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Abstract

Investigations of pseudodifferential operators are useful in a variety of applications.

These include finding solutions or estimates of solutions to certain partial differential equa-

tions, studying boundedness properties of commutators and paraproducts, and obtaining

fractional Leibniz rules.

A pseudodifferential operator is given through integration involving the Fourier trans-

form of the arguments and a function called a symbol. Pseudodifferential operators were

first studied in the linear case and results were obtained to advance both the theory and ap-

plicability of these operators. More recently, significant progress has been made in the study

of bilinear, and more generally multilinear, pseudodifferential operators. Of special interest

are boundedness properties of bilinear pseudodifferential operators which have been exam-

ined in a variety of function spaces. Since determining factors in the boundedness of these

operators are connected to properties of the corresponding symbols, significant effort has

been directed at categorizing the symbols according to size and decay conditions as well as

at establishing the associated symbolic calculus. One such category, the bilinear Hörmander

classes, plays a vital role in results concerning the boundedness of bilinear pseudodifferential

operators in the setting of Lebesgue spaces in particular.

The new results in this work focus on the study of bilinear pseudodifferential operators

with symbols in weighted Besov spaces of product type. Unlike the Hörmander classes, sym-

bols in these Besov spaces are not required to possess infinitely many derivatives satisfying

size or decay conditions. Even without this much smoothness, boundedness properties on

Lebesgue spaces are obtained for bilinear operators with symbols in certain Besov spaces.

Important tools in the proofs of these new results include the demonstration of appropriate

estimates and the development of a symbolic calculus for some of the Besov spaces along



with duality arguments. In addition to the new boundedness results and as a byproduct of

studying operators with symbols in Besov spaces, it is possible to quantify the smoothness of

the symbols, in terms of the conditions that define the Hörmander classes, that is sufficient

for boundedness of the operators in the context of Lebesgue spaces.
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Chapter 1

An Overview of Pseudodifferential

Operators

Over the last several decades, pseudodifferential operators have become an important field of

study within analysis. Much of the initial interest in these operators was due to a concurrent

enthusiasm for singular integral operators, for example, Calderón-Zygmund operators. For-

mally, an operator can be given as either a singular integral operator or a pseudodifferential

operator; however, as they are both integral operators, the absolute convergence of the in-

tegral does not always hold in both settings. Even in situations where both are well defined

operators, sometimes one form or the other is preferred, according to the goals of study.

While more recent work has emphasized the study of these operators as important subjects

in their own right, early development in the theories of pseudodifferential operators and sin-

gular integral operators was nurtured by the reciprocity between the two. To demonstrate

this more fully, the connections between pseudodifferential operators and Calderón-Zygmund

operators are presented at the end of Chapters 2 and 3 for the linear and bilinear cases,

respectively.

One of the settings where pseudodifferential operators are of particular importance is in

their applicability to partial differential equations. In fact, a linear differential operator is a
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pseudodifferential operator though the class of pseudodifferential operators goes beyond the

class of linear differential operators to include a variety of other operators. Pseudodifferential

operators can sometimes be used to find solutions of certain differential equations; more

frequently, they are used to find estimates on the size of solutions through the boundedness

properties of the operator. The usefulness of pseudodifferential operators in the context of

partial differential equations is explored in greater detail in Chapter 2 where we discuss in

particular the topic of linear pseudodifferential operators.

A pseudodifferential operator is given through integration involving the Fourier transform

of the arguments and a function called a symbol. The characteristics of the symbol determine

to a large extent the behavior of the operator. In this work the boundedness properties of

pseudodifferential operators will be examined in two cases: first when the symbols belong to

what are known as the Hörmander classes, and secondly when the conditions that define the

Hörmander classes are relaxed to allow for symbols with less smoothness. While a variety

of options for rougher symbols exist, in this work, the symbols with less smoothness will for

the most part belong to weighted Besov spaces of product type or related classes.

Symbols that belong to the Hörmander classes, either linear or bilinear, are smooth func-

tions whose derivatives satisfy specific size and decay properties depending on the particular

Hörmander class under consideration. This type of symbol arises naturally when considering

pseudodifferential operators that can be realized as partial differential operators. In such a

case, there is a connection between what is called the order of the specific Hörmander class

to which the symbol of the operator belongs and the degree of the differential operator, as

will be seen in Chapter 2. Furthermore, the Hörmander classes have a variety of properties

that make them especially suited for the study of boundedness properties of the associated

pseudodifferential operators. Possibly one of the most useful features of the Hörmander

classes is what is called symbolic calculus. The symbolic calculus provides the tools to

compute the symbols of the adjoints, the transposes, and the composition of operators with

symbols in the Hörmander classes and also determines the Hörmander classes to which they
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belong.

In the linear case, mathematicians such as Fefferman, Hörmander, Calderón, Coifman,

Meyer, Stein, Vaillancourt, and others were able to establish boundedness properties of

linear pseudodifferential operators on appropriate function spaces. Perhaps one of the most

critical results, in the sense that it is used so frequently in the proofs of other results,

is due to Hörmander and was later improved by Calderón and Vaillancourt. Their work

establishes that operators with symbols in the Hörmander classes of order zero are bounded

on L2. Using this result along with a variety of tools that include the symbolic calculus of the

linear Hörmander classes, other mathematicians were able to characterize the boundedness

properties of linear pseudodifferential operators with symbols in the Hörmander classes on

the full scale of Lebesgue spaces and related function spaces.

In the process of proving boundedness, it can be demonstrated that the level of smooth-

ness required in the definitions of the Hörmander classes is not actually needed. This led

many to consider the question of just how much smoothness of the symbol is sufficient in

order to prove continuity of the corresponding operator. In answering this question, many

alternatives were considered including the examination of symbols in functions spaces such

as Sobolev and Besov spaces that naturally relate to the Hörmander classes.

Chapters 3 and 4 contain the heart of this work which explores the boundedness proper-

ties of bilinear pseudodifferential operators. In Chapter 3, we present known results from a

variety of authors that provide background and motivation for the contributions of the au-

thor and Naibo presented in Chapter 4. Bilinear pseudodifferential operators are not simply

an analog of the linear version but rather are operators of considerable interest in their own

right. This is partially due to their usefulness not just in partial differential equations but

also in the study of fractional Leibniz rules, paraproducts, and the boundedness properties

of commutators where linear pseudodifferential operators are insufficient. More than that,

as will be demonstrated both in Chapters 3 and 4, bilinear pseudodifferential operators also

differ from their linear counterparts both in how they behave and in the techniques used

3



to prove the results that describe this behavior. In our discussion of the theory of bilin-

ear pseudodifferential operators, some attention will be given to both the similarities and

differences between the two cases.

The properties of the bilinear Hörmander classes and boundedness of the correspond-

ing bilinear pseudodifferential operators have been studied by several authors including

Bényi and Torres [5, 6], Bényi, Maldonado, Naibo, and Torres [4], Michalowski, Rule, and

Staubach [28], Bényi, Bernicot, Maldonado, Naibo, and Torres [3], Miyachi and Tomita [30],

Naibo [34, 33], Rodŕıguez-López and Staubach [35], and references therein. Recently, ef-

forts in the setting of bilinear pseudodifferential operators with symbols in the Hörmander

classes have been directed at expanding current boundedness results to a greater number of

operators. This has been accomplished in two ways: first, by considering a broader array

of function spaces than Lebesgue spaces, and secondly, by obtaining results that include as

many of the Hörmander classes as possible.

However, as with the linear case, the proofs for boundedness of bilinear pseudodifferential

operators with symbols in the bilinear Hörmander classes do not require the level of smooth-

ness inherent in the definition of these symbols. Therefore a natural question is whether

boundedness for the operator can still be obtained even when the symbol is much rougher

in the sense of requiring fewer derivatives. Thus in the final chapter of this work we con-

sider recent results of the author and Naibo [21, 22] concerning boundedness of bilinear

pseudodifferential operators with symbols in weighted Besov spaces of product type. These

classes of symbols contain certain of the Hörmander classes as well as rougher symbols not

contained in the Hörmander classes. In addition to obtaining boundedness properties for a

larger class of operators, as a byproduct of considering symbols in Besov spaces, it is possible

to quantify the level of smoothness of the symbols that is sufficient for boundedness of the

associated operator, an endeavor that had not been previously undertaken.

The techniques used in the proofs of the new results presented in Chapter 4 differ ac-

cording to the target space of the operators. In one instance, an important tool consists in
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proving a statement on boundedness of operators with a symbol that satisfies a certain size

condition and whose Fourier transform is compactly supported, but whose derivatives do

not necessarily possess a decay restriction. In another instance, a symbolic calculus for cer-

tain Besov spaces is developed and used along with duality arguments and some additional

tools.

Much of the notation used in this work is defined at the moment of implementation;

however, some of the frequently used notation as well as some notation and definitions

standard in the setting of analysis are given in Appendix A.
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Chapter 2

Linear Pseudodifferential Operators

2.1 Introduction

Though the study of bilinear pseudodifferential operators is the principal goal of this work,

a brief review of the theory of linear pseudodifferential operators will provide historical

context and occasional inspiration for the study of bilinear operators.

Definition 2.1.1. Let σ(x, ξ) be a complex-valued, smooth function defined for x, ξ ∈ Rn

called a symbol. The pseudodifferential operator associated to the symbol σ is defined by

Tσf(x) :=

∫

Rn
σ(x, ξ)f̂(ξ)e2πiξ·x dξ, f ∈ S(Rn), x ∈ Rn, (2.1.1)

where f̂ is the Fourier transform of f defined as in (A.3.1).

In the last century, continuing into this one, significant study has been done in both

the theory and applications of these operators. Part of the reason for this interest is due

to the fact that linear pseudodifferential operators occur naturally in the study of partial

differential equations. For example, consider the following linear partial differential operator

in Rn,

P = I −∆, (2.1.2)
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where I is the identity operator and ∆ is the Laplacian operator in Rn. Using the properties

of the Fourier transform, it follows that if u ∈ S(Rn) then

P̂ u(ξ) = (1 + 4π2|ξ|2) û(ξ), ξ ∈ Rn. (2.1.3)

Taking the inverse Fourier transform we obtain that

Pu(x) =

∫

Rn

(
1 + 4π2|ξ|2

)
û(ξ) e2πix·ξdξ, x ∈ Rn.

That is, P = TσP with σP (x, ξ) = 1 + 4π2|ξ|2 for x, ξ ∈ Rn. More generally, given a linear

partial differential operator of degree m ∈ N,

L =
∑

|γ|≤m

Cγ(x)∂γ, x ∈ Rn, (2.1.4)

we have that

L = TσL with σL(x, ξ) =
∑

|γ|≤m

Cγ(x)(2πiξ)γ, x, ξ ∈ Rn. (2.1.5)

In other words, linear partial differential operators are particular cases of pseudodifferential

operators. Going back to the example (2.1.2), suppose we are given a function f defined

in Rn and asked to find u such that Pu = f. Though there are a variety of techniques for

answering these kinds of questions, in this example, we could use (2.1.3) to get that

(1 + 4π2|ξ|2)û(ξ) = f̂(ξ), ξ ∈ Rn.

Then multiplying both sides by (1 + 4π2|ξ|2)−1 and using the inverse Fourier transform

formula yields

u(x) =

∫

Rn

1

(1 + 4π2|ξ|2)
f̂(ξ) e2πix·ξdξ, x ∈ Rn. (2.1.6)
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We then see that the solution u is given by Tσ̃P (f) where

σ̃P (x, ξ) =
1

(1 + 4π2|ξ|2)
=

1

σP (x, ξ)
, x, ξ ∈ Rn.

Therefore, in this particular example both P and its inverse are pseudodifferential operators

with symbols σP and 1/σP , respectively. Note that the simplicity of obtaining the solution

(2.1.6) via the Fourier transform was facilitated by the fact that the linear operator P has

constant coefficients, which leads to the x-independent symbol σP . Such a simple process is

not in general possible if the symbol σL in (2.1.5) does depend on x or if it is x-independent

but vanishes for some ξ. However, while we may not be able to find the exact solution

u as in (2.1.6) for a general linear differential operator L as in (2.1.4), for certain elliptic

differential operators we can get close. Suppose L is an elliptic differential operator written

as a pseudodifferential operator TσL . It is then possible to find an “approximate inverse”

Tσ̃L such that

Tσ̃LTσL + Te1 = TσLTσ̃L + Te2 = I, (2.1.7)

where I is the identity operator and Tej for j = 1, 2 is an error operator that is sufficiently

easy to control. The fact that such an “inverse” operator is available is based on the existence

of a symbolic calculus that will be explored in the next section.

Two other special examples of pseudodifferential operators include multipliers and point-

wise multiplication by the symbol. A pseudodifferential operator is a multiplier when its

symbol depends only on the variable ξ; more precisely, if σ(x, ξ) = σ(ξ) then T̂σ(f) =

σ(ξ)f̂(ξ). For instance, the operator P in (2.1.2) and its inverse are both multiplier op-

erators. More generally, any linear differential operator with constant coefficients and its

inverse (when it exists and under certain assumptions) are linear multipliers. Furthermore,

when σ(x, ξ) = σ(x), then it follows that Tσ(f) = σ(x)f(x) and the operator is given by

pointwise multiplication by the symbol.

In Section 2.2 we will examine in greater detail the symbols of the operators, in partic-

8



ular those that belong to the linear Hörmander classes. We first consider several specific

examples of these symbols and demonstrate how they relate to the corresponding operator

before discussing the properties of the symbol classes in general and especially the symbolic

calculus. In Section 2.3 we divide the study of operators with symbols in the Hörmander

classes into two cases: the first when the order of the symbol is zero, and secondly the

more general case. This division allows us to clearly see the effect of the characteristics of

the symbol on the boundedness properties of the operator. In Section 2.4 we explore the

connections between linear pseudodifferential operators and Calderón-Zygmund singular in-

tegrals which, as was mentioned in Chapter 1, contributed to the evolution of the field. In

the final section of this chapter, Section 2.5, we delve slightly into the idea of loosening the

conditions that define the Hörmander classes and the corresponding effects on the operators.

This section provides a glimpse of the linear results that prompted the work of Chapter 4.

2.2 The Linear Hörmander Classes

In (2.1.1), whether Tσf is well-defined for all f ∈ S(Rn) depends on the properties of

the symbol σ. Once sufficient conditions on σ are assumed so that the integral in (2.1.1)

converges for all f ∈ S(Rn), the primary goal is the study of boundedness properties of Tσ

in the setting of diverse function spaces. In this context we now introduce important classes

of symbols known as the Hörmander classes.

2.2.1 Definition and examples

Definition 2.2.1. Let σ(x, ξ) be a complex-valued, smooth function defined for x, ξ ∈
Rn, m ∈ R, and ρ, δ ∈ [0, 1]. The symbol σ is said to be in the linear Hörmander class Smρ,δ

if for all multi-indices α, β ∈ Nn
0 ,

sup
x,ξ∈Rn

|∂αx∂βξ σ(x, ξ)|(1 + |ξ|)−m−δ|α|+ρ|β| <∞. (2.2.8)
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The value m is called the order of the symbol.

The Hörmander classes were introduced by Hörmander in the 1960’s with the purpose

of studying solutions of certain partial differential operators; for details, we refer the reader

to [24, 25] and references therein. As an example of symbols in these classes, consider the

linear partial differential operator L introduced in Section 2.1 which has symbol

σL(x, ξ) =
∑

|γ|≤m

Cγ(x)(2πiξ)γ, x, ξ ∈ Rn,

where m ∈ N0. It easily follows that if the coefficients Cγ(x) have bounded derivatives of

all orders, then σL ∈ Sm1,0. Another straight-forward example is the multiplier (1 + |ξ|2)
m
2 ,

defined for ξ ∈ Rn and m ∈ R, which belongs to Sm1,0.

As a final example of the Hörmander classes, suppose once again we are faced with the

problem of finding approximate inverses to partial differential operators as in (2.1.7) but

instead of considering just elliptic partial differential operators, we extend the problem to

studying parabolic partial differential operators, for instance, the operator corresponding to

the heat equation. In this context, we will work with symbols where the space and frequency

variables are in Rn+1; x = (t, x′) with t ∈ R and x′ = (x1, · · · , xn) ∈ Rn will play the role of

the space variable, and ξ = (τ, ξ′) with τ ∈ R and ξ′ = (ξ1, · · · , ξn) ∈ Rn will play the role

of the frequency variable. Let H be the heat operator given by

H =
∂

∂t
−

n∑

j=1

∂2

∂x2
j

.

Note that since H has constant coefficients, it can be thought of as a linear multiplier;

indeed, its symbol is independent of the space variable and is given by 2πiτ + 4π2|ξ′|2.
However, this symbol vanishes at the origin. Then to solve the equation Hu = f for some

appropriate datum f we could try to find an approximate inverse H̃ such that HH̃ = I +E

where E is some appropriately small error term. It turns out that the symbols arising in
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this process belong to Hörmander classes of order 0 or −1 and with ρ = 1
2

or δ = 1
2
. For

instance, one could take H̃ = Th where the symbol h is the multiplier in Rn+1 defined by

h(x, ξ) = h(ξ) = (2πiτ + 4π2|ξ′|2)−1ψ(ξ).

Here ψ is a smooth cut-off function that vanishes in a neighborhood of the origin and equals

1 for large (τ, ξ′). It can be shown that the symbol h belongs to the Hörmander class S−1
1/2,0.

By a smooth change of variables, we can transform the underlying space and achieve a new

equation; this change of variables produces a corresponding symbol belonging to the class

S−1
1/2,1/2. Finally, we consider the symbols hi,j given by

hi,j(x, ξ) = hi,j(ξ) = ξiξjh(ξ), for 1 ≤ i, j ≤ n.

The symbols hi,j belong to S0
1/2,0 while with the change of variables from before we can

produce symbols that belong to the class S0
1/2,1/2.

2.2.2 Properties and symbolic calculus

We start by stating some properties of the Hörmander classes which will prove useful.

• Sm1
ρ1,δ1
⊂ Sm2

ρ2,δ2
for m1 ≤ m2, δ1 ≤ δ2 and ρ1 ≥ ρ2.

• If σ ∈ Smρ,δ then ∂αx∂
β
ξ σ ∈ S

m+δ|α|−ρ|β|
ρ,δ . In other words, taking a derivative with respect

to any of the components in x, the space variable, increases the order of the symbol

by δ, while taking a derivative with respect to any of the components in the frequency

variable ξ, decreases the order of the symbol by ρ.

• If σ1 ∈ Sm1
ρ,δ and σ2 ∈ Sm2

ρ,δ , the sum σ1 + σ2 lies in the Hörmander class S
max(m1,m2)
ρ,δ

while we can show via the Leibniz rule that the product σ1σ2 is in the Hörmander

class Sm1+m2
ρ,δ .

11



• Given σ ∈ Smρ,δ and s1, s2 ∈ N0 we define

‖σ‖s1,s2 := sup
|α|≤s1
|β|≤s2

sup
x, ξ∈Rn

|∂αx∂βξ σ(x, ξ)|(1 + |ξ|)−m−δ|α|+ρ|β|.

The topology induced by this family of norms turns Smρ,δ into a Fréchet space.

• Continuity from S(Rn) into S(Rn) : We now prove that for every σ ∈ Smρ,δ, Tσ is a well-

defined operator that maps S(Rn) into S(Rn). If f ∈ S(Rn), since σ(x, ξ) is bounded

by (1 + |ξ|)m uniformly in x and f̂ ∈ S(Rn), the integral defining Tσf(x) converges

absolutely for every x ∈ Rn. Using that (1− Mξ)
Ne2πix·ξ = (1 + 4π2|x|2)Ne2πix·ξ for

N ∈ N0, we get

|Tσf(x)| =
∣∣∣∣
∫

Rn
σ(x, ξ)f̂(ξ)e2πix·ξ dξ

∣∣∣∣

=

∣∣∣∣
∫

Rn
σ(x, ξ)f̂(ξ)

(1− Mξ)
Ne2πix·ξ

(1 + 4π2|x|2)N
dξ

∣∣∣∣

=
1

(1 + 4π2|x|2)N

∣∣∣∣
∫

Rn
(1− Mξ)

N [σ(x, ξ)f̂(ξ)]e2πix·ξ dξ

∣∣∣∣

.
1

(1 + 4π2|x|2)N
‖σ‖0,2N

∑

|γ|,|β|≤M

sup
x∈Rn
|xγ∂βf(x)|

for some M ∈ N0. Because σ ∈ Smρ,δ and f ∈ S(Rn), this last line is finite. We can

proceed similarly to obtain an analogous estimate for ∂αTσ(f) for any α ∈ N0 and

therefore Tσ is continuous from S(Rn) into S(Rn).

• Schwartz kernel: If σ ∈ Smρ,δ, by the previous item and the Schwartz kernel theorem

(see Hörmander [26, p. 129]) there exists a tempered distribution K ∈ S ′(R2n) such

that ∫

Rn
Tσ(f)(x) g(x) dx = 〈K, f ⊗ g〉, f, g ∈ S(Rn),

where (f⊗g)(x, y) = f(x)g(y) for x, y ∈ Rn and 〈·, ·〉 denotes the action of a tempered

distribution on functions of the Schwartz class. Moreover, it can be proved that

12



K(x, y) = k(x, x− y), where k(x, y) = F−1(σ(x, ·))(y) and it holds that

Tσf(x) =

∫

Rn
σ(x, ξ)f̂(ξ)e2πix·ξdξ = 〈F−1(σ(x, ·))(y), f(x− y)〉, x ∈ Rn, f ∈ S(Rn).

The distribution K is called the distributional kernel of Tσ.

Even though we have defined the Hörmander classes for ρ, δ ∈ [0, 1] we are mainly

interested in the theory for the cases 0 ≤ δ ≤ ρ ≤ 1. We refer the reader to Alvarez-

Hounie [1] for the cases δ > ρ.

The symbolic calculus.

Finally, we consider the symbolic calculus of the Hörmander classes, which is presented in

the following theorem first proved by Hörmander in [24, Theorem 2.15, 2.7].

Theorem 2.2.2. Let 0 ≤ δ ≤ ρ ≤ 1 with δ < 1 and m ∈ R.

(i) If σ ∈ Smρ,δ then the adjoint operator of Tσ is a pseudodifferential operator with symbol

in Smρ,δ. More precisely, there exists σ∗ ∈ Smρ,δ such that

∫

Rn
Tσf(x)g(x) dx =

∫

Rn
f(x)Tσ∗g(x) dx, f, g ∈ S(Rn).

Moreover,

σ∗(x, ξ) =
∑

|α|<N

(2πi)−|α|

α!
∂αx∂

α
ξ σ(x, ξ) + rN(x, ξ), N ∈ N0,

where rN ∈ Sm+(δ−ρ)N
ρ,δ .

(ii) If σ1 ∈ Sm1
ρ,δ and σ2 ∈ Sm2

ρ,δ then the composition Tσ1Tσ2 is a pseudodifferential operator

13



with symbol σ in Sm1+m2
ρ,δ . Moreover

σ(x, ξ) =
∑

|α|<N

(2πi)−|α|

α!
∂αξ σ1(x, ξ)∂αxσ2(x, ξ) + rN(x, ξ), N ∈ N0,

where rN ∈ Sm1+m2+(δ−ρ)N
ρ,δ .

We will not give a proof of this theorem here as the proof of its bilinear counterpart

will be presented in Chapter 3. The benefits of the symbolic calculus for pseudodifferential

operators are considerable. With respect to the first part of Theorem 2.2.2, the usefulness

often comes into play when attempting to prove boundedness of operators. For example,

suppose Tσ is bounded from a Banach space X into another Banach space Y for every

σ ∈ Smρ,δ, for some fixed m, ρ, δ with 0 ≤ δ ≤ ρ ≤ 1, δ < 1 and m ∈ R. By the first item

in Theorem 2.2.2, the adjoint of Tσ is a pseudodifferential operator with symbol in Smρ,δ

and therefore the adjoint of Tσ is also bounded from X into Y . By duality we then obtain

that Tσ is bounded from Y ∗ into X∗, where Y ∗ and X∗ are the dual spaces of Y and X,

respectively. The second item of Theorem 2.2.2 is equally valuable. The process described

in Section 2.1 of finding an “approximate inverse” for an elliptic differential operator L relies

on the smoothing properties of the asymptotic expansion of the symbol corresponding to

the composition of two pseudodifferential operators. For more details on the construction

of this inverse one can consult Stein [36, p.266].

2.3 Boundedness of Operators with Symbols in the

Linear Hörmander Classes

The study of boundedness properties of linear pseudodifferential operators with symbols

in the Hörmander classes is partly motivated by the need to obtain estimates of solutions

to certain elliptic equations Lu = f , where L is as in (2.1.4) and f is a given datum. It

14



turns out that under appropriate assumptions, L = TσL where σL belongs to a Hörmander

class, and (2.1.7) holds with a symbol σ̃L that also belongs to a Hörmander class. Roughly

speaking, since the operator Te1 is smooth, it follows that u ∼ Tσ̃Lf. Then boundedness

properties for Tσ̃L imply estimates for the solution u in terms of the datum f .

