fixed α, corresponding to q.

In section 2 we prove that the set {A(β)} corresponding to all q ∈ C∞0 (D),
is dense in L2(S2), and that the set of functions {h} = {qu} is dense in
L2(D) when q runs through all of L2(D). Here u = u(x) = u(x, α0, k0) is the
scattering solution corresponding to the potential q, that is, the solution to
the scattering problem (1)-(2) with α = α0 ∈ S2 and k = k0 > 0.

In section 3 an analytical formula for q is given. The q computed by this
formula generates A(β) satisfying (4).

We do not discuss in this paper the relation of our results with the theory
of creating materials with a desired refraction coefficient, see [9], [11], [14].

2 The density of the set A(β) in L2(S2)

This Section is the main one. The logic of the proof of the main result, namely,
the validity of formula (4), can be described as follows.

First, it is proved that the set of functions {− 1
4π

∫
D
e−ikβ·yh(y)dy} is dense

in L2(S2) when h runs through L2(D), see Theorem 2.2.
Then we prove that the set {qu} is dense in L2(D) when q runs through

L2(D) and u is the scattering solution corresponding to q, see Theorem 2.4.
Combining these two results one gets the desired inequality (4).
Let us start by proving the following lemma.

Lemma 2.1 If the set {A(β)} is dense in L2(S2) when q runs through all
of L2(D), then it is dense in L2(S2) when q runs through C∞0 (D).
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Proof. The set C∞0 (D) is dense in L2(D) ( in L2(D) norm), and the scattering
amplitude A(β) depends continuously in the norm of L2(S2) on q, that is,

||Aq1(β)− Aq2(β)||L2(S2) ≤ c||q1 − q2||L2(D). (5)

Estimate (5) follows, for example, from the known lemma of the author (see
[6], p.262):

− 4π[Aq1(β)− Aq2(β)] =

∫
D

[q1(x)− q2(x)]u1(x, α0, k0)u2(x,−β, k0)dx, (6)

and the well-known estimate

sup
x∈D
|u(x, α, k)| ≤ c, (7)

where c > 0 is a constant depending on the L2(D) norm of q and uniform with
respect to k ∈ [a,∞), a > 0 is a constant and α ∈ S2. Lemma 2.1. is proved.
2

Thus, in what follows it is sufficient to establish the density of the set {Aq(β)}
in L2(S2) when q runs through L2(D).

Theorem 2.2 For any f ∈ L2(S2) and any ε > 0 there exists a q ∈ C∞0 (D)
such that estimate (4) holds, where A(β) = Aq(β) is the scattering amplitude
corresponding to q, and α = α0 ∈ S2, k = k0 > 0 are fixed.

Proof. By Lemma 2.1, it is sufficient to prove that the set {A(β)} is dense
in L2(S2) when q runs through all of L2(D). Assuming the contrary, one finds
a function f ∈ L2(S2) which is orthogonal in L2(S2) to any function A(β). It
is well-known that

− 4πA(β) =

∫
D

e−ikβ·yh(y)dy, h(y) := q(y)u(y), (8)

where u(y) = u(y, α0, k0) is the scattering solution. Using the orthogonality of
f to A(β), one gets∫

S2

f(β)

∫
D

e−ikβ·yh(y)dydβ = 0, ∀q ∈ L2(D). (9)

We prove later, see Theorem 2.4, that when q runs through all of L2(D), the
corresponding h runs through a set L̃ dense in L2(D). Taking this for granted,
one can replace in (9) the expression ∀q ∈ L2(D) by ∀h ∈ L2(D), and rewrite
(9) as follows: ∫

D

h(y)

∫
S2

f(β)e−ikβ·ydβdy = 0, ∀h ∈ L̃. (10)
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This implies ∫
S2

f(β)e−ikβ·ydβ = 0, ∀y ∈ D, (11)

where k = k0 is fixed. In what follows, we write everywhere k for k0 and α
for α0. The integral in (11) can be considered as the Fourier transform of a
compactly supported distribution

g(λ, β) := g(ξ) := f

(
ξ

|ξ|

)
δ(|ξ| − k)

|ξ|2
, (12)

where ξ ∈ R3, λ = |ξ|, β = ξ
λ
, and

g̃(y) :=

∫
R3

g(ξ)e−iξ·ydξ =

∫ ∞
0

λ2dλ

∫
S2

e−iλβ·yg(λ, β)dβ. (13)

