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Abstract

The time-dependent Schrödinger equation is integrated on a numerical lattice for up

to three-dimensional problems. The wave packet propagation technique has been applied

to ion – atom collisions in a strong laser field, the vibrational nuclear motion in small

homonuclear diatomic molecular ions, and for the scattering of an ion in front of a metallic

surface. For laser-assisted proton – hydrogen collisions it is shown, that strong circularly

polarized radiation significantly alters the capture and ionization probabilities and results in

a dichroism with respect to the helicity. In a pump – control – probe scheme, “stroboscopic”

exposure of a nuclear wave packet of the deuterium molecular ion by a single or a series

of short and intense laser control pulses may be used to produce an almost stationary

distribution of a single vibrational level, where the nodal structure can be tested using

the Coulomb explosion imaging technique. Using a pump – probe setup with variable probe

delays it is proposed to use Fourier analysis of the time dependence of the Coulomb explosion

kinetic energy release spectrum to reveal insight into the initial vibrational state distribution

for small diatomic molecules. A last application demonstrates, that resonant charge transfer

for scattering of a negative hydrogen anion on a metal surface depends crucially on the

position of surface and image states relative to the conduction and valence band, thereby

implying different reaction mechanisms for different surface cuts of a metal.



QUANTUM DYNAMICS IN LASER–ASSISTED COLLISIONS,

LASER–MOLECULE INTERACTIONS, AND

PARTICLE–SURFACE SCATTERING

by

Thomas Niederhausen

Vordiplom, Justus–Liebig–Universität Gießen, Germany, 2000

Diplom, Universität Kassel, Germany, 2004

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2007

Approved by:

Major Professor
Uwe Thumm



Copyright

Thomas Niederhausen

© 2007



Abstract

The time-dependent Schrödinger equation is integrated on a numerical lattice for up

to three-dimensional problems. The wave packet propagation technique has been applied

to ion – atom collisions in a strong laser field, the vibrational nuclear motion in small

homonuclear diatomic molecular ions, and for the scattering of an ion in front of a metallic

surface. For laser-assisted proton – hydrogen collisions it is shown, that strong circularly

polarized radiation significantly alters the capture and ionization probabilities and results in

a dichroism with respect to the helicity. In a pump – control – probe scheme, “stroboscopic”

exposure of a nuclear wave packet of the deuterium molecular ion by a single or a series

of short and intense laser control pulses may be used to produce an almost stationary

distribution of a single vibrational level, where the nodal structure can be tested using

the Coulomb explosion imaging technique. Using a pump – probe setup with variable probe

delays it is proposed to use Fourier analysis of the time dependence of the Coulomb explosion

kinetic energy release spectrum to reveal insight into the initial vibrational state distribution

for small diatomic molecules. A last application demonstrates, that resonant charge transfer

for scattering of a negative hydrogen anion on a metal surface depends crucially on the

position of surface and image states relative to the conduction and valence band, thereby

implying different reaction mechanisms for different surface cuts of a metal.



Table of Contents

Table of Contents viii

List of Figures x

List of Tables xi

Acknowledgements xii

Dedication xiv

1 An Ultra-Short Introduction 1
1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 The Time-Dependent Schrödinger Equation . . . . . . . . . . . . . . . . . . 7
2.2 Time Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Free Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Crank-Nicholson Split Operator Propagation . . . . . . . . . . . . . . . . . . 14
2.5 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Propagation in Imaginary Time . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Coupled Channel Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Absorbing Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Dichroism in Reduced-Dimensionality Laser-Assisted Collisions 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Wave Function Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Field Free Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Circular Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Laser Intensity Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Capture and Ionization in Laser-Assisted Proton – Hydrogen Collisions 47
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Theoretical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



4.3 Field Free Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Field Assisted Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Controlled vibrational quenching of nuclear wave packets in D+
2 59

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Vibrational Revivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 One Control Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Two Control Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Time–Series Analysis of Vibrational Wave Packets 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Bound Nuclear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Vibrational State Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Probe Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Resonant Neutralization of H− Anions in front of Metal Surfaces 88
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Surface Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Ion Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Conclusions and Outlook 101

A Atomic Units 106

B Alternative Derivation of the Short-Time Propagator 108

C Source Code Listings 111
C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.2 Main Program (main.f90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.3 Propagator Module (prop1D.f90) . . . . . . . . . . . . . . . . . . . . . . . . 126
C.4 Potential Module (pot1D.f90) . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.5 Wave Function Module (wfmath1D.f90) . . . . . . . . . . . . . . . . . . . . 138
C.6 Diagonalization Module (diag.f90) . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 150

ix



List of Figures

3.1 Illustration of the laser-assisted collision scenario . . . . . . . . . . . . . . . . 30
3.2 Electronic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Comparison of the field-free capture probabilties . . . . . . . . . . . . . . . . 36
3.4 Laser collision phase dependence of electron capture and ionization . . . . . 38
3.5 Electron capture probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Simulation of capture, loss and ionization in a static field . . . . . . . . . . . 40
3.7 Electron loss probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Ionization probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Enhanced ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Laser intensity dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 Total electron capture cross-sections . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Scenario of the 3D Laser-assisted collision . . . . . . . . . . . . . . . . . . . 49
4.2 Comparison of the field-free total capture cross sections . . . . . . . . . . . . 51
4.3 Dependence of the laser-phase on capture and ionization . . . . . . . . . . . 53
4.4 Impact parameter and phase dependence of the capture probability . . . . . 54
4.5 Phase-averaged capture probability . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Laser-phase and impact parameter dependent ionization probability . . . . . 57

5.1 Schematic diagram of a pump–control–probe setup . . . . . . . . . . . . . . 61
5.2 Franck–Condon transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Vibrational revivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Vibrational eigenstate distribution after a control pulse . . . . . . . . . . . . 69
5.5 Stationary nuclear wave function after a control pulse . . . . . . . . . . . . . 71
5.6 Nuclear wave function after two control pulses . . . . . . . . . . . . . . . . . 73

6.1 Illustration of the imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Power spectrum of the D+

2 probability density evolution . . . . . . . . . . . . 78
6.3 Vibrational series in the Fourier–spectrum . . . . . . . . . . . . . . . . . . . 81
6.4 Reconstruction of the vibrational state distribution . . . . . . . . . . . . . . 82
6.5 Inclusion of a probe pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Illustration of the ion neutralization in front of metal surfaces . . . . . . . . 89
7.2 Schematic of the electronic band structure . . . . . . . . . . . . . . . . . . . 92
7.3 Electronic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4 Ion survival probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Evolution of the ion population . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6 Time evolution of the wave functions . . . . . . . . . . . . . . . . . . . . . . 100

x



List of Tables

3.1 Comparison of field-free capture cross-sections . . . . . . . . . . . . . . . . . 36
3.2 Total laser-asssited electron capture cross-sections . . . . . . . . . . . . . . . 46

4.1 Comparison of field-free capture cross-sections . . . . . . . . . . . . . . . . . 51
4.2 Total laser-assisted cross-sections . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Potential parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Electronic band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Atomic units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Physical constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1 Program modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



Acknowledgments

After spending almost six years in Manhattan, Kansas, living in two different continents,

and having to deal with three time zones, it all ends now with the thesis at hand. And there

are clearly many people I would like to thank for their support, help and friendship, and for

their contribution for the work presented here. So all the credits go to:

� Prof. Uwe Thumm for welcoming me in his group and providing a virtually unlimited

pool of ideas and research material on possible calculations that should be investigated

in more detail, and for his great help when things often did not work out the way they

should.

� My supervisory committee, Prof. Anil Pahwa, Prof. Todd Cochrane, Prof. Vincent

Ortiz, and in particular Prof. Lew Cocke for his expertise on all experimental issues

and several great ideas on the laser-molecule calculations, Prof. Brett Esry for all the

valuable input on this thesis.

� All the hard workers of Cardwell Hall think tank and the James R. Macdonald Lab

for the great discussions about the world, the universe, the Autobahn and of course -

Physics – including (but not limited to) Ali Alnaser, Bernold Feuerstein, Birte Ulrich,

Boyan Obreshkov, Prof. Chii-Dong Lin, Fatima Anis, Himadri Chakraborty, Jose

D’Incao, Marlene Wickenhauser, Michael Bromley, Remigio Cabrera-Trujillo, Stefan

Voss, and Vladimir Roudnev.

xii



� All the great roommates of the ”French House” during the last years from all over

the world, promoting insight in different places and cultures: André Liebler, Anthony
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Chapter 1

An Ultra-Short Introduction

�Simplicity is the ultimate
sophistication. �

Leonardo da Vinci

In the last few decades, the scientific field of atomic, molecular and optical (AMO)

physics has seen major innovative advances. Several frontiers have emerged with the ulti-

mate goal of a better control and understanding of light and matter on the atomic length

scale: ultra-cold physics leading to the experimental discovery of Bose-Einstein conden-

sation, non-linear optical phenomena used to produce ultra-fast laser pulses or ultra-slow

and even stopped light, quantum-information and coherent control schemes for the next

generation computer, the quantum-computer, or nano-structured materials with enormous

application potential in the applied sciences to name few topics. Ultra could be the defining

term of present AMO physics, as it reflects the current search for the superlatives: ultra-fast,

ultra-cold, ultra-precise, ultra-stable, ultra-slow or ultra-intense in the scientific literature

are almost exclusively linked to the field of atomic, molecular and optical physics.

The novel progress of trapping atoms, using lasers and magnetic fields, and cooling the

sample with laser-, evaporative- and magnetic-refrigeration techniques to temperatures on

the nanokelvin scale, has set the record for the coldest temperature on earthLeanhardt 03. Con-

sequently this allowed for the experimental confirmation of the existence of Bose-Einstein

condensatesAnderson 95, where the particle wave functions collapse into a single coherent col-

lective ground state – around 70 years after its theoretical prediction by Satyendra Nath

Bose and Albert Einstein in 1925. Moreover, the technique of creating ultra-cold atoms has

1
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laid the foundation for the investigation of other exciting disciplines such as matter waves

and superfluidityAnglin 02, or Fermi-condensatesJochim 03.

The field of non-linear optics (for a general overview see for example the textbook by

Robert Boyd Boyd 02) has opened the doorway to the latest developments in laser technol-

ogy, and also lead to some counter-intuitive results: An absorption window of a medium

can be turned transparent over a very narrow spectral range by the use of a strong cou-

pling laserHarris 97, resulting in extreme changes in the index of refraction within the reso-

nance. This has been used for producing ultra-slow group velocities of a light pulseHau 99,

and – as the ultimate slow-down – to completely stop a pulse in the medium for later re-

trievalLiu 01. Other pioneering work has been archived in the field of ultra-short laser pulses,

where the phase of the the electric field relative to the pulse envelope becomes impor-

tantBrabec 00,Paulus 03,Roudnev 04,Tong 07. Laser pulses in the visible regime with a pulse duration

of 1.6 fs – slightly less than a single optical cycle – have been been reportedShverdin 05,

as well as down to 130 attosecond pulses in the extreme ultraviolet rangeSansone 06. Mode-

lockingBoyd 02 of femtosecond-lasers has allowed for utilizing the comb of laser-mode frequen-

cies, spaced by the repetition rate, for highly precise optical spectroscopy with an accuracy

several units of magnitude better than with current cesium atomic clock standardsUdem 02.

Nano-structured materials, in particular photonic band gap fibersRussell 03 exhibit strong

non-linearities that have been employed for a spectral broadening of the driving laser pulses,

known as super-continuum generationDudley 06, a process relevant for the stabilization of the

laser phase relative to the pulse envelopeJones 00,Baltuška 03,Moon 06. Apart from interest within

the AMO community, commercial applications of the ultra-precise frequency metrology such

as improved satellite navigation, atomic clocks and telecommunication are obvious.

With such powerful cooling, trapping and laser technology becoming available, the in-

terest of AMO physics has slowly shifted from the observation of static properties towards

the study of dynamical processes and to the control of reaction pathwaysWeber 05,Hertel 06.

Time-resolved pump – probe experiments have been developed, where a first ultra-short
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laser pulse induces a reaction to create a controlled initial state and a second ultra-short

pulse probes the reaction outcome, for example by photo-emission, fluorescence spectroscopy

or fragmentationZewail 00. Powerful imaging techniques, such as recoil ion momentum spec-

troscopyCocke 91,Ullrich 97,Dörner 00,Ullrich 03 emerged in the last decade and allow for the coin-

cident measurement of the momentum vectors of all the reaction fragments in ionizing

collisions of atoms, molecules, electrons or photons. Combined with time-delay measure-

ments using ultra-short pump – probe laser pulses, the dynamics of quantum systems can

be resolved on the time scale of the nuclear motionNiikura 02,Baltuška 03,Niikura 03,Lin 06.

1.1 Historical Overview

The origin of our understanding of matter dates back to ancient Greek philosophers. Dem-

ocritus believed that every material is made from small units “atomos” or “atomon” - the

Greek word for indivisible - embedded in the “void”. And while these atoms could be

characterized by a few basic properties, the diversity of matter that we experience, like

color or taste is due to complicated interactions between these atoms: �Sweet exists by con-

vention, bitter by convention, color by convention; but in reality atoms and the void alone

exist.� It took more than two millenniums until it was discovered that even the inseparable

atoms have a substructure, consisting of electrons and nuclei. Yet the atomic core itself

exhibits a rather complex entity of quarks, gluons and gauge bosons and is the subject of

extensive investigation in the field of high energy physics in some of the largest up to date

experimentsSeife 03.

A fundamental milestone in the history of atomic physics were the early experiments

of Hans Geiger and Ernest Marsden on the scattering of α-particles by a thin gold foil in

1909. It was expected that these particles would pass through the foil and get deflected by

the gold atoms by a few degrees at most, but a small fraction of the scattered projectiles

were found at larger angles and even scattered back. This gave rise to the famous quote by

Ernest Rutherford when he was analyzing the experimental findings in 1911: �It was almost
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as incredible as if you fired a fifteen-inch shell at a piece of tissue paper and it came back

and hit you.� Applying laws of energy and momentum conservation, Rutherford realized,

that the only possible explanation was the presence of a charged and heavy nucleus of

finite size, which subsequently lead to the Rutherford model of the atom, a precursor to

the Bohr model. Shortly thereafter James Franck and Gustav Ludwig Hertz measured the

kinetic energy transfer of accelerated electrons with mercury vapor in a gas cell in 1914.

They discovered that at certain kinetic energies of the electrons inelastic collision occur

and thereby impressively demonstrated the quantization of the energy levels in an atom.

A theory justifying the quantization of energies was missing, and the Bohr model provided

only a phenomenological explanation.

In 1924 the French physicist Louis de Broglie wrote his famous dissertation �Recherches

sur la théorie des Quanta� suggesting the wave-particle dualism for all particles. His au-

dacious proposal was soon verified experimentally by Clinton Davisson and Lester Germer

showing an interference pattern for the diffraction of an electron beam on a crystal. The

concept of matter waves was born, and Werner Heisenberg, Max Born, and Pascual Jordan

provided a theoretical framework – the matrix mechanics. Their theoretical formulation is

equivalent to the Schrödinger equation and is the basis of the non-relativistic description of

quantum dynamics.

The principle of the light amplification by stimulated emission of radiation, laser, orig-

inates from the A and B-coefficients for absorption and emission of light, introduced by

Albert Einstein’s “quantum theory of radiation”Einstein 17. Optical pumping was first pro-

posed by Alfred Kastler in 1950, and in collaboration with Jean Brossel and Jacques Winter

verified two years afterwards. The first working laser was constructed by Theodore Maiman

in 1960 using optical pumping of a ruby crystalMaiman 60. Today lasers can be found in many

household appliances, including CD and DVD drives, barcode scanners, printers and laser

pointers and many other devices.
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1.2 Chapter Outline

As in classical mechanics where already the coupled motion of the planets in our solar

system can not be solved analytically in general, the same holds true for the Schrödinger

equation for more than two particles. In general, numerical approximation schemes need

to be implemented and often require large amounts of computing time. Simultaneously, as

computing resources become more and more available, more complex systems can be treated

numerically.

In the present work the theoretical tools to calculate collisions and half-collisions for

atomic and molecular systems that are governed by a single active particle Schrödinger

equation are presented in Chapter 2. Since for a general partial differential equation such

as the time-dependent Schrödinger equation an analytical solution exists only for a few

special cases, a numerical method that is based on discretizing operators and space on a

lattice is applied, together with a finite-differencing scheme for the time propagation. A

comprehensive summary of this method – based on the Crank-Nicholson algorithm – and

several other theoretical aspects is presented, including details such as the proper treatment

of the numerical boundaries, or finding the eigenfunctions for a time-independent potential.

In the following two chapters, the Crank-Nicholson propagation method is applied for

the novel studies of laser-assisted collisions. From the theoretical side, the most simple

collision scenario, namely a proton colliding with a hydrogen atom, is investigated with

the focus on the charge-transfer and ionization probabilities. This work is motivated by

the possibility to steer chemical reactions towards a preferred reaction channel by exter-

nal electromagnetic radiation. To keep the computational effort manageable, in Chapter 3

a two-dimensional model is employed that restricts the motion of the electron and the

plane of the electric field vector of the laser to the scattering plane. This study allows to

predict qualitatively the influence of the radiation field on the reaction. For a circularly

polarized laser it is found, that both capture and ionization differ significantly from field

free collisionsNiederhausen 04b,Niederhausen 04a. In Chapter 4 the laser-assisted collision scenario
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is reinvestigated but in full dimensionality. Clearly, this three-dimensional ab-initio study

is computationally much more demanding, and rigorous optimizations of the program, in-

cluding parallel-processing and the use of distributed computations were implemented to

perform this calculation. Strikingly, a very good qualitative agreement was found with the

reduced dimensionality calculationsNiederhausen 06.

The two chapters thereafter describe the control and analysis of the vibrational nuclear

motion in the deuterium molecular ion. Starting with the diatomic molecule in the ground

state, an ultra-short pump pulse launches the nuclear wave packet on the adiabatic nuclear

potential curve and thereby starts the molecular clockAlnaser 04. Chapter 5 discusses the

influence of a single or a series of time delayed ultra-short control pulses on the vibrational

state distribution and the dissociation probability. Based on these results, a method similar

to the vibrational cooling scheme of Niikura et al.Niikura 04 is suggested to create an almost

stationary probability distribution of the nuclear wave functionNiederhausen 07. In Chapter 6

an imaging scheme is suggested that allows one to extract the nuclear vibrational level

occupation and to analyze the dynamics of the motion in an electromagnetic radiation field

from a Fourier-transformation of a time-series pump-probe studyFeuerstein 07.

Chapter 7 analyzes the role of the surface state and image states with respect to

the positions of valence and conduction bands on the neutralization probability for ion

– surface scattering. It is found that a negative hydrogen anion has the largest ion sur-

vival probability, if the surface features a localized surface state within the band gap

of the metal and possesses energetically overlapping image states within the conduction

bandChakraborty 04a,Chakraborty 04b,Chakraborty 05.

The last Chapter 8 summarizes the results presented in this dissertation, followed by

three appendices containing a brief overview on the Atomic Units used throughout this work,

an Alternative Derivation of the Short-Time Propagator and the Source Code Listings for

a few selected program sections.



Chapter 2

Theory

�[Do not] put too much
confidence in experimental
results until they have been
confirmed by theory. �

Sir Arthur Eddington

2.1 The Time-Dependent Schrödinger Equation

The starting point for the quantum mechanical description of atoms and molecules in intense

laser fields, colliding with each other, or their interactions with metallic surfaces is the solu-

tion of the time-dependent Schrödinger equation. In atomic physics it is very useful to first

introduce a set of atomic units (see Appendix A) with e = ~ = me = 1, which correspond

to the typical dimensions found in atomic systems, more specifically, the hydrogen atom.

In atomic units, the time-dependent Schrödinger equation for a one-particle electronic wave

function Ψ(r, t) has the simple form:

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (2.1)

with the Hamiltonian

Ĥ = −∇
2

2
+ V̂ (r, t). (2.2)

Equation (2.1) can be formally integrated (see quantum mechanics textbooksNolting 97) to

obtain

Ψ(r, t) = T̂ exp

−i t∫
t0

Ĥ(t′)dt′

Ψ(r, t0), (2.3)

7
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with the chronological time-ordering operator T̂ . A more detailed description can be found

in Appendix B. For a time-independent problem, i.e. V̂ (r, t) = V̂ (r), the time-ordering and

the integration become trivial:

Ψ(r, t) = e−iĤtΨ(r, t0) (2.4)

For the general case of a time-dependent Hamiltonian, t → ∆t can be replaced by a time

step ∆t, during which the Hamiltonian Ĥ(t+ ∆t) ≈ Ĥ(t) can be approximated as constant

in time. Thus, equation (2.3) is approximated by

Ψ(r, t+ ∆t) = e−iĤ(t)∆tΨ(r, t), (2.5)

and the full time-dependence of the wave function Ψ(r, t) can be obtained from iteratively

propagating small time steps, t = N∆t.

For a typical time-dependent quantum mechanical problem one can distinguish grid

based methods and basis set expansion methods (see for example the review articles by

Kirchner et al.Kirchner 99 or Pindzola et al.Pindzola 07). The expansion method employs a finite

set of basis functions, with the short time-propagation (2.5) introducing couplings between

the expansion coefficients of the basis states. The difficulty lies in the proper choice of the

basis set from a variety of atomic or molecular orbitals, Coulomb waves, Airy functions,

plane waves, spherical harmonics, Gaussians, splines etc. of different energies, momenta

and expansion centers. Calculations often use several hundreds of basis states in order to

correctly describe all the relevant physics, such as electron transferWang 03 or ionizationZou 02

within the specified accuracy.

Grid methods (see for example the review by R. Kosloff Kosloff 96) are based on the di-

rect solution of (2.5) by discretizing the operators and wave functions on a spatial and/or

momentum lattice. Although this approach is computationally very demanding as the di-

mensionality and the number of grid point increases, recent developments in computing

technology permit one to perform such calculations on personal computers with the flexibil-

ity for applying grid models to almost any one-particle potentials. The spatial accuracy is
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only limited by the size of the discretized box and the spacing of the lattice. It can be par-

tially attributed to the flexibility of grid based methods and the increasing availability of fast

and large-memory computers, that the direct solution of the time-dependent Schrödinger

equation has attracted rising interest in the last two decades for calculating for example

photoelectron spectraKrause 92, heavy-particle impact ionizationSchultz 03, charge transfer in

ion-atom collisionsMinami 06, or laser-assisted collisionsNiederhausen 06,Anis 06.

Another approach that has been extensively used in electron scattering by atoms or

molecules in the presence of an external field (see for example the review by Ehlotzky, Jaroń

and Kamiński Ehlotzky 98) is the R-matrix-Floquet methodBurke 91, where the time-dependence

of a periodic Hamiltonian can be eliminated using the Floquet representationBransden 03.

The (time-independent) R-matrix method divides the space into an inner volume and an

outer volume. Typically the interaction in the external region is weak and often simple

analytic solutions exist. The reaction volume is treated numerically, for example using

a basis expansion or a finite grid. Both regions are linked by matching the logarithmic

derivative of the wave functions at the boundary. Originally, the method has been introduced

for the theory of nuclear resonance reactionsWigner 46,Lane 58 and has been extended for atomic

scattering systemsBurke 91,Thumm 91. Other splitting methods use overlapping inner and outer

regions to allow for a transition of the wave packet in the boundary regionKeller 95,Chelkowski 96

such that explicitly time-dependent problems can be studied.

2.2 Time Propagation

To obtain the wave function for a given initial state Ψ(r, t) for a small time step ∆t later,

one can write the propagated wave function Ψ(r, t + ∆t) in a Taylor-expansion and apply
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the Schrödinger equation (2.1) for the first time derivative:

Ψ(r, t+ ∆t) = Ψ(r, t) +
∂

∂t
Ψ(r, t)∆t+

1

2

∂2

∂t2
Ψ(r, t)∆t2 + Ô(∆t3)Ψ(r, t) (2.6)

= Ψ(r, t)− iĤ(t)Ψ(r, t)∆t− i

2

∂

∂t

(
Ĥ(t)Ψ(r, t)

)
∆t2 + Ô(∆t3)Ψ(r, t) (2.7)

=

(
1̂− iĤ(t)∆t− 1

2

(
Ĥ2(t) + i

∂Ĥ(t)

∂t

)
∆t2 + Ô(∆t3)

)
Ψ(r, t) (2.8)

A short time propagator can thus be defined as

Û(t+ ∆t, t) ≡ 1̂− iĤ(t)∆t− 1

2

(
Ĥ2(t) + i

∂Ĥ(t)

∂t

)
∆t2. (2.9)

such that (2.8) becomes

Ψ(r, t+ ∆t) = Û(t+ ∆t, t)Ψ(r, t) + Ô(∆t3). (2.10)

The time-evolution operator (2.9) is not unitary, i.e. U †U 6= 1̂, and numerically unstable.