In this section we will present known results on boundedness of pseudodifferential oper-

ators with symbols in the Hörmander classes. Although continuity properties can be con-

sidered for many different function spaces, including Sobolev, Lipschitz, and Hardy spaces,

we will concentrate the discussion on the boundedness of pseudodifferential operators in the

setting of Lebesgue spaces. As observed in Section 2.2, Tσf is well-defined for f ∈ S(Rn)

and σ belonging to any of the Hörmander classes through the formula (2.1.1). Given two

quasi-Banach spaces X and Y that contain S(Rn) and such that S(Rn) is dense in X, we

will say that Tσ is bounded from X into Y if there exists a constant Cσ such that

‖Tσf‖Y ≤ Cσ ‖f‖X ∀f ∈ S(Rn). (2.3.9)

Since S(Rn) is dense in X, there is a unique extension of the operator to X, which we still

call Tσ, such that (2.3.9) holds for all f ∈ X.

2.3.1 L2 boundedness of operators with symbols of order zero

One of the main results in the theory is the fact that symbols of order zero give rise to

bounded operators on L2(Rn). This is precisely stated in the following theorem.

Theorem 2.3.1. Let 0 ≤ δ ≤ ρ ≤ 1 with δ < 1. If σ ∈ S0
ρ,δ then Tσ is bounded from L2(Rn)

into L2(Rn).

Theorem 2.3.1 was proved by Hörmander in [24] for δ < ρ. The result for δ = ρ, which

implies the one by Hörmander, was proved by Calderón and Vaillancourt in [10] and [11].

We refer the reader to these articles for a proof of Theorem 2.3.1. However, just to illustrate
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once more the usefulness of the symbolic calculus we will give a proof of Theorem 2.3.1 for

the class S0
1,0 following the work of Hörmander in [25].

Remark 2.3.2. We note that the class S0
1,1 is not included in the statement of Theorem 2.3.1.

It turns out that there exists σ ∈ S0
1,1 such that Tσ is not bounded from Lp(Rn) into Lp(Rn)

for any 1 < p < ∞. This can be seen by construction of such a symbols; see for instance

[36, Proposition 2, p.272].

Before starting with the proof of Theorem 2.3.1 for the class S0
1,0, we recall that (see

Section 2.2.2)

Tσf(x) =

∫

Rn
σ(x, ξ)f̂(ξ)e2πix·ξdξ = 〈F−1(σ(x, ·)), f(x− ·)〉, (2.3.10)

where 〈·, ·〉 denotes the action of a tempered distribution on functions in the Schwartz class.

The following lemma establishes decay properties of the kernel of Tσ when σ ∈ Sm1,0. We

refer the reader to [36, p. 241] for its proof.

Lemma 2.3.3. If σ ∈ Sm1,0 then there exists k(x, z) ∈ C∞(Rn × (Rn\{0})) such that

F−1(σ(x, ·))(z) coincides with k for z 6= 0 and

|∂βx∂αz k(x, z)| ≤ Cα,β,N |z|−n−m−|α|−N , z 6= 0, x ∈ Rn,

for all multi-indices α, β ∈ N0 and all N ≥ 0 such that n+m+ |α|+N > 0.

Proof of Theorem 2.3.1 for the class S0
1,0. The proof will proceed in three steps. Bounded-

ness from L2(Rn) into L2(Rn) will first be proved for operators with symbols in S−n−1
1,0 which

is then implemented to show boundedness on L2(Rn) for operators with symbols in Sm1,0 for

any negative m. The final step will use this last result to prove boundedness from L2(Rn)

into L2(Rn) for any operator with symbol in S0
1,0.

Step 1. We will prove that if σ ∈ S−n−1
1,0 then Tσ is bounded from L2(Rn) into L2(Rn). Let

σ ∈ S−n−1
1,0 . Then σ(x, ·) ∈ L1(Rn) and k(x, z) := F−1(σ(x, ·))(z) =

∫
Rn σ(x, ξ)e2πiz·ξ dξ. By
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Lemma 2.3.3, if we consider σ as a symbol of order zero (which we can do by the nesting

property S−n−1
1,0 ⊂ S0

1,0), then

|k(x, z)| ≤ CN |z|−n−N , x, z ∈ Rn, z 6= 0, N ≥ 0. (2.3.11)

Moreover, since σ ∈ S−n−1
1,0 ,

|k(x, z)| ≤ ‖σ‖0,0

∫

Rn
(1 + |ξ|)−n−1 dξ <∞, x, z ∈ Rn.

This and (2.3.11) with N = n imply

|k(x, x− y)| . (1 + |x− y|2)−n, x, y ∈ Rn,

and therefore K(x, y) := k(x, x− y) satisfies

sup
y∈Rn

∫

Rn
|K(x, y)|dx <∞ and sup

x∈Rn

∫

Rn
|K(x, y)|dy <∞.

Applying the Cauchy-Schwarz inequality with respect to the weight |K(x, ·)|,

|Tσf(x)|2 =

∣∣∣∣
∫

Rn
K(x, y)f(y)dy

∣∣∣∣
2

≤
(∫

Rn
|K(x, y)|dy

)(∫

Rn
|K(x, y)||f(y)|2dy

)

≤
(

sup
x∈Rn

∫

Rn
|K(x, y)|dy

)(∫

Rn
|K(x, y)||f(y)|2dy

)
.

Therefore

∫

Rn
|Tσf(x)|2dx ≤

(
sup
x∈Rn

∫

Rn
|K(x, y)|dy

)∫

R2n

|K(x, y)||f(y)|2dy dx

≤
(

sup
x∈Rn

∫

Rn
|K(x, y)|dy

)(
sup
y∈Rn

∫

Rn
|K(x, y)|dx

)∫

Rn
|f(y)|2dy,
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from which the desired result follows.

Step 2. We prove that for any m < 0 and σ ∈ Sm1,0, Tσ is bounded from L2(Rn) into

L2(Rn). By the nested properties of the Hörmander classes,
⋃
m<0 S

m
1,0 =

⋃
k∈Z S

−1/2k

1,0 ; it

is then enough to prove this step for S
−1/2k

1,0 with k ∈ Z. By Step 1, the result is true for

k sufficiently negative and therefore we can proceed by induction on k. Assuming that

operators with symbols in S
−1/2k

1,0 are bounded on L2(Rn), we will prove boundedness on

L2(Rn) for operators with symbols in S
−1/2k+1

1,0 .

Let σ ∈ S
−1/2k+1

1,0 . By Theorem 2.2.2, the symbol of the composition Tσ∗Tσ belongs to

S
−1/2k

1,0 and therefore

‖Tσf‖2
L2 =

∫

Rn
Tσf(x)Tσf(x) dx =

∫

Rn
f(x)Tσ∗Tσf(x) dx ≤ ‖f‖L2 ‖Tσ∗Tσf‖L2 . ‖f‖2

L2 ,

where the induction hypothesis was used in the last inequality.

Step 3. We now prove boundedness on L2(Rn) for any operator with symbol in S0
1,0. Let

σ ∈ S0
1,0. We can easily check that for F ∈ C∞(C), F (σ) ∈ S0

1,0. We consider F ∈ C∞(C)

such that F (z) = (1 + z)1/2 for z ∈ (0,∞) and set A := supx,ξ∈Rn |σ(x, ξ)|. The symbol

A2 − |σ(x, ξ)|2 is non-negative for all x, ξ ∈ Rn and belongs to S0
1,0. Then a(x, ξ) :=

F (A2 − |σ(x, ξ)|2) is in S0
1,0 as well. From Theorem 2.2.2

σ∗ = σ̄ + rσ∗ and a∗ = ā+ ra∗ ,

where rσ∗ and ra∗ are symbols in S−1
1,0 , and the symbols of Tσ∗Tσ and Ta∗Ta are given,

respectively, by

σσ∗ + rσσ∗ and aa∗ + raa∗ ,

where rσσ∗ and raa∗ are symbols in S−1
1,0 . Putting everything together, we conclude that the
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symbol of Ta∗Ta + Tσ∗Tσ is given by

σ(σ̄ + rσ∗) + rσσ∗ + a(ā+ ra∗) + raa∗ = |σ|2 + |a|2 + r = 1 + A2 + r,

where r is a symbol in S−1
1,0 . Therefore

Ta∗Ta + Tσ∗Tσ = (1 + A2)I + Tr,

where I is the identity operator and r ∈ S−1
1,0 . Then

‖Tσf‖2
L2 ≤ ‖Tσf‖2

L2 + ‖Taf‖2
L2 =

∫

Rn
f(x)Tσ∗Tσf(x) dx+

∫

Rn
f(x)Ta∗Taf(x) dx

≤ ‖f‖L2 ‖(Tσ∗Tσ + Ta∗Ta)f‖L2 = ‖f‖L2

∥∥(1 + A2)f + Trf
∥∥
L2

≤ ‖f‖L2 ((1 + A2) ‖f‖L2 + C ‖f‖L2) ∼ ‖f‖2
L2 ,

where in the last inequality we have used the result of Step 2 applied to r. The desired

boundedness is then obtained.

2.3.2 Lp boundedness of operators with symbols of order m

In this section we briefly present the complete result in regards to Lp boundedness properties

of operators with symbols in the Hörmander classes.

Theorem 2.3.4. Let 0 ≤ δ ≤ ρ ≤ 1, δ < 1 and 1 < p < ∞. Tσ is bounded from Lp(Rn)

into Lp(Rn) for every σ ∈ Smρ,δ if and only if m ≤ n(ρ− 1)
∣∣∣1p − 1

2

∣∣∣ .

The full statement of this theorem was the work of many authors. Boundedness on

Lp(Rn) for operators with symbols in Smρ,δ withm < n(ρ−1)
∣∣∣1p − 1

2

∣∣∣ was proved by Hirschman

[23] and Wainger [41] for constant-coefficient symbols and by Hörmander [24] for general

symbols. The fact that operators with symbols in Smρ,δ where m > n(ρ−1)
∣∣∣1p − 1

2

∣∣∣ may fail to

be bounded on Lp(Rn) is due to a counterexample of Hardy-Littlewood-Hirschman-Wainger.
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Finally, boundedness for operators with symbols in Smρ,δ where m = n(ρ−1)
∣∣∣1p − 1

2

∣∣∣ is proved

by interpolation using the following key result corresponding to the endpoints p = 1 and

p = ∞, proved for multipliers by Fefferman and Stein in [16] and for the general case by

Fefferman in [15]. See also Section 2.3.1 for the case m = 0.

Theorem 2.3.5. Let 0 ≤ δ ≤ ρ ≤ 1, δ < 1. If σ ∈ S
n(ρ−1)/2
ρ,δ then Tσ is bounded from

L∞(Rn) into BMO(Rn) and from the Hardy space H1(Rn) into L1(Rn).

We note that the index n
2
(ρ − 1) in Theorem 2.3.5 is the value of n(ρ − 1)|1

p
− 1

2
| in

Theorem 2.3.4 when p = 1 or p = ∞. It can be proved that operators with symbols in

S
n(ρ−1)/2
ρ,δ with ρ and δ as in Theorem 2.3.4 are not necessarily bounded from L1(Rn) into

L1(Rn) or from L∞(Rn) into L∞(Rn). However, Theorem 2.3.5 is a good substitute for the

endpoint p = 1 and p = ∞ since H1(Rn) ↪→ L1(Rn) and L∞(Rn) ↪→ BMO(Rn). We refer

the reader to the appendix for the definitions of H1(Rn) and BMO(Rn).

2.4 Connections to Calderón-Zygmund Theory

While the study of pseudodifferential operators is motivated partially because of its use-

fulness in the theory of partial differential equations, it is also important because of the

connections to singular integral operators and, in particular, to the Calderón-Zygmund the-

ory. When Calderón-Zygmund singular integrals were first studied, it became apparent

that an alternative approach would be to examine these operators on the frequency side

by means of the Fourier transform. With this idea in mind the implementation of pseudo-

differential operators became useful and their study necessary. Along with growing interest

in pseudodifferential operators, Calderón-Zygmund theory expanded to include a variety of

other ideas. See for instance the books [14, 17, 36].

In this section we give the definition of standard kernels and Calderón-Zygmund opera-

tors and present the size and decay properties possessed by the kernels of pseudodifferential
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operators with symbols in the Hörmander classes. Finally we note some connections between

these two classes of operators.

Definition 2.4.1. A linear operator T is a Calderón-Zygmund operator if

(i) T is bounded on L2(Rn);

(ii) there exists a standard kernel K such that for f ∈ C∞(Rn) with compact support

Tf(x) =

∫

Rn
K(x, y)f(y) dy, x 6∈ supp(f), (2.4.12)

where K is called a standard kernel if

|K(x, y)| . 1

|x− y|n , ∀x, y ∈ Rn, x 6= y,

and there exists δ > 0 such that

|K(x, y)−K(x, z)| . |y − z|δ
|x− y|n+δ

if |x− y| > 2|y − z|,

and

|K(x, y)−K(w, y)| . |x− w|δ
|x− y|n+δ

if |x− y| > 2|x− w|.

Though the definition of a Calderón-Zygmund operator requires that T be bounded on

L2(Rn), an alternative but equivalent definition could instead require that the operator be

bounded on Lp(Rn) for some 1 < p <∞. Indeed, the following theorem holds:

Theorem 2.4.2. If T is a Calderón-Zygmund operator, then T is bounded from Lp(Rn) into

Lp(Rn) for any 1 < p <∞, from H1(Rn) into L1(Rn), and from L∞(Rn) into BMO(Rn).

Estimates for the kernel of pseudodifferential operators with symbols in the Hörmander

classes are given by the following result due to Alvarez and Hounie in [1].
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Theorem 2.4.3. Let σ ∈ Smρ,δ with 0 < ρ ≤ 1, 0 ≤ δ < 1, m ∈ R, and let K(x, y) denote

the distributional kernel of the associated linear pseudodifferential operator Tσ defined by

K(x, y) := F−1(σ(x, ·))(x− y).

(i) (Pseudo-local property.) The distribution K is smooth outside the diagonal. Moreover,

given α, β ∈ Nn
0 there exists N0 ∈ N0 such that for each N ≥ N0,

sup
x 6=y
|x− y|N |∂αx∂βyK(x, y)| <∞.

(ii) Suppose that σ has compact support in ξ uniformly with respect to x. Then K is

smooth, and given α, β ∈ Nn
0 , N ∈ N0,

|∂αx∂βyK(x, y)| . (1 + |x− y|)−N , ∀x, y ∈ Rn.

(iii) Suppose that m + M + n < 0 for some M ∈ N0. Then K is a bounded continuous

function with bounded continuous derivatives of order less than or equal to M .

(iv) Suppose that m+M + n = 0 for some M ∈ N0. Then

sup
|α+β|=M

|∂αx∂βyK(x, y)| . | log |x− y||, ∀x, y ∈ Rn, x 6= y.

(v) Suppose that m+M + n > 0 for some M ∈ N0. Then

sup
|α+β|=M

|∂αx∂βyK(x, y)| . |x− y|−(m+M+n)/ρ, ∀x, y ∈ Rn, x 6= y.

We note that using items (i) and (v), we can prove that if σ ∈ Smρ,δ with 0 < ρ ≤
1, 0 ≤ δ < 1 and m ≤ (ρ − 1)(n + 1), then Tσ has a standard kernel. If in addition we

assume that m ≤ n(ρ − 1)
∣∣∣1p − 1

2

∣∣∣ where 0 ≤ δ ≤ ρ ≤ 1 with δ < 1 and 1 < p < ∞,
then by Theorem 2.3.4, the operator Tσ is bounded on Lp(Rn) and is therefore a Calderón-
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Zygmund operator. In particular, operators with symbols in the class S0
1,δ with 0 ≤ δ < 1

are Calderón-Zygmund operators; by way of contrast, operators with symbols in S0
1,1 do

have standard kernels, but are not necessarily Calderón-Zygmund operators since they may

fail to be bounded on Lebesgue spaces (see Remark 2.3.2).

We note that due to Theorem 2.3.4 and Theorem 2.4.2 many of the Hörmander classes

give rise to operators that are not Calderón-Zygmund operators. In this sense Hörmander

classes go beyond the Calderón-Zygmund theory and therefore the study of boundedness

properties of Tσ with σ ∈ Smρ,δ in the setting of Lebesgue spaces is legitimate.

2.5 Boundedness and the Smoothness of the Symbols

While the definition of symbols in the Hörmander classes requires that symbols be infinitely

differentiable and satisfy (2.2.8) for all multi-indices α and β, the proofs for the boundedness

of the corresponding operators do not actually require infinitely many derivatives be avail-

able. Often the proofs simply ask for N derivatives satisfying (2.2.8) for some sufficiently

large N . The exact value of N may be irrelevant to the proofs; nonetheless, knowing the

minimal regularity of a symbol sufficient for boundedness is an intriguing question in its own

right and turns out to be useful in the applications. Work done by many authors includ-

ing Coifman and Meyer [12], Cordes [13], Miyachi [29], Muramatu [32], Sugimoto [37, 38],

Boulkhemair [8], and Tomita [39] have all contributed to this end.

For instance, in regards to the class S0
0,0, if (2.2.8) is satisfied for |α|, |β| ≤ [n

2
] + 1

(Cordes [13, Theorem B′1]) or for |α| ≤ [n
2
] + 1 and β ∈ {0, 1, 2}n (Coifman-Meyer [12,

Corollary 3]), or for α, β ∈ {0, 1}n (Cordes [13], Coifman-Meyer [12, Theorem 3])), then the

corresponding pseudodifferential operator is bounded on L2(Rn). The order [n
2
] + 1 turns

out to be critical as counterexamples show (see Coifman-Meyer [12, p. 12], Bourdaud-

Meyer [9]). Miyachi [29], Muramatu [32], and Sugimoto [37] improved these results by

considering fractional derivatives in terms of Besov spaces. Analogous results in connection
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to the classes Sm0,0, m ≤ −n|1p − 1
2
|, were obtained in relation to boundedness on Lp(Rn),

1 < p < ∞, by Miyachi [29], Sugimoto [38] and Tomita [39] with symbols belonging to

certain Besov classes. As a consequence, operators with symbols in Sm0,0 with m ≤ −n|1
p
− 1

2
|

are bounded on Lp(Rn) if the Hörmander condition (2.2.8) is satisfied for multi-indices α

and β such that |α| ≤ [min(n
2
, n
p
)] + 1 and |β| ≤ [max(n

2
, n
p
)] + 1, where [s] denotes integer

part of s ∈ R.
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Chapter 3

Bilinear Operators with Symbols in

the Hörmander Classes

3.1 Introduction

In this chapter we begin examining bilinear pseudodifferential operators; specifically, those

operators which have symbols that belong to the bilinear Hörmander classes. To begin, we

have the following definition.

Definition 3.1.1. Let σ(x, ξ, η) be a complex-valued, smooth function defined for x, ξ, η ∈ Rn

called a symbol. The bilinear pseudodifferential operator associated to the symbol σ is

defined by

Tσ(f, g)(x) :=

∫

R2n

σ(x, ξ, η) f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη, f, g ∈ S(Rn), x ∈ Rn. (3.1.1)

Appropriate assumptions on σ will be assumed so that the integral in (3.1.1) converges

absolutely for all f, g ∈ S(Rn). Boundedness properties as well as applications of bilinear

pseudodifferential operators will depend on the characteristics of their symbols. Before

considering the properties of σ in greater detail, we present a few simple examples that
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come from specific symbols.

• If σ is independent of ξ and η so that σ(x, ξ, η) = σ(x), then

Tσ(f, g)(x) = σ(x)f(x)g(x), x ∈ Rn.

• If σ is x-independent so that σ(x, ξ, η) = σ(ξ, η), then

Tσ(f, g)(x) =

∫

R2n

σ(ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η)dξ dη, x ∈ Rn,

in which case the bilinear operator is called a bilinear multiplier in analogy to the

linear case where the operator corresponds with multiplication by the symbol on the

Fourier side.

• If σ(x, ξ, η) = b(x)(2πiξ)α(2πiη)β, where α, β ∈ Nn
0 , then

Tσ(f, g)(x) = b(x) ∂αf(x)∂βg(x), x ∈ Rn.

In the next section, we define the bilinear Hörmander classes, present their properties,

and establish the symbolic calculus. The symbolic calculus is useful in proving boundedness

properties of the corresponding bilinear pseudodifferential operators which we consider in

Section 3.3 first on Lebesgue spaces and then on Hardy spaces and BMO. We will examine

several interesting cases that are unique to symbols of order zero and then complete the

picture with symbols of any order m. In the final section of Chapter 3, we briefly explore

the connections between bilinear pseudodifferential operators and the bilinear Calderón-

Zygmund theory.
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3.2 The Bilinear Hörmander Classes

As in the linear case, one possible way of classifying symbols is by their size and decay

properties. In this section, we define the bilinear Hörmander classes and present several of

their useful properties.

Definition 3.2.1. Let σ(x, ξ, η) be a complex-valued, smooth function defined for x, ξ, η ∈
Rn, m ∈ R, and ρ, δ ∈ [0, 1]. The symbol σ is said to be in the bilinear Hörmander class

BSmρ,δ if for all multi-indices α, β, γ ∈ Nn
0 ,

sup
x, ξ, η ∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m−δ|α|+ρ(|β|+|γ|) <∞ (3.2.2)

where 〈ξ, η〉 := 1 + |ξ|+ |η|. The value m is called the order of the symbol.

We examine now a few of the basic properties of the bilinear Hörmander symbols. Most

of these are straightforward applications of the definition and are analogous to those of their

linear counterparts.

• The bilinear Hörmander classes are nested in the following way:

• If m1 ≤ m2 then BSm1
ρ,δ ⊆ BSm2

ρ,δ .

• If δ1 ≤ δ2 then BSmρ,δ1 ⊆ BSmρ,δ2 .

• If ρ1 ≤ ρ2 then BSmρ1,δ ⊇ BSmρ2,δ.

• If σ1 ∈ BSm1
ρ,δ and σ2 ∈ BSm2

ρ,δ then σ1 + σ2 ∈ BSmax(m1,m2)
ρ,δ and σ1σ2 ∈ BSm1+m2

ρ,δ .

• If σ ∈ BSmρ,δ and α, β, γ ∈ Nn
0 , then ∂αx∂

β
ξ ∂

γ
ησ ∈ BS

m+δ|α|−ρ(|β|+|γ|)
ρ,δ ; that is, taking

a derivative with respect to any of the components of x increases the order of the

symbol by δ, while taking a derivative with respect to any component of the frequency

variables ξ or η decreases the order of the symbol by ρ.

• It follows as in the linear case that if σ is in any of the Hörmander classes then Tσ

is continuous from S(Rn) × S(Rn) into S(Rn). Moreover, a version of the Schwartz
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kernel theorem gives that there exists K ∈ S ′(R3n) such that

∫

Rn
Tσ(f, g)(x)h(x) dx = 〈K,h⊗ f ⊗ g〉, f, g, h ∈ S(Rn),

where (h⊗ f ⊗ g)(x, y, z) = h(x)f(y)g(z) for x, y, z ∈ Rn and 〈·, ·〉 denotes the action

of a tempered distribution on functions of the Schwartz class. It can be proved that

K(x, y, z) = k(x, x− y, x− z), where k(x, y, z) = F−1(σ(x, ·, ·))(y, z) and it holds that

Tσ(f, g)(x) =

∫

R2n

σ(x, ξ, η) f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

= 〈F−1(σ(x, ·, ·))(y, z), f(x− y)g(x− z)〉,

for x ∈ Rn and f, g ∈ S(Rn). The distribution K is called the distributional kernel of

the operator Tσ.

• Given s1, s2 ∈ N0 and σ ∈ BSmρ,δ we define

‖σ‖s1,s2 := sup
|α|≤s1
|β|, |γ|≤s2

sup
x,ξ,η ∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m−δ|α|+ρ(|β|+|γ|). (3.2.3)

The family of norms {‖σ‖s1,s2}s1,s2∈N0 makes BSmρ,δ into a Fréchet space. Note that the

notation for these norms does not explicitly show the indices m, ρ and δ; the values

of these parameters will be clear from the context.

Interestingly enough, while the definition of the Hörmander classes requires that (3.2.2)

be satisfied for derivatives of all orders, this level of smoothness in the symbol is often

unnecessary to prove boundedness properties of the corresponding operator. When this is

the case, all that is required is that ‖σ‖s1,s2 <∞ for some s1, s2 ∈ N0 sufficiently large. The

exact number of derivatives satisfying (3.2.2) that is sufficient for boundedness is part of

the topic discussed in Chapter 4.
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3.2.1 Symbolic calculus

In this section we present the symbolic calculus for the bilinear Hörmander classes. This

symbolic calculus provides information about the symbols of the transposes of Tσ when

σ belongs to a bilinear Hörmander class. Because the operator is bilinear, there are two

transposes T ∗1σ and T ∗2σ of Tσ to be considered. These operators satisfy

∫

Rn
Tσ(f, g)(x)h(x) dx =

∫

Rn
T ∗1σ (h, g)(x) f(x) dx =

∫

Rn
T ∗2σ (f, h)(x) g(x) dx, f, g ∈ S(Rn).

In the special case that the symbol σ does not depend on the space variable x, it easily

follows that T ∗1σ and T ∗2σ have symbols σ(−ξ − η, η) and σ(ξ,−ξ − η), respectively.

Bényi, Maldonado, Naibo, and Torres proved in [4] that the bilinear Hörmander classes

are closed under transpositions in general; they also developed the asymptotic expansions

for the corresponding symbols of the transposes. More precisely,

Theorem 3.2.2. Let m ∈ R, 0 ≤ δ ≤ ρ ≤ 1, δ < 1, and σ ∈ BSmρ,δ.

(i) For j = 1, 2, T ∗jσ = Tσ∗j , where σ∗j ∈ BSmρ,δ.

