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INTRODUCTION

Before developing the Lebesgue integral, there must be a

basic understanding of Lebesgue measurable sets and Lebesgue

measurable functions. By considering a typical term of the

Riemann sum for a real-valued function f(x) over an interval

[a, bj- it can be seen that this term is a product of two numbers,

the value of the function f(x) at a specific point times the

length of a sub-interval of the interval fa, bj which contains

the point. This sub-interval is obtained by partitioning the

interval [a, b] , which is the domain of definition of the

function f (x)

.

The corresponding situation with the Lebesgue integral is

not as simple. A typical term of a "Lebesgue sum" for a func-

tion f(x) over an interval fa, bj is again a product of two

factors, but these factors are obtained quite differently. One

of the factors, say -(, is a value of the function, but the value

is related to a partition P for the range of the function, and

not a partition of the domain. The other factor, say (3, is a

number that represents "length" or measure of a set E of all

points x in the domain for which f(x) is between a particular

pair of elements, say (-<,?£ ) of P. This measure is a generali-

zation of length obtained by covering a set E with a countable

number of open sets. The set E is not necessarily an interval.

Defining the Lebesgue measure for these sets is discussed in

the first part of this report.

Lebesgue measurable functions, or the functions "compatible"

with Lebesgue measurable sets, are discussed in the second part



of the report. Then the Lebesgue integral is defined for

bounded Lebesgue measurable functions, and elementary properties

are presented.

In the next part of the report the Lebesgue integral is

compared with the Riemann integral, and it is shown that the

set of all Riemann integrable functions is a proper subset of

the set of all Lebesgue integrable functions on a closed inter-

val. The Lebesgue integral is superior to the Riemann integral

in the area of finding limits relative to integration processes.

The Lebesgue integral of a derivative is shown to yield the

primitive for more general conditions than the Riemann integral.

The last unit illustrates a weakness of the Lebesgue integral

encountered when the derivative to be integrated is not required

to be bounded.

LEBESGUE MEASURABLE SETS

The discussion will be restricted to sets that are bounded

subsets of the real number line R. To define the Lebesgue

measure of a set, two other numbers are defined; these numbers

are the outer and inner Lebesgue measure of a set. Basic to the

understanding of these two numbers is the concept of length of

an open interval, which will now be defined.

Definition 1. The length of an open interval (a, b) is the

number b-a.

If I = (a, b), then J/(l) will denote the length of I. Hence

Jl(l) = b-a, whenever I = (a, b) . Obviously J!(I) is a non-



negative number.

Another concept basic to the understanding of outer and

inner Lebesgue measure is the concept of a component open

interval.

Definition 2. Let G be any open subset of R. If the open in-

terval (a, b) is contained in G and its endpoints do not belong

to G,

(a, b) C G, a 4- G, b <$_G,

then this interval is said to be a component open interval or

a component of the set G.

Example: Let G = (0, 1)U(2, 3). Then (0,1) and (2, 3) are

component open intervals of the set G.

Using these two definitions, any set E C R that is the

union of a finite or denumerable number of disjoint component

intervals can be assigned a number equal to the sum of the

lengths of the component open intervals, if such a sum exists.

Definition 3. Let E be the union of a finite or denumerable

number of pairwise disjoint open intervals. Associate with E

the number L(E) such that if

E = Uk Ik (k = 1, 2, . .
.'

),

then

L(E) = £Tk j0(l
k ) (k = 1, 2, . . . ),

whenever this sum exists.

A reason for the preceding definition becomes apparent

upon considering the following theorem.



Theorem 1. If G is an open set of real numbers then 8 is the

union of a finite or denumerable number of disjoint open inter-

vals, called the component open intervals of G 12, 73J .

Proof. Associate with every x £. G an open interval Ix in the

following way. Let

Ix * U 1^, * € A,

for some indexing set A, such that 1^ = (a^, b^) C G and x £ 1^.

Let A. be the greatest lower bound of the a^, and u- be the least

upper bound of the b_<. Then Ix = (A, p,) . This may be seen by

assuming y ^ |i or y 6 A, If y > (i, then y $ I for any -< € A;

or if y 6 A, j ^L I for any x £ A, hence y i I„. Now it will be

shown that if y £ (A, p.) , y £. I x . If y £ (A, p.) , then either

y = x or x < y < |j, ( or a. < y < x. If y = x, then y £ I„. If

x < y < u-, then there is an -< such that y 6. I , since p. is the

least upper bound of the b^'s. Also if A < y < x there exists

an ^ such that y 4. 1^, since X is the greatest lower bound of

the a^'s. Therefore y €. I x . Now it will be shown that if x €. G

and y £. G, then either I x = I or Ix Ol„ = $. Suppose

c £ I„ r~\ I_, then I LJ I„ is an open interval. Since I_ LJ I„x y x y x y

contains x, it follows that I_ VJ I,r C !»• Also I v LJ I_ con-x y X X J

tains y, so that Ix ^J I C I-. Therefore if c €. I r~} I ,

I
y

= I x .

Throughout the report this notation will be used: the
first number indicates the number of the reference at the end
of the report, and the second number indicates the page number.



Finally, any set of disjoint open intervals is finite or

denumerable in number. Associate with each open interval of

the set a rational number which is in the interval. Since dis-

joint open intervals are associated in this way with distinct

rational numbers, the cardinal number of this set of open in-

tervals does not exceed the cardinal number of the set of

rational numbers, and so it is either finite or denumerable,

Since the null set $ is considered to be open, the number

L(G) associated with this set will be zero. Therefore a non-

negative number L(G) can be associated with every open set G;

that is, L(G) > 0.

The definition of outer Lebesgue measure will now be given.

Definition 1^, For every set S, the outer Lebesgue measure,

m-if(S) = inf (h(G) : Q D Sj ,

where G varies over all open sets containing S [2, lSh-1 •

The following theorem can be proven for any open set G.

Theorem 2. If G is an open set, then

m-::-(G) = L(G) [2, l5?J

.

Proof. Let H D G be an open set. Then every component of G is

contained in a component of H. Thus L(H) $• L(G) . But G^G is

an open set. Hence

inf
f
L(H) : H D gJ

= L(G) ,

and

m*-(G) = L(G) .



Another important property of outer Lebesgue measure will

be presented before defining inner Lebesgue measure.

Theorem 3. Let A and B be bounded subsets of R. If A C B, then

m-::-(A) £ m*(B) [3, 61;J.

Proof. Let S be a set consisting of the numbers L(G_<) associ-

ated with all open sets G^ containing A, where .< belongs to an

indexing set J. Let T be a set consisting of the numbers L(Ho)

associated with all open sets Hg containing B, where p belongs

to an indexing set K. If E is an open set containing B, then

E necessarily contains A, since A C B. Therefore

T C S,

and

m-"-(A) = inf(S) £ inf(T) = m-::-(B) .

Now inner Lebesgue measure can be defined. Let A = [a, b]

represent any bounded closed interval of R. Let sC A, and

Ca(S) represent the complement of S in the interval A .

