
VISUALIZATION OF SENSOR NETWORK APPLICATIONS IN
SIMULATED ENVIRONMENTS

by

SAMUEL BENNY KUMMARY

B.E., Andhra University, India, 2005

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009

Approved by:

Major Professor
 Dr. Gurdip Singh

Abstract

Distributed applications that operate on networks of sensors to gather data are important in real

world. TinyOS is an operating system designed to support wireless sensor networks. . It has

interfaces and components, which provide functionalities for sensing parameters in the

environment, packet communication and computation. These sensors have multiple purposes

such as gathering different kinds of data and can be deployed in distributed networks to gather

important information.

NesC is a language which is used to write sensor applications for TinyOS which are deployment

on the sensors. TinyViz is an application which simulates the NesC applications on a computer

so that the applications can be tested first in the simulation environment and then can be tested

on the sensors and deployed.

However, TinyViz by default represents a static and closed environment where the conditions

simulated may not be realistic. This project aims at providing real-world scenarios on the

platform TinyViz, by communicating with TinyViz using Tython, a script language for this

specific purpose. In terms of sensor network applications, events are classified into categories,

which can be mapped to tangible parameters. This project takes as input the real-world

parameters as input by the developer of the NesC applications in the form of a configuration file

and converts them into implementable threads that run in parallel with TinyViz and keep sending

instructions to the TinyViz which then simulates real-world environment. Thus, it helps simulate

NesC applications in a realistic environment even before the real deployment. This is packaged

as an Eclipse plug-in for portability and ease of implementation, using which developers of NesC

applications can give as input configuration and obtain the files required for simulation. The

implementation is done in java, using ‘Tython’.

Table of Contents

List of Figures .. vi

Acknowledgements ... vii

Dedication .. viii

CHAPTER 1 – Introduction.. 1

1.1 Introduction .. 1

1.2 TinyOS Applications and Real-world environment ... 1

CHAPTER 2 – TinyOS, Tossim and Tython.. 3

2.1 TinyOS ... 3

2.2.1 Introduction to TinyOS ... 3

2.2.2 NesC .. 3

2.2.3 Execution environment in TinyOS ... 4

2.2.4 Programming with TinyOS ... 5

2.2 TOSSIM ... 5

2.3.1 TOSSIM features and advantages ... 5

2.3.2 TOSSIM Limitations .. 6

2.3 TinyViz ... 6

3.2.1 TinyViz Introduction .. 6

3.2.2 TinyViz Advantages ... 7

2.4 Tython Introduction .. 7

2.5 Using Tython to control Simulation ... 9

2.6 Basic Simulation Commands ... 10

CHAPTER 3 – Simulation Overview and Architecture ... 11

3.1 Simulation Overview.. 11

3.2 Architecture .. 12

3.2.1 Generation Architecture .. 13

3.2.2 Execution Architecture ... 15

3.3 Verification ... 17

3.3.1 Overview of verification ... 17

iii

3.3.2 Verification of each block ... 18

CHAPTER 4 – Configuration File Grammar ... 20

4.1 Overview .. 20

4.2 Region .. 21

4.3 Threshold .. 21

4.4 Direction ... 22

4.5 Delay .. 22

4.6 Start-ID ... 23

4.7 Condition .. 24

4.8 Action ... 25

4.9 Rules ... 25

CHAPTER 5 – Generation Of Simulation Files ... 27

5.1 Overview .. 27

5.2 Inputs and required files ... 27

5.2.1 Book.xml ... 28

5.2.2 XML Parser ... 29

5.2.3 Configuration file .. 29

5.2.4 Client Program .. 31

5.2.5 CommandOutputReader ... 32

5.2.6 GenerateDataFile .. 32

5.3 Parsing the Configuration file .. 35

5.4 Construct threads for each Rule ... 36

5.5 Helper Functions .. 37

CHAPTER 6 – Example ... 40

6.1 Fire Spreading .. 40

6.1.1 Algorithm for spreading .. 40

6.2 Conclusion .. 42

CHAPTER 7 – Eclipse Plug-in and Testing ... 43

7.1 Introduction .. 43

7.2 Testing .. 43

7.2.1 Input Values .. 43

iv

7.2.2 Snapshots .. 45

7.2.3 Performance and limit ... 46

CHAPTER 8 – Conclusion and Extensions .. 47

8.1 Conclusion .. 47

8.2 Future Work ... 47

References ... 48

v

List of Figures

Fig. 1 – TinyViz and TOSSIM ... 8

Fig. 2 – TOSSIM, Tython and scripting ... 9

Fig. 3 – Overview of Simulation... 12

Fig. 4 – Generation Architecture .. 14

Fig. 5 – Execution Architecture .. 16

Fig. 6 – GenerateDataFile Structure ... 33

Fig. 7 – Actions, Conditions and Rules .. 36

Fig. 8 – Algorithm for spreading .. 41

Fig. 9 – Visualization of change in ADC values by concurrent threads 42

Fig. 10 – TinyViz GUI initially for 10 motes ... 45

Fig. 11 – TinyViz GUI after threads run for certain period .. 46

vi

Acknowledgements

Firstly, I would like to thank the God almighty, who is responsible for

everything good.

Most importantly, I would like to express my gratitude to my advisor Dr.

Gurdip Singh, who has supported me throughout my thesis and the entire MS

program. I am thankful to Dr. Singh for supporting me in my low times, and for his

patience and guidance, which made this possible.

I thank my committee members, Dr. Torben Amtoft and Dr. Mitchell L.

Neilsen for their support, suggestions and valuable time. I would like to thank Dr.

Daniel Andresen for giving me funding and opportunity to work during my first year.

Finally, I thank my mother and sister Mercy K, my friend Kala L, my family,

my friends Sandeep Pulluri, Dinesh Challa, Pavani A, Phaninder S, Vikram K, Rohit

P, Arka C, Deep G, Lakshman K, Ashok V, Sumeet G for their unrelenting support,

constant encouragement and patience.

vii

viii

Dedication

I would like to dedicate this work to my advisor Dr. Gurdip Singh, who has

been extremely supportive and for his guidance without which this wouldn’t be

possible.

CHAPTER 1 – Introduction

1.1 Introduction
There are numerous real-world applications in which sensors are used.

Generally they are used in applications to gather and report critical information. With

advances in technology, there is an increased use in sensors in all walks of life to

extract more information for the advancement of man-kind not just in terms of safety,

comfort but also commercially. As the spread and use of sensors grows, the

applications that are written for them become more diverse.

Hence, there is a need to make this process of developing these applications

easier by using tools for automation and simulation. This project makes an effort to

increase efficiency by simulating real-world scenarios which include calamities and

other natural phenomenon. This simulation happens concurrently and hence, the

behavior of the sensor applications in such conditions can be evaluated using this

simulation.

1.2 TinyOS Applications and Real-world environment
TinyOS applications can be used in all places where the sensors are used.

Most TinyOS applications deal with formation of networks, gathering data,

communication of messages and hence, these applications cover an entire range of

areas of application.

When working with embedded devices, it is very difficult to debug

applications and also testing directly on the hardware. This necessitates use of

simulation and other tools that minimize this debugging and testing effort. There are

various tools that are discussed in the later part which help this cause and this project

aims to make this even more relevant in testing the sensor applications.

The real-world has many situations which can be defined in physical

parameters. In terms of sensor network applications, events in nature such as a forest

fire occurring might be described as analogous to a wave of rise in temperature

spreading in the direction of fire, followed by a wave of fall in temperature that

1

represents the extinguishing of fire; similarly a tornado might be mapped to a

dynamic random movement of a high pressure region; similarly diffusion of a gas

mapped to raise or fall in one of the tangible parameters.

Thus, each of these situations can be analyzed and mapped to a physical state

of tangible parameters; this enables us to define the physical situation in terms of

numerical values and strings. This data can be used as background information and if

a simulation can be provided which takes these values and applies them to the testing

platform, it simulates the actual natural condition which this data represents. Thus,

the simulation of real-world environment on the testing platform is made possible.