(ii) For N ∈ N and δ < ρ, σ∗1 and σ∗2 satisfy

σ∗1 −
∑

|α|<N

(2πi)|α|

α!
∂αx∂

α
ξ (σ(x,−ξ − η, η)) ∈ BSm+(δ−ρ)N

ρ,δ

and

σ∗2 −
∑

|α|<N

(2πi)|α|

α!
∂αx∂

α
η (σ(x, ξ,−ξ − η)) ∈ BSm+(δ−ρ)N

ρ,δ .

By way of contrast with the results in Theorem 3.2.2, the classes BS0
1,1 are not men-

tioned in this theorem because they are not closed under transposition. The proof of this

statement will follow as a corollary to the boundedness properties discussed in Section 3.3

(See Remark 3.3.1). A proof for part (i) of Theorem 3.2.2 will be given following the work

of Bényi et al.; for a proof for part (ii) see their result in [4, Theorem 2].
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Proof of Theorem 3.2.2, part(i). We will prove the result for symbols with compact support.

Since the estimates obtained will be independent of the support of the symbol, a limiting

argument can be used to get the result for general symbols. We restrict our attention to

the first transpose as the argument is completely analogous for the second transpose.

Fix m ∈ R and 0 ≤ δ ≤ ρ ≤ 1 with δ < 1; let σ ∈ BSmρ,δ and f, g ∈ S(Rn). Using Fubini’s

theorem and an appropriate change of variables we obtain

〈T ∗1σ (h, g), f〉 = 〈Tσ(f, g), h〉 =

∫

Rn
Tσ(f, g)(x)h(x) dx

=

∫

R3n

σ(x, ξ, η)f̂(ξ)ĝ(η)h(x)e2πix·(ξ+η)dξ dη dx

=

∫

Rn

[∫

R3n

σ(y,−ξ − η, η)h(y)ĝ(η)e2πiξ·(x−y)e2πix·η dy dξ dη

]
f(x) dx.

Setting τ(y, ξ, η) := σ(y,−ξ − η, η) we then have

T ∗1σ (h, g)(x) =

∫

R3n

τ(y, ξ, η)h(y)ĝ(η)e2πiξ·(x−y)e2πix·η dy dξ dη,

and it easily follows that τ ∈ BSmρ,δ since σ ∈ BSmρ,δ, that is,

|∂αy ∂βξ ∂γη τ(y, ξ, η)| . 〈ξ, η〉m+δ|α|−ρ(|β|+|γ|). (3.2.4)

By an appropriate change of variables and Fubini’s Theorem we can rewrite the operator

T ∗1σ so that its symbol is given by

a(x, ξ, η) =

∫

R2n

τ(x+ y, z + ξ, η)e−2πiz·y dy dz. (3.2.5)

We then must show that a ∈ BSmρ,δ. By (3.2.4) and since

∂αx∂
β
ξ ∂

γ
ηa(x, ξ, η) =

∫

R2n

∂αx∂
β
ξ ∂

γ
η τ(x+ y, z + ξ, η)e−2πiz·y dy dz,
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it is enough to work with α = β = γ = 0.

Fixing ξ, η ∈ Rn and setting A := 〈ξ, η〉, we will prove that

|a(x, ξ, η)| =
∣∣∣∣
∫

R2n

τ(x+ y, z + ξ, η)e−2πiz·y dy dz

∣∣∣∣ . Am

with a constant independent of the support of σ. To that end, we will divide the integral

over z ∈ Rn into three regions depending on the size of |z| by defining the sets

Ω1 = {z : |z| ≤ Aδ

2
}, Ω2 = {z :

Aδ

2
≤ |z| ≤ A

2
}, Ω3 = {z : |z| ≥ A

2
}.

Then

a(x, ξ, η) =

∫

Ω1

∫

y

· · ·+
∫

Ω2

∫

y

· · ·+
∫

Ω3

∫

y

· · · =: I1 + I2 + I3

so that we need to prove |Ij| . Am for j = 1, 2, 3.

Before proceeding to the estimates on the Ij’s we present some preliminary calculations.

For l0 ∈ N with 2l0 > n and since e−2πiz·y = (1 + 4π2A2δ|y|2)−l0(1 + A2δ(− Mz))
l0e−2πiz·y,

integration by parts gives

a(x, ξ, η) =

∫

R2n

q(x, y, z, ξ, η)e−2πiz·y dy dz

where

q(x, y, z, ξ, η) =
(1 + A2δ(− Mz))

l0τ(x+ y, z + ξ, η)

(1 + 4π2A2δ|y|2)l0
.

Next we proceed to estimate (− My)
lq for l ∈ N0. Note that

(− My)
lq =

∑

|α|=2l
αieven

Cα∂
α
y q(x, y, z, ξ, η) (3.2.6)

=
∑

|α|=2l
αi even

∑

β≤α

Cαβ∂
β
y ((1 + 4π2A2δ|y|2)−l0)∂α−βy ((1 + A2δ(− Mz))

l0τ(x+ y, z + ξ, η)).
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We will get a bound by a power of A on the β derivatives of the first factor and the α − β
derivatives of the second factor, in each term of the sum. For the β derivatives of the first

factor, we have that

∣∣∂βy ((1 + 4π2A2δ|y|2)−l0)
∣∣ ≤ Cβl0A

δ|β|(1 + A2δ|y|2)−l0 . (3.2.7)

For the second factor we consider Pl0 = {γ = (γ1, · · ·, γn) : γi is even and |γ| = 2j, j =

0, · · ·, l0} and get

(1 + A2δ(− Mz))
l0τ(x+ y, z + ξ, η) =

∑

γ∈Pl0

CγA
δ|γ|∂γξ τ(x+ y, z + ξ, η).

Using that τ ∈ BSmρ,δ, it follows that

∣∣∂α−βy ((1 + A2δ(− Mz))
l0 τ(x+ y, z + ξ, η))|

≤
∑

γ∈Pl0

CγαβA
δ|γ|(1 + |z + ξ|+ |η|)m+δ(|α|−|β|)−ρ|γ|. (3.2.8)

Putting (3.2.6), (3.2.7), and (3.2.8) together we get

|(− My)
lq| . (3.2.9)

(1 + A2δ|y|2)−l0
∑

|α|=2l
αi even

∑

β≤α

Cαβl0A
δ|β|

∑

γ∈Pl0

CγαβA
δ|γ|(1 + |z + ξ|+ |η|)m+δ(|α|−|β|)−ρ|γ|.

As a final step before estimating each of the three integrals Ij we note that

1

2
A ≤ 1 + |z + ξ|+ |η| ≤ 3

2
A, z ∈ Ω1 ∪ Ω2, (3.2.10)

and

1 + |z + ξ|+ |η| ≤ A+ |z| ≤ 3|z|, z ∈ Ω3. (3.2.11)
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For I1 we use the estimate (3.2.9) with l = 0. The inequalities from (3.2.10) and the fact

that δ − ρ ≤ 0 give for z ∈ Ω1,

|q| ≤ (1 + A2δ|y|2)−l0
∑

γ∈Pl0

CγA
δ|γ|(1 + |z + ξ|+ |η|)m−ρ|γ|

≤ (1 + A2δ|y|2)−l0
∑

γ∈Pl0

CγA
m+(δ−ρ)|γ| . (1 + A2δ|y|2)−l0Am.

Therefore, since 2l0 > n,

|I1| . Am
∫

Ω1

∫

y

1

(1 + A2δ|y|2)l0
dy dz ∼ Am.

For I2, integration by parts gives

∫

y

q(x, y, z, ξ, η)e−2πiz·y dy =
1

|z|2l0
∫

y

q(x, y, z, ξ, η)(− My)
l0e−2πiz·y dy

=
1

|z|2l0
∫

y

(− My)
l0(q(x, y, z, ξ, η))e−2πiz·y dy.

Using (3.2.9) with l = l0, (3.2.10), and δ − ρ ≤ 0 we get, for z ∈ Ω2,

∣∣(− My)
l0q
∣∣ ≤ (1 + A2δ|y|2)−l0

∑

|α|=2l0
αi even

∑

β≤α

Cαβl0A
δ|β|

∑

γ∈Pl0

CγαβA
δ|γ|Am+δ(|α|−|β|)−ρ|γ|

≤ (1 + A2δ|y|2)−l0
∑

|α|=2l0
αi even

∑

β≤α

Cαβl0
∑

γ∈Pl0

CγαβA
m+δ|α|+(δ−ρ)|γ|

.
Am+2l0δ

(1 + A2δ|y|2)l0
.

Since 2l0 > n, it follows that

|I2| ≤
∫

Ω2

1

|z|2l0
∫

y

Am+2l0δ

(1 + A2δ|y|2)l0
dy dz . Am+2l0δ−δn

∫

|z|≥Aδ
2

|z|−2l0 dz ∼ Am.
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For I3 we will choose l ∈ N as necessary later. Again, integration by parts gives

∫

y

q(x, y, z, ξ, η)e−2πix·y dy =
1

|z|2l
∫

y

q(x, y, z, ξ, η)(− My)
le−2πiz·y dy

=
1

|z|2l
∫

y

(− My)
l(q(x, y, z, ξ, η))e−2πiz·y dy.

Using (3.2.9) and (3.2.11), and defining m+ = max(0,m), we get, for z ∈ Ω3,

|(− My)
lq |

. (1 + A2δ|y|2)−l0
∑

|α|=2l
αi even

∑

β≤α

Cαβl0A
δ|β|

∑

γ∈Pl0

CγαβA
δ|γ|(1 + |z + ξ|+ |η|)m+δ(|α|−|β|)−ρ|γ|

. (1 + A2δ|y|2)−l0
∑

|α|=2l
αi even

∑

β≤α

Cαβl0
∑

γ∈Pl0

Cγαβ|z|δ(|β|+|γ|)|z|m++δ(|α|−|β|)

. (1 + A2δ|y|2)−l0|z|m++δ(2l+2l0).

Then

|I3| .
∫

Ω3

1

|z|2l
∫

y

(1 + A2δ|y|2)−l0|z|m++δ(2l+2l0) dy dz

∼
∫

|z|≥A
2

|z|m++2l0δ+2l(δ−1) dz

∫

y

(1 + A2δ|y|2)−l0 dy

∼ A−δn
∫

|z|≥A
2

|z|m++2l0δ+2l(δ−1) dz.

Since 0 ≤ δ < 1 we can choose l ∈ N sufficiently large so that

m+ + 2l0δ + 2l(δ − 1) < −n and − δn+m+ + 2l0δ + 2l(δ − 1) + n < m.

Finally,

|I3| . A−δn+m++2l0δ+2l(δ−1)+n ≤ Am.
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Remark 3.2.3. It is important to recognize just how valuable this theorem is. We will see

symbolic calculus referenced often in the next section; in such a situation, we mean an

application of Theorem 3.2.2. As a concrete example of how the symbolic calculus is used

in the bilinear setting, fix m ∈ R, 0 ≤ δ ≤ ρ ≤ with δ < 1, 1 ≤ p1, p2, p ≤ ∞ and suppose

that Tσ is bounded from Lp1(Rn)×Lp2(Rn) into Lp(Rn) for all σ ∈ BSmρ,δ. By Theorem 3.2.2

both Tσ∗1 and Tσ∗2 are also bounded from Lp1(Rn)× Lp2(Rn) into Lp(Rn) for all σ ∈ BSmρ,δ.
We can then use duality to infer that Tσ is bounded from Lp

′
(Rn) × Lp2(Rn) into Lp

′
1(Rn)

and from Lp1(Rn) × Lp′(Rn) into Lp
′
2(Rn) for all σ ∈ BSmρ,δ. Finally, we can interpolate to

get boundedness of Tσ, for all σ ∈ BSmρ,δ, from La(Rn) × Lb(Rn) into Lc(Rn) for any a, b,

c such that the point ( 1
a
, 1
b
, 1
c
) is in the convex hull of the points ( 1

p1
, 1
p2
, 1
p
), ( 1

p′
, 1
p2
, 1
p′1

) and

( 1
p1
, 1
p′
, 1
p′2

).

3.3 Boundedness of Operators with Symbols in the Bi-

linear Hörmander Classes

We next consider the important question of boundedness on Lebesgue spaces for bilinear

pseudodifferential operators with symbols in the bilinear Hörmander classes. Continuity

properties of these operators in the context of other function spaces such as Besov and

Triebel-Lizorkin spaces, Hardy spaces, and BMO can also be found in the literature; see for

instance Bényi [2], Miyachi-Tomita [30], Naibo [33, 34] and references therein. However, we

will mostly restrict our attention in this section to the results for Lebesgue spaces by first

considering the case when the symbols are of order zero and then broadening our perspective

to symbols of any order. For completeness, a brief account of boundedness results in the

context of Hardy spaces and BMO is included at the end of this section.

As discussed in Section 3.2, Tσ is continuous from S(Rn) × S(Rn) into S(Rn) for any
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symbol σ in a Hörmander class. Given quasi-Banach spaces X, Y and Z that contain S(Rn)

and such that S(Rn) is dense in X and Y , we will say that Tσ is bounded from X × Y into

Z if there exists a constant Cσ such that

‖Tσ(f, g)‖Z ≤ Cσ ‖f‖X ‖g‖Y , ∀f, g ∈ S(Rn). (3.3.12)

Since S(Rn) is dense in X and Y , there is a unique extension of the operator to X × Y ,

which we still call Tσ, such that (3.3.12) holds for all f ∈ X and g ∈ Y.

3.3.1 Symbols of order zero and Lebesgue spaces

The discussion of boundedness on Lebesgue spaces of bilinear pseudodifferential operators

with symbols in the Hörmander classes commences quite naturally with operators whose

corresponding symbols are of order zero. In fact, we begin similarly to the way the theory

itself developed. In this section we will see that the classes BS0
1,1 and BS0

ρ,δ for 0 ≤ δ ≤ 1 and

0 ≤ ρ < 1 contain symbols that produce unbounded operators in the setting of Lebesgue

spaces. In constast, every operator with symbol in BS0
1,δ, 0 ≤ δ < 1, is bounded from

Lp1(Rn) × Lp2(Rn) into Lp(Rn) for any 1 < p1, p2 < ∞ and 1
2
< p < ∞ with 1

p1
+ 1

p2
= 1

p
;

these classes are discussed in Section 3.3.2.

Bilinear Hörmander classes of order zero showcase both similarities and differences with

their linear counterparts. On the one hand, the class S0
1,1, like BS0

1,1, contains some symbols

whose associated operators are not bounded on Lebesgue spaces. Moreover both the linear

classes S0
1,δ and the bilinear classes BS0

1,δ with 0 ≤ δ ≤ 1 are connected to the linear and

bilinear Calderón-Zygmund theories, respectively; and for 0 ≤ δ < 1 the corresponding op-

erators are bounded on Lebesgue spaces. On the other hand, as was stated in Theorem 2.3.1,

the operators with symbols in S0
ρ,δ, 0 ≤ δ ≤ ρ < 1, are bounded from L2(Rn) into L2(Rn),

while Theorem 3.3.2 below states that it is possible to have operators with symbols in BS0
ρ,δ

that are unbounded on Lebesgue spaces.
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The class BS0
1,1.

In [5], Bényi and Torres, mirroring work done in the linear case, proved that there are

symbols in BS0
1,1 for which the corresponding pseudodifferential operators are not bounded

from Lp1(Rn)×Lp2(Rn) into Lp(Rn) for any 1 < p1, p2 <∞ and 1
2
< p <∞ with 1

p1
+ 1

p2
= 1

p
.

The specific example below is given in the case when n = 1 but can be generalized to other

dimensions.

Let ψ ∈ S(R) be such that supp(ψ̂) ⊂ {ξ ∈ R : 2−1/2 ≤ |ξ| ≤ 21/2} and ψ̂(ξ) ≡ 1 for

2−1/4 ≤ |ξ| ≤ 21/4 and define

σ(x, ξ, η) :=
∞∑

j=1

e−2j+1πixψ̂(2−j(ξ2 + η2)1/2). (3.3.13)

Because the support of the function ψ̂(2−j(ξ2 +η2)1/2) is contained in {(ξ, η) ∈ R2 : 2j−1/2 ≤
(ξ2 + η2)1/2 ≤ 2j+1/2}, at most one term in the sum (3.3.13) is nonzero for each (ξ, η). This

allows one to easily verify that σ ∈ BS0
1,1.

We now consider f ∈ S(R) such that f̂ is real-valued and supported in |ξ| ≤ 1/2 and set

fN(x) :=
N∑

j=10

1

j
e2j+1πixf(x).

Then, using that σ(x, ξ, η) = e−2j+1πix in the support of f̂(ξ − 2j)f̂(η), it follows that

Tσ(fN , f)(x) =

∫

R2

σ(x, ξ, η)e2πix·(ξ+η)

N∑

j=10

1

j
f̂(ξ − 2j) f̂(η)dξ dη

=
N∑

j=10

1

j

∫

R2

e2πix·(ξ−2j)e2πix·ηf̂(ξ − 2j) f̂(η)dξ dη

=

(
N∑

j=10

1

j

)
|f(x)|2, x ∈ R,

where the last equality is due to Plancherel’s identity. By the orthogonality of the functions
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f̂(· − 2j) for j ≥ 10, we have that

1

100
‖f‖2

L2 ≤ ‖fN‖2
L2 =

(
N∑

j=10

1

j2

)
‖f‖2

L2 . ‖f‖2
L2 .

Therefore

‖Tσ(fN , f)‖L1 =

(
N∑

j=10

1

j

)
‖f‖2

L2 & logN ‖fN‖L2 ‖f‖L2 ,

and thus Tσ cannot be bounded from L2(R)× L2(R) into L1(R).

This example together with the Calderón-Zygmund theory discussed in Section 3.4 proves

that Tσ is not bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for any 1 < p1, p2 < ∞ and

1
2
< p <∞ with 1

p1
+ 1

p2
= 1

p
.

Remark 3.3.1. Though the class BS0
1,1 produces some operators that are unbounded on

Lebesgue spaces, Grafakos and Torres obtained in [20] conditions to guarantee boundedness.

They proved that if σ ∈ BS0
1,1 and T ∗1σ and T ∗2σ have symbols in BS0

1,1 then Tσ is bounded

from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for 1 < p1, p2 < ∞ satisfying 1
p1

+ 1
p2

= 1
p
. As a

consequence, the Hörmander class BS0
1,1 is not closed under transposition as was mentioned

in Section 3.2.1.

We add that boundedness properties for symbols in BS0
1,1 in the context of Besov, Lips-

chitz, and Triebel-Lizorkin spaces have been obatined in Bényi [2] and Naibo [33] (see also

references therein).

The classes BS0
ρ,δ for 0 ≤ δ ≤ ρ < 1.

As mentioned, the class BS0
1,1 is not the only class that produces unbounded operators on

Lebesgue spaces. In this section we show that the Hörmander classes of order zero BS0
ρ,δ,

with 0 ≤ δ ≤ 1 and 0 ≤ ρ < 1, also contain symbols that give rise to operators that are

unbounded in this setting, as proven by Bényi, Bernicot, et al. in [3].
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Theorem 3.3.2. For 0 ≤ δ ≤ 1, 0 ≤ ρ < 1, and 1 ≤ p, p1, p2 <∞ where 1
p1

+ 1
p2

= 1
p
, there

exists σ ∈ BS0
ρ,δ, such that Tσ is not bounded from Lp1(Rn)× Lp2(Rn) into Lp(Rn).

The structure of the proof of Theorem 3.3.2 is as follows: first, we prove that there

are x-independent symbols in BS0
0,0 that give rise to unbounded operators, implementing a

result by Bényi and Torres in [6]. Then we prove by contradiction that BS0
ρ,δ also produces

unbounded operators for every ρ and δ under consideration using a scaling argument and

Lemma 3.3.3 below as did Bényi, Bernicot, et al. in [3].

Lemma 3.3.3. Let 0 < p ≤ ∞, 1 ≤ p1, p2 < ∞, 1 ≤ δ, ρ ≤ 1 and suppose Tσ is bounded

from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for all σ ∈ BSmρ,δ. Then there exist s1, s2 ∈ N0 such

that

‖Tσ‖ . ‖σ‖s1,s2

for all σ ∈ BSmρ,δ.

Proof of Theorem 3.3.2. As mentioned, we first consider the class BS0
0,0 and then BS0

ρ,δ in

the general case.

(a) The class BS0
0,0. If p1 6= 2 we consider a symbol σ in BS0

0,0 of the form σ(x, ξ, η) =

σ1(ξ) such that σ1 is not a multiplier in Lp1(Rn). Then Tσ1 is not bounded from Lp1(Rn)×
Lp2(Rn) into Lp(Rn). The proof when p2 6= 2 is analogous.

Consider then p1 = p2 = 2. Suppose by contradiction that every x-independent symbol

in BS0
0,0 defines a bounded operator from L2(Rn) × L2(Rn) into L1(Rn), and consider an

x-independent symbol σ in BS0
0,0 of the form σ(ξ, η) = τ(−ξ − η). By duality, then T ∗1σ

maps L∞(Rn)×L2(Rn) into L2(Rn). By the symbolic calculus (Theorem 3.2.2), the symbol

of T ∗1σ belongs to BS0
0,0 and is given by σ∗1(ξ, η) = σ(−ξ − η, η) = τ(ξ). It then follows

that every operator with a symbol in BS0
0,0 that depends only on ξ (think of τ), defines a

bounded bilinear operator from L2(Rn)×L2(Rn) into L1(Rn) and from L∞(Rn)×L2(Rn) into

L2(Rn). By interpolation these operators would then be bounded from Lp1(Rn) × L2(Rn)

into L2p1/(2+p1) for any 2 < p1 <∞, which contradicts our first case when p1 6= 2.
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(b) The class BS0
ρ,δ, general case. Having established that some operators with

symbols in BS0
0,0 are unbounded on Lebesgue spaces we now consider more general symbols

of order zero. Fix δ, ρ, p1, p2 and p as in the hypothesis. Suppose, by way of contradiction,

that Tσ is bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for all σ ∈ BS0
ρ,δ. Consider an

x-independent symbol σ ∈ BS0
ρ,δ and, for multi-indices β and γ, set

Cβ,γ(σ) := sup
ξ,η∈Rn

|∂βξ ∂γησ(ξ, η)|〈ξ, η〉ρ(|β|+|γ|).

For λ > 0 define σλ(ξ, η) := σ(λξ, λη), ξ, η ∈ Rn. Then, for all multi-indices β, γ and

0 < λ < 1, we have

|∂βξ ∂γησλ(ξ, η)| = λ|β|+|γ||∂βξ ∂γησ(λξ, λη)|

≤ λ(1−ρ)(|β|+|γ|)Cβ,γ(σ)〈ξ, η〉−ρ(|β|+|γ|),

so that

Cβ,γ(σλ) ≤ λ(1−ρ)(|β|+|γ|)Cβ,γ(σ). (3.3.14)

Let f, g ∈ S(Rn) and define fλ−1(x) := f(x
λ
) and gλ−1(x) := g(x

λ
) for x ∈ Rn. It easily

follows that

Tσ(f, g)(x) = Tσλ(fλ−1 , gλ−1)(λx).

By Lemma 3.3.3 there exist s ∈ N0 such that

‖Tσλ‖ . sup
|β|,|γ|≤s

Cβ,γ(σλ),

with the implicit constant independent of σ and λ. The above along with the fact that
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1
p1

+ 1
p2

= 1
p

and (3.3.14) allow to obtain

‖Tσ(f, g)‖Lp = ‖Tσλ(fλ−1 , gλ−1)(λ·)‖Lp = λ−
n
p ‖Tσλ(fλ−1 , gλ−1)‖Lp

. λ−
n
p

(
sup
|β|,|γ|≤s

Cβ,γ(σλ)

)
‖fλ−1‖Lp1 ‖gλ−1‖Lp2

= λ
−n
p

+ n
p1

+ n
p2

(
sup
|β|,|γ|≤s

Cβ,γ(σλ)

)
‖f‖Lp1 ‖g‖Lp2

.

(
sup
|β|,|γ|≤s

λ(1−ρ)(|β|+|γ|)Cβ,γ(σ)

)
‖f‖Lp1 ‖g‖Lp2 ,

and letting λ→ 0, it follows that

‖Tσ(f, g)‖Lp . C0,0(σ) ‖f‖Lp1 ‖g‖Lp2 , f, g ∈ S(Rn). (3.3.15)

However, (3.3.15) cannot be true since it contradicts the fact that there are symbols in BS0
0,0

that give rise to unbounded operators. Indeed, take an x-independent symbol σ in BS0
0,0

such that Tσ is not bounded from Lp1(Rn)× Lp2(Rn) into Lp(Rn) and let ϕ be an infinitely

differentiable function in R2n supported in |(ξ, η)| ≤ 2 and equal to one on |(ξ, η)| ≤ 1. For

each ε > 0, set σε(ξ, η) := ϕ(εξ, εη)σ(ξ, η). Then σε ∈ BS0
ρ,δ(Rn) and C0,0(σε) ≤ C0,0(σ) for

all ε > 0. If (3.3.15) were true we would have

‖Tσε(f, g)‖Lp . C0,0(σ) ‖f‖Lp1 ‖g‖Lp2

for all f, g ∈ S(Rn) and for all ε > 0. But then as ε → 0, Tσε(f, g) → Tσ(f, g) pointwise.