Definition j>. For every set S the inner measure of S is the

number

m.
c
.(S) = (b-a) - m*(C A (S)) [k, 3l].

The definition of a Lebesgue measurable set may now be

given.

Definition 6. Let E be any bounded subset of R. The set E is

Lebesgue measurable if its outer and inner measures are equal;

that is,



-::-(E) = m-:;-(E) [l)., 3l] .

The common value of these measures is called the Lebesgue

measure of the set E, and is denoted m(E)

.

Now that the definition of Lebesgue measure has been estab-

lished, it is important to consider several families of sets

which. are actually measurable according to this definition.

In order to accomplish this goal a few elementary properties

are presented. The following lemma will be useful in proving

these elementary properties.

Lemma 1. If 1^, T-2> • • • > *n are a fini* 6 number of open in-

tervals which cover A = ("a, bj , then

f: jftii) > b - a [2, 155].
k=l

L

Proof . It may be assumed without loss of generality that

I^O A /i, for every k = 1, 2, . . . , n. Let Ik = (ak , bk ) ,

k = 1, 2, . . ., n. It may also be assumed without loss of

generality that a £ 1^ = (a^, b^) . Let b^ £ Ig. and in general

bk £ Ik+1
=

( ak+l> bk+l)» (
k = 1

>
2

>
•••> n_1 >

where b < b . Hence

b - a < bn
- »1

= (bn
- bn-1 ) + . . . + (b

2
- b

x )

+ (*1 -
»i) ^ I_ <\ -a

k )

k=l

and the proof is complete.

It is now possible to prove the following elementary



property for any bounded subset of a closed interval.

Theorem 1^. For every set S C A , where A = fa, bj ,

m*(S) + m*Ca (S) > b - • [^2, 155].

Proof. Let G and H be open sets such that S CG and C^(S)C H.

Let I-,, Ip, ... be the component intervals of G and J-,, Jo,

. . . be the component intervals of H. Since every x £ A is

either in S or C^(S), the open intervals I,, Ip, . . ., J-,,

J2 , . . . cover A . But A is a closed bounded set, hence by

the Borel Covering Theorem, a finite number of these intervals,

saT Ik1 .
Ik2 > • • •> I km

and Jk!» Jk2 > • • " Jkn
cover A -

By lemma one, the sum

fi idkl ) + 1: i(jki ) > * - •.
i=i * j=i i

But

hence

L(G) £ )J" i(Ik ) and L(H) $. t/(Jk .),
i=l x 1=1 J

L(G) + L(H) > b - a.

It follows that

m-s(S) +m#(C A(S)) = inf {l(G) :G s} + inf (l(E) :E 3C 4(S)]

= inf {L(G) + L(H) :CDS, H 3C&(5)J 5- b - a

.

The following corollary relating outer and inner measure

is "apparent.

Corollary 1. For every S C A , where A = [a, b]

,

m*(S) » m#(S) £• 0. .



An elementary property of Lebesgue measure will now be

proved.

Theorem *>. A set SC A, A = [a, b] , is measurable if and

only if

m-"-(S) + m-"-(C A (S)) = b - a [2, 156].

Proof. Assume the set S is measurable. Then,

m»(S) = m.
;i
.(S) = (b - a) - m-:<-(CA(S)) ;

therefore

m*(S) + m-::-{CA(S)) = b - a.

Now assume

m-::-(S) + m-«-(CA (S)) = b - a.

Then it follows that

m*(S) = (b - a) - m*(CA(S)) = m-;;-(S),

and S is measurable.

By combining the results of Theorem Ij. and Theorem 5, the

following theorems are obvious.

Theorem 6. A set SCA, where A = [a, b] , is nonmeasurable

if and only if

m*(S) + m#(CA (S)) > b - a [2, 156].

Theorem 7- Let S be any measurable subset of the interval

A = [a, bj . Then CA(S) is also measurable [2, 156].

The following theorem establishes the measurability of an

important family of sets.
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Theorem 8. Let S be a subset of the interval A = [a, bj . If

m-«-(S) = 0, then S Is measurable and has measure zero 12 , l56j .

Proof. The proof follows Immediately from the corollary to

Theorem lj_.

The following theorem establishes the measurability of

countable sets.

theorem 9. Every countable set A C R is Lebesgue measurable

with m(A) = flj., 33] .

Proof. Let A be the set of elements a^, 62, . . . , an , ....
Given 6 > 0, cover the elements a-i , &2, • • with open in-

tervals I a ,, I a5 , . • . , I a , . . . , respectively, such that

i(l ) < £ (n = 1, 2, . . . ).
n 2 n

Then the sum of the lengths

n=l n n=l 2
n

n=l 2n

Since £ is an arbitrary positive real number, m-::-(A) 0.

Examples of sets which are measurable include the set of

integers, the set of positive integers, the set of rational

numbers, and the set of irrational numbers in the interval

(0; 1).

Another important family of sets is the collection of open

sets. The following lemma is used to prove sets in this family

are measurable.
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Lemma 2. If J^, J2 , . . . are open intervals and the open set

G = LJ J has components I-i, I 2 , . . ., then
n=l

i(ln)« II i(Jn ) [2, 157J.n=l n=l

Proof. If J-,, J2 , . . . are disjoint open intervals, then

they are identically the components of G and

zr j?a n ) -Hi(jn>.
n=l n=l

Therefore assume that J,, J
2 » • • are not all disjoint.

Then for some J., J., i / j there exist x. . such that

xi,j £ Ji ^ J j' (i,j = 1, 2, . . . ).

Let

jj = jx:x £ J
±

and x £ J.}, Jj. - /x:x £. J
j

. O J.] ,

and

ji = jx:x £ Jj and x ^. J^i .

The contribution of these sets to the sum of the components of

G is 2

Aj[) + iU^) + i(Jp ,

The J^ and J< are half-open intervals of the form (a, b)

and fa, b) . The following definition of length is used for
these half-open sets:

i(a, bj = b - a

and J_[a, b) = b - a.
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whereas the contribution to the sum Z x(J ) is
n=l

n

J?(JJ.) +i(Jij) + i(Jj) +i(Jij) ,

since

Ji-jiUJij and J^J^UJij.

Therefore since all of these numbers are nonnegative, it can be

seen that the contribution to 2 X^\) i s greater than the
i=l

contribution to 2 ^(ln ). Hence
n=l

n=l n=l

The following important theorem is proved.

Theorem 10 . Every open set G C A = [a, bj is measurable

[2, 157] .

Proof. Since G is open, it can be written as the union of a

finite or denumerable number of component open intervals 1^. that

are disjoint. Since the series

k=l

is convergent, for every 6 >0, there is a number n(£) such that

Hi(ikx-
k=n+l 2

whenever n > n(£) . Since G is open,

L(G) = £ £(ik) + lfi(ik ),
k=l k=n+l
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and, by substitution,

L(G) < ti(lk ) + ^
k=l 2

or L(G) - ^< ij2(Ik),
2 k=l

Now let J^, J2 , . . ., Jm be the intervals in A complementary

to I x , I 2 , . . ., In . Also let Jk (k = 1, 2, . . ., m) , be an

open interval concentric with J^ such that

i (j
k)

=
i< J

k>
+ —

• (k = 1, 2, . . ., m),
2m

Let H = O Jl; then L(H) « $_ P( j'
) by lemma 2. Since

k=l
K

k=l
K

2Zi(Jk ) +^i(Ik ) = b - a,
k=l

K
k=l

K

it follows that

^^<Jk )
+ £i(Ik ) <(*-.«)+£.

k=l k=l 2

Thus L(H) + L(G) < (b - a) + £. , and since Ca(G) C H,

m-"-(G) + m*(CA(G)) < (b - a) + £ .

