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MOMEKCLMuRS

c : velocity of water wavo

c* : velocity of sound

T : local absolute temperature

k : specific heat ratio of gas

R : gas constant

g : gravitational acceleration

f : density of water

f : density of gas

f„ : stagnation density of gas

% : wave length of water wave

V : total velocity of water

V* : total velocity of gas

h : local water depth

p : local pressure of water

p' : local pressure of gas

p : dynamic pressure of water
d

p : static pressure of water
s

p
'

: stagnation pressure of gas

T : stagnation temperature of gas

h : total head of water
o

t : surface tension of water

u : x-componsnt velocity cf water

v : y-component velocity of water

u' : x-component velocity of gas

v« : y-cor.poncnt velocity of gas
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M : Mach number of water

M' : Mach nvn^ber of gas

M : Mach number before the hydraulic jump

c* : the velocity of sound at the sonic line

u : x-component perturbation velocity

V : y-component perturbation velocity



INTRODUCTION

A water table is a device for the study of the two-dimensional non-viscous,

isentropic flow of a perfect gas by means of an analogous shallow-water flow in

an open chaP-nel,

It is well known that water is usually considered to be incompressible.

Yet, theoretically, there exists an analogy between the two flows.

A successful derivation of the theory was made by Preiswerk; see the

corresponding l^CA report [l~]' In his report, Preiswerk concluded that tne

analogy existed only between water flo.-r and the flow of a fictitious gas for

which the specific heat ratio, k, was equal to 2.

Several recent publications [2], [3], [4], written by Enrique J. Klein also

indicate that the value of k cannot be other than 2 if the two-dimensional

analogy is to exist. Although efforts have been made to obtain an analogy

when the ratio of the specific heats for the gas involved in the gas flow is

other than 2, it has always been shown that, in this case, the analogy is

applicable only for one-dimensional flow. >

Preisw.^rTc's derivation only showed that the restriction, k = 2, V7as a

sufficient condition; yet, it can be proved that this restriction is also a

necessary condition. A proof of the necessity is showm in Section 1.6.

The water table analogy is used mainly for the study of transonic floi?. --

The derivation of the analogy is based on an assumption, namely, that the losj

of energy due to hydraulic j^trap in the water table flow is negligible. For

Mach nun^bers of the water greater than /J, the analogy fails because cf the

non-negligible energy losses associated with the large hydraulic jiT>ps which

can occur [6], The effects of hydranlic jump with raspec;: to the analo,-y hav«

been discussed in a paper co-authored by Gilrnore, Plesset and Crossley [?].



Usually, transonic wind tunnel testing is difficult owing to the influence

of wave reflection from the walls. The sarr,e difficulty occurs in tho water

table experiment. Therefore, a slotted wall arrangen-.ent is necessary in the

test sections of the wind tunrisl or analogous water table under thise conditions.

The water table in the K.S.U. Mechanical Engineering Laboratory, originally

designed and built nearly twenty years ago, has been redeveloped. A new illu-

mination system has also been established. The redeveloped table has given very

satisfactory test results.



I. THEORY OF THE WAT^R TA5LE ANALOGY

1.1. The Velocity of Sound and the Velocity of a 'Jacer Wave

In the case of compressible flow, the velocity of sound is written as

C' = Ik9RJ

the wave velocity of water can be expressed as: [_6J

(1)

where indicates the order of magnitude of tha most significant terms in the

remainder.
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Fig. 1. is a plot of C vs. 7\ for pure water with surface tension

^ = o. o o >C '^!/st ' ^^ ^^ seen that,for a water depth of the ordar of 0.2 in.

and :>i 2: 1 in., C becomes a furictioii of depth only.

Equation (1) shows that, with t = o.oos y^^ -ij^d )^,-o,2 the second

and third tenr.s can be neglected and the velocity of the water wav'^e can be

written as:

Thus;, within the range sho^jn abc^^e, the local water depth, h, has an

effect on c which is similar to the effect of the local absolute temperature

T on the velocity of sound in the gas flow; i.e..

JT and Ih

These relationships then imply that, if h~T, then c~c*.

