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Abstract

Recent observations in cosmology suggest that the universe is undergoing accelerating

expansion. Mysterious component responsible for acceleration is called “Dark Energy” con-

tributing to 70% of total energy density of the universe.

Simplest DE model is ΛCDM, where Einsteins cosmological constant plays role of the

dark energy. Despite the fact that it is consistent with observational data, it leaves some

important theoretical questions unanswered. To overcome these difficulties different Dark

energy models are proposed. Two of these models XCDM parametrization and slow rolling

scalar field model φCDM, along with “standard” ΛCDM are disscussed here, constraining

their parameter set.

In this thesis we start with a general theoretical overview of basic ideas and distance

measures in cosmology. In the following chapters we use H II starburst galaxy apparent

magnitude versus redshift data from Siegel et al.(2005)89 to constrain DE model parameters.

These constraints are generally consistent with those derived using other data sets, but are

not as restrictive as the tightest currently available constraints.

Also we constrain above mentioned cosmological models in light of 32 age measurements

of passively evolving galaxies as a function of redshift and recent estimates of the product

of the cosmic microwave background acoustic scale and the baryon acoustic oscillation peak

scale.
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Chapter 1

General Overview

1.1 Introduction

The universe is homogenous and isotropic in sufficiently large scales. This statement is

known as cosmological principle60 and it is a cornerstone on what the modern cosmology

is based on. It simply means that we do not have special location and for any observer

in any part of the cosmos a large scale picture of the universe will look the same. Also

from observations it is known that our universe is expanding. Below we will try to give the

minimal theoretical background necessary to understand the basics of the research outlined

in the Chapter 3.

Expansion of the universe means that distance l between any two non-interacting (Not

gravitationally bound) objects is increasing with time. That is

l(t) ∝ a(t)

Where the dimensionless expansion parameter a(t) or the scale factor is increasing func-

tion of time and it is independent of choice of the objects and reference frame in accordance

with cosmological principle. Corresponding line element (Friedmann-Lemâıtre-Robertson-

Walker metric) in time orthogonal coordinates1 can be written as60

ds2 = dt2 − a(t)2dl2 = dt2 − a(t)2(dx2 + dy2 + dz2) (1.1)

1That is we chose metric tensor components g00=1 and g0α=0
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Figure 1.1: 2D Examples of positive, zero and negative curvature universes

Homogeneity and isotropy means that dl2 part, for the fixed world time has a constant

curvature60. We can think about 3D constant curvature surfaces like they are embedded

in 4-dimensional Euclidean space, forming either 3D hypersphere of radius R or a pseudo-

hypersphere in Minkowski space with imaginary radius. In simplest case curvature is 0,

forming 3D analogy of a simple plain. In other words line element

dl2 = dx2 + dy2 + dz2 + dw2

is subject to constraint

x2 + y2 + z2 + w2 = R2 = const

Using 4D spherical coordinates

w = R cosχ
z = R sinχ cos θ
y = R sinχ sin θ sinϕ
x = R sinχ sin θ cosϕ

line element generalizes to

dl2 = R2[dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)] = R2(dχ2 + sin2 χdΩ)

Where dΩ denotes the angular part of the metric. For negative curvature case substitution

w → iw, R→ iR and χ→ −iχ gives corresponding line element

dl2 = R2(dχ2 + sinh2 χdΩ)

2



In terms of radial variable r = R sinχ line element becomes

dl2 =
dr2

1− κr2
− r2dΩ

Putting back in eqn. 1.1 we will get following form of FLRW metric60:

ds2 = dt2 − a(t)2R2(dχ2 + sinh2 χdΩ) = dt2 − a(t)2

(
dr2

1− κr2
− r2dΩ

)
(1.2)

where κ ≡ 1/R2 is curvature parameter and when κ = +1, 0,−1 it defines closed, flat and

open universes respectively.

Putting above metric in Einstein’s equation,

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν + Λgµν

and referring to cosmological principle again, we can assume that on a large scale the universe

can be considered as an isotropic and homogenous fluid. We can write energy-momentum

tensor as:

Tµν = diag (ρ(t), p(t), p(t), p(t))

We will get following equation for G00 component (where dot denotes time derivative)

3
ȧ2 + κ

a2
− Λ = 8πGρ

taking trace of Einstein’s equation gives the following (Or similarly we can use diagonal Gii

components)

−6 (κ+ ȧ2 + aä)

a2
= 8πG(ρ− 3p)

Rearranging terms we will get two independent Friedmann’s equations60:(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− κ

a2

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3

(1.3)

Together with equation of state of fluid p = p(ρ) the above equation closes set and defines

behavior of the universe on a large scale. Taking time derivative from the first equation

3



and putting in the second (Or alternatively using that T νµ;ν = 0) yields energy conservation

equation:

ρ̇ = −3
ȧ

a
(ρ+ p) (1.4)

Usually equation of state takes the form p = wiρ, where wi is a constant equation of state

parameter. Solving energy conservation for general species of wi particles gives60,77

ρ(t) = ρ0

(a0

a

)3(1+wi)