Therefore, since £. is an arbitrary positive real number,

m-::-(G) + m*(CA(G)) ^ b - a;

and, by Theorem 6, G is measurable.

Examples of open sets include open intervals, and sets com-

posed of a finite or denumerable number of open intervals. By

Theorem 1, these are the only open sets, with the exception of

the null set.

Another family of sets is now proved to be measurable.



Ik

Theorem 11 . Every closed set PGA, A = [a, bj , la measur-

able [2, 158].

Proof. Since every closed set is the complement of an open

set, then every closed set is measurable by Theorem 7.

Examples of closed sets include finite sets and the closed

intervals. Therefore f 1, 2, 3\ and To, lj are measurable sets.

Also any union of a finite number of closed sets is closed, and

therefore measurable by Theorem 11.

In particular, the closed interval A = fa, b] is measur-

able, and has measure b - a. This fact will now be established.

Theorem 12 . If A is the closed interval \a , b] , then A is

measurable and m(A) = b - a.

Proof. Since A is closed, A is measurable by Theorem 11, and

m-::-(A) = m,,( A ) =(b - a) - m-::-(CA ( A) ) .

But Ca(A) = jzf, and m{tf) = 0, therefore

m-::-(A) = m.
;i
.( A ) =(b - a) - = b - a.

Therefore it can be seen that the number b - a in the pre-

ceding theorems and definitions was actually the Lebesgue mea-

sure of the interval.

In order to develop the elementary properties of measur-

able functions and to establish the definition of the Lebesgue

integral, unions and intersections of measurable sets must be

considered.

Theorem 13 . If a bounded set E is the union of a finite or
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denumerable number of measurable sets which are disjoint,

E = (J Ek (EkOEk , « 4, k/k'),
k

then E is measurable and

m(E) = ITk m(Ek ) [3, 67].

Proof. The proof follows from the inequalities

Y~ m(Ek ) = 2Z m.;;.(Ek ) 6 m»(K) ^ m»(B)*£I m*(Ek )

k k k

= ZZ m(Ek ) ,

k
K

since outer measure is countably subadditive [3,
61+-J

and the

inequality for inner measure holds I 3, &5l •

Theorem llj. . The union of a finite number of measurable sets

is a measurable set I 3, 67J

.

n
Proof. Let E = \_) Ek , where each Ek is measurable. Given

6 > 0, there exists a closed set Fk and a bounded open set Gk

such that Pk C Ek C Gk , and m(Gk ) - m(Pk ) < - . Set
n

F = U Fk , G = {J Gk ,

k=l k=l

where P and G are closed and open sets respectively. Since

P C E C G,

m(P) sj m-
;;
.(E) ^ m»(B) ^ m(G) .

The set G - F is open, since it can be represented in the form

SriC(;(F|, and is therefore measurable. Since G can be repre-

sented as

G = F U (G - F)
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where P and G - F are disjoint measurable sets, the preceding

theorem applies and

m(G) = m(P) + m(G - P)

.

Therefore

m(G - P) = m(G) - m(P)

and

m(Gk - Fk ) = m(Gk ) - m(Fk ) .

-

.Since

G-FCU (Gk " Fk ),
k=l

and all these sets are open, it follows that

(G - F) «2Z m(Gk - Pk ),
k=l

m(G) - m(F) ^ £_ fm(Gk ) - m(Fk )l < £ .

k=l

Therefore m-«-(E) - m.;;.(E) < £. , and E is measurable.

The analogous theorem for intersections of measurable

sets is given.

Theorem 15 . The intersection of a finite number of measurable

sets is a measurable set I 3, 68J .

n
Proof. Let E = f\ Ek , where the sets Ek are measurable sets.

k=l

Let A be any open interval containing all the sets Ek . It

can be verified that
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CA (E) = U C A(Ek ).

k=l

The sets CA (Ek ) are measurable, since the sets Ek are measur-

able, and by Theorem 1^., CA (E) is measurable. Hence E is also

measurable, since C^(C A (E)) = E.

The next two theorems establish results for unions and

intersections of denumerable measurable sets.

Theorem 16. If a bounded set E is the union of a denumerable

number of measurable sets, then E is measurable [_3, 69J .

Proof. Let E = U Ek . Let Ak (k
= 1, 2, . . . ) , be sets such

k=l

that

A
x

= E 1( A
2

= E
2

- Ex , . . ., Ak = Ek - (E
1U . . . U \. x ) , .,

then

E = U Ak .

k=l

All these Ak
are measurable and are disjoint, therefore E is

measurable by Theorem 13.

Theorem 17. The intersection of a denumerable number of

measurable sets is measurable [3, 69J .

Proof. Let E = C\ Ek , where all the sets E, are measurable.
k=l

Since E C E-,, E is bounded. Let A be any open interval con-

taining E, and let

A
k
=AO Ek .

Then
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E = APlE = AO O Ek = n (AHEk ) = O Ak .

k=l k=l k=l

But

O©

ca (e) = U cAUk ),

k=l

and by applying Theorem 7 and Theorem 16 this completes the

proof.

One may be led to believe that all sets are measurable,

or that all bounded sets are measurable. That this is not the

case has been proved M, 7&J , I 2, l65j ; in fact, it can be

shown that, "Every measurable set of positive measure contains

a nonmeasurable subset" 3, 78 . Examples are available

|_1, 92j , \\\., i\.l\ , although the choice axiom is used to con-

struct them !(., 50J .

LEBESGDE MEASURABLE FUNCTIONS

The concept of measurable functions is also basic to the

understanding of the Lebesgue integral. In this part of the re-

port measurable functions are defined, and a few elementary

properties are presented.

Definition ]_. The real-valued function f(x) is measurable in

[a, bj if the sets

[x:-< < t{x) < p} = e[1< < f(x) < pj

are measurable for every pair of real numbers -<, p with .< < p

[k, 67j.

Instead of the set used above, any one of the following
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sets could be used:

E[^ < fU) < p], %[* ^ f(x) & p], or e[-< <-f(x) ^ p]

&, 6 7J .

_

The following theorem is an important consequence of this fact.

Theorem 18. If all sets of one of these four types are measur-

able, then the sets

EJf(x) = .t]

are also measurable for every real number *
\J\., 67J .

Proof. The proof follows from the fact that

Elf(x) = 4) = Pi sL - - < f(x) < x + - I ,

L n L n n

(n = 1, 2, . . . ).

L

The following theorem is very useful in deriving certain

basic characteristics of measurable functions.