Backward propagating in time of (2.10) gives

Ψ(r, t) =Û(t, t+ ∆t)Ψ(r, t+ ∆t) + Ô(∆t3) (2.11)

=

(
1̂ + iĤ(t+ ∆t)∆t− 1

2

(
Ĥ2(t+ ∆t) + i

∂Ĥ(t+ ∆t)

∂t

)
∆t2

)
Ψ(r, t+ ∆t)

+ Ô(∆t3). (2.12)

Combining (2.10) and (2.12) for half a time step ∆t/2 then leads to the identity

Û

(
t+

∆t

2
, t

)
Ψ(r, t) = Û

(
t+

∆t

2
, t+ ∆t

)
Ψ(r, t+ ∆t) + Ô(∆t3), (2.13)

or(
1̂− iĤ(t)

∆t

2
− 1

2

(
Ĥ2(t) + i

∂Ĥ(t)

∂t

)
∆t2

4

)
Ψ(r, t)

=

(
1̂ + iĤ(t+ ∆t)

∆t

2
− 1

2

(
Ĥ2(t+ ∆t) + i

∂Ĥ(t+ ∆t)

∂t

)
∆t2

4

)
Ψ(r, t+ ∆t) + Ô(∆t3).

(2.14)
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With the operator expansion of the Hamiltonian,

Ĥ(t+ ∆t) = Ĥ(t) +
∂Ĥ(t)

∂t
∆t+

1

2

∂2Ĥ(t)

∂t2
∆t2 + Ô(∆t3), (2.15)

it follows

− 1

2

(
Ĥ2(t+ ∆t) + i

∂Ĥ(t+ ∆t)

∂t

)
∆t2

4
= −1

2

(
Ĥ2(t) + i

∂Ĥ(t)

∂t

)
∆t2

4
+ Ô(∆t3), (2.16)

and the ∆t2 terms in (2.14) cancel up to ∆t3:(
1̂− iĤ(t)

∆t

2

)
Ψ(r, t) =

(
1̂ + iĤ(t+ ∆t)

∆t

2

)
Ψ(r, t+ ∆t) + Ô(∆t3). (2.17)

The Hamiltonian can be evaluated at the center point in time t+ ∆t/2 by the expansion

Ĥ(t) = Ĥ

(
t+

∆t

2

)
− ∂

∂t
Ĥ

(
t+

∆t

2

)
∆t

2
+ Ô(∆t2) (2.18)

Ĥ(t+ ∆t) = Ĥ

(
t+

∆t

2

)
+
∂

∂t
Ĥ

(
t+

∆t

2

)
∆t

2
+ Ô(∆t2). (2.19)

By inserting (2.18) and (2.19) into (2.17) the resulting terms in ∆t2 cancel exactly and one

obtains:(
1̂− iĤ

(
t+

∆t

2

)
∆t

2

)
Ψ(r, t) =

(
1̂ + iĤ

(
t+

∆t

2

)
∆t

2

)
Ψ(r, t+ ∆t) + Ô(∆t3). (2.20)

Therefore the propagated wave function can be written as

Ψ(r, t+ ∆t) =

(
1̂− iĤ ∆t

2

1̂ + iĤ ∆t
2

)
Ψ(r, t) + Ô(∆t3), (2.21)

where Ĥ = Ĥ(t+ ∆t/2) is evaluated at the central point in time. This form of calculating

the exponential in (2.5) is known as Cayley- or second order Padé- approximation. This

propagator is unitary, since(
1̂− iĤ ∆t

2

1̂ + iĤ ∆t
2

)†(
1̂− iĤ ∆t

2

1̂ + iĤ ∆t
2

)
=

(
1̂ + iĤ ∆t

2

1̂− iĤ ∆t
2

)(
1̂− iĤ ∆t

2

1̂ + iĤ ∆t
2

)
= 1̂, (2.22)

has an overall error of ∆t3 and is numerically stableMitchell 80,Press 92,Thumm 02.
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Popular alternatives (among others methods) to the direct lattice approach of the Cayley

scheme (2.21), are Short Iterative Lanczos propagationKosloff 96 and Chebychev approxima-

tionBoyd 00. The first method starts from the Taylor series expansion of the exponential

in (2.5):

e−iĤ∆tΨ(r, t) ≈
N∑

n=0

(−i∆t)n

n!
ĤnΨ(r, t) (2.23)

=
N∑

n=0

(−i∆t)n

n!
ψn(r), (2.24)

where the vectors {ψn} = {Ψ, ĤΨ, Ĥ2Ψ, . . .} form the basis of the Krylov space and are

orthogonalized in a subsequent step. With the Hamiltonian matrix becoming tridiagonal

in the reduced subspace of orthonormal Krylov vectors, the short-time propagated wave

function can then be obtained from the diagonalization of the Hamiltonian. Already a few

basis vectors are sufficient for a short-time propagation with a step size ∆t considerably

larger than for the Cayley approximationPark 86,Kosloff 96.

The Chebychev method is based on the polynomial expansion of the exponential in (2.5)

introduced by H. Tal-Ezer and R. Kosloff Tal-Ezer 84,Kosloff 96:

e−iĤ∆t ≈
N∑

n=0

anTn(−iĤ∆t), (2.25)

in terms of complex Chebychev polynomials Tn. The expansion coefficients are given by

Bessel functions and the polynomials Tn can be obtained by a recurrence relation, i.e.

T0(Â) = 1̂, T1(Â) = Â, and Tn(Â) = 2Tn−1(Â) + Tn−2(Â). With the polynomial ap-

proximation, the time step ∆t can be chosen much larger than for the corresponding Cayley

scheme at the same accuracy for a time-independent Hamiltonian.

2.3 Free Propagation

Now, the free propagation of a particle is considerered on a numerical grid. Since the

potential V̂ (r, t) = 0, the time-dependence of the propagation is governed by the Hamil-

tonian Ĥ = T̂ = p̂2/2. Taking the Fourier transform of (2.1) yields the the Schrödinger
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equation in momentum space,

i
∂

∂t
Ψ̃(p, t) =

p2

2
Ψ̃(p, t), (2.26)

with the Fourier transformed wave function

Ψ̃(p, t) = (2π)−3/2

∫
Ψ(r, t)e−ip·rdr. (2.27)

The time evolution of Ψ̃(p, t) is given as in (2.5) by

Ψ̃(p, t+ ∆t) = exp

(
−ip

2

2
∆t

)
Ψ̃(p, t). (2.28)

The exponential in (2.28) is particularly easy to evaluate, since the momentum operator is

diagonal p̂ = p, and the kinetic energy operator thus becomes a scalar. A common method

for the free propagation on a numerical grid is to employ a Fast Fourier Transformation

algorithmPress 92,Feit 82 on the wave function Ψ(r, t), multiply the wave function with the

exponential in (2.28) for the propagation, and perform an inverse fast Fourier transformation

to obtain the wave function Ψ(r, t+ ∆t) in coordinate space again.

Another possibility to evaluate the kinetic energy operator T̂ , is to use a finite differencing

scheme. Since the momentum operators commute, i.e. [p̂i, p̂j] = 0, the free propagator

in (2.5) can be written as

Ψ(r, t+ ∆t) = exp(−iT̂x∆t) exp(−iT̂y∆t) exp(−iT̂z∆t)Ψ(r, t). (2.29)

It is therefore sufficient to only consider one coordinate direction for a one-dimensional

subsystem. The numerical second derivative T̂x = −1
2
∂2/∂x2 can then be expressed by a

three-point formula (or 5-point formula for higher accuracy)Abramowitz 72:

Ψ′′(x) =
Ψ(x−∆x)− 2Ψ(x) + Ψ(x+ ∆x)

∆x2
+ Ô(∆x4) (2.30)

Ψ′′(x) =
−Ψ(x− 2∆x) + 16Ψ(x−∆x)− 30Ψ(x) + 16Ψ(x+ ∆x)−Ψ(x+ 2∆x)

12∆x2
+ Ô(∆x6).

(2.31)
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Using the 3-point formula (2.30), the discretized T̂x operator has the following tridiagonal

matrix form:

(T̂x)ij = − 1

2∆x2
(δi,j−1 − 2δi,j + δi,j+1) (2.32)

where δi,j is the Kronecker delta symbol. With the use of the Cayley scheme (2.21), and since

the kinetic energy operators commute, each of the exponentials in (2.29) can be evaluated

sequentially, thereby involving only the inversion of a one-dimensional operator in (2.21).

2.4 Crank-Nicholson Split Operator Propagation

In the previous section the special case of the free propagation with V̂ (r, t) = 0 was consid-

ered. For a non-vanishing potential, it is desirable to divide the exponential in (2.5) similar

to

e−i(T̂+V̂ )∆t → e−iT̂∆te−iV̂ ∆t, (2.33)

such that the free propagation for the kinetic energy operator (2.29) can be applied, while

the propagation of the potential, which is diagonal on the spatial lattice, reduces to a

multiplication of the wave function with a scalar function in the exponential.

Since the differential operator for the kinetic energy T̂ and the potential V̂ do not

commute, i.e. [T̂ , V̂ ] 6= 0, the left and right hand side of (2.33) are not equal. The Baker-

Campbell-Hausdorff formulaReinsch 00 provides the correcting terms for non-commuting op-

erators Â, B̂ and Ĉ,

exp
(
Â∆t

)
exp

(
B̂∆t

)
= exp

(
(Â+ B̂)∆t

)
+ exp

(
1

2
[Â, B̂]∆t2

)
+ Ô(∆t3), (2.34)

for two operators, as well as for three operators:

exp
(
Â∆t

)
exp

(
B̂∆t

)
exp

(
Ĉ∆t

)
= exp

(
(Â+ B̂ + Ĉ)∆t

)
+ exp

(
1

2

(
[Â, B̂] + [B̂, Ĉ] + [Â, Ĉ]

)
∆t2
)

+ Ô(∆t3) (2.35)
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The commutator term in (2.35) vanishes for Â = Ĉ, therefore a symmetric splitting of

kinetic energy and potential term T̂ + V̂ gives:

exp
(
−i(T̂ + V̂ )∆t

)
= exp

(
−iT̂ ∆t

2

)
exp

(
−iV̂∆t

)
exp

(
−iT̂ ∆t

2

)
+ Ô(∆t3) (2.36)

= exp

(
−iV̂ ∆t

2

)
exp

(
−iT̂∆t

)
exp

(
−iV̂ ∆t

2

)
+ Ô(∆t3), (2.37)

and is accurate up to ∆t3. The splitting procedure allows either operator in the middle, but

the distinction between (2.36) and (2.37) becomes apparent when evaluating these operators.

While exp(−iV̂∆t) is diagonal in coordinate space and therefore results in a multiplication

with a scalar function, the action of the kinetic energy term involves the inversion of a

matrix (2.21). Therefore, for one- two- or three-dimensional propagations, slightly different

operator splittings are used in order to optimize for processing speed:

1D : e−iĤ∆t = e−i(T̂x+V )∆t (2.38)

2D : e−iĤ∆t = e−iT̂x
∆t
2 e−i(T̂y+V )∆te−iT̂x

∆t
2 (2.39)

3D : e−iĤ∆t = e−iV ∆t
2 e−iT̂x∆te−iT̂y∆te−iT̂z∆te−iV ∆t

2 (2.40)

Evidently, no operator splitting is necessary for the one-dimensional propagation, since the

inversion of the operator in (2.21) requires the same effort if the diagonal potential term

is added to the tridiagonal kinetic energy (2.32). With the same argument T̂y + V can be

combined for the two-dimensional propagation, such that (T̂y +V ) and T̂x do not commute.

For three (or more) dimensions, is is most efficient to place the potential propagation at both

ends, and to take advantage of the commuting differential operators for the kinetic energy.

A symmetric splitting of the three terms in T̂ = T̂x + T̂y + T̂z is therefore not required.

In principle, the accuracy of the operator splitting can be improved by using higher order

splitting formsForest 90,Yoshida 90,Suzuki 97

exp(Â+ B̂) =
N∏

n=1

exp(cnÂ) exp(dnB̂), (2.41)

with real coefficients ci and di, but require increasingly more terms as well. Since the
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Cayley scheme used in these calculations (2.21) has an error of ∆t3, no higher order operator

splitting is necessary.

The combination of the Cayley scheme for the operator exponential (2.5), and the three-

point finite differencing method for the spatial derivative (2.30) is known as Crank-Nicholson

propagationPress 92, with the split-operator generalization for N -dimensional problems. This

method has been used throughout this work for propagation of nuclear and electronic wave

functions on a uniform spatial grid in up to three dimensions.

2.5 Matrix Inversion

The Crank-Nicholson propagation scheme does involve finding the inverse of the operator

Â ≡
(
1̂ + iĤ

∆t

2

)
. (2.42)

Having Â discretized on a numerical grid, this leads to the solutions of a set of linear

equations in order to find Â−1. For a general square matrix of rank N , the numerical effort

grows withN3, while more efficient algorithms exist for finding the inverse of sparse matrices.

However, instead of solving for the inverse Â−1, it is possible to find the propagated wave

function directly by solving a set of linear equations: For this purpose one can define a wave

function Φ such that

Φ(t) ≡ 2

(
1̂ + iĤ

∆t

2

)−1

Ψ(t). (2.43)

Φ can then be found by solving the linear equations

1

2

(
1̂ + iĤ

∆t

2

)
Φ = Ψ(t). (2.44)
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It follows from (2.21), that the Crank-Nicholson propagated wave function Ψ(t + ∆t) can

then be obtained by

Ψ(t+ ∆t) =

(
1̂− iĤ ∆t

2

1̂ + iĤ ∆t
2

)
Ψ(t) (2.45)

=

2 · 1̂−
(
1̂ + iĤ ∆t

2

)
1̂ + iĤ ∆t

2

Ψ(t) (2.46)

=

(
2

(
1̂ + iĤ

∆t

2

)−1

− 1̂

)
Ψ(t) (2.47)

= Φ−Ψ(t). (2.48)

The short-time propagation is thereby reduced to the solution of a linear set of equa-

tions (2.44). For a one-dimensional system, the matrix Â in (2.42), using a three-point

finite difference scheme (2.32) for the differential operator T̂ , has a tridiagonal form for

which highly optimized linear solver routines are commonly availableLAP .

Furthermore, the constant off-diagonal elements in (2.32) for the kinetic energy operator,

allow for additional optimization: only the diagonal elements of Â, containing the potential

contribution, need to be stored, while the upper and lower diagonals are given by the

constant −i∆t/(4∆x2). A modified tridiagonal matrix algorithm, based on simple Gaussian

elimination, has been found to be the computationally most efficient. The solution of a three-

diagonal linear set of equations scales linearly with the rank N of the matrix, such that the

entire Crank-Nicholson scheme in one dimension also scales linearly with the number of grid

points. With the use of the operator-splitting (2.39) and (2.40), the total numerical effort for

the Split-Operator Finite-Difference Crank-Nicholson algorithm therefore increases linearly

with the total number of grid points.
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2.6 Propagation in Imaginary Time

The solution of the time-dependent Schrödinger equation (2.1) with a time-independent

potential V̂ (r), can be expanded in terms of eigenfunctions:

Ψ(r, t) =
∞∑

n=0

anψn(r)e−iEnt, (2.49)

with the expansion coefficients an, eigenfunctions ψn(r) and energies En. The eigenfunctions

and energies satisfy the time-independent Schrödinger equation(
−∇

2

2
+ V̂ (r)

)
ψn(r) = Enψn(r). (2.50)

A Wick-rotation, allowing for the time coordinate to become complex valued by introducing

the substitution t → −iτ , is commonly used to transform the Schrödinger equation (2.1)

into a heat-diffusion like equationEsry 97,Lehtovaara 07:

∂

∂τ
Ψ(r, τ) =

(
∇2

2
− V̂ (r)

)
Ψ(r, τ), (2.51)

with an expansion in terms of eigenfunctions

Ψ(r, τ) =
∞∑

n=0

anψn(r)e−Ent. (2.52)

A comparison with (2.49) shows that the phase accumulation from the time propagation is

now replaced by an exponential decay in (2.52). Therefore, a randomly chosen initial wave

function Ψ(r, τ = 0) with contributions from all eigenfunctions (all an 6= 0) is dominated by

the ground state wave function ψ0 for large propagation times τ :

lim
τ→∞

Ψ(r, τ) = a0ψ0(r)e−E0τ (2.53)

The imaginary time propagation is carried out with the Crank-Nicholson split-operator

method from the previous sections, but with a complex time variable. For practical purposes,

the wave function is renormalized after every n propagation steps and convergence is tested

by

1− |〈Ψ(τ)|Ψ(τ + n∆τ)〉|2

‖Ψ(τ)‖2‖Ψ(τ + n∆τ)‖2
< ε, (2.54)
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with a sufficiently small ε. This scheme then yields the ground state wave function ψ0(r)

with a ground state energy

E0 =
〈ψ0|Ĥ|ψ0〉
‖ψ0‖2

. (2.55)

Typically, ε = 10−15 and n = 10 has been used in the present work for one- and two-

dimensinal propagations leading to convergence within a few hundred iterations. For the

three-dimensional lattice the overlap (2.54) has been calculated every time step (n = 1),

while a lesser accuracy with ε = 10−10 was chosen to reduce the numerical effort.

Excited states can be accessed by projecting out the lower energetic contributions in

(2.49)Sudiarta 07. By removing the previously obtained ground state ψ0 from the initial trial

wave function:

Ψ(r, τ = 0) = Ψ(trial)(r)−
〈
Ψ(trial)(r)|ψ0(r)

〉
ψ0(r). (2.56)

Thus a0 = 0 vanishes in (2.52) and the propagated wave function is dominated by ψ1

in (2.53). Subsequent removal of an eigenstate contribution from the initial trial wave

function and imaginary time propagation then leads to the convergence towards the next

higher eigenstate of the system and therefore in principle all energies and states can be

obtained by this iterative scheme. Practically, numerical errors limit the number of states

that can be calculated with this method and although the ground state and lower laying

eigenstates should have been removed from the initial wave function, the numerical noise

after each propagation step can reintroduce contributions of the lower states. These states

have to be projected out during the propagation and limit the number of states that can be

calculated and the accuracy of the method.

For energetically closely spaced eigenstates, or degenerate states, the imaginary time

propagation does not easily provide all possible states, while the method fails for a contin-

uum of states. For the three-dimensional hydrogen atom for example, the resulting elec-

tronic wave function for the first excited state will contain contributions from the 2s and the

2p states and obtaining the corresponding wave functions requires additional symmetriza-

tionAnis 06. However, the ground state wave function and the energy of the first excited state
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can be well reproduced with this methodSudiarta 07.

Alternative methods for obtaining the eigenvalues and states of the Hamiltonian Ĥ,

such as the ARPACK ARP subroutine library, using an implicitly restarted Lanczos algo-

rithmLehoucq 01 work well for reduced-dimensionality problems, but are inferior in scaling with

respect to the total number of grid points compared to the linear scaling of the imaginary

time propagationLehtovaara 07.

2.7 Coupled Channel Propagation

In the previous section, the propagation of a single-channel one-particle wave function

has been carried out by the application of the split-operator Crank-Nicholson propaga-

tion scheme, and it can be used the same way for a series of uncoupled independent wave

functions wave functions Ψi(r, t) in different potential curves Vi(r, t). Introducing a coupling

between the Ψi that is local in r of the form

Ψi(r, t+ ∆t) = Ûi (∆t, {Ψj(r, t}) Ψi(r, t), (2.57)

which depends on the value of the other wave functions Ψj at r and t allows for the transition

between different channels. Such a scenario is given, for example, in Chapter 5 for the

motion of a nuclear wave packet on different Born-Oppenheimer potential curves, coupled

by the dipole matrix elements. In general the channel coupling can be extended for any

number of channels, but is shown here only for up to three coupled wave functions. Similar

calculations have been performed for two or more electronic states and are well described

in the literatureDe Raedt 87,Alvarellos 88,Balakrishnan 99. The time-dependent Schrödinger equation

for such a system can be written as

− i
d

dt

 Ψ0(t)
Ψ1(t)
Ψ2(t)

 = (T̂ + V̂ + Ĥc)

 Ψ0(t)
Ψ1(t)
Ψ2(t)

 (2.58)

where the Hamiltonian Ĥ0 ≡ T̂+V̂ accounts for the propagation of the wave packet as in the

previously considered cases, and Ĥc introduces the coupling between the wave functions of
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different channels. Representing the kinetic energy operator T̂ on a numerical grid with the

three-point finite difference method, the total Hamiltonian on a grid then takes the form of

a block-matrix, where the diagonal blocks are tridiagonal, and the off-diagonal blocks have

diagonal structure arising from the coupling of the channels:

Ĥ =

 ��� � �
� ��� �
� � ���

 . (2.59)

Although the Hamiltonian is a sparse banded matrix, it does not have the simple tridiagonal

form as in the previously considered uncoupled propagation, and therefore the solution of

a linear equation system involving such a Hamiltonian would require significantly increased

computing time.

The Hamiltonian can be divided into two parts Ĥ = Ĥ0 + Ĥc: the single channel

tridiagonal Hamiltonian Ĥ0, and the coupling Hamiltonian Ĥc. In the split-operator scheme,

the short time step propagation can then be written as

Ψ(r, t+ ∆t) = e−iĤ∆tΨ(r, t) (2.60)

= e−iĤc
∆t
2 e−iĤ0∆te−iĤc

∆t
2 Ψ(r, t) + Ô(∆t3) (2.61)

where Ψ(r, t) = {Ψi(r, t)} is the vector of the coupled wave functions. Since the coupling

Ĥc in the system Hamiltonian Ĥ does not commute with the differential operator for the

kinetic energy T̂ , the split-operator form has been used in order to reduce the numerical

error to the order of ∆t3. The action of Ĥ0 on the wave function vector is simply a series of

independent Crank-Nicholson propagations on the components of the wave function vector.

Therefore only the propagation with the coupling Hamiltonian needs to be considered here.

The Hamiltonian Ĥc can be rewritten as a sum of pairwise coupling matrices, i.e. Ĥc

can be brought to a form of

Ĥc =

 � �
� �
� �

 =

 �
�

+

 �
�

+

 �

�

 (2.62)

and use the split-operator technique again in (2.61). The coupling now reduces to 2 × 2

channel couplings Ĥ ij
c acting only on the two channels i and j with i 6= j.
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Using the series expansion of the operator exponential function involving Ĥ ij
c gives

e−iĤij
c

∆t
2 =

∑
n

(−i)n

(
Ĥ ij

c

)n

∆tn

n!
(2.63)

=1−

(
Ĥ ij

c

)2

∆t2

2
+

(
Ĥ ij

c

)4

∆t4

24
−

(
Ĥ ij

c

)6

∆t6

720
+ . . .

− iĤ ij
c ∆t+ i

(
Ĥ ij

c

)3

∆t3

6
− i

(
Ĥ ij

c

)5

∆t5

120
+ . . . (2.64)

With this simplified coupling Hamiltonian, the expansion of the exponential operator (2.63)

can be treated analytically.

It can be shown, that all the even powers of Ĥ ij
c are diagonal matrices and the even

powers are block matrices with the off-diagonal block being a diagonal matrix, i.e. for the

channel couplings (C)xy = c(x)δxy with

Ĥ ij
c =

(
�

�

)
=

(
(C)xy

(C)xy

)
, (2.65)

the powers of the coupling Hamiltonian are

(Ĥ ij
c )n =


(

((C)xy)n

((C)xy)n

)
, for n even;(

((C)xy)n

((C)xy)n

)
, for n odd.

(2.66)

where ((C)xy)n = c(x)nδxy. Thus (2.63) can be rewritten for the pairwise coupling using

trigonometric functions as

e−iĤij
c

∆t
2 =

(
1 0
0 1

)
· cos

(
(C)xy

∆t

2

)
− i

(
0 1
1 0

)
· sin

(
(C)xy

∆t

2

)
. (2.67)

Thus the pairwise coupling between the two channels i and j introduces a pointwise rotation

of the wave function between the channels.

It has been shown that the wave function couplings between three potential curves can

be treated as a successive application of two-channel couplings involving the split-operator

scheme, leading to a simple rotation of the wave function between the two channels. The
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numerical error is of the order ∆t3 due to the operator splitting of the exponential and

therefore of the same accuracy as the Crank-Nicholson propagator. This scheme can be

applied to larger systems with more than three potential curves by an obvious extension of

(2.62), although the number of pairwise couplings increases very rapidly for systems with

many coupled potential curves, such that the direct numerical solution of (2.61) using Ĥc

becomes more suitable. In this work, in particular in Chapter 5 and Chapter 6 only the

coupling between two channels have been considered where an analytical form (2.67) exists.

2.8 Absorbing Boundaries

So far it was assumed, that the finite numerical grid fits the entire wave function and the

wave function probability density on the grid boundary vanishes at all times. This is the

case if one only considers bound states of the potential. For a finite numerical lattice where

the wave function reaches the boundary one has to impose certain boundary condition, for

example assuming that the wave function or the first derivative of the wave function vanish

at the boundary. In both cases, a total reflection of the wave function occurs. This can also

be as a consequence of the unitary time evolution operator for real valued potentials thus

preserving the normalization of the wave function on the finite grid.

In order to avoid artificial reflections of the wave function, one can therefore choose a

lattice large enough to contain the domain of the wave function during the propagation

time, or to impose absorbing boundary conditions that reduceKosloff 86 or integral boundary

condition that eliminate reflecionsErmolaev 99. If a negative imaginary potential −iW (r) is

added to the Hamiltonian Ĥ0 (2.2),

Ĥtot = Ĥ0 + Ĥabs =

(
−∇

2

2
+ V̂ (r, t)− iW (r)

)
, (2.68)

the propagated wave function, with the use of the split-operator scheme (2.36), can be

written as

Ψ(r, t+ ∆t) = e−W (r)∆t
2 e−iĤ∆te−W (r)∆t

2 Ψ(r, t) + Ô(∆t3). (2.69)
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The imaginary potential therefore reduces the probability density of the the wave function

at every propagation step, where W (r) > 0. It should be noted, that Ĥtot is not Hermitian,

and the norm is therefore not conserved. For this reason, the normalization cannot be

evaluated for testing the numerical rounding error of the propagation scheme when using

absorbing boundaries.