For non-relativistic matter wm = 0 (cold dust do not exert pressure) and ρm ∝ a−3, for the

radiation wγ = 1/3 and ργ ∝ a−4, for Λ wΛ = −1 and ρΛ ≡ Λ
8πG

= const. If we have different

species of particles, 1.4 holds separately for each set of them. Therefore total density ρ(t)

will be linear combination of corresponding densities. For example, Friedmann equation for

non-relativistic matter, radiation, cosmological constant and curvature parameter can be

written as: (
ȧ

a

)2

= A
ρm0

a3
+B

ργ0

a4
+ CρΛ +D

ρκ0

a2

This equation defines evolution of the scale factor with given initial conditions. ‘

1.1.1 ΛCDM Model

Ratio ȧ
a

is known as a Hubble parameter. Present value of Hubble parameter is known as

Hubble constant H0. Taking into account that wave length scales as the scale factor λ ∼ a

we can define redshift z

1 + z ≡ λobs

λemi

Denoting density parameters as follows:

Ωm =
8πGρ0

3H2
0

, Ωκ =
κ

(H0a0)2
, ΩΛ =

Λ

3H2
0

we can rewrite Friedmann equation2 in terms of redshifts and density parameters60

H(z)2 = H2
0 (Ωγ(1 + z)4 + Ωm(1 + z)3 + Ωκ(1 + z)2 + ΩΛ) (1.5)

2as radiation contributing term dies quickly, we usually do not account for it in calculations
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This equation describes the evolution of the Hubble parameter (and scale factor) in ΛCDM

model.

1.2 Short summary of modern ideas in cosmology

According to current observations, we live in spatially-flat Universe that recently started

accelerated expansion. Most cosmologists believe that acceleration is driven by dark en-

ergy, dominant component of the cosmological energy budget (for reviews of dark energy

see8,45,86,100 and references therein).3

In “standard” model of cosmology — the spatially-flat ΛCDM model59 — Einstein’s

cosmological constant Λ plays role of the dark energy, contributing more than 70 % of total

energy density parameter. Λ is followed by nonrelativistic cold dark matter (CDM) that

is the next largest contributor (more than 20 %), and nonrelativistic baryons (around 5

%). For a review of the standard model see76 and references therein. It is known that

ΛCDM model is reasonably consistent with most observational constraints see, e.g.,2,22,39,106

for early indications.4

However, in the framework of ΛCDM model some conceptual questions remain unan-

swered. E.g. measured cosmological constant energy scale is orders of magnitude smaller

than we could expect from quantum field theory considerations. Another puzzle is the “co-

incidence problem”. Cosmological constant energy density remains the same, but matter

density decreases over time with cosmological expansion. It is unclear why we live at this

special time, when nonrelativistic matter and dark energy densities are comparable.

These and possibly other puzzles could be solved, if we assume that the dark energy

density was higher in the past and slowly decreased in time, thus remaining comparable to

3 There exist alternative point of views and according to them accelerated expansion is just a sign that
general relativity needs to be modified in order to correctly describe gravitation. see24,38,100 and references
therein. In this thesis we assume that general relativity adequately describes the gravitation on cosmological
scales.

4 The ΛCDM model assumes the “standard” CDM structure formation picture, which might be in some
observational difficulty see, e.g.,62,64.
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the nonrelativistic matter density for a longer time75. Many such time-varying dark energy

models have been proposed.5 In this thesis, for illustrative purposes, we consider two dark

energy models and one dark energy parametrization.

1.3 Alternative Dark Energy models

1.3.1 XCDM parametrization

In the ΛCDM model, time-independent dark energy — the cosmological constant — can be

thought as a spatially homogeneous fluid with equation of state parameter77 wΛ = pΛ/ρΛ =

−1 (where pΛ and ρΛ are the fluid pressure and energy density)

Now let’s assume Λ = 0 in Einstein’s equation. We can model dark energy as as a

spatially homogeneous (X) fluid, but now with an equation of state parameter wX = pX
ρX

,

where wX(< −1/3)3 is an arbitrary constant and pX and ρX are the pressure and energy

density of the X-fluid. When wX = −1 the XCDM parametrization reduces to the complete

and consistent ΛCDM model. However, for any other value of wX(< −1/3), the XCDM

parametrization is incomplete as it cannot describe spatial inhomogeneities see, e.g.73,74. For

computational simplicity, here we study the XCDM parametrization in only the spatially-

flat cosmological case. Putting corresponding density scaling, Hubble parameter takes the

form

H(z,H0,p) = H0

√
Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+wX).

1.3.2 φCDM Model

φCDM dark energy is modeled as a slow rolling inverse law potential scalar field61. Corre-

sponding action is given by

S =

∫
1

16πG

(
gµν∂µφ∂νφ−

κ

2G
φ−α

)√
−gd4x

5 For recent discussions see, e.g.,57,36,41,66,46,18,31, and references therein.
3Recall 1.3. To make ä > 0 we need wX(< −1/3)
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where G is the Newtonian gravitational constant and α > 0 is a free parameter (that

determines κ). In spatially flat homogeneous case equation of motion is

φ̈+ 3Hφ̇− κα

2G
φ−(α+1) = 0,

that with Hubble parameter

H(z) = H0

√
Ωm(1 + z)3 + Ωφ(z).

and

Ωφ(z) =
1

12H2
0

(
φ̇2 +

κ

G
φ−α

)
defines coupled set of equation that determines evolution of the scalar field.