Theorem 19 . In order that f(x) be measurable, it is necessary

and sufficient that any one of the following sets is measurable

for arbitrary real numbers -< and p, respectively:

Ep < f(x)] , E[f(x) $ p] , e[-< < f(x)J , or E[f(x) < pj

[k, 68].

A few elementary properties of measurable functions can

now be establishe.d.

Theorem 20 . If f(x) is measurable on a measurable set M, then

a - f(x), a + f(x), a • f(x), and -f(x) are also measurable,

for any real number a I4., 681.
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Proof. -f(x) can be obtained from a • f(x) when a = -1; also

a - f(x) = a + (-f(x)). Hence proofs are required only for

a + f(x) and a • f(x). The measurability of a + f(x) follows

from

e£ « a + f(x)J = e[j. - a « f(x)J ,

which is measurable by Theorem 19. The measurability of a • f(x)

can be established as follows: when a = 0, a • f(x) = is

obviously measurable. For a > 0, it follows that •

e£< < a • f(x)] = El- < f(x) ,

which is also measurable by Theorem 19. For a < 0, the proof

is similar.

, The following theorem expresses a property peculiar to

Lebesgue measure.

Theorem 21 . If f(x) is measurable, |f(x)| is also measurable

[k, 68].

Proof. The proof follows from the equality

e[ |f(x)| £ j] = E[f(x) * *JU E[f(x)i -J\, * E R .

At times a function may be proved to be measurable by

representing it as the sum of two measurable functions. To

prove that the sum of two measurable functions is measurable

the following theorem may be used.

Theorem 22 . If f1 and f2 are measurable, then

E^U) > f2 (x)]

is also measurable \\, 691 .
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Theorem 23 . If f, and fp are measurable, then f-j_ + f2 and

f-|_ - f2 are also measurable I l|_,
69J

.

Proof. Since f1
- f2 = f]_ + (-^J* and ~ f2 is measurable by-

Theorem 20, the proof is required only for f-^ + f2 . Since

E[f
1
(x) + f

2
(x) > *] - E[f

1
(x) > J. - f

2 (x)J

and -< - f
2
(x) is measurable by Theorem 20, it follows from

Theorem 22 that the sets

Ejf-^x) > .4 - f2 (x)j

are also measurable.

The following theorem expresses another elementary property

of measurable functions.

Theorem 21}. , If f(x) is measurable, f (x) is also measurable

[k, 69].

Proof. Consider the following relationship:

E[f2 (x) > *] = E[f(x) ^ icrJuEJfU) ^ -v^], U »0).

Then since E|f2 (x) ^
-<J

is the union of two measurable sets,

f (x) is also measurable.

The following theorem is an immediate consequence of the

preceding theorem.

Theorem 2^> . If f(x) and g(x) are measurable real functions,

them f(x) • g(x) is measurable \_2 , 185J .

Proof. The proof follows from the equality

f(x) • g(x) = - f [f(x) + g(x)J
2

- [f(x) - g(x)J
2

| .
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The following theorem concerns functions of a very

important class of measurable functions.

Theorem 26. Every real-valued function f(x) continuous -in

fa, b] is measurable on this closed interval.

Proof. Consider the sets

E[f(x) *•««]* Bx •

These sets are closed and therefore measurable. The fact that

each E is closed can be shown as follows: Take a sequence of

points

pv G. E^, where pv —» p.

Since p 6 [a, b] , the function f(x) is continuous at p, and

from f(p ) ^ -< it follows that

lira f(p ) = f(p) » -< ,

v—""

which implies p £ E^.

The following discussion leads to the important conclusion

that the limit function of a sequence of measurable functions

is measurable. This is helpful since it will be shown that the

Lebesgue integral of the limit function of a sequence of Lnte-

grable functions exists, if the sequence of functions is of

bounded variation.

Theorem 27 . If -ffn (x)] is a sequence of measurable functions,

then sup [fn (x) : n = 1, 2, .
.'

.] and Inf [fn (x) : n = 1, 2,

. . .J
are measurable if they exist |_2, l85j .

Proof. Let ^ be a real number. Then, if f(x) = sup [fn(x):

n = 1, 2, . . .J , then
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where

E[f(x) > -<] = U E [fn (x) > *]
tt-1

is measurable, so that sup|fn (x): n = 1, 2, . . .J is measur-

able. Similarly, inf[fn (x): n = 1, 2, . . .] is measurable.

Theorem 28 . If jfn (x)[ is a sequence of measurable functions

then lim sup fn (x) and lim inf f_(x) are measurable J2, 185 .

jtt—•*> n—»•*

Proof. Let

Ellim sup fn (x) <
-<J

= U U E ,

n—

»

M m=l n=l '

Em,n = pfr (x) < * : r = m, m + 1, . . .] .

But Em n is measurable for every m,n so that [_J [_J E is
m n '

measurable and lim sup f^fx) is measurable. Similarly,
n—$<*& n

lim inf f„(x) is measurable.
n

—

><*°

The following conclusion is established.

Corollary 1. If 5 f
n ( x )

( i- 3 a convergent sequence of measur-

able functions and f( x) = lim fn (x), then f(x) is measurable

[2, 185].

n v

DEFINITION OF THE LEBESGUE INTEGRAL

The form of the definition of the Riemann integral is not

appropriate if the real function f(x) is "badly" discontinuous

since in any contribution to the Riemann sum the value of the
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function represents widely varying values of f(x) over the in-

terval. Lebesgue avoided this difficulty by applying hori-

zontal strips instead of the vertical strips used by Riemann

[l(., 62] . A definition and discussion of the Lebesgue integral

will now be given for which f(x) is assumed to be bounded and

Lebesgue measurable in [a, bj .

Let a partition P = £yQ , y-^ y2 , . . ., yn , yn+1 ]
be

given such that

-< = y < 7i < • • • < yn < ?n+i p

where •( £ f(x) < (3. The notation

Ev = E [yv - f(x
> < yv+iJ

will be used to denote the set of x £ [a, bj for which

v £ fix) < y , . where y , y , are elements of P. Form the
°v J v+1 V J v+1

sums

3p = it yv ^V and sp = 2_ yv+i • ra ' Ev ) '

v=0 v=0

where s p £, Sp. Let P» be a subdivision or refinement of P, or

all the points of P together with finitely many new ones. It

is sufficient to consider a refinement P# of P which contains

only one additional point y. Let

y £ (yv , yv+1 )

then

E; = E[y
v
6 f(x) <C f], E; = b[j < f(x) < yv+1].

Hence

ev = ; u E; ,

where E^ and E^ are disjoint. Therefore

m(Ey ) = m(E^) + m(E^)

;
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and

yv •
ra(V = yv [ffl(E^ )

+ m(E
v )]

6 yv •
m(E

v ) +
y

m(E
v'

and it follows that

Sp ^ Sp.... .

Now consider the sum Sp, a typical term of which is

yv+i •-*(»)• Then

.yv+1 • m(E
v ) = yv+1 [<;) + m(Ep] > 7 • *ity

+ yv+i • ffl^Ev! >

and it follows that

Sp ^ Sp _».