Since distribution (12) is supported on the sphere |ξ| = k, which is a compact
set in R3, its Fourier transform is an entire function of y. This function vanishes
in an open in R3 set D by (11). Therefore, it vanishes everywhere in R3. By
the injectivity of the Fourier transform one concludes that f(β) = 0. Therefore
the assumption that the set {A(β)} is not dense in L2(S2) is false. Theorem
2.2 is proved under the assumption that the set {h} is dense in L2(D) when q
runs through all of L2(D). In Theorem 2.4, see below, this density statement
is proved. Thus, one can consider Theorem 2.2 proved. 2

Remark 2.3 If one defines A(β) = − 1
4π

∫
D
e−ikβ·yh(y)dy and assumes that

{h} runs through a dense subset of L2(D), then the corresponding set {A(β)}
is dense in L2(S2), as follows from our proof of Theorem 2.2.

Theorem 2.4 The set {h} is dense in L2(D) when q runs through a dense
subset of L2(D), where h(x) = q(x)u(x), and u(x) is the scattering solution
corresponding to q = q(x).

Proof. If u is the scattering solution, then

u(x) = u0(x)−
∫
D

g(x, y)h(y)dy, x ∈ R3, u0(x) := eikα·x, h = qu, (14)

g(x, y) =
eik|x−y|

4π|x− y|
, x, y ∈ R3. (15)

Define

q(x) =
h(x)

u(x)
=

h(x)

u0(x)−
∫
D
g(x, y)h(y)dy

, x ∈ R3. (16)

If the function q(x), defined in (16), belongs to L2(D), then the function u(x),
defined in (14), is the scattering solution, corresponding to q ∈ L2(D), defined
by formula (16). Uniqueness of the scattering solution is guaranteed if Imq ≤ 0
by the following Lemma 2.5.
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Lemma 2.5 Assume that Imq ≤ 0 and q ∈ L2(D), q = 0 in D := R3 \D.
Then there exists a unique scattering solution, that is, the solution to problem
(1)-(2). This solution is also the unique solution to equation (14) if h = qu.

Proof. It is sufficient to prove uniqueness of the scattering solution. Indeed,
the scattering solution solves a Fredholm-type Lippmann-Schwinger equation,

u(x) = u0(x)−
∫
D

g(x, y)q(y)u(y)dy,

and the uniqueness of the solution to this equation implies the existence of
this solution by the Fredholm alternative.

Suppose that there are two scattering solutions, u1 and u2, that is, solution
to problem (1)-(2) (with α = α0 and k = k0 > 0). Then the function v :=
u1 − u2 solves equation (1) and satisfies the radiation condition at infinity:

[∇2 + k2 − q(x)]v = 0 in R3, (17)

∂v

∂r
− ikv = o

(
1

r

)
, r := |x| → ∞. (18)

Multiply equation (17) by v̄, the bar stands for complex conjugate, and the
complex conjugate of (17) by v and subtract from the first equation the second.
The result is

v̄(∇2 + k2)v − v(∇2 + k2)v̄ − (q − q̄)|v|2 = 0. (19)

Integrate (19) over a ball BR of large radius R, centered at the origin, and use
the Green’s formula to get∫

|x|=R

(
v̄
∂v

∂r
− v∂v̄

∂r

)
ds− 2i

∫
BR

Imq(x)|v(x)|2dx = 0. (20)

Using the radiation condition (18) one rewrites (20) as

2ik

∫
|x|=R

|v|2ds− 2i

∫
BR

Imq|v|2dx+ o(1) = 0, (21)

where o(1)→ 0 as R→∞. Thus, if Imq ≤ 0 relation (21) implies that

lim
R→∞

∫
|x|=R

|v|2ds = 0. (22)

Condition (22) and equation (17) with a compactly supported q ∈ L2(D),
implies that v = 0 in R3, see Lemma 2.1 on p.25 in [13].
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The scattering solution solves equation (14), because it satisfies the equa-
tion

u = u0 −
∫
D

g(x, y)q(y)u(y)dy, (23)

so that with the notation h := qu one gets from (23) equation (14).
Conversely, assume that u is defined by equation (14) and h in (14) is

equal to qu, where q is defined by formula (16) and q ∈ L2(D) . Then this u
solves equation (23), and, therefore, it satisfies equations (1) and (2). To check
this, apply the operator ∇2 + k2 to equation (14) and use the known formula
(∇2 + k2)g = −δ(x− y).

