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Abstract 

The aim of this work is to explore, using computational techniques that simulate the 

motion and subsequent aggregation of particles in aerosol and colloidal systems, many common 

but not well studied systems that form fractal clusters. Primarily the focus is on cluster shape and 

growth kinetics. The structure of clusters made under diffusion limited cluster-cluster 

aggregation (DLCA) is looked at. More specifically, the shape anisotropy is found to have an 

inverse relationship on the scaling prefactor k0 and have no effect on the fractal dimension Df. 

An analytical model that predicts the shape and fractal dimension of diffusion limited cluster-

cluster aggregates is tested and successfully predicts cluster shape and dimensionality. Growth 

kinetics of cluster-cluster aggregation in the free molecular regime where the system starts with 

ballistic motion and then transitions to diffusive motion as the aggregates grow in size is studied. 

It is shown that the kinetic exponent will crossover from the ballistic to the diffusional values 

and the onset of this crossover is predicted by when the nearest neighbor Knudsen number 

reaches unity. Simulations were carried out for a system in which molten particles coalesce into 

spheres, then cool till coalescing stops and finally the polydispersed monomers stick at point 

contacts to form fractal clusters. The kinetic exponent and overall cluster structure for these 

aggregates was found to be in agreement with DLCA that started with monodispersed 

monomers. Colloidal aggregation in the presence of shear was studied in detail. Study of a 

colloidal system characterized a by short-range attractive potential showed that weak shear 

enhanced the aggregation process. Strong shear led to fragmentation and subsequent nucleation 

as cluster growth rebounded after an induction time.      
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Chapter 1 - Introduction 

 1.1 Fractals 

“Many important spatial patterns of Nature are either irregular or fragmented to such an 

extreme degree that ... classical geometry ... is hardly of any help in describing their form. ... I 

hope to show that it is possible in many cases to remedy this absence of geometric representation 

by using a family of shapes I propose to call fractals -- or fractal sets.” [1] 

 

Much of the work discussed in this dissertation will deal with flame soot aggregates and 

their geometry.  These soot aggregates are formed from the collisions between dispersed 

monomers with random trajectories and in-turn have random shape.  Flame soot aggregates with 

random shape have been known for years; for example diesel exhaust particulates are randomly 

shaped black carbon aggregates, but their random structure has made descriptive analysis 

difficult. The best that could be done was to describe aggregates with words such as “fluffy” or 

“grainy”. That changed in 1975 when the mathematician Mandelbrot developed the idea of 

fractal geometry. [1]  

 Fractals have repeating branching structures that lead to scale invariance. For example, 

consider a toy model of a tree. First start with the trunk rising from the ground then split into two 

branches; those two branches would continue and at some point split again and so on. If you 

were to break off a twig from this model tree and compare it to the whole, the zoomed-in branch 

would look like the entire tree. Since the tree looks the same at all length scales it has scale 

invariance. 
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Figure 1.1 Model tree compared to actual tree. Both show scale invariance.[2], [3]  

 

Notice that in Figure 1.1 the tree encompasses a lot of empty space.  Fractals do not fill 

space like classical geometric objects. In classical geometry the amount of space an object fills is 

proportional to its characteristic length scale raised to the spatial dimension i.e. the area of a 

square is A=L2 or the volume of a sphere is V~r3. Fractal’s branching structure allows them to 

reach larger sizes without filling much space.  To get to larger sizes without filling space the 

scaling dimension must be less than the spatial dimension and a non-integer scaling exponent 

called the fractal dimension, Df, is introduced. For example a fractal tree would have a volume 

that goes as V~LDf  where 𝐿 is the tree’s characteristic length and Df is the fractal dimension 

which has value Df<3.  

 1.2 Fractals from Random Aggregates 

When monomers aggregate from random motion they can form clusters that also have 

fractal morphology[4]–[6].  Most of these fractal aggregates can be described by three 

aggregation models: percolation, cluster-monomer and cluster-cluster. A percolation model starts 

with a d-dimensional lattice in which all sites on the lattice are empty. Then lattice sites are filled 
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randomly. If two adjacent sites become occupied they are considered joined into a cluster. As 

more sites become filled the clusters become larger till a single cluster reaches a desired size. An 

example of a percolation cluster is shown in Figure 1.2a. In a cluster-monomer aggregation 

scheme the system starts with a seed monomer in the center and additional monomers are 

introduced one at a time that randomly walk in the simulation space. If the monomer hits the 

seed it sticks and forms a cluster. Then new monomers are introduced one at a time. If they hit 

the cluster they stick and the cluster grows. An example of a cluster-monomer aggregate is 

shown in Figure 1.2b. The final aggregation scheme for random motion is called cluster-cluster 

aggregation. Here many monomers are placed in the simulation space and all move with random 

motion. Monomers will stick upon collision and form clusters. These clusters are also free to 

move around and will stick with any cluster or monomer they collide with. An example of 

cluster-cluster aggregation is shown in Figure 1.2c. 

From the examples in Figure 1.2 it is clear that the percolation cluster is the densest and 

thus has the largest fractal dimension Df and the cluster-cluster aggregates are the least dense and 

therefore have the smallest Df. The cluster-monomer type aggregates are special due to their 

centered symmetry while the other two are the result of many centers of growth colliding and 

therefore exhibit a more oblong shape. 

The first works done with fractal aggregates from random growth dealt with the 

percolation and cluster-monomer growth models but in this work the systems studied such as 

flame soot and colloidal gels exhibited the cluster-cluster type aggregation. 
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a. 

 

b. 

 

 

c.  

Figure 1.2 (a) A percolation cluster. Df=2.55 [7]. (b) A diffusion limited cluster-monomer 

aggregate. Df=2.5 [8]. (c) A diffusion limited cluster-cluster aggregate. Df=1.8 [9]. 

 

 1.3 Cluster-Cluster Aggregation Growth Kinetics  

Growth Kinetics in cluster-cluster aggregation models is described by the Smoluchowski 

equation[10]:  

  
 

𝑑𝑛𝑁

𝑑𝑡
= ∑ 𝐾(𝑖, 𝑁 − 𝑖)

𝑁−1

𝑖=1

𝑛𝑖𝑛𝑁−𝑖 − 𝑛𝑁 ∑ 𝐾(𝑖, 𝑁)𝑛𝑖

∞

𝑖=1

 
(1.1) 

The Smoluchowski equation shows how the concentration of clusters nN, made up of N 

monomers, changes with time. The only way the number of clusters with N monomers can 

change is for two clusters whose mass equal N to aggregate and add to the tally or for a cluster of 

mass N to aggregate with some other cluster and decrease the population. The first term of 

equation 1.1 describes the addition of clusters of mass N while the second term handles the 

subtractions from the population of mass N clusters. Both terms are linked by the aggregation 
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kernel K. The aggregation kernel is proportional to the colliding clusters relative collision cross-

sectional area, A and relative velocity, v 

  
 

𝐾~𝐴𝑣 (1.2) 

 Ballistic Motion 

When clusters  move in a straight line motion due to the equipartition of energy their velocity is  

  
 

𝑣 = √
3𝑘𝐵𝑇

𝑚
 

(1.3) 

where T is the temperature, kB is the Boltzmann constant and m is the mass of the cluster. Since 

the mass of the cluster is directly proportional to the number of monomers in the cluster, the 

velocity is proportional to  

  
 

𝑣~𝑁−1 2⁄
 (1.4) 

The volume of a fractal cluster is also related to cluster length by V~LDf. The monomers are 

considered to be at a constant density and therefore the volume of a cluster is proportional to N. 

Thus cluster length is  

  
 

𝐿~𝑁1 𝐷𝑓⁄
 (1.5) 

From equation 1.4 and 1.5 it becomes clear the aggregation kernel K can be written as 

  
 

𝐾~𝑁𝜆
 (1.6) 

where in the ballistic case the scaling exponent of the kernel is 
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𝜆 =
2

𝐷𝑓

−
1

2
 (1.7) 

Using the expected value for fractal dimension of ballistic cluster-cluster aggregation Df=1.9, 

the scaling exponent of the aggregation kernel is λ=0.55. 

 Diffusional Motion 

In diffusional motion the mean square displacement of an object is   

  
 

〈𝑥2〉 = 2𝑑𝐷𝑡 (1.8) 

where d is the spatial dimension, D is the diffusion constant, t is the time and x is the 

displacement. By equation 1.8 the time it takes a cluster to travel some characteristic length Rc  

is  

  
 

𝑡𝑐 =
𝑅𝑐

2

2𝑑𝐷
 

(1.9) 

Thus the velocity of a cluster moving under diffusion is proportional to  

  
 

𝑣~
𝐷

𝑅𝑐

 
(1.10) 

In the continuum limit the diffusion constant D is inversely proportional to the cluster length, 

thus 

  
 

𝑣~
1

𝑅𝑐𝐿
 

(1.11) 

In the cluster dilute limit the only characteristic length Rc scale is L and since the cluster area is 

proportional to L2, the aggregation kernel becomes a constant with scaling exponent λ=0. 

When the system is cluster dense the nearest-neighbor separation Rnn becomes the characteristic 

length Rc. The nearest-neighbor separation is the distance between clusters and equals  
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𝑅𝑛𝑛 = (
𝑆𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒

𝑁𝑐

)

1
3

 

(1.12) 

where  Nc is the number of clusters in the system. If the total number of monomers in the system 

is Nm then Nc= Nm N⁄ . Thus the nearest-neighbor separation is proportional to cluster mass by 

  
 

𝑅𝑛𝑛 = 𝑁
1

3⁄
 (1.13) 

The scaling exponent for a cluster dense diffusional system is then  

  
 

𝜆 =
1

𝐷𝑓

−
1

3
 (1.14) 

and using the expected value of Df=1.8 the scaling exponent becomes λ=0.22 

Now that it has been shown for both ballistic and diffusional cluster-cluster aggregation 

that the aggregation kernel is a homogenous function with the exponent λ, simplifications can be 

made to the Smoluchowski equation that yield helpful expressions. First we work under the 

assumption that the aggregation is between like-sized clusters, then the Smoluchowski equation 

becomes 

  
 

𝑑𝑛𝑁

𝑑𝑡
= −𝑛𝑁

2 𝐾(𝑁, 𝑁) (1.15) 

While this assumption may seem unphysical, the resulting expressions do a good job of 

describing real world systems. Since K is homogeneous, equation 1.15 becomes 

  
 

𝑑𝑛𝑁

𝑑𝑡
= −𝑛𝑁

2 𝑁𝜆𝐾(1,1) (1.16) 

The concentration of clusters of size N is equal to the number of clusters divided by the system 

volume 
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  𝑛𝑁 =
𝑁𝑐

𝑆𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒
 

(1.17) 

and since the number of clusters equals Nc= Nm N⁄  then nN becomes 

  
𝑛𝑁 =

𝑛1

𝑁
 

(1.18) 

Now equation 1.16 becomes  

  
 

𝑛1𝑁−2
𝑑𝑁

𝑑𝑡
= (

𝑛1

𝑁
)

2

𝑁𝜆𝐾(1,1) (1.19) 

or more simply put  

  
 

𝑁−𝜆𝑑𝑁 = 𝑛1𝐾(1,1)𝑑𝑡 (1.20) 

Integration yields  

  
 

𝑁(𝑡) = [1 + (1 − 𝜆)𝐾(1,1)𝑛1𝑡]
1

1−𝜆 (1.21) 

which is rewritten as  

  
 

𝑁(𝑡) = [𝑡0 + 𝑡]𝑧
 (1.22) 

Finally, we are left with a simple expression that scales with a kinetic exponent z, which 

describes how cluster size develops with time.   

 1.4 Scope and Organization of Dissertation  

Aggregation of particles in aerosols and colloids is important in diverse fields [11]–[13], 

[8] such as materials science, biology, food science, and atmospheric science. Typically, 

aggregation in aerosols and colloids involves clusters hitting and sticking to other clusters in 

what is called cluster-cluster aggregation. We endeavor through computer simulation to gain 
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insight into the behaviors of common aerosol and colloidal systems. In this dissertation the 

structure and growth kinetics of several aerosol systems will be studied. Chapter 2 will cover the 

algorithms and computational techniques used to build aggregation simulations. The workings of 

each simulation are discussed to give the reader a basic idea of how the physics of aggregation is 

mimicked in the code. For those who may wish to code their own simulations chapter 2 covers, 

in more detail, some of the “tricks of the trade” that are essential in making the simulation run 

efficiently. In chapter 3 the shape of cluster-cluster aggregates made under random motion is 

discussed in detail. The effect of the “stringiness” or shape anisotropy on the fractal dimension 

Df and scaling prefactor ko is explored and it is found that shape anisotropy has no effect on Df 

but has a strong influence on the scaling prefactor ko. Chapter 4 introduces an analytical model 

that predicts the shape and fractal dimension of diffusion limited cluster-cluster aggregates. A 

restricted hierarchical model that makes on-lattice clusters in a side to end connecting growth 

scheme is used to test the analytical model against the diffusive cluster-cluster aggregation. The 

analytical model successfully predicts DLCA cluster shape and dimensionality. Chapter 5 

describes the growth kinetics of cluster-cluster aggregation that takes place in the presence of 

gaseous media where the system starts with ballistic motion and then transitions to diffusive 

motion as the aggregates grow in size. It is shown that the kinetic exponent will crossover from 

the ballistic values to the diffusional values and the onset of this crossover is predicted by when 

the nearest neighbor Knudsen number reaches unity. In chapter 6 the system starts in a molten 

state and all collisions cause complete coalescence then the system cools and switches over to 

point contact cluster-cluster aggregation. Thus fractal clusters are composed of polydispersed 

monomers. The kinetics of both coalescence and cluster-cluster growth stages are analyzed. 

Additionally, the fractal dimension and kinetic exponent is found to agree with cluster-cluster 
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aggregates grown from monodispersed monomers. Chapter 7 involves a colloidal system that 

aggregates due to a short-range depletion potential and undergoes shears applied at various 

strengths. Without shear the system will develop fractal aggregates similar to DLCA. The shear 

is turned on at a certain time and the system grows under shear from then on. Regardless of how 

developed the system was at the initiation of shear, it is found that the applied shear rate is the 

determinant factor in the system’s final state. Finally chapter 8 is summary and conclusion.  
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Chapter 2 - Simulation Methods 

 2.1 Introduction 

This chapter goes over various methods and algorithms used to study aggregating 

systems. Most of the work done in the coming chapters use different types of off-lattice Monte 

Carlo methods which work by finding a particle’s probability of movement based on particle size 

and the properties of the surrounding median. Brownian Dynamics codes are also employed and 

work by finding particle motion from integration of the Langevin Equation which uses random 

variables as a surrogate for thermal fluctuations. Also for those who wish to develop their own 

aggregation codes, some computational “tricks of the trade” are discussed in detail.  Techniques 

that deal with complexities such as simulation box edge effects, cluster unfolding, and 

optimizing particle-particle force calculations are described.  

 2.2 Monte Carlo Cluster-Cluster Aggregation  

In Monte Carlo simulations a simulation box of length L is filled with Nm spherical 

monomers to reach a desired volume fraction fv. The monomers are placed at random positions 

inside the simulation box. If two monomers are initially placed in overlapped positions, one of 

the monomers is given new random coordinates. The number of clusters Nc is tracked throughout 

the simulation. Clusters include not only groups of joined monomers but lone monomers as well. 

This means at time zero Nc = Nm and the number of clusters is decreased as monomers stick 

together.  

Clusters are randomly picked with a probability Ppick from the list of Nc clusters then 

moved a distance d with a probability Pmoved. The values of these probabilities are determined by 

the physical situations that are being simulated. The use of random selection over probability 
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distributions makes Monte Carlo simulations well suited to study physical systems that exhibit 

stochastic behaviors. Thus aggregation driven by random thermal fluctuations, such as the 

ballistic and diffusion type aggregation, is ideal to study with Monte Carlo simulations[14].   