Several other schemes have been proposed, including the use of a spatially expanding

time-dependent lattice that follows the spreading unbound wave packetsSidky 00,Zhao 02, the

repetitive projection onto bound states or the propagation of a truncated set of Siegert

statesYoshida 99, complex rotationHo 83, and the splitting of the wave function in overlapping

regions at the boundaryKeller 95,Chelkowski 96.

In this work absorbing boundary conditions are adopted, realized by a negative imaginary

optical potential, or equivalently by a masking function, on a lattice stripe around the

grid boundaryKosloff 86,Hussain 00,Poirier 03,Muga 04. While the height of the absorber defines the

largest energy of a wave packet that can effectively be absorbed, following semi-classical

WKB anlysis,the absorption length typically needs to be of the order of the de Broglie

wavelengthGe 98. It has been shown, that the presence of an additional negative real potential

can accelerate the wave packet and thus reduce the de Broglie wave length, such that the

effective absorber length can be reducedHussain 00,Muga 04 over the use of a purely imaginary

absorbing potential.

2.9 Summary

In this chapter a method to solve the time-dependent Schrödinger equation on a numerical

grid was described: The Crank-Nicholson algorithm (Section 2.2) with an overall numerical

error of Ô(∆t3, (∂Ĥ/∂t)∆t2) iteratively performs the time evolution of the wave function.

The operator splitting procedure (Section 2.4) is used to divide a N -dimensional time prop-

agation into a series of simple one-dimensional propagations by symmetric splitting of the

Hamiltonian and thereby preserving the error of Ô(∆t3). The kinetic energy operator is
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evaluated by using a three-point finite difference formula (Section 2.3) and thus discretizes

on the numerical grid to a tridiagonal matrix. The propagation step is then carried out by

solving a one-dimensional tridiagonal system of linear equations (Section 2.5). Since the se-

ries of one-dimensional propagations is decoupled, parallel execution has been implemented

using the commonly available OpenMP standardOpe . Depending on the hardware used –

single processor Intel Pentium vs. dual processor Intel Xeon, a theoretical performance gain

of up to 50% is possible. However, due to the memory bandwidth limitation of the memory

bus, the performance gain was found considerably reduced over the theoretical maximum.

It is obvious that a reduction of the number of grid points used to discretize the operators

and the wave function will increase the computation speed. Scaled coordinates in order to

avoid the use of wave function absorbers, or non-uniform grids could provide such improve-

ments without sacrificing accuracy. The use of optimized complex absorption potentials

rather than purely imaginary absorbers can also reduce the number of grid points needed

for absorption. Alternative propagators, such as short-iterative Lanczos or Chebychev prop-

agation both allow for a larger propagation time step, resulting in smaller numerical effort

at equal accuracy for a time-independent Hamiltonian, but appear less suitable if the Hamil-

tonian changes “quickly” in time, as for the case of a moving projectile or an external laser

field.



Chapter 3

Dichroism in Reduced-Dimensionality
Laser-Assisted Collisions

�Curiosity killed the cat,
but for a while I was a sus-
pect. �

Steven Wright

3.1 Introduction

The study of charge exchange in ion-atom collisions dates back to the beginning of the

last century, when Henderson Henderson 23 experimentally discovered electron capture by α-

particles passing through matter, and was pursued actively over many decadesBransden 92.

More recently, the COLTRIMS techniqueUllrich 97,Dörner 00,Ullrich 03,Maharjan 06 has allowed for

the investigation of the electron dynamics in ion-atom collisions with unprecedented reso-

lution in energy and momentum of the interacting electrons and nuclei. Independently, the

interaction of strong laser fields with atoms, ions or molecules has been addressed in a large

number of experimental and theoretical investigationsProtopapas 97,Brabec 00,Joachain 00,Posthumus 04

over the past two decades. Even though the detailed investigation of laser-assisted heavy

particle collisions may ultimately help in controlling quantum processes on a ultra-short

time scale and in steering chemical reactions into specific reaction channels by adjusting

laser parameters (intensity, wavelength, and pulse shape), the promising combination of

the two research areas, laser-matter interactions and heavy particle collisions, has been the

subject of only a few experiments with crossed heavy particle and laser beams, that are lim-

26
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ited to the study of collisions between laser prepared reactants. For example, Débarre and

Cahuzac Dèbarre 86 observed laser-induced charge exchange between Sr+ and Ba in a mixture

of Strontium and Barium vapors using Nd-YAG lasers with relatively very low intensities up

to 5×108 W/cm2. Grosser et al.Grosser 96 used a continuous beam of Sodium atoms, a pulsed

beam of Krypton atoms, two pulsed laser beams in a pump – probe setupZewail 00, and crossed

all beams in a small interaction volume to study collision reactions between laser-excited

particles. They explained an oscillatory structure in the angular distribution of excited Na

projectiles after collisions with Kr atoms in terms of optical molecular transitions in the

transient NaKr complex.

So far, technical challenges in the generation of sufficiently long and intense laser pulses

and the synchronization of laser pulses within the interaction time interval (typically not

more than 10−13 s in slow ion-atom collisions) have prevented the more detailed experimental

investigation of laser-assisted or laser-controlled charge-exchange reactions in heavy particle

collisions, where the laser actively modifies the reaction dynamics. With the increasing

availability of energetic lasers in atomic collision laboratoriesAlnaser 03,Ullrich 03, it is expected

that laser-induced effects in laser-assisted heavy particle collisions will become observable.

High laser intensities, focussed to relatively large areas and long laser pulse durations will

significantly improve the statistics in laser-assisted collision experiments and are expected

to soon open the door towards more detailed experimental studies that may contribute

substantially to our understanding of laser-controlled chemical reactions.

On the theoretical side, a variety of methods has been applied to the calculation of charge

exchange and electron emission in laser-assisted heavy particle collisions. Li et al.Li 97,Li 02

predicted, within lowest order perturbation theory in the electron nucleus interaction, that

the dressing of atomic levels in an intense laser field leads to a significant modification of

capture and ionization cross sections in fast proton-hydrogen collisions. Voitkiv and Ull-

rich Voitkiv 01a found, also within lowest order perturbation theory in the electron-projectile

interaction, that a linearly polarized laser field can substantially influence the binary-
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encounter electron emission process in fast collisions of α-particles with hydrogen atoms.

Recent studies of Voitkiv et al. focus on the ionization for fast carbon C6+ ions with atomic

hydrogen targets, assisted by a resonant 1s − 2p laser fieldVoitkiv 06. Close coupling calcu-

lations for heavy particle collisions, taking place in a strong laser pulse, were performed

by Madsen et al.Madsen 02 predicting a strong laser-induced modification of the s → p ex-

citation probability in laser-assisted collisions between a protons and hydrogen H(1s) or

sodium Na(3s) atoms in its ground state. Similar to the close coupling scheme above is the

basis generator methodKroneisen 99 developed and used by Tom Kircher, which includes a dy-

namically adapted wave function basis set and has been successful in the description of field

free ion-atom collisions. He found a strong influence of the electron capture and loss proba-

bilities in laser-assisted He2+ – H collisions on the laser wavelength and the initial phase of

the laser electric fieldKirchner 02,Kirchner 04. More recently, he has shown an enhanced electron

capture by protons colliding with Argon and Neon target atomsKirchner 07 – an experimen-

tally more feasible collision setup. In an attempt to obtain enhanced electron capture in α

– hydrogen collisions at moderate laser intensities of 3.5 × 1012 W/cm2, Anis et al. found

an up to five-fold increase over the field-free collisionsAnis 06, and found good agreement

between both, their grid based calculations and the electron-nuclear-dynamics expansion

methodDeumens 94.

Lattice calculations on a three-dimensional cartesian grid for laser-assisted proton col-

lisions with lithium atoms in ground and excited states by Pindzola et al.Pindzola 03 show

a significant modification of the charge-transfer process for moderate laser intensities of

1012 W/cm2. Also within a three-dimensional lattice, Lein and Rost Lein 03 applied a reduced

dimensionality model, solved the Schrödinger equation on a two-dimensional cartesian grid,

and predicted the generation of ultrahigh harmonics of the driving laser frequency in laser-

assisted collisions between 2 keV protons and hydrogen atoms in a linearly polarized laser

pulses of 16 optical cycles, a wavelength of 800 nm, and 1014 W/cm2 intensity.

More work, both experimental and theoretical, has been done for laser-assisted electron
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scattering, but even a structureless projectile constitutes a serious challenge to present

theoriesMason 93,Joachain 00,Cionga 01. The early theory of Kroll and WatsonKroll 73 which only

retained terms to first order in the photon frequency disagrees with the experimental results

of Wallbank and Holmes Wallbank 94. This discrepancy between theory and experiment was

traced to off-shell effects in the long-range polarization part of the electron-atom scattering

potentialJaroń 97. More recently, laser-assisted electron impact ionization of Helium has been

observedHöhr 05 in a strong 4 × 1012 W/cm2, 1064 nm laser field and clear deviations from

the predictions of the first Born approximation were found. Burke, Francken, and Joachain

introduced the non-perturbative R-matrix Floquet methodJoachain 00 which was subsequently

applied to multiphoton ionization, higher harmonic generation, and laser-assisted electron

atom collisions. Electron-ion collisions have recently attracted considerable interest as an

integral part of the re-scattering process, in which non-sequential double ionization of an

atom or molecule is explained in terms of electron impact ionization of one electron by the

laser-driven and re-scattered other electronMoshammer 02,Alnaser 03,Palaniyappan 05.

So far, laser-assisted ion-atom collisions in circularly polarized light have not been investi-

gated. In this chapter a numerical solution of the Schrödinger-equation on a two-dimensional

grid is performed and an optimal laser intensity is found for the observed dichroism in the

electron capture. In the following Chapter 4, a full-dimensional simulation is carried out to

provide total capture cross sections and a measure of the accuracy of the reduced dimen-

sionality calculations. Within the reduced dimensionality model, the electronic motion and

the rotating laser electric field are confined to the scattering plane. For projectiles (protons)

on a classical straight-line trajectory, the dependence of the probabilities for electron loss,

capture, and emission on the intensity and helicity of the laser electric field is studied. Even

though experimental results are expected to differ slightly from the predictions of these two-

dimensional calculations, it is expected that the results are of sufficient accuracy to provide

useful estimates for optimized laser and collision parameters that most clearly display the

effects of a laser pulse on the electronic dynamics in heavy particle collisions. The numerical
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Figure 3.1: Collision scenario for a proton on a straight-line trajectory with impact param-
eter b and velocity v colliding with an atomic hydrogen target. The rotating laser electric
field breaks the azimuthal symmetry: For positive impact parameters, the projectile follows
the rotating laser field (corotating case); for negative impact parameters, the projectile moves
against the rotating electric field (counterrotating case).

results show the strongest influence of the laser electric field on the capture probability at

a laser intensity of 0.001 a.u. (3.5× 1013 W/cm2), i.e. when the laser electric force equals a

few percent of the electrostatic Coulomb force exerted on the active electron by the target

nucleus.

3.2 Potentials

Atomic units (~ = me = e = 1, see Appendix A) are used unless stated otherwise. For the

impact energies considered in this chapter, the nucleus-nucleus interactions can be neglected

and it is assumed that the projectile ion of mass mP moves along a straight-line trajectory

in z-direction,

R(t) = b · ex + v(t− t0)ez, (3.1)

which is characterized by the impact parameter b, the constant velocity v, and the time of

closest approach t0 (Fig. 3.1). It has been shown that the deflection angle of the projectile

for even lower impact velocities is below 14◦ in α – hydrogen collisions and has a negligible
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influence on the charge transferAnis 06.

Taking the location of the target atom as the coordinate origin, two-dimensional soft-core

Coulomb potentials are employed with

V e−

T = − 1√
x2 + z2 + a

(3.2)

and

V e−

P (t) = − 1√
(x− b)2 + (z − v(t− t0))2 + a

(3.3)

to represent the electronic interaction with the target and projectile nucleus, respectively.

The “softening” parameter a = 0.641 regularizes the potentials at the location of the nu-

cleiSu 91,Feuerstein 03a and is adjusted to reproduce the ground state binding energy of atomic

hydrogen.

In dipole approximation, the interaction between the active electron and a monochro-

matic laser electric field of angular frequency ω,

Ex(t) =E0(t) cos(ω(t− t0) + φ) (3.4a)

Ez(t) =εE0(t) sin(ω(t− t0) + φ), (3.4b)

is given by the potential

VL(x, z, t) =Ex(t) · x+ Ez(t) · z (3.5)

(Figure 3.1 and Figure 3.2). The parameter ε ∈ [−1, 1] denotes the ellipticity of the laser

light. The laser collision phase φ determines the direction of the laser electric field at the

time of closest approach t = t0 between the projectile and the target.

For the numerical applications in this work, a circularly polarized laser of positive helicity

(ε = 1) is assumed, corresponding to clockwise rotation of the laser electric field vector in

the zx-plane (Figure 3.1). The wave vector of the incident laser light is directed into the

collision plane in Figure 3.1. The envelope function E0(t) of the laser electric field turns

the laser smoothly on during the time τ and then remains constant, once it has reached the



Chapter 3. Dichroism in Reduced-Dimensionality Laser-Assisted Collisions 32

Figure 3.2: Snapshot of the electronic potential. For negative helicity, the laser electric
field causes a clockwise rotation of the inclined potential plane about the target while the
projectile moves toward the right-rear end along a straight line.

maximum field strength E0,

E0(t) =

{
E0 sin2(π

2
· t

τ
) 0 ≤ t ≤ τ,

E0 t > τ.
(3.6)

It is assumed that the laser ramping time τ is much shorter than t0, i.e. τ � t0, such that

the oscillating electric field is fully turned on before the collision. At the time of closest

approach, the electric field is then given by

Ex = E0 cosφ Ez = E0 sinφ. (3.7)

The sign of the projectile angular momentum relative to the target center of mass,

L = R ×mPv, depends on the sign of the impact parameter. L can be either parallel or

antiparallel to the laser helicity vector. In the first case the projectile moves in the same

direction around the target as the laser electric field. This situation will be adressed as

corotating scenario. Similarly, for the counterrotating scenario, when L and the helicity

vector are antiparallel.
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The collision process in the laser field is symmetrical with respect to the simultaneous

change in sign of helicity and impact parameter. The computations can therefore be limited

to a given helicity while allowing for both, positive and negative impact parameters. In all

calculations a clockwise rotating laser electric field (positive helicity, i.e., ε = 1) is assumed.

For the coordinate system given in Figure 3.1 and for the laser light propagating into the

plane of the figure, co (counter)-rotating collisions occur for positive (negative) impact

parameters.

In order to suppress unphysical reflections of the electronic probability density at the

boundaries of the rectangular numerical grid, absorbing boundaries are employed (see Sec-

tion 2.8). For example, for absorption beyond x0 in +x-direction, this is achieved by ad-

justing the absorber strength s and absorber width xa in the negative imaginary potential

VA(x) =

−i s ·
(

x−x0

x0

)2

x0 < x < x0 + xa

0 otherwise ,
(3.8)

so that the reflected probability flux becomes negligible. The net electronic potential to be

used in wave function propagation is thus given

V (x, z, t) = VT (x, z) + VP (x, z, t) + VL(x, z, t) + VA(x, z) (3.9)

where VA(x, z) models the absorption in all directions in obvious two-dimensional general-

ization of VA(x).

3.3 Wave Function Dynamics

The solution of the time-dependent Schrödinger equation i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 is formally

given by the evolution of the initial wave function Ψ(x, z, t = 0),

Ψ(x, z, t) = T exp[−i
t∫

0

dt′Ĥ(x, z, t′)] Ψ(x, z, 0), (3.10)

with the time-ordering operator T and the Hamiltonian

Ĥ(t) = T̂x + T̂z + V (x, z, t). (3.11)
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T̂x and T̂z are the electronic kinetic energy operators. The numerical propagation of the

Schrödinger equation (3.10) is carried out on a numerical grid using the unconditional sta-

ble Crank-Nicholson split-operator method (see Chapter 2). For a time step ∆t the wave

function (3.10) at time t+ ∆t is recursively given in terms of Ψ(t) by

Ψ(t+ ∆t) ≈ exp[−i Tx
∆t

2
] (3.12)

× exp[−i (Tz + V (x, z, t))∆t]

× exp[−i Tx
∆t

2
] Ψ(t)

Equal grid spacings are chosen in x and z direction with ∆x = ∆z = 0.2. The grid

covers 120 a.u. along the projectile trajectory (z-direction) and has a variable length in x-

direction, depending on the impact parameter, given by 80 + |b|. The absorbing boundaries

are implemented with a width of xa = za = 20 inside the grid boundaries and an absorption

strength of s = 0.01. These absorber parameters produce converged results that do not

differ from those obtained with altered absorbers of twice the absorption width or strength

and show no signs of unphysical reflections at the grid edges.

The laser frequency is fixed in the near infra-red, ω = 0.043, which corresponds to a

wavelength of 1064 nm available from common Nd : YAG lasers. After an initial ramping

time τ = 450 = 10.9 fs the electronic wave function is propagated in the laser field for

550 a.u. = 13.2 fs. A total propagation time in the laser field of tmax = 1000 = 24 fs leads to

converged results for capture and ionization probabilities for all relevant values of b and φ and

for laser intensities between 2.85×10−5 = 1×1012 W/cm2 and 2.85×10−3 = 1×1014 W/cm2.

Time steps of ∆t = 0.1 were found small enough to guarantee the long term accuracy of the

propagation scheme.

At each time step the probability density is integrated over two square boxes of length

20 a.u., centered on the projectile ion and the target nucleus. For larger internuclear dis-

tances, these integrals NT (t) and NP (t) are interpreted as instantaneous electronic charge

states on projectile and target, respectively. At the end of the numerical propagation, at
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time t = tmax, they serve as approximations for the capture and ionization probabilities,

P±
cap(b, φ) = NP (t = tmax) (3.13a)

P±
ion(b, φ) = (1−NP (t = tmax)−NT (t = tmax)). (3.13b)

The superscripts ± distinguish between co (+) and counterrotating (–) collisions. Since

the laser collision phase φ is currently not observable nor experimentally controllable, we

average over φ,

P±
cap(b) =

1

2π

2π∫
0

dφ P±
cap(b, φ) (3.14a)

P±
ion(b) =

1

2π

2π∫
0

dφ P±
ion(b, φ). (3.14b)

It is found for the capture and ionization probability, that the calculation of eight differnet

different laser collision phases (between 0◦ and 315◦ with increments of 45◦) is sufficient.

Values for P±
cap(b, φ) and P±

ion(b, φ) at arbitrary values for φ are obtained by spline inter-

polation. Test calculations using 36 different phases with increments of 10◦ did not reveal

relevant changes in the interpolated probabilities.

Finally, total cross-sections for capture and ionization are obtained by integrating over

the impact parameter b,

σ±cap = 2π

∞∫
0

db b · P±
cap(b) (3.15a)

σ±ion = 2π

∞∫
0

db b · P±
ion(b). (3.15b)

It should be that P±
cap(b, φ) and P±

ion(b, φ) are calculated within a two-dimensional model,

and that effects due to the reduced dimensionality are disregarded in the integration over

b in σ±cap and σ±ion. This issue will be addressed in the following Chapter 4, where a full-

dimensional calculation is performed to obtain the total capture cross-section.
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Figure 3.3: Capture probability as a function of the impact parameter for field-free collisions
of 2 keV protons with hydrogen atoms. Results from independent two-dimensional wave
function propagation calculations: Lein and RostLein 03 (solid curve), present results (dots).

Electron Capture Cross-Section
Energy σTh

cap σExp
cap Difference

(keV) (10−16 cm2) (10−16 cm2)
1 21.87 16.3±18% 34%
2 20.04 13.9±17% 44%

Table 3.1: Comparison of the calculated (reduced dimensionality) total capture cross-
sections for field-free collisions with the experiment of Gealy and Van ZylGealy 87.

3.4 Field Free Results

Reduced dimensionality numerical capture probabilities for field-free proton-hydrogen colli-

sions have been published by Lein and Rost Lein 03. Their results are almost identical with

the field-free capture probabilities presented here (Figure 3.3). Total capture cross-sections

for collisions of 1 − 2 keV protons with atomic hydrogen have been measured by Gealy

and Van Zyl Gealy 87. For 2 keV incident kinetic energy, the presently calculated capture

cross-section is 44% larger than the experimental value. For 1 keV protons it is 34% larger

(Table 3.1).

The difference between the measured and calculated cross sections can be understood
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in terms of a simple overlap argument. Compared to experiment or full-dimensionality cal-

culations, the smaller phase space inherent in reduced-dimensionality calculations increases

the wave function overlap between the interacting projectile and target, thus resulting in

larger calculated cross sections (Table 3.1).

3.5 Circular Polarization

The presence of the laser radiation during the collision process results in an additional de-

pendence of the electronic dynamics on the laser collision phase φ at the time of closest

approach. The results presented here for a fixed impact parameter b = ±4 and laser inten-

sity 5 × 1013 W/cm2 for the capture probability as a function of φ show large amplitude

oscillations and differ from the field-free results most strikingly for φ = 0◦ and 180◦ (Fig-

ure 3.4). They also display a strong dichroism effect, i.e., a substantial difference in the

electron capture probability for positive and negative impact parameters, or, equivalently,

for corotating as compared to counterrotating collisions.

In comparison to the phase-averaged results for the field-free case, it is found that the

capture probabilities in both, co- and counterrotating collisions are considerably reduced.

The ionization probabilities depend less sensitively on φ, and their phase averages (not shown

in Fig. 3.4) differ much less for co- and counterrotating collisions (positive and negative

impact parameters) than the phase-averaged capture probabilities. This tendency of a

weak dichroism in the ionization probability extends to other impact parameters, as will be

discussed below.

3.6 Electron Capture

Starting with the strong dichroism apparent in the capture probability at a fixed impact

parameter b above, Figure 3.5 shows a contour plot of the electron capture probability as a

function of both, the impact parameter and the laser collision phase φ for a laser intensity of

I = 5×1013 W/cm2. The electron capture probability shows maxima at impact parameters
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Figure 3.4: Capture and ionization probability as a function of the laser collision phase φ
at the time of closest approach between projectile and target for 1 keV p–H collisions. The
impact parameter is b = ±4 a.u. and the laser intensity 5 × 1013 W/cm2. Phase-averaged
results for the capture probability differ significantly for co- and counterrotating laser-assisted
collisions.

b = ±2 and b ≈ ±4.0. Similar structures appear for the field-free capture probability

(Figure 3.3). They originate in the large wave function overlap of the corresponding target

and projectile states near the point of closest approach.

With regard to the dependence on the phase of the rotating laser field, the capture

probability shows a strong enhancement at φ = 90◦ and 270◦, when the force exerted by

the laser electric field on the electron at the time t0 of closest approach is either anti-

parallel or parallel to the direction of the projectile motion, respectively (see Figure 3.1 and

note that force and electric field point in opposite directions). For these particular phases,

the field-modified Coulomb potentials of the target and projectile are identical at t0, and

the internuclear axis is momentarily perpendicular to the laser electric field. This implies

perfect energy level matching of field-dressed projectile and target states and explains the

large resonant capture probabilities for φ = 90◦ and 270◦ in Figure 3.5.

To support this interpretation further, the following calculation considers the electron
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Figure 3.5: Electron capture probability in laser-assisted 1 keV p - H collisions for a laser
intensity of 5 × 1013 W/cm2. The contour plots show the probabilities as a function of the
impact parameter b and the laser collision phase φ. The probability difference between con-
secutive contour lines is 0.125. The top panel shows phase-averaged results. For comparison,
the field-free capture probabilities are shown as well (dashed curve).

capture probability for a constant electric field, corresponding in direction and magnitude

to the laser electric field at time t0, with otherwise identical parameters (Figure 3.6). In

this simulation, φ parameterizes the direction of the stationary electric field. It is notable

that this scenario is somewhat unrealistic, since a constant electric field would deflect the

projectile ion and invalidate the assumption of a straight-line projectile trajectory. Interest-

ingly, however, the dependence on the laser electric field direction of the capture probability

in Figure 3.6 compares well with the φ dependence in Figure 3.5, thus adding credibility to

the importance of the energy-level matching between projectile and target states at time t0.

For the laser collision phases φ = 0◦ and 180◦ and positive impact parameters, the laser

force on the electron at time t0 points to the target or to the projectile, respectively (vice
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Figure 3.6: Capture, ionization, and loss probabilities as a function of the impact parameter
and the laser collision phase for the case of a static electric field, corresponding in the
direction and magnitude to the laser electric field at the distance of closest approach.

versa for negative impact parameters). The mismatch of the field-dressed hydrogen energy

levels is largest at the time of closest approach, thus strongly suppressing electron capture

in favor of enhanced ionization for φ = 180◦ at positive impact parameters and for φ = 0◦

at negative impact parameters (Fig. 3.8).

Compared to the laser collision phase of 270◦, Figure 3.5 and Figure 3.6 show a slightly

reduced capture probability at φ = 90◦, when the laser electric force on the electron at t0 is

anti-parallel to the projectile velocity. The target electron loss probability (Figure 3.7 and

Figure 3.6) does not show this asymmetry, and the slightly larger capture probability for

φ = 270◦ appears to be due to the “extra push” the electron receives by the laser force at

t0 in direction of the projectile motion. In contrast, for φ = 90◦, the electron is accelerated

in the opposite direction by the laser force and a little more likely to ionize.