1.2. The Energy Equations:

Consider water flowing: out of an infinite basin onto a horizontal bottoz-n.

(Fig. 2). If it is assuj^icd that tha flow is two-dimensional, open-channel

flow vrithotiC friction, along the flow filament A-B, the energy or Bernoulli

equation can bo written in the following way: water surface

P. ^ 4v' o
Is -t3^= fi - rs^.

where

p : dynamic pressure
d

p : static prosstire.

.^ h

H '7/m77777/777777777Wf
Hon lonlat bottom

but, following Streeter [s] this equation can be rewritten as

fioZ yhe pjira.meters I'n Sec. I ^ .

P
p -> ^ V' > rS^ = Fo ^ fs^



or '2 = 2 5(' 2o - H) + z( p.- p)/(- (2)

The stp.tic pressure at a position on the filamant depends linearly on the

vertical distance under the free surface at that position, or

p„ :r r^ ( h. - ^')
^

(3a)

}> =
f^ j ( h - ^ ) , (3M

Substituting Equations (3).ir.tc JCquation (2) gives

The maximum attainable velocity is, thus,

V-^^A r. 2 Cj ho ^

In the case of perfect gas flov^,

y '^ Z cj Cp ( To - 7) = ^5 9 -^ T

and

The energy equations for the tv;o flovrs may thus be written

wsA

Therefore, if

then

or

I V' \^ ^JCf, aT _ To -T

^3 ho h,

259 To ~ To

Vt-ax. V rr<at.

)

h.-h

he
- J.-T

h
=

T

T. .



Conversely, if —.I- - _J_

then • —^

In addition to the result obtained in Section (1.1), there exist, therefore,

tvTo analogies, one with respect to c and c' and another with respect to V and

V» if h~T. In other words,

C ~ C '
OLitd V -^ V' if h -^ T _

"

1.3. The Continuity Equations.

The continuity equation for two-dimensional, incompressible, open-channel'

flow can be written as [l"]

A similar equation describes the continuity of a two-dimensional gas flov:.

By compariscn of Equations (4) and (5), it can be seen that the relation,

h =C/° (where <C is a constant), is a sufficient condition for similarity of

the two different flows defined by Equations (4) and (5).

^^^ ^ ' o> ; then the continuity equations provide another analogy

between the two flows. With respect to the water depth and the density of gas,

f' hthe Equation, -_ = is obtained. For isentropic flow,
!• ha

>

so that

-i-rrr



if the tvro previously developed sufficiei-jt condition.s for an exact analogy

between the two flov7S are to be satisfied. This last equation is satisfied

only for k = 2.

1.4. Txhe Pressures

For a perfect gas

Since -—
- = —— and —— = —— , the relation between water depth and gas pressure

'o l^o Pa ho

becomes

P' / h ^' '

P.' I h. J

Ko direct analogy exists between the static pressure below the surface of the

water and any property of the gas flow.

1.5, The Mach Nianbers _
'

The Mach number of the water flow is defined as

^ fTT
For the gas flew, the Mach ni^nibcr is defined as

M' =
^' '/^7«T . . . U)

If

V

then

Vmax. V'„^K

To

(7)

)
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From Equations (6) and (7),

M V««.. fks'kr

M' V'^.-^. y"j/,

^3^>T,

2 3 ho (Cp-c^KToh

-J ^ - r r^ = A-

In the case of a gas for which k = 2, the Mach numbers become identical, i.e.,

M = M' provided that

-y— = -^ or ~h-. = -J-

, 1.6. The Necessity for the Value of k to be Equal to 2 with Respect to a

Two-dinensional Analogy

In the present discussion, the term "analogy" is applied whenever the

properties of a two-dimensional isentropic gas flow and an open-channel water,

flow are everywhere similar. Moreover, under these conditions, the geometries

of the stream lines of the two flows are similar. Actually, study of only this

kind of close analogy brings a useful result. For similar flows with different

fluids, different velocities and with geometrically similar pattei-ns, similarity

requires that the ratio of the forces acting on the fluid particles at geometri-

cally similar points be equal at every inscant of tine [5]. In the present



case, the analogy deals with compressible flow and an incompressible, open-

channel flow. If one considers the relationship of the total velocity vector?

of the fluid particles rather than the forces acting on thcni, the analogy may

be more clear with respect to the physical picture.