This fact, together with Fatou’s Lemma implies

‖Tσ(f, g)‖Lp . C0,0(σ) ‖f‖Lp1 ‖g‖Lp2

for all f, g ∈ S(Rn), which is a contradiction.
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3.3.2 Symbols of order m and Lebesgue spaces

With the results that we have established for symbols of order zero, we next turn our

attention to symbols of order m. We first observe that since the Hörmander classes of order

zero are contained in the Hörmander classes of positive order, in view of the results of

Section 3.3.1, the question of boundedness in Lebesgue spaces for operators with symbols

in BSmρ,δ is only interesting when m < 0 and 0 ≤ δ ≤ ρ ≤ 1 or when m ∈ R, ρ = 1 and

0 ≤ δ < 1.

Given 1 ≤ p1, p2 ≤ ∞ and 1
2
≤ p ≤ ∞ such that 1

p1
+ 1

p2
= 1

p
, set

m(p1, p2, ρ) := n(ρ− 1)

(
max

{
1

2
,

1

p1

,
1

p2

, 1− 1

p

}
+

1

2
max

{
1

p
− 1, 0

})
.

(0, 1)

(0, 12)

(0, 0) (1, 0)

(1, 1)

(12, 0)

1
p1

1
p2

n(ρ−1)
p2

n(ρ−1)
p1

n(ρ−1)
2

n(ρ− 1)(1− 1
p)

I

IIIII

IV

n(ρ− 1)
(

1
p1
+ 1

2(
1
p − 1)

)

n(ρ− 1)
(
1
p2
+ 1

2(
1
p − 1)

)

Figure 3.1: Visualization of m(p1, p2, ρ), 1
p

= 1
p1

+ 1
p2
, 1 ≤ p1, p2 ≤ ∞.

The value m(p1, p2, ρ) plays an important role in the theory and the specific value de-

pending on p1 and p2 is given in Figure 3.1. We will see that operators with symbols in BSmρ,δ

with m < m(p1, p2, ρ) are bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn). Furthermore, if
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1 ≤ p, p1, p2 ≤ ∞ then operators with symbols of order m > m(p1, p2, ρ) are not necessarily

bounded from Lp1(Rn)× Lp2(Rn) into Lp(Rn). Because of this, when 1 ≤ p1, p2, p ≤ ∞, we

call m(p1, p2, ρ) a critical order for boundedness from Lp1(Rn) × Lp2(Rn) into Lp(Rn). The

statements of these results are made precise in Theorems 3.3.4 and 3.3.5.

The following theorem states sufficient conditions for boundedness in terms of the order

of the Hörmander classes.

Theorem 3.3.4. Let 0 ≤ δ ≤ ρ ≤ 1, δ < 1, 1 ≤ p1, p2 ≤ ∞, and 1
2
≤ p ≤ ∞ such that

1
p1

+ 1
p2

= 1
p
. If m < m(p1, p2, ρ) there exist s1, s2 ∈ N0 such that

‖Tσ(f, g)‖Lp . ‖σ‖s1,s2 ‖f‖Lp1 ‖g‖Lp2

for all f, g ∈ S(Rn) and all σ ∈ BSmρ,δ.

Theorem 3.3.4 as it now stands is the product of several authors. A partial result in

the spirit of Theorem 3.3.4 was proved by Michalowski, Rule, and Staubach in [28], which

includes the boundedness from L2(Rn)× L2(Rn) into L1(Rn) for operators with symbols in

the classes of order m < m(2, 2, ρ). The statement for boundedness in the case when p ≥ 1

comes from the work of Bényi, Bernicot, et al. in [3]; while the case for p < 1 relies on the

work of Rodŕıguez-López and Staubach in [35].

The following result by Miyachi and Tomita [30] complements Theorem 3.3.4 in that

it includes necessary conditions in terms of the order m for the operators with symbols in

BSmρ,δ to be bounded when 1 ≤ p, p1, p2 ≤ ∞. Moreover, Theorem 3.3.5 also indicates that

for ρ = δ = 0, m = m(p1, p2, 0) is also sufficient for boundedness from Lp1(Rn) × Lp2(Rn)

into Lp(Rn).

Theorem 3.3.5. Assume 1
p1

+ 1
p2

= 1
p

with the ranges of p1, p2 and p as indicated below.

(i) Let 1 ≤ p1, p2, p ≤ ∞ and 0 ≤ ρ < 1. If every operator Tσ with σ ∈ BSmρ,ρ is bounded

from Lp1(Rn)× Lp2(Rn) into Lp(Rn), then m ≤ m(p1, p2, ρ).
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(ii) Let 1 < p1, p2 ≤ ∞ and 1 ≤ p < ∞. Every operator Tσ with σ ∈ BSm0,0 is bounded

from Lp1(Rn)× Lp2(Rn) into Lp(Rn) if and only if m ≤ m(p1, p2, 0).

Remark 3.3.6. The result of Miyachi and Tomita in [30] in regards to item (ii) of Theorem

3.3.5 is broader in the sense that it also includes indices p1, p2 and p below. However, their

result when any of the indices p1, p2 and p are less than or equal to one is a statement about

the boundedness of bilinear pseudodifferential operators on Hardy spaces. We postpone to

Section 3.3.3 precise statements of these facts along with other results corresponding to the

situation p1 = p2 = p =∞ due to Bényi, Bernicot, et al. in [3] and Naibo in [34].

The rest of this section is devoted to the proof of Theorem 3.3.4 for the case p ≥ 1

though we note that the proof for boundedness for p < 1 is similar in spirit to the proof of

Michalowski et al. [28] that we present for p1 = p2 = 2. We refer the reader to [30] for a

proof of Theorem 3.3.5.

The proof of Theorem 3.3.4 for p ≥ 1.

Before proceeding to the proof of Theorem 3.3.4, we first state two intermediary results and

a definition. We start with a lemma which will prove useful in obtaining boundedness from

L∞(Rn)× L∞(Rn) into L∞(Rn) and is from the work of Bényi, Bernicot, et al. in [3].

Lemma 3.3.7. Let m ∈ R, 0 ≤ δ, ρ ≤ 1, σ ∈ BSmρ,δ and s ∈ N0 with s even and s > 2n.

(i) If 0 < R ≤ 1 and supp(σ) ⊂ {(x, ξ, η) : |ξ|+ |η| ≤ R} then

‖Tσ(f, g)‖L∞ . R2n ‖σ‖0,s ‖f‖L∞ ‖g‖L∞ , f, g ∈ L∞(Rn).

(ii) If R ≥ 1 and supp(σ) ⊂ {(x, ξ, η) : R ≤ |ξ|+ |η| ≤ 4R} then

‖Tσ(f, g)‖L∞ . Rm+n(1−ρ) ‖σ‖0,s ‖f‖L∞ ‖g‖L∞ , f, g ∈ L∞(Rn).

44



Sometimes, as is the case in the proof of Theorem 3.3.4, we fix one of the functions f

or g and treat the bilinear operator as a linear one. In such a situation, Lemma 3.3.9 from

[28] will be useful. Here we consider a variation of the linear Hörmander classes Smρ,0 which

we will denote LpSmρ .

Definition 3.3.8. Let 1 ≤ p ≤ ∞, m ∈ R, and 0 ≤ ρ ≤ 1. A symbol σ : Rn × Rn → C

belongs to the class LpSmρ if for every α ∈ Nn
0 ,

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α| ∥∥∂αξ σ(·, ξ)
∥∥
Lp
<∞.

With this definition we can now state the following:

Lemma 3.3.9. Let 0 ≤ ρ ≤ 1, 1 ≤ p < ∞, 1 < p1 ≤ ∞ and 2 ≤ p2 < ∞ such that

1
p1

+ 1
p2

= 1
p
, and m < n(ρ−1)

p′2
where 1

p2
+ 1

p′2
= 1. Then there exists l ∈ N0 such that

‖Tσ(f)‖Lp . sup
|α|≤l

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α| ∥∥∂αξ σ(·, ξ)
∥∥
Lp2
‖f‖Lp1 ,

for all f ∈ S(Rn) and all σ ∈ Lp2Smρ .

With these lemmas in mind, we are ready to prove the case p ≥ 1 of Theorem 3.3.4. For

p1 = p2 = 2 we follow the work of Michalowski et al. [28], while the remainder of the details

come from Bényi, Bernicot, et al. [3].

Proof of Theorem 3.3.4. First, we begin with the case p = p1 = p2 =∞ which corresponds

to the point (0, 0) in Figure 3.1. Next we treat the boundedness from L2(Rn)×L2(Rn) into

L1(Rn) corresponding to the point (1/2, 1/2). Once these two cases are established, we will

then use symbolic calculus, duality and complex interpolation to complete the proof of the

theorem for the range 1 ≤ p ≤ ∞.
For p = p1 = p2 = ∞ we have that m(p1, p2, ρ) = n(ρ − 1). Let m < n(ρ − 1), 0 ≤

δ ≤ ρ ≤ 1, δ < 1 and {ψj}j∈N0 be a Littlewood-Paley partition of unity as in (A.3.3) with
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N = 2n and ξ, η ∈ Rn. We decompose the symbol σ(x, ξ, η) as

σ(x, ξ, η) =
∞∑

j=0

σj(x, ξ, η), (3.3.16)

where σj(x, ξ, η) := σ(x, ξ, η)ψj(ξ, η).

From Lemma 3.3.7 with R = 2j and s ∈ N0 with s > 2n we get that

∥∥Tσj(f, g)
∥∥
L∞

. 2j(m+n(1−ρ)) ‖σ‖0,s ‖f‖L∞ ‖g‖L∞

. 2j(m+n(1−ρ)) ‖σ‖0,s ‖f‖L∞ ‖g‖L∞ , f, g ∈ S(Rn).

Therefore

‖Tσ(f, g)‖L∞ ≤
∞∑

j=0

∥∥Tσj(f, g)
∥∥
L∞

. ‖σ‖0,s

∞∑

j=0

2j(m+n(1−ρ)) ‖f‖L∞ ‖g‖L∞

. ‖σ‖0,s ‖f‖L∞ ‖g‖L∞ , f, g ∈ S(Rn),

where we have used that m < n(ρ− 1) proving this case.

We next prove boundedness when p1 = p2 = 2. Since m(2, 2, ρ) = n
2
(ρ − 1), we then

consider symbols σ ∈ BSmρ,δ with m < n
2
(ρ − 1). Once again we use a partition of unity

{ϕk}k≥0 as in (A.3.3), but with N = n, and decompose the symbol as

σ(x, ξ, η) =
∞∑

j,k=0

σj,k(x, ξ, η), (3.3.17)

with σj,k(x, ξ, η) := σ(x, ξ, η)ϕj(ξ)ϕk(η). Considering the bilinear operator with symbol σj,k
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we have, for f, g ∈ S(Rn),

Tσj,k(f, g)(x) =

∫

R2n

σj,k(x, ξ, η)f̂(ξ)ĝ(η) e2πix·(ξ+η)dξ dη

=

∫

Rn

(∫

Rn
σj,k(x, ξ, η)ĝ(η) e2πix·ηdη

)
f̂(ξ) e2πix·ξdξ. (3.3.18)

We set Sj,k(g;x, ξ) :=
∫
Rn σj,k(x, ξ, η)ĝ(η) e2πix·ηdη, which is a linear pseudodifferential oper-

ator for each fixed ξ with symbol σj,k(x, ξ, η) as a function of x and η. We also consider, for

each fixed g ∈ S(Rn), the linear pseudodifferential operator with symbol Sj,k(g;x, ξ), this

is,

TSj,k(g;·,·)(f)(x) :=

∫

Rn
Sj,k(g;x, ξ)f̂(ξ)e2πix·ξ dξ, f ∈ S(Rn).

We now analyze the symbols σj,k according to the relation between j and k. First, we

consider the case when j ≤ k and let (ξ, η) be in the support of σj,k. If j = k = 0 then both

|ξ| . 1 and |η| . 1, and if j = 0 but k > 0 then |ξ| . 1 while |η| ∼ 2k; for the remaining

values of the indices j and k we have that 2j ∼ |ξ| . |η| ∼ 2k. Fixing ε > 0 sufficiently

small, we conclude that

|∂αx∂βξ ∂γησj,k(x, ξ, η)| ≤ Cα,β,γ(2
j + 2k)m+δ|α|−ρ(|β|+|γ|)

≤ Cα,β,γ2
j(m1−ε−ρ|β|)2k(m2−ε+δ|α|−ρ|γ|), x, ξ, η ∈ Rn,

for m1,m2 ≤ 0 such that m1 + m2 = m + 2ε. Note that the above inequality tells that

∂βξ σj,k(x, ξ, η) belongs to the Hörmander class Sm2
ρ,δ as a function of x and η and for each ξ

fixed. Since m2 ≤ 0, linear operators with symbols in the class Sm2
ρ,δ are bounded on L2 (see

Theorem 2.3.1) and therefore,

∥∥∥∂βξ Sj,k(g; ·, ξ)
∥∥∥
L2

. 2j(m1−ρ|β|−ε)2−kε ‖g‖L2

so that Sj,k(g; ·, ·) ∈ L2Sm1
ρ . Therefore an application of Lemma 3.3.9 with the assumption
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m1 <
n
2
(ρ− 1) yields

∥∥Tσj,k(f, g)
∥∥
L1 . 2−jε2−kε ‖f‖L2 ‖g‖L2 . (3.3.19)

For the terms such that k < j, we can repeat the same argument reversing the roles of ξ and

η. Putting these two arguments together and summing in j and k we obtain boundedness

from L2(Rn)× L2(Rn) into L1(Rn) provided m < n
2
(ρ− 1).

We next use the boundedness just proved corresponding to the points (0, 0) and (1
2
, 1

2
)

in Figure 3.1 along with symbolic calculus, duality, and interpolation to complete the proof

of the theorem in the case 1 ≤ p ≤ ∞.
The mapping property from L∞(Rn) × L∞(Rn) into L∞(Rn) for every operator with

symbol in BSmρ,δ where m < n(ρ − 1) and part of the reasoning from Remark 3.2.3, based

on duality and the symbolic calculus of the bilinear Hörmander classes, give:

(a) Tσ is bounded from L∞(Rn)×L∞(Rn) into L∞(Rn) for all σ ∈ BSmρ,δ with m < n(ρ−1),

(b) Tσ is bounded from L1(Rn)×L∞(Rn) into L1(Rn) for all σ ∈ BSmρ,δ with m < n(ρ− 1),

(c) Tσ is bounded from L∞(Rn)×L1(Rn) into L1(Rn) for all σ ∈ BSmρ,δ with m < n(ρ− 1).

Similarly, the boundedness from L2(Rn)×L2(Rn) into L1(Rn) for every operator with symbol

in BSmρ,δ where m < n(ρ−1)
2

implies:

(d) Tσ is bounded from L2(Rn)× L2(Rn) into L1(Rn) for all σ ∈ BSmρ,δ with m < n(ρ−1)
2

,

(e) Tσ is bounded from L∞(Rn)× L2(Rn) into L2(Rn) for all σ ∈ BSmρ,δ with m < n(ρ−1)
2

,

(f) Tσ is bounded from L2(Rn)× L∞(Rn) into L2(Rn) for all σ ∈ BSmρ,δ with m < n(ρ−1)
2

.

Summarizing, we have so far proved the result for m < m(p1, p2, ρ) with p1 and p2 corre-

sponding to the points (0, 0), (1, 0), (0, 1), (1
2
, 0), (0, 1

2
), and (1

2
, 1

2
) in Figure 3.1.

The boundedness from L∞(Rn) × Lp2(Rn) into Lp2(Rn) for all σ ∈ BSmρ,δ with m <

m(∞, p2, ρ) and 2 < p2 < ∞, which corresponds to the segment from (0, 0) to (0, 1
2
) in

Figure 3.1, is achieved by looking at the operator Tσ(f, g) as a trilinear operator of σ, f and
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g and using trilinear complex interpolation. Indeed, this follows from [7, Theorem 4.4.1]

and the facts that if θ ∈ (0, 1), m = (1− θ)m1 + θm2 and 1
r

= 1−θ
r1

+ θ
r2
, where m1,m2 ∈ R

and 1 ≤ r, r1, r2 ≤ ∞, the complex interpolation method gives

(Lr1(Rn), Lr2(Rn))[θ] = Lr(Rn) and (BSm1
ρ,δ , BS

m2
ρ,δ )[θ] = BSmρ,δ.

The first fact is well known (see for instance [7, Theorem 5.1.1]) while the second fact,

for which an appropriate norm is assumed, corresponds to [3, Lemma 2.7]. An analogous

reasoning applies to the segments from (0, 1
2
) to (0, 1), from (0, 1) to (1

2
, 1

2
), from (1

2
, 1

2
) to

(1, 0), from (1, 0) to (1
2
, 0) and from (1

2
, 0) to (0, 0).

Finally, we use bilinear complex interpolation to get the result for p1 and p2 such that

( 1
p1
, 1
p2

) is in the interior of one of the four smaller triangular regions in Figure 3.1, taking

into account that m(p1, p2, ρ) is constant along horizontal segments in region I, m(p1, p2, ρ)

is constant along vertical segments in region II, m(p1, p2, ρ) is constant along diagonal

segments in region III, and m(p1, p2, ρ) is constant in region IV.

To finish the proof of Theorem 3.3.4 we now include the proofs of Lemma 3.3.7 and

Lemma 3.3.9.

Proof of Lemma 3.3.7. We make use of the distributional kernel K(x, y, z) with K(x, y, z) =

k(x, x− y, x− z) and k(x, y, z) = F−1(σ(x, ·, ·))(y, z). Then

Tσ(f, g)(x) =

∫

R2n

K(x, y, z)f(y)g(z) dy dz, x ∈ Rn.

For part (i), it is enough to show that for s ∈ N with s even and s > 2n

sup
x∈Rn

∫

R2n

|k(x, y, z)| dy dz . R2n ‖σ‖0,s . (3.3.20)
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Let s = 2t with t ∈ N0 and t > n. By assumption, σ is smooth with compact support in ξ

and η so that

(
1 + 4π2|(y, z)|2

)t
k(x, y, z) =

∫

R2n

σ(x, ξ, η)(1− Mξ − Mη)
t (e2πiξ·ye2πiη·z)dξ dη

=

∫

R2n

(1− Mξ − Mη)
t (σ(x, ξ, η)) e2πiξ·ye2πiη·zdξ dη (3.3.21)

Since σ ∈ BSmρ,δ, |(1− Mξ − Mη)
tσ(x, ξ, η)| ≤ ‖σ‖0,s 〈ξ, η〉m−sρ for x, ξ, η ∈ Rn. Because

we are integrating over the domain |ξ| + |η| ≤ R and by hypothesis R ≤ 1 we use that

〈ξ, η〉 = (1 + |ξ|+ |η|) ∼ 1 to get

(
1 + 4π2|(y, z)|2

)t |k(x, y, z)| ≤ ‖σ‖0,s

∫

|ξ|+|η|≤R

dξ dη ∼ ‖σ‖0,sR
2n, x, y, z ∈ Rn.

From this calculation we conclude that

|k(x, y, z)| .
R2n ‖σ‖0,s

(1 + 4π2|(y, z)|2)t
, x, y, z ∈ Rn,

so that (3.3.20) follows since t > n, proving part (i).

For part (ii) we again use the distributional kernel form of the operator Tσ and note that

it is enough to show that if s = 2t with t > n and t ∈ N0 then

sup
x∈Rn

∫

R2n

|k(x, y, z)| dy dz . Rm+n(1−ρ) ‖σ‖0,s . (3.3.22)

We first split the integral as follows:

∫

R2n

|k(x, y, z)| dy dz =

∫

|y|+|z|≤R−ρ

|k(x, y, z)| dy dz +

∫

|y|+|z|≥R−ρ

|k(x, y, z)| dy dz =: I1 + I2.

In order to estimate I1, we use the Cauchy-Schwarz inequality, Plancherel’s identity and the
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fact that R ≥ 1 to get

I2
1 . R−2ρn

∫

|y|+|z|≤R−ρ

|k(x, y, z)|2 dy dz

. R−2ρn

∫

|ξ|+|η|∼R

|σ(x, ξ, η)|2dξ dη

. ‖σ‖2
0,0R

−2ρn

∫

|ξ|+|η|∼R

(1 + |ξ|+ |η|)2mdξ dη

. ‖σ‖2
0,0R

−2ρnR2m+2n = ‖σ‖2
0,0R

2(m+n(1−ρ)).

For the second integral I2, we first multiply and divide by (2π|(y, z)|)2t and then use the

Cauchy-Schwarz inequality, that t > n, the equality

(2π|(y, z)|)2tk(x, y, z) = F−1
2n ((− Mξ − Mη)

t(σ(x, ·, ·)))(y, z),

Plancherel’s identity, and that R ≥ 1 to get the estimate:

I2
2 .




∫

|y|+|z|≥R−ρ

1

(2π|(y, z)|)4t
dy dz







∫

|y|+|z|≥R−ρ

|(2π|(y, z)|)2tk(x, y, z)|2 dy dz




. Rρ(4t−2n)

∫

|ξ|+|η|∼R

|(− Mξ − Mη)
tσ(x, ξ, η)|2dξ dη

. ‖σ‖2
0,sR

ρ2(s−n)

∫

|ξ|+|η|∼R

(1 + |ξ|+ |η|)2(m−ρs)dξ dη

. ‖σ‖2
0,sR

ρ2(s−n)R2(m−ρs+n) = ‖σ‖2
0,sR

2(m+n(1−ρ)).

Finally the estimates for I1 and I2 yield (3.3.22) completing the proof of part (ii).

For the proof of Lemma 3.3.9 we use the following well-known result (see for instance

[17, Theorem 2.1.10]).
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Proposition 3.3.10. Suppose that φ : Rn → [0,∞) is integrable, non-increasing, and radial

and, for f ∈ L1
loc(Rn), consider the Hardy-Littlewood maximal function

M(f)(x) = sup
x∈B

(
1

|B|

∫

B

|f(y)| dy
)
, x ∈ Rn,

where the supremum is taken over all Euclidean balls B in Rn containing x. Then

∫

Rn
φ(y)|f(x− y)| dy ≤ ‖φ‖L1 M(f)(x), x ∈ Rn.

Proof of Lemma 3.3.9. Given l ∈ N, let

τj(y) :=





2−jρn/p
′
2 , |y| ≤ 2−jρ;

2−jρ(n/p′2−l)|y|l, |y| > 2−jρ.

Then for l sufficiently large we have that

(∫

Rn
|τj(y)|−p′2 dy

) 1
p′2

. 1. (3.3.23)

For a Littlewood-Paley partition of unity in Rn, {ϕj}j∈N, we let σj(x, ξ) := σ(x, ξ)ϕj(ξ)

and study the operators Tσj . Setting Kj(x, y) := F−1(σj(x, ·))(y) we have

|Tσjf(x)| =
∣∣∣∣
∫

Rn
Kj(x, y)f(x− y) dy

∣∣∣∣

≤
(∫

Rn
|Kj(x, y)τj(y)|p2 dy

) 1
p2

(∫

Rn

∣∣∣∣
f(x− y)

τj(y)

∣∣∣∣
p′2

dy

) 1
p′2

.
∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) 1
p′2

(∫

Rn

∣∣∣∣
f(x− y)

τj(y)

∣∣∣∣
p′2

dy

) 1
p′2

(3.3.24)

.
∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) 1
p′2
(
M(fp

′
2)(x)

) 1
p′2 ,
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where we have used Hölder’s inequality, the Hausdorff-Young inequality, Proposition 3.3.10

and (3.3.23). If p > 1, the use of Hölder’s inequality, the boundedness of the Hardy-

Littlewood maximal function, Minkowski’s inequality and the fact that σ ∈ Lp2Smρ yield

∥∥Tσj(f)
∥∥
Lp

.
∑

|α|≤l

2−jp(nρ/p
′
2−|α|ρ)

(∫

Rn

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) p

p′2
(
M(fp

′
2)(x)

) p

p′2 dx

) 1
p

.
∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)

(∫

Rn

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) p2
p′2
dx

) 1
p2

‖f‖Lp1 (3.3.25)

.
∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)



∫

Rn

(∫

Rn
|∂αξ σj(x, ξ)|p2dx

) p′2
p2

dξ




1
p′2

‖f‖Lp1

. 2j(m−n(ρ−1)/p′2) sup
|α|≤l

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α| ∥∥∂αξ σ(·, ξ)
∥∥
Lp2
‖f‖Lp1

Summing in j and using that m < n(ρ−1)
p′2

we obtain

‖Tσ(f)‖Lp ≤
∞∑

j=0

∥∥Tσj(f)
∥∥
Lp

. sup
|α|≤l

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α| ∥∥∂αξ σ(·, ξ)
∥∥
Lp2
‖f‖Lp1 .

If p = 1, then p′2 = p1 and therefore we cannot use the boundedness of the Hardy-

Littlewood maximal function in (3.3.25). Instead, we take the L1(Rn) norm of the inequality

in (3.3.24) and apply Hölder’s inequality to get

∫

Rn
|Tσjf(x)| dx .

∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)

(∫

Rn

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) p2
p′2
dx

) 1
p2

×
(∫

Rn

∫

Rn

∣∣∣∣
f(x− y)

τj(y)

∣∣∣∣
p1

dydx

) 1
p1

.
∑

|α|≤l

2−j(nρ/p
′
2−|α|ρ)

(∫

Rn

(∫

Rn
|∂αξ σj(x, ξ)|p

′
2dξ

) p2
p′2
dx

) 1
p2

‖f‖Lp1 ,

where in the last line we have used (3.3.23). We then proceed as in the case p > 1.
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3.3.3 Boundedness on Hardy spaces and BMO

In this section we briefly describe results on boundedness of operators in the case when p1 =

p2 = p = ∞ and the symbols are in the class BSmρ,δ with critical order m = m(∞,∞, ρ) =

n(ρ− 1), and when p1 ≤ 1 or p2 ≤ 1 and the symbols belong to various Hörmander classes.