  Ballistic Limited Cluster-Cluster Aggregation (BLCA) 

In the presence of low pressure gas, particles will move in linear trajectories between 

collisions and cluster velocity is due to the equipartition of energy. The displacement for a 

cluster is  

  
 

𝑟 = √
3𝑘𝐵𝑇

𝑁
𝑡 

(2.1) 

The displacement in simulation is written as  

  
 

𝑟 = ∑ 𝑑𝑖𝑃𝑝𝑖𝑐𝑘(𝑖)𝑃𝑚𝑜𝑣𝑒(𝑖)

𝑁𝑐

𝑖

 

(2.2) 

One time step in the simulation is Nc iterations of equation 2.2. Now what needs to be done is to 

pick values in equation 2.2 that would mimic the behavior in equation 2.1. One way to do this is 

to make each cluster have the same chance to be picked, Ppick= 1 Nc⁄ ; the movement chance is 

set to Pmoved=N-1 2⁄  to mimic the thermal velocity but to also insure any monomer that gets 

picked will always be moved and d is set to monomer diameter regardless of cluster size. A 

cluster’s trajectories must be stored between iterations due to the cluster’s ballistic motion. If two 

clusters collide they are merged into a single cluster that is given a new spherically random 

velocity vector. This BLCA method is a proven way to simulate aggregation in the Ballistic 

limit[15], [16]. 
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 Diffusion Limited Cluster-Cluster Aggregation (DLCA) 

With only slight adjustments the simulation can be made to mimic aggregation under 

diffusional motion. The motion is found by the mean-square displacement  

  
 

〈𝑟2〉 = 6𝐷𝑡 (2.3) 

The mean-square displacement in the simulation is  

  
 

〈𝑟2〉 = ∑ 𝑑𝑖
2𝑃𝑝𝑖𝑐𝑘(𝑖)𝑃𝑚𝑜𝑣𝑒(𝑖)

𝑁𝑐

𝑖

 

(2.4) 

As in BLCA, the values of the variables in 2.4 are chosen in a way to mimic the physics of the 

real world. In the DLCA case d is set equal to one monomer diameter and Ppick= 1 Nc⁄ , just like 

in BLCA. To ensure monomers will always move when picked the probability of moving is set 

to Pmoved= DN D0⁄  where DN is the diffusion constant of a cluster of size N monomers and D0 is 

the diffusion constant of a single monomer. Since diffusional motion can be thought of as a 

random walk, every time a cluster is moved it is assigned a new spherically random velocity. 

 2.3 Brownian Dynamics  

In Mote Carlo simulations the monomers stick on contact and no outside forces other 

than the random thermal force can be applied, if a more rigorous treatment of the systems 

physical behaviors is needed then Brownian dynamics must be employed. In Brownian dynamics 

the motion of each monomer is solved for by integration of the Langevin equation  

  
 

𝑚𝑟̈𝑖 = −∇𝑈 − Γ𝑟𝑖̇ + 𝑅(𝑡) + 𝐹  (2.5) 

Where m is the mass of the monomer, r is the position, U is the monomer’s potential energy, Γ is 

the drag coefficient, R(T) is the stochastic thermal forces and F is any added external force such 

as shear. The Langevin equation is simply Newton’s second law with both drag and stochastic 
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thermal forces applied. The thermal force R(T) is random and thus averages to zero and has a 

correlation function of   

  
 

〈𝑅(𝑡)𝑅(𝑡′)〉 = 6𝑘𝐵𝑇Γ𝛿(𝑡 − 𝑡′) (2.6) 

The potential U, generally has a cutoff distance so only those monomers in the close proximity 

need to be incorporated for the force calculations.  

 The Brownian dynamics algorithm works as follows; initially the monomers are 

randomly placed inside the simulation box and given a velocity from the Maxwell-Boltzmann 

distribution at the system temperature. Then the force for each particle is calculated, using the 

link-cell method for efficiency. Then the Langevin equation is integrated over time step Δ𝑡 and 

the monomers positions are updated [17], [18].  

 2.4 Cluster-Cluster Brownian Dynamics  

Cluster-cluster Brownian dynamics uses the Langevin equation to find the motion of 

individual clusters. Unlike Brownian dynamics in which individual monomer trajectories are 

found, the cluster is treated as a whole unit. Therefore the Langevin equation is written as 

  
 

𝑚𝑎𝑟̈𝑖 = −Γ𝑟𝑖̇ + 𝑅(𝑡)  (2.7) 

where ma is the cluster mass. Notice there is no potential in equation 2.7. Since the integration of 

equation 2.7 only deals with clusters and not here constituent monomers no monomer-monomer 

potential can be used. The clusters stick together upon collision. The advantage of using cluster-

cluster Brownian dynamics over faster DLCA or BLCA type simulations is that the type of 

motion the clusters experience can change as the drag forces evolve with the system without any 

direct intervention from the programmer. Unlike the Monte Carlo methods where any change in 

cluster movement must be manually put in, which in turn requires some kind of insight into the 
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devolvement of the system before being implemented, cluster-cluster Brownian dynamics is 

ideal for systems that move into transition regimes where no one limiting set of rules is dominant 

[19].    
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a.  

b.  

c.  
Figure 2.1 Snap shots of aggregation simulation at different times.  (a) At earlier time the system 

is composed of monodispersed spheres. (b) As time passes small clusters form. (c) The system 

develops larger clusters at later times.  
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 2.5 Link-Cell Method 

Particles in simulation have short range potentials that at most extend a few monomer 

diameters before they can be considered zero. In the case of Monte-Carlo cluster-cluster 

simulations the potential is simply the condition the particles stick on contact. Therefore the 

potential does not need to be calculated between all other particles in the system but just those in 

the vicinity. Therefore it would be computationally costly and unnecessary to find all particle-

particle interactions in the system. The system is broken up into several sub-volumes on a lattice 

with each cell of the lattice having a side length of Lc. In each sub-volume a list is made and 

maintained of all the particles that reside inside. When the net force acting on a particle needs to 

be calculated, the only particle-particle interactions that are needed are those in the home cell and 

all the neighboring cells. For example in Figure 2.2 the green particle needs only to make three 

calculations to find the net force instead of the 23 if the link-cell method were not used. Using 

the link-cell method makes it possible to have simulations with millions of monomers.   
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Figure 2.2.  The link-cell method. The green monomer only has to do calulations on the three 

monomers in the nieghboring cells instead of all monomers in the system   

 

The use of the link-cell method does require some computational overhead. For each cell 

a link list of occupying monomers must be kept and updated every time a monomer leaves or 

enters the cell. Each occupied cell has a monomer that is designated as the cell leader and one 

that is designated as the cell last. Other monomers in the cell are placed in lists called “NEXT” 

and “PREVOIUS”. The first entry in the NEXT list is the cell leader and then continues through 

all other monomers in the cell with the last entry being the cell last. The PREVIOUS list is the 

opposite of the NEXT list where the cell’s last is the first entry, the last entry is the cell leader 

and all other monomers are in between. Below is the pseudocode for initial monomer placement 

into cells.   
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For all cells set the First and Last to -1 

For all monomers set NEXT and PREVIOUS to -1 

For monomer i: 

 Find xi, yi, zi 

 Find cell address (cx, cy, cz) 

  cx=int(xi Lc⁄ )   

cy=int(yi Lc⁄ ) 

  cz=int(zi Lc⁄ ) 

 Is monomer i the first in cell? 

  If so: 

   First[cx, cy, cz]= i 

   Last[cx, cy, cz]= i 

   NEXT[ i ]= -1 

   PREVIOUS[ i ] = -1 

  If not: 

   Last_particle= Last[cx, cy, cz] 

   NEXT[Last_particle]= i 

   NEXT[ i ]= -1 

   PREVIOUS[ i ]= Last_particle 

   Last[cx, cy, cz]= i 

 

As the particles are initially placed into the system the algorithm constructs the link-cell 

list. Note that -1 means that the spot in the list is empty. As the simulation runs monomers will 

leave their home cell and enter new ones. Below is the pseudocode for a monomer moving into a 

new cell. 
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Monomer i is moving from cell address cx_old, cy_old, cz_old to cell address cx_new, cy_new, 

cz_new. 

old_first= First[ cx_old, cy_old, cz_old ] 

old_last= Last[ cx_old, cy_old, cz_old  ] 

old_prev= PREVIOUS[ i ] 

old_next= NEXT[ i ] 

new_first= First[ cx_new, cy_new, cz_new ] 

new_last= Last[cx_new, cy_new, cz_new ]  

Is First[cx_new, cy_new, cz_new ] = -1 ? 

 If so: 

First[ cx_new, cy_new, cz_new ]= i 

Last[ cx_new, cy_new, cz_new ]= i 

NEXT[ i ]= -1 

PREVIOUS[ i ]= -1 

If not: 

Last[ cx_new, cy_new, cz_new ]= i 

NEXT[ i ]= -1 

 PREVIOUS[ i ]= new_last 

 NEXT[ new_last ]= i 

Is the old_first= i ? 

 If so: 

First[ cx_old, cy_old, cz_old ]= old_next 

PREVIOUS[ old_next ]= -1 

Is old_last= i ? 

 If so: 

  Last[ cx_old, cy_old, cz_old  ]= old_prev 

  NEXT[ old_prev ]= -1 

Does i not equal old_last and old_first ? 

 If so: 

  NEXT[ old_prev ]= old_next 
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  PREVIOUS[ old_next ]= old_prev 

 

This algorithm always moves the new monomer to the end of new cell’s list and it becomes the 

new “last”. But if it moves into an empty cell, the monomer becomes both the first and last of its 

new home. Whichever spot the monomer had in its old cell the algorithm patches the hole and 

ensures the old cells link list remains continuous.    

 2.6 Periodic Boundary Conditions (PBC) 

It is computationally intractable to simulate systems as large as the ones in experiments. 

Therefore, we employ a simulation box that has side length of L which is usually of the order of 

a few hundred monomer diameters. To avoid the inherent wall effects of such a small system we 

employ Periodic Boundary Conditions (PBC) to mimic an infinite system. Under PBC if a 

particle leaves the system it reenters on the opposite side. For example if a particle moves such 

that the x-coordinate is larger than L then the x-coordinate is subtracted by L. If one of the 

particles coordinates becomes less than zero then L is added to insure the particle remains inside 

the simulation box. Figure 2.3a shows an example of how the movement across PBC works. 

Using PBC the neighboring spaces to the simulation box are clones of the simulation box. In 

Figure 2.3b the center box is the simulation space while the neighbors are the clone spaces 

created under PBC, thus the apparent simulation space is infinite. Some care has to be taken 

when calculating distances between two objects. The space between the green and blue monomer 

in Figure 2.3b is not the dashed line that is completely inside the simulation box but the solid line 

that extends into the neighboring space. The implementation of PBC is as follows: 

 

Pseudocode for PBC check of particle movement 

Monomer new position is (x_new, y_new, z_new) 



22 

Is x_new greater or equal to L? 

 If so: 

  Set x_new= x_new- L  

 If not: 

  Is x_new less than 0? 

   If so: 

    Set x_new= x_new+ L 

Repeat for y_new and z_new 

 

 

Pseudocode for checking distance between two objects 

 Coordinates of object 1 are (x1, y1, z1) 

 Coordinates of object 2 are (x2, y2, z2) 

 Δx=x1- x2 

 Δy=y1- y2 

 Δz=z1- z2 

 Is |Δx|greater than L 2⁄  ? 

  If so: 

   Δx=|Δx| − 𝐿 

 Repeat for Δy and Δz 

 Distance between two objects is 𝑟 = √Δx2 + Δy2 + Δz2 
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a.  

                b.                   

 

Figure 2.3 Periodic Boundary Condition (PBC). (a) Monomer movement across simulation box 

boundaries with and without periodic boundary conditions. (b) Cloned simulation boxes with 

PBC. The shortest distance between the two monomers can be across the boundary.    

 

 

Old Position

New Position 
without PBC

New Position 
with PBC
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 2.7 Cluster List 

As monomers collide together they aggregate to form clusters. To extract important 

information from the clusters it is important to keep track of which monomers are in which 

cluster. To do this we use a cluster list that is very similar to the link-cell list described earlier. 

Each cluster has a monomer assigned as the “lead” and “last”. A list is made that starts from the 

lead and goes through all monomers in the cluster till the assigned last monomer. When 

monomers are initially placed in the simulation they are considered a cluster of one monomer 

and are assigned both the lead and the last positon. When two clusters stick together they form a 

new cluster and their cluster lists are combined. One cluster’s monomers are put at the end of the 

new cluster list. In the new cluster list the end cluster’s leader is assigned as the next to the last 

monomer of partner cluster and last of the end cluster is set to the last of the new cluster. The 

following pseudocode ensures that the cluster list remain continuous. 

 

Initialization of cluster list 

Set clust_lead and clust_last for ith monomer to i 

Set clust_next for ith monomer to -1 

 

Linking clust_1 and clust_2 clusters list together 

Set clust_last of clust_1 to last_1 

Set clust_last of clust_2 to last_2 

Set clust_lead of clust_1 to lead_1 

Set clust_lead of clust_2 to lead_2 

Set clust_next of last_1 to lead_2 

Set clust_last of all monomers in clust_1 to last_2 

Set clust_lead of all monomers in clust_2 to lead_1 
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 2.8 Unfolding 

One needs to take care when making measurements on clusters that have moved across 

the periodic boundaries. As shown is Figure 2.4a the cluster has wrapped around the system due 

to PBC and complexities arise when making measurements such as finding the center of mass or 

radius of gyration. One must unfold the system to make measurements. Every monomer in the 

system has two sets of coordinates: the position of the monomer in the simulation box or folded 

coordinates and the unfold coordinates where all the clusters are continuous structures. The 

folded space is where the simulation runs, therefore the unfolded coordinates only need to be 

updated when data needs to be taken.  

To unfold a cluster, first mark the cluster’s lead monomer as unfolded and then measure 

the distance between the lead and the monomers of the cluster that are in the neighboring cells. If 

the measured distance is different when measured with the PBC method of finding distance from 

section 2.6 than the standard method, the monomer’s unfolded coordinates are adjusted till both 

methods agree and the monomer is mark as unfolded. Then go down the cluster list till another 

monomer is found that is marked as unfolded. Measure distance between the monomer and those 

in neighboring cells, adjust coordinates, and mark the neighboring monomers as unfolded. If by 

the last monomer in the cluster not all monomers are marked as unfolded, start back with the 

cluster’s lead monomer and repeat the process. To save time only compare monomers marked as 

unfolded to those marked as folded. The unfolding process will take a cluster like in Figure 2.4a 

and adjust it to Figure 2.4b. The pseudocode for cluster unfolding is as follows:  
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Mark clust_first as unfolded 

Set clust_first as home_monomer 

Loop though clust list 

Cycle though monomers in neighboring cells and find those in cluster. Set 

neighbor monomer as check_monomer 

If only one monomer between home_monomer and check_monomer is set 

to unfolded  

If true, then adjust folded monomer’s coordinates and mark it as 

unfolded 

  Set the next in cluster list to home_monomer 

 End loop when it reaches the last monomer in cluster 

 If not all monomers in cluster are unfolded then go through the loop again.  

  



27 

 

 

           a.                

b.  

Figure 2.4 System unfolding. (a) example of cluster that has moved into the periodic boundary. 

(b) cluster after unfolding. 
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Chapter 3 - Diffusion Limited Cluster-Cluster Aggregation: Scaling 

Prefactor and Shape. 

 3.1 Introduction 

This work was motivated by recent experiments of soot formation in premixed flames 

where a minority population of the “stringy” aggregates is found to have a fractal dimension as 

low as 1.2 instead of the DLCA value of 1.8 [20]. This led to the question: is there a distribution 

of fractal dimensions in a given ensemble of aggregates and does shape anisotropy or 

“stringiness” of clusters control the fractal dimension? To answer that question we present the 

results of our research into the shape of aggregates made in aerosols and colloidal systems. 