The developers of sensor applications need to however, follow a protocol to define

these conditions and give data for each specific situation to be simulated.

2

CHAPTER 2 – TinyOS, Tossim and Tython

2.1 TinyOS

2.2.1 Introduction to TinyOS
TinyOS is an open-source operating system designed for wireless embedded

sensor networks. It features a component-based architecture which enables rapid

innovation and implementation while minimizing code size as required by the severe

memory constraints inherent in sensor networks. TinyOS's component library

includes network protocols, distributed services, sensor drivers, and data acquisition

tools – all of which can be used as-is or be further refined for a custom application.

Many of these tools can be customized and modified to suit many real-world sensor

applications.

TinyOS follows an event-driven execution model. This model enables fine-

grained power management, yet allows the scheduling flexibility made necessary by

the unpredictable nature of wireless communication and physical world interfaces.

The TinyOS system, libraries, and applications are written in NesC, a language for

programming structured component-based applications.

2.2.2 NesC
The NesC language is primarily intended for embedded systems such as

sensor networks. NesC supports the TinyOS concurrency model, as well as

mechanisms for structuring, naming, and linking together software components into

robust network embedded systems. The principal goal is to allow application

designers to build components that can be easily composed into complete, concurrent

systems, and yet perform extensive checking at compile time.

NesC is an extension to the C programming language designed to embody the

structuring concepts and execution model of TinyOS. TinyOS is an event-driven

operating system designed for sensor network nodes that have very limited resources

(e.g., 8K bytes of program memory, 512 bytes of RAM). The basic concepts behind

3

NesC are: separation of construction and composition, specification of component

behavior in terms of set of interfaces.

A NesC application consists of one or more components linked together to

form an executable. A component provides and uses interfaces. These interfaces are

the only point of access to the component and are bi-directional. An interface

declares a set of functions called commands that the interface provider must

implement and another set of functions called events that the interface user must

implement. For a component to call the commands in an interface, it must implement

the events of that interface. A single component may use or provide multiple

interfaces and multiple instances of the same interface. Interfaces may be provided or

used by components. The provided interfaces are intended to represent the

functionality that the component provides to its user; the ‘used’ interfaces represent

the functionality the component needs to perform its job.

There are two types of components in NesC: modules and configurations.

Modules provide application code, implementing one or more interface.

Configurations are used to assemble other components together, connecting interfaces

used by components to interfaces provided by others. This is called wiring. Every

NesC application is described by a top-level configuration that wires together the

components inside.

2.2.3 Execution environment in TinyOS
TinyOS executes only one program consisting of selected system components

and custom components needed for a single application. There are two threads of

execution: tasks and hardware event handlers. Tasks are functions whose execution is

deferred. Once scheduled, they run to completion and do not preempt one another.

Hardware event handlers are executed in response to a hardware interrupt and also

run to completion, but may preempt the execution of a task or other hardware event

handler. Commands and events that are executed as part of a hardware event handler

must be declared with the ‘async’ keyword.

Components are statically linked to each other via their interfaces. This

increases runtime efficiency, encourages robust design, and allows for better static

analysis of programs. NesC is designed under the expectation that code will be

4

generated by whole-program compilers. This should also allow for better code

generation and analysis.

2.2.4 Programming with TinyOS
TinyOS applications are written in NesC, a dialect of the C programming

language optimized for the memory limitations of sensor networks. Its supplementary

tools are mainly in the form of Java and shell script front-ends. TinyOS programs are

built out of software components, some of which present hardware abstractions.

Components are connected to each other using interfaces.

TinyOS provides interfaces and components for common abstractions such as

packet communication, routing, sensing, actuation and storage. TinyOS is completely

non-blocking: it has a single stack. Non-blocking enables TinyOS to maintain high

concurrency with a single stack, it requires writing many small event handlers to

handle these events. TinyOS provides tasks, which are similar to a Deferred

Procedure Call. A TinyOS component can post a task, which the OS will schedule to

run later. Tasks are non-preemptive and run in FIFO order. TinyOS code is statically

linked with program code, and compiled into a small binary, using a custom GNU

tool-chain. Associated utilities are provided to complete a development platform for

working with TinyOS.

2.2 TOSSIM
TOSSIM, the TinyOS simulator, compiles directly from TinyOS code and is a

discrete event simulator for TinyOS sensor networks. Built with “make pc”, the

simulation runs natively on a desktop or laptop. TOSSIM can simulate thousands of

nodes simultaneously. Every mote in a simulation runs the same TinyOS program.

2.3.1 TOSSIM features and advantages
TOSSIM’s primary goal is to provide a high fidelity simulation of TinyOS

applications. For this reason, it focuses on simulating TinyOS and its execution,

rather than simulating the real world. Instead of compiling a TinyOS application for a

mote, users can compile it into the TOSSIM framework, which runs on a PC. This

allows users to debug, test, and analyze algorithms in a controlled and repeatable

environment.

5

As TOSSIM runs on a PC, users can examine their TinyOS code using

debuggers and other development tools. TOSSIM provides run-time configurable

debugging output, allowing a user to examine the execution of an application from

different perspectives without needing to recompile.

2.3.2 TOSSIM Limitations
While TOSSIM can be used to understand the causes of behavior observed in

the real world, it does not capture all of them, and should not be used for absolute

evaluations. TOSSIM is not always the right simulation solution; like any simulation,

it makes several assumptions, focusing on making some behaviors accurate while

simplifying others.

Experimenting with, and testing sensor networks is hard. TOSSIM, a TinyOS

simulator, allows users to run and test algorithms, protocols, and applications in a

controlled, reproducible environment. However, by itself a TOSSIM simulation is

static. Instead of modeling behaviors such as motion or changing sensor readings,

TOSSIM provides a socket-based command API for other programs to do so. On one

hand, this keeps TOSSIM simple and efficient; on the other, it puts the burden of

writing complex real-world models on the user.

2.3 TinyViz

3.2.1 TinyViz Introduction
TinyViz is a Java-based GUI that allows visualizing and controlling the

simulation as it runs, inspecting debug messages, radio and UART packets, and

communicates with TOSSIM over the socket API. The simulation provides several

mechanisms for interacting with the network; packet traffic can be monitored, packets

can be statically or dynamically injected into the network.

The main TinyViz class is a jar file, tools/java/net/tinyos/sim/tinyviz.jar.

TinyViz can be attached to a running simulation. TinyViz is not actually a visualizer;

instead, it is a framework in which plug-ins can provide desired functionality.

6

3.2.2 TinyViz Advantages
With TinyViz, users can interact with a simulation through a GUI panel, by

dragging motes and setting options. These actions can be difficult to reproduce

exactly (e.g., dragging a mote). Additionally, TinyViz can (as its name suggests)

visualize what goes on in the network. Users can write TinyViz ``plug-ins'' in Java to

extend the GUI's functionality and issue commands to TOSSIM. However, because

users must pre-compile their plug-ins, this only allows limited interactivity. Also,

TOSSIM can be made to wait for TinyViz to connect before it starts up, with the -gui

flag. This allows users to be sure that TinyViz captures all of the events in a given

simulation.

TinyViz can use physical topologies to generate network topologies by

sending messages to TOSSIM that configure network connectivity and the loss rate of

individual links. TinyViz can slow a simulation by introducing delays when it handles

events from TOSSIM. The slider configures how long delays are. The TinyViz engine

uses an event-driven model, which allows easy mapping between TinyOS’ event-

based execution and event-driven GUIs. By itself, the application does very little;

drop-in plug-ins provides user functionality. TinyViz has an event bus, which reads

events from a simulation and publishes them to all active plug-ins.

By itself, TinyViz does little besides draw motes and their LEDs. However, it

comes with a few example plug-ins, such as one that visualizes network traffic. Using

TinyViz, you can easily trace the execution of TinyOS apps, set breakpoints when

interesting events occur, visualize radio messages, and manipulate the virtual position

and radio connectivity of motes.