Stress-energy tensor takes the form

T00 = ρ =
1

32πG

(
φ̇2 +

k

G
φ−α

)
, Tii = p =

1

32πG

(
φ̇2 − k

G
φ−α

)
from where follows that equation of state parameter is

w(z) =
φ̇2 − k/Gφ−α

φ̇2 + k/Gφ−α

When α→ 0 model reduces to spatially flat ΛCDM case.

In early past when ρφ � ρCDM model accepts the solution,

φ ∝ a
3(1+wCDM )

a+2

and state parameter is

wφ =
awCDM − 2

a+ 2

Important property of this solution is that it is an attractor77. Wide range of initial condi-

tions approach to it at some point.

In this model mentioned smallness and coincidence problem can be solved: φ field grad-

ually decreases, remaining comparable to the non-relativistic matter density for a longer

time75. It is worth to mention the scalar field with inverse power low potential is purely

phenomenological classical field. And QFT of such field will be faced to usual problem of

nonrenormazability.

7



Chapter 2

Distance measures in cosmology

2.1 Comoving distance, proper distance and coordi-

nate distance

If we factor out expansion parameter, considering in that light travels in the radial directions

at null geodesics, we will get expression for the comoving distance from eq. 1.260

dco = Rχ =

∫ t0

te

dt′

a(t′)
=

∫ a0

ae

da

aȧ
=

1

a0H0

∫ ze

0

dz

E(z)
(2.1)

Where te is photon emission time in observers frame, t0 is present detection time and E(z) =

H(z)/H0 is dimensionless Hubble parameter1. Although it is integral over time, for any two

distant galaxies moving with Hubble flow its value remains constant. Proper distance d at

any fixed time is scale factor times comoving distance

d = a(t)dco

Coordinate distance is r = Rsinx(χ) from 1.2. Considering eq. 2.1 coordinate distance2

1Not to be confused: in general comoving distance dco 6= Rχ when direction is out of line of sight
2It should be noted that in the different literature this quantity is called differently, e.g. in Peebles60

notation this quantity is angular size distance. This shouldn’t confuse reader.
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χ

w

φ
r=Rsinχ

l∥=Rχ

l⟂=r
φ

x y

R

Figure 2.1: Diagram of 2D FLRW geometry

as a function of a redshift can be written as60

r(ze) =



κ−
1
2 sin

(
κ

1
2

a0H0

∫ ze

0

dz

E(z)

)
κ > 0

1

a0H0

∫ ze

0

dz

E(z)
κ = 0

(−κ)−
1
2 sinh

(
(−κ)

1
2

a0H0

∫ ze

0

dz

E(z)

)
κ < 0

It is useful to define dimensionless coordinate distance y(ze) ≡ a0H0r(ze).
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2.2 Angular diameter distance

Proper length l⊥ subtended by an angle ϕ at a coordinate distance r = Rsinx(χ) is l⊥ =

arϕ ≡ dAϕ and defines angular diameter distance60

dA =
a0r

1 + z
=

y(z)

H0(1 + z)

2.3 Luminosity distance

Luminosity distance is defined from the flux density luminosity relation, that is how far the

object of known luminosity and measured flux will be if were in Euclidean space.

F =
L

4πd2
L

Let’s assume a source emits dN photons in dte time interval. After photons traveled co-

moving distance dco they are spread over a surface area S = 4π(a0r)
2, time to collect the

photons is dt0 = dte(1 + z). And each emitted photon caries an energy hνe = hν0(1 + z).

Observed apparent flux is:

F =
hν0

S

dN

dt0
=

hνe
4πa2

0r
2(1 + z)2

dN

dte
=

L

4π(a0r(1 + z))2

And for luminosity distance we will get60

dL = a0r(1 + z) =
y(z)(1 + z)

H0

2.4 distance modulus

Apparent magnitude of an astronomical object is defined from the ratio of apparent flux of

the object to some reference flux77

m = −2.5 log10

(
F

Fref

)
Absolute magnitude M is defined as a apparent magnitude, if the object were at 10 pc away.

Difference between them is known as distance modulus and can be expressed as60:

µ ≡ m−M = −2.5 log10

(
F

F10pc

)
= 5 log10

(
dL

10pc

)

10



2.5 Age & lookback time

We can write rewrite Hubble’s relation to get expression for time evolution

t =

∫ a

0

da

aH
=

∫ ∞
z

dz

(1 + z)H(z)
=

∫ (1+z)−1

0

dy

yH(y)
(2.2)

Lookback time is defined as a difference between present time and time at particular red-

shift60. That is

tL =

∫ ∞
0

dz

(1 + z)H(z)
−
∫ ∞
z

dz

(1 + z)H(z)
=

∫ z

0

dz

(1 + z)H(z)

11



Chapter 3

Constraints on Dark Energy models

3.1 Cosmological observations

Observational data available today convincingly indicate that the Universe expansion is

accelerating. The evidence of accelerated expansion comes mainly form three types of

data: supernova Type Ia (SNIa) apparent magnitude versus redshift measurements see,

e.g.,3,35,37,101; cosmic microwave background (CMB) anisotropy data see, e.g.,42,43,47,72 com-

bined with low estimates of the cosmological matter density see, e.g,15; and, baryon acoustic

oscillation (BAO) peak length scale estimates see, e.g.,7,63,82,103. However, errors of these

data are still very large and they do not allow sufficient discrimination between the ΛCDM

model and the two simple time-varying dark energy models discussed in this thesis.