The result is (∇2 + k2)u = h = qu, so equation (1) holds. The radiation
condition holds because q is compactly supported and g satisfies the radiation
condition. Lemma 2.5 is proved. 2

Although the scattering solution, in general, is not unique if Imq > 0 and may
not exist in this case, it does exist, even if Imq > 0, if q, defined by formula
(16), belongs to L2(D). Indeed, then qu = h and

u(x) = u0(x)−
∫
D

g(x, y)q(y)u(y)dy,

so that u := u0(x)−
∫
D
g(x, y)h(y)dy is the scattering solution.

Let us assume now that the function (16) does not belong to L2(D). Since
h ∈ L2(D) the function u(x) ∈ H2

loc(R
3), where H2

loc(R
3) is the Sobolev space.

Changing h slightly one may assume that h is a smooth bounded function in
D. Such a change leads to a small change of the scattering data A(β) in L2(S2)
norm. Thus, we will assume below that h is bounded in D in absolute value.
The function (16) does not belong to L2(D) if and only if the denominator in
(16) has zeros. Let

N := N(u) := {x : u(x) = 0, x ∈ D}, Nδ := {x : |u(x)| < δ, x ∈ D},

where δ > 0 is a small number, and let Dδ := D \Nδ.
The idea of the argument below is to show that the set N is generically a

line in R3, and that there exists a function

hδ(x) =

{
h(x) in Dδ,
0 in Nδ,

(24)

such that
||hδ − h||L2(D) ≤ cδ2. (25)

Moreover, the function hδ ∈ L∞(D). This function can be made smooth by an
approximation by a C∞0 (D)-function. The corresponding smooth hδ generates



8

Aδ(β) which differs slightly from the original f(β). The corresponding uδ(x)
can be defined as follows:

uδ(x) := u0(x)−
∫
D

g(x, y)hδ(y)dy, x ∈ R3, (26)

where

qδ :=

{
hδ
uδ

in Dδ,

0 in Nδ,
qδ ∈ L∞(D). (27)

Consequently, we will prove that a small change of h may be arranged in such
a way that the corresponding change of q leads to a potential qδ which belongs
to L∞(D).

Lemma 2.6 The set N is a line in R3.

Proof. Let u = u1 + iu2, where u1 = Reu and u2 = =u. Then the set N is
defined by two equations in R3:

u1(x) = 0, u2(x) = 0, x ∈ R3. (28)

The functions uj ∈ H2
loc(R

3), j = 1, 2, because u ∈ H2
loc(R

3). Therefore, each
of the two equations in (28) is an equation of a surface.

The two simultaneous equations (28) generically describe a line ` in R3.
By a small perturbation of h one may ensure that the line ` := {x : u1(x) =
0, u1(x) = 0, x ∈ D} is smooth in D and the vectors ∇uj, j = 1, 2, on ` are
linearly independent.

Lemma 2.6 is proved. 2

Lemma 2.7 There exists a function (24) such that (25) holds.

Proof. Consider a tubular neighborhood of the line ` in D. This neighbor-
hood is described by the inequality ρ(x, `) ≤ δ, where ρ(x, `) is the distance
between x and `. Choose the origin O on ` and let the coordinates sj, j = 1, 2,
in the plane orthogonal to `, be directed along the vectors ∇uj|l respectively,
while the third coordinate s3 be directed along the tangent line to `. The
Jacobian J of the transformation (x1, x2, x3) → (s1, s2, s3) is non-singular,
|J |+ |J−1| ≤ c, because ∇uj, j = 1, 2 are linearly independent.

Define hδ by formula (24), uδ by formula (26), and qδ by formula (27).
Note that

uδ(x) = u(x) +

∫
D

g(x, y)[h(y)− hδ(y)]dy. (29)

Since hδ = h in Dδ and hδ = 0 in Nδ, one obtains inequality (25):

||hδ − h||L2(D) = ||h||L2(Nδ) ≤ cδ2,
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because h is bounded and δ2 is proportional to the area of the cross section of
the tubular neighborhood. Furthermore,

|uδ(x)| ≥ |u(x)| − c
∫
Nδ

dy

4π|x− y|
, c = max

x∈Nδ
|h(x)|. (30)

Denote

I(δ) := sup
x∈Dδ

∫
Nδ

dy

4π|x− y|
. (31)

By construction
|u(x)| ≥ δ if x ∈ Dδ. (32)

Therefore, inequality (30) implies

|uδ(x)| ≥ δ − cI(δ) ∀x ∈ Dδ. (33)

Let us estimate Iδ as δ → 0 with the aim to prove that

inf
x∈Dδ
|uδ(x)| ≥ b(δ) > 0, lim

δ→0

b(δ)

δ
= 1. (34)

So, for sufficiently small δ > 0 one has b(δ) ≥ δ
2
.