2.4 Tython Introduction
Tython is a new system that adds a powerful new tool to the sensor network

developer's portfolio. Through both predefined scripts and interactive console

sessions, Tython aids the tasks of developing, testing, and evaluating a new algorithm

or application. The core architecture is extensible, allowing developers to write new

python modules and SimDriver plug-ins to add new forms of interaction and

manipulation.

7

Tython (or, Tinython) complements the visualization of TinyViz by adding a

scripting interface to TOSSIM. Users can interact with a running simulation through

TinyViz, a Tython console, or both simultaneously. Tython is based on Jython, a Java

implementation of the Python language. In addition to being a complete scripting

language, Jython makes it very easy to import and use Java classes within Python.

This allows users to access the entire TinyOS Java tool chain, including packet

sources, MIG-generated messages, and TinyViz. TinyViz and Tython sit on top of

SimDriver, a java application that manages interactions with TOSSIM. The figure

below, give an insight into how the TinyViz and TOSSIM are related.

Fig. 1 – TinyViz and TOSSIM

The primary goal of Tython is to offer the sensor network developer a

simulation environment with dynamic interactivity, enabling both unattended

simulation experiments, as well as interactive debugging and simulation control. The

confluence of these two goals informs the major design decisions of our project, as

well as the particular interfaces exposed by the Tython commands and classes.

TOSSIM essentially just simulates tossing a set of motes into a field and letting them

go, assuming a constant radio topology. On the other hand, the real world is a

dynamic place; objects and motes can move, radio connectivity changes, motes can

8

fail. An important tool in the developer's toolbox, therefore, is the ability to simulate

these dynamic interactions and thereby engineer a program that can cope with these

situations. The figure below explains the architecture of communication between

TOSSIM, TinyViz GUI and SimDriver and indicates where scripting fits in.

Fig. 2 – TOSSIM, Tython and scripting

TinyViz was a tool that enables developers to dynamically manipulate a

simulation. The protocol between TOSSIM and TinyViz enables the GUI to introduce

dynamics into a test application's execution. In point of fact, much of the core Tython

functionality is implemented using the TinyViz plug-in system. Through a scripting

environment, developers are able to control experiments through repeatable

interactions. Because of the features provided by this framework, a developer can

pause a simulation at a given time, use the variable resolution features to probe

around (and potentially alter) the simulation state, then continue the simulation to

observe the effects of the actions.

2.5 Using Tython to control Simulation
The simplest way to use Tython is to start a TOSSIM simulation with the -gui

option, then run SimDriver with the -console option:

java net.tinyos.sim.SimDriver –console

9

Tython has several objects that provide functions to interact with TOSSIM

which specifically can be used to execute, pause and resume a simulation. The

commands are shown below:

• sim.pause() Pause TOSSIM

• sim.resume() Resume TOSSIM

2.6 Basic Simulation Commands
Various features in the form of commands are provided by Tython, which

may either be used in scripts that may be run by running the script files or directly at

the prompt. Some example commands and their effect are given below:

 motes[i].turnOn()

Turn mote i on

 motes[i].turnOff()

Turn mote i off

 motes[i].moveTo(x, y)

Move mote i to x,y

 motes[i].move(x,y)

Move mote i at x,y from its current position

 comm.setSimRate(rate)

Set the simulator rate(This is identical to TOSSIM's -l option)

 radio.setLossRate(senderID, receiverID, prob)

Set the radio loss rate between two motes

 comm.sendRadioMessage(mote, time, message)

Deliver message to mote over Radio

 comm.sendUARTMessage(mote, time, message)

Deliver message to mote over UART

 comm.setADCValue(moteID, time, port, value)

Set the ADC value at the given mote to the specified value.

10

CHAPTER 3 – Simulation Overview and Architecture

3.1 Simulation Overview
Debugging and testing sensor networks applications by deploying on the

hardware takes up good amount of time and effort; moreover testing and debugging

sensor network applications is hard. TOSSIM, a TinyOS simulator, allows users to

run and test algorithms, protocols, and applications in a controlled, reproducible

environment.

However, by itself a TOSSIM simulation is static. Instead of modeling

behaviors such as motion or changing sensor readings, TOSSIM provides a socket-

based command API for other programs to do so. Hence, TOSSIM in conjunction

with TinyViz which in-turn uses SimDriver is used. This with scripting provides the

developer of sensor network applications effective tools to develop, test and simulate

NesC applications before deployment and also automates testing.

One solution to this problem is TinyViz, a GUI that communicates with

TOSSIM over the socket API. With TinyViz, users can interact with a simulation

through a GUI panel, by dragging motes and setting options. These actions can be

difficult to reproduce exactly (e.g., dragging a mote). Additionally, TinyViz can (as

its name suggests) visualize what goes on in the network. Users can write TinyViz

``plug-ins'' in Java to extend the GUI's functionality and issue commands to TOSSIM.

However, because users must pre-compile their plug-ins, this only allows limited

interactivity.

Tython (or, Tinython) complements TinyViz's visualization by adding a

scripting interface to TOSSIM. Users can interact with a running simulation through

TinyViz, a Tython console, or both simultaneously. Tython is based on Jython, a Java

implementation of the Python language. These simulation concepts have been

discussed in detail in Chapter [2]. This simulation environment is supposed to save

time and effort in debugging the sensor applications and also with flexibility to

simulate real-world scenarios in the background.

11

3.2 Architecture
This project involves two kinds of executions – one for the generation of

simulation files and the other for running the simulation files, hence two

architectures, both essentially three-tier. Figure-3 below, however encapsulates the

generic architecture of the project and the specific details are described later.

Fig. 3 – Overview of Simulation

GenerateDataFile Configuration.txt

XMLParser IData Book.xml

Simulation Files

IData Threads

Checker

Client

12

3.2.1 Generation Architecture
The components of this part of the project include parsers, socket

programs, data and text files. They are used in conjunction with

‘configuration.txt’ and ‘book.xml’ to generate simulation files which can be

run later for simulation. The various components that are involved in the

generation of simulation files are as below and each of them is explained in

detail in Chapter [5] except for one component ‘Checker’ which is discussed

in the later part of this chapter, in section 3.3.

 The ‘configuration.txt’ file is first parsed for syntactical errors and

correctness by ‘Checker.java’; if it is valid then the same file is given

as input to the ‘GenerateDataFile.java’.

 The ‘book.xml’ file that gives the co-ordinates and IDs of the sensors

is parsed by ‘XMLParser.java’ (Reference [7]) and objects with these

details are created that are used later by other programs.

 The text files ‘addAtBeginningOfIData.txt’ and

‘addAtEndOfIdData.txt’ contain helper functions that need to be

copied into the final version of IData.java which contains all the

shared data and evaluation functions.

 IData.java contains more helper functions and is used to generate the

final version of IData.java

 After ‘configuration.txt’ is verified by ‘Checker.java’, it is parsed by

‘GenerateDataFile.java’ and a ‘SimulationFiles’ directory is created

and the files required are either created or copied if they already exist.

 Corresponding to each ‘rule’ in ‘configutation.txt’ file, a java file is

created which in-turn corresponds to a thread that encapsulates the

constraints expressed in the ‘rule’. Hence, thread files as many as the

rules are present.

 The file ‘IData.java’ contains information regarding the boundary

values, thresholds, delays, actions and all other data given in the

configuration file. This file will be used by all the threads as it contains

shared data that is used by these threads.

13

Configuration.txt

addAtEndOfIData.txt

IData.java

addAtBeginningOfIData.txt

Book.xml

XMLParser.java Checker.java

GenerateDataFile.java

Simulation Files

IData.java

Thread1.java

Thread2.java Thread4.java

Thread3.java

Fig. 4 – Generation Architecture

14

3.2.2 Execution Architecture
The execution architecture depicts the components, files that are

involved during the actual simulation (run-time), the interfaces

(communication) between those components and the component’s

dependencies. The various components of execution architecture are as below:

 ‘SenseTask’ is an example NesC application, which periodically

records the temperature, an ADC value based on which the state of

LEDs (red, green, yellow) is decided. This ON/OFF state of the LEDs

is used to depict the presence or absence of a condition.