Typically aggregation in aerosols and colloids consist of spherical monomers colliding and 

sticking to form clusters. These resulting clusters then touch and stick to other clusters forming 

larger clusters and so on. The motion between collisions in this cluster-cluster aggregation 

system is most commonly diffusive. Clusters made under diffusion limited cluster-cluster 

aggregation (DLCA) are fractal in nature due to their scale invariant self-similar structure. The 

size of such aggregates is described by the radius of gyration Rg which is the root mean square 

radius. Since fractal aggregates display self-similarity, the size develops with a power law 

functionality. The number of monomers N in a cluster scales as a power law with Rg as 

  N = 𝑘0 (
𝑅𝑔

𝑎
)

𝐷𝑓

 
(3.1) 

where, a is the monomer radius, Df is the fractal dimension and ko is the scaling prefactor. 

Equation 3.1is very useful in describing the morphology of fractal aggregates but does not 

address aggregate shape. How does the aggregate shape affect the parameters in equation 3.1? 
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 3.2 Shape Anisotropy  

The anisotropy or “stringiness” of an aggregate is explored in this chapter but to do that 

one needs to be able to quantify an aggregate’s shape.  Shape is quantified by first measuring the 

inertia tensor T and finding the eigenvectors and the corresponding eigenvalues [21].  For a three 

dimensional cluster of N discrete masses the inertia tensor T is  

  T = ∑ (

𝑦𝑖
2 + 𝑧𝑖

2 −𝑥𝑖𝑦𝑖 −𝑥𝑖𝑧𝑖

−𝑥𝑖𝑦𝑖 𝑥𝑖
2 + 𝑧𝑖

2 −𝑦𝑖𝑧𝑖

−𝑥𝑖𝑧𝑖 −𝑦𝑖𝑧𝑖 𝑥𝑖
2 + 𝑦𝑖

2

)

𝑁

𝑖=1

 
(3.2) 

 

The eigenvectors give the aggregate’s principle axes and can be considered to point along the 

long axis, medium axis and short axis of the cluster. The smallest eigenvalue corresponds to the 

longest axis eigenvector and the largest eigenvalue corresponds to the smallest axis eigenvector.  

Aligning the cluster so the longest axis is along the z-axis and the shortest axis is along the x-axis 

diagonalizes the inertia tensor as follows 

  T = (

𝑅1
2 0 0

0 𝑅2
2 0

0 0 𝑅3
2

) 
(3.3) 

 

and yields the principle radii R1≥R2≥R3. The radius of gyration is related to the principle radii 

by  

  𝑅𝑔
2 =

1

2
(𝑅1

2 + 𝑅2
2 + 𝑅3

2) (3.4) 

Shape anisotropy is defined as  

  𝐴13 =
𝑅1

2

𝑅3
2 

(3.5) 

and is a quantifiable measure of aggregate shape.  
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Simulations started with 106 monomers at a volume fraction of fv=0.001 and aggregated 

under DLCA till the number of clusters in the system was Nc=7000 including lone monomers. 

Figure 3.1 shows the distribution of shape anisotropy in a semi-log plot. The distribution is 

asymmetric about a peak near 2.5 with a long, exponential tail extending to high values of A13 

described by n(A13)≈exp[-μA13] with μ=0.45.  

 

Figure 3.1 Number density n(A13) of clusters with anisotropy A13, for 3d DLCA model with 

monomer volume fraction of fv=0.001. The peak of the distribution is near 2.5 with a long, 

exponential tail extending to high values of A13. This exponential tail is described by 

n(A13)≈exp[-μA13] with µ = 0.45. 

 3.3 Prefactor k0 Versus Shape Anisotropy via Rg vs N 

Clusters are divided into bins according to their A13 value, e.g., all cluster with A13< 3 

are in the first bin, cluster with 3 ≤ A13 < 6 are in the next bin and so on. In Figure 3.2 an 

ensemble method for measuring Df is used in which N versus Rg a⁄  (normalized radius of 

gyration) is plotted on a log-log plot. For each anisotropy range and for all the aggregates an 
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average Rg was found for every size N. Using equation 3.1 one finds Df from the linear fit of the 

ensemble of points. The most striking feature of Figure 3.2 is each bin’s ensemble runs parallel 

in the log-log plot thus Df for each bin is the same independent of shape. Yet as A13 becomes 

larger the data points move lower, yielding smaller values for the prefactor k0. We conclude that 

the aggregates in these simulations are well described by Df=1.80±0.02 and that k0 is inversely 

proportional to shape anisotropy with an average value of  k0=1.39±0.10. This dependence can 

be understood by using equation 3.1. For a given N, as the cluster becomes more non-spherical, 

the radius of gyration increases, and then by equation 3.1 k0 must decrease. 

 

 

Figure 3.2 Number of monomers versus normalized radius of gyration for all the aggregates and 

groups of aggregates classified by anisotropy, A13.The legend gives each bin’s A13 range, 

prefactor k0 and fractal dimension Df. By the relation N = k0(Rg a⁄ )
Df

  fractal dimension, Df is 

the linear fit to a bin’s ensemble of points. Note that results for each bin runs parallel and goes as 

Df = 1.8. 
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 3.4 A ‘‘Bottom Up Approach’’ to Fractal Aggregate Structure 

While the ensemble method uses a cluster’s overall mass and Rg to find the 

dimensionality and scaling prefactor, it is limited in that it ignores the structure of the aggregate 

at its smallest level, that of the monomer. By starting with the manner in which spherical 

monomers can pack in space we can take what we call a ‘‘bottom up approach’’ to the fractal 

aggregate structure. From this the monomer pair correlation function is derived after which an 

analytical formalism developed by Nicolai et al is followed to find relationships between the 

fractal dimension, prefactor, shape and monomer packing. The bottom up approach starts with 

the packing of spheres in space [22]. The number of spherical monomers of radius 𝑎 in a volume 

V(r) is 

  N(𝑟) = φ (
𝑟

𝑎
)

3

 (3.6) 

where φ is the packing fraction. For fractals, where the dimensionality 

is Df(≠ 3) we generalize this formulation to 

  N(𝑟) = φ (
𝑟

𝑎
)

𝐷𝑓

= (
𝑟

𝑟0
∗)

𝐷𝑓

 
(3.7) 

This equation defines a rescaled monomer radius in the notation of Nicolai et al [22]. 

  𝑟0
∗ = aφ

−1
𝐷𝑓

⁄
 (3.8) 

 

The monomer pair correlation function is the probability that another monomer center 

will be found a distance r from a given monomer center. In isotropic systems the correlation 

function g(r) is constrained by the normalization condition 
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  ∫ 𝜌 g(𝑟)4π𝑟2dr = N (3.9) 

 

where ρ is a constant density. In fractals, however, ρ is a function of r. One thus writes a 

working definition of g(r) as proportional to the average number of monomers in a shell of radius 

r and thickness dr. 

  g(𝑟) ≈ 〈
𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑑𝑉

4π𝑟2dr
〉 (3.10) 

Consequently the normalization becomes 

  ∫ g(𝑟)4π𝑟2dr = N (3.11) 

With this working definition of g(r) and with the self-similar nature of fractal aggregates, the 

monomer from which the pair correlation function is measured is completely arbitrary. The 

structure around each monomer will be on average the same so equation 3.10 is an ensemble 

average. With equations 3.7 and 3.10 and the proper normalization, the pair-correlation is 

  g(𝑟) =
𝑑𝑁

4π𝑟2dr
=

𝐷𝑓

4𝜋𝑟0
∗𝐷𝑓

𝑟𝐷𝑓−3 (3.12) 

Equation 3.12 applies for clusters of infinite size, but for finite sizes the pair correlation function 

must have a cutoff function. It has become customary to assume a stretched exponential, which 

we will use here, to modify equation 3.12 to 

  g(𝑟) =
𝐷𝑓

4𝜋𝑟0
∗𝐷𝑓

𝑟𝐷𝑓−3𝑒𝑥𝑝[−(𝑟 𝜉⁄ )𝛾] (3.13) 

 

Equation 3.13 introduces the stretching exponent γ and is consistent with Nicolai, Durand and 

Gimel except that we remove the rescaled monomer radius in favor of the actual monomer radius 
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and the packing fraction. It is important to note that beyond the two length scales a and ξ, the 

pair correlation function is specified by three parameters, Df, φ and γ. The length scale ξ in the 

stretched exponential takes into account the finite size of the cluster. The stretched exponential 

implies an assumed spherical symmetry. The stretching exponent γ is a measure of how sharply 

the pair correlation cuts off at ξ; an infinite γ represents a sharp boundary. Real aggregates have 

diffuse boundaries and are not spherically symmetric. It is important to realize that the g(r) for a 

non-spherical object with a sharp boundary, a rugby ball for example, when rotationally 

averaged would appear to have a diffuse boundary hence have a cutoff function with a finite γ. 

This would also be true for the ensemble averaged g(r) for a set of rugby balls with random 

orientations. Thus it appears that the stretching exponent γ for an aggregate can have both an 

intrinsic source due to the diffuse nature of the surface and a source due to rotationally 

averaging. The later could be eliminated but at the expense of the additional complication of 

requiring a correlation function for all three spatial dimensions. We opt not to do this. Thus we 

anticipate that the stretching exponent γ will be related to shape anisotropy, a fact that will be 

demonstrated below. 

The real space structure of the aggregate can now be calculated using 

  R𝑔
2 =

2𝜋

𝑁
∫ 𝑔(𝑟)𝑟4𝑑𝑟 (3.14) 

And in conjunction with equation 3.1 gives the prefactor  

  k0 = [
2Γ(𝐷𝑓 𝛾⁄ )

Γ[(𝐷𝑓 + 2) 𝛾⁄ ]
]

𝐷𝑓 2⁄
φ𝐷𝑓Γ(𝐷𝑓 𝛾⁄ )

𝛾
 

(3.15) 

 

Equation 3.15 shows that the prefactor is a function of three parameters, Df, φ and γ. The 

reciprocal space structure of the aggregate is described by the structure factor which is the 
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Fourier transform of the pair correlation function and an important measurable quantity. For a 

spherically symmetric g(r) the structure factor is given by 

  S(q) =
𝑃(𝑞)

𝑁
[1 + 4𝜋 ∫ 𝑔(𝑟)𝑟2

sin(𝑞𝑟)

𝑞𝑟
𝑑𝑟

∞

0

] (3.16) 

where P(q) is the form factor of the monomer. In this work we will study the regime in which 

q-1 is large compared to the monomer radius and P(q) = 1. Substitution of equation 3.13 into 3.16 

yields for large q 

  S(q) =
𝑏

𝑁
(𝑞)−𝐷𝑓 ,    𝑟0

∗ ≪ 𝑞−1 ≪ 𝜉 (3.17) 

where, in the notation of Nicolai et al [22].  

  
b = 𝑟0

∗−𝐷𝑓𝐷𝑓Γ(𝐷𝑓 − 1) sin [
𝜋

2
(𝐷𝑓 − 1)] (3.18) 

Equation 3.17 has a 1 Rg⁄  dependence due to the limits r0
* ≪q-1≪ξ. The characteristic size ξ is 

related to Rg by equation 3.13 and 3.14. Equation 3.17 does not collapse to one trend at a fixed 

value of N but shifts on the x-axis based on 1 Rg⁄ . Using Rg  as a normalization for the Fourier 

variable q leaves only the γ dependence in the coefficient of S(q). Use of equations 3.1, 3.8 and 

3.18 in equation 3.17 yields  

  
S(q) = 𝐷𝑓Γ(𝐷𝑓 − 1) sin [

𝜋

2
(𝐷𝑓 − 1)] 𝜑𝑘0

−1(𝑞𝑅𝑔)
−𝐷𝑓

  (3.19) 

which will be useful below. Application of equation 3.15 gives  

  S(q) = [
Γ(𝐷𝑓 − 1)

Γ(𝐷𝑓 γ⁄ )
] [

Γ((𝐷𝑓 + 2) γ⁄ )

2Γ(𝐷𝑓 γ⁄ )
]

𝐷𝑓 2⁄

γ sin [
𝜋

2
(𝐷𝑓 − 1)] (𝑞𝑅𝑔)

−𝐷𝑓
 

(3.20) 

Notice that the structure factor has no φ dependence. The coefficient of the (qRg)-Df depends 

only on Df and γ the latter of which, as we will see, varies with the shape of the cluster. 
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 3.5 Results 

Values for the packing fraction φ and stretching exponent γ were found by fitting the pair 

correlation function g(r) of each individual aggregate to the analytical form of equation 3.13. The 

fit involved multiplication of g(r) by r3-Df. Then the intercept of this form at r = 0 yields the 

product of Df and φ. Two examples are shown in Figure 3.3.  

The small r limit of the pair correlation plots in Figure 3.3 yields the product of Df and φ. 

Taking Df = 1.80, the limits from the fits to ca. 100 aggregates yield a packing fraction of 

φ= 0.68 ± 0.03, independent of the shape of the aggregate. Also packing fraction was measured 

by the application of equation. 3.19 on the same ca. 100 aggregates and was found to be the 

same, within one percent, as the pair correlation packing fraction. This reinforces the concept 

that φ describes structure at the small aggregate length scales whereas A13 describes aggregate 

structure at large length scales. It is interesting to note that this packing fraction value is very 

close to the value found for random packing of spheres in three dimensions. It is also similar to a 

previously determined value in work done to understand packing of spheres in non-integer 

dimensionality spaces [23]. The corresponding value of r0
* a ⁄ is found to be 1.24 ± 0.03. 

The two examples of Figure 3.3 also indicate that the shape, as quantified by the 

anisotropy parameter A13, affects the stretching exponent γ. Analysis of ca. 100 aggregates 

yields the data in Figure 3.4 which shows γ as function of A13. The concept that the stretching 

exponent would have both an intrinsic component, due to the aggregate surface structure, and a 

shape component, that appears upon rotationally averaging the aggregate, was anticipated above 

and is supported here. 
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Figure 3.3 Pair correlation function g(r) of two N=500 aggregates with fits from equation 3.13. 

Notice the cluster with the larger A13 a less steep exponential decline.   

 

Figure 3.4 The stretching exponent γ versus anisotropy parameter A13. Individual aggregates of 

N≥500 are plotted. Data points are individual DLCA aggregates. Error bars represent a range of 

gamma values for a given aggregate. The solid line is the combination of equation 3.15 and 3.23. 

The dashed line represents spherical clusters with the lowest possible value of A13=1. 
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With φ=0.68 and Df = 1.80, equation 3.15 provides a description of the how the 

prefactor k0 changes with γ. This is tested against the simulation data in Figure 3.5. The limit of 

equation 3.15 can be evaluated as 

  lim
𝛾→∞

𝑘0 = 𝜑 (2 + 4
𝐷𝑓

⁄ )

𝐷𝑓 2⁄

 
(3.21) 

For Df = 1.80 and φ=0.68, logγ→∞ k0=2.48. This limit is included in Figure 3.5.  

 

 

Figure 3.5 The prefactor k0 versus exponent γ. Individual aggregates of N≥500 are plotted. Data 

points are individual DLCA aggregates. Error bars represent a range of gamma values for a given 

aggregate. The solid line represents equation 3.15 the dashed line is the limit of equation 3.21, 

log
γ→∞

k0=2.48, both using φ=0.68 and Df = 1.80. 