There are two main reasons to consider additional data sets. First of all, it’s important to

compare above results to the ones derived from other data. If there is significant difference,

that could indicate that we used observationally inconsistent model, or it could mean the

one of the data sets had an undetected systematic error. Both of the results would be

important. But if the constraints from the new and the old data are consistent, then a joint

analysis of all the data could produce constraints that are significantly tighter, allowing as

a possible result discrimination between constant and time varying dark energy models.

Other data that have recently been used to constrain dark energy models include strong

gravitational lensing measurements e.g.,6,13,44,109, angular size as a function of redshift obser-
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vations e.g.,9,14,34, Hubble parameter as a function of redshift measurements e.g.,40,58,78,80,88,

galaxy cluster gas mass fraction data e.g.,2,30,81,96, and large-scale structure observations

e.g.,5,10,11,23,54.

These data are less restrictive than those derived from the SNeIa, CMB and BAO data.

However, they produce compatible constraints, thus supporting the models with accelerating

expansion of the universe. But ambiguity still remains, because the observations are unable

do discriminate between these different dark energy models. For instance, although available

data hint cosmological constant is time-independent, they are still unable to rule out time-

varying dark energy. To achieve this goal, the better quality data sets are required.

It is anticipated that future space missions will result in significantly more and better

SNeIa, BAO, and CMB anisotropy data see, e.g.,4,71,84,104. A complementary approach is

to develop cosmological tests that make use of different sets of objects. Recent examples

include the lookback time test e.g.,21,67 and the gamma-ray burst luminosity versus redshft

test see, e.g.87,102,107. Gamma-ray bursts, in particular, are very luminous and can be seen

to much higher redshifts than the SNeIa. Therefore, they could be used as the probes for

an earlier cosmological epoch.

H II starburst galaxies also can be used as standardizable candles51,53,95, because of the

correlation between their velocity dispersion, Hβ luminosity, and metallicity50,52,94. These

galaxies also can be seen to redshifts exceeding 3.

In this thesis in the section 3.3 we use H II galaxy data from89 to constrain parameters

of the three dark energy models mentioned above. Plionis et al.686970 have used the Siegel

et al.89 data to constrain the XCDM parametrization. Here we also constrain parameters of

ΛCDM and φCDM cosmological models. We also derive constraints on the parameters of

these models and the XCDM parametrization from a joint analysis of the Siegel et al.89 H

II galaxy data and the Percival et al.63 BAO peak length scale measurements.

In the following section 3.4 we combine distance data with low and high-redshift time

measurements to constrain accelerating cosmologies. In particular, we use age measurements
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of 32 passively evolving galaxies90 (in the range 0.117 ≤ z ≤ 1.845) to constrain mentioned

dark energy models. In order to better constrain the parameter spaces of these models, we

combine the age-z data with a recent estimate of the ratio of the CMB acoustic scale `A

and the baryonic acoustic oscillation (BAO) peak, the so-called CMB/BAO ratio91.

3.2 Data analysis

Let’s assume we have n independent measurements of observable yi at known redshifts zi.

The measurement is assumed to be Gaussian with mean f(zi,p) (from model) and known

variance σi. Our goal is to constrain parameter set p of cosmological models of our interest.

First we build χ2 function55

χ2 =
n∑
i=1

(yi − f(zi,p))2

σ2
i

Minimizing the χ2 with respect to p we can find the best fit least square estimator of

model parameters p̃. In our calculations models depend on two parameters. In this case,

χ2(p) = χ2(p̃) + 2.30, χ2(p) = χ2(p̃) + 6.17, χ2(p) = χ2(p̃) + 11.8 describe 1, 2 and 3

standard deviation contours in 2 dimensional parameter space p.

Let’s assume f in model depends not only on parameters of our interest, but also on

nuisance parameters ν, and its values are known with limited accuracy. If we have some

estimated prior distribution for ν (for example, if ν is one parameter one can assume that it

is Gaussian distributed with some variance σν ), we can build posterior likelihood function

that will depend on χ2(p) only55

L(p) =

∫
L(p, ν)π(ν)dν

where L(p, ν) ≡ e−
χ2(p,ν)

2 is a prior likelihood, and π(ν) is a prior distribution of the ν

parameter. Maximizing L(p), or similarly minimizing χ̃2 = −2 ln(L(p)) we can estimate

best point and calculate Nσ contours as described above.