 TinyViz can be launched from console using the command ‘TinyViz -

run build/pc/main.exe 10’. This launches the TinyViz for the current

application, here SenseTask.

 The ‘Client.java’ file contains code that instantiates each of the thread

that has been generated, present in the ‘SimulationFiles’ directory.

Apart from this, it also has a ‘CommandOutputReader’ object.

 The ‘CommandOutputReader’ object present in Client.java, after

started keeps continuously reading the input stream, where the threads

keep writing ‘Tython’ commands and writes them on the output stream

for TinyViz, where these conditions or modifications to the ADC

values are applied dynamically.

 IData.java contains the static methods and static data that is shared by

all the threads, which has been filled in by the ‘GenerateDataFile.java’

based on the values present in the ‘configuration.txt’. These methods

and data values are referenced by the threads during simulation too.

 Each thread, based on the rule to which it corresponds consists of code

which has been written based on the ‘actions’ and ‘conditions’ which

it is uses. These ‘actions’ and ‘conditions’ are expanded so that they

translate to actual java code. As each thread runs, they keep sending

‘Tython’ commands to TinyViz to create a scenario, which is the

objective of this project.

15

 TinyViz NesC app

(Sense Task)

Client.java

CommandOutputReader object

Fig. 5 – Execution Architecture

Thread1.java

Thread2.java Thread3.java

Thread4.java

IData.java

Tython Tython

Tython Tython

16

3.3 Verification
The input ‘configuration.txt’ file contains the code that expresses the scenario

to be implemented in terms of the grammar, explained in detail, in Chapter [4].

Before this file is actually parsed to generate the simulation files and to read the data,

it is verified to check whether the expressions conform to the grammar. This is

similar to that of type-checking and lexical-analysis of a compiler to some extent.

3.3.1 Overview of verification
Each tag has a different format and types of data hence, first the tags are

checked and methods verify each tag. The java code below that does the job explains

this pretty clearly and also indicates the flow of execution. Each tag has different

criteria to be checked and hence, a method for each tag. The ‘category’ indicates the

type of tag at the current line in the file.

 switch (category) {
 case 1:
 verifyRegion();
 break;
 case 2:
 verifyThreshold();
 break;
 case 3:
 verifyDirection();
 break;
 case 4:
 verifyDelay();
 break;
 case 5:
 verifyStartID();
 break;
 case 6:
 verifyCondition();
 break;
 case 7:
 verifyAction();
 break;
 case 8:
 verifyRule();
 break;
 case 9:
 verifyOther;
 break; }

17

3.3.2 Verification of each block
I. The verifyRegion method checks for three criteria:

 Proper closing of tags

(This verification is done for all the tags and the code snippet for this
is as below)
if (parameter.equals(null) ||parameter.equals("<region>")||
parameter.equals("<threshold>")||
parameter.equals("</threshold>")||
parameter.equals("<direction>")||
parameter.equals("</direction>")|| parameter.equals("<delay>")||
parameter.equals("</delay>")|| parameter.equals("<startID>")||
parameter.equals("</startID>")|| parameter.equals("<condition>")||
parameter.equals("</condition>")|| parameter.equals("<action>")||
parameter.equals("</action>")|| parameter.equals("<rule>")||
parameter.equals("</rule>"))
{
System.out.println("<region> tag not enclosed properly");
System.exit(1);
}

 Formatting of the block (with parenthesis)

(The code snippet for this is as below)
if (!(parameter.startsWith("(") && parameter.endsWith(")"))) {
System.out.println("<region> block not formatted properly");
System.exit(1);
}

 Range of Values given (within boundaries of TinyViz UI)

(The code snippet for this is as below)
StringTokenizer st = new StringTokenizer(parameter);
while (st.hasMoreTokens()) {
tempStr = st.nextToken("(),");

if(Integer.parseInt(tempStr)<0||Integer.parseInt(tempStr)> 100) {
 System.out.println("<region> block has out of range values");
 System.exit(1);
 }
}

II. The verifyThreshold method checks for three criteria:

 Proper closing of tag

 Range of Values given

 Formatting of the block(with On, Off strings and parenthesis)

(The code snippet for this is as below)
StringTokenizer st = new StringTokenizer(parameter);
while (st.hasMoreTokens()) {

18

 tempStr = st.nextToken("(),");
 if (!(tempStr.equals("On") || tempStr.equals("Off"))) {

if(Integer.parseInt(tempStr)<0||Integer.parseInt(tempStr)
> 150) {

System.out.println("<threshold> block has out of
range values");

 System.exit(1);
 }
 }
}

III. The verifyDirection method checks for two criteria:

 Proper closing of tag

 Values given (checks for the validity of the string).

IV. The verifyDelay method checks for three criteria:

 Proper closing of tag

 Formatting of the block(with On, Off strings and parenthesis)

 Range of Values given.

V. The verifyStartID method checks for three criteria:

 Proper closing of tag

 Values given. (should be valid to represent IDs of nodes)

VI. The verifyCondition method checks for three criteria:

 Proper closing of tag

 Formatting of the block.

VII. The verifyAction method checks for three criteria:

 Proper closing of tag

 Formatting of the block.

VIII. The verifyRule method checks for three criteria:

 Proper closing of tag

 Formatting of the block.

19

CHAPTER 4 – Configuration File Grammar

4.1 Overview
Configuration file is a text file that contains the input data by the user, which

is enclosed within tags similar to that of an xml document. As of now, there have

been eight tags defined in the grammar, but this can be extended if additional features

come up. These eight tags correspond to each of the parameters that the user needs to

give so as to define a real-time scenario completely. The eight tags that have been

used in the current grammar are:

 region

 threshold

 direction

 delay

 startID

 condition

 action

 rule

The first five tags: “region, threshold, direction, delay, and startID” actually

deal with information regarding the physical conditions such as temperature and light.

Each of these tags can be used to input data in terms of numerical values (integers or

strings) such as boundary values for the given scenario or bounds of a region and

thresholds for a condition or direction of propagation.

The last three tags define conditions, actions and rules, which are actually

logical constructs of if-then-else statements. The actions and conditions define how

the physical values in terms of ADC values of the sensor motes are to be modified or

calculated based on specific conditions. Each rule in itself defines a complete

scenario, which is also if-then-else statements, but expressed in terms of conditions

and actions which have been defined already; typically each rule specifies which

condition is to be checked for that scenario and the corresponding action for it.

20

Each of the above tags has been discussed in detail below, followed by a

sample text snippet as to show how the input looks like.

4.2 Region
This tag is used to define the co-ordinates of the region to be identified. The

total area on the TinyViz ranges from the co-ordinates (0, 0) to (100,100). Each

region is defined by two co-ordinates, the top-left point and the bottom-right point.

These two co-ordinates are input by the user to identify each region. The area on the

TinyViz screen area might be divided into a finite number of regions, based on the

requirement of the scenario or the problem. The input values allowed are integer data

types within the specified range (0-100). The values are read as: (top-left x-co-

ordinate, top-left y-co-ordinate, bottom-right x-co-ordinate, bottom-right y-co-

ordinate) in that order.

<region> ::= (<x co-ordinate1>, <y co-ordinate1>, <x co-ordinate2>,

 <y co-ordinate2>)

<region>

(x1, y1, x2, y2)

(x3, y3, x4, y4)

</region>

4.3 Threshold
Threshold tag is used to define the boundary values or the points beyond

which a certain condition is ascertained. There could be lower thresholds and upper

thresholds. Hence to define that a condition related to a parameter exists, we define a

threshold value related to that parameter, which acts as a boundary value to determine

the presence or absence of a particular condition or state. For example, if the pressure

beyond a certain value is considered as harmful then that value beyond which the

condition is ascertained is defined as the higher threshold. Similarly, if a value of

temperature is considered below which there is a potential risk, that value is

considered as the lower threshold for that parameter. The values are read as: (On

threshold, Off threshold) in that order. The input values allowed are integer data types

within the specified range.