Overall, Figure 3.5 displays that the electron capture probability is strongly suppressed
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Figure 3.7: Electron loss probability in laser-assisted 1 keV p - H collisions for a laser
intensity of 5 × 1013 W/cm2. The contour plots show the probabilities as a function of
the impact parameter b and the laser collision phase φ. The probability difference between
consecutive contour lines is 0.125. The top panel shows phase-averaged results together
with the field-free electron loss probabilities (dashed curve), while the side panel displays the
impact-parameter average as a function of the laser collision phase.

for positive impact parameters, corresponding to corotating collisions, as compared with

negative impact parameters for counterrotating collisions or the field-free electron capture.

Also seen are much broader peaks at φ = 90◦ and 270◦ for the counterrotating case.

If the laser electric field is oriented perpendicular to the internuclear axis, both Coulomb

potentials are identical and electron transfer is most likely. For corotating collisions, the

relative orientation of laser electric field and internuclear axis changes much less rapidly

during the collision time than for counterrotating collisions. At appropriate impact energies

and impact parameters, this relative orientation is maintained throughout the projectile-

target interaction for corotating collisions. During the interaction time, which is of the order
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of one laser cycle, the projectile and target will then form a short-lived quasi-molecule.

In contrast, for counterrotating collisions, the angle between the rotating electric field

of the laser light and the internuclear axis changes rapidly, irrespective of the value of φ.

Level matching of projectile and target states occurs for a wide range of laser collision

phases, but only for a small fraction of the interaction time. However, since the time

scale of the electronic motion (1 a.u.) is about two orders of magnitude faster than a laser

cycle (142.8 a.u.), the transient reflection symmetry of both Coulomb potentials still lasts

long enough to enable noticeable electron transfer. In particular, at the chosen projectile

velocity (v = 0.22) electron transfer to the projectile is relatively likely, while recapture by

the target is suppressed by the rapidly increasing asymmetry between the two laser-modified

Coulomb potentials. Thus, the electron capture is expected to depend most sensitively on

the projectile velocity affecting the interaction time with the target.

For the given projectile speed, this explains the enhancement of capture in counterrotat-

ing collisions. For corotating collisions, the relative orientation of the laser electric field and

the internuclear axis is maintained for approximately half a laser cycle, and the formation

of a transient molecule decreases the probability for the electron to remain in a projectile

state. In agreement with this explanation, a numerical test has shown that the capture

probability in counterrotating collisions is reduced, and the difference between the co- and

counterrotating electron capture becomes much less pronounced if the impact velocity is

doubled (Ekin = 4 keV).

As mentioned earlier, the φ-dependence in laser-assisted capture cross-sections is difficult

to resolve experimentally. Interestingly, however, the clear enhancement of the capture

probability in counter- over corotating collisions remains after averaging over φ (top panel

of Figure 3.5) and may be probed in angle-differential collision experiments, at appropriate

projectile velocities.
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Figure 3.8: Ionization probability in laser-assisted 1 keV p – H collisions for a laser inten-
sity of 5×1013 W/cm2. The contour plots show the probabilities as a function of the impact
parameter b and the laser collision phase φ. The probability difference between consecutive
contour lines is 0.125. The top panel shows phase-averaged results. No noticeable field-free
ionization occurs on the scale of this figure.

3.7 Ionization

The ionization probabilities in Figure 3.8 (and Figure 3.6 for the static field case) show

a broad enhancement near φ = 90◦, when the laser electric force on the electron opposes

the projectile motion, and for impact parameters around b = ±1.5. A less pronounced

enhancement in the ionization probability occurs at b ≈ ±6 (Figure 3.8).

For corotating collisions (positive b) and larger impact parameters, ionization is enhanced

at a laser collision phase of 180◦, while in the counterrotating case a much broader and

weaker peek occurs near φ = 0◦. In both cases the laser force on the electron points towards

the projectile at the time of closest approach (Figure 3.9). This signature of enhanced

ionization in Figure 3.8 at φ = 0◦ and 180◦ corresponds to the known charge-resonance
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Figure 3.9: Illustration of the enhanced ionization process occurring when the projectile
Coulombic potential and the electric field of the laser exert a force on the electron simulta-
neously (right). No enhanced ionization appears when the Coulomb potential of the projectile
does not lower the potential barrier in the ionization direction given by the laser electric field
(left). Resonant enhancement has been predicted for an internuclear separation around 6 a.u.
and 10 a.u.Zuo 95,Bandrauk 99

enhanced ionization mechanism (CREI) during the fragmentation of diatomic molecules in

strong laser fields at larger internuclear distancesSeideman 95,Zuo 95,Bandrauk 99.

The broadening of the ionization peak for counterrotating collisions (negative values

of b) is identical to the corresponding feature in the capture probability discussed earlier.

In the corotating scenario, while near the target, the projectile moves along with the laser

electric field vector. The Coulomb and laser electric force then add to their maximal possible

magnitude for a relatively long time. The time during which a maximal force is exerted on

the electron is much smaller for the counterrotating case. Therefore, in counterrotating

collisions, the CREI peak around φ = 0◦ is weaker and more diffuse than the CREI peak

in corotating collisions at φ = 180◦ (Figure 3.8). Averaging over all laser collision phases

φ removes the dichroism effect almost entirely (top panel in Figure 3.8), and, although the

laser collision phase will not be experimentally controllable in the near future, the distinct

CREI peak might still enable its measurement.
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Figure 3.10: b · Pcap, averaged over the laser collision phase, at different laser intensities
for corotating (positive impact parameter) and counterrotating (negative impact parameters)
collisions.

3.8 Laser Intensity Dependence

Shown in Figure 3.10 are the laser collision phase-averaged results for the weighted electron

capture probability b ·Pcap at different laser intensities for co- and counterrotating collisions.

Noticeable differences between co- and counterrotation appear above the laser intensity of

2 × 1012 W/cm2. The capture probability rapidly decreases above 1 × 1014 W/cm2, when

ionization begins to be the dominating process, but is smaller for all intensities than for

field-free collisions. The relative difference

∆ =
|σ+

cap − σ−cap|
σ+

cap + σ−cap|
(3.16)

in the total electron capture cross section as a function of the laser intensity is shown in

Figure 3.11. The difference in the capture cross section for co- and counterrotating collisions

amounts to maximum of 40% at a laser intensity of 5 × 1013 W/cm2 (Table 3.2). These

differences should be considered as upper limits for the dichroism effect and it is expected

that they will decrease slightly in full three-dimensional calculations, since an added degree

of freedom no longer limits the electronic motion to the plane in which the laser field rotates.
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Intensity Electron Capture Cross-Section
(W/cm2) corotating counterrotating

0 78.08 78.08
1 · 1012 72.67 76.47
5 · 1012 57.85 70.41
1 · 1013 47.53 64.52
5 · 1013 26.18 43.74
1 · 1014 4.97 7.63

Table 3.2: Comparison of the total capture cross-section for corotating and counterrotating
collisions at different laser intensities.

Figure 3.11: Total electron capture cross-sections as a function of the laser intensity for
co- and counterrotating collisions. Also shown is the relative difference ∆ (3.16), which is
largest at a laser intensity of 5× 1013 W/cm2.

The results in Figure 3.11 relate to total cross sections only. Experimentally, scattering-

angle differential cross sections (and P (b)) can be measured either directly, by detecting the

projectile scattering angle, or indirectly, by observing the recoil direction of the target. For

scattering angles that correspond to impact parameters with the largest circular dichroism

in P (b), the dichroism effect is more pronounced in differential cross sections than in total

cross sections (cf. Fig. 3.5).



Chapter 4

Capture and Ionization in
Laser-Assisted Proton – Hydrogen
Collisions

�An expert is a person who
has made all the mistakes
that can be made in a very
narrow field. �

Niels Bohr

4.1 Motivation

Driven by laser systems with increasing intensities and improving control and refined tech-

niques for the momentum-resolved detection of ions, atoms, and photo-emitted electrons,

interactions of intense laser fields with atoms and molecules continue to attract atten-

tionProtopapas 97,Brabec 00,Joachain 00,Posthumus 04. Ever since the invention of the laser, the chal-

lenge to efficiently control chemical reaction pathways with laser light has remained attrac-

tive for both fundamental and applied reasons. Electron emission and transfer processes have

been studied in ion-atom collisions for many decades and have significantly contributed to

our understanding of electronic dynamics in complex, three- (or more) body Coulomb sys-

tems. However, the theoretical consideration of laser-assisted ion-atom collisions, in which

charge transfer and ionization processes of an ordinary collision reaction are modified due

to the presence of an intense external electromagnetic field, has emerged only very recently

(seeVoitkiv 01b,Madsen 02,Li 02,Pindzola 03,Lein 03,Niederhausen 06,Anis 06,Kirchner 07 and references therein)

as a new line of research that promises to combine the benefits of atomic collision stud-

47
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ies (e.g., the improved understanding of chemical reactions) and laser physics (control). It

has been shown theoretically, that the proper choice of the laser parameters leads to sig-

nificantly enhanced electron capture in asymmetric collisionsKirchner 04,Anis 06,Kirchner 07, the

modification of ionization probabilitiesLi 02, the ponderomotively shifted emission of binary-

encounter electrons in fast collisionsVoitkiv 01b, and the generation of ultra-high harmonics of

the fundamental laser frequencyLein 03.

While laser-assisted electron-atom collisionsMason 93,Ehlotzky 98,Joachain 00,Höhr 05 have been

investigated theoretically and experimentally for more than one decade, so far no experi-

ments were carried out for strong-field-assisted ion-atom encounters. This is due to the chal-

lenging task of intersecting – in space and time – a strong laser pulse with the ion-atom inter-

action, while discriminating the laser-assisted events from the field-free collisions. However,

recently improved momentum spectroscopy methodsDörner 00,Ullrich 03 in combination with

currently being developed pico-pulsed ion beamsCarnes 06 and new experiments with ns ion

beamsFeuerstein 06 may soon provide experimental data. Theoretically, laser-assisted collisions

have been described within basis-set expansions (atomic two-state approximationsFerrante 81,

and adaptive basis generator calculationsKirchner 04), perturbative calculationsLi 02, and grid-

based methodsPindzola 03,Lein 03,Niederhausen 04b,Niederhausen 06,Anis 06.

4.2 Theoretical Method

In the present chapter the laser-assisted collision between a 1.21 keV proton and an atomic

hydrogen target, exposed to a circularly polarized laser field of 5 × 1013 W/cm2 intensity

(Figure 4.1) is investigated in full dimensionality. A brief summary of the theory in Chapter 3

is presented below with the focus on the differences with respect to the previous reduced

dimensionality model. The presence of the laser breaks the cylindrical symmetry of the

p+H(1s) collisions and allows one to distinguish the following three special cases:

� corotating collisions, where the impact angle α (see Figure 4.1) is zero, and the angular

momentum of the projectile L = R ×mpv, is parallel to the helicity vector h of the
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Figure 4.1: Scenario of the collision between a moving proton and a hydrogen atom, char-
acterized by the impact parameter b and the angle α with the xz-plane in which the laser
electric field rotates. The overall laser collision phase φ = φ(t0) is the direction of the
electric field at the time t = t0 of closest approach.

laser (in other words, the projectile rotation around the target nucleus follows the

same direction as the rotating laser-electric field),

� counterrotating collisions with α = 180◦ where L and h are anti-parallel (referring to

a rotation of the projectile around the target in opposite direction as the rotation of

the laser-electric field), and in contrast to Chapter 3,

� off-plane collisions with α = ±90◦ where the internuclear axis is perpendicular to the

plane of the laser-electric field at the time of closest approach.

In the length form and in dipole approximation for the electric field, the Hamiltonian for

the collision system reads

Ĥ (t) = −1

2
∇2 − 1

r
− 1

|r−R (t) |
+ r · E (t) , (4.1)

where R (t) = (b cosα, b sinα, vt) denotes the projectile trajectory in straight-line approxi-

mation with projectile velocity v, impact parameter b, and impact angle α relative to the
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xz-plane. Atomic units (see Appendix A) are used throughout this chapter unless stated

otherwise.

The circularly polarized electric field of the laser radiation is confined to the xz-plane,

E (t) = E0 (t) (cos [ωt+ φ] , 0, sin [ωt+ φ]) . (4.2)

E0 (t) is the envelope function and φ the laser collision phase at the time (t = 0) of closest

approach between the projectile and the target. It is assumed that the laser pulse has been

ramped adiabatically to the constant electric field amplitude E0 long before the collision

takes place.

The time-dependent Schrödinger equation is solved on a three-dimensional lattice, using

the Crank-Nicholson propagation scheme (see Chapter 2). Equal grid spacings are used in

all three coordinate directions ∆x = ∆y = ∆z = 0.25 for a numerical grid that covers 80 a.u.

in z-direction and a length of at least 60 a.u. in x and y-direction, adjusted depending on the

value of the impact parameter (vector) b. An absorbing optical potential (see Section 2.8) is

employed to suppress non-physical effects due to reflections of the electronic wave function

at the grid boundaries, identical as in the previous Section 3.2. A small “soft-core” to

the nuclear potential is introduced that, in contrast to the reduced dimensionality model

in Chapter 3, is not used for adjusting the binding energy but to avoid the Coulomb-

singularities at the nuclei. This is implemented by truncating the electronic potential below

a certain threshold, −1/(2∆x) where ∆x is the uniform grid spacing, thus affecting at most

one single grid point of the ion potential. The approach is different from the softening-

parameter a introduced in (3.2) and (3.3), as the exact analytical value for the three-

dimensional calculation is of course a = 0 in order to reproduce the binding energy, but is

certainly easier to use than avoiding the Coulomb singularity by adjusting the trajectory to

move between grid pointsPindzola 03,Anis 06. The resulting binding energy is found within 5%

above the correct value E0 = −0.5 a.u. for the grid used in the calculations of this chapter.
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Figure 4.2: Comparison of the weighted electron capture probabilities b · Pcap with-
out the presence of a laser field as a function of the impact parameter b for the cur-
rent three-dimensional calculationNiederhausen 06 (black line), the simplified two-dimensional
modelNiederhausen 04b (red line) and the END calculation by Killian et al.Killian 04 (blue line).
Shown in the inset is the measured total electron capture cross section by Gealy and
Van ZylGealy 87 as a function of the projectile energy as well as the theoretical prediction
of the three methods above (red dots).

Source σtot (10−15 cm2)

3D gridNiederhausen 06 19.0
2D modelNiederhausen 04b 21.9
END methodKillian 04 16.3

experimentGealy 87 15.6±18%

Table 4.1: Comparison of the total capture cross-sections for field-free collisions. Results
for 3D and 2D grid calculations, basis-set (END) calculations, and experimental data.

4.3 Field Free Collisions

The numerical scheme was tested for field-free collisions and total (angle-integrated) capture

cross sections,

σtot
cap =

∞∫
0

db bPcap(b), (4.3)
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were found in agreement with experimental dataGealy 87. In comparison with the electron –

nuclear dynamics approach (END) by Killian et al.Killian 04, the present b-dependent capture

probabilities are in fair agreement but tend to be shifted towards larger impact parameters

(Figure 4.2). The full three-dimensional calculations lead to about 15% smaller total capture

cross sections than previous two-dimensional reduced dimensionality resultsNiederhausen 04b

(Chapter 3) and therefore constitute a significant quantitative improvement (Table 4.1).

4.4 Field Assisted Collisions

For the laser-assisted calculations, the wavelength 1064 nm of a Nd:YAG laser is used,

corresponding to the frequency ω = 0.044. For a typical impact parameter of b = 1,

Figure 4.3 shows the dependence of the electron capture probability on the laser collision

phase φ at the time of closest approach. Maxima appear at φ = 90◦ and φ = 270◦, when

the force of the laser electric field at the time of closest approach is either parallel or

antiparallel to the motion of the projectile. This agrees with an energy matching argument

found previously in Section 3.6: Resonant capture occurs predominantly, when the electronic

energies of the laser-dressed projectile and target states are identical, i.e., when the laser-

electric field vector is oriented perpendicularly to the internuclear axis. Clearly, the time

interval during which level matching near the point of closest approach can approximately

be maintained, allowing for resonant transitions between the symmetric nuclei potentials, is

larger for corotating than for counterrotating collisions. For the projectile speed and impact

parameter in Figure 4.3, the collision time is of the order of half a laser cycle (≈71.4 a.u.),

while the electronic time scale is about two orders of magnitude faster (≈1 a.u.). This

enables the transient formation of a molecular state, even for counterrotating collisions

where the matching condition only holds for a small fraction of one laser cycle. In contrast,

for corotating collisions, level matching is maintained much longer and for approximately

one half of a laser cycle. For the given parameters this favors recapture by the target and

explains that the capture cross sections in Figure 4.3 are smaller for corotating collisions.
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Figure 4.3: Laser collision phase dependence of the electron capture and ionization proba-
bility at fixed impact parameter b = 1 for three different impact angles α. Also shown is the
field-free capture probability. The field-free ionization probability is negligible.

The phase dependence of the electron capture probability near φ = 90◦ is broadened for

counterrotating as compared with off-plane collisions at α = ±90◦. For corotating collisions,

in contrast, the capture probability changes faster near φ = 90◦ than for α = ±90◦ off-plane

collisions.

For b = 1, the ionization probability has a maximum at φ = 90◦ (Figure 4.3). At

this laser collision phase, the laser electric force FL(t = 0) on the electron at the time of

closest approach is anti-parallel to the projectile velocity v, thereby reducing the chance for

electron capture and recapture. In contrast, near φ = 270◦, FL(t ≈ 0) is nearly parallel to

v and facilitates capture. This effect explains relatively small ionization and large capture

probabilities near φ = 270◦.

4.5 Electron Capture

In Figure 4.4 the dependence of the electron capture probability on both the impact pa-

rameter b and the laser collision phase φ is shown for the five cases: corotating with α = 0◦

(Figure 4.4(a)) and α = ±45◦ (Figure 4.4(b)), off-plane with α = ±90◦ (Figure 4.4(c)) and
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Figure 4.4: Contour plots of the electron capture probability as a function of the impact
parameter and laser collision phase for different tilt angles α between the laser and the
collision plane. (a) corotating collision with α = 0◦, (b) corotating collision with α = ±45◦,
(c) off-plane with α = ±90◦, (d) counterrotating with α = ±135◦ and (e) counterrotating
with α = 180◦.

counterrotating collisions with α = ±135◦ (Figure 4.4(d)) and α = 180◦ (Figure 4.4(e)).

The graphs exhibit the features discussed above for fixed impact parameters, namely en-

hanced capture at laser collision phases of φ = 90◦ and φ = 270◦. The capture probability

at φ = 270◦ is slightly larger than at φ = 90◦ due to stronger ionization in the later case.

Furthermore, the capture probability is enhanced for the counterrotating collision as com-

pared to the corotating scenario. While for b ≤ 3 the off-plane capture probabilities with

α± 90 lie in general somewhere in between the co- and counterrotating results, the electron

capture probabilities at larger distances (b > 3) become closer to the field-free values, and

the laser collision phase dependence nearly disappears (Figure 4.4(c)).

Since the dependence on the laser collision phase φ cannot yet be controlled experimen-
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Figure 4.5: Phase-averaged capture probabilities as a function of the impact parameter b
for corotating (α = 0◦ and ±45◦), off-plane (α = ±90◦) and counterrotating collisions
(α = ±135◦ and 180◦). For comparison the field-free capture probabilities are shown as well.

tally, the capture probability Pcap is averaged over all possible laser collision phases to obtain

the phase-averaged capture probability,

P̄cap(b, α) =
1

2π

2π∫
0

dφPcap(b, φ, α), (4.4)

shown in Figure 4.5. For most impact parameters, the phase-averaged electron capture

probability is larger for counterrotating than for corotating collisions, and noticeably smaller

than for the field-free capture. For large impact parameters, the phase-averaged off-plane

capture probabilities are significantly larger than for both co- and counterrotating collisions,

and get closer to the field-free results.

It is found that the dependence of capture and ionization probabilities on the impact

angle is rather smooth, such that no more than five different values α ∈ [0, 180◦] need

to be evaluated for the integration over b db dα to yield sufficiently accurate total cross

sections. By limiting the range of impact-vector orientations, the total capture cross section
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α 0◦ ±90◦ 180◦

2D model 26.2 43.7
3D (fixed α) 26.3 63.4 40.5

3D 44.9 51.9

Table 4.2: Comparison of total laser-assisted capture cross-sections for co-, counterrotating,
and off-plane collisions (see text).

is partitioned,

σcap =

αmax∫
αmin

dα

∞∫
0

db bP̄cap(b, α) (4.5)

with αmin = 0◦, αmax = 360◦, into co- and counterrotating contributions, σco
cap and σcounter

cap ,

by selecting αmin = −90◦, αmax = 90◦ and αmin = 90◦, αmax = 270◦, respectively. It

obviously follows that the total cross section σcap = σco
cap + σcounter

cap is the sum of the co- and

counterrotating half spaces. It is found that the contribution of counterrotating collisions

is larger by
σcounter

cap − σco
cap

σcap

= 7.3%, (4.6)

as seen in the last line of Table 4.2. Also shown in Table 4.2 are total cross sections from

the previous two-dimensional modelNiederhausen 04b (Chapter 3), which neglects all off-plane

contributions. The second row of Table 4.2 includes results for the full three-dimensional

calculation where, however, only projectile trajectories with a fixed value for α are included

in (4.5). Strikingly, for the reduced-dimensionality model (first row), the integrated in-plane

cross sections do not differ significantly from full dimensionality “fixed-α” cross sections

(second row), where the projectile moves in the plane of the laser-electric field, i.e., where

α = 0◦ or 180◦ for corotating or counterrotating collisions, respectively. Thus for co- and

counterrotating collisions the two-dimensional model simulates three-dimensional results for

trajectories with α = 0◦ and 180◦ surprisingly well. A quantitative analysis, however, still

requires the full three-dimensional calculation, i.e., the addition of off-plane trajectories

(third row) for the cross-sections.
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Figure 4.6: Contour plots of the ionization probability as a function of the impact parameter
and the laser collision phase for corotating, off-plane with α = ±90◦, and counterrotating
collisions. Also shown are the phase-averaged results for the ionization for the three selected
tilt angles α between the laser and collision plane.

4.6 Ionization

The ionization probability in Figure 4.6 shows two main features:

� A maximum at b ≈ 1 and a laser collision phase φ = 90◦, when the laser-electric field

asserts an electric force on the electron in opposite direction to the projectile motion,

and

� weak evidence for charge-resonant-enhanced ionization at b ≈ ±6 and φ ≈ 180◦ for

corotating collisions (and a much broader and even weaker peak at φ ≈ 0◦ for coun-

terrotating collisions).

After phase-averaging, the ionization probability does not reveal a significant α-dependence

or dichroism-effect as in the capture probability (Figure 4.6). Interestingly, the enhancement

of the ionization at the classical Bohr-radius b = 1 is due to a combined effect of the
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collision and the laser field. The field-free ionization probability for 0 < b < 7 is very small

(below 0.07) and cannot be distinguished from zero on the scale of Figure 4.6. Similarly, no

significant ionization occurs for the interaction of the laser field with the target atom alone.

However, due to the laser-electric field, the phase-averaged ionization probability increases

dramatically and shows a pronounced maximum at b = 1. As a tentative explanation, a two-

step process is suggested, where the collision promotes the electron into an excited target

state, which subsequently gets ionized by absorbing a few photons from the laser-field.



Chapter 5

Controlled vibrational quenching of
nuclear wave packets in D+

2

�Why are things as they are
and not otherwise? �

Johannes Kepler

5.1 Motivation

Enabled by significant advances in the technology of generating ultra–short and intense laser

pulses over the past two decades, the nuclear dynamics in molecules has become observable

in the time–domainPosthumus 04,Stolow 04,Alnaser 04,Hertel 06,Lin 06. In particular, the motion of vi-

brational and rotational wave packets in small diatomic molecules can now be observed at

a time scale of 10 fs and below, i.e., at and below the molecules’ natural vibrational and

rotational time scalesStapelfeldt 98,Litvinyuk 03,Ergler 06b,Rudenko 06.

In typical pump–probe experimentsErgler 06b,Rudenko 06, the fast ionization of neutral D2

molecules in an intense femtosecond pump laser pulse leads to the formation of molecular

ions in a coherent superposition of excited rotational and vibrational states, i.e., to a mov-

ing nuclear (ro–) vibrational wave packet. Once launched, these wave packets propagate in

the lowest 1sσg adiabatic potential curve of the molecular ion. The anharmonicity of this

potential curve entails the rapid dephasing of the wave packet’s vibrational state compo-

nents within a few vibrational periods TD+
2
≈ 24 fs of the initial wave packetErgler 06b. This

leads to the eventual collapse of the nuclear wave packet, which has been predicted theo-

59
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reticallyFeuerstein 03b and recently confirmed experimentallyErgler 06b,Rudenko 06,McKenna 07. This

collapse is – many vibrational periods later – followed by quarter (after ≈ 280 fs) and half

revivals (after ≈ 560 fs)Robinett 04, indicating a localized periodic motion of the wave packet

as the vibrational states interfere in-phase again.