When we have different set of independent observables, for example ai and corresponding

14



fa(zi,p) and bi and f̄b(zk,p), we can build likelihood function

L = LaLb

Or corresponding χ2

χ2 = χ2
a + χ2

b = −2 ln(La)− 2 ln(Lb)

and constrain joint parameters.
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The following section is based on Ref.48

3.3 Constraints from H II galaxy apparent magnitude

data

3.3.1 H II galaxy data analysis

To constrain cosmological parameters, we use the 13 µobs(zi) measurements of89, listed in

Table 3.1. We minimize

χ2
HII(H0,p) =

13∑
i=1

[µobs(zi)− µpred(zi, H0,p)]2

σ2
i

. (3.1)

Here µobs(zi) is measured and µpred(zi, H0,p) is predicted distance modulus in the model

under consideration at the same zi redshift. σi is the average of the upper and lower error

bars listed in Table 3.1.

The Siegel et al.89 (The data itself is derived from28,65) measurements listed in Table 3.1

are computed from

µobs = 2.5 log

(
σ5

FHβ

)
− 2.5 log

(
O

H

)
− AHβ + Z0 (3.2)

where FHβ and AHβ are the Hβ flux and extinction and O/H is a metallicity. Following

Plionis et al.69, for the zero point magnitude we use Z0 = −26.60, we take Hubble constant

value H0 = 73 km s−1 Mpc−1 (and do not account for the associated uncertainty), and

also exclude two H II galaxies (Q1700-MD103 and SSA22a-MD41) that show signs of a

considerable rotational velocity component29.

The χ2
HII minimum χ2

min defines best fit parameter set p∗. Contours enclosed by χ2 =

χ2
min+∆χ2 with ∆χ2 = 2.30, ∆χ2 = 6.17, and ∆χ2 = 11.8, defines 1σ, 2σ, and 3σ confidence

intervals respectively. The H II galaxy data constraints on cosmological parameters of the

three models are shown in Figs. 3.1. Our results are in good agreement with69 for the

XCDM parametrization (compare our top right Fig. 3.1 and their Fig. 10). The small

differences arise from the fact that in our analysis gravitational lensing effects are ignored and

16



Table 3.1: 89 H II starburst galaxy distance moduli and uncertainties

Galaxy z µobs ± σ
Q0201-B13 2.17 47.49+2.10

−3.43

Q1623-BX432 2.18 45.45+1.97
−3.07

Q1623-MD107 2.54 44.82+0.31
−1.58

Q1700-BX717 2.44 46.64+0.31
−1.58

CDFa C1 3.11 45.77+0.31
−1.58

Q0347-383 C5 3.23 47.12+0.44
−0.32

B2 0902+343 C12 3.39 46.96+0.71
−0.81

Q1422+231 D81 3.10 48.81+0.38
−0.40

SSA22a-MD46 3.09 46.76+0.56
−0.51

SSA22a-D3 3.07 49.71+0.43
−0.41

DSF2237+116a C2 3.32 47.73+0.25
−0.25

B2 0902+343 C6 3.09 45.22+1.38
−1.76

MS1512-CB58 2.73 47.49+1.22
−1.57

also average distance moduli uncertainties are used rather than specially weighted sigmas.

Small uncertainties of H0 are ignored in both analyses; It’s insignificant for our illustrative

purposes here, but should be considered in an analysis of improved near-future H II galaxy

data.

The H II galaxy data constraints in Figs. 3.1 are not as restrictive as those originating

from SNeIa, BAO, or CMB anistropy data. They are, however, comparable to those from

Hubble parameter observations see17 and references therein or lookback time observations

see79 and references therein, and somewhat more restrictive than angular diameter distance

constraints see16 and references therein and gamma-ray burst luminosity distance ones see83

and references therein. We again note that uncertainties in H0 are not accounted in our

analysis, therefore making H II galaxy constraints more restrictive than they really are.

However, constraining power of near-future H II galaxy is clearly shown in our analysis.
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3.3.2 Joint constraints from SNeIa, BAO and H II galaxy data

We use the SCP Union2.1 compilation of redshift versus distance modulus relation (580

points)93 for the SNeIa analysis . We minimize the function

χ2
SN = (∆µ)TC−1∆µ

where ∆µ is a vector consisting of differences ∆µi = µobs(zi)− µpred(zi, H0,p), the Hubble

constant value used is H0 = 73 km s−1 Mpc−1, and C is the covariance matrix. The SNeIa

data constraint contours are shown in Figs. 3.2. For the BAO data constraints, we follow

the method of Percival et al.63. With DV (z) = [(1 + z)2d2
Acz/H(z)]1/3 (where dA is angular

diameter distance),63 measure

D̄V (0.275) = (1104± 30)

(
Ωbh

2

0.02273

)−0.134(
Ωmh

2

0.1326

)−0.255

Mpc. (3.3)

We construct χ2
BAO = (D̄V − DV (0.275, H0,p))2/σ2

D̄V
and use this to build the likelihood

estimator LBAO with a Gaussian prior of Ωmh2 = 0.1326± 0.0063, and neglect the error for

Ωbh
2 as WMAP5 data constrains it to 0.5 %42

LBAO(p) =

∫
e−

(Ωmh
2−Ωmh2)2

2σ2 e−
χ2
BAO

2 d(Ωmh
2)

/∫
e−

(Ωmh
2−Ωmh2)2

2σ2 d(Ωmh
2) (3.4)

The BAO data constraint contours are shown in Figs. 3.3.