The case p1 = p2 = p =∞ for the critical order m(∞,∞, ρ) = n(ρ− 1).

The theorems in Section 3.3.2 state, in particular, that operators with symbols in BSmρ,δ are

bounded from L∞(Rn)×L∞(Rn) into L∞(Rn) if m < n(ρ− 1), but may fail to be bounded

from L∞(Rn)×L∞(Rn) into L∞(Rn) if m > n(ρ−1). When m = n(ρ−1) it is expected that

boundedness from L∞(Rn)×L∞(Rn) into L∞(Rn) fails for some symbols in BS
n(ρ−1)
δ,ρ while

it is conjectured that boundedness from L∞(Rn)× L∞(Rn) into BMO(Rn) holds for every

operator with symbol in this critical class. We recall that the space BMO(Rn), defined in

the appendix, contains the space L∞(Rn). The conjecture was proved for 0 < ρ < 1
2

and

δ = 0 by Bényi, Bernicot, et al. in [3], for δ = ρ = 0 by Miyachi and Tomita in [30] and for

0 < δ ≤ ρ < 1
2

by Naibo in [34]. More precisely,

Theorem 3.3.11. If 0 ≤ δ ≤ ρ < 1
2

then there exist s1, s2 ∈ N0 such that

‖Tσ(f, g)‖BMO . ‖σ‖s1,s2 ‖f‖L∞ ‖g‖L∞ ,

for all f, g ∈ S(Rn) and all σ ∈ BSn(ρ−1)
ρ,δ .

We note that Theorem 3.3.11 is a bilinear counterpart of the result by C. Fefferman [15]

stated in Theorem 2.3.5.

The case of indices p1 and p2 below 1.

To this point, we have only considered boundedness results on Lebesgue spaces for indices

1 ≤ p1, p2 ≤ ∞. Miyachi and Tomita explored in [30] the cases when p1 or p2 are smaller
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than 1, which we proceed to present. Define the index m̃(p1, p2, ρ) as

m̃(p1, p2, ρ) := n(ρ− 1)

(
max

{
1

2
,

1

p1

,
1

p2

, 1− 1

p
,
1

p
− 1

2

})
,

where 1
p1

+ 1
p2

= 1
p
. It can be easily seen that m̃(p1, p2, ρ) = m(p1, p2, ρ) when p ≥ 1; however

when p < 1 it holds that m̃(p1, p2, ρ) ≥ m(p1, p2, ρ) with equality only when p1 = p2.

In order to get this improvement in the index, Miyachi and Tomita considered the Hardy

spaces hq(Rn) and Hq(Rn) for 0 < q ≤ 1 rather than Lebesgue spaces. Hardy spaces can

be defined for any 0 < q <∞ and we refer the reader to the appendix for their definitions.

The following relations are well-known (see for instance the books [18, 36]):

hq(Rn) = Hq(Rn) = Lq(Rn), for 1 < q ≤ ∞, (3.3.26)

Hq(Rn) ⊂ hq(Rn), for 0 < q ≤ ∞,

H1(Rn) ⊂ L1(Rn),

with continuity in norms. We also consider the Banach space bmo(Rn) (see appendix for a

definition) which satisfies L∞(Rn) ⊂ bmo(Rn) ⊂ BMO(Rn) with continuous inclusions. Let

Xq(Rn) :=





hq(Rn) if 0 < q ≤ 1,

Lq(Rn) if 1 < q <∞,

bmo(Rn) if q =∞.

We are now ready to state the continuity properties of bilinear pseudodifferential oper-

ators in this setting, due to Miyachi and Tomita [30]:

Theorem 3.3.12. Let m ∈ R and 0 < p1, p2, p ≤ ∞ satisfy 1
p1

+ 1
p2

= 1
p
.

(i) Every operator Tσ with σ ∈ BSm0,0 is bounded from Xp1(Rn)×Xp2(Rn) into Xp(Rn) if

and only if m ≤ m̃(p1, p2, 0).
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(ii) For 0 ≤ ρ ≤ 1, if every operator Tσ with σ ∈ BSmρ,ρ is bounded from Hp1(Rn)×Hp2(Rn)

into Lp(Rn) (with Lp(Rn) replaced by BMO(Rn) if p1 = p2 = p = ∞) then m ≤
m̃(p1, p2, ρ).

Note that, in view of (3.3.26), the above theorem covers the results of Theorem 3.3.5.

3.4 Connections to Bilinear Calderón-Zygmund The-

ory

In this section we mention the connection between bilinear pseudodifferential operators with

symbols in the bilinear Hörmander classes and the bilinear Calderón-Zygmund theory.

In order to describe a bilinear Calderón-Zygmund operator, it is first necessary to con-

sider bilinear Calderón-Zygmund (CZ) kernels. Denote by 4 the diagonal of Rn×Rn×Rn,

that is, 4 := {(x, x, x) : x ∈ Rn}.

Definition 3.4.1. A bilinear Calderón-Zygmund kernel is a locally integrable functionK(x, y, z)

defined on (Rn × Rn × Rn)\4 that satisfies the size estimate

|K(x, y, z)| . 1

(|x− y|+ |x− z|+ |y − z|)2n
(3.4.27)

for all (x, y, z) ∈ R3n \ 4 and the following regularity conditions for some ε > 0:

|K(x, y, z)−K(x̃, y, z)| . |x− x̃|ε
(|x− y|+ |x− z|+ |y − z|)2n+ε

(3.4.28)

whenever |x− x̃| ≤ 1
2

max(|x− z|, |x− y|),

|K(x, y, z)−K(x, ỹ, z)| . |y − ỹ|ε
(|x− y|+ |x− z|+ |y − z|)2n+ε

(3.4.29)
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whenever |y − ỹ| ≤ 1
2

max(|x− y|, |y − z|), and finally

|K(x, y, z)−K(x, y, z̃)| . |z − z̃|ε
(|x− y|+ |x− z|+ |y − z|)2n+ε

(3.4.30)

whenever |z − z̃| ≤ 1
2

max(|x− z|, |y − z|).

The typical example of a bilinear CZ kernel is a kernel K that in addition to the size

estimate (3.4.27) satisfies

| ∇K(x, y, z)| . 1

(|x− y|+ |x− z|+ |y − z|)2n+1 ,

where ∇ denotes the gradient in R3n.

We are now ready to define a Calderón-Zygmund operator.

Definition 3.4.2. An operator T is a bilinear Calderón-Zygmund operator if

(i) there exists a bilinear Calderón-Zygmund kernel K such that

T (f, g)(x) =

∫

R2n

K(x, y, z)f(y)g(z) dy dz

for f, g ∈ C∞(Rn) with compact support and x /∈ supp(f) ∩ supp(g);

(ii) T is bounded from L2(Rn)× L2(Rn) into L1(Rn).

Condition (ii) in the definition specifically requires that the operator T be bounded from

L2(Rn) × L2(Rn) into L1(Rn); however, L2(Rn) × L2(Rn) and L1(Rn) could be replaced

with Lp1(Rn) × Lp2(Rn) and Lp(Rn), respectively, for some 1 < p1, p2, p < ∞ such that

1
p1

+ 1
p2

= 1
p
. This is a consequence of Theorem 3.4.3 which states that Calderón-Zygmund

operators are bounded on a variety of spaces.

Theorem 3.4.3. Let T be a bilinear Calderón-Zygmund operator. If 1 ≤ p1, p2 ≤ ∞ and

1
2
≤ p <∞, with 1

p1
+ 1

p2
= 1

p
, then T satisfies the following statements.
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(i) If 1 < p1, p2 then T can be extended to a bounded operator from Lp1(Rn)×Lp2(Rn) into

Lp(Rn) where Lp1(Rn) or Lp2(Rn) should be replaced by L∞c (Rn) if p1 =∞ or p2 =∞,
respectively.

(ii) If p1 = 1 or p2 = 1, then T can be extended to a bounded operator from Lp1(Rn) ×
Lp2(Rn) into Lp,∞(Rn) where Lp1(Rn) or Lp2(Rn) should be replaced by L∞c (Rn) if

p1 =∞ or p2 =∞, respectively.

(iii) T can be extended to a bounded operator from L∞(Rn)× L∞(Rn) into BMO.

Not all of the proven results concerning boundedness of Calderón-Zygmund operators

are listed here. A more thorough exposition is given by Grafakos and Torres [20].

As was mentioned in Section 3.2, bilinear pseudodifferential operators have an associated

distributional kernel on the space domain. The following size and decay estimates for the

kernels of pseudodifferential operators with symbols in the bilinear Hörmander classes is due

to Bényi, et al. in [4].

Theorem 3.4.4. Let σ ∈ BSmρ,δ, 0 < ρ ≤ 1, 0 ≤ δ < 1, m ∈ R. Denote by K(x, y, z)

the distributional kernel of the associated bilinear pseudodifferential operator Tσ, this is

K(x, y, z) = F−1(σ(x, ·, ·))(x− y, x− z) for x, y, z ∈ Rn, and set

S(x, y, z) := |x− y|+ |x− z|+ |y − x|, x, y, z ∈ Rn.

(i) Given α, β, γ ∈ Nn
0 , there exists N0 ∈ N0 such that for each N ≥ N0,

sup
(x,y,z):S(x,y,z)>0

S(x, y, z)N |∂αx∂βy ∂γzK(x, y, z)| <∞.

(ii) Suppose that σ has compact support in (ξ, η) uniformly in x. Then K is smooth, and

given α, β, γ ∈ Nn and N0 ∈ N, there exists C > 0 such that for all x, y, z ∈ Rn with

S(x, y, z) > 0

|∂αx∂βy ∂γzK(x, y, z)| ≤ C(1 + S(x, y, z))−N0 .
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(iii) Suppose that m + M + 2n < 0 for some M ∈ N0. Then K is a bounded continuous

function with bounded continuous derivatives of order ≤M .

(iv) Suppose that m+M + 2n = 0 for some M ∈ N0. Then there exists a constant C > 0

such that for all x, y, z,∈ Rn with S(x, y, z) > 0,

sup
|α+β+γ|=M

|∂αx∂βy ∂γzK(x, y, z)| ≤ C| log |S(x, y, z)||.

(v) Suppose that m+M + 2n > 0 for some M ∈ N0. Then, given α, β, γ ∈ Nn
0 , there exists

a positive constant C such that for all x, y, z,∈ Rn with S(x, y, z) > 0,

sup
|α+β+γ|=M

|∂αx∂βy ∂γzK(x, y, z)| ≤ CS(x, y, z)−(m+M+2n)/ρ.

(vi) Suppose that m+ ε+ 2n > 0 for some ε ∈ (0, 1). Then there exists a positive constant

C such that for all x, y, z, u ∈ Rn with S(x, y, z) > 0 and |u| ≤ S(x, y, z),

|K(x, y, z)−K(x+ u, y, z)|+ |K(x, y, z)−K(x, y + u, z)|

+ |K(x, y, z)−K(x, y, z + u)| ≤ C|u|εS(x, y, z)−(m+ε+2n)/ρ.

All constants in the above inequalities depend linearly on ‖σ‖s1,s2 for some s1, s2 ∈ N0.

While not all bilinear pseudodifferential operators with symbols in the bilinear Hörmander

classes are Calderón-Zygmund operators, we can now prove that some are by applying The-

orem 3.4.4 and Theorem 3.3.4. The content of Theorem 3.4.5 and its proof come from Bényi,

Bernicot, et al. in [3].

Theorem 3.4.5. Let 0 ≤ δ ≤ ρ ≤ 1 with δ < 1 and ρ > 0, and set mcz := 2n(ρ − 1). If

σ ∈ BSmρ,δ and m < mcz then Tσ is a bilinear Calderón-Zygmund operator.
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Proof of Theorem 3.4.5. To prove that the operators Tσ described in the hypothesis are

Calderón-Zygmund operators we need to prove that the associated distributional kernel,

say K(x, y, z), satisfies both the size and regularity conditions required of a CZ kernel and

that the operator is bounded on at least one triple of Lebesgue spaces. Let σ ∈ BSmρ,δ with

m < mcz. Them BSmρ,δ ⊂ BSmczρ,δ and from Theorem 3.4.4 part (v) applied to BSmczρ,δ , the

kernel K(x, y, z) of Tσ satisfies

|K(x, y, z)| . 1

(|x− y|+ |x− z|+ |y − z|)2n .

It is enough to prove the regularity conditions for m such that 2n(ρ−1)−t < m < 2n(ρ−1) =

mcz for some sufficiently small positive t. Using this range of m we can find ε ∈ (0, 1) such

that

m+ 2n+ ε > 0 and
m+ 2n+ ε

ρ
= 2n+ ε.

Part (vi) of Theorem 3.4.4 yields

|K(x, y, z)−K(x+ u, y, z)|+ |K(x, y, z)−K(x, y + u, z)|

+ |K(x, y, z)−K(x, y, z + u)| . |u|ε
(|x− y|+ |x− z|+ |y − z|)2n+ε ,

where |u| ≤ |x− y|+ |x− z|+ |y − z|.
Finally, since m < mcz < n(ρ− 1)/2, Theorem 3.3.4 with p = 1 and p1 = p2 = 2 states

that Tσ is bounded from L2(Rn)× L2(Rn) into L1(Rn).

Therefore, Tσ is a bilinear Calderón-Zygmund operator.
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Chapter 4

Bilinear Operators with Symbols in

Besov Spaces

4.1 Introduction

When examining the proofs of the boundedness properties for bilinear pseudodifferential

operators with symbols in the Hörmander classes, it becomes apparent that the symbols

possess more smoothness than is actually required by the proof. In this chapter we examine

the effect of relaxing condition (3.2.2) in the definition of the Hörmander classes. We

will prove boundedness properties in the setting of Lebesgue spaces for bilinear operators

associated to symbols in various Besov spaces of product type and quantify the smoothness

of the symbols that is sufficient for boundedness. Furthermore, since the Besov spaces to be

studied strictly contain the bilinear Hörmander classes BSm0,0 for m ∈ R, a connection will

be drawn between the new theorems presented in this chapter and the results of Chapter 3.

The techniques employed in our treatment of operators with symbols in the Besov spaces

will be different from those used for the Hörmander classes. For instance, taking derivatives

of the symbols in order to perform integration by parts is no longer allowed for symbols

in the Besov classes since the symbols are rough. Important tools in the proofs of these
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new results include the demonstration of appropriate estimates and the development of a

symbolic calculus for some of the Besov classes along with duality arguments. The results

of this chapter appear in Herbert-Naibo [21, 22].

In Section 4.2 we define weighted Besov spaces of product type and explore the con-

nections between these spaces and the Hörmander classes BSm0,0. In Section 4.3 we present

new results concerning boundedness properties of bilinear pseudodifferential operators with

symbols in the Besov classes. As a byproduct, we are able to quantify the smoothness of the

symbols that is sufficient for boundedness in terms of the norms that define the Hörmander

classes; these ideas are discussed in Section 4.4. Sections 4.5 and 4.6 contain the details of

the proofs of the new results stated in Section 4.3, and in the final section of Chapter 4 we

present a summary of the results in this chapter.

4.2 Weighted Besov Spaces of Product Type and Re-

lated Classes

In this section we define the classes of symbols of interest to us, we mention some of their

properties, and we establish their connection with the Hörmander classes.

Let w and w0 be functions defined in RN which satisfy the following conditions:

w0 ∈ S(RN), supp(w0) ⊂ {ξ ∈ RN : |ξ| ≤ 2},

w ∈ S(RN), supp(w) ⊂ {ξ ∈ RN : 1
2
≤ |ξ| ≤ 2}, (4.2.1)

wk(ξ) := w(2−kξ), k ∈ N,
∞∑

k=0

wk(ξ) = 1, ξ ∈ RN .

This is, {wk}k∈N0 is a Littlewood-Paley partition of unity in RN . Given ξ, η ∈ Rn we set

〈ξ, η〉 := 1 + |ξ|+ |η| as in Chapter 3. In the following definitions, the Fourier transform and

inverse Fourier transform as well as the Lr norm are taken in R3n. For m ∈ R, 0 < r, q ≤ ∞,
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and s ∈ R ∪ R3 ∪ R3n, we define the Besov spaces Bs,m
r,q (R3n) as follows:

• Given s ∈ R and functions w0 and w satisfying (4.2.1) with N = 3n, Bs,m
r,q (R3n) denotes

the space of complex-valued functions σ(x, ξ, η), x, ξ, η ∈ Rn, such that

‖σ‖Bs,mr,q :=

(∑

k∈N0

(
2s·k

∥∥〈ξ, η〉−mF−1(wkσ̂)
∥∥
Lr

)q
) 1

q

<∞,

with the corresponding modification for q = ∞. Note that when m = 0, this agrees with

the usual definition of Besov spaces in R3n.

• Given s = (s1, s2, s3) ∈ R3 and functions w0 and w satisfying (4.2.1) with N = n,

Bs,m
r,q (R3n) denotes the space of complex-valued functions σ(x, ξ, η), x, ξ, η ∈ Rn, such

that

‖σ‖Bs,mr,q :=


∑

k∈N3
0

(
2s·k

∥∥〈ξ, η〉−mF−1(wkσ̂)
∥∥
Lr

)q



1
q

<∞,

where for k = (k1, k2, k3), wk(x, ξ, η) := wk1(x)wk2(ξ)wk3(η), and with the corresponding

modification for q =∞.

• Given s = (s1, . . . , s3n) ∈ R3n and functions w0 and w satisfying (4.2.1) with N = 1,

Bs,m
r,q (R3n) denotes the space of complex-valued functions σ(x, ξ, η), x, ξ, η ∈ Rn, such that

‖σ‖Bs,mr,q :=


∑

k∈N3n
0

(
2s·k

∥∥〈ξ, η〉−mF−1(wkσ̂)
∥∥
Lr

)q



1
q

<∞,

where for k = (k1, . . . , k3n), x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), and η = (η1, . . . , ηn),

wk(x, ξ, η) := wk1(x1) · · ·wkn(xn)wkn+1(ξ1) · · ·wk2n(ξn)wk2n+1(η1) · · ·wk3n(ηn), with the cor-

responding modification for q =∞.

It can be proved that, for all s,m, r, q as in the definitions above, the space Bs,m
r,q (R3n) is

independent of the choice of w0 and w satisfying (4.2.1) and is contained in S ′(R3n), that it
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is a quasi-Banach space (Banach space if 1 ≤ r, q ≤ ∞), that it contains S(R3n), and that

S(R3n) is dense if 0 < r, q < ∞. We refer the reader to Sugimoto [37], where a variety of

Besov spaces of product type are defined and many of their properties are presented.

We next define classes of symbols that are closely connected with both Bs,m
r,q (R3n) and

the Hörmander classes BSm0,0. Given s ∈ Nk
0 where k = 3 or k = 3n and m ∈ R, a complex-

valued functions σ(x, ξ, η), x, ξ, η ∈ Rn, belongs to Csm(R3n) if it satisfies one of the following

conditions.

• If s = (s1, s2, s3) ∈ N3
0 :

∂αx∂
β
ξ ∂

γ
ησ ∈ C(R3n) for α, β, γ ∈ Nn

0 , |α| ≤ s1, |β| ≤ s2, |γ| ≤ s3, and

‖σ‖Csm := sup
|α|≤s1

|β|≤s2,|γ|≤s3

sup
x,ξ,η∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m <∞. (4.2.2)

• If s = (s1, · · · , s3n) ∈ N3n
0 :

∂(α1,··· ,αn)
x ∂

(αn+1,··· ,α2n)
ξ ∂(α2n+1,··· ,α3n)

η σ ∈ C(R3n) for αj ∈ N0, αj ≤ sj, j = 1, . . . , 3n, and

‖σ‖Csm := sup
αj≤sj

j=1,...,3n

sup
x,ξ,η∈Rn

|∂(α1,··· ,αn)
x ∂

(αn+1,··· ,α2n)
ξ ∂(α2n+1,··· ,α3n)

η σ(x, ξ, η)|〈ξ, η〉−m <∞.

(4.2.3)

We note that ‖σ‖s1,s2 = ‖σ‖C(s1,s2,s2)m
for any s1, s2 ∈ N0 and where ‖σ‖s1,s2 is as in (3.2.3)

with ρ = δ = 0.

The following chain of continuous proper inclusions shows the connection between the

classes introduced in this section and the bilinear Hörmander classes:

BSm0,0 $ C[s]+1
m (R3n) $ Bs,m

∞,1(R3n) $ C[s]
m (R3n), (4.2.4)

where s has positive components, [s] denotes the vector of the same dimension as s and
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components given by the integer parts of the components of s, and adding 1 to a vector

means adding 1 to each component of the vector.

The first inclusion in (4.2.4) is straightforward and the rest of the inclusions are a conse-

quence of the following proposition, which will be useful in the proof of some of our results

(see [37, Theorems 1.3.2, 1.3.5, and 1.3.9 and Corollary 1.3.1] for a proof). Given two vec-

tors s and s̃ of the same dimension, the notation s > s̃ (s ≥ s̃, etc) used below is meant

component-wise.

Proposition 4.2.1. (a) Let 0 < r ≤ ∞, s and s̃ be vectors of real numbers of the same

dimension (dimension 1, 3 or 3n), and m, m̃ ∈ R. Then following continuous inclusions

hold:

(i) Bs,m
r,q (R3n) ⊂ Bs,m̃

r,q̃ (R3n), if 0 < q ≤ q̃ ≤ ∞ and m ≤ m̃;

(ii) Bs,m
r,q (R3n) ⊂ B s̃,m

r,q̃ (R3n), if 0 < q, q̃ ≤ ∞ and s̃ < s component-wise;

(iii) Csm(R3n) $ B s̃,m
∞,q(R3n), if 0 < q ≤ ∞, 0 < s̃ < s component-wise and s has

components in N;

(iv) Bs,m
∞,1(R3n) ⊂ Csm(R3n), if s has components in N0.

(b) If 1 ≤ r, r̃ ≤ ∞, 0 < q, q̃ ≤ ∞, s, s̃ are vectors of the same dimension (dimension 1, 3,

or 3n) with positive components, and m ∈ R, then Bs,m
r,q (R3n) = B s̃,m

r̃,q̃ (R3n) if and only

if r = r̃, q = q̃ and s = s̃.

(c) Let 1 ≤ r ≤ ∞, 0 < q ≤ ∞, m ∈ R, s = (s1, · · · , s3n) ∈ R3n, sk > 0, k = 1, . . . , 3n,

s̃ = (s1 + · · · + sn, sn+1 + · · · + s2n, s2n+1 + · · · + s3n) and ˜̃s = s1 + · · · + s3n. Then the

following continuous inclusions hold:

B
˜̃s,m
r,q (R3n) $ B s̃,m

r,q (R3n) $ Bs,m
r,q (R3n).
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4.3 Boundedness Properties of Bilinear Operators with

Symbols in Bs,m
∞,q(R3n)

In this section we present two of the main results of Chapter 4. We start by recalling the

index m(p1, p2, ρ) introduced in Section 3.3.2 for the particular case ρ = 0, 1 ≤ p, p1, p2 ≤ ∞
and 1

p1
+ 1

p2
= 1

p
:

m(p1, p2, 0) = −nmax

{
1

2
,

1

p1

,
1

p2

, 1− 1

p

}
.

(0, 1)

(0, 12)

(0, 0) (1, 0)

(1, 1)

(12, 0)

1
p1

1
p2

− n
p2

− n
p1

−n
2

−n(1− 1
p)

Figure 4.1: Visualization of m(p1, p2, 0), 1
p

= 1
p1

+ 1
p2
, 1 ≤ p1, p2, p ≤ ∞.

Definition 4.3.1. Given 1 ≤ p ≤ ∞, s(p) will denote the number min(n
2
, n
p
) + 2 max(n

2
, n
p
),

or the 3-dimensional vector (min(n
2
, n
p
),max(n

2
, n
p
),max(n

2
, n
p
)), or the 3n-dimensional vector

(s1, . . . , s3n) where s1 = · · · = sn = min(1
2
, 1
p
) and sn+1 = · · · = s3n = max(1

2
, 1
p
). It will be

clear from the context which of these definitions of s(p) is being used in each case.

The first theorem we state addresses boundedness for operators with symbols in the

classes Bs,m
∞,q(R3n) in the setting of Lebesgue spaces with indices larger than or equal to 2.
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This range of indices corresponds to the triangle with vertices (0, 0), (0, 1
2
) and (1

2
, 0) in

Figure 4.1.

Theorem 4.3.2 (Herbert-Naibo [21]). Let 2 ≤ p, p1, p2 ≤ ∞ be related by 1
p

= 1
p1

+ 1
p2
,

m < m(p1, p2, 0), s(p) be as in Definition 4.3.1 and s be a vector of the same dimension as

s(p). The following statements hold true:

(a) If 0 < q ≤ 1 and s ≥ s(p), then

‖Tσ(f, g)‖Lp . ‖σ‖Bs,m∞,q ‖f‖Lp1 ‖g‖Lp2 ,

for all f, g ∈ S(Rn) and all σ ∈ Bs,m
∞,q(R3n).

(b) If 1 < q ≤ ∞ and s > s(p), then

‖Tσ(f, g)‖Lp . ‖σ‖Bs,m∞,q ‖f‖Lp1 ‖g‖Lp2 ,

for all f, g ∈ S(Rn) and all σ ∈ Bs,m
∞,q(R3n).