If (34) holds, then |uδ(x)| is strictly positive in Dδ and, therefore, qδ := hδ
uδ

is a bounded function in Dδ.
Since hδ = h in Dδ, one obtains

||qδ − q||L2(Dδ) =

∣∣∣∣∣∣∣∣hδuδ − h

u

∣∣∣∣∣∣∣∣
L2(Dδ)

≤ ||h||C(Dδ)

∣∣∣∣∣∣∣∣u− uδuδu

∣∣∣∣∣∣∣∣
L2(Dδ)

≤ cδ ln
1

δ
. (35)

Here the following inequalities for x ∈ Dδ were used

||h||C(Dδ) ≤ c, |uδu| ≥
δ2

2
in Dδ,

|uδ(x)− u(x)| ≤
∫
Nδ

|g(x, y)h(y)|dy ≤ cδ

∫
Nδ

dy

4π|x− y|
≤ cδI(δ). (36)

Here and throughout by c > 0 various constants, independent of δ, are denoted.
To estimate I(δ) one argues as follows:

I(δ) ≤ 1

4π

∫
Nδ

dy

|y|
≤ c

∫ cδ

0

ρdρ

∫ 1

0

ds3√
ρ2 + s23

≤ cδ2 ln
1

δ
, (37)

where the unit 1 is a finite coordinate along the s3 axis and we have used the
following estimate:∫ 1

0

ds3√
ρ2 + s23

= ln

(
s3 +

√
ρ2 + s23

)∣∣∣∣1
0

≤ c ln
1

ρ
, ρ→ 0, (38)
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where c > 1 is a constant. Estimates (33) and (38) imply inequality (35).
Thus, the existence of a function (24) is proved, and

||hδ − h||L2(D) = ||h||L2(Nδ) ≤ c

∫
Nδ

dx ≤ cδ2. (39)

Lemma 2.7 is proved. 2

From Lemma 2.7 the conclusion of Theorem 2.4 follows. Indeed, if h ∈ L2(D)
is an arbitrary function and q, defined by formula (16), belongs to L2(D), then,
as was proved above, the u, defined by formula (14), is the scattering solution.
This scattering solution is unique if Imq ≤ 0 by Lemma 2.5. If q, defined
by formula (16), does not belong to L2(D), then there is a bounded function
qδ(x), approximating q, see (35), such that the corresponding hδ approximates
h(x) well, see (39), and the corresponding uδ(x) is the scattering solution
corresponding to qδ(x).

Theorem 2.4 is proved. 2

3 Formulas for solving inverse scattering prob-

lem with fixed α and k > 0

The inverse problem (IP) was formulated in the Introduction. Given ε > 0
and an arbitrary f(β) ∈ L2(S2) we first find h(x) ∈ L2(D) such that∣∣∣∣∣∣∣∣f(β) +

1

4π

∫
D

e−ikβ·yh(y)dy

∣∣∣∣∣∣∣∣
L2(S2)

≤ ε. (40)

This can be done (non-uniquely !) in many ways. Let us describe one of the
ways. Without loss of generalities assume that D = B = BR is a ball of radius
R centered at the origin. Expand the plane wave e−ikβ·y and h(y) into the
spherical harmonics series:

e−ikβ·y =
∞∑
l=0

4πiljl(kr)Yl(−β)Yl(y0), r = |y|, y0 :=
y

r
, (41)

jl(r) :=
( π

2r

)1/2
Jl+ 1

2
(r),

4π

2l + 1

l∑
m=−l

Ylm(x0)Ylm(y0) = Pl(x
0 · y0), (42)
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Jl+ 1
2
(r) is the Bessel function regular at the origin, Yl(α) are the spherical

harmonics:

Yl(α) = Yl,m(α) =
(−1)

m+|m|
2

lil√
4π

[
(2l + 1)(l − |m|)!

(l + |m|)!