21

On threshold: This defines the upper bound or the upper threshold beyond

which a condition respective to that parameter is ascertained. Hence the threshold

values with respect to each parameter, i.e, the ADC value are read separately. The

values are read as: (OnThresholdForADC0, OnThresholdForADC1,

OnThresholdForADC2) in that order.

Off threshold: This defines the lower bound or the lower threshold below

which a condition respective to that parameter is ascertained. The values are read as:

(OffThresholdForADC0, OffThresholdForADC1, OffThresholdForADC2) in that

order.

<threshold> ::= < On threshold> <Off threshold>
<On threshold>::= <OnThresholdForADC0, <OnThresholdForADC1>, <OnThresholdForADC2>

<OffThreshold>::= <OffThresholdADC0>, <OffThresholdADC1>, <OffThresholdADC2>

<threshold>

On(th0, th1, th2)

Off(th0, th1, th2)

</threshold>

4.4 Direction
This tag encloses the information related to the direction in which the given

parameter propagates in the scenario to be simulated. Eight of the eight directions are

possible, as mentioned below. The input value allowed is a string data type. The

values are read as: (direction)

<direction> ::= <north> | <south> | <east> | <west> | <northeast> | <northwest> |

<southeast> | <southwest>

<direction>

north

</direction>

4.5 Delay
This tag encloses the information related to delay, which indicates the rate at

which the parameter is propagated. The delay implies the rate at which the given

22

scenario propagates or diminishes. This indicates the rate at which the respective

parameter needs to be modified in the neighboring areas based on the conditions

given. The delay value is given in terms of milliseconds for the examples dealt with in

the current project. The values are read as: (On delay, Off delay), in that order. The

input values allowed are integer data types within the specified range.

On delay: This indicates the rate at which the parameter spreads or the rate at

which it affects the parameter, when it is bound to affect an increase in magnitude.

This rate is separately noted for each of the parameters. The values are read as:

(DelayForADC0, DelayForADC1, DelayForADC2) in that order.

Off delay: This indicates the rate at which the parameter diminishes or the rate

at which the parameter spreads when it is bound to affect a decrease in magnitude.

This rate is separately noted for each of the parameters. The values are read as:

(DelayForADC0, DelayForADC1, DelayForADC2) in that order.

<delay> ::= <On delay> <Off delay>

<On delay>::= <DelayForAdc0> <DelayForAdc1> <DelayForAdc2>

<Off delay>::= <DelayForAdc0> <DelayForAdc1> <DelayForAdc2>

<delay>

On(500,500,500)

Off(1000,1000,1000)

</delay>

4.6 Start-ID
This tag encloses the information as to where the scenario starts and then

propagates from there as per the scenario (expressed as rules later). This might be a

series of IDs, representing a group of regions where the scenario is initially present.

All the IDs given in the series enclosed in the tags are taken as the starting points of

the scenario. The values are read as: (id0, id1…), in that order, though no preference

to order is present in this case. The input values allowed are integer data types.

<startID> ::= <id0>, <id1>… <IDn> where n>0

<startID>

Id1, id2

</startID >

23

4.7 Condition
A condition can be given which ascertains the presence of absence of a certain

criteria. (For example, a tornado presence at a single point of time may be associated

with a high amount of pressure present there attributed with some velocity. Hence,

ADC value of pressure may be used to determine this state.) This can be defined

based on the parameters and the threshold values that are expressed as ADC values.

Each condition needs to be given a name so that it can be referenced for use in the

rules later on. The conditions need to be of the format of a normal logical construct

with some ‘Boolean’ return value such as an if-else construct. The logical construct is

taken as it is into the condition, but the key words such as ‘left’, the ADC values, the

indices, the numerical value, an integer value used for comparison and the

equality/inequality symbols used in the expression are recorded for the actual

comparisons and calculations.

<condition> ::= <Condition Name> <if condition> <then return value>

<else return value>

<condition>

CheckTemp

if(Left.ADC[0] >= 100) {

return true;

else

return false;

}

</condition>

<condition>

CheckExistin

if(Left.ADC[0] <= 10) {

return true;

else

return false;

}

</condition>

24

4.8 Action
An action can be defined, that describes which specific parameters are to be

modified and set to a specific value, on the regions. Each action corresponds to

setting an ADC value that specifies a physical state. (For example, a tornado

movement may be simulated by raising and lowering the ADC values that correspond

to pressure in regions along the path of propagation which in-turn is given by the

‘direction’ described above.) Each action needs to be given a name so that it can be

referenced to be used in the rules later on. The actions need to specify a numerical

value of a parameter, which is affectively, an ADC value. This value is noted down

and also the index of the ADC value which indicates the ADC value. This is then

applied to all the motes present in each region whenever this action is referenced by

its name.

<action> ::= <Action Name> <apply ADC value>

<action>

MaxTemp

ADC[0]=100

</action>

<action>

MinTemp

ADC[0]=10

</action>

<action>

AvgPre

ADC[1]=50

</action>

4.9 Rules
This tag is used to define an independent flow of execution that instructs

various actions to be carried out on the regions thereby on motes in them, by checking

for various conditions. The actions and conditions are defined already and they are

referenced here. Each rule is given a name, so that a thread is created which can be

referenced through this name. Then the format follows some logical construct form

25

such as if-else construct. The conditions and actions referenced are replaced by their

return values after they are calculated based on the values at run-time. A thread is

created for each rule; hence each of the rules is executed independently.

<rule> ::= <rule name> <if Condition Name> <apply Action Name>

<rule>

SpreadProcess

if (CheckTemp == true)

 MaxTemp;

</rule>

<rule>

DistProcess

if (CheckExistin == false)

 MinTemp;

</rule>

26

CHAPTER 5 – Generation Of Simulation Files

5.1 Overview
The objective of the project is to generate code, programs in java, meaning

threads which implement the scenario that has been given by the user in form of the

configuration file. The main input for this process is the “Configuration.txt” file based

on which the java files are generated, but there are other components needed that are

important. These components are required for purposes such as: describing the initial

arrangement of the motes, type-checking the configuration file for formatting errors,

the parsers required to read the XML formatted files and programs which contain

already written helper functions.

However, before the generation of the simulation files, the “configuration.txt”

file is checked for correctness of tags and syntax by using the ‘checker’ java file. This

plays a similar role to that of a ‘compiler’ before the actual execution, but at a very

simpler level. The various parameters checked and how this is performed has already

been discussed in detail in section 3.3.

5.2 Inputs and required files
The components involved in generation of simulation files consists of parsers,

text files, xml files that contain data, socket programs for data communication and

related code. The details of each component that is involved in the generation of

simulation files are described in the later part of this section:

 book.xml

 XMLParser.java

 Configuration.txt

 client.java

 CommandOutputReader.java

 GenerateDataFile.java

27

5.2.1 Book.xml
This contains the initial configuration of the nodes and other details of

the nodes such as their initial position in x and y-co ordinates. Also included

are the details such as group ID, commands associated, configuration and

application associated with. But, in this application only the node ID and the

co-ordinates are used.