One of the main tools for the proof of Theorem 4.3.2 is a new result concerning bounded-

ness of operators with symbols in the classes C0
m(R3n) whose Fourier transform is compactly

supported. The statement of this result, its proof, and the proof of Theorem 4.3.2 are

presented in Section 4.5.

The next result presented in this chapter refers to boundedness properties from Lp1(Rn)×
Lp2(Rn) into L1(Rn) of bilinear operators with x-independent symbols in the Besov classes.

Theorem 4.3.3 (Herbert-Naibo [22]). Let 1 ≤ p1, p2 ≤ ∞ be such that 1
p1

+ 1
p2

= 1,

m < m(p1, p2, 0), s(1) be as in Definition 4.3.1 and s be a vector of the same dimension as

s(1). The following statements hold true:
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(a) If 0 < q ≤ 1 and s ≥ s(1), then

‖Tσ(f, g)‖L1 . ‖σ‖Bs,m∞,q ‖f‖Lp1 ‖g‖Lp2 ,

for all f, g ∈ S(Rn) and all x-independent symbols σ in Bs,m
∞,q(R3n).

(b) If 1 < q ≤ ∞ and s > s(1), then

‖Tσ(f, g)‖L1 . ‖σ‖Bs,m∞,q ‖f‖Lp1 ‖g‖Lp2 ,

for all f, g ∈ S(Rn) and all x-independent symbols σ in Bs,m
∞,q(R3n).

The proof of Theorem 4.3.3 is based on a new result regarding a symbolic calculus for

the Besov classes of x-independent symbols and on the use of Theorem 4.3.2. The statement

of this new result, its proof, and the proof of Theorem 4.3.3 are presented in Section 4.6.

Additional results concerning the minimal smoothness conditions for bilinear multipliers in

terms of Sobolev regularity were proven by Grafakos, Miyachi, and Tomita [19], Miyachi

and Tomita [31], and references therein.

4.4 An Upper Bound on the Number of Derivatives

As a consequence of Theorems 4.3.2 and 4.3.3 we obtain two corollaries for the bilinear

Hörmander classes BSm0,0, where m is below the critical order. These corollaries give esti-

mates for the number of derivatives of the symbols needed to exist and satisfy

sup
x,ξ,η∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m <∞, (4.4.5)

in order for the corresponding pseudodifferential operator to be bounded on Lebesgue spaces.
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We first note that by (4.2.4), we have, in particular, that

BSm0,0 $ C[s(p)]+1
m (R3n) $ B

s(p),m
∞,1 (R3n), (4.4.6)

where s(p) is as in Definition 4.3.1. The inclusions in (4.4.6) and part (a) of Theorem 4.3.2

for q = 1 imply:

Corollary 4.4.1 (Herbert-Naibo [21]). Let 2 ≤ p, p1, p2 ≤ ∞ be related by 1
p

= 1
p1

+ 1
p2
,

m < m(p1, p2, 0) and s(p) be as in Definition 4.3.1. Then

‖Tσ(f, g)‖Lp . ‖σ‖C[s(p)]+1
m

‖f‖Lp1 ‖g‖Lp2

for all f, g ∈ S(Rn) and all σ ∈ C[s(p)]+1
m (R3n).

In addition, (4.4.6) along with part (a) of Theorem 4.3.3 for q = 1 give:

Corollary 4.4.2 (Herbert-Naibo [22]). Let 1 ≤ p1, p2 ≤ ∞ be such that 1
p1

+ 1
p2

= 1,

m < m(p1, p2, 0) and s(1) be as in Definition 4.3.1. Then

‖Tσ(f, g)‖L1 . ‖σ‖C[s(1)]+1
m

‖f‖Lp1 ‖g‖Lp2

for all f, g ∈ S(Rn) and all x-independent symbols σ in C[s(1)]+1
m (R3n).

Remark 4.4.3. Taking into account the value of [s(p)] + 1 as a vector in R,R3, and R3n,

respectively, we remark that σ ∈ C[s(p)]+1
m (R3n) means that in Corollary 4.4.1, since p ≥ 2,

sup
|α+β+γ|≤[n(1+ 1

p
)]+1

sup
x,ξ,η∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m <∞ (4.4.7)

or

sup
|α|≤[n

p
]+1

|β|,|γ|≤[n
2

]+1

sup
x,ξ,η∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m <∞ (4.4.8)
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or

sup
α,β,γ∈{0,1}n

sup
x,ξ,η∈Rn

|∂αx∂βξ ∂γησ(x, ξ, η)|〈ξ, η〉−m <∞, (4.4.9)

while in Corollary 4.4.2, since the symbols do not depend on x and p = 1, we have

sup
|β+γ|≤[ 5

2
n]+1

sup
ξ,η∈Rn

|∂βξ ∂γησ(ξ, η)|〈ξ, η〉−m <∞ (4.4.10)

or

sup
|β|,|γ|≤n+1

sup
ξ,η∈Rn

|∂βξ ∂γησ(ξ, η)|〈ξ, η〉−m <∞ (4.4.11)

or

sup
β,γ∈{0,2}n

sup
ξ,η∈Rn

|∂βξ ∂γησ(ξ, η)|〈ξ, η〉−m <∞. (4.4.12)

Remark 4.4.4. Consider the symbol

σ(x, ξ, η) = (1 + |x|2)−
n
2p e−2πix·ξe−2πix·ηe−|ξ|

2

e−|η|
2

, x, ξ, η ∈ Rn, 0 < p <∞.

Elementary computations show that σ ∈ C(s1,[
n
p

])
m (R3n) for all s1 ∈ N and for all m ∈ R, where

C(s1,[
n
p

])
m (R3n) is defined as C(s1,[

n
p

],[n
p

])
m (R3n) but requiring |β+γ| ≤ [n

p
] instead of |β|, |γ| ≤ [n

p
]

(see (4.2.2)). Since ‖Tσ(f, g)‖p = ∞ for all f, g ∈ S(Rn), then Tσ is not bounded from

Lp1(Rn) × Lp2(Rn) into Lp(Rn), regardless of the values of p1 and p2. At least in the case

p = 2, this raises the question as to whether the condition (4.4.8) can be changed so that

|β + γ| ≤ [n
2
] + 1 rather than |β|, |γ| ≤ [n

2
] + 1 is required. This example also hints to the

fact that at least [n
p
] + 1 derivatives with respect to the frequency variables are needed for

boundedness in the case 0 < p < 2 and m ≤ m(p1, p2, 0).
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4.5 Proof of Theorem 4.3.2

As mentioned in Section 4.3, a useful tool in the proof of Theorem 4.3.2 is the boundedness

properties for operators with symbols in the subclass of C0
m(R3n) whose Fourier transforms

have compact support. We present the statement of this result as Theorem 4.5.1 in Section

4.5.1. In Section 4.5.2 a crucial estimate to obtain Theorem 4.5.1 is proved. Finally all

the pieces are put together in Section 4.5.3, where the proofs of Theorems 4.5.1 and 4.3.2,

respectively, are presented.

4.5.1 Symbols in C0m(R3n) with compactly supported Fourier trans-

forms

We consider the class of symbols C0
m(R3n) whose Fourier transforms have compact support.

More precisely, let σ(x, ξ, η), x, ξ, η ∈ Rn, be a complex-valued function satisfying

supp(σ̂) ⊂
3n∏

j=1

[−rj, rj] (4.5.13)

for some 1 ≤ rj <∞, j = 1, . . . , 3n, and

‖σ‖C0m = sup
x,ξ,η∈Rn

|σ(x, ξ, η)|〈ξ, η〉−m <∞. (4.5.14)

Theorem 4.5.1 (Herbert-Naibo [21]). Let 2 ≤ p, p1, p2 ≤ ∞ be related by 1
p

= 1
p1

+ 1
p2
, and

let σ(x, ξ, η), x, ξ, η ∈ Rn, be a complex-valued function satisfying (4.5.13) and (4.5.14) for

some 1 ≤ rj <∞, j = 1, . . . , 3n, and some m < m(p1, p2, 0), respectively. Then

‖Tσ(f, g)‖Lp . ‖σ‖C0m (r1 · · · rn)
1
p (rn+1 · · · r3n)

1
2 ‖f‖Lp1 ‖g‖Lp2 (4.5.15)

for all f, g ∈ S(Rn), and with the implicit constant independent of σ and rj for j = 1, · · · , 2n.
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A version of Theorem 4.5.1 in the linear case was first proved by Boulkhemair [8] for L2

boundedness and extended by Tomita [39] for Lp boundedness.

Remark 4.5.2. Let σ satisfy (4.5.13) and (4.5.14) for some 1 ≤ rj < ∞, j = 1, . . . , 3n, and

some m ∈ R. The computations below show that σ ∈ Bs,m
∞,1(R3n) for any s = (s1, . . . , s3n) ∈

R3n with positive components and that

‖σ‖Bs,m∞,1 . rs11 . . . rs3n3n ‖σ‖C0m .

Indeed, if σ satisfies (4.5.13) and (4.5.14), using the notation in the definition of Bs,m
∞,1(R3n)

for s ∈ R3n given in Section 4.2 we have

‖σ‖Bs,m∞,1 =
∑

k∈N3n
0

2s·k
∥∥〈ξ, η〉−mF−1(wkσ̂)

∥∥
L∞

=
∑

k∈N3n
0

kj≤[log2(rj)]+1

2s·k
∥∥〈ξ, η〉−mF−1(wkσ̂)

∥∥
L∞

,

in view of the supports of wk and σ̂. Now,

|〈ξ, η〉−mF−1(wkσ̂)(x, ξ, η)| = |〈ξ, η〉−m(w̌k ∗ σ)(x, ξ, η)|

=

∣∣∣∣〈ξ, η〉−m
∫

R3n

w̌k(y, a, b)σ(x− y, ξ − a, η − b) dy da db
∣∣∣∣

. ‖σ‖C0m 〈ξ, η〉
−m
∫

R3n

|w̌k(y, a, b)| 〈ξ − a, η − b〉m dy da db

. ‖σ‖C0m
∫

R3n

|w̌k(y, a, b)| 〈a, b〉|m| dy da db,

where we have used that 〈ξ, η〉 . 〈ξ − a, η − b〉〈a, b〉 for m < 0 and that 〈ξ, η〉−1 . 〈ξ −
a, η − b〉−1〈a, b〉 for m ≥ 0. Finally we note that the last integral is bounded by a constant

independent of k ∈ N3n
0 and conclude that

‖σ‖Bs,m∞,1 .
∑

k∈N3n
0

kj≤[log2(rj)]+1

2s·k ‖σ‖C0m ∼ rs11 . . . rs3n3n ‖σ‖C0m ,
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where we have used that sj > 0 for j = 1, . . . , 3n. In particular, if σ is as in the statement of

Theorem 4.5.1 then σ ∈ Bs(p),m
∞,1 (R3n), where s(p) is the 3n-dimensional vector in Definition

4.3.1, and

‖σ‖
B
s(p),m
∞,1

. (r1 · · · rn)
1
p (rn+1 · · · r3n)

1
2 ‖σ‖C0m .

4.5.2 A crucial estimate

We start with some definitions followed by the statement and proof of Theorem 4.5.3 which

constitutes an essential ingredient in our proof of Theorem 4.5.1.

For f, g, h, ϕ, ψ, θ in the Schwarz class S(Rn) define:

V (f, g, h)(y, a, b) :=

∫

R3n

e2πi(y·x+a·ξ+b·η)f̂(ξ)ĝ(η)e2πix·(ξ+η)h̄(x) dx dξ dη

=

∫

Rn
e2πiy·xh̄(x)f(x+ a)g(x+ b) dx,

W (f, g, h, ϕ, ψ, θ)(x, ξ, η) :=

∫

R3n

e−2πi(x·y+ξ·a+η·b)ϕ(y)ψ(a)θ(b)V (f, g, h)(y, a, b) dy da db.

We note that V (f, g, h) and W (f, g, h, ϕ, ψ, θ) belong to S(R3n) for any f, g, h, ϕ, ψ, θ ∈
S(Rn).

Theorem 4.5.3 (Herbert-Naibo [21]). Let 2 ≤ p, p1, p2 ≤ ∞ be related by 1
p

= 1
p1

+ 1
p2

and

m < m(p1, p2, 0). Then

∫

R3n

〈ξ, η〉m|W (f, g, h, ϕ, ψ, θ)(x, ξ, η)| dx dξ dη (4.5.16)

.
∑

α,β,γ∈{0,1,2,3}n
‖∂̂αψ‖L2‖‖∂̂βθ‖L2‖∂̂γϕ‖Lp′ ‖f‖Lp1 ‖g‖Lp2 ‖h‖Lp′ ,

for all functions f, g, h, ψ, θ ∈ S(Rn) and ϕ of the form ϕ(x) =
∏n

j=1 ϕj(xj), where x =

(x1, . . . , xn) and ϕj ∈ S(R) for j = 1, . . . , n.
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The proof of Theorem 4.5.1 through the use of Theorem 4.5.3 is inspired by ideas in

Hwang-Lee [27], also used in Tomita [39], in the linear case. Due to the bilinear setting, the

proof of Theorem 4.5.3 requires new ideas.

The following lemma will be useful; see Bergh-Löfström [7, p. 17].

Lemma 4.5.4. Let 2 ≤ r < ∞ and r′ ≤ q ≤ r. There exists a positive constant Cr,q such

that (∫

Rn
|f̂(ξ)|q〈ξ〉−n(1− q

r
) dξ

) 1
q

≤ Cr,q ‖f‖Lr′ .

Proof of Theorem 4.5.3. Fix f, g, h, ϕ, ψ, θ ∈ S(Rn); we will write W (x, ξ, η) instead of

W (f, g, h, ϕ, ψ, θ)(x, ξ, η). We note that all changes in the order of integration in the follow-

ing steps are justified in view of the smoothness and decay of the integrands. Using that

h(t) =
∫
Rn e

2πit·τ ĥ(τ) dτ and making the change of variables a+ t→ a and b+ t→ b, we get

W (x, ξ, η) =

∫

R3n

e−2πi(x·y+ξ·a+η·b)ϕ(y)ψ(a)θ(b)

(∫

Rn
e2πit·yh̄(t)f(t+ a)g(t+ b) dt

)
dydadb

=

∫

R5n

e−2πi(x·y+ξ·(a−t)+η·(b−t))ϕ(y)ψ(a− t)θ(b− t)e2πit·(y−τ)¯̂h(τ)f(a)g(b) dτdtdydadb.

Denoting Aa,b(t) := ψ(a+ t)θ(b+ t), the integral in t can be written as

∫

Rn
e2πit·(ξ+η+y−τ)ψ(a− t)θ(b− t) dt = Âa,b(ξ + η + y − τ).

Incorporating this into the formula for W and making the change of variable ξ+η+y−τ → y,

it follows that

W (x, ξ, η) =

∫

R4n

e−i2π(x·y+ξ·a+η·b)ϕ(y)Âa,b(ξ + η + y − τ)
¯̂
h(τ)f(a)g(b) dτdydadb

=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)

(∫

Rn
e−2πix·yϕ(y + τ − ξ − η)Âa,b(y) dy

)
dτdadb.

We have ϕj(yj + τj − ξj − ηj) = ϕj(τj − ξj − ηj) + yj
∫ 1

0
ϕ

(1)
j (sjyj + τj − ξj − ηj) dsj where
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ϕ
(1)
j denotes the first derivative of ϕj. Therefore, defining

Jk := {~j = (j1, . . . , jn) ∈ {1, . . . , n}n : jl 6= jl̃ if l 6= l̃, j1 < · · · < jk, jk+1 < · · · < jn}

for k = 0, . . . , n, it follows that

ϕ(y + τ − ξ − η) =
n∏

j=1

(
ϕj(τj − ξj − ηj) + yj

∫ 1

0

ϕ
(1)
j (sjyj + τj − ξj − ηj) dsj

)

=
∑

k=0,...,n

(j1,...,jn)∈Jk

(
k∏

l=1

ϕjl(τjl − ξjl − ηjl)
)(

n∏

l=k+1

yjl

∫ 1

0

ϕ
(1)
jl

(sjlyjl + τjl − ξjl − ηjl) dsjl

)
,

with the products
∏0

l=1 and
∏n

l=n+1 being interpreted as 1. We then obtain that

W (x, ξ, η) =
∑

k=0,...,n

~j∈Jk

Wk,~j(x, ξ, η),

where for k = 0, . . . , n and ~j = (j1, . . . , jn) ∈ Jk,

Wk,~j(x, ξ, η) :=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)Sk,~j(x, τ, ξ, η, a, b) dτdadb,

Sk,~j(x, τ, ξ, η, a, b) :=

∫

Rn
e−2πix·yϕk,~j(τ − ξ − η)Φk,~j(y, τ, ξ, η)Âa,b(y) dy,

ϕk,~j(τ − ξ − η) :=
k∏

l=1

ϕjl(τjl − ξjl − ηjl), (ϕ0,~j(τ − ξ − η) := 1),

Φk,~j(y, τ, ξ, η) :=
n∏

l=k+1

yjl

∫ 1

0

ϕ
(1)
jl

(sjlyjl + τjl − ξjl − ηjl) dsjl

= yjk+1
· · · yjn

∫

[0,1]n−k

n∏

l=k+1

ϕ
(1)
jl

(sjlyjl + τjl − ξjl − ηjl) dsjk+1
. . . dsjn ,

with Φn,~j := 1.

It is then enough to prove the inequality (4.5.16) for each Wk,~j. We will distinguish
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between the cases k = n and k ∈ {0, . . . , n− 1}.
Case k = n. Here ~j = (1, . . . , n) and therefore

Wn,~j(x, ξ, η) =

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)Sn,~j(x, τ, ξ, η, a, b) dτdadb

=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)

∫

Rn
e−2πix·yϕ(τ − ξ − η)Âa,b(y) dy dτdadb

=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)ϕ(τ − ξ − η)Aa,b(−x) dτdadb.

Using that Aa,b(−x) := ψ(a − x)θ(b − x) and defining Fx(a) := f(a)ψ(a − x), Gx(b) :=

g(b)θ(b− x), and Hx(τ) := h̄(τ)ϕ̂(x− τ),

Wn,~j(x, ξ, η) = e2πix·(ξ+η)

(∫

Rn
e−2πix·τ ¯̂h(τ)ϕ(τ − ξ − η) dτ

)

×
(∫

Rn
e−2πiξ·af(a)ψ(a− x) da

)(∫

Rn
e−2πiη·bg(b)θ(b− x) db

)

= e2πix·(ξ+η)

(∫

Rn
e−2πix·τ ¯̂h(τ)ϕ(τ − ξ − η) dτ

)
F̂x(ξ) Ĝx(η)

= e2πix·(ξ+η)

(∫

Rn
h̄(τ)F−1(e−2πix··ϕ(· − ξ − η))(τ) dτ

)
F̂x(ξ) Ĝx(η)

=

(∫

Rn
h̄(τ)e2πiτ ·(ξ+η)ϕ̂(x− τ) dτ

)
F̂x(ξ) Ĝx(η) = Ȟx(ξ + η) F̂x(ξ) Ĝx(η).

Applying Hölder’s inequality with respect to (ξ, η) and Plancherel’s identity, we obtain

∫

R3n

〈ξ, η〉m|Wn,~j(x, ξ, η)| dxdξdη =

∫

R3n

〈ξ, η〉m|Ȟx(ξ + η) F̂x(ξ) Ĝx(η)| dxdξdη (4.5.17)

≤
∫

Rn
‖Fx‖2 ‖Gx‖2

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

dx.

Using inequality (4.5.17) we now consider the cases p <∞ and p =∞ separately. First, for
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p <∞, Hölder’s inequality in x then gives

∫

R3n

〈ξ, η〉m|Wn,~j(x, ξ, η)| dxdξdη (4.5.18)

≤
(∫

Rn
‖Fx‖pL2 ‖Gx‖pL2 dx

) 1
p

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
Lp′

≤
(∫

Rn
‖Fx‖p1L2 dx

) 1
p1

(∫

Rn
‖Gx‖p2L2 dx

) 1
p2

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
Lp′

.

(With obvious changes if p1 = ∞ or p2 = ∞). Recalling that Fx(a) = f(a)ψ(a − x) and

that p1 ≥ 2, it follows that

(∫

Rn
‖Fx‖p1L2 dx

) 1
p1

=
∥∥|f |2 ∗ |ψ(−·)|2

∥∥ 1
2

L
p1
2
≤
∥∥|f |2

∥∥ 1
2

L
p1
2

∥∥|ψ|2
∥∥ 1

2

L1 = ‖f‖Lp1 ‖ψ‖2. (4.5.19)

Similarly, (∫

Rn
‖Gx‖p2L2 dx

) 1
p2 ≤ ‖g‖Lp2 ‖θ‖L2 . (4.5.20)

(Again, with obvious changes if p1 =∞ or p2 =∞). We now look at the factor

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
Lp′

in (4.5.18). Recall that m < m(p1, p2, 0) = −n(1 − 1
p
), then m = −n(1 − 1

p
) − ε, for some

ε > 0. Set m1 := −n
2
− ε and m2 := −n

2
(1− 2

p
), then m1 < −n

2
, m2 ≤ 0 (since p ≥ 2), and

m1 +m2 = m. The change of variable η → η−ξ and the fact that 〈ξ, η−ξ〉2m ≤ 〈ξ〉2m1〈η〉2m2

imply

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

=

(∫

R2n

〈ξ, η − ξ〉2m|Ȟx(η)|2dξdη
) 1

2

≤
(∫

Rn
〈ξ〉2m1 dξ

) 1
2
(∫

Rn
〈η〉2m2|Ȟx(η)|2 dη

) 1
2

.
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Note that the integral in ξ is finite; moreover, by Lemma 4.5.4

(∫

Rn
〈η〉2m2|Ȟx(η)|2 dη

) 1
2

=

(∫

Rn
〈η〉−n(1− 2

p
)|Ȟx(η)|2 dη

) 1
2

. ‖Hx‖Lp′ =
∥∥h̄(·)ϕ̂(x− ·)

∥∥
Lp′

,

which implies

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
Lp′

. ‖h‖Lp′ ‖ϕ̂‖Lp′ . (4.5.21)

By (4.5.18), (4.5.19), (4.5.20), and (4.5.21), we obtain

∫

R3n

〈ξ, η〉m|Wn,~j(x, ξ, η)| dxdξdη . ‖ψ̂‖L2‖θ̂‖L2 ‖ϕ̂‖Lp′ ‖f‖Lp1 ‖g‖Lp2 ‖h‖Lp′ . (4.5.22)

Next, we consider the case when p = p1 = p2 =∞ for which we will also prove (4.5.22).

Again (4.5.17) gives

∫

R3n

〈ξ, η〉m|Wn,~j(x, ξ, η)|dx dξ dη (4.5.23)

≤ sup
x∈Rn

(‖Fx‖L2 ‖Gx‖L2)

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
L1

≤ ‖f‖L∞ ‖g‖L∞
∥∥∥ψ̂
∥∥∥
L2

∥∥∥θ̂
∥∥∥
L2

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥∥∥
L1

.

The treatment of
∥∥∥
(∫

R2n〈ξ, η〉2m|Ȟx(ξ + η)|2dξdη
) 1

2

∥∥∥
L1

in (4.5.23) is slightly different re-

garding the selection of m1 and m2 below when compared to the case 2 ≤ p < ∞. Since

m(∞,∞, 0) = −n and m < m(∞,∞, 0), we have m = −n − ε for some ε > 0. Set m1 =

m2 := −n
2
− ε

2
. The change of variable η → η−ξ and the fact that 〈ξ, η−ξ〉2m ≤ 〈ξ〉2m1〈η〉2m2
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imply

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξ dη
) 1

2

≤
(∫

Rn
〈ξ〉2m1dξ

) 1
2
(∫

Rn
〈η〉2m2|Ȟx(η)|2dη

) 1
2

.

The integral in ξ is finite and

(∫

Rn
〈η〉2m2|Ȟx(η)|2dη

) 1
2

=

(∫

Rn
〈η〉−n−ε|Ȟx(η)|2dη

) 1
2

.
∥∥Ȟx

∥∥
L∞

. ‖Hx‖L1 =
∥∥h̄(·)ϕ̂(x− ·)

∥∥
L1 ,

which implies

∥∥∥∥∥

(∫

R2n

〈ξ, η〉2m|Ȟx(ξ + η)|2dξ dη
) 1

2

∥∥∥∥∥
L1

. ‖h‖L1 ‖ϕ̂‖L1 . (4.5.24)

We then obtain

∫

R3n

〈ξ, η〉m|Wn~j(x, ξ, η)|dx dξ dη .
∥∥∥ψ̂
∥∥∥
L2

∥∥∥θ̂
∥∥∥
L2
‖ϕ̂‖L1 ‖f‖L∞ ‖g‖L∞ ‖h‖L1 (4.5.25)

proving inequality (4.5.22) for p = p1 = p1 =∞ and thus completing the case k = n.

Case k ∈ {0, . . . , n − 1}. Fix k ∈ {0, . . . , n − 1} and ~j = (j1, . . . , jn) ∈ Jk. With-

out loss of generality we can assume that jl = l for l = 1, . . . , n. Note first that since

(2πi)n−kyk+1yk+2 · · · ynÂa,b(y) = F(∂tk+1
· · · ∂tnAa,b(t))(y) then

Sk,~j(x, τ, ξ, η, a, b) := (2πi)k−n
∫

Rn
e−2πix·yϕk,~j(τ − ξ − η)F(∂tk+1

· · · ∂tnAa,b(t))(y)

×
∫

[0,1]n−k

n∏

l=k+1

ϕ
(1)
l (slyl + τl − ξl − ηl) dsk+1 . . . dsn dy.