Going beyond the observation of the nuclear dynamics, possibly making an important

contribution towards the overarching goal of achieving coherent control in chemical re-

actionsHertel 06,Brixner 04, Niikura et al.Niikura 04,Niikura 06 addressed the possibility of actively

controlling the motion of vibrational wave packets by one additional short laser pulse. Us-

ing an intense “control” laser of relatively long pulse duration as compared to the present

study, they investigated the controlled cooling, heating, and vibrational quenching into the

vibrational ground stateNiikura 04. More recently, the same group measured a strong increase

of the dissociation yield of D+
2 by applying a 8 fs control laser pulse when the vibrational

wave packet is near its outer classical turning pointNiikura 06.

The idea of applying one (or several) control pulse(s) to a vibrational wave packet in the

hydrogen molecular ion or its isotopes is the starting point for this chapter. A scheme of

the pump – control – probe setup is shown for D+
2 ion in Figure 5.1. It will be demonstrated

that an appropriately delayed control pulse with respect to the pump pulse can modify the

quantum dynamics of a nuclear wave packet by stimulating Raman transitions that alter the

vibrational state composition of the wave packet in a controlled way, and that this control

can be systematically improved by replacing a single control pulse with a carefully timed

sequence of two or more short control pulses. In particular, it is found that through the

appropriate choice of the control pulse parameters (delay, duration, and peak intensity), a

given lower excited stationary vibrational state can be selected. The quality of this Raman–

control mechanism can be tested experimentally by fragmenting the molecular ion with an

intense probe pulse and by identifying the nodal structure of the surviving vibrational state

in the kinetic energy release spectrum of the molecular fragments. The combined population

and probing of a specific vibrational state points to a possibility for imprinting and retaining
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Figure 5.1: Schematic diagram showing the ionization of D2(ν = 0) by a pump pulse,
followed by the modification of the vibrational wave packet on the D+

2 1sσg potential curve
by a control pulse, and the final destructive analysis through Coulomb explosion imaging by
a probe pulse.

information in the nuclear wave function using a three (or more) laser pulse setup.

5.2 Theoretical Model

Starting with neutral D2 molecules in their vibrational and electronic ground state, given

by the product wave function χD2
ν=0(R)ψ0(r1, r2), the generation of the D+

2 vibrational wave

packet is modeled by tunnel ionization in a short intense pump pulse of 6 fs (FWHM) and

1 × 1014 W/cm2 peak laser intensity. In Born–Oppenheimer approximation the ionization

can be treated as instantaneous, while the nuclei are fixed, since the time scale for the nuclear

vibrations is two orders of magnitude slower than the electronic motion. This decoupling

of the electronic from the nuclear wave function leads to a vertical transition from the

D2 to the D+
2 potential curve at fixed internuclear distance R, known as Franck–Condon

principle Bransden 03, illustrated in Figure 5.2. In this approximation, the transition from the
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Figure 5.2: Illustration of the instantaneous Franck–Condon transition from the D2 ground
electronic state to the D+

2 potential curve, while the nuclear wave packet remains unchanged.
The dotted line shows the ADK–based ionization rate at an electric field strength of 2.75×
1010 V/m leading to a deviation from the vibrational distribution of the D+

2 levels from the
Franck–Condon model.

vibrational state ν in D2 to the vibrational state ν ′ in D+
2 is given by the Franck-Condon

factors

fν′,ν =

∞∫
0

χ
D+

2

ν′

∗
(R)χD2

ν (R)dR. (5.1)

Because of the rapid increase of the molecular ionization rateSaenz 00 with the internu-

clear distance R, shown by the dotted line in Figure 5.2, the applicability of the Franck–

Condon approximation is questionable and known to generate a vibrational state distribu-

tion {χD+
2

ν } of the molecular ion that overestimates the population of higher excited vibra-

tional statesUrbain 04. The Franck–Condon factors (5.1) need to be modified accordingly to

approximately account for the R–dependent transition,

fν′,ν =

∞∫
0

χ
D+

2

ν′

∗
(R)
√
γ(R)χD2

ν (R)dR, (5.2)

where γ(R) is the R-dependent ionization probabilityPosthumus 04. As a result, the relative
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occupation of vibrational levels in the D+
2 becomes laser–intensity dependentUrbain 04, with

a shift towards a larger occupation of the lower vibrational states. In addition, the R–

dependent ionization rate predominately depletes the nuclear wave packet of the neutral

molecule at larger values of R, thereby creating an oscillating nuclear wave packet on the

D2 potential curve, termed by the German word for hole–burning, “Lochfraß”Goll 06,Ergler 06a.

In this work, however, only the vibrational motion of the nuclei on the ionized D+
2 potential

curves is considered.

The ionization of the neutral ground state molecular ion is modeled in terms of the molec-

ular Ammosov-Delone-Krainov (ADK) tunneling ionization rate ΓADK(R,E) that depends

on the peak electric field strength E of the pump laser and the internuclear separation R.

A rate formula for the ΓADK(R,E) is given by Brichta et al.Brichta 06:

ΓADK(R,E) =

(
3e

π

)3/2
κ(R)9/2

Z5/2

(
4eκ(R)4

Z|E|

)2Z/κ(R)−3/2

exp

(
−2κ(R)3

3|E|

)
, (5.3)

where e = 2.718 is the Euler constant, Z = 2 the charge after the ionization step, and κ(R)

is given by

κ(R) =

√
2
(
VD+

2 1sσg
(R)− VD2(R)

)
. (5.4)

This rate is based on the original rate for tunneling ionization of (one–electron) atoms in a

static electric fieldAmmosov 86 and owes its dependence on R to the implicit generalization of

the atomic ionization potential to the vertical (at a given value of R) energy gap between

the adiabatic energy of the neutral diatomic molecule and its daughter molecular ion in their

respective ground electronic states in κ(R). Even though ΓADK(R,E) does not depend on

the molecular orientation relative to the electric field vector E of the pump laser, for single

ionization of H2 molecules that are perpendicularly oriented to E, the isotropic rate leads

to good agreement with the measured relative population of vibrational excited states in

the H+
2 isotopeUrbain 04. It should be noted that for arbitrary orientation of the molecule

relative to the laser electric field, orientation dependent molecular ADK ratesTong 02 would

produce more accurate results. However, since the molecular orientation can be determined
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experimentallyAlnaser 04, for the purpose of this investigation, the orientation dependence of

molecular ionization is disregarded.

The depletion of the initial vibrational ground state wave packet of the neutral D2

molecule is calculated for a short 6 fs pump pulse of 1 × 1014 W/cm2 intensity at 800 nm

wavelength available from common Ti:S lasers,

χD2
pump(R) = χD2

ν=0(R) exp

− ∞∫
−∞

ΓADK(R,E(t))

2
dt

 . (5.5)

The function κ(R) in (5.4) is obtained by using the hydrogenic ground state nuclear

potential curve VD2(R) for the H2 or D2 neutral molecule from the calculations by Ko los and

Wolniewicz Ko los 64,Ko los 65,Wolniewicz 93, and the binding ground state molecular ion potential

VD+
2 1sσg

(R) from Bates et al.Bates 53. The normalized initial wave packet on the D+
2 potential

curve is then approximated by the difference between the ADK-depleted and the initial

nuclear wave function on the neutral molecular potential curve,

χ
D+

2
initial(R, t = 0) =

χD2
ν=0(R)− χD2

pump(R)∥∥χD2
ν=0(R)− χD2

pump(R)
∥∥ . (5.6)

In comparison, the Franck–Condon approximation assumes complete depletion of the neutral

molecule leading to an initial wave packet on the upper potential curve of

χ
D+

2
Franck−Condon

initial

(R, t = 0) = χD2
ν=0(R). (5.7)

For the time evolution of χ
D+

2
initial(R, t) it is assumed that the wave packet is launched

at the peak of the pump laser pulse, thereby defining the time t = 0 and the start of the

molecular clockAlnaser 04. The field-free time-dependence of the nuclear wave packet is given

by the decomposition into vibrational eigenstates χ
D+

2
ν (R),

χ
D+

2
initial(R, t) =

∑
ν

aνχ
D+

2
ν (R)e−iEνt, (5.8)

where the coefficients aν are obtained by projecting χ
D+

2
initial(R) onto the known eigenstates

χ
D+

2
ν (which are obtained from diagonalizing the Hamiltonian of the D+

2 1sσg channel),

aν =
〈
χD+

2
ν (R)|χD+

2
initial(R)

〉
. (5.9)
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Without further illumination by a laser pulse, the coefficients aν are time independent, while

the wave packet propagating on the D+
2 1sσg potential curve would undergo cycles of dephas-

ing and revivalsFeuerstein 03b,Robinett 04,Ergler 06b,Rudenko 06 due to different phase accumulations

of the vibrational decomposition. However, the influence of one (or more) short and intense

control pulses at variable delay times changes the shape of the wave packet χD+
2 (R, t) by

altering the vibrational amplitudes {|aν |} due to Raman transitions and dissociation.

Allowing for Raman transitions between the two lowest adiabatic potential curves in D+
2 ,

a two–state model is adopted for the propagation of the nuclear wave packet on the 1sσg

and 2pσu potential curves (unless stated otherwise atomic units are used),

i
d

dt

∣∣∣∣ χg

χu

〉
=
(
T̂ + V̂ + Ĥc

) ∣∣∣∣ χg

χu

〉
(5.10)

where the initial conditions for the nuclear wave packet components on the D+
2 potential

curves of gerade and ungerade symmetry are given by

χg(R, t = 0) = χ
D+

2
initial(R) (5.11)

χu(R, t = 0) = 0. (5.12)

The kinetic energy operator T̂ = p̂2/(2µ) includes the reduced mass µ = 1835 of the two

nuclei. The adiabatic electronic potential curves 1sσg and 2pσu of D+
2 by Bates et al.Bates 53

form the diagonal elements of the potential

V̂ =

(
Vg(R) 0

0 Vu(R)

)
. (5.13)

The dipole coupling between the gerade and ungerade potential curves in D+
2 , induced by

one (or several) control pulses, is included in the off–diagonal elements of the coupling oper-

ator Ĥc and depends on the electronic dipole moment between the two adiabatic electronic

states (ψg and ψu) dgu(R) = 〈ψu |z|ψg〉 and the control laser electric field E(t),

Ĥc =

(
− i

2
Γg(R) dgu(R)E

dgu(R)E − i
2
Γu(R)

)
. (5.14)

The dipole couplings dgu(R) have been taken from the literatureKulander 96. Included in the

diagonal elements of Ĥc are the isotropic R-dependent molecular ADK ratesBrichta 06 Γg(R)
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and Γu(R) for the ionization of D+
2 similar as in (5.3) in order to account for Coulomb

explosion during the control pulse(s). The time propagation is carried out by solving the

time dependent Schrödinger equation (5.10) on a numerical grid, using the split–operator

Crank–Nicholson scheme (see Chapter 2). The numerical grid in R extends from 0.05 to 30

with a spacing of 0.05, and a time step ∆t = 1 for the nuclear motion is used. A quadratic

optical potential Vopt.(R) = −iW (R) (see Section 2.8) with

W (R) =

{
0 R < 20

0.01
(

R−20
10

)2
R ≥ 20,

(5.15)

has been introduced at the outer grid end to avoid reflections, covering a width of 10 a.u..

The probability Pν(t) = |aν(t)|2 for finding the system at time t > 0 in the ν–th vi-

brational eigenstate is calculated as the quantum mechanical overlap of the bound wave

function χg(R, t) with the known eigenfunctions χ
D+

2
ν (R) of the 1sσg curve (obtained by

diagonalization of the Hamiltonian T̂ + V̂g),

Pν(t) = |aν(t)|2 =
∣∣∣〈χD+

2
ν |χg(t)

〉∣∣∣2 . (5.16)

5.3 Vibrational Revivals

As a preliminary test of the propagation, the nuclear wave function revivals of the D+
2

molecular ion are calculated. Figure 5.3(a) shows the coherent motion of the nuclear wave

packet following a vertical Franck-Condon transition from the D2 ground state, reproducing

previous calculations by Feuerstein and Thumm Feuerstein 03b. The 〈R〉 expectation value

shows a few oscillations before the nuclear wave packet collapses due to the anharmonicity

of the potential, followed by a partial revival seen around t = 560 fs. The revival position

is estimated from Figure 5.3 by taking the inner turning point of the wave packet at the

approximate center of the revival structure. A weak indication for a quarter revival with the

double oscillation frequencyRobinett 04 at t = 290 fs is also visible in the plotted probability

density of the wave function.



Chapter 5. Controlled vibrational quenching of nuclear wave packets in D+
2 67

Figure 5.3: Evolution of the wave function probability density for the D+
2 nuclear wave

packet in logarithmic scale. The black line in (a) – (c) shows the 〈R〉 expectation value.
The initial wave packet is a (a) Franck–Condon distribution, (b) and (c) ADK ionization
weighted wave packet for a 6 fs, 3× 1014 W/cm2, pump pulse, (c) with an additional 50 fs,
3 × 1013 W/cm2 pedestal of the pump pulse centered at t = 0. Panel (d) shows the recon-
structed distribution of the wave packet probability density as a function of R and the pump
probe delay following Coulomb’s law for the mapping of the kinetic energy release to the
internuclear distance by Ergler et al.Ergler 06b,Ergler 06c for a pump pulse as in (b).

The time evolution of the nuclear density can be obtained in great detail by applying

sub–fs probe pulses in a pump – probe setup from mapping the kinetic energy release on the

Coulomb–explosion 1/R curveTong 06. The kinetic energy release measures the sum of kinetic

energy and Coulomb energy at the moment of explosion for the particles, but is largely

dominated by the Coulomb part, as the kinetic energy for the bound states is rather small.

This allows the for the approximate energy – position mappingFeuerstein 03a by neglecting the

kinetic energy of the wave packet at the time of the ionization and using Coulomb’s law

for the reconstruction of the nuclear wave function probability density. The experimental

observation by Ergler et al.Ergler 06b,Ergler 06c is shown in Figure 5.3(d). The time–resolution is
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limited as they employ 7 fs probe pulses, which is consistent with the reconstructed resolution

predicted by Lin et al.Lin 06. Apart from the good qualitative agreement between experiment

and theory, a shift in the revival position is clearly noticeable. While the predicted position

of the half–revival using a Franck–Condon initial state is around 560 fs, the experimental

findings suggest a revival around 520 fs.

To address this discrepancy, Figure 5.3(b) shows the evolution of the nuclear density

for an improved initial wave packet (5.6), obtained from the R–dependent ionization of the

neutral molecule in the pump pulse. The parameters of the pump pulse (6 fs, 800 nm,

3×1014 W/cm2) are identical with the experimentErgler 06b. The shift of the revival position

towards smaller times is evident, but at around 540 fs slightly above the experimental value.

So far it was assumed, that the nuclear wave packet on the 1sσg potential curve is

created instantaneously at the center of the pump pulse and propagates field–free thereafter.

Including the remaining 3 fs tail of the electric field of the pump pulse in the calculations,

thereby coupling the nuclear wave function with the 2pσu channel, did not reveal a different

revival position. That is because the dipole coupling to the upper potential curve is weak at

the inner turning point where the wave packet starts, and with an oscillation period of 24 fs

the wave packet does not move significantly in the 1sσg curve during the remaining few fs of

the pump pulse. As a possible explanation for the additional shift of the revival position, a

longer background pedestal of the pump pulse is suggested: Figure 5.3(c) demonstrates good

quantitative agreement with the experimental positions of the half and quarter revivals, if

a long 50 fs pedestal of the pump pulse at 10% of the peak intensity is used.

5.4 One Control Pulse

In this numerical application, the influence of a single control pulse is investigated. For a

6 fs pulse with 1 × 1014 W/cm2 intensity, more than 94% of the initial molecule remains

bound. No ionization of the D+
2 from the control laser occurred at the chosen laser intensity.

Compared with the vibrational period TD+
2
≈ 24 fs of the molecule seen in the oscillations
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Figure 5.4: D+
2 dissociation probability (top) and vibrational state distribution (bottom)

after the control pulse as a function of the control pulse delay. The initial vibrational state
population for D+

2 after the pump pulse is shown at the left (thick black line) and compared
with the distribution arising from a vertical Franck–Condon transition (thin red line). The
pump pulse and the control pulse are both 6 fs (FWHM) Gaussian pulses with an intensity
of 1× 1014 W/cm2.

of the 〈R〉 expectation value in Figure 5.3, the control pulse is considered short and leads

to a nearly instantaneous transition between the different electronic states. The initial

wave packet (5.6) is obtained from the ADK–depleted ground state of the neutral molecule

using a 6 fs, 1 × 1014 W/cm2 pump pulse. Figure 5.4 shows the final vibrational state

distribution (5.16) as a function of the control pulse delay. It is seen that after certain delay

times the vibrational wave packet has largely collapsed to one specific vibrational level. The

control delay times at which the relative contribution of a stationary vibrational state χ
D+

2
ν

is most prominently enhanced, is related to the classical period Tν for the motion of a

particle (of mass µ) on the binding potential curve Vg with the energy Eν of the vibrational
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state χ
D+

2
ν ,

Tν = 2

Rmax∫
Rmin

dR

√
µ

2(Eν − Vg(R))
(5.17)

where Rmin and Rmax are the classical turning points. However, since the center of the initial

wave function χ
D+

2
initial(R) is created outside the inner turning point, the delay times T̃ν at

which the first relative population surge of a given stationary vibrational state contribution

occurs, is shifted to slightly smaller delays (T̃ν < Tν). Due to the anharmonicity of the

potential, and consistent with the increase of Tν with ν, the time delay difference between

population surges of different vibrational state contributions increases with increasing ν.

Due to the rapid increase of the dipole coupling dgu(R) with R, the dissociation yield is

largest near the outer turning point and negligible near the inner turning point (top graph

in Figure 5.4). For a few vibrational periods, the dissociation yield oscillates with the vibra-

tional period of the molecular ion. However, as the wave packet dephasesFeuerstein 03b,Robinett 04,

the oscillations decrease in amplitude and become increasingly smeared out.

Figure 5.5 (top panel) shows the time evolution of the wave packet’s probability density

without a control pulse. The wave function starts to quickly dephase due to different phase

accumulations of its stationary vibrational states components (5.8), and the center of the

nuclear wave packet (superimposed curves in Figure 5.5, computed as the expectation value

of R), becomes stationary at 〈R〉 ≈ 2.6 after a propagation time of approximately 80 fs.

Deviations from this equilibrium distance (see Section 5.3) only occur many vibrational

cycles later, due to wave packet revivalsFeuerstein 03b,Robinett 04,Ergler 06b,Rudenko 06. The two par-

ticular control delay times of 91.7 fs (Figure 5.5, middle panel) and 96.3 fs (bottom panel)

equal 4 × Tν=2 and 4 × Tν=3 for the second and third vibrationally excited state, respec-

tively. As seen in Figure 5.4, a control pulse applied at delay times that equals a multiple

of the oscillation period (5.17) of a particular state, strongly enhances the population of

that state. At the chosen delay times for the control pulse, an optimal enhancement of the

vibrational occupation for the ν = 2 and ν = 3 state is obtained, with P2(91.7 fs) = 55.1%
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Figure 5.5: Time evolution of the nuclear wave function probability density for the field
free case (top) and with a control pulse at a delay of 91.7 fs (middle) or 96.3 fs (bottom).
The solid line represents the center of the bound wave packet 〈R〉. The two vertical lines
indicate the control pulse delays. The dashed line in the side panel shows the known nodal
structure for the 2nd and 3rd vibrational excited state, respectively, while the thick line is the
average of the wave packet probability density over the 100 fs directly following the control
pulse.

and P3(96.3 fs) = 49.9%, respectively. Also seen from the top panel of Figure 5.4 is that

more than 97% of the molecule remains bound at the two control pulse delay times.

If the control pulse completely quenches the wave packet into a single vibrational eigen-

state, its probability density would be stationary and display the nodal structure of that

state in terms of horizontal “stripes” in Figure 5.5 (middle and bottom panel). This nodal

structure could be imaged by further ionizing the molecular ion in a sudden vertical tran-

sition onto the repulsive D+ + D+ potential curve with an intense and short probe pulse.

This technique of mapping nuclear probability densities onto the kinetic energy release spec-
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trum of the emitted fragments is well established and commonly referred to as laser induced

”Coulomb explosion imaging”Alnaser 04,Ergler 06b,Niikura 06,Stapelfeldt 98,Litvinyuk 03. It is thus possi-

ble, with existing technology, to quantify the extent to which the vibrational distribution

of the nuclear wave packet can be compressed. In the present examples, the more than

50% population of the second or third vibrational excited state contributions explains the

emergence of the nodal structure of these states as wavy lines with small amplitudes in the

middle and bottom panel of Figure 5.5 and can more clearly be seen in the time–average

over the 100 fs immediately after the control pulse (side panels of Figure 5.5): minima and

maxima appear at the same positions as for the stationary χ
D+

2
2 and χ

D+
2

3 wave functions.

Further refinement of this selection can be achieved by adjusting the shape of the control

pulse or by applying several control pulses. This would tend to more distinctly display wave

function nodes in the kinetic energy release spectrum.

The ripples near the control delay time in the expectation value 〈R〉 in Figure 5.5, appear

due to the Rabi oscillations between the gerade and ungerade potential curves and explain

the physical mechanism behind the controlled change of the vibrational wave packet: suc-

cessive Raman transitions between vibrational states on the 1sσg potential curve, mediated

through dipole transitions between the two lowest adiabatic electronic states of D+
2 .

5.5 Two Control Pulses

In an attempt to further control the “slowing down” of the vibrational wave packet and with

the ultimate goal in mind of “stopping”Niikura 04 it into a given stationary vibrational state,

the action of two control pulses is now investigated. Both control pulses are 6 fs (FWHM) at

a laser intensity of 1×1014 W/cm2. A scheme for enhancing a particular (lower) vibrational

state is demonstrated for the ν = 2 state. For the first control pulse an optimal delay time

of 70.7 fs was found that produces a nuclear wave packet with maximum population in the

χ
D+

2
2 and χ

D+
2

3 vibrational states (Figure 5.6). The delay time of the second control pulse

with respect to the first control pulse is then varied and a strong enhancement of the ν = 2
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Figure 5.6: Time evolution of the nuclear wave function probability density (top) and
the few lowest vibrational states (bottom, logarithmic scale) for two 6 fs (FWHM), 1 ×
1014 W/cm2 control pulses with delay times of τ1 = 70.7 fs and τ2 = 136.8 fs relative to the
start of the wave packet. The superimposed curve in the top graph shows the center motion
〈R〉 of the bound wave packet.

vibrational state contribution is found at a delay time of 66.1 fs when the second control

pulse vibrationally cools the wave packet mainly from χ
D+

2
3 to χ

D+
2

2 state. The underlying

Raman transitions can be seen in the evolution of the vibrational states in Figure 5.6. For

this sequence of control pulses the bound vibrational wave packet of the molecular ions owes

77.3% to the stationary ν = 2 state, while the total dissociation yield is below 3%. This is

in contrast to the control scheme by Niikura et al.Niikura 04 that simulates nearly complete

vibrational cooling in the ν = 0 vibrational ground state at higher dissociative loss (about

25%).

With regard to the influence of the laser carrier envelope phase, no significant effect

on the vibrational decomposition of the wave packet has been obtained. Investigating the
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control pulse–length–dependence, it is found that longer pulses increase the dissociation

yield and blur the enhancement of specific vibrational states. The latter can be understood

by considering the bandwidth of the control pulse that narrows for longer pulses and thereby

reducing the appropriate frequencies for Raman transitions. Higher laser intensities (above

2 × 1014 W/cm2) significantly increase the break up of the molecule while the degree of

control for preparing a nuclear wave packet in a certain vibrational eigenstate decreases at

lower intensities.



Chapter 6

Time–Series Analysis of Vibrational
Wave Packets

�Fourier’s Theorem is not only one of the
most beautiful results of modern analysis, but
it may be said to furnish an indispensable in-
strument in the treatment of nearly every re-
condite question in modern physics. �
William Thomson and P. G. Tait

6.1 Introduction

The anticipated efficient catalysis and control of chemical reactions with laser light has been

the motivation for many detailed theoretical and experimental investigations over the past

two decadesWeber 05,Hertel 06. Laser pulses of a single optical cycle have been producedShverdin 05

and sub–femtosecond pulses in the XUV range routinely become available in several labora-

tories worldwideBaltuška 03,Agostini 04,Shan 05,Sansone 06,Scrinzi 06. This allows for “photographing”

atoms and molecules with intense ionizing short laser pulses, and in combination with a series

of time–resolved images to observe the dynamics on a quantum scaleNiikura 02,Niikura 03. Par-

ticularly, the vibrationalAlnaser 05,Katsuki 06,Ergler 06b and rotationalLitvinyuk 03,Dooley 03 motion in

small diatomic molecules has recently become accessible.