 

 

Section 3.3 showed that the prefactor k0 was a function of shape anisotropy, as specified 

by A13, whereas the fractal dimension was not. Since A13 and γ are coupled together, equation 

3.19 and 3.20 show that the coefficient of the fractal power law of the structure factor is a 
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function of shape anisotropy as well. In particular equation 3.19 for Df = 1.80 and φ=0.68 

yields  

  S(q) = 𝐶(𝑞𝑅𝑔)
−𝐷𝑓

=
1.35

𝑘𝑜

(𝑞𝑅𝑔)
−𝐷𝑓

 (3.22) 

This equation is tested in Figure 3.6 where the structure factor of clusters in various anisotropy 

(A13) ranges is explored. Aggregates with N≥50 were divided into groups according to A13 as 

was done above for Figure 3.2. The structure factor for the clusters in each group were averaged 

and k0 was found using equation 3.22. For all A13 ranges a fractal dimension of Df = 1.80 

accurately describes the data.  The structure factors in Figure 3.6 show, once again, an 

anticorrelation between A13 and k0 quantitatively consistent with that found in the real space 

analysis of Figure 3.2. This is demonstrated in Figure 3.7. A fit to all the individual clusters 

yields a quantitative description of this anticorrelation that can be best described as 

  
k0 = 2.48(𝐴13)−0.45 (3.23) 

The system average prefactor was measured to be 〈k0〉=1.35, hence the coefficient C = 1.00, as 

found previously [24]. Given this average prefactor, Df = 1.80 and φ = 0.68, equation 3.15 

yields 〈γ〉=2.02, a value consistent with previous results [25], [26]. From equation 3.15 and 3.23 

or equivalently the solid line in Figure 3.4, 〈A13〉=3.86. 
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Figure 3.6 Structure factors for all the aggregates and groups of aggregates classified by 

anisotropy, A13. Structure factors were calculated from squaring the Fourier transform of the 

spatial coordinates of the monomers and normalizing by N2. Aggregates were divided into 

groups according to A13 and structure factor for the clusters in each group were averaged. Just 

like in Figure 3.2 all runs are parallel indicating a Df=1.80. Also the inverse proportionality of 

A13 to k0 is strongly evident.  
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Figure 3.7 Large circles are the k0  values for different A13 groups from structure factor (SF). The 

large squares are k0 values for different A13  groups from the N versus Rg data of Figure 3.2 and 

triangles are the same data forced to Df=1.80. Small circles are k0 versus A13  for individual 

clusters and follow the trend line k0=2.48(A13)-0.45 

 

 3.6 Concluding Remarks 

Numerous experimental studies of aggregates formed via DLCA have consistently found 

fractal dimensions of about 1.8 [5], [27], in agreement with the simulations presented here and 

many previous simulations [4], [25], [28]–[31]. On the other hand prefactors and shape have 

been measured less frequently. The only experimental prefactor work of which we are aware is 

for carbonaceous soot in flames which has been shown to have a fractal structure with 

dimensions on the order of 1.8 but with prefactors ranging from k0=1.23  to well over 2 [32]–

[34]. Unlike the idealized point contacting spheres of simulation, however, soot can show 

significant ‘‘necking’’ between connecting monomers. It has been proposed that this necking or 
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overlap is the reason for some of the soot prefactors to be larger than those of DLCA simulations 

[34], [35]. One possible patch to the theory here would be to try to quantify monomer overlap 

with a variable packing fraction φ. Then via equation 3.15, k0 could be made bigger. At this 

time, however, we are uncertain how to quantify overlap and justify its use in equation 3.7.  

The theoretical work presented here affirms that an adequate description of the 

morphology of a fractal aggregate is contained in the pair Df and k0. The fractal dimension Df 

describes the scaling of mass with linear dimension and the prefactor k0 contains aggregate 

shape information. However, we find that a more fundamental and perhaps more complete 

description of morphology lies with the three parameters fractal dimension, Df, the monomer pair 

correlation function stretching exponent, γ, and the monomer packing fraction, φ. The fractal 

prefactor k0 is a function of these three parameters via equation 3.15. The aggregate anisotropy 

A13 is directly related to the stretching exponent γ and thus an equivalent descriptor. We found 

that the packing fraction, like the fractal dimension, was constant. But it would seem to be wise 

to be wary that it, like the fractal dimension, might be a function of the aggregation mechanism, 

monomer overlap or, in simulations, whether the process is performed on or off lattice. These 

questions open avenues for future study. In addition, we have focused here only on irreversible 

aggregation with an infinitely deep potential well describing the monomer–monomer 

interactions. For short-ranged potentials with a finite but deep well, one can have a hybrid 

structure of fractal morphology (‘‘fat fractals’’) [36] leading to a different set of Df, γ and φ. 

Finally, this work illustrates the effects of shape on both real space analysis, involved in the 

application of equation 3.1, and reciprocal space analysis via the structure factor. 
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Chapter 4 -  The Restricted Hierarchical Model of Diffusion Limited 

Cluster-Cluster Aggregates and Divine Proportion Shape Invariance 

 4.1 Introduction 

In the last chapter the shape and structure of clusters made under Diffuse limited cluster-

cluster aggregation was discussed in detail. While DLCA does a good job of mimicking the 

kinetics and structure of aggregates in aerosol systems, it does not provide a complete analytic 

theory that can accurately predict the morphology of the aggregates. For example, why do DLCA 

clusters have fractal dimension of Df=1.8? We review a simple analytical model, the Restricted 

Hierarchical Model (RHM), which can correctly calculate the fractal dimension of DLCA 

aggregates[37] and show that the RHM can correctly predict the prefactor and shape as well. 

Thus the simple RHM provides an accurate and complete three parameter description of DLCA 

aggregates with analytical predictions of the fractal dimension and shape. Also in this chapter we 

delve further into quantifying aggregate shape by using a method based on circumscribing 

rectangles and show that this yields a better description than the ratio of principle radii. 

 4.2 Review of the Restricted Hierarchical Method 

The Restricted Hierarchical Method (RHM) builds monodisperse clusters in a 

hierarchical fashion as first proposed by Botet et al.[38]. We introduced a “restriction” to the 

model by only allowing side to end connections, as described below, between clusters[37]. In the 

simulation a dimer was made of two circular (spherical) monomers. This dimer was 

circumscribed with a rectangle. One of the rectangle’s two longest sides, called the sides, and 

two shortest sides, called the ends, were chosen at random. The aggregate was cloned and the 

chosen end was linked with the clone’s chosen side. Then the cloned aggregate was moved down 

the side of the original aggregate until a monomer-monomer connection was made, thus forming 
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a new aggregate. This process was repeated to make larger aggregates. At later stages, the 

aggregates were open (not compact) and the algorithm often needed to try all combinations of 

ends and sides before a connection could be found. This process continued until a target mass 

was achieved. Sometimes a connection could not be found and the aggregate was set aside before 

it reached a target mass. Randomly selecting the sides to be joined insured that the clusters had 

some variety in their structure. Examples of both d = 2, 3 DLCA and RHM aggregates are shown 

in Figure 4.1. 
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a.  b.  

c.                    

 

d. 

Figure 4.1 (a) 2d cluster made with diffusion limited cluster-cluster aggregation (DLCA). (b) 2d 

cluster made with Restricted Hierarchical Method (RHM). (c) 3d DLCA cluster. (d) 3d RHM 

cluster  
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 4.3 Comparison of Shape Measurements  

Before we discuss how the shape of RHM clusters compare to the shape of DLCA clusters we 

first must have ways to quantitatively measure shape, a task that can be difficult when dealing 

with randomly shaped aggregates. To quantify cluster shape we start by finding lengths along the 

object’s principle axes and then take the ratios of those lengths.  The principle axes were found 

by calculating the eigenvectors of the inertia tensor T [21], [39]. For a cluster of N discrete 

monomers the inertia tensor is given by equation 3.2 

  T = ∑ (

𝑦𝑖
2 + 𝑧𝑖

2 −𝑥𝑖𝑦𝑖 −𝑥𝑖𝑧𝑖

−𝑥𝑖𝑦𝑖 𝑥𝑖
2 + 𝑧𝑖

2 −𝑦𝑖𝑧𝑖

−𝑥𝑖𝑧𝑖 −𝑦𝑖𝑧𝑖 𝑥𝑖
2 + 𝑦𝑖

2

)

𝑁

𝑖=1

 
(3.2) 

 

and when dealing with two dimensional space we set z
i
=0. In the last chapter the lengths of 

these principle axes were taken to be the corresponding eigenvalues to the inertia tensor’s 

eigenvectors.  These eigenvalues are called the principal radii of the cluster. The ratios of the 

principal radii Ri were found to be R1 R2=⁄ 2.25 for d=2 and as seen in Figure 4.2d, 

R1 R2=1.03⁄ , R2 R3=⁄ 1.53 and R1 R3=⁄ 1.63 for d=3. Note that for d=3 the ratios of 

consecutive Ri are not equal implying a surprising lack of symmetry for the shape. One would 

expect that since these clusters aggregate under random motion the ratios of their principle radii 

would show geometric behavior. That is, the distance from R1 to R2 would equal the distance 

from R2 to R3. To investigate the source of this asymmetry we calculated the principal radii for a 

d=3 rectangular solid with dimensions 1x2x4, a geometric progression. The resulting ratios are 

R1 R2=⁄ 1.085, R2 R3=⁄ 1.84 and R1 R3=⁄ 2.00. This result shows a very similar asymmetry to 
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the d=3 DLCA aggregates despite the fact that the rectangle had geometric proportions. We 

conclude that the magnitudes of the principal radii are in general poor descriptors of shape.  

The rectangular solid example suggests that aggregate shape could be well described by 

constructing a circumscribing rectangular solid with sides parallel to the principal radii, but with 

magnitudes determined by the condition that the circumscribing rectangle is the smallest one that 

contains every monomer of the aggregate. This certainly works for a rectangle. This 

circumscribing rectangle shape analysis was applied to the DLCA clusters to yield side lengths Li 

Figure 4.2a shows that the side ratio for d = 2 DLCA aggregates peaks at 

L1 L2⁄ =1.63 ± 0.34 (widths determined via lognormal fits). This value is very close to the 

classical Divine Proportion (the Golden Mean) [40], [41] as indicated by the arrow. Figure 4.2b 

shows that for d = 3 DLCA the ratios of circumscribing rectangle consecutive sides are peaked at 

L1 L2=1.46±0.27⁄  and L2 L3=1.35±0.24⁄  and the ratio of the longest to shortest side has a peak 

at L1 L3=2.14±0.27⁄ . The near equality of the consecutive size ratios, within the uncertainty of 

distribution breadth, and the fact that √2.14 = 1.46 implies that the intermediate side length is 

the geometric mean of the longest and shortest sides. 
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a.  b.  

c.  d.  
Figure 4.2 Shape as described by the ratios of principle lengths. (a)Distribution of  L1 L2⁄  for 2d 

DLCA and RHM. The distribution peak for both is 1.618, very close to the Golden Mean. (b) 

Distribution of  L1 L2⁄  , L2 L3⁄  and L1 L3⁄  for 3d DLCA. The ratio of consecutive lengths peak at 

1.466 and L1 L3⁄  peaks at 1.4662. (c) Distribution of  L1 L2⁄  , L2 L3⁄  and L1 L3⁄  for 3d RHM. As 

in part (b) the peaks are at the 3d Divine Proportion of 1.466 for the ratio of consecutive lengths 

and 1.4662for L1 L3⁄ . (d) The ratios of the principle radii of the inertia tensor. The principle radii 

are not geometrically spaced and are not a good descriptor of shape.  

 

 4.4 Comparison between RHM and DLCA  

 As described above, the RHM assumes an on-lattice hierarchical growth in which 

aggregates of equal size come together to form larger aggregates. Thus the number of monomers 

in an aggregate after the nth iteration is 2
n
. Monomers can have any shape and the lattice can 

have any symmetry. Here the concepts are illustrated with circular or spherical monomers on a 
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square lattice. Confined to a square lattice, the clusters can be circumscribed by a rectangular 

solid; the longest edge of this rectangle is defined as the side, the shortest as the end. End-to-end 

aggregations lead to straight chains with a fractal dimension of 1. Side-to-side aggregations lead 

to dense aggregates with a fractal dimension of d. But restriction to side-to-end aggregations 

leads to aggregates as drawn in Figure 4.1b for d=2 and Figure 4.1d for d=3. This side-to-end 

restriction is essentially the same as the T model restriction that Warren and Ball [42] applied to 

the hierarchical model. The dimensions of the circumscribing rectangles for d=2 aggregates 

follow the Fibonacci series [40], [41] with increasing size as illustrated in Figure 4.4 

 

  
𝑓𝑛 = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … (4.1) 

In each RHM aggregation step, the linear dimensions of the aggregates increase by the ratio of 

consecutive Fibonacci numbers, which in the large size limit is the Divine Proportion 𝜑. 

  φ = lim
𝑛→∞

𝑓𝑛+1

𝑓𝑛

= 1.618 … (4.2) 

The number of monomers increases by a factor of two with each step.  Thus the fractal 

dimension of these aggregates formed in two spatial dimensions D2 is 

  D2 =
𝑙𝑜𝑔(2)

𝑙𝑜𝑔(𝜑)
= 1.44 (4.3) 

For d spatial dimensions the Fibonacci series is generalized to 

  
𝑓𝑛+1,𝑑 = 𝑓𝑛,𝑑 + 𝑓𝑛−𝑑,𝑑 (4.4) 

For example: d=1 equation 4.4 goes as fn,1=1, 2, 4, 8, 16, …, and is the geometric series; for d=3 

equation 4.4 is 𝑓𝑛,3 = 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, … . These d-dimensional Fibonacci series [37] 

are known mathematically as Narayana's cow sequences [43]. 
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The ratio of consecutive d-dimensional Fibonacci numbers was defined as the d-

dimensional Divine Proportion [37] 

  𝜑𝑑 = lim
𝑛→∞

𝑓𝑛+1,𝑑

𝑓𝑛,𝑑

 (4.5) 

 

For d=3 𝜑3 = 1.46557… . Equation 4.3 generalizes to  

  𝐷𝑑 =
𝑙𝑜𝑔(2)

𝑙𝑜𝑔(𝜑𝑑)
 (4.6) 

Equation 4.6 successfully calculates the fractal dimensions for DLCA aggregates for d ≤ 6 

including 𝐷3 = 1.815 [37]. 

Another RHM rule is that no part of the circumscribing rectangles of two joining 

aggregates extend within or beyond the limits of the other. With this the RHM predicts the shape 

of the circumscribing d-dimensional rectangles to have consecutive side length ratios equal to the 

generalized Divine Proportion φd. Thus for d = 2 the side ratio is predicted to be 

L1 L2⁄ =φ2= 1.618 (now the two dimensional Divine Proportion) and for d = 3 

L1 L2⁄ = L2 L3=⁄ φ3= 1.466  (the three dimensional Divine Proportion). These predicted ratios 

are in excellent agreement with the peak values for both 2d and 3d DLCA aggregates shown in 

Figure 4.2. 

Figure 4.2a and c show the frequency distributions of circumscribing rectangle side 

length ratios for the RHM simulation. The peaks are consistent with the analytical values of the 

generalized Divine Proportions. The distributions are narrower than those for DLCA, as 

expected. Nevertheless, the predictions of the RHM for the shape of the DLCA aggregates are 

very accurate.  
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Figure 4.3 shows N versus Rg a⁄  for both the DLCA simulation (closed circles) and the 

RHM (open squares) hence tests the same scaling relation as in the last chapter  

  N = 𝑘0 (
𝑅𝑔

𝑎
)

𝐷𝑓

 
(3.1) 

Values for the prefactor and fractal dimension from fits to the data for both 2d and 3d are given 

in Figure 4.3 and Table 4.1 and agree well with previous work [4]–[6], [23], [27]–[29], [44]–

[51]. The RHM simulation creates an ensemble of aggregates that are monodisperse in N, but for 

a given N are polydisperse in Rg. Despite this, the predictions of the model are essentially 

identical graphically to the DLCA simulation for both spatial dimensions. This is seen 

numerically for Df and k0 in Table 4.1 and displayed in Figure 4.3. The RHM accurately predicts 

the dimensionality, scaling prefactor and shape of DLCA aggregates and thus successfully 

describes the complete structure on DLCA aggregates. 
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a. b. 

Figure 4.3  N vs. Rg a⁄  on a log-log plot for both DLCA and RHM. (a) 2d DLCA in closed circles 

and RHM in open squares. The data sets fall on top of each other and follow the guide line of 

1.5(Rg a⁄ )
1.45

. (b) 3d DLCA in closed circles and RHM in open squares. As in part (a), the data 

sets fall on top of each but follow the guide line of 1.3(Rg a⁄ )
1.8

.  