Consider the total velocity vectors of the tvro flovrs with a relationship

V* =c<V (wherec^is a scalar constant) which holds everyi^here at every instant

of tin-e. Then the flowing directions of the particles at every gecnstricaliy

similar point and at every instant of time are the same, and the nagni'rudes of

the displacement are different with a conmion scale factor, <X. . In oth-sr words,

the slopes and the curvatures of the stream lines are the san-.e at every instant

of time. Kence, the flow patterns are similar. For v = o< V, since V» ond V

are vectors, necessarily and sufficiently, u' = o< u and v' = o^ v where u,v and

u', v' are x, y component velocities of V and V» , respectively, i^-or the present

analogy, one more factor is involved, namely, the wave angles of the disconti-

nuities, since, if a weak shock is considered (this is the usual ca?e), the Mach

numbers uniquely detennine the wave angles in the two-diraensional gas flow and

on the surface of the water flow. Now the wave angles ,together with upstream

Mach numbers, determine the directions of the flowing particles of the fluids.

Hence, for similar flows, necessarily M = M» . 3y the definitioii cf Mach na^ber,

M =^ M' implies that

= K -/
T ' ., . (g

^ -
I

T» hSince — and ~ are functions of x and y and k Is independent of x and

y, no other independent relationship between ^ and -^ with k a? a parameter

can Lo established. Others-rise, with tuo unknots in the two equations, -^-

and ~ can be determined and can be expressed as functions of k. But '"his is
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T h
in contradiction to the fact that both -y and ~ are functions of x and y.

This implies that the constant,c<, in V» - rX. V is not arbitrary. Consider the

/?' i

transformaticn, -—- = f— , vhere now •( is not yet proved to be constant;
A' ^ ho '

^

then, the isentropic relation requires that

f /T ^\ J, h

fj ~i To/ ) ho

From Equation (8),

_h / To -T N ^ K - I

or,

V'^ 25
T 20 9

= K -

or

Hence -

-- - K -

T

or

If -f = f (x,y), then

or

e /'»'- /-/ r

Tr S~:-l-U^.,)

<-z

i^r- ii(*Dh-'-. fjx.^)

Therefore,

^' h' e'

h
''' T'-' -f

f^.-f^<^vi^^'^]
t^-i
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But from thcD isentropic relr.tlonj in the case of the gas flow,

1 - ZL. - Constant

Hence, f (x,y) is necessarily a constant. This implies that, (i) f (x,y) is a

constant and k = 2 or (ii) f. (x,y) =Cn where C is a constant. For case (i),

since k = 2, from Equation (S), one can conclude that —r- = -j— and, hence,

that —"f— = ^ Thus,

V mxx

.

-"-- oL =

In the possible case that -^ = C h **'
» consider the continuity equation

for the isentropic gas flow: By substituting the trans foiTP.at ion into the

continuity equation of the gas flow, one can obtain the folloi/ing expression:

{
+

Since, according to the continuity equation of the two-dimensional open-channel

water flow,

again it is necessary that k = 2 in order to obtain the expression,

d(hu)
_^

d(hv)

dx '^ drj ~ ^ '

1.7. Sumrcary of the Analogy Between the Two Flows

Usually, in two-dimensional, non-viscous, gas dynamic problems, there

exist three independent variables, e.g., p,' T, and V« . However, for isentropic

flows, only two of these variables are independent. The conditions imposed on

the water flow in order to provide an analogy to the gas flow allow the equa-

tions describing the phenomena of both fK/./s to be satisfied simultaneously.
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Under these conditions, thera is a perfect correspondence between certain pro-

perties of the gas flow and corresponding properties of the water flow. Thus,

the water table analogy is ept-iblished, and ezperinental results froi-n the water

table can be used to check theoretical results pertaining to a corresponding

gas flow for which the specific heat ratio of the gas is equal to 2. For in-

stance, if the dimensioniess water depth at point A in the channel is identical

with the dimensioniess temperature at A' in the gas flow, the identity of Mach

numbers at A and A' proves the correctness of the theoretical gas dynamic ''

equations for the particular case that K = 2,

The reverse statement, i.e., "If K = M« , ijhen -^ = ~ ", is also
ho j e

useful, because, if it is true, one can compare the wave patterns of the two

flows first and, then check the correspondence of the dimensioniess water

depth to the dimensioniess temperature.