This component as already mentioned before is existing, (Reference

[7]). A sample ‘book.xml’ file looks like below:

<Info>
<Node>
 <Nodeid>0</Nodeid>
 <x>43.56</x>
 <y>52</y>
 <conf>app2</conf>
 <mobility>none</mobility>
 <groupid>0x7D</groupid>
 <radius>100</radius>
 <commands>
 <command>
 <name>turnoff</name>
 <parameters>none</parameters>
 </command>
 </commands>
</Node>
<Node>
 <Nodeid>1</Nodeid>
 <x>48.65</x>
 <y>47</y>
 <conf>app1</conf>
 <mobility>none</mobility>
 <radius>100</radius>
 <groupid>0x7D</groupid>
 <commands>
 <command>
 <name>turnoff</name>
 <parameters>none</parameters>
 </command>
 </commands>
</Node>
</Info>

28

5.2.2 XML Parser
This is an existing software component (References [3]) which reads

the data in the above “book.xml” file which parses the details of the

configuration and fills the user defined data structures with the attributes of

the nodes present in the book.xml file such as the node ID, and its x and y-co

ordinates. A node object is created which corresponds to each sensor with all

its details such as ID and co-ordinates. The co-ordinates and IDs will be later

used in the implementation.

5.2.3 Configuration file
This file contains the user input code which describes the scenario that

needs to be simulated. This code follows a grammar which has been defined

below under the Section “Grammar for configuration file” in Chapter 4.

Various tags have been used to describe different aspects of the scenario. For

e.g. the tag <region> is used as an opening tag which encloses the details of

each region. </region> is the closing tag which encloses the regions. The tags

are used to describe certain parameters. (All these are discussed in chapter 4 in

detail):

 the region boundaries

 threshold values which depict presence and absence of various

criteria

 direction relevant to the application of the scenario

 delay which indicates the rate at which the conditions are to be

propagated

 Starting points- regions for a given scenario.

 sets of conditions expressed in terms of ADC values and

logical if structures

 sets of actions expressed in terms of ADC values to be applied

 sets of rules expressed in terms of ‘conditions’ and ‘actions’

This file is kept in the source (src) directory which is then interpreted

by the ‘GenerateDataFile’ program which parses it and fills various data

29

structures and generates new files based on the inputs given in the

configuration file. A sample ‘configuration.txt’ file looks like below:

<region>
(0,0,50,50)
(50,0,100,50)
(0,50,50,100)
(50,50,100,100)

</region>
<threshold>

On(100,90,100)
Off(40,50,40)

</threshold>
<direction>

north
</direction>
<delay>

On(500,500,500)
Off(1000,1000,1000)

</delay>
<startID>

1,2
</startID>
<condition>

CheckTemp
if(Right.ADC[0]>= 100)
 return true;
else

 return false;
</condition>
<condition>

CheckExistin
if(Right.ADC[0] <= 10)
 return true;
else
 return false;

</condition>
<action>

MaxTemp
ADC[0]=100

</action>
<action>

MinTemp
ADC[0]=10

</action>

30

<rule>
SpreadProcess
if (CheckTemp == true)

 MaxTemp ;
</rule>
<rule>

DistProcess
if (CheckExistin == false)
 MinTemp ;

</rule>

5.2.4 Client Program
This is the program which manages the sockets for connection

between the applications written in NesC code and the java programs which

contain the ‘Tython’ commands that are responsible for applying the

conditions described for the scenario in the configuration file. This program

opens the sockets, creates all the thread objects and starts them from the files

that have been generated. A sample code snippet from the ‘client.java’

program is as below:

// Initialize the IData.java which contains static data and methods
IData.initializeVar();

// Create ports for communication
smtpSocket = new Socket("localhost", 9999);
os = new DataOutputStream(smtpSocket.getOutputStream());
is = new DataInputStream(smtpSocket.getInputStream());
is = new DataInputStream(System.in);

// Create the CommandOutputReader object and start it
CommandOutputReader cmdReader = new CommandOutputReader(is);
cmdReader.start();

// Write the initialization commands to start communication
os.writeBytes("from simcore import *\n");
os.writeBytes("sim.resume()\n");
sleep(5000);
os.writeBytes("sim.pause()\n");

// Start the thread objects from the generated files
// starting the thread
SpreadProcessThread spth = new SpreadProcessThread();
spth.start();
// starting the thread

31

DistProcessThread exth = new DistProcessThread();
exth.start();

// reads the input stream from the standard input
while (true) {
 String line = is.readLine();
 os.writeBytes(line + "\n");
}

5.2.5 CommandOutputReader
This program is responsible for reading the ‘Tython’ commands that

are written continuously on the input stream, by the threads that implement

the rules given in the configuration. The threads based on the conditions,

implement various actions continuously issuing ‘Tython’ commands to

TinyViz. The commands are read and sent to the TinyViz where the

conditions are applied. A CommandOutputReader object is created by the

client.java program and started, to manage the communication. The code

snippet that summarizes the functionality of this class is:

while(true)
 {
 String line=os.readLine();
 System.out.println(line+"\n");
 }

5.2.6 GenerateDataFile
This is the component that is responsible for the actual parsing of the

configuration text file. A separate directory to place all the generated

simulation files is created and various source files required for simulation are

copied into it. These include:

 book.xml

 XMLParser.java

 CommandOutputReader.java

 configuration.txt

 files “addAtBeginningOfIData.txt” & “addAtEndOfIData.txt”

which contribute to IData.java

 client.java

32

Parse Configuration
and write to IData

Parse regions

Parse threshold values

Parse direction

Parse delay

Parse startID

Parse rules

Parse actions

Parse conditions

Copy required files

Copy book.xml

Copy client.java

Copy CommandOutputReader.java

Copy XMLParser.java

Copy addAtBeginningOfIData.txt

Copy required files Copy addAtEndOfIData.txt

Create folder for simulation files

Fig. 6 – GenerateDataFile Structure

Apart from copying the required files, the configuration file is parsed

as per the grammar defined and all the data and conditions are extracted and

used to generate the simulation files. All the extracted data is written to one

“IData.java” file, which contains this as static data. The pseudo code for the

GenerateDataFile is as below:

create SimulationFiles folder
copy book.xml
copy client.java
copy CommandOutpurReader.java
copy XMLParser.java
open IData.java to write static data and methods

copy to IData.java few already existing helper functions
from addAtBeginningOfIData.txt

open configuration.txt file

while (! End of File) {

33

 check for <region> tag
 read north-east x-coordinate
 read north-east y-coordinate
 read south-west x-coordinate
 read south-west y-coordinate
 write to IData
 if </region> found, exit this block

 check for <threshold> tag
 read On threshold for ADC[0]
 read On threshold for ADC[1]
 read On threshold for ADC[2]
 read Off threshold for ADC[0]
 read Off threshold for ADC[1]
 read Off threshold for ADC[2]
 write to IData
 if </ threshold> tag found, exit this block

check for <direction> tag
 read ‘direction’ string
 write to IData

if </direction> tag found, exit this block

check for <delay> tag

 read On delay for ADC[0]
 read On delay for ADC[1]
 read On delay for ADC[2]
 read Off delay for ADC[0]
 read Off delay for ADC[1]
 read Off delay for ADC[2]
 write to IData

if </delay> tag found, exit this block

check for <startID> tag

 read series of startIDs
 write to IData

if </ startID > tag found, exit this block

check for <condition> tag

 read name of Condition
 read strings such as left/right/upper/lower
 read which parameter to consider, ADC value index
 read the parameter value, magnitude
 read the relation symbol, ‘<’ or ‘>’
 write to IData

if </condition> tag found, exit this block

34

check for <action> tag

 read name of the action
 read ADCValue index to know which parameter
 read magnitude of target value
 write to IData

if </action> tag found, exit this block

check for <rule> tag

 read name of rule
 create a thread file with this rule name
 read which condition this rule uses
 read which action this rule implements
 write to IData

if </rule> tag found, exit this block

copy to IData.java few already existing helper functions
from addAtEndOfIData.txt

} end while
close all open files and newly created files.
end

The code in this file reads, interprets the input given in the

configuration file, initializes IData.java file and also creates simulation files

based on the input configuration. Various files are created and written, each of

which implements a thread for each separate scenario or rule, based on the

rules given in the configuration file.

5.3 Parsing the Configuration file
Configuration file is the input given by the developer (user in this case) in

which constraints and conditions of the environment are given, which have to be

implemented and run in the background to test the sensor applications, so as to

simulate the original environmental conditions. The details of the configuration file

and the grammar in it are discussed in chapter [4].