 

 

 

 

 

 2d DLCA 
Simulation 

2d RHM 

Simulation 
3d DLCA 

Simulation 
3d RHM 

Simulation 
2d RHM 

Analytic 
3d RHM 

Analytic 

k0 1.50 ± 0.20 1.50 ± 0.10 1.30 ± 0.10 1.20 ± 0.10 --- --- 

Df 1.45 ± 0.03 1.45 ± 0.03 1.80 ± 0.05 1.80 ± 0.05 1.440 1.815 

Table 4.1 Values for the prefactor and fractal dimension from fits to the data for both 2d and 3d 

DLCA and RHM. 
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Figure 4.4 Several steps in the 2d RHM. The lengths of the circumscribing rectangle follow the 

Fibonacci series. 

 

 4.5 Concluding Remarks 

The Restricted Hierarchical Model provides a complete, three-parameter description of 

DLCA aggregates to include an analytic calculation of the fractal dimension and aggregate 

shape. In its simplicity lies the essence of diffusion limited cluster aggregation. A remarkable 

outcome of the RHM and DLCA simulations is that the aggregate shape is described by the 

Fibonacci series and the Divine Proportion and their generalizations into an arbitrary number of 

spatial dimensions. 
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It is useful to ask why such a simple model is so successful. No doubt the statistical 

nature of aggregation helps the simple model. In reality two aggregates of different sizes come 

together from any direction. However, at any point during the aggregation of an ensemble of 

particles, collision of mean sized aggregates is the most common. Regarding the direction of 

approach, note that in two dimensions solely end-to-end collisions lead to D= 1 and solely side-

to-side collisions lead to D = 2. The geometric mean of the two cases is 1.41, very close to D2 

(See also [52]). To continue, if during aggregation one makes the reasonable assumption that 

end-to-end and side-to-side occurred at ¼ probability and side-to-end at ½ probability then, the 

predicted fractal dimension would again be very close to D2 for this simple extension of the 

present RHM. Similar arguments can be used for higher dimensions but are not really 

worthwhile. We have not made detailed comparison of the RHM to other forms of aggregation 

such as reaction limited and ballistic aggregation. These have fractal dimensions 5 to 10% larger 

than DLCA so the agreement is qualitative but not exact. 
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Chapter 5 - Crossover from Ballistic to Epstein Diffusion in the 

Free-Molecular Regime 

 5.1 Introduction 

We investigate, through simulation, a system of aggregating particles in the free 

molecular regime that undergoes a crossover from ballistic to diffusive motion. In a gaseous 

medium the pressure, temperature, and molecular mass of the gas are determining factors of a 

particles motion. The initial particle volume fraction is also a factor in determining particle 

motion and can be adjusted over a large range, from the very dilute to very dense. The variation 

of these and other parameters leads to the limiting cases of either ballistic or diffusive type 

motion. All particles dispersed into a medium experience drag forces. If the particles are 

dispersed in a dense medium, the paths of the medium molecules impinging on the surface of the 

dispersed particle will be severely affected by those leaving the surface. This produces a “stick” 

boundary condition at the particle surface in what is known as the continuum regime and is 

described by the Stokes-Einstein drag. Stokes-Einstein drag is proportional to the particle’s 

effective mobility radius, which is the geometric radius if the particle is sphere or the radius of 

gyration Rg for a cluster. If the particles are dispersed in a rarefied medium, the paths of the 

impinging medium molecules are essentially unaffected by those leaving the particle surface. 

This produces a “slip” boundary condition at the particle surface in what is known as the free 

molecular regime which has an Epstein drag. Epstein drag is proportional to the effective cross 

sectional area of the particle with a mobility radius squared functionality. 

 5.2 Classifying Aggregate Motion 

The parameter that quantifies the continuum to free molecular regime change is the 

Knudsen number, Kn= mfp a⁄ , where mfp is the mean free path of the medium molecules and a 
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is the radius of the suspended particle. When Kn→0, the system is in the continuum regime and 

when Kn→∞, the system is in the free molecular regime. Separate from frictional drag behavior 

of the median, the motion of the aggregate must also be classified. A common parameter used to 

describe aggregate motion is the diffusional Knudsen number KnD, which is the ratio of a 

suspended particle’s persistence length, la to some other characteristic length. The persistence, 

lais the stopping distance used to calculate the Stokes number [53] when the velocity has the 

equipartion value. An aggregate’s motion is taken to be on a straight line over a distance equal to 

its persistence length. 

When KnD→∞ the persistence length dominates all other length scales and the motion is 

considered ballistic. When KnD→0 the persistence length is small compared to the system’s 

other length scales and the motion is considered diffusive. The crossover between these two 

limits occurs when KnD≈1. When the system is cluster dilute, the only characteristic length scale 

is the linear size of the aggregates [31]. In this work we use a definition of KnD similar to that 

used by Rogak and Flagan [54] and Gopalakrishnan and Hogan [55], in the dilute limit 

 

  𝐾𝑛𝐷 =
√𝑘𝐵𝑇𝜇𝑖𝑗

Γ𝑖𝑗(𝑅𝑔,𝑖 + 𝑅𝑔,𝑗)
 

(5.1) 

 

where  kB is the Boltzmann constant, T is temperature, μij is the reduced mass between an 

aggregate and its collision partner, Rg,i is the radius of gyration of the ith cluster and Γij is the 

reduced drag coefficient between these two aggregates defined as Γij= ΓiΓj (Γi+Γj)⁄  where Γi is 

the drag coefficient of the ith cluster. The jth aggregate is the collision partner for a given cluster 

is assumed to be its nearest neighbor. This definition of KnD is equivalent to the ratio of the 

collision partners’ reduced persistence length to their combined size. 
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As the system becomes more crowded, the nearest neighbor separation Rnn becomes 

another important length scale [31]. If the persistence length of the aggregate la is large 

compared to the nearest neighbor separation then the movement of aggregates between collisions 

would be on a straight line, that is, ballistic motion. But if lais small compared to Rnn, the 

aggregate will have to travel many such la's, which follow each other randomly, before it 

collides with another aggregate; then the movement is diffusive. This is illustrated in Figure 5.1 

the where in part (a), the light shaded cluster moves ballistically whereas in part (b) it moves 

diffusively. With this physical picture in mind, we introduce a new diffusional Knudsen number 

based on the nearest neighbor separation as a characteristic length scale: 

  𝐾𝑛𝑛 =
𝑙𝑎

𝑅𝑛𝑛

 (5.2) 

To distinguish it from the traditional diffusional Knudsen number, we will refer this new 

one as the nearest neighbor Knudsen number from here on [31]. We anticipate that the nearest 

neighbor Knudsen number would be a better descriptor of the crossover from ballistic to Epstein 

diffusive motion as the system becomes cluster dense or when the mean persistence length an 

aggregate travels becomes close to the nearest neighbor distance. 
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a. 

 

b. 
 

 

Figure 5.1 (a) Illustration of a ballistic collision where the light shaded cluster does not make one 

full persistence length before colliding with its neighbor. (b) Illustration of a diffusive collision 

where the light shaded cluster makes several persistence lengths before colliding. 

 

 5.3 Simulation Methods 

Two simulation models, Brownian dynamics and Monte Carlo cluster-cluster 

aggregation, are used in this chapter. While Brownian dynamics simulations have been used in 

the past to describe aggregation in the free molecular regime [55]–[58], they are computationally 

expensive. We have developed a Monte-Carlo (MC) method for the crossover study similar to 

ones used in the past for continuum regimes [31], [51]. This MC method has the advantage of 

being computationally very efficient. Both simulations are constructed so that the crossover from 

ballistic to Epstein diffusive motion occurs as aggregation proceeded and the aggregate size 

increased. While the simulations differ in the mechanisms of aggregate movement, they share 

similar starting points. All simulations start with 100,000 monomers of radius a, diameter σ=2a 

and mass m0 that are placed at random in a 3D simulation box. The desired volume fraction was 
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obtained by adjusting the box size. If a monomer was placed in overlap with another, it is given a 

new set of random coordinates. Work presented here was done at volume fraction of 

fv=10-2, 10-3, and 10-4 Periodic boundary conditions are in place to negate edge effects. 

 Brownian Dynamics 

In this part, we integrate the Langevin equation for an aggregate: 

  
 

𝑚𝑎𝑟̈ = −Γ𝑟̇ + 𝑅(𝑡) 
(5.3) 

where mais the aggregate mass, Γ is the drag coefficient, R(t) the stochastic thermal force and r 

the position of a given aggregate center of mass. Aggregate mass can also be written as 

ma=Nm0  where N is the number of monomers in an aggregate. The system is set to a constant 

temperature initially through the assignment of monomer velocities via the Maxwell- Boltzmann 

distribution. Solving equation 5.3 one finds [59]: 

  
 

𝑟(𝑡) = 𝑡𝑐 (𝑣(0) (1 − 𝑒
−

𝑡
𝑡𝑐) + ∫ (1 − 𝑒

−
𝑡′−𝑡

𝑡𝑐 )
𝑅(𝑡′)

𝑚𝑎

𝑡

0

𝑑𝑡′) 

(5.4) 

 

Here, the initial aggregate velocity is v(0) and the characteristic time, tc= ma Γ⁄  is a measure of 

how long an aggregate will move along a ballistic trajectory before it feels the influence from the 

medium.  

Integration of equation 5.4 is done at time steps of Δt=0.1 in reduced units 

of 2a(m0 kBT⁄ )1 2⁄ . Reduced units of monomer mass m0=1, monomer radius a=1 and kBT=1 

are used to simplify the integration. When two aggregates collide they irreversibly stick, the total 

number of aggregates Nc is decremented by 1 and the new aggregate moves with a thermal 

velocity determined by equipartition.  



60 

Simulations presented here set out to model aerosol systems at low background gas 

densities often induced by high temperature and therefore are firmly in the free molecular drag 

regime. The free molecular drag coefficient is given as 

  
 

Γ = 4𝜋𝛿𝑃√
𝑚𝑔

3𝑘𝐵𝑇
𝑅𝑚

2
 

(5.5) 

In equation 5.5, δ is the accommodation coefficient, P is pressure, mg is the mass of a gas 

medium molecule and Rm is mobility radius of the aggregate. Experiments and previous 

simulations have shown that the mobility radius for fractal aggregates is 

  
 

R𝑚 = 𝑎𝑁𝑥
 

(5.6) 

where the mobility-mass exponent x=0.46 [60], [61]. Now the drag coefficient becomes  

  
 

Γ = 4𝜋𝛿𝑃√
𝑚𝑔

3𝑘𝐵𝑇
𝑎2𝑁2𝑥

 

(5.7) 

The ballistic motion persists over a distance given by the product of the characteristic time, 𝑡𝑐 

and thermal velocity c=√3kBT/ma. Thus, the persistence length is written as 

  
 

l𝑎 =
3𝑘𝐵𝑇

4𝜋𝛿𝑃
√

𝑚0

𝑚𝑔

𝑎−2𝑁
1
2

−2𝑥
 

(5.8) 

Notice that both the drag coefficient and persistence length have a power law dependence on N. 

Setting N=1 yields the monomer persistence length 

  
 

l0 =
3𝑘𝐵𝑇

4𝜋𝛿𝑃
√

𝑚0

𝑚𝑔

𝑎−2
 

(5.9) 

Rescaling equations 5.7 and 5.8 by l0 provides a more compact from of Γ and la 
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Γ =
√3𝑘𝐵𝑇𝑚0

𝑙0

𝑁2𝑥
 

(5.10) 

 

  
 

l𝑎 = 𝑙0𝑁
1
2

−2𝑥
 

(5.11) 

From equation 5.10 it is clear that l0 and N define the drag coefficient and therefore are 

necessary to solve the Langevin equation. Thus, l0 along with fv and number of monomers, 

becomes a primary input in the simulation. All l0 values are given are in units of monomer 

diameter 𝜎. Values of l0=1, 10, 50, 200, 10,000 were used in this work. We will show that 

when l0=1 the system acts as Epstein diffusion while l0=10,000 leads to purely ballistic motion. 

 Monte Carlo Cluster-Cluster Aggregation 

Instead of solving the Langevin equation to move the aggregates, the Monte Carlo CCA 

method picks an aggregate at random, calculates a probability of movement Pmto determine if the 

aggregate moves, and then increments time by 1 Nc⁄ where Nc is the number of aggregates in the 

system including lone monomers. When the aggregate moves, it travels a distance of one 

monomer diameter σ. This model is standard for aerosol Monte-Carlo simulations in the 

continuum regime, where we differ is how Pm is calculated. In ballistic (BLCA) systems Pm is 

proportional to the aggregate velocity and is set as [31]  

  
 

P𝑚,𝐵 = 𝑁
1

2. 
(5.12) 

For Epstein diffusion the probability of movement is proportional to the aggregate’s drag 

coefficient Γ and is set as  
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P𝑚,𝐷 = 𝑁−2𝑥. 
(5.13) 

Our proposed crossover Pm must let an aggregate move ballistic on the scale of its persistence 

length la and diffusively on length scales larger than la. Also as an aggregate grows, its 

persistence length will decrease until la = 1 via equation 5.11. Since in our simulation the 

minimum step size is one, at the la = 1 point, Pm must also crossover from ballistic to diffusive. 

Our proposed Pmis a linear combination of inverse of Pm,B and inverse Pm,D, that is, a harmonic 

sum of two probabilities. 

  
 

𝑃𝑚
−1 = 𝑐1𝑃𝑚,𝐵

−1 + 𝑐2𝑃𝑚,𝐷
−1

 
(5.14) 

Normalizing so monomers have Pm=1 and crossover happens at la=1  equation 5.14 

becomes 

  
 

𝑃𝑚
−1 = (1 −

σ

l0

) 𝑁
1
2 +

σ

l0

𝑁2𝑥
 

(5.15) 

where 1≤l0≤∞. 

We must note that the procedure for selecting Pm represented in equation 5.15 is purely 

ad hoc. However, it captures the physics of the aggregate motion. We will test it by comparing to 

the Langevin result. Equation 5.15 determines if an aggregate will move but does not say 

anything about the direction of movement. Since an aggregate must move on average a distance 

of la before it randomly changes direction due to the influence of the medium molecules, we 

calculate a probability of random direction change, Pr that is checked every time an aggregate is 

moved. We chose to use the inverse of la for the probability of direction change: 
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P𝑟 =
1

 la
. 

(5.16) 

As in equation 5.15, Pr is purely ad hoc but still captures the physics of the system. Care must be 

taken how time is incremented in this hybrid system where a cluster can move either ballistically 

or diffusively. The time, τD for an aggregate to move one monomer diameter by diffusion is 

given by the mean square displacement equation 〈𝜎2〉 = 6𝜏𝐷𝑘𝐵𝑇 Γ⁄  which yields 

  
 

τ𝐷 = √
𝑚𝑎

3𝑘𝐵𝑇

𝜎2

 la
. 

(5.17) 

Comparing the time to move ballistically one monomer diameter 

  
 

τ𝐵 = 𝜎√
𝑚𝑎

3𝑘𝐵𝑇
 

(5.18) 

to τD and setting N=1 and l0=1, the ratio of Equation 5.17 to equation 5.18 is 

  
 

τ𝐵,0

τ𝐷,0

=
2

𝜎
 

(5.19) 

In Monte Carlo simulations a cluster moves a distances of σ and time is incremented by 1 Nc⁄  

but when the movement is diffusive the time scale needs to be normalized by equation 

5.19. 

 5.4 Aggregation Kinetics 

The kinetics of aerosol aggregation is governed by the Smoluchowski equation, which 

describes how the number concentration of clusters of size N monomers, nN(t), changes with 

time [10].  