The proof of the statement is as follows:

If M = M» , then

V
~~-

-

JJh'
,

V_'_
^r. ~i ~ I

-gj^^g k = 2.

This implies that

fz39(To-T)' JKjRT JZSC^, ^'

or
ho - h _ _h
To- r ~ f

Thus,

T_
To
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II. WTER TABLE )?JrDt7/ZL0R-lSNT

In order to obtain a la:r.ir,ar velocity profile in the vertical, streamwise

(x-5:)plane with mean x-coii;ponen:: velocities '.Tithin the desired test range, the

water table in the Mechanical Engineering Laboratory as shown in Fig. 3 has been

releveled and refinished. Also, three screens have been placed in the upstream

water reservoir to stablize the flow. It was found that the unstable water

source and the roughness of the spillway were the main reasons for the undesirable

turbulence which was so troublesome before the table was modified. The slope of

the water table was also readjusted to provide a uniform flow of the desired

depth at the test section.
^

The new lighting system includes a high-intensity light source and its

associated power supply, a Fresnel lens, a ground glass, and a viewing mirror.

The arrangement of this system is shown in Fig. 4. .
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III. TRANSONIC I''jZ2LE AND TSST SECTION DHiVELOPMENT

3^1. Nozzle Design '

. ,

•
1 •

The nozzle of the v;ater table was designed according to Sauer's approximate

method [lOl. ........

In this method, the velocity components u« , v' , in the x, y directions

respectively, ars' expressed in terf,is of perturbation velocity components u and

V as:

— =-•/ -^ a
c

and

V" ' "'

O

where C"' is the velocity of sound at the sonic line. This representation of

the velocity cor.iponents is possible since, near the throat of the nozzle, v»

is small and u' is nearly equal toc"'. Hence, u and v are small compared with

unity and .
-

.
.-

and •

U - C . .

By substitution into the equation of motion, the two-dimensional, steady,

irrotational, isentropic, perturbation equation of motion can be obtained:

Thus,

can be approximated by

( K ^ 1 ) U^ - -^

where k is the specific heat ratio.

The flou' is symmetric about the x-axis (Fi-^. 5).

'N-

^ 3u a^^ ^ ^^^
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-> X(o.a) ^

1^ a^'-f'^^") ^ Sonic im

(a)

3 Jv

(b)

f>j- 5 Sonic Une para.'Viezen

The dimensionless perturbation velocities are assumed as follows!

u

and

-;} = 2.^ jj^)^^5'fj^)

( 10 a)

(lob)

where f^, f^, f^. ••• are tenns of the perturbation velocity potential

function; tha perturbation velocity pptential function is defined by

Since, near x = 0, y ^ 0, from Equation(lOa),

(II

)

Fro^. Equations (Q), (10) and (11), the dincnsionloss psrturbation velocities

can bs expressed in te--is of {"^y/^ near : -- 0, y = 0^ i.e.,

U2x)



18

•^
v=(.-);0)>^'-'^'(^l^''- "^t^

At the sonic line,

U r V' = C

or

(, + u)' + v7" - I
.

Since U=0 , from Equation (12a), . • >

Equation (13) shows that the sonic line is a parabola.

By definition of the curvature.

Since, at s, (Fig. 5) v = 0, from Equation (I2b) • •

s

• . ...
At the wall, in vicinity of the throat,

Thui3, from Equations (13) and (15),

1 =^(4^Us^=25 . oM-
3 ^ d

Applying the approximate geometry of Fig. 5(b),

I 9 V

and using Equations (10),

ax

t=''''"(#iy^= 7t(ii^' '"'
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Solving Equations (13) through (17) for i~jj' X , ona can obtain the sonic-line

paraTiieters in the following foim: .. -

y * _ _ ^"^
' /^^ w *

"
(18 C\)

and

'\ ' ^t ^ j^-~f ,

OS.)