Now, defining ~ek,~j ∈ Rn as the vector with components equal to 1 at positions l, l =
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k + 1, . . . , n, and 0 otherwise, we have,

F(∂tk+1
· · · ∂tnAa,b)(y) =

∫

Rn
e−2πiy·t∂tk+1

· · · ∂tn(ψ(a+ t)θ(b+ t)) dt

=

∫

Rn
e−2πiy·t

∑

α1+α2=~ek,~j

Cα1,α2 ∂
α1
t ψ(a+ t)∂α2

t θ(b+ t) dt.

Using the fact that

(1− ∂2
t1

) · · · (1− ∂2
tn)e−2πiy·t = e−2πiy·t

n∏

j=1

(1 + 4π2y2
j )

and integration by parts, we obtain

F(∂tk+1
· · · ∂tnAa,b)(y)

=
∑

α1+α2=~ek,~j

Cα1,α2∏n
j=1(1 + 4π2y2

j )

∫

Rn
e−2πiy·t (1− ∂2

t1
) · · · (1− ∂2

tn)(∂α1
t ψ(a+ t)∂α2

t θ(b+ t)) dt.

We now note that

(1− ∂2
t1

) · · · (1− ∂2
tn) =

n∑

d=0

(−1)d
∑

γ∈Hd

∂γt

where Hd := {γ ∈ Rn : γ has d entries equal to 2 and all others equal to 0}, and therefore

(1− ∂2
t1

) · · · (1− ∂2
tn)(∂α1

t ψ(a+ t)∂α2
t θ(b+ t))

=
n∑

d=0

(−1)d
∑

γ∈Hd

∂γt (∂α1
t ψ(a+ t)∂α2

t θ(b+ t))

=
n∑

d=0

(−1)d
∑

γ∈Hd

∑

γ1+γ2=γ

Cγ1,γ2(∂
α1+γ1ψ)(a+ t)(∂α2+γ2θ)(b+ t).
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This leads to

F(∂tk+1
· · · ∂tnAa,b)(y)

=
∑

α1+α2=~ek,~j

n∑

d=0

∑

γ∈Hd

∑

γ1+γ2=γ

Cα1,α2,γ1,γ2∏n
j=1(1 + 4π2y2

j )

∫

Rn
e−2πiy·t (∂α1+γ1ψ)(a+ t)(∂α2+γ2θ)(b+ t) dt.

Then Sk,~j(x, τ, ξ, η, a, b) is a finite linear combination of terms of the form

Sk,~j,1(x, τ, ξ, η, a, b) :=ϕk,~j(τ − ξ − η)

∫

Rn

e−2πix·y
∏n

j=1(1 + 4π2y2
j )

×
∫

Rn
e−2πiy·t (∂α1+γ1ψ)(a+ t)(∂α2+γ2θ)(b+ t) dt

×
∫

[0,1]n−k

n∏

l=k+1

ϕ
(1)
l (slyl + τl − ξl − ηl) dsk+1 . . . dsn dy

and it is enough to analyze

Wk,~j,1(x, ξ, η) :=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)Sk,~j,1(x, τ, ξ, η, a, b) dτdadb.

Now,

Sk,~j,1(x, τ, ξ, η, a, b) =ϕk,~j(τ − ξ − η)

∫

Rn
(∂α1+γ1ψ)(a+ t)(∂α2+γ2θ)(b+ t)Q1(x, t, τ, ξ, η) dt

where

Q1(x, t, τ, ξ, η) :=

∫

Rn

∫

[0,1]n−k

e−2πi(x+t)·y
∏n

j=1(1 + 4π2y2
j )

n∏

l=k+1

ϕ
(1)
l (slyl + τl − ξl − ηl) dsk+1 . . . dsn dy.

Using that

(1− ∂y1)2 · · · (1− ∂yn)2e−2πi(x+t)·y = e−2πi(x+t)·y
n∏

j=1

(1 + 2πi(tj + xj))
2
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and integration by parts give

Q1(x, t,τ, ξ, η) =
1∏n

j=1(1 + 2πi(tj + xj))2

∫

Rn

∫

[0,1]n−k
e−2πi(x+t)·y

×
(

k∏

l=1

(1 + ∂yl)
2

(
1

1 + 4π2y2
l

))( n∏

l=k+1

(1 + ∂yl)
2

(
ϕ

(1)
l (slyl + τl − ξl − ηl)

1 + 4π2y2
l

))

× dsk+1 . . . dsn dy

=
1∏n

j=1(1 + 2πi(tj + xj))2

∫

Rn

∫

[0,1]n−k
e−2πi(x+t)·y

(
k∏

l=1

Hl(yl)

)

×
(

n∏

l=k+1

3∑

j=1

ϕ
(j)
l (slyl + τl − ξl − ηl)sj−1

l Hl(yl)

)
dsk+1 . . . dsn dy,

where Hl ∈ L1(R) for l = 1, . . . , n and ϕ
(j)
l denotes the jth derivative of ϕl. Then we have

that Sk,~j,1(x, τ, ξ, η, a, b) is a finite linear combination of terms of the form

Sk,~j,2(x, τ, ξ, η, a, b) :=ϕk,~j(τ − ξ − η)

∫

Rn
(∂α1+γ1ψ)(a+ t)(∂α2+γ2θ)(b+ t)Q2(x, t, τ, ξ, η) dt,

where

Q2(x, t, τ, ξ, η) :=
1∏n

j=1(1 + 2πi(tj + xj))2

∫

Rn

∫

[0,1]n−k
e−2πi(x+t)·yH(y)

×
(

n∏

l=k+1

ϕ
(jl)
l (slyl + τl − ξl − ηl)sjl−1

l

)
dsk+1 . . . dsn dy,

with H(y) := H1(y1) . . . Hn(yn) ∈ L1(Rn) and jl equal to 1, 2, or 3. It is then enough to

analyze

Wk,~j,2(x, ξ, η) :=

∫

R3n

e−2πi(x·(−ξ−η+τ)+ξ·a+η·b)¯̂h(τ)f(a)g(b)Sk,~j,2(x, τ, ξ, η, a, b) dτdadb.

Setting Ft,α1,γ1(a) := f(a)(∂α1+γ1ψ)(a+t) and Gt,α2,γ2(b) := g(b)(∂α2+γ2θ)(b+t), the integrals
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in a and b in Wk,~j,2 are given by

∫

Rn
e−2πiξ·af(a)(∂α1+γ1ψ)(a+ t) da

∫

Rn
e−2πiη·bg(b)(∂α2+γ2θ)(b+ t) db = F̂t,α1,γ1(ξ)Ĝt,α2,γ2(η).

For the integral in τ we have

∫

Rn
e−2πix·τ ¯̂h(τ)ϕk,~j(τ − ξ − η)

(
n∏

l=k+1

ϕ
(jl)
l (slyl + τl − ξl − ηl)sjl−1

l

)
dτ

=

∫

Rn
̂h(·+ x)(τ)ϕk,~j(τ − ξ − η)

(
n∏

l=k+1

ϕ
(jl)
l (slyl + τl − ξl − ηl)sjl−1

l

)
dτ

=

∫

Rn
h̄(τ + x)F−1

(
ϕk,~j(· − ξ − η)

(
n∏

l=k+1

ϕ
(jl)
l (slyl + ·l − ξl − ηl)sjl−1

l

))
(τ) dτ

=

∫

Rn
h̄(τ + x)F−1

(
ϕk,~j(·)

(
n∏

l=k+1

ϕ
(jl)
l (·l)sjl−1

l

))
(τ) e−2πi

∑n
l=k+1 slylτl e2πi(ξ+η)·τ dτ

= F−1 (Hx,s̄k,ȳk) (ξ + η),

where s̄k := (sk+1, . . . , sn), ȳk := (yk+1, . . . , yn), and

Hx,s̄k,ȳk(τ) := h̄(τ + x)F−1

(
ϕk,~j(·)

(
n∏

l=k+1

ϕ
(jl)
l (·l)sjl−1

l

))
(τ) e−2πi

∑n
l=k+1 slylτl .

It then follows that

Wk,~j,2(x, ξ, η) =

∫

R2n

∫

[0,1]n−k

e2πix·(ξ+η)e−2πi(x+t)·yH(y)∏n
j=1(1 + 2πi(tj + xj))2

× F̂t,α1,γ1(ξ)Ĝt,α2,γ2(η)F−1 (Hx,s̄k,ȳk) (ξ + η) dsk+1 . . . dsn dydt.

Multiplying by 〈ξ, η〉m on both sides of the last equality, integrating with respect to x,

ξ, η after taking modulus, and applying the Cauchy-Schwarz inequality in ξ and η and
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Plancherel’s identity, we have

∫

R3n

〈ξ, η〉m|Wk,~j,2(x, ξ, η)| dξdηdx ≤
∫

R3n

|H(y)|
∫

[0,1]n−k

‖Ft,α1,γ1‖2 ‖Gt,α2,γ2‖L2∏n
j=1(1 + |tj + xj|2)

(4.5.26)

×
(∫

R2n

〈ξ, η〉2m|F−1 (Hx,s̄k,ȳk) (ξ + η)|2 dξdη
) 1

2

dsk+1 . . . dsn dy dt dx. (4.5.27)

At this point we divide the case k ∈ {0, ..., n− 1} into the two possibilities 2 ≤ p <∞ and

p =∞. For 2 ≤ p <∞, we now apply Hölder’s inequality with respect to x and t to get

∫

R3n

〈ξ, η〉m|Wk,~j,2(x, ξ, η)| dξdηdx

≤
∫

Rn
|H(y)|

∫

[0,1]n−k

(∫

R2n

(
‖Ft,α1,γ1‖L2 ‖Gt,α2,γ2‖L2∏n

j=1(1 + |tj + xj|2)
1
2

)p

dtdx

) 1
p

×



∫

R2n



(∫

R2n〈ξ, η〉2m|F−1 (Hx,s̄k,ȳk) (ξ + η)|2 dξdη
) 1

2

∏n
j=1(1 + |tj + xj|2)

1
2



p′

dxdt




1
p′

dsk+1 . . . dsn dy

.
∫

Rn
|H(y)|

∫

[0,1]n−k

(∫

Rn
‖Ft,α1,γ1‖pL2 ‖Gt,α2,γ2‖pL2 dt

) 1
p

(4.5.28)

×



∫

Rn

(∫

R2n

〈ξ, η〉2m|F−1 (Hx,s̄k,ȳk) (ξ + η)|2 dξdη
) p′

2

dx




1
p′

dsk+1 . . . dsn dy,

where we have used that p and p′ are both larger than 1. The factor in (4.5.28) given by
(∫

Rn ‖Ft,α1,γ1‖pL2 ‖Gt,α2,γ2‖pL2 dt
) 1
p is handled in the same way as

(∫
Rn ‖Fx‖

p
L2 ‖Gx‖pL2 dx

) 1
p in

the case k = n and satisfies

(∫

Rn
‖Ft,α1,γ1‖pL2 ‖Gt,α2,γ2‖pL2 dt

) 1
p

. ‖ ̂∂α1+γ1ψ‖L2‖∂̂α2+γ2θ‖L2 ‖f‖Lp1 ‖g‖Lp2 . (4.5.29)
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For the other factor, we proceed as in the case k = n using Lemma 4.5.4 to get



∫

Rn

(∫

R2n

〈ξ, η〉2m|F−1 (Hx,s̄k,ȳk) (ξ + η)|2 dξdη
) p′

2

dx




1
p′

(4.5.30)

.

(∫

R2n

|Hx,s̄k,ȳk(τ)|p′ dτdx
) 1

p′

. ‖h‖Lp′
∥∥∥∥∥ϕ̂k,~j

n∏

j=k+1

ϕ̂
(jl)
l

∥∥∥∥∥
Lp′

.

Putting (4.5.28), (4.5.29), and (4.5.30) together and using that sj ∈ [0, 1] and H ∈ L1(Rn),

we get

∫

R3n

〈ξ, η〉m|Wk,~j,2(x, ξ, η)| dξdηdx (4.5.31)

. ‖ ̂∂α1+γ1ψ‖L2‖∂̂α2+γ2θ‖L2

∥∥∥∥∥ϕ̂k,~j
n∏

j=k+1

ϕ̂
(jl)
l

∥∥∥∥∥
Lp′

‖f‖Lp1 ‖g‖Lp2 ‖h‖Lp′ .

Finally, we consider the case p = p1 = p2 = ∞ for k ∈ {0, ..., n − 1}. From (4.5.26) we

get

∫

R3n

〈ξ, η〉m|Wk,~j,2(x, ξ, η)|dξdηdx . sup
t

(
‖Ft,α1,γ1‖L2 ‖Gt,α2,γ2‖L2

) ∫

Rn
|H(y)| (4.5.32)

×
∫

[0,1]n−k

(∫

Rn

(∫

R2n

〈ξ, η〉2m|F−1(Hx,s̄k,ȳk)(ξ + η)|2dξdη
) 1

2

dx

)
dsk+1...dsndy.

For the supremum in t we have

sup
t

(
‖Ft,α1,γ1‖L2 ‖Gt,α2,γ2‖L2

)
.
∥∥∥∂̂α1+γ1ψ

∥∥∥
L2

∥∥∥∂̂α2+γ2θ
∥∥∥
L2
‖f‖L∞ ‖g‖L∞ , (4.5.33)

while for the other factor, we proceed as in the case k = n corresponding to p = p1 = p2 =∞
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and get

∫

Rn

(∫

Rn
〈ξ, η〉2m|F−1(Hx,s̄,ȳk)(ξ + η)|2dξ dη

) 1
2

dx (4.5.34)

.
∫

R2n

|Hx,s̄k,ȳk(τ)|dτ dx . ‖h‖L1

∥∥∥∥∥ϕ̂k,~j
n∏

j=k+1

ϕ̂
(jl)
l

∥∥∥∥∥
L1

.

Putting (4.5.32), (4.5.33), and (4.5.34) together and using that sj ∈ [0, 1] and H ∈ L1(Rn),

we get

∫

R3n

〈ξ, η〉m|Wk,~j,2(x, xi, η)|dξ dη dx (4.5.35)

.
∥∥∥∂̂α1+γ1ψ

∥∥∥
L2

∥∥∥∂̂α2+γ2θ
∥∥∥
L2

∥∥∥∥∥ϕ̂k,~j
n∏

j=k+1

ϕ̂
(jl)
l

∥∥∥∥∥
L1

‖f‖L∞ ‖g‖L∞ ‖h‖L1 .

Recalling the ranges of the number of derivatives used, (4.5.22) along with (4.5.31) and

(4.5.25) along with (4.5.35) lead to (4.5.16) for 2 ≤ p <∞ and p =∞, respectively.

4.5.3 The completion of the proof

We first note that if the components of s are positive, the action of σ ∈ Bs,m
∞,q as a tempered

distribution is given by

〈σ, F 〉 :=

∫

R3n

σ(x, ξ, η)F (x, ξ, η) dx dξ dη, for all F ∈ S(R3n).

This implies that

∫

R3n

σ(x, ξ, η) F̂ (x, ξ, η) dx dξ dη = 〈σ̂, F 〉, for all F ∈ S(R3n),

with an analogous formula when the Fourier transform is replaced by the inverse Fourier

transform.
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Proof of Theorem 4.5.1. Let σ(x, ξ, η), x, ξ, η ∈ Rn, satisfy (4.5.13) and (4.5.14). Consider

ϕ(x) =
∏n

j=1 Φ
(
xj
rj

)
, ψ(x) =

∏n
j=1 Ψ

(
xj
rj+n

)
and θ(x) =

∏n
j=1 Θ

(
xj

rj+2n

)
, x = (x1, . . . , xn),

where Φ, Ψ and Θ are functions in S(R) supported in [−2, 2] and identically equal to 1 in

[−1, 1]. Then, for f, g, h ∈ S(Rn), in view of the definitions of V and W and the support of

σ̂, we have

∫

Rn
Tσ(f, g)(x)h̄(x) dx =

∫

R3n

σ(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η)h̄(x) dxdξdη

= 〈σ̂, V (f, g, h)〉

= 〈σ̂, (ϕ⊗ ψ ⊗ θ)V (f, g, h)〉

=

∫

R3n

σ(x, ξ, η)W (f, g, h, ϕ, ψ, θ)(x, ξ, η) dxdξdη,

where (ϕ⊗ ψ ⊗ θ)(y, a, b) := ϕ(y)ψ(a)θ(b). Theorem 4.5.3 then implies

∣∣∣∣
∫

Rn
Tσ(f, g)(x)h̄(x) dx

∣∣∣∣ . ‖σ‖C0m
∫

R3n

〈ξ, η〉m|W (f, g, h, ϕ, ψ, θ)(x, ξ, η)| dxdξdη

. ‖σ‖C0m
∑

α,β,γ∈{0,1,2,3}n
‖∂̂αψ‖L2‖‖∂̂βθ‖L2‖∂̂γϕ‖Lp′ ‖f‖Lp1 ‖g‖Lp2 ‖h‖Lp′ .

A simple computation shows that

‖∂̂γϕ‖Lp′ . (r1 · · · rn)
1
p , ‖∂̂αψ‖L2 . (rn+1 · · · r2n)

1
2 , ‖∂̂βθ‖L2 . (r2n+1 · · · r3n)

1
2 ,

where we have used that rj ≥ 1, j = 1, . . . , 3n, and therefore (4.5.15) follows.

Next we use Theorem 4.5.1 to prove Theorem 4.3.2.

Proof of Theorem 4.3.2. In view of Proposition 4.2.1, it is enough to prove part (a) for

s(p) = (s1, · · · , s3n) where s1 = · · · = sn = 1
p

and sn+1 = . . . = s3n = 1
2
. Consider

{wj}j∈N0 as in (4.2.1) with N = 1 and for k = (k1, . . . , k3n) ∈ R3n set wk(x, ξ, η) :=
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wk1(x1) · · ·wkn(xn)wkn+1(ξ1) · · ·wk2n(ξn)wk2n+1(η1) · · ·wk3n(ηn). Then for f, g, h ∈ S(Rn),

∫

R3n

Tσ(f, g)(x)h̄(x) dx =

∫

R3n

σ(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η)h̄(x) dxdξdη

= 〈σ̂, V (f, g, h)〉

= 〈
∑

k∈N3n
0

wkσ̂, V (f, g, h)〉

=
∑

k∈N3n
0

〈wkσ̂, V (f, g, h)〉

=
∑

k∈N3n
0

∫

R3n

F−1(wkσ̂)(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η)h̄(x) dxdξdη

=
∑

k∈N3n
0

∫

Rn
Tσk(f, g)(x)h̄(x) dxdξdη,

where σk(x, ξ, η) := F−1(wkσ̂)(x, ξ, η). It then follows that

‖Tσ(f, g)‖Lp .
∑

k∈N3n
0

‖Tσk(f, g)‖Lp .

We note that σk satisfies (4.5.13), since supp(σ̂k) ⊂
∏3n

l=1[−2kl+1, 2kl+1], and (4.5.14) since

σ ∈ Bs(p),m
∞,1 (R3n). Theorem 4.5.1 implies

‖Tσ(f, g)‖Lp .
∑

k∈N3n
0

2s(p)·k ‖σk‖C0m ‖f‖Lp1 ‖g‖Lp2 = ‖σ‖
B
s(p),m
∞,1

‖f‖Lp1 ‖g‖Lp2 .

4.6 Proof of Theorem 4.3.3

In Section 4.6.1 we state and prove a new result in regards to a symbolic calculus for classes

of x-independent symbols belonging to Besov spaces of product type, which we then use in
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Section 4.6.2 to proof Theorem 4.3.3.

4.6.1 A symbolic calculus for classes of x-independent symbols in

Besov spaces of product type

We start with a remark about the norm of x-independent symbols belonging to the Besov

classes introduced in Section 4.2. Let w and w0 be as in (4.2.1) with N = n. If σ is an

x-independent symbol in Bs,m
r,q (R3n) and s = (s1, s2, s3) ∈ R3, it easily follows that

‖σ‖Bs,m∞,1 ∼


∑

k∈N2
0

(
2s̄·k

∥∥〈ξ, η〉−mF−1(wkσ̂)
∥∥
Lr

)q



1
q

, (4.6.36)

where s̄ = (s2, s3), wk(ξ, η) = wk2(ξ)wk3(η) for k = (k2, k3) ∈ N2
0, F−1 andˆdenote inverse

Fourier transform and Fourier transform in R2n, respectively, and the Lr norm is taken in

R2n. An analogous remark corresponds to the case when s ∈ R3n.

We now state our result regarding a symbolic calculus for such symbols.

Theorem 4.6.1 (Herbert-Naibo [22]). Let m ∈ R, 2 ≤ r ≤ ∞, and suppose that σ is an

x-independent symbol. Then

σ ∈ Bs(1),m
∞,1 (R3n)⇒ σ∗1, σ∗2 ∈ Bs(r),m

∞,1 (R3n),

where s(1) and s(r) have the same dimension (3 or 3n) and are given as in Definition 4.3.1.

Moreover
∥∥σ∗j

∥∥
B
s(r),m
∞,1

. ‖σ‖
B
s(1),m
∞,1

, j = 1, 2, (4.6.37)

with the implicit constant independent of σ.

The following lemma will be useful in the proof of Theorem 4.6.1. We state it in R2n

because it is convenient for our setting, but more general versions also hold (compare with
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Sugimoto [37] or Triebel [40, p. 25-28]). Let d = (d1, · · · , d2n) ∈ R2n. Given ξ, η ∈ Rn set

〈ξ, η〉d−1 := 〈(d−1
1 ξ1, · · · , d−1

n ξn), (d−1
n+1η1, · · · , d−1

2n ηn)〉. If h is a function defined in R2n denote

Sd(h)(y1, · · · , y2n) := h(d1y1, · · · , d2ny2n) and Sd−1(h)(y1, · · · , y2n) := h(d−1
1 y1, · · · , d−1

2n y2n).

Lemma 4.6.2. Let 1 ≤ r ≤ ∞ and t ∈ R. Then for every continuous function g(ξ, η)

defined for ξ, η ∈ Rn such that ‖〈ξ, η〉tg‖Lr <∞ and every M ∈ S(R2n),

∥∥〈ξ, η〉tF−1Mĝ
∥∥
Lr
≤
∥∥〈ξ, η〉|t|F−1M

∥∥
L1

∥∥〈ξ, η〉tg
∥∥
Lr
, (4.6.38)

and, more generally,

∥∥〈ξ, η〉td−1F−1Mĝ
∥∥
Lr
≤
∥∥∥〈ξ, η〉|t|d−1F−1M

∥∥∥
L1

∥∥〈ξ, η〉td−1g
∥∥
Lr

(4.6.39)

for any d ∈ R2n. In particular, if d = (d1, · · · , d2n) and di ≥ 1 for i = 1, · · · , 2n,

∥∥〈ξ, η〉tF−1Mĝ
∥∥
Lr
≤
∥∥〈ξ, η〉|t|F−1Sd(M)

∥∥
L1

∥∥〈ξ, η〉tg
∥∥
Lr
. (4.6.40)

Proof of Lemma 4.6.2. We have 〈u+ y, v + z〉t . 〈u, v〉|t|〈y, z〉t for all u, v, y, z ∈ Rn. Then

|〈ξ, η〉td−1F−1(Mĝ)(ξ, η)| .
∫

R2n

〈a, b〉|t|d−1|M̌(a, b)|〈ξ − a, η − b〉td−1|g(ξ − a, η − b)| da db,

from where (4.6.39) follows by Minkowski’s integral inequality. For (4.6.40), apply (4.6.39)

with M replaced by Sd(M) and g replaced by Sd−1(g) and note that 〈ξ, η〉|t|d−1 ≤ 〈ξ, η〉|t| since

di ≥ 1 for i = 1, · · · , 2n.

Proof of Theorem 4.6.1. We will prove the result for σ∗1, with the result for σ∗2 following

in an analogous way. Fix m ∈ R and let σ be an x-independent symbols in B
s(1),m
∞,1 (R3n). It

easily follows that σ∗1(ξ, η) = σ(−ξ − η, η).

Consider first the case when s(1), s(r) ∈ R3 and note that s(1) = (n
2
, n, n) and s(r) =
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(n
r
, n

2
, n

2
). Let w and w0 be radial functions that satisfy (4.2.1) for N = n. In view of (4.6.36)

we have to prove that

∑

k∈N2
0

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∑

k∈N2
0

2(n,n)·k ∥∥〈ξ, η〉−mF−1(wkσ̂)
∥∥
L∞

(4.6.41)

where wk(ξ, η) = wk1(ξ)wk2(η) for k = (k1, k2) ∈ N2
0, F−1 and ˆ denote inverse Fourier

transform and Fourier transform in R2n, respectively, and the L∞ norm is taken in R2n.

Given k = (k1, k2) ∈ N2
0 and noting that σ̂∗1(a, b) = σ̂(−a, b − a), a change of variables

gives

F−1(wkσ̂∗1)(ξ, η) = F−1(wk1(a)wk2(b− a)σ̂(a, b))(−η − ξ, η).