  
 

𝑑𝑛𝑁

𝑑𝑡
= ∑ 𝐾(𝑖, 𝑁 − 1)

𝑁−1

𝑖=1

𝑛𝑖𝑛𝑁−1 − 𝑛𝑁 ∑ 𝐾(𝑖, 𝑁)𝑛𝑖

∞

𝑖=1

 
(5.20) 
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The aggregation kernel K(i,j) is the collision rate between aggregates made up of i 

monomers with aggregates of j monomers. K(i,j) is assumed to be a time-independent 

homogeneous function of particle size. To simplify the scaling we work under the assumption 

that the aggregation is between like-sized clusters, then the Smoluchowski equation becomes 

  
 

𝑑𝑛𝑁

𝑑𝑡
= −𝑛𝑁

2 𝐾(𝑁, 𝑁) 
(5.21) 

Since K is homogeneous, one can write equation 5.21 as 

  
 

𝑑𝑛𝑁

𝑑𝑡
= −𝑛𝑁

2 𝑁𝜆𝐾(1,1) 

(5.22) 

 

where λ is the degree of homogeneity, and K(1,1) is the kernel for a monomer–monomer 

collision. The aggregate size N changes with time and the concentration can be written as, 

  
 

𝑛𝑁(𝑡) =
𝑛1(0)

𝑁(𝑡)
 

(5.23) 

Then equation 5.22 becomes 

  
 

𝑁(𝑡)−𝜆𝑑𝑁 = 𝐾(1,1)𝑛1(0)𝑑𝑡 
(5.24) 

Finally, integration yields 

  
 

𝑁(𝑡) = [1 + (1 − 𝜆)𝐾(1,1)𝑛1(0)𝑡]
1

1−𝜆 

(5.25) 

or 

  
 

𝑁(𝑡) ≈ [𝑡0 + 𝑡]𝑧
 (5.26) 

with a kinetic exponent, z as first seen by van Dongen and Ernst [62] 
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𝑧 =
1

1 − 𝜆
 

(5.27) 

and  

  
 

𝑡0 =
𝑧

𝐾(1,1)𝑛1(0)
 

(5.28) 

 

Expanding equation 5.26 for small time t<t0 one finds that N(t) ∝ t. After this, small transient 

time, there is a transition when t≈t0, and then ultimately at large time when t>t0, the cluster size 

increases with power law 𝑁(𝑡)  ∝ 𝑡𝑧. If the crossover happens during the linear transient regime, 

then information about the homogeneity will be absent. To avoid this below we simply graph 

average aggregate size N̅(t) versus t+t0; a process that by equation 5.26 linearizes a double 

logarithmic graph. 

 5.5 Scaling Analysis of the Aggregation Kernel 

The previous section discussed how aggregation governed by the Smoluchowski equation 

yielded an average cluster size that increased with time via a power law with the kinetic 

exponent. Here, we present a simple scaling analysis that describes how the collision kernel and 

its homogeneity determine the kinetics for different regimes of motion. Beginning with the 

general statement that K is proportional to the colliding particles relative collision cross-sectional 

area, A and relative velocity, v, we write 

  
 

𝐾~𝐴𝑣 
(5.29) 

 Ballistic Regime 

In the ballistic regime velocity v~N-1 2⁄  is due to equipartition of energy and since 

Rg~N1 Df⁄  one finds from equation 5.29: 
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𝜆𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 =
2

𝐷𝑓

−
1

2
 

(5.30) 

 

Using the accepted value of fractal dimension, Df=1.9, in the ballistic limit [63] the 

homogeneity is found to be λballistic=0.55 and via equation 5.30, hence the kinetic exponent is 

zballistic=2.2. 

 Epstein Diffusion Regime 

In the diffusion regime, the characteristic velocity is v~(ΓRc)-1, where Rc is a 

characteristic diffusional length scale. In the dilute limit, the only length scale is Rc=Rg and from 

equation 5.29 one finds the homogeneity as 

  
 

𝜆𝐸𝑝𝑠𝑡𝑒𝑖𝑛;𝑑𝑖𝑙𝑢𝑡𝑒 =
1

𝐷𝑓

− 2𝑥 
(5.31) 

 

Aggregates in the Epstein diffusion regime have a fractal dimension of Df=1.8 which yields 

λEpstein;dilute=-0.36  and zEpstein;dilute=0.73. As the system becomes more crowded the relevant 

length scale becomes Rc=Rnn. The nearest-neighbor separation is Rnn  ~Nc where Nc is the 

number of clusters in the system. The total number of monomers, Nm is constant and equals 

Nm=N̅Nc, thus Rnn~N̅1 3⁄ and the homogeneity is 

  
 

𝜆𝐸𝑝𝑠𝑡𝑒𝑖𝑛;𝑑𝑒𝑛𝑠𝑒 =
2

𝐷𝑓

−
1

3
− 2𝑥 

(5.32) 

 

In the Epstein limit, as the system becomes crowded, then, by equation 5.32 homogeneity is 

λEpstein;dense=-0.14   and the kinetic exponent is zEpstein;dense=0.88. 
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 5.6 Scaling Analysis of the Cluster Size Distribution  

As aggregation proceeds in the system, the aggregate size distribution develops a scaling 

form given by n(N)s2=M1φ(x)where n(N) is the number concentration of aggregates of size N, 

M1 is the 1st moment of the size distribution and s is the average size [62]. The scaling variable 

is x=N/s and the scaled distribution function, φ(x) has the form φ(x)=Ax-λe-(1-λ)x for large 

sizes (x > 1) [64]. Thus, 

  
 

𝑛(𝑁)𝑠2 = 𝑀1𝐴𝑥−𝜆𝑒−(1−𝜆)𝑥
 

(5.33) 

 5.7 Results 

The aggregation kinetics for both Brownian dynamics and Monte Carlo simulations are 

shown in Figure 5.2a–f. The graphs shown the inverse number of clusters Nc
-1

versus t+t0 for 

various l0’s. Since the number monomers remains constant, Nc
-1

 is directly proportional to 

average cluster size. The constant t0 was calculated by Equation 5.28. The monomer aggregation 

kernel K(1,1) and z used in equation 5.28 were decided based on the initial KnD and Knn.  
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a.  b.  

c.  d.  

e.  
f.  

Figure 5.2 Inverse cluster count versus t=t0. t0 was found from equation 5.28. The lower dashed 

guide line has a kinetic exponent z=0.80, 0.88 and the upper guide line has z=2.2. The points 

where Knn=1 are marked and noted in the legend. The points where KnD=1 are noted as stars in 

their respective runs. (a) Monte Carlo simulation at fv=10
-4

 (b) Brownian Dynamics simulation 

at fv=10
-4

 (c) Monte Carlo simulation at fv=10
-3

 (d) Brownian Dynamics simulation at fv=10
-3
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(e) Monte Carlo simulation at fv=10
-2

 (f) Brownian Dynamics simulation at fv=10
-2

. Notice that 

in (e) and (f) the Epstein diffusion exponent is z=0.88 as expected when in the cluster dense 

regime. Also of note in (e) and (f) the trend has upward curvature do to the onset of gelation. 

 

 

a. b. 

Figure 5.3 (a) Aggregation kernel homogeneity λ versus nearest neighbor Knudsen number 

Knn for all Monte Carlo and Brownian Dynamic simulations. (b) The diffusive Knudsen number 

KnD versus homogeneity λ for all Monte Carlo and Brownian Dynamic simulations. Both 

measurements show similar behavior and provide a means of detecting the crossover. 
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a.  b.  

c. d. 

Figure 5.4 Aggregate size distribution from Brownian Dynamics with l0= 50 and fv= 10
-3

. Lines 

represent fits from equation 5.33. The system starts off with ballistic λ then enters an 

intermediate regime during the crossover and finally at late time and small Knn reaches a 

diffusive λ. (a) Size distribution from Monte Carlo simulations; (b) size distribution from 

Brownian Dynamics simulations; (c) rescaled data from (a), here the homogeneity λ transition 

from ballistic to diffusive can be clearly seen. The system starts with ballistic homogeneity of 

λ=0.55±0.1 then changes to λ=-0.30±0.20, consistent to other values of λ reported for Epstein 

diffusion. (d) Rescaled data from (b), the system starts with ballistic homogeneity of λ=0.55±0.1 

then changes to λ=-0.40±0.20, consistent with Epstein diffusion. 

 

Diffusive and nearest neighbor Knudsen numbers were found for each aggregate by 

equations 5.1 and 5.2, respectively, then averaged to obtain KnD and Knn for the system. For 

runs with l0=1 both KnD and Knn were less than unity and firmly in the diffusive regime, so 

values of diffusive K(1,1) and z were used to find t0. All other runs started with larger KnD and 
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Knn and therefore ballistic values of K(1,1) and z were used to find t0. When l0=1, the system is 

entirely diffusive due to both KnD and Knn being less than unity and yields a kinetic exponent of 

z=0.8 for fv=10-3 and 10-4 and z=0.88  for the dense fv=10-2. Both these values are consistent 

with predicted values of z=0.73 for dilute Epstein diffusion and z=0.88 for dense Epstein 

diffusion, respectively [65].  

At large l0, Figure 5.2’s parts all show for both types of simulation a kinetic exponent of 

z=2.2 as expected for ballistic motion at all fv [31]. The intermediate values of l0 initially follow 

the ballistic track then evolve to the diffusive z exponents. For all intermediate l0 runs, the places 

where KnD=1 are marked by a star and places where Knn=1 are marked by symbols. While both 

Knudsen numbers fall within the crossover Knn does a better job of marking the beginning of the 

transition.  

Figure 5.3 plots the aggregation kernel homogeneity λ versus either diffusional Knudsen 

number. By numerically finding z from the data in Figure 5.2 and using equation 5.27 to find λ, 

we compare Knn to λ in Figure 5.3a and KnD to λ in Figure 5.3b. Closed symbols represent data 

from Monte Carlo simulations and open symbols are data from Brownian dynamics. All runs 

follow the same trend with a ballistic like upper limit of λ=0.55 and an Epstein diffusional lower 

limit between λ=-0.36 for cluster dilute systems with fv=10-4,10-3 and λ=-0.14 for cluster 

dense systems with fv=10-2. A crossover present when either Knudsen number is in the 0.1 to 10 

range.  

In Figure 5.4a and b the size distributions at different times for the system at l0=50 and 

fv=10-3 are shown for Brownian Dynamics and Monte Carlo simulations, respectively. The 

homogeneity is found from fitting equation 5.33. At early times when Knn > 1, the homogeneity 

is λ=0.55±0.1 consistent with ballistic motion, and at late time when Knn < 1, the system 
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moves to λ=-0.4±0.2 for the Brownian Dynamics runs and to λ=-0.3±0.2 for the Monte Carlo 

runs, both of which are in the range of previous reported values of λ=-0.36 to -0.14 for Epstein 

diffusion [31]. The transition of  λ can be seen more clearly by scaling equation 5.33 by e(1-λ)x. 

Figure 5.4c and d show the rescaled mass distributions at different Knn values for runs of l0=50. 

Again as in Figure 5.4a and b, λ moves from a ballistic value to diffusive with changing Knn. 

 5.8 Concluding Remarks 

We have performed simulations of the common yet previously unexplored aerosol 

situation in which the motion of the aggregates transforms from ballistic to Epstein diffusive 

while in the Free Molecular regime. Two algorithms were used. First, a slow but rigorous 

Brownian Dynamics method that solved for aggregate motion through the integration of the 

Langevin equation. Second, a less exact but faster Monte Carlo method that decides aggregate 

movement through use of an ad hoc probability of movement and probability of random walk. 

The probability of movement is a combination of the well-established probability of movements 

from ballistic and diffusive simulations and a probability of random walk insures aggregates on 

average move in a ballistic a distance of la. All simulations over all l0's produced fractal 

aggregates of dimension 1.8 except for the very large l0=10,000 that yielded fractal dimension 

of 1.9. Both systems were in good agreement with regard to the time evolution of the nearest 

neighbor and diffusion Knudsen number.  

Volume fractions used went from the light fv=10-4 to a dense fv=10-2 to highlight the 

importance of Rnn as the dominant length scale in dense systems. To our surprise we found that 

at all volume fractions studied both nearest neighbor separation and aggregate size were equally 

adequate at describing the crossover. In the future, simulations must be done with both denser 
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and lighter systems to determine if both length scales do indeed remain markers of aggregation 

kinetics.  

One physical situation in which the results of this chapter would apply is dense high 

temperature aerosols. Consider, for example, air at STP with a mean free path of 66 nm which 

means monomers of radius a=10 nm would experience Epstein drag. Using an accommodation 

coefficient of δ=1.36 for N2 gas yields by equation 5.9 l0=30 nm. If these monomers had a 

volume fraction of fv=10-6 then one finds Knn=0.03, placing the system in the Epstein diffusion 

regime. As the aggregates grow from these initial conditions, the system would move to the 

continuum regime which is not accounted for in our simulations. Raising the temperature to that 

of typical flame experiments, T=2100 K, the persistence length of the monomers grows to 

l0=210 nm yielding a Knn=0.21, placing the system in the crossover regime between ballistic 

and diffusive motion, see Figure 5.3. Raising the volume fraction in the flame to fv=10-4 lowers 

the nearest neighbor separation which in turn gives a Knn=1.00, in the middle of the ballistic to 

diffusive crossover. These latter conditions have been studied experimentally in the past 15 years 

[66]–[68]. Finally, we remark that the reverse crossover from diffusive to ballistic aggregation 

can occur in dense systems near the gel point [30]. 

 

  



74 

Chapter 6 - Aggregation with Consecutive Coalescence and Non-

Coalescence Stages in Aerosols  

 6.1 Introduction 

 In this chapter, our focus will be on simulation of aggregation in a system where during 

the aggregation process particles at first coalesces to spherical particles and then subsequently 

the coalescence stops and the particles continue to aggregate to form ramified, fractal aggregates. 

This two stage model was motivated by experiments that created ultralow density, porous, high 

specific surface area materials via gelation of nanoparticles in the aerosol phase [69]–[71] . 

These aerosol gels are composed of carbon or silica. Carbonaceous soot aerosols were created by 

exploding a mixture of acetylene (C2H2) and oxygen in a closed, cylindrical combustion chamber 

while silica aerosol gels have been created in a similar manner with silane, SiH4. 

Experiments show that the primary particle size of the SiO2 aerosol particles could be 

changed by changing the mass of the inert background gas [72]. With no background gas 

present, a thin, white “paint” of silica was found on the inner walls of the explosion chamber. 

This indicates that after their creation in the explosive reaction of silane and oxygen the hot silica 

molecules moved ballistically in the absence of an inert background gas and “splashed” on the 

chamber walls. When nitrogen was used as a background gas, particles formed that subsequently 

formed ramified aggregates leading to the formation of an aerosol gel. Helium as a background 

gas yielded larger particles, mean diameter of 100 nm compared to 16 nm for N2 as a 

background gas. The particles with He as background gas were found to be more spherical than 

those for 𝑁2 but the distribution of particle size was more polydisperse than for N2. These 

particles also subsequently aggregate and form an aerosol gel. It is reasonable to conclude that 

aerosol gel formation is the result of a two-step process. First aggregation to complete 



75 

coalescence occurs during the brief, ca. 30 msec, high temperature, ca. 5000 K, explosion phase. 

This is followed by a second phase with no coalescence or sintering to form ramified, fractal 

aggregates which eventually gel (ca. 100 s). For the first stage it appears that the role of the inert 

background gas is to remove the large kinetic energy of the hot silica molecules and particles. 