In the present nozzle design, some difficulties arise owing to the fact

that the water is incompressible. This Implies that the open-channel water

flow is not two-dimensional. However, neglecting the small change of depth.

Equations (18) can be used to obtain the contour of the sonic line. In

conformity with the water table analogy, k = 2 was used in the design. The

values of v and/* were chosen as 6" and TjI'', respectively.
" S IS

From Equations (18),

m

in

Tk = J (j-)(5l) (^) = '<^J

1* - (3) ( 10. I) 2.

and
^2^^^^ ^^'^

_

f^
:J

,

V = z 8 = /UHijjr ^ fTTT =i-ii

Fig. 6 shows the result of the design.

3.2. The Adjustment of I-lach numbers at the Test Section

As indicated before, the actual water flow is not two-dimensional. There-

fore, the area ratio of the no7.zle does not uniquely determine the Mach number

of the water. The desired Mach number at the test section can be obtained by

adjusting thn slope of the table over which the water flows and/or by af^j-'sting
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the discharge valve do^mstrean of the water pump. .

3.3. Slotted Wall Development

It was found during experiments that the solid walls of the test section

reflected the water waves. The resulting waves of the pattern disturbed each

other and resulted in non-uniform flow behind the first incident wave on the

wall. ,-...
In order to eliminate the reflected waves, the walls of the test section

were slotted as shown in Fig. 3. It is kno^m that the wave is reflected from a

straight solid wall in like sense (i.e. the compression wave is reflected as

compression wave and vise versa), while the wave is reflected from a boundary of

constant pressure in unlike sense. Hence, by using a slotted vjall at the test

section, one can obtain a condition midway between that of wave reflection in

like sense from a solid vrall and reflection in unlike sense from a constant-

pressure boundary. It is well kno'.m that a compression wave and an expansion

wave tend to cancel each other. The objective of reducing the reflected waves

is thus achieved by a straight side wall which consists of alternate solid

segm.ents and slots. J.
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IV. MEASURZMENT3 IN A TRANSONIC SECTION

4.1. Effect of Capillarity

As shown in Fig. 1, Section 1.1 a water wave of short length does not

obey the equation, C ~ f^ . This Figure shows that, with a water depth of

the order of 0.2 inches, the propagation velocity of the wave of short length

becomes a function of both depth and wavelength. The second tern of Equation (1)

in Section 1.1 shows that, with small wavelength, the surface tension should be

reduced in order that the propagation velocity beconie a function of depth only,

or C ~ JSh .

Experimentally, the wave of short length propagates as a so-called capillary

vrave in front of the gravitational wave. Since the capillary wsve does not obay

the equation C ~ Jsh » there is no analogy between it and the wave of gas

flow. Moreover, if the capillary wave is too strong, one might not be able to

distinguish it from the wave of interest.

In the present experiment, n-propanol was added to the water to reduce the

surface tension. The boiling point' and density of n-propanol are similar to

those of water, and n-propanol v;as found to be effective 5n reducing the surface

tension of the resulting solution. With the addition of eight pints of n-pro-

panol to the water contained by the water table apparatus (approximately 90

gallons) the surface tension was decreased about 50 per cent as compared with

the surface tension of pure water.

4.2. Water Depth

Since, for the water table technique, the Mach number of tlie water is

restricted within the range of M < Jz , t ho dimonsionless water depth ratio

is restricted to -^ < 2 since —-^ = i - -~M^ Also, according to Fig. 1
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of Section 1.1, the depth of vatei* should be of the order of 0.2 inches. In

the present experiment, the ya'cer depth at the test section was set to be

approximately 1/4 inches.

4.3. The Kach Minnber of the Water

According to the equation, i^j = -=- the Mach number of the water can

be obtained if the surface velocity and the depth of the water are known. For

a two-dimensional, open-chanjiel flov/, the relation between the surface velocity

and the mean velocity is \J - -^ a [Appendix^, where U is the surface velocity.