The file is parsed using string parsing operations in java. Each of the pre-

defined strings such as ‘region’, ‘threshold’, ‘direction’, ‘delay’, ‘startID’,

‘condition’, ‘action’ and ‘rule’ are searched, parsed and recorded by

“GenerateDataFile.java”.

35

5.4 Construct threads for each Rule
The “GenerateDataFile.java” mentioned above also notes the details from the

“configuration.txt” file and writes them to “IData.java” which contains all the

structures, details and helper, initialization functions needed by the threads that

actually implement the constraints.

Actions Set

Action 1
MaxTemp

Action 2
MinTemp

Action 3
AvgPre

Conditions Set

Condition 1
CheckTemp

Condition 2
CheckExistin

Condition 3
CheckPre

Rule 1
SpreadProcess

Rule 2
DistProcess

Rule 3
ExtProcess

Fig. 7 – Actions, Conditions and Rules

36

The threads are defined by the ‘rules’ in the configuration file that are in-turn

expressed in terms of ‘actions’ and ‘conditions’. The actions define the setting that

needs to be eventually implemented on the sensor motes in a specific region, which is

the ADC value setting. The conditions define the pre-requisites for any action to be

implemented. The rules make use of these two expressions and define constraints, in

form of conditions and the ADC value settings using the actions. Figure-3 represents

how the rules are made of actions and conditions and explains that each rule is made

of combination of one or more actions and conditions.\

5.5 Helper Functions
There are various functions used in the generation of simulation files, to find

the neighboring regions, modify ADC values of all sensors in a particular region and

to evaluate functions based on the parameters given. These are mostly present in

“addAtBeginningOfIData.txt” and “addAtEndOfIData.txt”. Below are few helper

methods that are used in ‘IData.java” file.

 public static int returnArrayValue(int i, int j) {
 return Region[i][j];
}

 public static int getLocationID(int x1, int y1) {
 if (x1 >= 0 && y1 >= 0 && x1 <= 100 && y1 <= 100) {
 for (int ii = 0; ii < IData.numAreas; ii++) {

if (x1 >= IData.Region[ii][0] && x1 < IData.Region[ii][2]&& y1
>= IData.Region[ii][1]&& y1 < IData.Region[ii][3]) {

 return ii;
 }
 }
 }
 return -1;
}

 public static int getLeftID(int id) {
 if (IData.Region[id][0] - 1 > 0) {
 // check the region just below at the starting border

int tempIDs = IData.getLocationID(IData.Region[id][0] - 1,
IData.Region[id][1] + 1);

 return tempIDs;
 }
 else
 return -1;
}

 public static int getRightID (int id) {

37

 if (IData.Region[id][2] + 1 < 100) {
 // check the region just below at the starting border

int tempIDs = IData.getLocationID(IData.Region[id][2] +
1,IData.Region[id][1] + 1);

 return tempIDs;
 }
 else
 return -1;
}

 public static int getLowerID (int id) {
 if (IData.Region[id][3] + 1 < 100) {
 // check region just below @ the starting border

int tempIDs = IData.getLocationID(IData.Region[id][0] + 1,
IData.Region[id][3] + 1);

 return tempIDs;
 }
 else
 return -1;
}

 public static int getUpperID (int id) {
 if (IData.Region[id][0] - 1 > 0) {
 // check the region just above at the starting border

int tempIDs = IData.getLocationID(IData.Region[id][0] +
1,IData.Region[id][1] - 1);

 return tempIDs;
 }
 else
 return -1;
}

 public static boolean validateFunction (String direction, int adc, String
comparator, int threshold) {
 int affectingID = -1;
 if (direction.equals("Left"))
 affectingID = getLeftID(id);
 else if (direction.equals("Right"))
 affectingID = getRightID(id);
 else if (direction.equals("Lower"))
 affectingID = getLowerID(id);
 else if (direction.equals("Upper"))
 affectingID = getUpperID(id);
 while (affectingID != -1) {
 if (comparator.equals(">=")) {
 if (IData.detected[affectingID][adc] >= threshold)
 return true;
 else
 return false;

38

 } else if (comparator.equals("==")) {
 if (IData.detected[affectingID][adc] == threshold)
 return true;
 else
 return false;
 } else if (comparator.equals("<=")) {
 if (IData.detected[affectingID][adc] <= threshold)
 return true;
 else
 return false;
 } else if (comparator.equals("<")) {
 if (IData.detected[affectingID][adc] < threshold)
 return true;
 else
 return false;
 } else if (comparator.equals(">")) {
 if (IData.detected[affectingID][adc] > threshold)
 return true;
 else
 return false;
 } else {
 System.out.println("input format error \n");
 return false;
 }
 }
 return false;
}

39

CHAPTER 6 – Example

6.1 Fire Spreading

One very relevant area of deployment of sensors that may be considered is

that of a vast spread of area, representing a farm or a forest. Java threads need to be

generated for this scenario, which simulate the temperature rise, with an increase in

the ADC values of the motes in the regions.

As already discussed, the area displayed by TinyViz is divided into regions, as

defined by the user. There is random distribution of sensors in these regions which

are specified by ‘book.xml’ file. This file is parsed and the IDs of motes associated

with each region are noted. The direction input indicates which way the temperature

rise proceeds. This may be viewed by using the states of the LEDs on sensors,

consider red represents temperature rise in the region of the sensor. As fire extends an

area, the motes in that region all get an ADC value (here 100), representing the

physical state of the sensor.

6.1.1 Algorithm for spreading
Each region is identified as an entity which decides periodically the

states of the motes which fall under it. As an example, if the direction is

towards “north”, meaning upwards, as the fire spreads upwards, the region

always checks if the region below has the temperature enough to represent

fire. If it happens, then the current region also changes the ADC values of all

the sensors under it to represent high temperate values, (here 100) to indicate

the fire spreading. In the next round of polling, this region becomes able to

spread it to the next region in line. This process continues till the end.

After the spreading thread has finished the last region, since in reality

fire ultimately extinguishes, so after a delay, the extinguishing thread starts

and spreads in the same direction as that of the fire, but this time setting the

ADC values to a value (here 0 or 10) that represents a state where there is no

40

fire. This algorithm is well represented in the figure-5, where nine regions are

considered and the spreading and extinguishing are represented.

The pseudo-code for the algorithm is given below. Here, the condition

and action are already given as per the rule in the configuration file. These

conditions and actions are the building blocks that define what ADC values

needs to be checked and what the final value should be set. These are referred

as given in the pseudo-code below. The GenerateDataFile records the

definitions of the actions and conditions similar to that of macros and when

they are referred by the rules, they are replaced by their original definitions,

where the truth values are returned. The same algorithm applies to the

extinguishing thread. At the end of this algorithm, each time it is checked if all

the regions have reached the destination state, if so the second thread is

started. This may also be done, by specifically starting the second thread

which then sets the ADC values to reflect the new state.

end region;

end if

 if (current region is not capable of spreading)

set a flag to indicate current region is capable of spreading

 end if

else if (current region satisfies final condition)

 end if

assign new ADC value

 for each sensor in the region:

 if (adjacent region is capable of spreading)

if (current region doesn’t satisfy final condition)

check ADC value of adjacent region, based on direction

For each region:

delay;

Fig. 8 – Algorithm for spreading

41

Spreading thread

Extinguishing thread

Fire

No
Fire

Fig. 9 – Visualization of change in ADC values by concurrent threads

6.2 Conclusion

In many applications, based on TinyOS and NesC, there is more application to

this plug-in. Examples such as diffusion of gases, object movement tracking, photo-

sensing, tornados and other such environmental situations might be converted into

problems which can be represented as variations in physical parameters such as

temperature and pressure. These problems can make use of this plug-in, by expressing

the conditions in terms of the ADC values that are understood by the sensors.