To derive joint H II galaxy and SNeIa (Figs. 3.2); H II and BAO (Figs. 3.3); and

the combined HII, SNeIa and BAO constraints (Figs. 3.4) we maximize the products of

likelihoods L(p) = LHIILSN, L(p) = LHIILBAO and L(p) = LHIILSNLBAO respectively to

get the best fit set of parameters p∗, where LSN = e−χ
2
SN/2 and LHII = e−χ

2
HII/2. The 1, 2,

and 3σ contours defined as points where the likelihood equals e−2.30/2, e−6.17/2, and e−11.8/2

of the maximum likelihood value. For comparison we have given SNIa and BAO data only

constraints in Figs. 3.4. It can be inferred from these figures, future improved H II data

set can well complement SNeIa and BAO contours. Clearly, constraints tighten even when

currently available H II galaxy data is added to SNeIa or BAO data and to their combination.
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H II galaxy data itself is not yet of good enough quality and in the above analyses we are

forced to ignore uncertainties on the Hubble constant as we already noted above. Therefore,

contours in the figures appear to be tighter, than they really are.

3.3.3 Summary on H II constraints

Constraints from starburst galaxy luminosity distance data of Siegel et al.89 used in our

analysis are consistent with other available data sets. However, they are not as restrictive

as SNeIa, BAO, and CMB anisotropy data constraints.

The H II data given in Siegel et al.89 are preliminary H II data. We expect that near

future space missions will significantly improve H II galaxy data quality. These data will

complement other data sets and will be very useful to discriminate and constrain parameters

of different cosmological models.
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The following section is based on Ref.21

3.4 Cosmological constraints from age-redshift rela-

tion

3.4.1 The age-redshift test

The total age of a given object (e.g., galaxies) from observational point of view at redshift

z is given by tobs(zi) = tG(zi) + τ , where where tG(zi) is the estimated age of oldest stellar

population in the object and τ is the incubation time or delay factor, which accounts our

ignorance for the time period from the beginning of structure formation in the Universe

until the formation time of the object of interest. For age-z analysis we use age estimates

of 32 old passive galaxies 3.2 distributed over the redshift interval 0.117 ≤ z ≤ 1.845 (90)

as listed in Table 1 of79, and assume a 12% one standard deviation uncertainty on the

age measurements. The total sample is composed of three sub-samples: 10 field early-type

galaxies from97–99, whose ages were obtained by using the SPEED models of Jimenez et

al. (2004); 20 red galaxies from the publicly released Gemini Deep Deep Survey (GDDS),

whose integrated light is fully dominated by evolved stars1,49; and the 2 radio galaxies

LBDS 53W091 and LBDS 53W069 (27,56,92). The GDDS data seem to indicate that star

formation was consisted of single burst with duration less than 0.1 Gyr and in some cases

burst duration is consistent with 0 Gyr49. That means that galaxies have been evolving

passively since the initial burst of star formation.

We build the likelihood function L ∝ [exp−χ2
age(z; p, τ)/2] from

χ2
age(H0, τ,p) =

32∑
i=1

[t(zi,p)− tG(zi)− τ ]2

σ2
tG,i

, (3.5)

where σ2
tG,i

stands for the uncertainties on the age measurements of galaxy sample. It should

be noted that in principle there must be a different τi for each object in the sample because

galaxies form at different epochs. However, considering that we do not know the formation

redshift for the particular objects, we assume a uniform delay factor τ that we treat as a
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“nuisance” parameter and marginalize over it to get the posterior lakilihood function

L(z; p) ∝
∫

exp

[
−1

2
χ2
age(z; p, τ)

]
dτ =

√
π

2C
exp

[
−1

2

(
A− B2

C

)]
erfc

(
− B√

2C

)
,

(3.6)

where,

A =
32∑
i=1

[t(zi,p)− tG(zi)]
2

σ2
tG,i

, B =
32∑
i=1

t(zi,p)− tG(zi)

σ2
tG,i

, C =
32∑
i=1

1

σ2
tG,i

.

Similarly, we also numerically marginalize over the present value of the Hubble constant

H0 = 74.2± 3.6 km s−1 Mpc−1 with the Gaussian prior1.

3.4.2 CMB/BAO ratio

CMB and baryon oscillations data provide two main inputs involving acoustic oscillations.

Commonly used quantities to constrain cosmological models are CMB shift parameter R

and BAO parameter A. However, use of these quantities is questionable for nonstandard

cosmologies, because they are obtained in the context of extended XCDM parametrization

(see, e.g.26).2

Here, following91, we use a more model-independent constraint derived from the product

of the CMB acoustic scale `A = πdA(z∗)/rs(z∗) and the measurement of the ratio of the sound

horizon scale at the drag epoch and the BAO dilation scale, rs(zd)/DV (zBAO) [dA(z∗) is the

comoving angular-diameter distance to recombination and rs(z∗) is the comoving sound

horizon at decoupling]. By combining the ratio rs(zd = 1020)/rs(z∗ = 1090) = 1.044±0.019

(42) with the measurements of rs(zd)/DV (zBAO) at zBAO = 0.20 and 0.35 from Percival

et al.63, Sollerman et al.91 found (with one standard deviation error bars)

dA(z∗)/DV (0.2) = 17.55± 0.65

1A variant of this test uses both measurements of the Hubble parameter as a function of redshift (see,
e.g.25,32,33,78,80,105,108) and lookback time measurements built from estimates of the total age of the Uni-
verse12,19,20,67,79,82).