These observations indicate that the hot, spherical particles of silica stay hot longer in the He 

than in the N2 and thus coalesce upon collision for a longer time to form larger spherical 

particles. These experimental results engender the following question: What happens when 

during the aggregation process particles coalesce at first and then subsequently these coalesced 

clusters form ramified aggregates?  Particle sintering, incomplete coalescence, was first 

described by Ulrich and Subramanian [73]. Studies by Koch and Friedlander [74]considered the 

relative time scales of sintering and aggregation but did not account for the possible ramified 

nature of the aggregates. Pratsinis and coworkers [75]–[79] have used both experimental and 

computational studies to describe the kinetics and resulting morphologies of the aggregates when 

both aggregation and sintering are at work during flame synthesis of particles. In more recent 

work, Schmid et al.[80] and Sander et al. [81] have studied detailed models of sintering of 

agglomerates by solving population balance equations. In these model calculations, sintering 

takes place over a long period of time. Although these models are well developed for studying 

sintering and aggregation in flame synthesis, they do not apply to our explosive aerosol 

generation process described above. In flame aggregation the system is at temperatures ranging 

from 1000 to 2500 K. In this temperature regime sintering occurs during aggregation. In our 

explosive generation method, on the other hand, the system starts with a gaseous precursor in the 

presence of an inert background gas. Then the precursor is ignited and explodes. Temperatures 

jumps to about 5000 K for a short time and then rapidly cools. At such high temperatures it is 
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assumed that sintering happens completely and coalescence is instantaneous. A short time later, 

on the order of 30 msec, the system goes through rapid cooling and sintering stops and 

aggregation proceeds to form ramified aggregates. The main parameter in determining how long 

the system stays in the high temperature regime is the background gas. We estimated that the 

temperature of the silica nanoparticles radiatively cools down to below 1000 K (when sintering 

practically stops) in times scales of the order of milliseconds. Thus a simulation model where the 

regime of coalescence and the regime of fractal aggregation separated in time scales is relevant 

for the experimental study mentioned in the chapter. We separate the time scales of sintering and 

aggregation by allowing first aggregation with complete sintering, i.e., coalescence to spherical 

particles, followed by aggregation with no sintering to yield ramified, fractal aggregates. We find 

that both the coalescence and ramified aggregation stages exhibit characteristic kinetics, 

morphologies, and size distributions that can be explained with mean field aggregation theory, 

and the end result is hybrid aggregates reflecting these stages. This model is the first attempt at 

modeling aggregates made from an explosive process. Though it is relatively simple compared to 

simulations used for flame aggregates, our model presents a non-material specific scaling 

description while capturing the essential features of aerosol gelation in the presence of different 

background gases. 

 6.2 Simulation Method 

There were two distinct stages of the simulations. First was the coalescence stage. In the 

coalescence stage when monomers collided they merged into a coalesced spherical cluster with a 

volume equal to sum of the parent particle volumes. The second stage was canonical diffusion 

limited cluster-cluster aggregation (DLCA). The maximum number of particles used in the 

simulation is five million. 
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 Coalescence Stage 

In the coalescence stage, particles are hot and molten and are expected to move either 

ballistically [58], [82] or diffusively depending on the pressure of the background gas [31]. We 

model these movements in the following ways: 

(a) Ballistic Coalescence: At a time t, we choose a coalesced cluster of size N randomly 

from the available number of clusters Nc(t) . The probability of movement (p) of that 

cluster is then calculated based on the thermal velocity of the cluster and one can 

write ~N1 2⁄  . This probability of movement is then compared to a random number 

between 0 and 1. If the random number is smaller than the probability of movement, 

the cluster is moved a distance of one monomer diameter σ. Whether the cluster 

moves or not, time is incremented by Nc
-1(t) [5]. If the cluster happens to move it 

does so on a straight line in a random direction. This direction of movement stays 

constant till a collision occurs and at that point another direction is randomly chosen 

for the newly formed coalesced cluster to move also on a straight line. 

(b) Diffusive Coalescence: The probability of cluster movement (p) for the diffusive case 

is defined as a cluster’s relative diffusion constant p~ Dn D0⁄  where Dn is the 

diffusion constant of the cluster and 𝐷0 is the diffusion constant of a monomer. In the 

continuum limit, this probability of movement can be written as p~ 1 Rg⁄  where Rgis 

the radius of gyration of the cluster.  

Coalescence phase continues until a predetermined time 𝑡𝐷 is reached. Beyond this point, 

the simulation moves over to the DLCA phase. 
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 DLCA Stage 

Simulation in the DLCA stage starts from the polydisperse system of coalesced clusters 

obtained at tD. The motion is solely diffusive. A time step consists of randomly picking a 

ramified cluster of size N from the available Nc(t ) clusters. The probability of cluster movement 

(p) is based on the cluster’s radius of gyration as p∝ 1 Rg⁄   and as before, whether the cluster is 

moved or not time is incremented by Nc
-1(t). If the cluster does move, it moves in a random 

direction for a distance of one monomer diameter σ. 

 6.3 Scaling Analysis 

  Scaling Analysis of the Aggregation Kernel 

The Aggregation Kernel, K, describes the rate at which two clusters collides and is 

proportional to their relative collision cross-sectional area A and relative velocity, v, yielding 

K ∼ Av, consistent with the units of [L3t]. As we saw before, if one assumes that the cluster size 

distribution is approximately monodisperse, one can write the appropriate collision kernel as: 

  
 

𝐾~𝑁𝜆
 

(6.1) 

Also the kinetic exponent z, which characterizes the power-law growth with time of the average 

cluster size, N(t)~tz ,is related to the homogeneity λ by: 

   
 

𝑧 =
1

1 − 𝜆
 

(6.2) 

One typically writes this as A∼ Rg
2. For a fractal cluster, Rg~N1 Df⁄  where Df is the fractal 

dimension of the cluster while for a compact, spherical cluster (appropriate in the coalescence 

stage) Rg ∼ N1/3. In addition, since NcN=Nm where Nm  is the number of monomers, one easily 

finds that Rg(t ) ∼ Nν where ν= z Df⁄  for fractal clusters and ν= z 3⁄  for spherical cluster. 



79 

In the ballistic regime, v~N-1/2 via the equipartition of energy. Since Rg~N1/3 here, one 

finds that K~N1/6 or  λ= 1 6⁄  , z = 1.2 and ν = z 3⁄ = 0.4  (Coalescence with a ballistic 

motion). In the diffusive case, one can still use the dimensionally correct form K ∼ Av but now v 

becomes a characteristic velocity relevant for diffusion. This velocity must scale as  

  
 

𝑣~
𝐷

𝑅𝑐
 

(6.3) 

where D is the diffusion constant and Rc is a characteristic diffusional length-scale. In the dilute 

limit of the Stokes-Einstein diffusion, Rg is the only relevant length-scale in the system and one 

can write v ∼ D Rg⁄ . In addition, A∼ Rg
2. Thus one finds K ∼ D Rg, a result originally derived by 

Smoluchowski in a more rigorous fashion. In the continuum limit D ∼ 1 Rg⁄  which implies that 

K is a constant which in turn leads to λ = 0 and z = 1 in the dilute limit of Stokes-Einstein 

diffusion. These results will be valid whether the resulting clusters are fractal or compact. 

 

 6.4 Simulation Results 

 Coalescence Stage 

The coalescence stage was studied using two different growth models; ballistic and 

diffusive. Both were studied with monomer volume fraction of fv= 0.001. In Figure 6.1 we show 

2d projection snapshots of part of the system at 0, 5000, and 40,000 time steps, respectively. 

Here, monomers moved ballistically which yields an average diameter of 7σ at 40,000 time 

steps. 

 In Figure 6.2 we plot the number of coalesced clusters Nc(tD) versus time tD in a log-log 

graph during coalescence with ballistic movement of the particles. The slope of the straight line 



80 

yields the kinetic exponent z = 1.2 in excellent agreement with a scaling analysis presented 

before. We also note that the average size of the coalesced clusters < R(tD) > when plotted versus 

tD in a log-log graph yields an exponent of ν = 0.4 in excellent agreement with scaling results. In 

contrast, for coalescence with a diffusive motion of clusters we obtain z = 1 (Figure 6.3) in 

agreement with scaling results.  

In Figure 6.4 we have plotted the scaled size distributions for both ballistic and diffusive 

coalescence at tD for a number of different values of tD. For the range x > 1, excellent agreement 

with the scaling prediction is found as shown in Figure 6.4 

 

a.  b.   
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c.   

 

Figure 6.1 Snapshots of the system during the ballistic coalescence phase. The volume fraction if 

 fv=0.001. 2d projections of part of the system are shown at Monte Carlo time steps 0, 5000, 

40,000, respectively. The apparent overlap is due to projection of the 3d volume onto a 2d 

surface; all clusters are spherical. 

 

 

 

Figure 6.2 Number of particles Nc(tD) versus time tD shown in a log-log plot during coalescence 

with a ballistic movement of the particles. The slope of the straight line yields the kinetic 

exponent z = 1.2±0.05. 



82 

 

 
Figure 6.3 . Number of particles Nc(tD) versus time tD shown in a log-log plot during 

coalescence with a diffusive movement of the particles. The slope of the straight line yields the 

kinetic exponent z = 1±0.05. 

 

 
Figure 6.4 Scaled form of ballistic and diffusive particle size distributions at tD for various 

values of tD. The scaled distribution has the functional form φ(x) =Ax-λe-αx for large sizes 

(x>1) with α= 1 – λ with λ (ballistic coalescence)= 1/6 and λ (diffusive coalescence)=0 . 
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 DLCA Stage 

After the coalescence phase, there are 10,000 polydisperse monomers present in the 

simulation box at tD. Diffusive limited cluster-cluster aggregation goes on to make fractal 

aggregates beyond time tD. The initial monomer size distribution in DLCA is thus a set of poly-

disperse coalesced clusters obtained from either ballistic or diffusive aggregation with 

coalescence. Figure 6.5 shows an example of a ramified cluster formed with polydisperse 

coalesced clusters from ballistic coalescence as monomers.  

 

Figure 6.5 A typical cluster formed from DLCA with ballistic monomer mass distribution. This 

snapshot was taken at 2,000,000 time steps. 

 

Since the number of monomers at this DLCA stage is much smaller than in the 

coalescence phase, we compute inverse cluster count Nc
-1

 (t )-Nc
-1

(0) instead of just the cluster 
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number Nc(t ). In Figure 6.6 we show Nc
-1

 (t )-Nc
-1

(0)  versus time t in a log-log plot for mono-

disperse DLCA and DLCA with polydisperse distributions originating from both ballistic and 

diffusive coalescence as discussed before. Slope for each of these curves yields 𝑧 =  1 in 

agreement with diffusive scaling. The slight increase in slope seen for the pure DLCA case at 

late times originates from cluster crowding [83].  

Figure 6.7 shows log-log plots of average radius of gyration of clusters 〈Rg〉 versus time t 

for mono-disperse DLCA and DLCA with poly-disperse distributions originating from both 

ballistic and diffusive coalescence. The straight line part for all three curves yields an 

exponent of ν = 0.55. Note that the radius of gyration of the clusters is smaller when DLCA 

process starts with a poly-disperse distribution. 

 

Figure 6.6 . Log-log plot of inverse cluster count Nc
-1

(t )-Nc
-1

(0) versus time t for mono disperse 

DLCA and DLCA with poly-disperse distributions originating from both ballistic and diffusive 

coalescence as discussed before. Slope for each of these curves yields z = 1 in agreement with 

diffusive scaling. At final times (tD = 100,000 for diffusive coalescence and tD = 40,000 for 

ballistic coalescence) both diffusive and ballistic coalescence yield an average particle diameter 

of 7σ.  
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Figure 6.7 Log-log plots of average radius of gyration of clusters <Rg> versus time t for mono-

disperse DLCA and DLCA with poly-disperse distributions originating from both ballistic and 

diffusive coalescence. The straight line part for all three curves yield an exponent of υ = 0.55. 

 

Next we study the fractal dimension of the clusters formed in the DLCA process. In 

Figure 6.8a and b, we show a log-log graph of mass of the clusters M at various times rescaled 

by the average particle mass versus the radius of gyration of the clusters (Rg) rescaled by the 

average particle radius for both ballistic and diffusive coalescence initial particle distributions, 

respectively. There are two distinct zones in this graph. Below Rg <r>⁄ = 1 the clusters are 

compact (dimers, trimers, and other small nonfractal clusters) and yield an exponent of Df = 3. 

For (Rg <r>)⁄ > 1, the straight line fit to the data yields D f= 1.7 ± 0.1 in each case. The 

prefactor 𝑘0 obtained from this study (k0 = 1.5±0.1) is consistent with previous simulation 

studies [23], [31], [35] of DLCA aggregation in both lattice and off-lattice geometries. 

The scaling form for both DLCA with ballistic and diffusive coalescence is shown in 

Figure 6.9. The scaling function φ(x) = Ax-λe-αx with α=1-λ and for DLCA a homogeneity of 

λ = 0 was plotted with the mass distribution data and shows excellent agreement. 
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a.  b.  

Figure 6.8 (a) Log-log graph of mass of the clusters 𝑀 rescaled by the average particle mass 

<m> versus the radius of gyration of the clusters rescaled by the average particle radius <r> for 

ballistic coalescence initial particle distributions. There are two distinct zones in this graph. 

Below Rg 〈r〉⁄  = 1 the clusters are compact (dimers, trimers, and other small non-fractal clusters) 

and yield an exponent of Df= 3. Above this value of Rg 〈r〉⁄  , the straight line fit to the data 

yields Df = 1.7 ± 0.1. (b) Same as in 8 (a) except for diffusive coalescence initial particle 

distributions. As before, there are two distinct zones in this graph. Below Rg 〈r〉⁄  = 1  the 

clusters are compact (dimers, trimers, and other small nonfractal clusters) and yield an exponent 

of Df= 3. Beyond this value of Rg 〈r〉⁄ , the straight line fit to the data yields Df = 1.7 ± 0.1. 

 
Figure 6.9 Scaling of DLCA with ballistic and diffusive monomer mass distributions. 

Scaling function is φ(x)=Ax-λe-αx with λ= 0 agrees well with the data. 
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 6.5 Concluding Remarks 

In summary, we have carried out computer simulation of aggregation in a system where 

during the aggregation process, particles coalesce at first and then subsequently these coalesced 

clusters stop coalescing and form ramified, fractal aggregates. In the coalescence stage, particles 

move either ballistically or diffusively up to a certain time tD. Next these coalesced clusters 

move diffusively and aggregate to form ramified aggregates. 

We have found the kinetic exponent 𝑧 in the coalescence stage depends on the type of 

cluster motion (ballistic or diffusive). Results for 𝑧 in each case are in agreement with a scaling 

description developed by us. However, once the system moves over to the DLCA stage, one 

recovers pure DLCA results for both the kinetic exponent and the fractal dimension of the 

ramified clusters. Thus the coalescence induced polydispersity of the primary particles for the 

DLCA stage does not affect the DLCA stage outcomes. 

The polydispersity of the coalesced clusters is determined by the mean field aggregation 

kinetics. Thus both the primary particle kinetics of growth and size distribution in a fractal 

aggregate could be used as indicator of a previous regime of particle-particle aggregation with 

coalescence and thereby distinguished from other mechanisms of primary particle formation 

such as nucleation and surface growth. 
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Chapter 7 - Shear History Independence in Colloidal Aggregation 

 7.1 Introduction 

In this chapter we have carried out detailed simulations of aggregation in the presence of 

shear in a model colloidal system with a short-range attractive potential. Many experimental and 

theoretical studies have been carried out to investigate the effect of shear flow on the kinetics of 

aggregation, [84]–[97] the resulting size distributions, and structures of particle aggregates. To 

summarize these findings, previous shear experiments have seen either fragmentation because of 

shear, restructuring as indicated by fractal dimensions larger than the diffusion-limited cluster 

aggregation (DLCA) value of Df = 1.8 or experienced both fragmentation and restructuring. 

Often the shear fragmentation was eventually balanced by the aggregation, and a steady state 

was reached. The shear aggregation in these studies was dominant over Brownian aggregation. 

The numerical simulations presented in this chapter have been stimulated by two 

experiments in our laboratory, which strongly suggest that there is a great bounty of new 

phenomena that have neither been explored nor possibly even discovered when a dispersion of 

colloidal particles undergoes aggregation under the influence of shear[98], [99]. Experiments 

show that for modest shears, as indicated by the Péclet number being in the range of unity 

(unlike any previous work), shear can enhance the aggregation and gelation rate but the 

aggregates formed under shear can be either fractal or hybrid mixed fractal structures [99]. 

Our results provide the first theoretical support to these scattered clues seen in 

experiments on complex systems. Simulation results are clean and deal with a simple 

aggregating system in the presence of shear with a well-studied short-range attractive potential. 