.

A combining of the above results yields

Sp 4 Sp.«. 4 Sp.;;. ^ Sp.

The following theorem can now be proved.

Theorem 29. If P 1 and P" are any two partitions of [a, bj ,

then

,, ^ Spit and Spn ^ Sp , [3, 119j

Proof. Form the partition P"' = P'UP", that is, P"' is formed

by using all the points of P' together with all the points of

P". Thus P'" is a subdivision of P' and P" and

Spi &. Spn i a& Spn t & Spn

and

Spn ^ Spit i ^= Spui 4s. Sp | .

Prom these inequalities it follows that

Sp i ^ Spu and Spn ^ Sp
T

.

It is now possible to form a sequence of subdivisions [P,
J
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with norm

dk
= max(yv+1 - yv ) , (k = 1, 2, . . . ),

' Pk'

such that djj. —> 0, and such that

Spi - S p2
- . . • ^ % ^ • • • ^Pk

-. • ^Sp
2
<s

Pi .

Thus sp and Sp form bounded monotone sequences whose limits
rk rk

exist and

lim sp = s & S = lim Sp
k_>~ ^k k-+~ k

Therefore

* S - s * S Pl
- s Pl = YZ ^v+l - yV ) • m(Ev)^^Z dk -m(Ev )

= dk H^V = dk •
(b - a) -

V

Since dk
—> as k —> °& , dk

• (b - a) —* 0, and S = s.

The Lebesgue integral can now be defined.

Definition _8. The common value S = s is called the Lebesgue

integral of f(x) in [a, bj , denoted

b

J f(x) dx,

a

and is equivalent to

b

/ f(x) dx = lira YZ. ^v ' m(EV
: a,, -* o v

= lira }__ yv+1
• m(E

v ) ,

di,—* v

and also = lim ) _
Xv • m(Ey ) ,

dk
^0 v
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where X satisfies the inequality yy ^ X
y ^ yv+1 [k, &k-]

A function f(x) for which s = S in [a, b] is said to be

Lebesgue integrable or summable in [a, b] .

It will now be proved that the Lebesgue integral, as
- de-

fined above, is independent of the sequence of subdivisions used,

and any sequence of partitions with norms dk
—»0 may be

employed.

Consider any two sequences of partitions [
p
kj J

|_
Pkj wltl1

norms dk and dk
—» 0, respectively. The corresponding sums are

S-D Br, and Sp i , sp , . Form a third partition Pk by combining
pk Fk rk rk

the points of Pk and Pk . Thus P£ is a subdivision of Pk and of

Pk ; moreover, Pk+1 is a subdivision of P£. Let sp n and Sp n be

the sums corresponding to Pk and dk
' —» be the norm of P£.

Al'so set

s" = lim Spn and S" = lim Spit .

d£->o ^ d ».

Then s" = S", and

S pk
4 sp , 4 .» = S" 4 Spn 6 Sp

k

Sp. 6 Spn 6 " = S» ^ Spn <£ Sp. .

Since Sp - sp ^ dk (b - a) and Sp ,
- sp , ^ dk • (b - a), it

follows for every € > there exists a kQ such that

Sp - Sp < £ and Sp , - a p , <£ £
*k *k k

rk

whenever k •> k . It then follows that

SP - S" < £ , S" - Sp < £ ,

*k k

Sp ,
- S"< £ , S" - sp , < £ , for k » kQ .

k k

Therefore
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lim Sp = lim Sp = lim Spi = lim Spi = S" = s" .

dk->0
k dk

->0 k dk
->0 k d' k

Thus two completely arbitrary sequences of partitions fp^jand

|Pk f have the same limit, which implies the integral is inde-

pendent of the sequence used.

In the definition of the Lebesgue integral the interval

fa, b] can be replaced by a measurable set M. Then the Ev 's

are defined as

Ev = [x £ M:yv < fix) < yv+1 ] ,

and m(M) replaces b - a. The notation for the integral is

J fix) dx.

M

With a few additional assumptions the Lebesgue integral

can be generalized to include unbounded measurable functions

flj., 66J . The y-axis can be subdivided by means of a partition

P such that

• • • < y.v < • • • < y. 2 < y_i < v
o < yi < • < yv < yv+i * •

•

with y —> <*o as v —> ^> and y —» -°^> as v —* - °o . It must be

assumed that the set of differences (yv+1
- yv ) is bounded, and

call the least upper bound of this set the norm d of P. Now

form a sequence of such partitions f

P

k } with dk
—^0. A final

assumption must be made, that the infinite sums Sp and Sp

converge. Under these additional assumptions the previous dis-

cussion can be modified, and the value S = s is again the

Lebesgue integral. It is helpful to know that, since 5 sp ? and

j
Sp f are monotone increasing and decreasing sequences, if for

any particular value of k, say kQ, the sums Sp and Sp are
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finite, then the corresponding sums are finite for all k$.kQ .

ELEMENTARY PROPERTIES OP THE
LEBESGUE INTEGRAL

To expand the concept of the Lebesgue integral, a few ele-

mentary properties are presented. Most of the properties

established in this section are for a real function f(x) which

is assumed measurable and bounded on a measurable set M. The

exception is the last theorem where |f(x)j is assumed measur-

able and bounded.

The following theorem is obtained as a direct result of the

limitations placed on f(x) when defining the Lebesgue integral

in the preceding part of this report.

Theorem 30 . Every function f(x) which is bounded and measurable

in fa, bj is summable in la, bj m., 6M .

The following elementary property is proved.

Theorem 31 . If f(x) is measurable and bounded on M, then f(x)

is summable on each measurable subset M, of M I If, 7W .

Proof. Using the definition of a partition previously stated,

let P be a partition such that

* = y < ?i < • • • < yn < yn+i
=

P •

where -< ^ S (x) «£.[3. It can be seen that

[x £ Mi: yv < f(x) < yv+1 ] = [x £ M :yv & f ( x) < yv+1] H Mj

= E
vn M-l .

Since E v f~\ M
1 C Ev ,
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m(Ev O Mx ) 6 m(Ev ) .

Therefore the Lebesgue sums involving m(Ev /^ M^) converge,

since the Lebesgue sums in terms of M converge.

The following theorem is sometimes called the first law of

the mean.

Theorem 32 . If f(x) is measurable and bounded on M (^6 f(x)

^J3 for all x € M) , then

j. m(M) *£ / f(x) di^p m(M) R, 12lj .

M

Proof. Let tPj,! be a sequence of partitions with norms

dk
—> 0. It has been shown that

s p £ s p & ... & sp ^ ... £ / f ( x) dx 6 . . . 6 Sp ^ . . .

p
l

F2 *k m k

P2 Pi

Let P-|_ be the undivided interval f^, p] . Then s p = -< • m(M)

and Sp = p • m(M) , and this establishes the theorem.

The following corollaries are both useful and descriptive

of the Lebesgue integral.

Corollary 1. If f(x) ** on M, / f(x) dx > 0.

M

Proof. This follows from the theorem by letting .< = 0.