Since 〈ξ, η〉 ∼ 〈ξ + η, η〉, it then follows that

∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)
∥∥∥
L∞
∼
∥∥〈ξ, η〉−mF−1(wk1(a)wk2(b− a)σ̂(a, b))

∥∥
L∞

. (4.6.42)

We will divide the summation in (k1, k2) ∈ N2
0 according to the following regions:

R = N2, R1 = {(k1, 0) : k1 ≥ 3}, R2 = {(0, k2) : k2 ≥ 3},

R3 = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}.

Define w̃(a) :=
∑2

l=−2w(2−la) for a ∈ Rn and observe that w̃j(a) := w̃(2−ja) =
∑j+2

l=j−2wl(a) ≡ 1 for 2j−2 ≤ |a| ≤ 2j+2 and j ≥ 2. Define w̃j(a) :=
∑j+2

l=0 wl(a) for j = 0, 1

and a ∈ Rn; then w̃j(a) ≡ 1 for |a| ≤ 2j+2 and j = 0, 1. For (k1, k2) ∈ N2
0 and a, b ∈ Rn set

h(k1,k2)(a, b) := wk1(a)w̃k2(b).
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Summation in region R: Consider the following subregions

RA = {(k1, k2) ∈ N2 : k1 − k2 > 2}, RB = {(k1, k2) ∈ N2 : k1 − k2 < −2},

RC = {(k1, k2) ∈ N2 : −2 ≤ k1 − k2 ≤ 2}.

We first estimate the summation in region RA. If (k1, k2) ∈ RA,

supp(wk1(a)wk2(b− a)) ⊂ {(a, b) : 2k1−1 ≤ |a| ≤ 2k1+1 and 1
2

2k1−1 ≤ |b| ≤ 9
8

2k1+1}

and therefore wk1(a)wk2(b− a) = w̃k1(a)wk2(b− a)wk1(a)w̃k1(b). Then (4.6.42) implies

∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)
∥∥∥
L∞
∼
∥∥〈ξ, η〉−mF−1[w̃k1(a)wk2(b− a)F(F−1(h(k1,k1)σ̂))(a, b)]

∥∥
L∞

.

By (4.6.40) in Lemma 4.6.2 it follows that,

∥∥〈ξ, η〉−mF−1[w̃k1(a)wk2(b− a)F(F−1(h(k1,k1)σ̂))(a, b)]
∥∥
L∞

.
∥∥〈ξ, η〉|m|F−1[w̃k1(2

k2a)wk2(2
k2(b− a))]

∥∥
L1

∥∥〈ξ, η〉−mF−1(h(k1,k1)σ̂)
∥∥
L∞

.

Therefore

∑

(k1,k2)∈RA

2
n
2

(k1+k2)
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k1=4

k1−3∑

k2=1

2
n
2

(k1+k2)
∥∥〈ξ, η〉|m|F−1[w̃(2k2−k1a)w(b− a)]

∥∥
L1

∥∥〈ξ, η〉−mF−1(h(k1,k1)σ̂)
∥∥
L∞

.

An elementary computation shows that for 1 ≤ k2 ≤ k1 − 3,

∥∥〈ξ, η〉|m|F−1[w̃(2k2−k1a)w(b− a)]
∥∥
L1 . 1,
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which implies that

k1−3∑

k2=1

2
n
2

(k1+k2)
∥∥〈ξ, η〉|m|F−1[w̃(2k2−k1a)w(b− a)]

∥∥
L1 . 2nk1 ≤ 2n(k1+k1).

We have therefore obtain

∑

k∈RA

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k1=4

2n(k1+k1)
∥∥〈ξ, η〉−mF−1(h(k1,k1)σ̂)

∥∥
L∞

.

(4.6.43)

We now look at the summation in the region RB. Note that if (k1, k2) ∈ RB, then

supp (wk1(a)wk2(b− a)) ⊂ {(a, b) : 2k1−1 ≤ |a| ≤ 2k1+1 and 1
2

2k2−1≤|b| ≤ 9
8

2k2+1}.

For 1 ≤ k1 ≤ k2 − 3 we have wk1(a)wk2(b− a) = wk2(b− a)w̃k2(b)wk1(a)w̃k2(b), and (4.6.42)

implies

∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)
∥∥∥
L∞
∼
∥∥〈ξ, η〉−mF−1[wk2(b− a)w̃k2(b)F(F−1(h(k1,k2)σ̂))(a, b)]

∥∥
L∞

.

By (4.6.40) in Lemma 4.6.2 it is enough to prove that

∥∥〈ξ, η〉|m|F−1(wk2(2
k2(b− a))w̃k2(2

k2b))
∥∥
L1 . 2

n
2

(k1+k2)

for 1 ≤ k1 ≤ k2 − 3, k2 ≥ 4, which follows immediately since the L1 norm appearing above

is independent of k1 and k2. As a consequence we obtain

∑

k∈RB

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k2=4

k2−3∑

k1=1

2n(k1+k2)
∥∥〈ξ, η〉−mF−1(h(k1,k2)σ̂)

∥∥
L∞

.

(4.6.44)
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For (k1, k2) ∈ RC it follows that

supp(wk1(a)wk2(b− a)) ⊂ {(a, b) : 2k1−1 ≤ |a| ≤ 2k1+1 and |b| ≤ 10 · 2k1}.

Set χk1 :=
∑k1+4

j=0 wj for k1 ∈ N; since χk1(b) = 1 for all b in the set {b : |b| ≤ 10 · 2k1} then

wk1(a)wk2(b− a) =

k1+4∑

j=0

wk2(b− a)χk1(b)wk1(a)wj(b).

From this and (4.6.42) it follows that for k1 ∈ N,

k1+2∑

k2=max(0,k1−2)

2
n
2

(k1+k2)
∥∥∥〈ξ, η〉−mF−1(w(k1,k2)σ̂∗1)

∥∥∥
L∞

.
k1+4∑

j=0

k1+2∑

k2=max(0,k1−2)

2
n
2

(k1+k2)
∥∥〈ξ, η〉−mF−1[wk2(b− a)χk1(b)F(F−1(w(k1,j)σ̂))(a, b)]

∥∥
L∞

.

By (4.6.40) in Lemma 4.6.2 the desired inequality will be implied by

k1+2∑

k2=max(0,k1−2)

2
n
2

(k1+k2)
∥∥〈ξ, η〉|m|F−1(wk2(2

k1(b− a))χk1(2
k1b))

∥∥
L1 . 2n(k1+j)

for 0 ≤ j ≤ k1 + 4. The L1 norms are bounded by a constant independent of k1 and k2 and

therefore the above inequality follows from the fact that 2nk1 ≤ 2n(k1+j) for j ≥ 0. We have

therefore obtained that

∑

k∈RC

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k1=1

k1+4∑

j=0

2n(k1+j)
∥∥〈ξ, η〉−mF−1(w(k1,j)σ̂)

∥∥
L∞

.

(4.6.45)

Summation in region R1: In view of (4.6.42), we have to estimate

∞∑

k1=3

2
n
2
k1
∥∥〈ξ, η〉−mF−1(wk1(a)w0(b− a)σ̂(a, b))

∥∥
L∞

. (4.6.46)
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For k1 ≥ 3 it holds that

supp (wk1(a)w0(b− a)) ⊂ {(a, b) : 2k1−1 ≤ |a| ≤ 2k1+1 and 2k1−2≤|b| ≤ 2k1+2}

and therefore

wk1(a)w0(b− a) = w0(b− a)w̃k1(b)wk1(a)w̃k1(b).

It easily follows that

2
n
2
k1
∥∥〈ξ, η〉|m|F−1[w0(b− a)w̃k1(b)]

∥∥
L1 . 22nk1 ,

and reasoning as above we obtain

∑

k∈R1

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k1=3

2n(k1+k1)
∥∥〈ξ, η〉−mF−1(h(k1,k1)σ̂)

∥∥
L∞

.

(4.6.47)

Summation in region R2: In this case we have to estimate, again by (4.6.42),

∞∑

k2=3

2
n
2
k2
∥∥〈ξ, η〉−mF−1(w0(a)wk2(b− a)σ̂(a, b))

∥∥
L∞

.

For k2 ≥ 3 it holds that

supp(w0(a)wk2(b− a)) ⊂ {(a, b) : |a| ≤ 2 and 2k2−2≤|b| ≤ 2k2+2}

and therefore

w0(a)wk2(b− a) = wk2(b− a)w̃k2(b)w0(a)w̃k2(b).

The estimate

2
n
2
k2
∥∥〈ξ, η〉|m|F−1[wk2(2

k2(b− a))w̃k2(2
k2b)]

∥∥
L1 . 2nk2 ,
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follows from the fact that the L1 norm is independent of k2. As a consequence, it follows

that

∑

k∈R2

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∞∑

k2=3

2nk2
∥∥〈ξ, η〉−mF−1(h(0,k2)σ̂)

∥∥
L∞

. (4.6.48)

Summation in region R3: We first observe that for (k1, k2) ∈ R3

supp (wk1(a)wk2(b− a)) ⊂ {(a, b) : |a| ≤ 8 and |b| ≤ 16}.

Therefore, for (k1, k2) in region R3 it follows that

∑

k∈R3

2(n
2
,n
2

)·k
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
2∑

k1=0

4∑

k2=0

2n(k1+k2)
∥∥〈ξ, η〉−mF−1(w(k1,k2)σ̂)

∥∥
L∞

.

(4.6.49)

Inequalities (4.6.43), (4.6.44), (4.6.45), (4.6.47), (4.6.48) and (4.6.49) then lead to the

desired estimate (4.6.41).

We now briefly describe the proof when s(1), s(r) ∈ R3n. Note that s(1) has its first n

components equal to 1
2

and the rest of them equal to 1, while s(r) has its first n components

equal to 1
r

and the rest of them equal to 1
2
. Let w and w0 be radial functions that satisfy

(4.2.1) for N = 1. Reasoning as in the previous case, it is enough to prove that

∑

(k1,··· ,k2n)∈N2n
0

2
1
2

(k1+···+k2n)
∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)

∥∥∥
L∞

.
∑

(k1,··· ,k2n)∈N2n
0

2k1+···+k2n
∥∥〈ξ, η〉−mF−1(wkσ̂)

∥∥
L∞

,

where for k = (k1, · · · , k2n) we have wk(ξ, η) = wk1(ξ1) · · ·wkn(ξn)wkn+1(η1) · · ·wk2n(ηn), F−1

andˆdenote inverse Fourier transform and Fourier transform in R2n, respectively, and the
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L∞ norm is taken in R2n. For such k, we have

∥∥∥〈ξ, η〉−mF−1(wkσ̂∗1)
∥∥∥
L∞
∼
∥∥〈ξ, η〉−mF−1(wK1(a)wK2(b− a)σ̂(a, b))

∥∥
L∞

, (4.6.50)

where wK1(a) = wk1(a1) · · ·wkn(an) and wK2(x) = wkn+1(b1) · · ·wk2n(bn). The process is now

similar to the case previously treated but much heavier in notation and the result follows

by dividing the summation in (k1, · · · , k2n) ∈ N2n
0 based on the regions R, R1, R2 and R3

for each pair (kj, kn+j), j = 1, · · · , n.

4.6.2 The completion of the proof

We now have all the tools needed to complete the proof of Theorem 4.3.3.

Proof of Theorem 4.3.3. By the inclusion properties indicated in Proposition 4.2.1, it is

enough to work with the classes B
s(1),m
∞,1 (R3n) where m < m(p1, p2, 0) and s(1) is in R3n.

Let σ ∈ B
s(1),m
∞,1 (R3n). If 1 ≤ p1 ≤ 2 then ( 1

p1
, 1
p2

) is in the line segment joining (1, 0)

and (1
2
, 1

2
) in Figure 4.1 and m(p1, p2, 0) = − n

p1
. Since 2 ≤ p2 ≤ ∞, Theorem 4.6.1 implies

that σ∗1 ∈ B
s(p2),m
∞,1 (R3n). Note that ( 1

∞ ,
1
p2

) is in the segment joining (0, 0) with (0, 1
2
) of

Figure 4.1 and m(∞, p2, 0) = − n
p′2

= − n
p1

= m(p1, p2, 0). By Theorem 4.3.2, it follows that

Tσ∗1 is bounded from L∞(Rn)× Lp2(Rn) into Lp2(Rn) and

‖Tσ∗1(f, g)‖Lp2 .
∥∥σ∗1

∥∥
B
s(p2),m
∞,1

‖f‖L∞ ‖g‖Lp2 .

Duality then gives that Tσ is bounded from Lp1(Rn)× Lp2(Rn) into L1(Rn) and, in view of

(4.6.37),

‖Tσ(f, g)‖L1 .
∥∥σ∗1

∥∥
B
s(p2),m
∞,1

‖f‖Lp1 ‖g‖Lp2 . ‖σ‖
B
s(1),m
∞,1

‖f‖Lp1 ‖g‖Lp2 ,

as desired.
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If 2 ≤ p1 ≤ ∞ then ( 1
p1
, 1
p2

) is in the line segment joining (0, 1) and (1
2
, 1

2
) andm(p1, p2, 0) =

− n
p2
. We can then proceed in a similar way as above, with σ∗2 instead of σ∗1, to conclude

that Tσ is bounded from Lp1(Rn)× Lp2(Rn) into L1(Rn) with the operator norm controlled

by ‖σ‖
B
s(1),m
∞,1

.

4.7 Conclusions

In this section, we present a brief summary of the conclusions of Chapter 4 and consider

possible directions and methods for extending these results.

Let 1 ≤ p, p1, p2 ≤ ∞ satisfy 1
p1

+ 1
p2

= 1
p

and assume m < m(p1, p2, 0). For 0 < q ≤ 1 we

consider s ≥ s(p) while for 1 < q ≤ ∞ we set s > s(p), where s(p) is as in Definition 4.3.1.

With these indices, we obtained boundedness from Lp1(Rn)×Lp2(Rn) into Lp(Rn) for bilinear

pseudodifferential operators with symbols in various classes. In particular,

(a) For 2 ≤ p, p1, p2 ≤ ∞, Tσ is bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for all

σ ∈ Bs,m
∞,q(R3n),

(b) For 2 ≤ p, p1, p2 ≤ ∞, Tσ is bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn) for all

σ ∈ C0
m(R3n) such that supp(σ̂) is compact,

and

(c) For p = 1, Tσ is bounded from Lp1(Rn) × Lp2(Rn) into L1(Rn) for all x-independent

σ ∈ Bs,m
∞,q(R3n).

We note that in the above mentioned cases the index m(p1, p2, 0) is optimal for the classes

Bs,m
∞,q(R3n) in the sense that if m > m(p1, p2, 0) there are symbols in Bs,m

∞,q(R3n) for which the

corresponding operators are not bounded from Lp1(Rn)×Lp2(Rn) into Lp(Rn). This follows

from the fact that BSm0,0 ⊂ Bs,m
∞,q(R3n) along with the results of Chapter 3 corresponding to

BSm0,0.
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As a byproduct of the results stated in items (a), (b), and (c), we obtained an upper

bound (in terms of s(p)) on the number of derivatives of the symbol satisfying (4.4.5) that is

sufficient for boundedness of the corresponding operator in the setting of Lebesgue spaces,

improving in this sense results related to BSm0,0. An open question along these lines is

whether s(p) is sharp; that is, if t < s(p) and m < m(p1, p2, 0), are there symbols in Bt,m
∞,q for

which the corresponding operators are not bounded from Lp1(Rn) × Lp2(Rn) into Lp(Rn)?

As was mentioned in Remark 4.4.4, it seems likely that an improvement could be made at

least in certain cases by considering a slight modification in the definition of the classes of

symbols involved.

Finally, in order to prove the result corresponding to item (c), we developed a symbolic

calculus for Besov classes of x-independent symbols. In view of items (a) and (c), bound-

edness corresponding to 1 < p < 2 remains open for the case of x-independent symbols.

It is possible that an argument based on complex interpolation of the Besov classes of x-

independent symbols along with the use of trilinear complex interpolation of operators could

be used to prove boundedness for the associated operators in the range 1 < p < 2. In addi-

tion, an open question is whether a similar symbolic calculus holds for general Besov classes,

which could potentially lead to extending the results of item (a) to the range 1 ≤ p < 2.

These and many other questions about the boundedness of bilinear pseudodifferential opera-

tors for various types of symbols and various functions spaces provide intriguing possibilities

for the future.
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Appendix A

A Glossary of Selected Notation and

Definitions

A.1 Frequently Used Notation

• N0 is the set of non-negative integers.

• The symbol . is used in place of ≤ C where C is a positive constant that may depend

on some parameters but not on the functions or symbols involved in the inequality.

Similarly, x ∼ y means c1y ≤ x ≤ c2y for some positive constants c1 and c2 that are

uniform in x and y.

• f̂ and F(f) are used interchangeably to denote the Fourier transform of a tempered

distribution f . Analogously, ˇ and F−1 denote the inverse Fourier transform operator.

For the definition of the Fourier transform and its inverse, see (A.3.1) and (A.3.2) in

Section A.3.

• If X is a Banach (quasi-Banach) space then ‖·‖X denotes the norm (quasi-norm) in

X.
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• For x ∈ Rn, |x| stands for the usual Euclidean norm; while for a multi-index α =

(α1, · · · , αn) ∈ Nn
0 , |α| := α1 + · · ·+ αn.

• For x = (x1, · · · , xn) ∈ Rn and α = (α1, · · · , αn) ∈ Nn
0 , ∂αx := ∂α1

x1
∂α2
x2
· · · ∂αnxn and

xα := xα1
1 · · ·xαnn .

• Given ξ, η ∈ Rn, 〈ξ, η〉 := 1 + |ξ| + |η|. The notation 〈·, ·〉 for arguments other than

vectors in a Euclidean space always refers to the action of a tempered distribution on

functions in the Schwartz class.

• Smρ,δ and BSmρ,δ are the linear and bilinear Hörmander classes, respectively (see Defini-

tions 2.2.1 and 3.2.1).

• Bs,m
r,q is a weighted Besov space of product type (see Section 4.2).

• For Banach or quasi-Banach spaces X and Y , X ⊂ Y means X is a subset of Y ;

X $ Y means X is a proper subset of Y . Such inclusions are said to be continuous if

‖x‖Y . ‖x‖X for all x ∈ X.

A.2 Function Spaces

Continuous and differentiable functions. The space C(Rn) denotes the set of continuous

complex-valued functions on Rn. For k ∈ N or k = ∞ we define Ck(Rn) := {f : Rn → C :

∂αf ∈ C(Rn) for |α| ≤ k}. The notation S(Rn) is used for the Schwartz class in Rn, this is

the space of infinitely differentiable complex-valued functions on Rn which decrease rapidly

at infinity. The space of tempered distributions is denoted by S ′(Rn).

Lebesgue spaces. For 0 < p <∞ we denote by Lp(Rn) the space of measurable functions

f for which

‖f‖Lp :=

(∫

Rn
|f(x)|p dx

)1/p

<∞.
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For p = ∞, L∞(Rn) is the space of all essentially bounded measurable functions, that is,

those f satisfying

‖f‖L∞ := inf {C ≥ 0 : |f(x)| ≤ C for almost every x} <∞.

As usual two functions in Lp(Rn) are equal if they coincide everywhere except possibly in a

set of zero Lebesgue measure. For 1 ≤ p ≤ ∞, the space Lp(Rn) is a Banach space (a Hilbert

space when p = 2) with the norm ‖ · ‖Lp ; while for 0 < p < 1, Lp(Rn) is a quasi-Banach

space with the quasi norm ‖ · ‖Lp .
The conjugate exponent of p is denoted by p′, where 1

p
+ 1

p′
= 1. For 1 ≤ p <∞, Lp

′
(Rn)

is the dual space for Lp(Rn).

The notation L∞c (Rn) is used for the subspace of functions in L∞(Rn) which have compact

support. The space L1
loc(Rn) is composed of all locally integrable functions in Rn.

Hardy spaces. Let 0 < p ≤ ∞ and consider φ ∈ S(Rn) such that
∫
Rn φ(x)dx 6= 0. The

Hardy space Hp(Rn) consists of all f ∈ S ′(Rn) such that

‖f‖Hp :=

∥∥∥∥sup
t>0
|φt ∗ f |

∥∥∥∥
Lp
<∞,

where φt(x) := t−nφ(x/t). The local Hardy spaces hp(Rn) consist of all f ∈ S ′(Rn) such

that

‖f‖hp :=

∥∥∥∥ sup
0<t<1

|φt ∗ f |
∥∥∥∥
Lp
<∞.

Neither Hp(Rn) nor hp(Rn) depend on the choice of the test function φ. It is clear that

Hp(Rn) ↪→ hp(Rn) for 0 < p <∞ and it can be proved that Hp(Rn) = hp(Rn) = Lp(Rn) for

1 < p ≤ ∞ and that H1(Rn) ↪→ L1(Rn).

The space of functions with bounded mean oscillation. For f ∈ L1
loc(Rn) and a cube

Q ⊂ Rn, set fQ := 1
|Q|

∫
Q
f(y) dy. The space BMO(Rn) is defined as the class of functions

106



f ∈ L1
loc(Rn) such that

‖f‖BMO := sup
Q

1

|Q|

∫

Q

|f(y)− fQ| dy <∞.

The space bmo(Rn) consists of all f ∈ L1
loc(Rn) such that

‖f‖bmo := sup
|Q|≤1

1

|Q|

∫

Q

|f(y)− fQ| dy + sup
|Q|=1

1

|Q|

∫

Q

|f(y)| dy <∞.

It follows that L∞(Rn) ⊂ bmo(Rn) ⊂ BMO(Rn). Moreover, the dual spaces of H1(Rn) and

h1(Rn) are, respectively, BMO(Rn) and bmo(Rn).

A.3 Miscellaneous Definitions

The Fourier transform and the inverse Fourier transform. If f ∈ L1(Rn) the Fourier

transform of f and the inverse Fourier transform of f are given, respectively, by

f̂(ξ) :=

∫

Rn
f(x)e−2πix·ξ dx, (A.3.1)

and

f̌(ξ) :=

∫

Rn
f(x)e2πix·ξ dx. (A.3.2)

If F ∈ S ′(Rn) then F̂ is the tempered distribution defined by 〈F̂ , f〉 := 〈F, f̂〉 for f ∈ S(Rn),

where, as was mentioned in Section A.1, 〈·, ·〉 is used to denote the action of a tempered

distribution on the functions of the Schwartz class. Similarly, 〈F̌ , f〉 := 〈F, f̌〉 for f ∈ S(Rn).

The notations F and F−1 are used interchangeably with ˆ and ,̌ respectively.

Boundedness of linear and bilinear operators. Let X, Y and Z be quasi-Banach
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spaces. We say that a linear operator T is bounded from X into Y if

‖Tf‖Y . ‖f‖X for all f ∈ X.

A bilinear operator T is bounded from X × Y into Z if

‖T (f, g)‖Z . ‖f‖X ‖g‖Y for all f ∈ X, g ∈ Y.

Littlewood-Paley partition of unity. Let ϕ and ϕ0 be functions defined in RN which

satisfy the following conditions:

ϕ0 ∈ S(RN), supp(ϕ0) ⊂ {ξ ∈ RN : |ξ| ≤ 2},

ϕ ∈ S(RN), supp(ϕ) ⊂ {ξ ∈ RN : 1
2
≤ |ξ| ≤ 2}, (A.3.3)

ϕk(ξ) := ϕ(2−kξ), k ∈ N,
∞∑

k=0

ϕk(ξ) = 1, ξ ∈ RN .

The system {ϕk}k∈N0 is called a Littlewood-Paley partition of unity in RN . An example

of such system is produced if ϕ0 is as above, ϕ0 ≡ 1 in the set {ξ ∈ RN : |ξ| ≤ 1}, and

ϕ(ξ) := ϕ0(ξ)− ϕ0(2ξ) for ξ ∈ Rn.

A visual example of functions ϕ0 and ϕk for dimension N = 1 is given in the following

figure:

2k+12k−1−2k−1−2k+1

ϕk, k ≥ 1

2−2

ϕ0

Figure A.1: Example of the system {ϕk}k≥0 for N = 1.

108


	Title Page
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	An Overview of Pseudodifferential Operators
	Linear Pseudodifferential Operators
	Introduction
	The Linear Hörmander Classes
	Definition and examples
	Properties and symbolic calculus

	Boundedness of Operators with Symbols in the Linear Hörmander Classes
	L2 boundedness of operators with symbols of order zero
	Lp boundedness of operators with symbols of order m

	Connections to Calderón-Zygmund Theory
	Boundedness and the Smoothness of the Symbols

	Bilinear Operators with Symbols in the Hörmander Classes
	Introduction
	The Bilinear Hörmander Classes
	Symbolic calculus

	Boundedness of Operators with Symbols in the Bilinear Hörmander Classes
	Symbols of order zero and Lebesgue spaces
	Symbols of order m and Lebesgue spaces
	Boundedness on Hardy spaces and BMO

	Connections to Bilinear Calderón-Zygmund Theory

	Bilinear Operators with Symbols in Besov Spaces
	Introduction
	Weighted Besov Spaces of Product Type and Related Classes
	Boundedness Properties of Bilinear Operators with Symbols in Bs,m,q(R3n)
	An Upper Bound on the Number of Derivatives
	Proof of Theorem 4.3.2
	Symbols in C0m(R3n) with compactly supported Fourier transforms
	A crucial estimate
	The completion of the proof

	Proof of Theorem 4.3.3
	A symbolic calculus for classes of x-independent symbols in Besov spaces of product type
	The completion of the proof

	Conclusions

	Bibliography
	A Glossary of Selected Notation and Definitions
	Frequently Used Notation
	Function Spaces
	Miscellaneous Definitions