2For the BAO parameter A, for instance, it is implicitly assumed that the evolution of matter density
perturbations during the matter-dominated era must be similar to the ΛCDM case and also that the co-
moving distance to the horizon at the time of equilibrium between matter and radiation energy densities
must scale with (ΩmH

2
0 )−1.

21



dA(z∗)/DV (0.35) = 10.10± 0.38 ,

which we use in our analyses together with the age-z data. The correlations in the mea-

surements are accounted by following91.

3.4.3 Summary on Age-z test

To constrain parameters of 3 cosmological models, in the above analysis we used time (age-z)

and distance (CMB/BAO) data. Our main results are shown in the figures 3.5 and figures 3.6

where age-z data and age-z plus CMB/BAO data contours are given respectively. Age-z data

contours are not very restrictive, but combining them with CMB/BAO data puts tighter

constraints on cosmological parameters. Particularly, in case of ΛCDM model (Fig.3.6 top

left panel) orthogonality of contours for age-z and CMB/BAO data results tight parameter

constraints when used together (see, e.g.,67,79).

Our results are generally consistent with those of SNeIa plus CMB/BAO data analysis

(see, e.g.,91). Although age-z data are not able yet to discriminate between different cos-

mological models, the future improved set of age measurements expected to be very useful

to put tighter bounds on cosmological models.
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Table 3.2: Ages of 32 passively evolving galaxies and uncertainties

Redshift Age Uncertainty

0.1171 10.2 1.2
0.1174 10 1
0.222 9 0.9
0.2311 9 0.9
0.3559 7.6 0.76
0.452 6.8 0.68
0.575 7 0.7
0.644 6 0.6
0.676 6 0.6
0.833 6 0.6
0.836 5.8 0.58
0.922 5.5 0.55
1.179 4.6 0.46
1.222 3.5 0.35
1.224 4.3 0.43
1.225 3.5 0.35
1.226 3.5 0.35
1.34 3.4 0.34
1.38 3.5 0.35
1.383 3.5 0.35
1.396 3.6 0.36
1.43 3.2 0.32
1.45 3.2 0.32
1.488 3 0.3
1.49 3.6 0.36
1.493 3.2 0.32
1.51 2.8 0.28
1.55 3 0.3
1.576 2.5 0.25
1.642 3 0.3
1.725 2.6 0.26
1.845 2.5 0.25
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Figure 3.1: Top left. H II galaxy data 1, 2, and 3σ confidence level contours in the (Ωm,ΩΛ)
plane for the ΛCDM model. The dotted line corresponds to the spatially-flat ΛCDM case
and the shaded area in the upper left hand corner is the part of parameter space without
a big bang. The best-fit point with χ2

min = 53.3 is indicated by the solid black circle at
Ωm = 0.19 and ΩΛ = 0.98.
Top right. H II galaxy data 1, 2, and 3σ confidence level contours in the (Ωm, wX) plane for
the spatially-flat XCDM parametrization. The dotted line corresponds to the spatially-flat
ΛCDM case. The best-fit point with χ2

min = 53.3 is indicated by the solid black circle at
Ωm = 0.17 and wX = −0.86.
Bottom. H II galaxy data 1, 2, and 3σ confidence level contours in the (Ωm, α) plane for
the spatially-flat φCDM model. α = 0 corresponds to the spatially-flat ΛCDM case. The
best-fit point with χ2