Corollary 2. If m(M) = 0, then / f(x) dx = 0.
M

Corollary 3- If f(x) = C, a constant on M, then

/ C dx = C • m(M)

.

M
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Proof. This can be seen by letting the interval [a, pj =

[c, C +ej , where 6>0. In particular, if C = 1, then

/ C dx = / 1 • dx = m(M)

.

M M

The next theorem asserts the additivity of the Lebesgue

integral.

Theorem 33 . If f(x) is measurable and bounded on M and M is

the union of countably many disjoint and measurable sets

M = U Mk , (MkOMk
= ft, k/k'),

k=l

then

/ f(x) dx = JZ f fU) dx [3, 12lJ.
M k=l Mk

Proof. Consider first the simple case in which there are only

two disjoint sets:

M = H:U M
2 , (M

i
n M

2
= 0) .

Since f(x) is bounded, j. ^ f(x) «i (3 on the set M. Let P be a

partition of the interval [j. , p] and define the sets

Ev = E [yv * f(x) < yv+J on M -

K = E &v^ f(x
> « yv+i] on Mi<

and . E^ = E [yv ^. f(x) < yv+1] on M2 .

Obviously

ev = e;Ue; ' (E^PlE^ = ft),

and therefore

X^T yv • m(Ev ) = J_~ yv • in(E^) + £~ yv • m(E») .

v=0 v=0 v=0
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Let f Pk
"} be a sequence of partitions with norms dk . Then as

dk -^0,

/ f(x) dx = / f(x) dx + / f(x) dx.

M M]_ M2

Therefore the theorem holds for the case of two disjoint sets.

Applying the technique of mathematical induction, the theorem

can be generalized to the case of an arbitrary finite number

"n". The denumerable case is all that is left to consider. For

this case

CA£>

M = U Mk-
k=l

By a property of measurable sets,

m(M) = 2Z m(Mk ) ,

k=l

but since this series converges,

} m(Mk )
—>0 as n—3> °-° .

k=n+l

Denote

M Mk = Rn .

k=n+l

Since the theorem is already proved for a finite number of com-

ponent terms, it is possible to write the following equality:

/ f(x) dx = > / f(x) dx + / f(x) dx.

M . k=l Mk R
n

Then, by Theorem 32,

j. • m(Rn ) < / f(x) dx ^ (3 • m(Rn ),

Rn

and the measure, m(Rn ), of the set Rn approaches zero as
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n

—

* oo . It follows that

/ f(x) dx —* 0,

as n—*=>-o , which yields the conclusion.

The following useful property is proved for real functions

f (x) and g(x) .

Theorem 3I4. . If f(x) and g(x) are measurable and bounded on M,

then f(x) + g(x) is summable and

/ (f(x) + g(x)) dx = / f(x) dx + / g(x) dx [2, 217].
"M M M

Proof. Let 1. & f(x) < (3, and 5 & g(x) < T. Let P and Q be par-

titions of [j., pj and [5, TJ , respectively, such that

* = y < yi <- • • < yn < yn+i
= p>

and 6 = jQ < y1 < . . . < yN < yN+1 = T-.

Also set

Define

E
v

- E &v« f(x) < ^v+lj •

Ij = fifyi ^ g(x) < y i+1]
(v = 0, 1, 2, ..., n;

i = 0, 1, 2, ..., N).

T ijV = E/Mj (v = 0, 1, 2, .... n; i = 0, 1, 2,

..., N).

Obviously the set

M = U T i,v

and the sets T^ „ are disjoint, hence
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J (f(x) + g(x)) dx = JZ J ( f < x ) + S(x)) dx.

M i,v T ijV

On the set Tj_ v

yv
+

?i
< f(x) + g(x) <c y. +1 + yv+1 ,

and the first law of the mean implies

(yv + y± ) • m(Ti>v ) « / (f(x) + g(x)) dx
T i,v

^(yv+1 + yi+1 ) »(T1)V).

A combination of these inequalities yields

(yv + y;) * m ( T i v)*l (f(x
>

+ S (x >' dx
> ui,v

^ 21 (yv+1 + yi+1 ) • «(»lfT).
1,V

Consider the sum

yv . m(T ijV ),

which can be written in the form

Z7yv (ZT^t.^)) ,

v=0 i=0

where

N-l [N-l

i=0 I i=0

N-l _

Li=o J

N-l _
EvH U E

i|
i=0

= m(EvriM) = m(E
v ) ;

so that the original sum may also be written as

XT yv • ra ( Ev)-
v=0

Hence the original sum is the Lebesgue sum Sp of the function

f(x). Denote this sum s
f . The other sums in the inequality can
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be denoted and evaluated analogously, so that the inequality-

can be written

s f + s c ^ / (f(x) + g(x)) dx & Sf + S .

fe M

By increasing the number of points of the partitions P and Q

and by taking the limit in the inequalities above, the theorem

is proved.

It is now possible to prove the following elementary

property.

Theorem 35. If f (x) is measurable and bounded on M and C is a

constant, then

/ C . f(x) dx = C / f(x) dx h, 125].
y
M M

Proof. If C = 0, the theorem is obvious. Consider the case

C > 0. Since f(x) is bounded, j. 6 t (x) < (3. Let P be a parti-

tion of the segment Q<c, pj and let

Ev = E [yv ^ f(x
> <»«]•

It follows that

n-1
/ G • f(x) dx = YZ. J C • f(x) dx.
M n=0 Mk

On the sets Ev the inequalities

C . yv ^C . f(x) < C • yv+1 ,

hold. Thus by the first law of the mean,

C . y . m(E ) < / C • f (x) dx 6 C . yv+1 • m(Ev )

.

Mk

Combining these inequalities yields
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C • s < / C • f(x) dx ^ C • S,

M

where s and S are the Lebesgue sums for f(x). The theorem is

obtained from this last inequality by taking S - s arbitrarily

small. Finally, consider C < 0. Here

= / To . f(x) + (-C) • f(x)l dx = / C • f(x) dx
% J M

+ (-C) / f(x) dx,
M

and the proof is completed.

Another useful property of the Lebesgue integral is the

fact that equivalent functions have equal integrals. Two func-

tions are said to be equivalent, denoted f(x)^v^g(x), if

f(x) = g(x) on M except for a set of measure zero. The property

will now be stated as a theorem.

Theorem 36. If f(x) is measurable and bounded on M and

f (x)'"^' g(x) on M, then g(x) is summable on M and

/ f(x) dx = / g(x) dx \k, 75]
M M

Proof. By definition f(x) = g(x) on M - Z, where Z is a set

of measure zero. Then

/ f(x) dx = / f(x) dx + f f(x) dx.

M M-Z Z

Since

f f(x) dx = / g(x) = and / f(x) dx = / g(x) dx,
Z Z M-Z M-Z

it follows that
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/ f(x) dx = / g(x) dx + / g(x) dx = / g(x) dx.

M M-Z Z M

An application of this theorem will now be given. Con-

sider the problem of finding the Lebesgue integral of

1 for irrational x
f(x) =1 r "I

.0 for rational x, in the interval M = [_0, 1J
.