Shear rates employed in the simulations can be attained in laboratory experiments, as confirmed 

by computing the dimensionless Péclet numbers for the simulation studies. For weak shear rates 
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(characterized by Péclet numbers less than unity), we find that the shear enhanced the 

aggregation and that the long-time state of the system is independent of the shear history. For 

strong shear rates, precipitous fragmentation occurred after the shear was turned on and, after an 

induction period, in which numerous runs were shown to be stochastic, the aggregation quickly 

rebounded in a manner similar to classical nucleation phenomena. However, the long-time state 

of the system is, once again, independent of the shear history, as if the shear rate was a state 

variable of the aggregating system. 

 7.2 Simulation Method 

We have performed simulations using a three-dimensional (3D) Brownian dynamics 

model in the presence of a steady shear flow. This involved solving the Langevin equation 

  
 

𝑚𝑟𝑖̈ = −∇𝑈𝑖 − Γ𝑟𝑖̇ + 𝑊𝑖(𝑡) + Γ𝛾̇ (𝑦𝑖 −
𝐿

2
) 𝑧̂ (7.1) 

where Ui  is the pair particle interaction, Γ is the drag coefficient, Wi(t) is the random force acting 

on a particle, γ̇ is the shear rate, yi is the y component of the position vector of the ith particle, 

ẑ is the unit vector along the z axis, and L is the box length [18]. Hydrodynamic interactions, 

including lubrication forces, are ignored in the simulation [100]. We note that an equivalent 

Smoluchowski equation or a “Liouville equation on the diffusive time scale” can be written for 

the probability density function of the position coordinates of the Brownian particles in the 

system [101]. 

The interparticle potential considered here is a short-range attractive potential. As a 

prototype, we consider the well-studied Asakura−Oosawa (AO) [102] short-range depletion 

potential. In particular, the potential U acting upon each colloidal particle has a 2-fold 
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contribution: the two-body depletion potential UAO plus a repulsive hard-core-like interaction Uhc 

given by the following expressions: 

  
 

𝑈(𝑟𝑖𝑗) = 𝑈𝐴𝑂(𝑟𝑖𝑗) + 𝑈ℎ𝑐(𝑟𝑖𝑗) 
(7.2) 

where 

  
 

𝑈𝐴𝑂

𝑘𝑇
= 𝜙𝑝 (

1+𝜁

𝜁
)

3

[
3𝑟𝑖𝑗

2(1+𝜁)
−

1

2
(

𝑟𝑖𝑗

1+𝜁
)

3

− 1] for 𝑟𝑖𝑗 < 1 + 𝜁 
(7.3a) 

 

  
 

𝑈𝐴𝑂

𝑘𝑇
= 0 for 𝑟𝑖𝑗 < 1 + 𝜁 

(7.3b) 

and 

  
 

𝑈ℎ𝑐

𝑘𝑇
= 𝑟𝑖𝑗

−𝛼 
(7.4) 

 

In equation 7.3, ζ is the size ratio between a polymer coil and a colloidal particle, which 

controls the range of the depletion interaction in the AO model and ϕp is a parameter that 

controls the strength of the interaction. All of our simulations are for ζ = 0.1.  

In the hardcore-like repulsive interaction given by equation 7.4, we have setα = 36. 

Exponents α < 36 are reported to lead to anomalies when a hardcore mimic is required in the 

potential [103]. The total pair potential U = UAO + Uhc passes through a minimum value (Umin) 

that depends upon ζ and ϕp. In what follows, we will often characterize the strength of the 

potential in terms of the absolute value of the minimum potential depth, Um = |Umin|, which is 

10 kT in our simulations. 
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Our simulations used a set of reduced units, where m = 1, monomer diameter σ= 1, and 

kT = 1. We choose Γ= 0.5, shear rates between γ̇= 0.1 and 1.0, and time step 

∆t= 0.0001-0.005 in reduced time units of σ(m/kT)1/2. For this choice of Γ, particle motion in 

the absence of shear is purely diffusive for t ≫ 1 Γ⁄ ; i.e., t≫2 in our units. In one unit of this 

reduced time, a “free” monomer would diffuse a distance of 121 2⁄ σ for the value of Γ used here. 

A total of 40 000 monomers were randomly placed in a box of length L = 128 to yield a 

monomer volume fraction of fv= 0.01. For the deep quench considered here (Um= 10 kT) and in 

the absence of any shear, the system shows DLCA behavior similar to an irreversible, 

aggregating system [104]. Lees−Edwards boundary conditions were used, which is standard for 

shear simulations [105]. The system was allowed to develop without shear until a shear start time 

ts, and then shear was turned on. Three shear start times were used: ts = 0, 250, and 500. For 

each shear rate and shear start time, the system was allowed to reach a steady state at long times. 

This was monitored by the aggregation kinetics and the shape and structure of the aggregates 

themselves. 

 7.3 Results  

Figure 7.1a shows the average aggregate size in terms of the number of monomers per 

aggregate N versus time since the onset of shear. There is a zero shear rate curve, and then at 

three different start times (0, 250, and 500), a shear of 0.1 is turned on. This figure shows two 

important facts: (1) The shear enhanced the aggregation, and (2) the long-time state of the system 

is independent of the shear history. Figure 7.1b is similar to Figure 7.1a; only now the shear rate 

is 1.0. Figure 7.1b shows three important facts: (1) Precipitous fragmentation occurred after the 

shear was turned on; (2) after an induction period, in which numerous runs were shown to be 

stochastic, the aggregation quickly rebounds in a manner similar to classical nucleation 
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phenomena to a regrowth period; and (3) after this regrowth, the long-time state of the system is, 

once again, independent of the shear history! 

a.  

b.  

Figure 7.1 Average number of monomers per aggregate versus rescaled time with shear of 

(a)γ̇=0.1 and (b) γ̇=1.0 turned on at ts  =0, 250, and 500. 

 

Other shear rates show these general features as well but with different degrees of 

intensity. Figure 7.2 shows results for a range of shears between 0 and 1.0, all with a start time of 

250. As shear starts, the aggregates fragment to a minimum monomer number (mass). This 

minimum mass decreases systematically with shear and reaches total system breakdown with a 

shear rate of 1.0. We also note that the average aggregate mass at the steady state seems to scale 

with shear rate, highlighting the interplay between fragmentation and enhanced aggregation. 
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Figure 7.2 Average number of monomers per aggregate versus rescaled time for a variety of 

shear rates all turned on at ts=250. 

 

The structure of the aggregates can be discerned via direct real space visualization, 

analysis of bond-orientational order parameters, and Fourier transformation to yield the structure 

factor. The latter has the advantage of yielding an ensemble average and is realizable 

experimentally with light scattering. Zero shear yields a hybrid structure, which we have termed 

“fat fractals”[36], [106]; the monomers form dense clumps over short length scales, and then 

these clumps form open aggregate structure with the classic DLCA fractal dimension of Df=1.8. 

Sheared systems continue to yield fat fractals but with denser aggregates, as identified by larger 

fractal dimensions. A shear of 0.1 yields fractal dimensions of 2.6, as shown in Figure 7.3a, and 

a strong shear of 1.0 yields compact objects, as indicated by a Porod q-4
 functionality for the 

structure factor shown in Figure 7.3b. However, we have not addressed large-scale anisotropy in 

the cluster scale in this work. 
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a.  

b.  

Figure 7.3 Structure factor for shear rate (a) γ̇=0.1  and (b) γ̇=1.0 with three different tsvalues. 

In panel a, the guide line has a slope of −2.6. In panel b, aggregates are compact, indicated by the 

Porod q-4 functionality. 

 

To further analyze the details of the aggregate morphology and to differentiate between 

the liquid- and solid-like particles in the aggregates, we use the scalar product definition of the 

bond orientational order parameter q6 for the ith particle with the neighboring j particles [107]. 

First, we define the connected neighbors. Two neighbors are considered to be connected if the 

above scalar product is greater than some threshold value (chosen to be 0.65 as used in the 
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literature [108]). For a distinction between solid- and liquid-like particles, one can set another 

threshold value for the number of connections. Following ref [108], any particle that has more 

than seven connections is considered solid-like; particles with less than or equal to seven 

connections are considered as liquid-like. Once the solid- or liquid-like behavior of the particles 

is determined, we further assign the crystalline identity to each solid-like particle i. Figure 7.4 

shows examples of aggregates and their crystalline structure. We observe that typical “fat 

fractal” aggregates in the absence of any shear is mostly liquid-like. However, aggregates 

corresponding to a weak shear rate of γ̇=0.1 are more compact than the fat fractal aggregate and 

show large pockets of crystalline order. For a much larger shear rate of γ̇=0.1, the aggregates are 

very compact and ordered but much smaller in size because of fragmentation. 
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Figure 7.4 Red particles are liquid-like; green have face-centered cubic (fcc) structure; blue particles have 

hexagonal close-packed (hcp) structure; and pink particles have some other ordering. (a) Typical “fat 

fractal” aggregate when no shear is applied. (b) Only the crystalline particles of the aggregate shown in 

panel a are shown. (c) Aggregate formed under a shear rate of γ̇=0.1 . Note that the aggregate is more 

compact than the fat fractal aggregate and also shows large pockets of crystalline order. (d) Only the 

crystalline particles of the aggregate shown in panel c are shown. (e) Aggregate formed under a shear rate 

of γ̇=1.0. Now the aggregate has pockets of crystalline order, but it is smaller in size than γ̇=0.1 
aggregates because of fragmentation. (f) Only the crystalline parts of the aggregate shown in panel e are 

shown. 
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It is very important to see if these fascinating numerical simulation results have anything 

to do with real systems. The “Rosetta Stone” to allow us to connect between the simulation and 

real world is the Péclet number. The Péclet number Pe is a dimensionless number that is the 

product of the time that it takes a particle to diffuse one diameter and the shear rate. It is a 

measure of the relative importance of the contributions of fluid shear and Brownian motion to 

the collision frequency of disperse phase clusters and monomers. Whether those collisions result 

in aggregation (or even breakage) events depends upon many other factors, such as the strength 

of the particle attractive forces and the morphology of the colliding aggregates. Generally 

speaking, when Pe > 1, shear is dominant, and when Pe < 1, diffusion is dominant. The 

dimensionless nature of Pe provides a very useful link between experimental and numerical 

simulations. The Péclet number is commonly written as 

  
 

𝑃𝑒 =
6𝜋𝜂𝑅𝑚

3 𝛾̇

𝑘𝑇
 

(7.5) 

 

where η  is the viscosity, Rm is the particle mobility radius, and γ̇ is the shear rate. The drag 

coefficient Γ is related to the viscosity by Γ= 6πηRm. Thus, the Péclet number becomes 

  
 

𝑃𝑒 =
Γ𝑅𝑚

2

𝑘𝑇
𝛾̇ 

(7.6) 

 

In our simulation, Γ=0.5, kT = 1, and γ̇= 0.1-1. When shear is turned on from the beginning, we 

use Rm=0.5 to yield Pe =0.0125−0.125. In the other extreme, for start times of 500, Rm begins 

around 2.3 to yield Pe = 0.26−2.6. These Péclet numbers are well in the range accessible to 

experiments to imply that the remarkable results seen in the simulation should appear in real 
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world experiments as well. For example, the Péclet numbers for the experimental studies cited in 

the Introduction [98], [99]range from 0.01 to 260. 

 7.4 Concluding Remarks 

In summary, numerical simulations of aggregation in the presence of shear in a model 

colloidal system characterized by short-range attractive potential shows that weak shear 

enhances the aggregation process, while strong shear leads to fragmentation and subsequent 

nucleation and rebound in cluster growth after an induction time. A detailed energetic and 

entropic theory of aggregation that can explain these phenomena is lacking at present. However, 

a few general comments can be made. To restructure or break up flocs under shear flow, local 

stresses must create forces on a pair of particles stronger than the interparticle attraction. For 

relatively mild shears, apparently clusters can simply undergo rearrangement into structures with 

sufficient strength to prevent breakage. Above some threshold of shear, fat fractal aggregates are 

simply too fragile to survive and, consequently, are destroyed and eventually replaced by 

compact, pseudo-crystalline aggregates. We should further note that Brownian dynamics ignores 

the effect of the particles on the flow, producing a “free-draining” floc. That produces stronger 

stresses within the flow and weaker stresses on the periphery, which should have implications on 

the breakup. What is striking though is that, in each case, the long-time state of the system is 

independent of the shear history, to imply that the shear rate acts as a state variable of the 

aggregating system. We expect our results to be valid for general short-range attractive potentials 

with a deep well depth. Further studies are needed to elucidate how the depth and range of this 

attractive potential affect the shear induced aggregation and breakup. 
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Chapter 8 - Conclusion and Summary  

The goal of this dissertation was to gain further insight into some fundamental behaviors 

of aerosol and colloidal systems that develop fractal aggregates. These systems are important in 

many fields from climate research [109] to theories on the formation of planets [110]. Using 

computational techniques that simulate the motion and subsequent aggregation of particles in 

aerosol and colloidal systems, we have explored in depth many common but not well studied 

systems. The work presented here falls under two camps: study of cluster structure and study of 

cluster growth.  

In diffusive driven aggregation, the previously overlooked cluster shape and monomer 

packing were described in detail. The monomer packing describes the structure of the aggregate 

at its smallest level while the cluster shape is a large scale characteristic of the cluster. Both were 

found to have significant impact on real world analysis via the dependence on structure factor 

and the scaling prefactor k0. Thus both are put on equal footing with the fractal dimension Df as 

necessary descriptors of a fractal cluster. An analytical theory to describe cluster shape, packing, 

and dimensionality was used that successfully predicted, through use of a restricted hierarchical 

model, cluster shape and dimensionality. The shape was described by a circumscribing 

rectangular with sides parallel to the principal radii. Then the ratios of the lengths were used to 

measure shape. It was predicted by the restricted hierarchical model and confirmed through 

DLCA simulation that the cluster shape is described by the Fibonacci series and the Divine 

Proportion, generalized into the given spatial dimension.  

Cluster growth kinetics were studied in the transition regime were the motion of the 

aggregates transforms from ballistic to Epstein diffusion as the aggregates grow and was 

simulated by two different algorithms: the first, a slow but rigorous Brownian Dynamics method 
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that solved for aggregate motion through the integration of the Langevin equation and a second, 

less exact but faster Monte Carlo method that decided aggregate movement through use of an ad 

hoc probability of movement. For a given volume fraction both simulations found the same 

crossover behavior in the kinetic exponent. To our surprise we found, at all volume fractions 

studied, both the nearest neighbor separation and the aggregate size were equally adequate at 

describing the crossover. 

 Motivated by experiments in which aggregation is initiated with a high temperature 

explosion [69]–[71], aggregation simulations were carried out in which molten particles first 

coalesce into spheres and then subsequently these polydispersed monomers cool and coalescence 

stops. Motion then becomes diffusive and monomers stick at point contacts to form fractals. The 

growth kinetics of the coalescence stage was tracked and found to be in agreement with theory. 

The kinetic exponent and overall cluster structure in the diffusive cluster-cluster stage was found 

be in agreement with DLCA that started with monodispersed monomers.  

Finally, stimulated by two experiments that showed for modest shears an enhancement of 

the aggregation and gelation rate occured but the aggregates formed under these conditions had 

either fractal or hybrid mixed fractal structures[98], [99]. Simulations of aggregation in the 

presence of shear were carried out. A colloidal system characterized by short-range attractive 

potential showed that weak shear enhanced the aggregation process, while strong shear led to 

fragmentation and subsequent nucleation as cluster growth rebounded after an induction time. 

For relatively mild shears clusters undergo rearrangement into structures with sufficient strength 

to prevent breakage. Above some threshold of shear, fractal aggregates are too fragile to survive 

and, consequently, are destroyed and eventually replaced after some time by compact, pseudo-

crystalline aggregates. 
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Future avenues for research on cluster shape and growth kinetics are numerous. For 

example, the importance of aerosolized fractal clusters for earth’s radiative budget especially 

those from carbon sources such as forest fires and man-made pollution has become a subject of 

great importance [111]–[114]. The effect that shape and dimensionality has on extinction cross-

section is only recently been look at and yet to be fully understood. The work presented in this 

dissertation provides a good starting point in selecting what cluster parameters to use for 

theoretical studies of light scattering and absorption in atmospheric aggregates.    
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