Typically, the time–dependent nuclear motion is detected by using a sequence of two

short laser pulses (Figure 6.1), such that a first pump pulse generates a coherent nuclear

wave packet on the single ionized nuclear potential curve, while a second time–delayed probe

pulse fragments the molecule by Coulomb explosionStapelfeldt 98. The measured kinetic energy

release of the fragments can then be accurately mapped onto the internuclear distance R at

75
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Figure 6.1: Schematic diagram of the pump–probe setup. A first laser pulse launches a
nuclear wave packet on the D+

2 1sσg potential curve and starts the molecular clock. After a
certain delay time, an intense short probe pulse promotes the nuclear wave packet onto the
2D+ repulsive 1/R Coulomb–explosion curve and allows for the detection of the fragment
kinetic energy distribution, which in turn is used for obtaining a “snapshot” of the nuclear
wave function probability density at the time of fragmentation.

the time of the ionization following Coulomb’s law. Since each measurement destroys the

molecule, recording a series of kinetic energy spectra for variable delay times of the probe

laser, reveals the motion of the nuclear wave packet. After initial indication for vibrational

oscillations in D+
2 using 8 fs probe pulsesAlnaser 05, recent experimentsErgler 06b have observed

the vibrational motion of D+
2 over several picoseconds and confirmed theoretical predictions

of vibrational revival timesFeuerstein 03b (see also Section 5.3).

The purpose of this chapter is to present an imaging scheme, based on the Fourier

analysis of the time and internuclear separation R dependent wave function probability

density ρ(R, t), that allows one to directly obtain the distribution of vibrational states and

the mapping of the nuclear potential curves. Experimentally, ρ(R, t) can be obtained from

delay dependent time–series measurements of the kinetic energy release spectrum in a pump

– probe scenario (Figure 6.1). This method is demonstrated theoretically for the D+
2 molecule
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but could be extended to more complex molecules as well. In addition, the present method

could be applied to observe other processes such as dissociation, temporary bond formation,

ionization or vibrational excitation and is the subject of ongoing investigationFeuerstein 07. As

shown in Figure 6.1, a coherent superposition of the D+
2 rovibrational wave packet is created

by tunnel ionization from the neutral D2 ground state by a short and intense laser pulse.

The numerical simulation of the wave packet propagation on the 1sσg and 2pσu potential

curves is identical to the previous Chapter 5. Without the presence of an external field, the

motion of the wave packet is restricted to the 1sσg curve and will be considered first. In the

second half of this chapter the influence of a pump and a probe laser pulse on the dynamics

of the vibrational wave packet will be investigated.

The initial wave packet is created from the neutral molecule with a short and intense

pump pulse as a coherent superposition of vibrational states. The vibrational state distribu-

tion is either determined from the Franck–Condon principle, or by using the R–dependent

tunnel ionization rate from the neutral moleculeSaenz 00 (see Section 5.2).

6.2 Bound Nuclear Motion

Following the ionization of a short intense pump pulse, the D+
2 molecule is created in a

coherent superposition of vibrational eigenstates χν(R):

Ψ(R, t) =
∑

ν

aνe−iEνtχν(R), (6.1)

where the wave packet is completely characterized by the complex amplitudes {aν} of the

eigenstates χν . Clearly, without the presence of an external perturbation, the aν are ex-

plicitly time–independent and the nuclear wave function evolves on the adiabatic binding

D+
2 1sσg potential curve. The anharmonicity of the potential results in a quick dephasing

of the wave packet and only after a long propagation time the vibrational states overlap

in–phase, leading to wave function revivals. The time evolution of the nuclear wave packet

up to 3 ps is shown in Figure 6.2(a), and except for the longer propagation time, is identical
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Figure 6.2: Time evolution of the D+
2 vibrational wave function. Probability density and

the expectation value of the internuclear distance 〈R〉 (thick line) (a). The power spectrum
(squared Fourier amplitudes) of the probability density shown in (a) is plotted in logarithmic
scale for a 3 ps (b) and a 10 ps (c) propagation time. Panel (d) exhibits the experimental
distribution extracted from the kinetic energy release measurement of coincident D+ pairs
and mapping on the internuclear distance using Coulomb’s lawFeuerstein 07 for parameters as
in (b).

to previous work of Feuerstein and Thumm Feuerstein 03b. Additional wave function revivals

can be seen in the 〈R〉 expectation value at times 1.1 ps, 1.65 ps and faintly around 2.2 ps.

In an experiment only the kinetic energy release after a probe pulse is observable, which

can be mapped using Coulomb’s law to reconstruct the evolution of the probability density

ρ(R, t) = |Ψ(R, t)|2. Then the nuclear density ρ(R, t) as a function of time becomes

ρ(R, t) =
∑
µ,ν

a∗µaνe−i(Eν−Eµ)tχ∗µ(R)χν(R) (6.2)

=
∑

ν

|aν |2|χν(R)|2 +
∑
µ 6=ν

a∗µaνe−i(Eν−Eµ)tχ∗µ(R)χν(R). (6.3)

The first diagonal term does not depend on time and gives an incoherent background to the

wave function probability density. Of course, for a single vibrational state the second term

vanishes and the wave function density becomes stationary (cf. Chapter 5).
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The diagonal contribution in (6.3) can be removed by subtracting the time averaged

probability density, and defining a coherent part c,

c(R, t) ≡ ρ(R, t)− 1

T

T∫
0

ρ(R, t)dt (6.4)

=
∑
µ 6=ν

a∗µaνe−i(Eν−Eµ)tχ∗µ(R)χν(R), (6.5)

which converges to the double–sum over the vibrational states for the off–diagonal contri-

bution in (6.3) in the limit of large propagation times T → ∞. The Fourier transform of

c(R, t) at a fixed internuclear distance R yields

c̃(R,ω) =
1√
2π

T∫
0

c(R, t)e−iωtdt (6.6)

=
√

2π
∑
µ 6=ν

a∗µaνχ
∗
µ(R)χν(R)δT (ωµ,ν − ω), (6.7)

where ωµ,ν = ωµ − ων and δT (Ω) is defined as

δT (Ω) =
1

2π

T∫
0

eiΩtdt, (6.8)

reflecting the finite sampling time, hence a limitation on the frequency resolution. In the

limit T → ∞, δT approaches the δ–function, lim
T→∞

δT (Ω) = δ(Ω). The nuclear wave packet

in the frequency (energy) domain in (6.7) enables one to obtain the energy spectrum of

vibrational states
∑

µ 6=ν δT (ωµ,ν−ω), the spatial distribution of the eigenstates χ∗µ(R)χν(R),

and the complex expansition coefficients a∗µaν . Evidently, the integral of c̃(R,ω) over R has

to vanish, since the vibrational states are orthogonal, and it can therefore be utilized as a

numerical test. In the following, the relative phase in c̃(R,ω) is not of interest and only the

power spectrum, i.e. the squared amplitudes of c̃ are considered:

C(R,ω) ≡ |c̃(R,ω)|2 = 2π

∣∣∣∣∣∑
µ 6=ν

a∗µaνχ
∗
µ(R)χν(R)δT (ωµ,ν − ω)

∣∣∣∣∣
2

(6.9)

≈ 2π
∑
µ 6=ν

|aµ|2|aν |2|χµ(R)|2|χν(R)|2δT (ωµ,ν − ω) (6.10)
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Approximating the square of the sum by the squares of the summands is justified, as the

δ–function only contributes non–vanishing terms for a finite set of frequencies ω = ωµ,ν .

From the numerically propagated wave packet ρ(R, t) in Figure 6.2(a), the power spec-

trum C(R,ω) (squared Fourier amplitudes) is shown in Figure 6.2(b) and (c) for two max-

imum propagation times T = 3 ps (b) and T = 10 ps (c). Clearly seen is that the longer

propagation time leads to a better frequency resolution of the vertical stripes. However,

the relevant structure is already resolved at a total propagation time of 3 ps and allows

for comparison with first experimental resultsFeuerstein 07, shown in Figure 6.2(d). Distinct

vertical lines are seen in all three figures, (b) – (d), corresponding to the coherence fre-

quency ων+1,ν of neighboring vibrational states χν+1 and χν . Due to the anharmonicity of

the D+
2 1sσg potential curve, the energy spacing between adjoint vibrational levels ων+1,ν

decreases with increasing ν, such that the lowest states appear at larger frequencies. For

example, for the ground state ν = 0 and the first excited state ν = 1, a frequency spacing of

ω1,0 ∼ 2π × 0.47 fs−1 is seen in the figure, corresponding to a vibrational period of 21.3 fs.

Upon closer inspection, each vertical line reveals a substructure that owes its R depen-

dence to the overlap of the wave function product,

C(R,ων+1,ν) = 2π|aν+1|2|aν |2|χν+1(R)|2|χν(R)|2, (6.11)

That is, the nodal structure of the both vibrational eigenstates is directly seen in Fig-

ure 6.2(b) and (c), with the number of nodes increasing for the higher excited states and

mapping the shape of the binding potential curve. Yet, the experimental resolution in

Figure 6.2(d) does not allow the identification of wave function nodes.

6.3 Vibrational State Distribution

So far only interferences between neighboring vibrational states with ∆ν = 1 have been

considered. Higher series with ∆ν = 2 and ∆ν = 3 are seen in Figure 6.3(b) and (c) for

different distributions of vibrational states. In Figure 6.3(c) a Franck–Condon distribution
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Figure 6.3: The bottom two panels show C(R,ω) as in Figure 6.2(c). Differences are seen
for an initial Franck–Condon wave packet (c) and the ADK–modified initial wave function
(b). Indicated are three series for ∆ν = 1, 2 and 3 of the vibrational eigenstates and a few
pairs for the coherent contributions between selected vibrational states. The panel (a) shows
the projections F (ω) of (b) and (c) on the frequency axis (integration over R).

is assumed, while in Figure 6.3(b) a more realistic ADK–model has been used, taking the

R–dependent ionization rate from the neutral molecule in the first (6 fs, 1 × 1014 W/cm2,

800 nm) pump pulse into accountSaenz 00 (see Section 5.2 for details). Especially for the

Franck–Condon distribution, known to overestimate the population of the higher excited

vibrational statesUrbain 04, the series of different ∆ν are seen to overlap each other. In

particular, contributions from higher ∆ν > 3 series are seen to reach into the range of

frequencies for ∆ν = 3. A better separation of the different series is found for the ADK

populated initial state.

Since each of the vertical lines is a distinct measure of the occupation of the contributing
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Figure 6.4: Original (squares) and reconstructed (dots) vibrational distribution {|aν |2} for
Franck–Condon and ADK–modified initial states.

pair of vibrational states, integrating (6.10) along the radial coordinate gives

F (ω) ≡
∞∫

0

C(R,ω)dR = 2π
∑
µ 6=ν

|aµ|2|aν |2fµ,ν δT (ωµ,ν − ω), (6.12)

where fµ,ν is defined as the spatial overlap integral of the pair of vibrational eigenfunctions

χµ and χν :

fµ,ν ≡
∞∫

0

|χµ(R)|2|χν(R)|2dR. (6.13)

The values of fµ,ν can easily be obtained from the known eigenfunctions, which are computed

by diagonalization of the potential. In Figure 6.3 the projection F (ω) is shown for both

initial state distributions (Franck–Condon and ADK model). The area Aµ,ν under each peak

in (6.12), corresponding to the pair of states µ and ν, is related to product of the vibrational

state occupation:

Aµ,ν = N |aµ|2|aν |2fµ,ν , (6.14)

where N is an overall normalization constant. By recursively applying (6.14) to all peaks

in a complete series of ∆ν, the probabilities |aν |2 of the initial state distribution {aν} can
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be reconstructed. This is shown in Figure 6.4, where for both initial distributions the first

few state occupation probabilities have been retrieved from the first series with ∆ν = 1.

For the normalization, one additional peak in the ∆ν = 2 series has been used, since the

ratio of the pair occupation is not preserved by an overall normalization factor. Comparing

reconstructed and the known initial vibrational state occupations, very good agreement

is found for both Franck–Condon and ADK–based distributions, providing hope that the

proposed imaging method might soon be utilized experimentally.

6.4 Probe Pulse

Apart from the study of the nodal structure of the bound vibrational wave functions and the

retrieval of the vibrational state probability distribution, the method introduced above may

also be found suitable for observing dynamical characteristics of the moving wave packet in

a laser field, such as bond-softeningBandrauk 81,Bucksbaum 90, bond-hardeningFrasinski 99 or above

threshold dissociationGiusti-Suzor 90,Staudte 07 within the Floquet pictureBarone 77. However, as

the Floquet approach is based on the periodicity of the electric field of the laser, it can

only serve as an approximate the description of broad-band few-cycle pulses interacting

with molecules. Both, pump and probe pulse for the Fourier imaging method need to

be sufficiently short on the time scale of the nuclear motion in order to resolve the wave

packet dynamics. Realistic ultra-short few-femtosecond pulses on the other hand almost

unavoidably sit on a rather long pedestal – typically around 100 fs long at 5% of the peak

intensity for 7 fs laser pulsesLégaré 05,Rudenko 06 – such that the Floquet picture appears valid

for the motion of the nuclear wave packet directly following the pump pulse until the leading

edge of the probe pulse peak.

In this section the influence of a pedestal at the pump and the probe pulse is investigated.

Figure 6.5(a) shows a calculation for two 50 fs, 1 × 1013 W/cm2 Gaussian pedestals – the

first centered at t = 0 and the second directly preceding a probing pulse. The wave function

is then analyzed at the center of the second pulse. In a series of pump – probe delay
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Figure 6.5: Power spectrum as a function of the frequency f and the internuclear dis-
tance R. (a) Propagation of an initial Franck-Condon wave packet with the inclusion of a
1×1013 W/cm2, 50 fs (FWHM) pedestal at the pump pulse and the probe pulse causing ‘bond
hardening’ (B.H.) and ‘bond softening’ (B.S.). The wave packet is sampled at the center of
the probe pedestal. (b) Initial ADK-populated wave packet after a Gaussian 3×1014 W/cm2,
6 fs pump pulse. An actual laser pulse profile (see inset) is used for the propagation during
the remainder of the pump pulse and for the Coulomb explosion during the probe pulse with
a peak intensity of 6× 1014 W/cm2.

calculations, the evolution of the vibrational wave packet at the center of a probe pulse

(without the actual fs probe pulse) is obtained. For simplicity and in order to have higher

vibrational states populated, an initial Franck-Condon distribution is assumed.

The figure shows several interesting features compared to field free calculations (c.f. Fig-

ure 6.2(c)): A significant probability density of the wave packet is seen in the classically

forbidden region at large R for frequencies around f ≈ 0.035 fs−1. In addition, trapped states

appear at large R ≈ 6 and small energies f ≈ 0.02 fs−1. In the Floquet pictureGiusti-Suzor 90,

the two field-free photon-energy shifted potential curves 1sσg and 2pσu combine to form the

field-dressed adiabatic potential curves indicated in Figure 6.5(a). Bond softening is respon-

sible for the dissociation of the higher vibrational states, seen as vertical lines extending to

large internuclear separations in the avoided crossing region. As the electric field increases

during the pulse, the gap between the adiabatic potential curves increases and allows for
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the dissociation and tunnel-ionization of lower vibrational states. A second light-induced

potential well causes the temporal trapping of a part of the wave function density, known

as bond hardening. The nodal structure of the bond hardening states is visible in the figure

and indicates the shape of the trapping potential well.

Equally interesting is the inclusion of a realistic laser pulse shape that has been obtained

by the SPIDER imaging technique Iaconis 98 for the experiment in Figure 6.2(d)Feuerstein 07 and

thus allows for the direct comparison with the numerical simulation. The intensity profile is

shown in the inset of Figure 6.5(b) and exhibits a pedestal of approximately 100 fs as well as

a pronounced pre-pulse before the main peak. For the calculation shown in Figure 6.5(b),

the peak laser intensity of the pump pulse is 3× 1014 W/cm2 and 6× 1014 W/cm2 for the

probe pulse, matching the parameters in the experiment. The Coulomb explosion during

the probe pulse is modeled by the R-dependent ADK rates Γg(R,E(t)) and Γu(R,E(t))

(5.3) from the 1sσg and 2pσu channels and incoherently adding the probabilities

ρCE(R) =

∞∫
−∞

(
1− e−Γg(R,E(t))t

)
|χg(R, t)|2dt

+

∞∫
−∞

(
1− e−Γu(R,E(t))t

)
|χu(R, t)|2dt. (6.15)

This model neglects the kinetic energy of the wave packet at the time of the ionization, but

includes the R-dependence of the Coulomb explosion. The spectrum in Figure 6.5(b) is then

obtained by performing a time-series calculation with a variable probe pulse delay time tD,

and Fourier analyzing ρCE(R, tD). The result agrees well with the experimental data shown

in Figure 6.2(d). The vertical lines between f = 0.03 fs−1 and f = 0.04 fs−1 extending to

large R are caused by the dissociation due to the pulse pedestal, while no evidence for the

occurrence of bond hardening states is found for the given laser parameters. Also seen is that

the nodal structure even for the lower bound vibrational states disappears. This blurring

is the result of the finite probe pulse length of approximately 7 fs, such that the bound

nuclear wave packet moves during the ionization of the laser pulseLin 06. With the emerging
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single-attosecond XUV laser pulses, it appears feasible that the motion of vibrational wave

packets can soon be resolved with much greater detail.

6.5 Decoherence

In order to discuss a scheme for quantifying the degree of coherence in a nuclear vibrational

wave packet, the present analysis is extended by allowing for an incoherent mixture {pν , χν}

of bound vibrationally excited states. The numbers pν = |aν |2 represent the probabilities for

finding a given stationary vibrational state χν in the statistical mixture. The corresponding

density operator

ρinc. =
∑

ν

pν |χν〉〈χν | (6.16)

is represented by the diagonal matrix ρinc.
µ,ν = pνδµ,ν relative to the basis {χν}. Without

external interactions, ρinc. is time independent. Denoting the time–dependent density matrix

of the pure state (6.1) as ρcoh.(t) = |Ψ(t)〉〈Ψ(t)| results in the relation

ρcoh.
µ,ν = a∗µaνe−i∆ωµ,νt (6.17)

= ρinc.
µ,ν + ρcoh.

µ,ν (1− δµ,ν). (6.18)

In contrast to ρinc., ρcoh. is not diagonal in the {χν} basis and includes time–dependent

off–diagonal elements. The degree of (de–)coherence is given by the relative importance of

these off-diagonal elements.

In terms of density matrix elements, the probability density can be written as a sum of

an incoherent (time–independent) and a coherent (time–dependent) termFeuerstein 03b,

|Ψ(R, t)|2 =
∑
µ,ν

ρcoh.(t)µ,νχµ(R)χν(R) (6.19)

=
∑

ν

pν |χν(R)|2 +
∑
µ 6=ν

ρcoh.
µ,ν (t)χµ(R)χν(R). (6.20)

In the harmonic analysis the incoherent contribution at ω ≈ 0 is imaged as a diffuse back-

ground over the range of classically allowed internuclear distances and is subtracted in the
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definition c(R, t) in (6.5). This separation of coherent and incohernet contributions in (6.20)

suggests that the continuous loss of coherence of the vibrational wave packet due to weak

randomly fluctuating external forces can be tested by a sequence of finite–time Fourier

transformations (6.7) for a series of increasing sampling times Ti.

More specifically, by modelling decoherence in terms of an additional random phase

factor in each expansion coefficient of the wave packet, i.e., by replacing the set of complex

numbers {aν} that characterize the free wave packet by {|aν | exp(iαν(t)} with random phases

αν(t), the harmonic analysis of (6.20) for finite T results in

c̃(R,ω;T ) ≡ 1√
2π

T∫
0

|Ψ(R, t)|2e−iωtdt (6.21)

=
1√
2π

2πδT (ω)
∑

ν

pν |χν(R)|2 +
∑
µ 6=ν

χµ(R)χν(R)

T∫
0

a∗µ(t)aν(t)ei(ωµ,ν−ω)tdt

 .

(6.22)

The coherent contributions in (6.20) tend to cancel in the average over large time intervals

[0, T ]. Thus, for increasing sampling times, lines in c̃(R,ω;T ) at frequencies ωµ,ν 6= 0 fade

away. Eventually, as T becomes much larger than the typical decoherence time Td of the

molecules in their environment, only the incoherent contribution at ω = 0,

c̃(R,ω;T � Td) →
√

2πδ(ω)
∑

ν

pν |χν′(R)|2, (6.23)

remains. The time series of spectra {c̃(R,ω, Ti) | T1 < T2 < . . .}, obtained by measuring the

kinetic energy release over a range of pump–probe delays of the order of Td thus constitutes

a means to quantify the degree of (de–)coherence in the nuclear motion.



Chapter 7

Resonant Neutralization of H−

Anions in front of Metal Surfaces

�Observations always in-
volve theory. �
Edwin Hubble

7.1 Motivation

In this last application of the lattice based solution of the time–dependent Schrödinger

equation for a single active particle, the charge–transfer process in ion–surface scattering

is investigated. While describing the surface of a metal as a one–electron potential is a

significant simplification of the electronic structure, a comparison with experimental data

will show the validity of the use of the pseudo–potential. Moreover, it shows that the Crank–

Nicholson propagation method (Chapter 2) can be successfully applied to larger and more

complex systems as well.

The charge–transfer process on surfaces is of fundamental importance, as it determines

the final charge state of the scattered particle and plays a prominent role in the chemical

reaction dynamics. Possible applications reach from control of plasma–wall interactions in

ion–sources, surface chemistry and analysis, reactive ion etching, or semiconductor minia-

turization via thin film depositionGauyacq 96,Shao 94,Los 90. For surface scattering with atomic

anions, the Fermi–energy of the metal is typically below the affinity level of the ion such

that the transfer dynamics is dominated by the single active–electron transitions over other

88
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Figure 7.1: (a) Schematic illustration of the neutralization of the H− anion in–front of a
metal surface. The anion follows a classical trajectory and allows for the interaction of the
loosely bound single active electron with the band structure of the metal. The electronic states
of the metal are filled up to the Fermi level and are excluded in our calculations. Also shown
is a sketch of the surface and ion potential. Absorbing boundaries (green) (see Section 2.8)
are used for suppression of reflections on the grid edges. (b) Two different surface morpholo-
gies for face–centered metals are considered in this chapter: the (111) and the (100) cut of
the surface. The geometry of the different cut can be shown by the facets of a truncated
octahedron, where the surface atoms for the (111) side form an equilateral triangle, whereas
for the (100) the atoms are aligned in a square lattice.

charge–transfer processesLos 90.

In this comparative study, the role of surface and image states on the ion neutralization

can be illustrated by the scattering of H− anions on different metal surfaces in terms of

a single–electron transfer, due to tunneling of the bound electron through the potential

barrier formed by the ion and the bulk–vacuum interface (Figure 7.1 (a)). This results

in either ion–survival of the surface scattered anion or neutralization, known as resonant

charge transfer (RCT).

Because of its importance, RCT has been the focus of several experimental and theoret-

ical studiesLos 90,Maazouz 97,Kürpick 97,Kürpick 98,Sanchez 99,Hecht 00,Guillemot 99,Thumm 00,Yang 02. It has

been predicted that for projectile states within the projected band gap of a metal, the

tunneling rate along the surface normal, which is the preferred direction of RCT, is sig-
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nificantly reducedBorisov 98,Borisov 99,Chakraborty 05 and was subsequently confirmed experimen-

tallyGuillemot 99,Hecht 00,Wethekam 03.

Neutralization and ion–survival is strongly influenced by surface properties such as the

projected band gap and the relative positions of surface and image states and the conduc-

tion band. Different surface cuts of a metal, resulting in altered surface electronic struc-

tures, therefore lead to different neutralization dynamics. For example, the atoms in the

(100) cut of a surface are located in a square lattice arrangement, whereas the (111) sur-

face exhibits a hexagonal structure with a ≈ 15% larger layer spacing in direction normal

to the surface (see Figure 7.1(b)). In this study, Silver (111), Palladium(111) and Palla-

dium (100) surfaces are good candidates to address the role of imageChakraborty 05 and surface

statesBorisov 99 on the RCT process, because:

� The Fermi–energy of all three surfaces remains below the H− anion affinity level for

sufficiently small collision energies,

� The Ag(111) surface state is localized within the band gap, but the image states are

degenerate with the conduction band,

� The Pd(111) surface offers localized surface state and image states within the band

gap, and

� The Pd(100) surface state is embedded in the valence band, but the image states are

localized in the band gap.

7.2 Surface Potential

The surface of the metal is modeled by a one–dimensional semi–empirical single–electron

effective potential, constructed from a self-consistent pseudo-potential local–density approx-

imation, and adjusted to reproduce experimental and first principle values of the band edges,
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surface states and the image statesChulkov 99:

Vsurf(z) = V1(z) + V2(z) + V3(z) + V4(z), (7.1a)

V1(z) = A10 + A1 cos

(
2π

as

z

)
for z < 0, (7.1b)

V2(z) = −A20 + A2 cos(βz) for 0 < z < z1, (7.1c)

V3(z) = A3e−α(z−z1) for z1 < z < zim, (7.1d)

V4(z) = 27.21 eV
e−λ(z−zim) − 1

4(z − zim)
for zim < z. (7.1e)

The periodic part V1(z) (7.1b) describes the atomic layers of the bulk metal, spaced by the

lattice constant aS along the z-coordinate normal to the surface. The second contribution

V2(z) (7.1c) produces an additional binding potential well in the vacuum side, z > 0, to

model the existence of a localized surface state. The last term V4(z) (7.1e) reproduces the

correct (4z)−1 attractive image potential, derived from the polarization of a conducting

surface, while V3(z) (7.1d) smoothly connects the surface and image potential contributions

V2 and V4, respectively. The topmost layer of lattice points defines z = 0. The eleven

parameters in (7.1) are not all independent: only five parameters are required to reproduce

the shape of the potential, given in Table 7.1. The remaining six parameters A20, A3,

α, λ, z1, and the position of the image plane zim are obtained by enforcing a continuous

logarithmic derivative of the potential at the matching points. A free electronic motion

is assumed in direction parallel to the surface in the metal continuum Vsurf(r) = Vsurf(z)

(see Figure 7.3 (b)). The resulting band structure for a free electronic motion parallel to the

surface leads to the dispersion curves shown in Figure 7.2 and numerical values are given in

Table 7.2.