Let g(x) = 1 in [o, l] . Then f(x)~g(x) in [o, l] . By

Corollary 3 of Theorem 3 2

/ g(x) dx = / 1 dx = 1 • (1 - 0) = 1.

M M

Hence by the preceding theorem f(x) is also summable and

/ g(x) dx = / f(x) dx = 1.

M M

The following theorem is fundamental to the Lebesgue

integral.

Theorem 37. If f(x) is measurable and bounded on M, then

|f(x)| is summable on M and

1/ f(x) dxl ^ / |f(x)| dx [k, 76].
I M ' M

Proof. Set M+ = M[f(x) ^ o] and M" =M(f(x) <
0J.

-

Then by Theorem 33,

/ f(x) dx = / f(x) dx + / f(x) dx,

M M+ M"

and therefore

/ f(x) dx = / |f(x)| dx - / |
f(x)

|
dx,

M M+ M"
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since f(x) = -|f(x)| when f(x) is negative. Since the integrals

on the right side of the statement above exist, then the sum of

the integrals exists and by Theorem 33 again

/ |f(x)| dx + / |f(x)| dx = / |f(x)| dx.

This states that |f(x)| is summable on M. Note that

/ |f(x) |
dx •? and / |

f(x)| dx $-0.

M+ M"

Then

/ f(x) dx,
M

/ I f(x) | dx - / |
f(x)| dx

yi+ m-

< / | f(x) | dx + / I f(x)
|
dx

I M+ M" '

= / |
f(x)

|
dx + / |

f(x)| dx = / I

f(x)| dx,

^M+ M" M

and the theorem is established.

The converse of the preceding theorem is also proved.

Theorem 38 . If f(x) is measurable on M and |f(x)| is measurable

and bounded," then f(x) is also summable on M [ij.,
77J

.

Proof. If f(x) is measurable, then the sets M+ and M" are

measurable. Since |f(x)| is summable,

/ I
f(x)| 'dx = / I f (x)

I
dx + / I

f (x)
I

dx.

M M+ M"

However, if these two integrals on the right exist,

/ I

f(x)| dx - / I

f(x)| dx
M+ M-
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exists and equals J f(x) dx.
M

COMPARISON OF THE RIEMANN AND
LEBESGUE INTEGRALS

For the purpose of comparing the Rieraann and Lebesgue

integrals, the definition of the upper and lower Riemann inte-

grals, and the definition of the Riemann integral will be

assumed to be known to the reader. The Riemann integrals will

be denoted by the prefix "R".

The definition of the upper and lower Lebesgue integral

is as follows.

Definition 9. The upper and lower Lebesgue integrals of the

function f(x) defined on a measurable set M are

J f(x) dx = inf [sp ]
M

and f f(x) dx = sup {sp ]

respectively \_2 , 20^] .

The following relationship between the Riemann and Lebesgue

integrals will now be given.

Theorem 39. If M is a closed interval, then for every bounded

function f(x) the following inequalities hold:

R _/"f(x) dx?j f(x) dx => / f(x) dx^R/ f(x) dx [_2 , 20o] .

M M ~M "Tl

As a result of this theorem it can be seen that if the
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Riemann integral exists, the upper and lower Lebesgue integrals

are equal to each, other and to the Riemann integral. Hence the

Lebesgue integral exists whenever the Riemann integral exists,

and has the same value. The converse of this preceding state-

ment is not true, as may be seen by considering again the pre-

vious example, known as the Dirichlet function. Let

f(x) = for x irrational

f(x) = 1 for x rational in [p, lj .

Since f(x) is a constant function of the set R* of rationals

and m(R-"-) = 0, the Lebesgue integral / f (x) dx = 0, where

r i
M

M = [0, lj .

For the upper and lower Riemann integrals of f(x),

R / f(x) dx = 1 and R / f(x) dx = 0,

so that the Riemann integral of f(x) does not exist.

Therefore the existence of the Lebesgue integral does not

imply the existence of the Riemann integral. Thus the Lebesgue

integral is more general than the Riemann integral, at least

for bounded functions.

The Lebesgue integral is superior to the Riemann integral

in the area of finding limits relative to integration processes.

Let |fn (x)f be a sequence of summable functions on M which con-

verge to f (x) . Does

_/ f(x) dx = lim / f (x) dx?
M n-><*> M

To see that the preceding equality does not hold necessarily,

consider the following example: Let M = [_0, lj and
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)

n

in

fn (x) =< n for x = —
2n

linear in
1

0, —
L 2nJ

and
1 1

_ 2n n.

(n = 1, 2,

Then f(x) = lim fn (x)
= since fn (x) = for x & 0, and, for

1

each x > 0, n can be taken so large that — < x, and hence
n

1 1

f (x) =0. Thus / f(x) dx = 0, but / f_( x) dx = - • - • n
M M

= — . Therefore it can be seen that without additional condi-
2

tions the limit and integration processes cannot be interchanged.

A general condition under which the limit and integration

processes may be interchanged for Lebesgue integration is known

as the uniform boundedness of a sequence.

Definition 10 . A sequence jf (x)[ is called uniformly bounded

on M if fn (x) £z C, n = 1, 2, . . ., where C is a constant

independent of n and of x £ M [_2 , 103J
.

The bounded convergence theorem for the Lebesgue integral

may now be given.

Theorem i|_0 . If the sequence of summable functions -ffn (x)r

converges to f(x) and is uniformly bounded on M, then. f(x) is

also summable on M and
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J f(x) dx = lim / fn (x) dx \k, 82] .

M n-* * M L

Proof. The function f(x), as the limit of a convergent se-

quence of measurable functions, is a measurable function. All

functions involved are bounded and measurable, hence they are

summable. Since the sequence jfn (x)l is uniformly bounded on

M, there is a C > such that for every n and every x €. M,

jf
n (x) I ^ C. Also, for every x e M, |f(x) |

^ C. Let 6 > be

given. By the Theorem of Egoroff [2, I87J , there is a measur-

able set T C M such that

m(M - T) < — ,

and {fn(x)j converges uniformly on T to f(x) [2, 223]. There

is a number N such that for every n > N and every x £ T,

|f(x) - fn (x)j < S .

1
n

' 2 . m(T)

Hence for every n > N,

/ f(x) dx - / fn (x) dxl = / f(x) dx + / f(x) dx
M M I I T M-T

" / fn (x >
dx " / fn (x) dx

l ^ 1/ (f(x) dx " fn(x>> dx
T M-T 'It '

+ 1/ (f(x) - fn (x)) dxl < ^
. m(T) +'—

. 2C = 6
I M-T I 2 • m(T) 1(.C

Hence for every n > N,

/ f(x) dx - / fn (x) dx < £ ,

I M M '

and the theorem is proved.
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This theorem is not true for Riemann integrals, for in

general the limit function f(x) is not Riemann integrable under

these conditions, as may be seen by the following example.

Assume the rational numbers in [o, 1J to be ordered in a

sequence r-^ r2 , . . . , rm , . . ., and set

("0 for x = r, , r , . . ., r
fn (x) = 1' 2 '

'
m

(_1 otherwise in (_0, lj .