]1/2
eimϕPl,m(cos θ),

− l ≤ m ≤ l, (43)

Pl,m(cos θ) = (sin θ)m
dmPl(cos θ)

(d cos θ)m
, Pl(t) =

1

2ll!

dl(t2 − 1)l

dtl
, (44)

t = cos θ, the unit vector α is described by the spherical coordinates (θ, ϕ), 0 ≤
ϕ < 2π, 0 ≤ θ ≤ π,−l ≤ m ≤ l, one has

Yl,m(−α) = (−1)lYl,m(α), Yl,m(α) = (−1)l+mYl,−m(α), (45)

where the overline stands for complex conjugate. The summation in (41) and
below is understood as

∑∞
l=0

∑l
m=−l.

Let

h(y) =
∞∑
l=0

hl(r)Yl(y
0). (46)

It is well-known that

(Yl,mYl′,m′)L2(S2) = δll′δmm′ , (47)

where δll′ is the Kronecker delta.
Let

fL(β) :=
L∑
l=0

flYl(β), (48)

where fl := (f, Yl)L2(S2) are the Fourier coefficients of f . For sufficiently large
L one has

||f − fL||L2(S2) < ε/2. (49)

Thus, if ∣∣∣∣∣∣∣∣fL(β) +
1

4π

∫
B

e−ikβ·yh(y)dy

∣∣∣∣∣∣∣∣
L2(S2)

< ε/2, (50)

then inequality (40) holds. Therefore, practically it is sufficient to find h
satisfying inequality (50). Substitute (46) and (41) into the equation∫

B

e−ikβ·yh(y)dy = −4πfL(β), (51)

and use (47) and (45) to get

4π(−i)l
∫ R

0

r2jl(kr)hl(r)dr = −4πf
(L)
l , 0 ≤ l ≤ L. (52)
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Equation (52) can be written as

(−i)l+2

∫ R

0

r2jl(kr)hl(r)dr = f
(L)
l , ∀l ≥ 0. (53)

Recall that f
(L)
l = f

(L)
l,m and hl(r) = hl,m(r).

Equation (53) has many solutions.
Denote by h⊥l (r) any function such that∫ R

0

r2jl(kr)h
⊥
l (r)dr = 0. (54)

Then the general solution to equations (53) has the form

hl(r) = (−i)−l−2f (L)
l γljl(kr) + clh

⊥
l (r), 0 ≤ l ≤ L, (55)

where cl are arbitrarily constants, and

γl :=
1∫ R

0
drr2j2l (kr)

. (56)

We have proved the following result.

Theorem 3.1 The function (46), with hl defined in (55) for 0 ≤ l ≤ L and
hl = 0 for l > L, solves equation (51). If L = L(ε) is sufficiently large, so that
(49) holds, then the function

h(L)(y) =
L∑
l=0

h
(L)
l (r)Yl(y

0), r = |y|, y0 =
y

r
, (57)

with h
(L)
l (r) defined in (55), satisfies inequality (40).

Let us give a formula for a potential q such that h = qu approximates h(L)

with a desired accuracy. This q is a solution to the inverse scattering problem
(IP).

Given h(L)(y) defined in (57), let us denote it h(y) for simplicity. Using
this function, calculate q(x) formula (16). If this q ∈ L2(D), then the inverse
problem (IP) is solved. There is no guarantee that Imq ≤ 0.

If formula (16) does not yield an L2(D) function, then one uses hδ(x) in
place of h(x) and, as was proved in Theorem 2.4, obtains a potential qδ(x)
which is a solution to (IP).

Other computational methods can be used for finding h(y) given f(β). For
example, one can choose a basis {ϕj} in L2(B), B = D is a ball, and look for

hn(x) =
n∑
j=1

c
(n)
j ϕj(x), (58)
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where c
(n)
j are constants to be found from the minimization problem

||f(β)−
n∑
j=1

c
(n)
j gj(β)||L2(S2) = min. (59)

Here

gj(β) := − 1

4π

∫
B

e−ikβ·yϕj(y)dy. (60)

A necessary condition for the minimum in (59) is a linear algebraic system for

the coefficients c
(n)
j , 1 ≤ j ≤ n.

The linear minimization problem (59) is well-posed for a fixed n, because
its solution is found from the solution of a finite-dimensional linear algebraic
system whose matrix is non-degenerate because the system {gj}nj=1 is linearly
independent.
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