7.3 Ion Potential

The potential of the negative H−-ion is described by a spherical symmetric effective single–

electron potential (Figure 7.3(a)), modeling the interaction of the loosely–bound active
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A10 (eV) A1 (eV) A2 (eV) as (a0) β (a−1
0 )

Ag(111) −9.640 4.30 3.8442 4.430 2.5649
Pd(100) −8.480 7.10 5.0481 3.680 1.8460
Pd(111) −8.570 6.60 4.6728 4.250 1.9071

Table 7.1: Set of five independent parameters in (7.1) used to describe the three surface
potentialsChulkov 99.
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Figure 7.2: Schematic of the electronic band structure of the Ag(111), Pd(111), and
Pd(100) surfaces as a function of the parallel momentum kpar.. The band gap is delimited
by the valence band (grey shaded) and the conduction band (yellow shaded). The conduction
band for the Pd surfaces is above the energy E = 0. Also shown are the surface state band
(red) and the lowest three image state bands (blue) as well as the Fermi–energy (purple).

Ag(111) Pd(100) Pd(111)
Fermi–energy −4.56 −5.60 −5.44
Valence band top −4.96 −2.10 −4.44
Conduction band bottom −0.66 5.00 2.16
Surface state −4.63 −3.70 −4.14
First image state −0.77 −0.50 −0.55
Second image state −0.22 −0.16 −0.17
Third image state −0.10 −0.08 −0.08
Image plane zim 2.22 2.29 2.29

Table 7.2: Electronic band structure of the three considered surfaces for zero parallel mo-
mentum. All energies are given in electron volts (eV). Also shown is the position of the
image plane zim in a.u. obtained from the model potentialChulkov 99.
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electron with a polarizable coreCohen 86:

VH−(r) = −Vcore(r) + Vpol(r)

= −
(

1 +
1

r

)
e−2r − 1

2

αH

r4
e−r2

0/r2

. (7.2)

The polarizability of the hydrogen core is αH = 9
2
a3

0 and the parameter r2
0 = 2.547a2

0. Since

the numerical accuracy rapidly decreases at the singularity for r → 0, the potential VH− has

been regularizedErmoshin 96,Borisov 99:

V reg.
H− (r) =

γVH−(r)√
µ2VH−(r)2 + 1

, (7.3)

On a three–dimensional grid, the parameters γ = 1.107 and µ = 0.34 reproduce the elec-

tron affinity level of 0.76 eVErmoshin 96. However, in order to reduce the computational

effort, a two–dimensionality model is adopted (see also Chapter 3) and the electronic mo-

tion is limited to the scattering plane (Figure 7.1). The stronger potential binding in the

reduced dimensionality model is accounted for by reparametrizing (7.3) γ2D = 0.3923 and

µ2D = 0.3764 to ensure the correct electron affinity levelChakraborty 04a,Chakraborty 04b, which is

calculated by imaginary time propagation (Section 2.6).

The motion of the anion is assumed to be classical along a trajectory R(t), that is given

by the net repulsive force between the surface and the ionic core. In particular, the modeling

is based on the Biersack–Ziegler repulsive interaction VBZ(z)Biersack 82, that incorporates a

fitted pairwise potential, and plane averaging over the topmost layer of surface atoms. The

trajectory of the incident ion is then characterized by the kinetic energy E and the angle

with the surface plane Θ (Figure 7.1). The motion in parallel direction is of constant velocity

vpar. =

√
2E

m
cos Θ. (7.4)

For the motion in normal direction vnor., the ion decelerates until a distance of closest

approach Dcls and gets reflected with the exit angle Θout = Θin. Consequently, the effect

of a variable grazing angle Θ at a fixed projectile energy is twofold: As Θ increases to

90◦ (normal incidence), the distance of closest approach decreases and the ion “probes” a
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Figure 7.3: Electronic potential of the H− anion (a), modeling the ionic core and polariza-
tion interaction. A regularized version (red) avoids the singularity at the origin (blue). Due
to the stronger potential binding in reduced dimensionality calculations (cf. Chapter 3), a
reparametrized regularization leads to a higher potential curve (magenta) in order to obtain
a binding energy of 0.76 eV (black line). The Coulomb potential is also shown for compari-
son. The total potential for the single active electron includes the surface and the H− anion
interaction (b).

larger range of ion – surface distances. Simultaneously, the time spend in the vicinity of the

surface decreases as vnor. becomes larger, and the ion has less time to explore the electronic

configuration of the surface.

7.4 Propagation

For the time propagation on a two–dimensional grid the Crank–Nicholson scheme (Chap-

ter 2) is employed with an initial free H− electronic wave function φion(r). The electronic

wave function Φ(r, t) is the solution of the time–dependent Schrödinger equation with the

Hamiltonian (in atomic units):

Ĥ =
p̂2

2
+ Vsurf + V reg.

H− (R(t)) + Vabs., (7.5)

containing the surface potential Vsurf (7.1), the regularized potential V reg.
H− of the moving

H− anion (7.3), and an absorbing potential Vabs. at the grid boundaries in order to avoid
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reflections (see Section 2.8). Converged results were obtained with quadratic absorbers of

100 a.u. width in x– and positive z–direction. In negative z–direction (bulk side of the

metal), a cubic absorber of 15 a.u. width was found sufficientChakraborty 04b.

The initial wave function φion(r) is calculated with the imaginary time propagation

(Section 2.6) in the V reg.
H− potential, and multiplying the wave function with the proper

phase factor, exp (−i(v · r + v2t/2)), corresponding to the Galilean transformation due to

the moving projectile.

The ion survival amplitude is calculated for every time step by means of the overlap

with the initial wave function of the ion (autocorrelation function):

A(t) = 〈Φ(r, t|φion(r)〉 , (7.6)

such that the survival probability is given by

P (2D)
surv.(E,Θ) = lim

t→∞
|A(t)|2. (7.7)

Here, the upper index refers to the reduced dimensionality of the calculation. The full

three–dimensional survival probability can be approximated from the adiabatic transition

rates Γ(d) at fixed distance d to the surface and integrating over the projectile trajectory:

P
(3D)
adiabatic = exp

− ∞∫
−∞

Γ(3D)(R(t)) dt

 , (7.8)

where Γ(3D) for a two–dimensional surface continuum consists of equal rates for the decay

in x and y direction,

Γ(3D)(d) = Γx(d) + Γy(d) + Γz(d) ≈ 2Γ(2D)(d). (7.9)

assuming Γz for the RCT along the surface normal is negligible, as long as the projected

band gap is blocking the transfer for zero parallel momentumBorisov 98,Borisov 99. It follows

that the decay rates in the exponent of (7.8) are doubled for a two–dimensional over the

one–dimensional surface continuum; thus the full three–dimensional ion survival rate can

be approximated byChakraborty 04a:

P (3D)
surv.(E,Θ) ≈

∣∣P (2D)
surv.(E,Θ)

∣∣2 . (7.10)
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7.5 Results

The ion survival probability P
(3D)
surv.(E,Θ) for 1 keV H− ions as a function of the scattering

angle Θ with the surface is shown in Figure 7.4. Comparing with the measured ion–fractions

by Guillemot and EsaulovGuillemot 99 for the scattering on Ag(111) surfaces, the present

calculation agrees well with the experimental data for scattering angles Θ ≥ 30◦, thereby

confirming the estimate (7.9) of doubling the decay rates into the surface continuum to

account for the reduced dimensionality. For smaller angles, this is when the velocity parallel

to the surface and the time of the projectile spend within the vicinity of the surface increases,

the agreement worsens. This might be addressed to the following limiting assumptions in

the calculations:

� As the model potential (7.1), adjusted to the band structure of the metal at kpar. = 0,

shows corrugation only along the surface normal, the motion of the electron in parallel

direction follows the free dispersion curves shown in Figure 7.2. In reality, the dynamics

along the surface is not translational invariant, and the motion of the electron parallel

to the surface is associated with an effective massBorisov 99.

� The distance of closest approach and the time the ion spends near the surface strongly

depends on the shape of the Biersack–Ziegler potentialBiersack 82 used to model the ion

trajectory, and deviations are most pronounced for small angles Θ.

Comparing the survival probabilities for the H− ion scattered from the Ag(111), Pd(111)

and Pd(100) surfaces with an incident kinetic energy of 1 keV at normal incidence Θ =

90◦ shows: Both (111) surfaces, sharing a similar localized surface state within the band

gap, have almost identical survival probabilities for the ion, despite their dissimilar image

states. By contrast, the Pd(100) surface with the surface states embedded in the valence

band exhibits a much larger neutralization (cf. Figure 7.2). Thus, for short interaction

times with the surface, neutralization is dominated by the character of the surface state.

In particular, as the surface state of Pd(100) overlaps with bulk states, it provides an
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Figure 7.4: Ion survival probability P
(3D)
surv.(E,Θ) for 1 keV H− projectiles scattered from

Pd(100), Pd(111) and Ag(111) surfaces with varying angles of incidence Θ with respect
to the surface plane. For comparison, measured values on Ag(111) by Guillemot and
EsaulovGuillemot 99 are shown as well.

effective decay channel through the valence band of the metal. This is in contrast to the

localized surface states for the (111) metal, that can only decay in parallel direction to the

surfaceBorisov 99,Chakraborty 04a,Chakraborty 04b.

Clearly, as the angle with the surface plane Θ decreases, the interaction time of the

ion with the surface increases and so does the charge neutralization probability of the ion,

leading to a reduced survival of the ion on all three considered surfaces. For incident

angles Θ < 60◦, both of the palladium surfaces show a similar ion survival probability,

while for Ag(111) the ion survival is largely enhanced and features a pronounced maximum

at Θ = 60◦. Since Ag(111) and Pd(111) share similar surface states, the differences can be

attributed to their distinct image states. The palladium surfaces possess the same Rydberg

series of localized image states, that reach far into the vacuum region and thus evolve away

from the surface when populatedChulkov 99,Chakraborty 04a. In contrast, the image states of the
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Figure 7.5: Time evolution of the population of the ion |A(t)|4 as a function of the distance
from the turning point Dcls of the trajectory in logarithmic scale. The incident beam energy
is 1 keV at an scattering angle of 50◦ with the surface. For negative distances, corresponding
to an incident ion, the population of the ion state readily decreases due to the decay in image
and surface states. For the outgoing ion trajectory at positive distances, the interaction with
the image states leads to recapture.

silver surface (except for the lowest one) are coupled with the conduction band and remain

localized at the surface. Consequently, the probability for recapture of the electron on the

outgoing trajectory of the ion is enhanced for the Ag(111) surface, due to the proximity of

the electron cloud at the on the vaccum–surface interface.

This is further illustrated in Figure 7.5, where the evolution of the population |A(t)|4

(c.f. (7.10)) of the ionic state is shown at an incident trajectory of Θ = 50◦. At “negative”

distances, as the ion approaches the turning point Dcls, the ionic state firstly interacts with

the surface states of the metal, and, at around 4 a.u. before the distance of closest approach

also with the image states. A signature of the latter is seen in the oscillations of |A(t)|4,

as the populated image states reach into the vacuum side and spatially overlap with the

projectile. Until the turning point of the trajectory, the resulting decay through surface and
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image state interactions is very similar for all three surfaces. Therefore, after the turning

point, it becomes evident that the final charge state of the projectile is determined by the

degree of electron recapture from the surface on the outgoing part of the trajectory.

Lastly, the dynamics of the electron recapture can be seen directly in the evolution of

the wave function probability density shown in Figure 7.6 for both (111) surfaces. For the

scattering at Θ = 50◦, the three snapshots illustrate the three processes of surface state

interaction, image state interaction and recapture. At a time of 100 a.u. before the turning

point of the trajectory, the ion interacts and populates the localized surface state. At 50 a.u.

after the turning point, the surface states are seen to only decay laterally due to the band

gap of the metal, while a diffuse electron probability cloud is forming on the vacuum side.

The difference in the image state interaction becomes obvious at 200 a.u. after the closest

encounter with the surface: For the palladium surface the electron probability density has

moved to large distances into the vacuum away from the surface due to the population of

image states that are energetically degenerate with the band gap and thus prohibit the decay

along the surface normal. For Ag(111) on the other hand, the coupling between the image

states and the unoccupied part of the conduction band has left the surface interface near

the projectile with a much larger density distribution, thereby again suggesting a larger rate

of electron recapture on the outgoing part of the trajectory.
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Figure 7.6: Time evolution of the electronic probability density in logarithmic scale. Three
snapshots are shown for the Ag(111) and Pd(111) surface at a time 100 a.u. before, 50 a.u.
after, and 200 a.u. after the projectile reaches the turning point. The ion approaches at an
energy of 1 keV and an angle of 50◦ to the surface.



Chapter 8

Conclusions and Outlook

�Thou, nature, art my god-
dess; to thy laws my services
are bound. �
Carl F. Gauss

In the first application of the wave packet propagation scheme the effects of a strong

laser field on the dynamics of electron capture and emission in ion–atom collisions has been

investigated within a reduced dimensionality model of the scattering system (Chapter 3). In

order to reduce the numerical effort, the motion of the active electron and the laser electric

field vector were confined to the scattering plane. Significant differences in the electron

capture probabilities P±
cap(b) in co– and counterrotating laser–assisted collisions between a

proton and a hydrogen atom were observed. They are caused by a resonant transition at

matching energy levels between the laser field distorted Coulomb potentials of the projec-

tile and target nuclei at relevant impact parameters. Both, capture and electron emission

probabilities differ significantly from results for laser–unassisted collisions. A strong circular

dichroism is predicted, i.e., the capture (and to a lesser extent ionization) probabilities are

different for parallel and anti–parallel laser helicity and projectile angular momenta.

Laser pulses with lengths of a few nano–seconds and intensities of about 5×1012 W/cm2

and higher should allow for the experimental verification of the predicted dichroism in the

capture probability. In addition, evidence was seen for the charge resonant enhanced ion-

ization mechanism in laser–assisted ionization. This effect may be used in angle–differential

laser–assisted collision experiments in order to select a specific orientation of the laser elec-

tric field at the time of closest approach between projectile and target and would allow for

101
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the detection of the laser collision phase.

Following the encouraging predictions from the reduced–dimensionality model for laser–

assisted collisions, an ab initio calculation, solving the full three–dimensional time–dependent

Schrödinger equation was presented in Chapter 4. Both, electron capture and ionization

probabilities for ion–atom collisions were computed for a laser intensity of 5× 1013 W/cm2

where the most promising dichroism was found in the reduced dimensionality model. For

circularly polarized laser fields and an impact energy of 1.2 keV/amu, a substantial modi-

fication of the electronic dynamics in the proton–hydrogen collision system as compared to

field–free collisions was observed. In particular, the strong dependence on the initial laser

collision phase and the impact parameter for both capture and ionization, which can be

explained using semi–classical arguments, agrees well with the predictions of the previous

two–dimensional model calculations, for the special case that the collision and the laser

plane coincide. The inclusion of “off–plane” contributions allows for the calculation of to-

tal cross sections for electron capture and shows a noticeable dichroism remaining in the

integrated capture probabilities after averaging over the laser collision phase.

Although other theoretical studies on laser–assisted heavy particle collisions have sug-

gested novel pathways to steer the charge transfer reaction, the experimental verification

remains rather challenging. Yet, the presently available technology would in general permit

such experiments. Research on pico–pulsed particle beams and strong lasers has emerged in

AMO facilities. More theoretical work is necessary to find more suitable collision reactions,

where less intense lasers fields and experimentally better available reactants are involved. In

particular, the atomic hydrogen target has been appealing for the theoretical investigation,

but is fairly delicate to handle in experimental studies.

Another course to control the quantum dynamical motion has been shown in Chapter 5

for the nuclear vibration of small homonuclear molecules. Good agreement was found within

the present model that treats the nuclear motion on two coupled one–dimensional Born-

Oppenheimer potential curves, for the position of the wave function revival times. The
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addition of one or more short and intense control laser pulses can significantly alter the

vibrational state composition of nuclear wave packets in D+
2 by coherent Raman transitions.

For the particular parameters in the current model calculations it is shown that a single

control pulse can populate a selected lower vibrational state of D+
2 with 50% probability,

and that this fraction can be increased to over 75% by adding a second identical control

pulse at an appropriate delay time. Such almost stationary nuclear wave packets should be

observable in experimental studies by subsequent fragmentation of the molecular ion with

a probe pulse, providing an unique tool of assessing the degree at which the nuclear motion

in small molecules can be controlled. Creating a quantum system in a particular state with

the help of precisely timed control laser pulses can possibly be applied to store information

or to prepare a well defined initial state by “freezing” the nuclear motion for subsequent

studies.

So far only two equal control pulses have been considered. The number of adjustable

parameters (pulse length, intensity, wavelength) grows quickly with every additional control

pulse, and a general control scheme for arbitrarily shaped control pulses is desirable. Genetic

algorithms could offer a way to optimize such a multi–control design and exhibit exceptional

control over the vibrational dynamics in a “time–gating” procedure.

In Chapter 6 the time–dependent nuclear motion of vibrational wave packets in the D+
2

molecular ion induced by the ionization of its neutral D2 parent molecule by an intense

pump laser pulse is investigated by harmonic time series analysis. The Fourier-transform

resembles the shape of the binding adiabatic nuclear potential curve and exhibits clear lines

corresponding to difference energies between the vibrational states. This is due to pair-

wise interference exhibiting the nodal structure of both vibrational wave functions. As an

application for the R–dependent Fourier–time analysis, the initial vibrational distribution

has been reconstructed and the progression of decoherence, induced by weak random in-

teractions with the environment has been discussed. Extensions of this method indicate

the possibility visualize other molecular processes in the energy domain, such as temporary
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bond formation or bond breaking.

First experimental evidence for the applicability of the imaging scheme shows clear inter-

ference lines between neighboring vibrational states and their energetic position agrees well

with the current work. A significant increase in experimental resolution can be obtained by

utilizing attosecond pump and probe pulses such that the vibrational motion can be studied

in much greater detail in the frequency domain. In addition, it appears feasible to apply the

technique to more complicated molecules such as trimers or poly–atomic complexes, includ-

ing the study of field induced effects, thus providing a novel scheme to visualize reaction

dynamics.

The final Chapter 7 considers the resonant charge transfer in ion – surface scattering of

negative H− anions at three different metal surfaces – Ag(111), Pd(111) and Pd(100) – ex-

hibiting distinctly different surface electronic band structures. Several different mechanisms

for the resonant charge transfers reactions were found:

� As the surface state is populated first by the incident projectile, the existence of

an embedded surface state within the valence band (as for Pd(100) and other (100)

surfaces) leads to an effective decay of the electron along the surface normal into the

bulk of the metal.

� Isolated surface states inside the band gap of the metal only allow for the decay in

lateral direction and tend to reduce the ion neutralization.

� For normal incidence of the projectile, i.e. when the interaction time is short, the

charge transfer is governed by the surface state interaction

� Image state wave packets quickly evolve into the vacuum region when occupied,

thereby preventing recapture of the ion on the outgoing trajectory, and

� Image states within the conduction band couple with the unoccupied bulk states, and

are thereby obstructed from freely evolving into the vacuum. Since the image states

retain their proximity to the surface, this facilitates the recapture by the projectile.
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The inclusion of many–electron effects from the occupied valence band of the metal,

corrugation of the potential in parallel direction of the surface as well as nano–structured

surfaces are currently invesigatedObreshkov 06,Obreshkov 07 within a different (density functional)

framework.

In conclusion, the utilized grid method for solving an up to three–dimensional Schrödinger

equation on a numerical grid has provided a suitable ground for investigating several dis-

tinct scenarios in atomic, molecular, optical and surface physics, reaching from laser–assisted

heavy particle collisions, laser–molecule interactions to particle – surface scattering. With

the still unsurpassed empirical Moore’s law, stating that the number of transistors on a chip

doubles in about every two years, computer performance and storage capacities kept growing

exponentially over the past four decades, and it is anticipated that more complex scenarios

in more than three dimensions can soon be performed with the presented grid method. Of

course, as the dimensionality grows, new challenges such as visualizing the wave functions

will emerge. Another utilization is the refinement of the presented calculations since the

studies of exploring a larger part of the parameter range are prohibitively expensive on the

current hardware generation.



Appendix A

Atomic Units

In atomic physics it is common to use atomic units which are based on the typical scales

found in atomic systems and are chosen such that many constants become unity. Therefore

the Coulomb–law or the Schrödinger equations become more simplified in atomic units. One

notable feature is the convention, that all units in this system are given in a.u., i.e. the

length, velocity, mass or time all carry the same dimensions. Thus it is essential to clearly

specify the type of a unit (length, velocity etc.).

Since the international SI unit system is based on four constants of nature, the meter,

kilogram, second and the ampère, one can choose four other reference units to be unity:

~ = 1 (atomic unit of action)

me = 1 (atomic unit of mass)

e = 1 (atomic unit of charge)

1

4πε0
= 1 (atomic unit of the Coulomb force constant)

Coulomb’s inverse–square law giving the magnitude and direction of the electrostatic

force between two electrically charged objects of charge Z1 and Z2 then reads as

F =
e2

4πε0

Z1Z2

|r1 − r2|2
er (SI system)

F =
Z1Z2

|r1 − r2|2
er (in atomic units)
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With the mass of the electron and the unit of action being unity in atomic units, the

time–dependent Schrödinger equation for the motion of an electron also simplifies to

i
∂

∂t
Ψ(r, t) =

(
− ∇2

2
+ V

)
Ψ(r, t) (A.1)

Typical conversions between the SI system and atomic unitsBransden 03 are given below

in Table A.1, and some useful natural constants are provided in Table A.2. The latest

values of the physical constants can be found from the Committee on Data for Science and

Technology COD .

unit relation comment

length a0 = 4πε0~2

mee2 = 5.29177× 10−11 m Bohr radius

velocity v0 = ~
4πε0e2 = αc = 2.18769× 106 m s−1 classical orbiting velocity

on the first Bohr orbital
time t0 = a0

v0
= 2.41888× 10−17 s length / velocity

frequency ω0 = 2π
t0

= 4.13414× 1016 s−1 derived from the time definition

mass me = 9.10938× 10−31 kg mass of the electron
momentum p0 = 1.99285× 10−24 kg m s−1 mass · velocity
charge q = 1.60218× 10−19 C elementary charge

energy E0 = 1
(4πε0)2

mee4

~2 = 27.2114 eV Rydberg energy

electric field E = E0

a0e
= 5.14221× 1011 V m−1

intensity I = 1
2
ε0cE2 = 3.50945× 1016 W cm−2

Table A.1: Units and conversion factors for calculating with atomic units.

constant symbol [SI] [a.u.]
speed of light c 299 792 458 m s−1 137.036
Planck constant h 6.6260755× 10−34 kg m2 s−1 2π
vacuum permittivity ε0 8.8544× 10−12 A s V−1 m−1 1/(4π)
vacuum permeability µ0 4π × 10−7 V s A−1 m−1 4π/c2

Bohr magneton µB 9.274× 10−24 A m2 1/2
proton mass mp 1.67262× 10−27 kg 1836.15

Table A.2: Important physical constants in SI and atomic units.