Thus the fn (x) are Riemann integrable. However,

lim fn (x) = f(x) = for rational x
n-*°°

= 1 otherwise in fo, lj ,

and f(x) is not Riemann integrable \_2 , 21oJ .

A further generalization of Theorem lj.0 is possible for

the Lebesgue integral. This theorem is known as the "dominated

convergence theorem".

Theorem 41 ' If the sequence of summable functions (f (x)[

converges to f(x) and if

|fn (x)| ^ F(x) (n = 1, 2, . . . )

on M, where P(x) is summable on M, then f(x) is also summable

on M and

/ f(x) dx = lim / f ( x ) dx fk, 83].
M n-»°^ M J

Another area in which the Lebesgue integral is superior to

the Riemann integral is in the relation between integration and

differentiation. Consider a function f(x) which is continuous

in [a, b] and define
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F(x) = f fit) dt with x £ [a, bj .

a

P(x) is a primitive or antiderivative of f(x), for either the

Lebesgue or Riemann integrals, since the following theorem is

true in both cases.

Theorem lj.2 . If f(x) is continuous at xQ £ (a, b) , then P'(x )

exists and equals f(xQ ) \_k, 86j .

If the function f(x) is required to be a bounded deriva-

tive, then the Riemann integral does not necessarily yield the

primitive, while the following theorem can be proved for the

Lebesgue integral.

Theorem ijj. Every bounded derivative in [_a , bj is summable and

the Lebesgue integral yields the primitive (antiderivative) up

to an additive constant. That is, if F'(x) is bounded in

[a, bj , then for every x £ [a, bj

( F'(t) dt = F(x) - F(a) [lj_, 87] .

a

Proof. Since F'(x) is measurable and bounded in [a, bj , it is

summable in [a, b] . There is a theorem of Dini which states

that if F'(x) is bounded in [a, bj , then

F(x + h) - F(x)
:

, (h > 0) ,

h

has the same bounds there as F'(x) [k, 87J . Thus using a null

sequence fhv | , it follows by Theorem I4.O that
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x x F(t + hv ) - P(t)

f P'(t) dt = / lim - dt
4 a K,—> \

x P(t + hv ) - F(t)
lim

J
dt

= lim —
( / P(t + hv ) dt - J F(t) dt)

hv^0 I hv 5 i

Set t + TXf = 1 in the first integral of the last expression.

Then

J
F' (t) dt = lim I — ( /

V
F(t) dT -

J
i hv->0[_hv -g+hv i

F(t) dt)

Since F(x) is continuous in [a, bj , then its primitive $j(x)

exists there, that is, J>'(x) = F(x), and hence

f(x + hv - $(x) I(a + hy) - ]>(a)

J F' (t) dt = lim

V-»0 L h
v

hv J

= $'(x) - $' (a) = F(x) - F(a) .

To show that the preceding theorem does not hold true for

Riemann integration, the following example is given.

Let s(x) be the so-called signum function defined as

follows

:

s(x) = 1 if x >

s(x) = -1 if x <

s(x) = if x = 0.

Let M = [_-l, lj , then s(x) is bounded in M, but the primitive

does not exist j_l, I4.2J .
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WEAKNESSES OF THE LEBESGUE INTEGRAL

A weakness in the Lebesgue integral for a bounded function

f(x) occurs as a result of Theorem 37> which states that the

integral of |f(x)[ also exists whenever f(x) is summable. How-

ever, from elementary calculus there are improper integrals for

which this property does not hold. For example,

/• sin x 11 s |sm x|

J dx = — , but J dx
D x 2 x

does not exist.

For bounded derivatives the Lebesgue integral is satis-

factory, as was stated in Theorem 1]_3; however, unbounded deriva-

tives F'(x) are not necessarily summable. The following is an

example of an unbounded derivative which is not summable

Let\k, 89].

Then

X
F(x) = x^ sin — for x f

x2

= for x = 0.

12 1

F'(x)' = 2x sin — - — cos — for x /
,2

= for x = 0,

since

1
h^ sin —

h2 1
F'(0) = lim = lim h sin — = .

h—>0 h h-^-0 h2

Now consider the integration of F'(x) between and
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a = 1/2/n . This first term of P'(x) is continuous in [o, aj ;

however,

2 1
— cos — dx
x x2

does not exist. To show this, assume the integral did exist,

then by Theorem 37

t
2

/

1
I

I - cos — dx
f) x I X2l

(1)

also exist. It can be proven that this integral is continuous

for every x £ (0, a), (\, 86J ; hence

a 2 I 1 i {

/ - cos — dx = lim f
x

a 2
|

1

cos —
|
dx . (2)

e->o+ i x I x

The zeros of the integrand in (1) are at x =

(2n + l)n

(n = 0, 1, . . .), thus the right member of (2) may be written

y?- V2/( 2n+"T7^: 2

n=0 f2j[2n+3)% x
cos — dx .

v2
13)

Making the change of variables — = z in (3), yields
x2

oo
(2n+3)7i/2 cos z V (2pi+5)5t/4

|
cos z|

n=0 (2n+l)T[/2

This last sum is greater than

n=0 ( lj.n+3 ) 1/4 z

dz.
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<=2- 1 1 K r=^ 1 72 v— 1

2^_ _VT. • - = Y2 z_ — >— z__ — .

n=0 2 (ip.+5) Tt/k 2 n=0 lpi+5 5 n=0 n+1

This last series diverges, hence (1) is infinite. Since (1)

does not exist,

2 1
— cos — dx
x y?

cannot exist, by the contrapositive of Theorem 37.
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The first part of the report is a discussion of Lebesgue

measurable sets, restricted to the real number line. A defini-

tion of Lebesgue measure is given in terms of outer and_ inner

Lebesgue measure. After a few elementary properties of Lebesgue

measure are established, certain families of sets which are

measurable according to the definition are considered. For

example, open and closed sets are measurable sets.

The next part of the report is a discussion of Lebesgue

measurable functions, the functions "compatible" with Lebesgue

measurable sets. A few elementary properties of Lebesgue

measurable functions are presented.

In the third part of the report the Lebesgue integral is

defined. It is shown that the Lebesgue integral as defined is

independent of the sequence of partitions used.

The fourth part of the report is devoted to an elementary

discussion of the Lebesgue integral. A few of the properties

of the Lebesgue integral are presented, and the Lebesgue inte-

gral is compared with the Riemann integral. It is shown that

whenever the Riemann integral exists on a closed interval,, the

Lebesgue integral exists. The converse is shown not to be true

by presenting an example. The Lebesgue integral is also shown

to be superior to the Riemann integral in the area of finding

limits relative to integration processes. The Lebesgue and

Riemann integrals are also compared relative to the relation

between integration and differentiation. It is shown that the

Lebesgue integral of a derivative yields the primitive in a



closed interval for more general conditions than the Riemann

integral. The last unit illustrates a weakness of the Lebesgue

integral encountered when a derivative to be integrated .is not

required to be bounded.