min = 53.3 is indicated by the solid black circle at Ωm = 0.17 and
α = 0.39.
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Figure 3.2: Top left. Joint H II galaxy and SNeIa data (solid lines) and SNeIa data only
(dashed lines) 1, 2, and 3σ confidence level contours in the (Ωm,ΩΛ) plane for the ΛCDM
model. The best-fit point for the first case with −2 log(Lmax) = 610.4 is indicated by the
solid black circle at Ωm = 0.23 and ΩΛ = 0.84 and for the second −2 log(Lmax) = 555.9 is
indicated as a diamond at Ωm = 0.36 and ΩΛ = 1.03.
Top right. Joint H II galaxy and SNeIa data (solid lines) and SNeIa data only (dashed
lines) 1, 2, and 3σ confidence level contours in the (Ωm, wX) plane for the spatially-flat
XCDM parametrization. The best-fit point for the first case with −2 log(Lmax) = 608.7
is indicated by the solid black circle at Ωm = 0.30 and wx = −1.34 and for the second
−2 log(Lmax) = 553.1 is indicated as a diamond at Ωm = 0.37 and wx = −1.65.
Joint H II galaxy and SNeIa data (solid lines) and SNeIa data only (dashed lines) 1, 2, and 3σ
confidence level contours in the (Ωm, α) plane for the spatially-flat φCDM model The best-fit
point for the first case with −2 log(Lmax) = 610.7 and for the second −2 log(Lmax) = 557.4
is indicated by the solid black circle at Ωm = 0.21 and α = 0.
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Figure 3.3: Top left. Joint H II galaxy and BAO data (solid lines) and BAO data only
(dashed lines) 1, 2, and 3σ confidence level contours in the (Ωm,ΩΛ) plane for the ΛCDM
model. The best-fit point with −2 log(Lmax) = 55.2 is indicated by the solid black circle at
Ωm = 0.25 and ΩΛ = 0.95.
Top right. Joint H II galaxy and BAO data (solid lines) and BAO data only (dashed lines)
1, 2, and 3σ confidence level contours in the (Ωm, wX) plane for the spatially-flat XCDM
parametrization. The best-fit point with −2 log(Lmax) = 53.5 is indicated by the solid black
circle at Ωm = 0.25 and wx = −1.41.
Bottom. Joint H II galaxy and BAO data (solid lines) and BAO data only (dashed lines)
1, 2, and 3σ confidence level contours in the (Ωm, α) plane for the spatially-flat φCDM
model. The best-fit point with −2 log(Lmax) = 55.6 is indicated by the solid black circle at
Ωm = 0.27 and α = 0.
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Figure 3.4: Top left. Joint H II galaxy, SNeIa and BAO data (solid lines) and SNeIa and
BAO data (dashed lines) 1, 2, and 3σ confidence level contours in the (Ωm,ΩΛ) plane for the
ΛCDM model. The best-fit point for the first case with −2 log(Lmax) = 611.0 is indicated by
the solid black circle at Ωm = 0.26 and ΩΛ = 0.89 and for the second −2 log(Lmax) = 555.9
is indicated as a diamond at Ωm = 0.27 and ΩΛ = 0.89.
Top right. Joint H II galaxy, SNeIa and BAO data (solid lines) and SNeIa and BAO data
(dashed lines) 1, 2, and 3σ confidence level contours in the (Ωm, wX) plane for the spatially-
flat XCDM parametrization. The best-fit point for the first case with −2 log(Lmax) = 609.4
is indicated by the solid black circle at Ωm = 0.26 and wx = −1.19 and for the second
−2 log(Lmax) = 555.3 is indicated as a diamond at Ωm = 0.27 and wx = −1.2.
Bottom. Joint H II galaxy, SNeIa and BAO data (solid lines) and SNeIa and BAO data
(dashed lines) 1, 2, and 3σ confidence level contours in the (Ωm, α) plane for the spatially-
flat φCDM model. The best-fit point for the first case with −2 log(Lmax) = 616.6 and for
the second −2 log(Lmax) = 562.0 is indicated by the solid black circle at Ωm = 0.26 and
α = 0.
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Figure 3.5: 3-σ contours for the ΛCDM model (top left), the spatially-flat XCDM
parametrization (top right) and spatially flat φCDM model (bottom) using age-z data .
In the top left panel (ΛCDM) the thin dotted diagonal line corresponds spatially-flat case
and the shaded area in the upper left hand corner is the part of parameter space with-
out a big bang, while in the left panel (XCDM) the dotted horizontal line indicates model
with a time-independent cosmological constant. For φCDM α = 0 corresponds spatially-flat
ΛCDM case. The best-fit points are indicated by the solid black circle at Ωm = 0 and
ΩΛ = 0.27 (top left), at Ωm = 0 and wX = −0.45 (top right) and the solid black circle at
Ωm = 0.07 and α = 0.57 (bottom).
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Figure 3.6: Joint age-z and BAO/CMB data constraints (solid lines) BAO/CMB only
(dashed lines) 3-σ confidence level contours for the ΛCDM model (top left), the spatially-
flat XCDM parametrization (top right) and spatially-flat ΛCDM (bottom) case. Conventions
and notations are as in Fig. 3.5. The best-fit points are indicated by the solid black circle
at Ωm = 0.29 and ΩΛ = 0.71 (top left), at Ωm = 0.29 and wX = −0.98 (top right). and at
Ωm = 0.29 and α = 0 (bottom).
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Appendix A

Derivation of Scalar Field equation of
motion

General scalar field action in Riemann metric can be written as:

S =

∫
d4x
√
−gL(∂µφ, φ)

Satisfying Euler-Lagrange equations:

∂µ
∂(
√
−gL)

∂(∂µφ)
− ∂(

√
−gL)

∂φ
= 0

In φCDM case Lagrangian has the form75:

L =
1

32πG

(
gµν∂µφ∂νφ− κm2

pφ
−α)

Putting in Euler-Lagrange equations:

∂µ(
√
−ggµν∂νφ)−

√
−g

κm2
pα

2
φ−(α+1) = 0

1

2g
∂µgg

µν∂νφ+ ∂µg
µν∂νφ+ gµν∂µ∂νφ−

κm2
pα

2
φ−(α+1) = 0

Using the FLRW metric 1.1

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)


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We can calculate

g = −a6(t), φ = φ(t)

∂iφ = 0, ∂ig
µν = 0, ∂0g

00 = 0

∂0g = −6a5ȧ

resulting the equation of motion for φ field.

3
ȧ

a
φ̇+ φ̈−

κm2
pα

2
φ−(α+1) = 0
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