42

CHAPTER 7 – Eclipse Plug-in and Testing

7.1 Introduction
The project has been converted as an eclipse-plug in for portability and ease

of use for testing NesC applications, before they are deployed.

Eclipse is an open platform. It is designed to be easily and infinitely extensible

by third parties. At the core is the eclipse SDK, around which various tools can be

built. These products or tools can further be extended by other products/tools and so

on. The extensibility of Eclipse is achieved by creating products/tools in form of

plug-ins.

The actual program and required files are converted in “.jar” files after which

a plug-in project is used to convert them into a plug-in. The current plug-in, though

has a lot of data required in form of many files, most of them are common for all the

scenarios; only the configuration file given by the user varies. Hence, a new project

type is created, which accepts the configuration file and gives it as input to the plug-

in, which using a command from the customized menu, is used to generate the

simulation files, in a separate directory.

7.2 Testing

7.2.1 Input Values
The input given by the user, based on the grammar is tested for validity. Most

of the tests include well-formed-ness, validity of the input values and strings, for

proper syntax.

• Input Value: In Configuration.txt, region tag “(0,0,50,50” entry

Result: <region> block not formatted properly

• Input value: In region tag “(0,50,50,101)” entry

Result: <region> block has out of range values

• Input value: In region tag “(0,50,50,-10)” entry

Result: <region> block has out of range values

• Input value: In threshold tag “On(100,90,100) (40,50,40)” entry

43

Result: Region verified

<threshold> block not formatted properly

• Input value: In threshold tag “(100,90,100) Off(40,50,40)” entry

Result: Region verified

<threshold> block not formatted properly

• Input value: In threshold tag “On(100,90,100 Off(40,50,40)” entry

Result: Region verified

<threshold> block not formatted properly

• Input value: In direction tag “northe” entry

Result: Region verified

threshold verified

<direction> direction name invalid

• Input value: In delay tag “On(500,500,500” entry

Result: Region verified

threshold verified

direction verified

<delay> block not formatted properly

• Input value: In startID tag “1,2,200” entry

Result: Region verified

threshold verified

direction verified

delay verified

<startID> block has out of range values

• Input value: In condition tag “<rule>” entry

<condition>
CheckTempHigh
if(Right.ADC[0]>= 100)
 return true;
else
 return false;
<rule>
</condition>

Result: Region verified

threshold verified

44

direction verified

delay verified

startID verified

<condition> block has out of range values

7.2.2 Snapshots
To invoke the TinyViz GUI and associate with a NesC program, The

command below can be used.

#tinyviz –run build/pc/main 10

Fig. 10 – TinyViz GUI initially for 10 motes

Figures-10 show snapshots of TinyViz, with 10 motes before the

simulation of fire-spreading with the left part of the window showing the

simulation, the right part of the window is for the plug-ins for TinyViz. Plug-

45

ins can be activated or de-activated using the File menus. Simulation can be

paused, resumed, stopped using the options on the top-right corner of the

window.

Fig. 11 – TinyViz GUI after threads run for certain period

7.2.3 Performance and limit
As the number of rules increases and thereby the numbers of threads,

the commands to the sensors/motes are more delayed and if there are more

than 10 threads, at least one sensor is not being able to receive any message at

all. As this number increases, more and more motes stop receiving commands

due to system processor not being able to schedule all the threads as expected.

46

CHAPTER 8 – Conclusion and Extensions

8.1 Conclusion
The objective of this project was to develop a plug-in that simulates real-

world scenarios to be simulated on TinyViz. The current plug-in takes the user input

of constraints in the format of a configuration file. Many conditions in the

environment may be simulated using this plug-in if each of those states may be

represented as conditions in terms of the ADC values which are understood by the

sensors. Then, they can be simulated in TinyViz, on which the NesC application can

be tested.

8.2 Future Work
 As the field of sensors networks grows, there might be more and more areas

where sensors are used, and hence, new expressions and new ways to

represent physical conditions may be identified and incorporated with the

current plug-in.

 The current plug-in takes as input the configuration and creates threads;

however this might not be applicable to all kinds of problems. Hence, it might

be extended to have more types of inputs in other forms.

 A GUI may be developed for users to provide the information. This helps in

reducing the user time in following a specific grammar and writing a

configuration.

 For large-scale applications, creating threads more than a specific number

might not be a good idea, hence new algorithms are needed, which reduce the

number of threads by grouping similar tasks into a single thread. This plug-in

creates a thread for each rule and hence, this aspect may be improved to use

with huge applications.

47

48

References

[1] TinyOS

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

[2] TinyOS documentation

http://docs.tinyos.net/index.php/TinyOS_Documentation_Wiki

[3] TinyOS Wiki

http://en.wikipedia.org/wiki/TinyOS

[4] NesC

http://nescc.sourceforge.net/

[5] Tython

http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html

[6] Tython by Mike Demmer and Phil Lewis

http://www.cs.berkeley.edu/~demmer/talks/tython-nest-04.ppt

[7] Representation of mote settings in XML and parsing by Sandeep Pulluri

krex.k-state.edu/dspace/bitstream/2097/1012/1/SandeepPulluri2008.pdf

[8] Eclipse plug-in development

http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html

[9] Plug-in Development Environment Overview

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv

[10] Eclipse Plug-in

http://www.eclipsepluginsite.com/index.html

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
http://docs.tinyos.net/index.php/TinyOS_Documentation_Wiki
http://en.wikipedia.org/wiki/TinyOS
http://nescc.sourceforge.net/
http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html
http://www.cs.berkeley.edu/%7Edemmer/talks/tython-nest-04.ppt
http://krex.k-state.edu/dspace/bitstream/2097/1012/1/SandeepPulluri2008.pdf
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv
http://www.eclipsepluginsite.com/index.html

	List of Figures
	Acknowledgements
	Dedication
	CHAPTER 1 – Introduction
	1.1 Introduction
	1.2 TinyOS Applications and Real-world environment

	CHAPTER 2 – TinyOS, Tossim and Tython
	2.1 TinyOS
	2.2.1 Introduction to TinyOS
	2.2.2 NesC
	2.2.3 Execution environment in TinyOS
	2.2.4 Programming with TinyOS

	2.2 TOSSIM
	2.3.1 TOSSIM features and advantages
	2.3.2 TOSSIM Limitations

	2.3 TinyViz
	3.2.1 TinyViz Introduction
	3.2.2 TinyViz Advantages

	2.4 Tython Introduction
	2.5 Using Tython to control Simulation
	2.6 Basic Simulation Commands

	CHAPTER 3 – Simulation Overview and Architecture
	3.1 Simulation Overview
	3.2 Architecture
	3.2.1 Generation Architecture
	3.2.2 Execution Architecture

	3.3 Verification
	3.3.1 Overview of verification
	3.3.2 Verification of each block

	CHAPTER 4 – Configuration File Grammar
	4.1 Overview
	4.2 Region
	4.3 Threshold
	4.4 Direction
	4.5 Delay
	4.6 Start-ID
	4.7 Condition
	4.8 Action
	4.9 Rules

	CHAPTER 5 – Generation Of Simulation Files
	5.1 Overview
	5.2 Inputs and required files
	5.2.1 Book.xml
	5.2.2 XML Parser
	5.2.3 Configuration file
	5.2.4 Client Program
	5.2.5 CommandOutputReader
	5.2.6 GenerateDataFile

	5.3 Parsing the Configuration file
	5.4 Construct threads for each Rule
	5.5 Helper Functions

	CHAPTER 6 – Example
	6.1 Fire Spreading
	6.1.1 Algorithm for spreading

	6.2 Conclusion

	CHAPTER 7 – Eclipse Plug-in and Testing
	7.1 Introduction
	7.2 Testing
	7.2.1 Input Values
	7.2.2 Snapshots
	7.2.3 Performance and limit

	CHAPTER 8 – Conclusion and Extensions
	8.1 Conclusion
	8.2 Future Work

	References