The mean velocity is mieasured indirectly by measuring the voluKie flow rate or

vreight flovr rate. The depth of the water was measured by means of a vertical

bar with a sharp end as shoim in Fig. 3. S^VT.ral measuremenLs of I'ach number

are sho^-m in Table 1. Fig. 7 shows the ac.-;Uj-.--.cy with which a particular theore-

tical result has been verif-ied on the modified K.S.U. Mechanical Engineering

Laboratory V7ater table. This Figure shows that the maximum combined eri-or of

the experimental data with respect to a particular theoretical result is less

than 3 per cent. •

4.4. Shock Waves

The formation of :'ach waves on the water surface is similar tc that in

a corresponding gas flow. Hence, the relation, M = —I-— , where oi is half

of the Kach angle, still holds. Fig. 8 is a picture of a comparatively weak

shock wave in a water table flow where M =1.21 and the wedge angle equals 6°.

Fig. 10 shows the details of the forr.iation of the irrage of the shock wave on

the ground glass. As is indicated in Fig. 10, the relatively light portion of

the screer; is the Image of the peak of th? hyiraulic jump. As stated previously,

the hydraulic jiimp corresponds (at least qualitatively) to the shock wave of >
'
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Fig. 7 Comparison of the theoretical and the

experimental data for o water flow about

a thin wedge ( 0= lO"" ) .
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the corresponding gas flow. Fig. 9 shows typical capillary waves and Mach

reflections at the upper right corner of the picture. In this same picture,

a little n-propanol has been spread on the water surface in the left upper

corner. In this latter region, the capillary waves are seen to be greatly

diminished.

Fig. 8 M = 1.21, 9=6°
h = 0.21".

Fig. 9 M = 1.27, 6=6°
h = 0.26".
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APPEM)IX

The Rolar.ion between the Surface Velocity and the Mean Velocity \n a T'>^'c-

diEiensional Open-channel Water Flow ( Note: Here tha tcnn " two-dinensional

water flow " has a different meaning from chose used in the other places of this

report.)

1 11 1 1 1 1 1 1 1 1 1 1 1 1 11 1 /nn ' ^

Continuity Equation:

ax 5£

Since
3Z

= , then ^ = -f^i)

z-Component Mavier-Stokes Equation:

W
5u/
^x

9UJ
^2

I ^P

where j/* is the kineifatic viscosity.

Since ^^ . i-i^ - .3'^ 3^x;

hence

,

3P

^2 a-i'
-=^2'

or P^-j(^)
x-Component Navier-Stokes Equation:

U— -h ur -=-^—
ax a ?

Since |^^ur=-0=o, then

h: water depth
u: x-coif.ponsnt velocity
w: Z"Co::ipon?nt velocity
U: surface velocity
u: Tne?n velocity
p: pressure

f". density
w --

\ <?X" ^

I dp

r
d^ A-^-^m.

3X

Boundary Conditions:

where

at

at

^ - o

m'; ^
(a)

du
h-ence -^^ = q a'<) U -U (h)
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Tlie surface Velocity U:

Integration of Equation(l) yields,

where C^ is a constant.

From bouridary condition(b).

hence.

^1 - ' ^'.. ' dX

then.

-dT = ITT ^nr(^~^'^

Integration of this last equation yields,

where C^ is a constant.

From boundary condition (a).

Since at ^ =h U = U the surface velocity is then,

w i e3 clh / , ^. ,.\._tSL Jl dh .

. ^~~jr'dY^~z^~^^~2.M'd^

The Meah Velocity:

^ I h 3 h^ i»

^ ( J}' -J A^)

2
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This report contains four parts. Thr. tirst part is the derivation of the

theory of vater table analogy. In this "part, Preisrerk's derivation has been

introduced, and a necessary condition of the analogy, namely k = 2, has been

shovn. The second part is a description of the redevelopment of the original

K.S.U. Mechanical Engineering Department water table. The third part reports

the design of a transonic nozzle for the water table. In this connection, the

use of a slotted-wall at test section has been discussed. The last part of this

report presents the test results obtained from experiruents with the vrater table.

These test results include the insasureniGnt of "Kach number" and an investigation

of the accuracy of the results obtained from the water table. Fig. 7 in this

last part shows the maximum combined error of the experimental data with respect

to a particular theoretical result is less than 3 per cent.