Appendix B

Alternative Derivation of the
Short-Time Propagator

In Chapter 2 the short time propagation method was derived by expanding a wave function

Ψ(r, t) in a Taylor–series around t and applying the time–dependent Schrödinger equation to

express the first derivative of the wave function. As an alternative, the Schrödinger equation

provides the starting point for the time evolution operator Û(t, t0):

i
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0), (B.1)

Formally integrating (B.1) with the proper initial condition gives:

Û(t, t0) = 1̂− i

t∫
t0

Ĥ(t1)Û(t1, t0)dt1. (B.2)

The solution for Û(t, t0) also appears on the right hand side and iteratively follows the

Dyson-seriesNolting 97:

Û(t, t0) = 1̂− i

t∫
t0

Ĥ(t1)dt1 −
t∫

t0

Ĥ(t1)

t1∫
t0

Ĥ(t2)Û(t2, t0)dt2dt1 (B.3)

=
∞∑

n=0

Û (n)(t, t0), (B.4)

where Û (n)(t, t0) is defined as

Û (n)(t, t0) = (−i)n

t∫
t0

t1∫
t0

. . .

tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)dtn . . . dt2dt1, (B.5)
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with t0 ≤ tn ≤ . . . ≤ t2 ≤ t1 ≤ t and Û (0)(t, t0) = 1̂. With the definition of the Dyson–time

ordering operator,

T̂ (Â(t1)B̂(t2)) =

{
Â(t1)B̂(t2) for t1 > t2

B̂(t2)Â(t1) for t1 ≤ t2
, (B.6)

which ensures the chronological time order for the product of two non–commuting operators,

a relationship is obtained for a change of the integration limits:

t∫
t0

t1∫
t0

Ĥ(t1)Ĥ(t2)dt2dt1 =
1

2

t∫∫
t0

T̂
(
Ĥ(t1)Ĥ(t2)

)
dt2dt1, (B.7)

such that the time evolution operator Û(t, t0) can be written in the following form:

Û(t, t0) =
∞∑

n=0

(−i)n

n!

t∫
t0

. . .

t∫
t0

T̂
(
Ĥ(t1) . . . Ĥ(tn)

)
dtn . . . dt1 (B.8)

= T̂ exp

−i t∫
t0

Ĥ(t′)dt′

 . (B.9)

For the special case that
[
Ĥ(t1), Ĥ(t2)

]
= 0 for all t1 and t2, the action of T̂ = 1̂ becomes the

identity, and (B.9) can be evaluated for any given time. This is the case, if the potential V

is time independent, such that

Û(t, t0) = exp
(
−iĤ · (t− t0)

)
. (B.10)

In general, however, time–dependent potentials are of interest, such that the assump-

tion (B.10) is not valid. Therefore a time interval ∆t is now considered which is sufficiently

short, such that V̂ (t+ τ) can be assumed as constant for all τ ∈ [0,∆t] and for any starting

time t. Evaluating the Dyson-series (B.3) and omitting all terms of order ∆t3 or higher

gives:

Û(t+ ∆t, t) = 1̂− i

t+∆t∫
t

Ĥ(t1)dt1 −
t+∆t∫
t

Ĥ(t1)

t1∫
t

Ĥ(t2)dt2dt1 (B.11)

= 1̂− i

∆t∫
0

Ĥ(t+ τ1)dτ1 −
∆t∫

0

Ĥ(t+ τ1)

τ1∫
0

Ĥ(t+ τ2)dτ2dτ1. (B.12)
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For a small time τ , the Hamiltonian can be expanded in a Taylor–series:

Ĥ(t+ τ) = Ĥ(t) +
∂Ĥ(t)

∂t
τ +

1

2

∂2Ĥ(t)

∂t2
τ 2 + Ô(τ 3). (B.13)

With this expansion, the first integral in (B.12) becomes

∆t∫
0

Ĥ(t+ τ1)dτ1 =

∆t∫
0

(
Ĥ(t) +

∂Ĥ(t)

∂t
τ1 +

1

2

∂2Ĥ(t)

∂t2
τ 2

1

)
dτ1 + Ô(∆τ 3) (B.14)

= Ĥ(t)∆t+
1

2

∂Ĥ(t)

∂t
∆t2 + Ô(∆t3). (B.15)

The second integral in (B.12) gives

∆t∫
0

Ĥ(t+ τ1)

τ1∫
0

Ĥ(t+ τ2)dτ2dτ1 (B.16)

=

∆t∫
0

Ĥ(t+ τ1)

τ1∫
0

(
Ĥ(t) +

∂Ĥ(t)

∂t
τ2 +

1

2

∂2Ĥ(t)

∂t2
τ 2

2

)
dτ2dτ1 + Ô(∆t3) (B.17)

=

∆t∫
0

(
Ĥ(t) +

∂Ĥ(t)

∂t
τ1 +

1

2

∂2Ĥ(t)

∂t2
τ 2

1

)(
Ĥ(t)τ1 +

1

2

∂Ĥ(t)

∂t
τ 2

1

)
dτ1 + Ô(∆t3) (B.18)

=

∆t∫
0

(
Ĥ2(t)τ1 +

1

2
Ĥ(t)

∂Ĥ(t)

∂t
τ 2

1 +
∂Ĥ(t)

∂t
Ĥ(t)τ 2

1

)
dτ1 + Ô(∆t3) (B.19)

=
1

2
Ĥ2(t)∆t2 + Ô(∆t3) (B.20)

Inserting (B.15) and (B.20) into (B.12) gives the short-time propagator

Û(t+ ∆t, t) = 1̂− iĤ(t)∆t− 1

2

(
Ĥ2(t) + i

∂Ĥ(t)

∂t

)
∆t2 + Ô(∆t3), (B.21)

which has an numerical error of ∆t3 and is identical with the previously obtained short time

propagator (2.9).



Appendix C

Source Code Listings

�GOD is REAL unless
declared INTEGER. �

C.1 Overview

This appendix gives more precise details on the numerical implementation and contains

portions of the program source code that has been developed for the work described in this

dissertation. The programs and subroutines have been mostly written in Fortran 90 For as

this programming language, despite its age and lack of features seen in modern languages,

provides optimal performance and is still a widely used standard for large scale scientific

computations.

The program has been divided in several logical blocks, modules, that provide certain

functions (see Table C.1). Most modules are written in different versions for one–, two– and

three–dimensions, such that all application specific calculations can be embedded in the

main program module, main.f90, while all other general functions are defined in a proper

module file.

Beside the main program file, the propagator module is the most important part of the

numerical approach of solving the Schrödinger equation, as most of the wall clock time

is spend for the Crank–Nicholson propagation. Therefore, stringent optimizations in the

propagation loop is essential for efficient computations. One way of archiving fast running

code is by using highly optimized mathematical libraries such as LAPACK LAP for the

111
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Module Description

main.f90
The main program. Initializes the different modules and contains
the time loop of the program.

prop.f90

Implementation of the Crank–Nicholson propagation scheme (Sec-
tion 2.2) for solving the time–dependent Schrödinger equation.
Since a large fraction of the wall–time is spend for propagation,
fine–grain parallelization has been used for the two– and three–
dimensional version of this module.

pot.f90
Calculation of the potential array from an analytical form for
(model-) potentials or reading in the values from an external file.

wfmath.f90
General routines for manipulating and accessing wave functions.
(overlap integral between two wave functions, energy, saving and
restoring from file, and Gaussian wave packets etc.)

vdetect.f90

Virtual detector, based on the work of B. FeuersteinFeuerstein 03c to
obtain the kinetic energy and momentum distribution from the un-
bound flux of the wave function passing through a surface line close
to the grid end in front of the absorber.

diag.f90
One–dimensional diagonalization routine for the tridiagonal Hamil-
tonian matrixPress 92 providing energies and eigenfunctions of the
bound states.

tools.f90
Obtaining the ground and first excited state wave functions for
two– and three–dimensional potentials, using the imaginary time
propagation (Section 2.6).

adk.f90

Used for calculating the ADKAmmosov 86–depleted ground
stateSaenz 00 of a one–dimensional nuclear wave packet due to
tunnel ionization in a laser fieldBrichta 06 in order to obtain the
nuclear wave function of the nuclear ion.

system.f90
Contains general string manipulation functions as well as routines
to inquire the command line arguments for overwriting default in-
put parameters of the program.

graphics.f90

Provides interactive visualization of the wave function and poten-
tial during the propagation for debugging purposes and to create
animated films of the collision scenario using the PGPlot PGP or
PLPlot PLP libraries.

Table C.1: Description of the different program modules that have been developed and used.
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solution of the general tridiagonal linear equation set (see Section 2.5). Our approach,

however, takes the special symmetry of the equation set into account where the upper and

lower off–diagonal elements are a constant such that only the diagonal elements need to be

described as an array. Therefore we can reduce the memory read operations significantly

over the general tridiagonal solver routines.

Several crucial subroutines, especially for the three–dimensional calculations in Chap-

ter 4 have been additionally optimized by using the OpenMP interfaceOpe for developing

multithreading applications, which offers a fast and effective way to convert serial programs

to parallel execution. Since the current trend of the processor industry is to increase the

computing power by including more processing cores into one chip, adopting to shared–

memory multi–threaded routines allows to gain the highest possible performance. Modern

compilers such as the Interl Fortran Compiler 9.1 For , provide already automatic paral-

lelization of simple loops and array operations, with OpenMP instructions, thereby allowing

for a higher level of fine–grain (loop-level) and large–grain (function-level) optimizations.

Since the split–operator Crank–Nicholson scheme reduces to a series of independent one–

dimensional propagations along each coordinate direction, these propagations can be easily

assigned to to the number of available processors within the inner propagation loop.

As an example, a selection a few most important modules and subroutines is provided

below for the one–dimensional coupled–channel nuclear wave packet propagation in Chap-

ter 5.

C.2 Main Program (main.f90)

!
!——————————————————————————–
! Main program
!——————————————————————————–

5 !
! Wave Propagation Method in 1 dimension for 4 coupled potential curves
! Source: CN1D program from Uwe Thumm
! Changes: Thomas Niederhausen 8/22/06
! Bernold Feuerstein 7/27/06

10 ! Last change: Thomas 11/02/06
!
! NOTES:
! - The Gaussian laser pulse routine does not work for very short pulses
! since the time integral does not give a zero. Use more sophisticated

15 ! routine to FFT a sin pulse, phase shift and back-FFT the pulse.
!——————————————————————————–
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!

module progvars
20 use vdetect

implicit none

! input parameters
real*8 :: deltaz ! the grid spacing in a.u. for the electron

25 real*8 :: widthz ! the size of the grid in a.u.
real*8 :: minz ! the minumum z-value
real*8 :: deltat ! the time spacing for the ELECTRONIC propagation
real*8 :: maxt ! the total propagation time

30 real*8 :: fadewidth ! the width of the absorber for the electrons
real*8 :: fadestrength ! the strength of the absorbing border potential

! Parameters for the 1st ”Pump” pulse
! Note: these pulse parameters only appear, if ADK based transition from the initial wave function of H2

35 ! are used rather than a Franck-Condon transition for the initial vibrationl wave function.
real*8 :: pumpomega ! most likely the same as for the control pulse, but we are variable here
real*8 :: pumpphase ! the carrier envelope phase of the pump pulse
real*8 :: pumpint ! pulse intensity of the pump pulse
real*8 :: pumplength ! pulse length of the pump pulse

40
! Parameters for the 2nd ”Control” pulse
real*8 :: laseromega ! the frequency of the laser
real*8 :: laserphase ! the carrier envelope phase
real*8 :: laserint ! intensity of the laser in a.u.

45 real*8 :: laserlength ! the pulse length of the laser pulse
real*8 :: laserdelay ! the time when the maximum laser intensity occurs
real*8 :: laserramp ! ramping time of the laser - only used for the CW laser pulse

! Parameters for 3rd, Coulomp explosion ”Probe” pulse
50 ! Note: some parameters don’t make much sense though, like frequency or ce phase, since we currently

! only treat this pulse either via ADK such that only the intensity, the pulse lenght and the delay matter,
! or via a second Franck-Condon transition, such that only the delay is used. However, it could technically
! be treated just like a second control pulse as well.
real*8 :: probeomega ! most likely the same as for the control pulse, but we are variable here

55 real*8 :: probephase ! the carrier envelope phase of the probe pulse
real*8 :: probeint ! pulse intensity of the proble pulse
real*8 :: probelength ! pulse length of the probe pulse
real*8 :: probedelay ! the total delay (1st pulse starts the clock) for probe pulse

60 type(Tdetector) :: vdetgerade ! the virtual detector on the H2+ gerade curve
type(Tdetector) :: vdetungerade ! the virtual detector on the H2+ ungerade curve
type(Tdetector) :: vdetground ! the virtual detector on the H2 ground state curve
type(Tdetector) :: vdetion ! the virtual detector on the H2++ Coulomb explosion curve
type(Tdetector) :: vdettotal ! the virtual detector for the total wave function

65
real*8 :: detectorwidth ! the width of the virtual detector
real*8 :: detectorgap ! the gap between the virtual detector end and the absorbing boundary
real*8 :: detectormaxp ! maximum momentum resolved with the virtual detector
real*8 :: detectorminp ! and the minimum momentum

70 real*8 :: detectormaxe ! maximum energy resolved with the virtual detector
real*8 :: detectormine ! and the minimum energy
integer :: detectorbins ! number of grid points for the momentum binning

integer :: ntprint ! number of propagation steps between print outputs
75 integer :: ntplot ! number of propagation steps between plot outputs

! from program calculated parameters
integer :: nzstep ! the number of gridpoints for the electrons
integer :: ntstep ! the total number of timesteps for the propagation

80 real*8 :: lasercycle ! the length of one laser cycle
real*8 :: mass ! the mass of the particle
real*8 :: detectorpos ! the center position of the virtual detector

! dynamical variables for the propagation
85 real*8 :: time ! the current time

real*8 :: laserenv ! the laser envelope
real*8 :: lasercphase ! the current phase of the laser
real*8 :: zfield ! the laser electric field in z direction

90 real*8 :: norm ! the total norm inside the grid
real*8 :: ionization ! the ionization propability

! Declare additional wave functions that we will need. The PROPAGATOR defines the H2 ground wave function
complex*16, allocatable :: psigerade (:) ! two more wave function arrays for the H2+

95 complex*16, allocatable :: psiungerade (:) ! potential curves (gerade/ungerade)
complex*16, allocatable :: psiion (:) ! potential curve for the Coulomb explosion (p+p)
complex*16, allocatable :: psitotal (:) ! the total nuclear wave function
real*8, allocatable, target :: coupling (:) ! the coupling betweemaxn the H2+ gerade and ungerade states

100 ! Declare ADK static variables to speed up the calculation of ADK rates
real*8, allocatable :: adk const g (:) ! lump all the R-dependent factors in here - H2+ gerade potential
real*8, allocatable :: adk kappa g (:) ! sqrt(2*I p) - wave vector to ionize from gerade potential curve
real*8, allocatable :: adk const u (:) ! same for H2+ ungerade potential curve
real*8, allocatable :: adk kappa u(:) ! ditto
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105
! other program related variables
integer :: programstart ! the start time of the program

! and now a few switches...
110 logical, parameter :: wfoutput = .false. ! are we interested in the nuclear wave function?

logical, parameter :: analyticalpulse = .true . ! if false, the file ”SPIDER.DAT” provides the laser pulse instead
logical, parameter :: detector = .true. ! do we need the dissociation energy and momentum spectra using virtual

detector?
logical, parameter :: adkrate = .true . ! include ADK rates from the two singly ionized potential curves?
logical, parameter :: looprun = .true . ! loop through a series of delays or just a single delay run?

115 logical, parameter :: probepulse = .true. ! are we having a Coulomb explosion probe pulse?
logical, parameter :: adkpump = .true. ! Use ADK rate based first ionization step or Franck-Condon principle instead?
logical, parameter :: fcprobe = .false . ! Use Franck-Condon principle for probe pulse or model the pulse analytically?
logical, parameter :: normalizestates = .false . ! for the vibrational state occupation - should we normalize to the bound states?

120 end module progvars

!————————————————————————————————————————–

program main
125

implicit none

call init ! do all the initialization (array allocation etc.)
call run ! runs the program, single or loop mode

130 call done ! That’s it - we done! Now clear everything...

end program main

!————————————————————————————————————————–
135

subroutine init
! allocate and initialize arrays etc.
use debug
use potentials

140 use propagator
use wfmath
use tools
use vdetect
use fft

145 use diag
use progvars
use graphics

implicit none
150

integer :: iAllocStatus

call system clock (programstart) ! save the starting time of the program

155 call setdebug (5,0) ! set the appropriate debug output level

call init parameters ! load some initial parameters

nzstep = nint(widthz / deltaz ) + 1 ! calculate the number of gridpoints needed
160 ntstep = nint(maxt / deltat ) + 1

! initialize the potentials

call potentials init (nzstep) ! allocate the potential array
165 call potentials setscale (minz,minz+widthz) ! set the dimensions of the potential

call potentials zero ! make sure that the initial potential is zero

! create absorbing walls (imaginary potential)

170 call potentials setabsorber right (fadewidth , fadestrength / deltat )

! initialize the propagator

call propagator init (nzstep) ! allocate the wavefunction arrays
175 call propagator setscale (minz,minz+widthz) ! set the dimensions of the grid

! initialize the math, tools and virtual detector routines

call wfmath init(nzstep ,minz,minz+widthz) ! initialize the mathematics package
180 call tools init (nzstep ,minz,minz+widthz) ! initialize the tools package

if ( detector ) call vdetect init (nzstep ,minz,minz+widthz)

! adjust for the heavier nuclei
! SOURCE: E. R. Cohen and B. N. Taylor, Phys. Today 53 - 9 (2000)

185 ! mass = 918.0763505d0 ! reduced mass for HYDROGEN
mass = 1835.241507d0 ! reduced mass for DEUTERIUM

! mass = 2748.46079d0 ! reduced mass for TRITIUM

call propagator setmass(mass)
190 call wfmath setmass(mass)

if ( detector ) call vdetect setmass (mass)
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! initialize the FFT and diagonalization routines

195 call fft init (nzstep , deltaz ,mass) ! parameters needed for momentum spectrum of wave function
call diag init (nzstep , deltaz ,mass) ! needed for diagonalization of the potential

! we will also need two additional wave function arrays because of the nuclear couplings

200 allocate(psigerade(nzstep) , psiungerade(nzstep) , psiion(nzstep) , psitotal (nzstep) , stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate 1D wavefunction PSI"
stop

endif
205 call debugmsg (1,1,"INIT: all 1D H2 wavefunctions allocated")

allocate(coupling(nzstep) , stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate 1D couling array"
210 stop

endif
call debugmsg (1,1,"INIT: 1D coupling array between H2+ gerade/ungerade curves allocated")

! output to the X-Window or into a separate file
215

call graphics init (" 192.168.2.156:0.0/ xw" ,4,2)

end subroutine init

220 !————————————————————————————————————————–

subroutine done
use debug
use potentials

225 use propagator
use wfmath
use tools
use vdetect
use fft

230 use diag
use progvars
use graphics

implicit none
235

integer :: count, countrate , countmax
integer :: iDeallocStatus

call graphics done
240

! deallocate all the used arrays
call potentials done
call propagator done
call wfmath done

245 call tools done
if ( detector ) call vdetect done
call fft done
call diag done

250 deallocate(psigerade, psiungerade , psiion , psitotal , stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

print *,"ERROR: can't deallocate wavefunction arrays"
stop

endif
255 call debugmsg (1,1,"DONE: all 1D H2 wavefunctions destroyed")

deallocate(coupling, stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

print *,"ERROR: can't deallocate 1D coupling array"
260 stop

endif
call debugmsg (1,1,"DONE: 1D coupling array between H2+ gerade/ungerade curves destroyed")

call system clock (count, countrate ,countmax) ! read the time for the program termination time
265 count = count − programstart ! calculate the total running time

print *,"TIME: " ,real(count/countrate) ,"seconds [" ,count,countmax,"]"

end subroutine done

270 !————————————————————————————————————————–

subroutine init parameters
use debug
use system

275 use progvars

implicit none

real*8, parameter :: pi = 3.141592653589793238462643d0
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280
deltaz = system realvariable ("deltaz" ,0.05d0) ! grid spacing in a.u. in z direction
widthz = system realvariable ("widthz",29.95d0) ! length of the grid in direction parallel to internuclear axis
minz = system realvariable ("minz" , deltaz ) ! the starting point of the grid
maxt = system realvariable ("maxt",15000.d0) ! the maximum propagation time

285
deltat = system realvariable ("deltat" ,1.d0) ! time spacing for the propagation

ntprint = nint( system realvariable ("ntprint" ,41.d0)) ! number of propagation steps between consecutive file outputs
ntplot = nint( system realvariable ("ntplot" ,128.d0)) ! number of propagation steps between consecutive screen plots

290
fadewidth = system realvariable ("fadewidth" ,10.0d0) ! the width of the absorber in a.u.
fadestrength = system realvariable ("fadestrength" ,0.01d0) ! the maximum heigth of the negative imaginary potential

! Control pulse parameters
295 ! laseromega = system realvariable(”laseromega”,0.044d0) ! the frequency of the laser for 1064 nm

laseromega = system realvariable ("laseromega",0.057d0) ! the frequency of the laser for 800 nm
laserphase = system realvariable ("phase" ,0.d0) * pi / 180 ! the carrier envelope phase in degrees

laserint = system realvariable ("int",0.00285d0) ! laser intensity, default is 1E14 W/cm2̂
laserlength = system realvariable ("pulselength",248.049d0) ! laser pulse length, default is 6fs

300 laserdelay = system realvariable ("laserdelay",1500.d0) ! time of the maximum of the laser pulse
laserramp = system realvariable ("laserramp" ,100.d0) ! time of the maximum of the laser pulse

lasercycle = 2*pi / laseromega ! this is the time for one laser cycle

305 ! Pump pulse parameters. Standard values assumed, wavelength by default same as for control pulse
pumpomega = system realvariable ("pumpomega" , laseromega) ! the frequency
pumpphase = system realvariable ("pumpphase" ,0.d0) * pi / 180 ! CE-phase, default is zero

pumpint = system realvariable ("pumpint",0.00285d0) ! intensity, default is 1E14 W/cm2̂
pumplength = system realvariable ("pumplength",248.049d0) ! pulse length, default is 6fs

310
! Probe pulse parameters. Standard values assumed, wavelength by default same as for control pulse
probeomega = system realvariable ("probeomega" , laseromega) ! the frequency
probephase = system realvariable ("probephase" ,0.d0) * pi / 180 ! CE-phase, default is zero

probeint = system realvariable ("probeint",0.014247d0) ! intensity, default is 5E14 W/cm2̂
315 probelength = system realvariable ("probelength",248.049d0) ! pulse length, default is 6fs

probedelay = system realvariable ("probedelay" , laserdelay +1000.d0) ! time of the probe pulse, default is 24fs after control

detectorwidth = system realvariable ("detectorwidth" ,5.d0) ! the width of the virtual detector
detectorgap = system realvariable ("detectorgap" ,1.d0) ! gap between virtual detector and absorbing boundary

320 detectorminp = system realvariable ("detectorminp",−10.d0) ! minimum momentum
detectormaxp = system realvariable ("detectormaxp" ,50.d0) ! maximum momentum
detectormine = system realvariable ("detectormine" ,0.d0) ! minimum momentum
detectormaxe = system realvariable ("detectormaxe" ,0.5d0) ! maximum momentum
detectorbins = nint( system realvariable ("detectorbins",1000.d0)) ! number of detector bins

325
detectorpos = minz + widthz − fadewidth − detectorgap − detectorwidth/2.d0

end subroutine init parameters

330 !————————————————————————————————————————–

subroutine show laserparameters
! just print the current laser parameters to the screen

335 use progvars

implicit none

real*8, parameter :: pi = 3.141592653589793238462643d0
340

print '(A36,ES12.3,A7)' ," Laser-Parameters: Intensity      = " , laserint * 3.50945d16,"W/cm^2"
print '(A36,F12.3,A3)' ,"                   Wavelength     = " ,2.d0*pi*137.036d0*5.29177d−2/laseromega,"nm"
print '(A36,F12.3,A4)' ,"                   CE-Phase       = " , laserphase * 180.d0 / pi ,"DEG"
print '(A36,F12.3,A3)' ,"                   Pulse duration = " , laserlength * 2.41888d−2,"fs"

345 print '(A36,F12.3,A3)' ,"                   Pulse delay    = " , laserdelay * 2.41888d−2,"fs"

end subroutine show laserparameters

!————————————————————————————————————————–
350

subroutine init detectors
! initialize the virtual detector objects, i.e. allocate the momentum and energy binning arrays
use vdetect
use progvars

355
implicit none

if (.not. detector ) return

360 ! ensure proper disassociation of the new pointer objects
nullify(vdetgerade%momentum)
nullify(vdetgerade%energy)
nullify(vdetgerade%rho)
nullify(vdetgerade%flux)

365
nullify(vdetungerade%momentum)
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nullify(vdetungerade%energy)
nullify(vdetungerade%rho)
nullify(vdetungerade%flux)

370
nullify(vdetground%momentum)
nullify(vdetground%energy)
nullify(vdetground%rho)
nullify(vdetground%flux)

375
nullify(vdetion%momentum)
nullify(vdetion%energy)
nullify(vdetion%rho)
nullify(vdetion%flux)

380
nullify( vdettotal %momentum)
nullify( vdettotal %energy)
nullify( vdettotal %rho)
nullify( vdettotal %flux)

385
! the positions for all the 4 detectors are identical
call vdetect setposition (vdetgerade , detectorpos , detectorwidth )
call vdetect setposition (vdetungerade, detectorpos , detectorwidth )
call vdetect setposition (vdetground, detectorpos , detectorwidth )

390 call vdetect setposition (vdetion , detectorpos , detectorwidth )
call vdetect setposition ( vdettotal , detectorpos , detectorwidth )

! the momentum resolution is also identical for all detectors
call vdetect setmomentumgrid(vdetgerade, detectorminp,detectormaxp, detectorbins )

395 call vdetect setmomentumgrid(vdetungerade,detectorminp,detectormaxp,detectorbins )
call vdetect setmomentumgrid(vdetground, detectorminp,detectormaxp, detectorbins )
call vdetect setmomentumgrid(vdetion, detectorminp,detectormaxp, detectorbins )
call vdetect setmomentumgrid(vdettotal , detectorminp,detectormaxp, detectorbins )

400 ! and so is the energy resolution
call vdetect setenergygrid (vdetgerade , detectormine,detectormaxe, detectorbins )
call vdetect setenergygrid (vdetungerade,detectormine,detectormaxe, detectorbins )
call vdetect setenergygrid (vdetground, detectormine,detectormaxe, detectorbins )
call vdetect setenergygrid (vdetion , detectormine,detectormaxe, detectorbins )

405 call vdetect setenergygrid ( vdettotal , detectormine,detectormaxe, detectorbins )

end subroutine init detectors

!————————————————————————————————————————–
410

subroutine done detectors
! destroy the virtual detector objects, i.e. deallocate the momentum and energy binning arrays
use vdetect
use progvars

415
implicit none

if (.not. detector ) return

420 call vdetect destroy (vdetgerade)
call vdetect destroy (vdetungerade)
call vdetect destroy (vdetground)
call vdetect destroy (vdetion)
call vdetect destroy ( vdettotal )

425
end subroutine done detectors

!————————————————————————————————————————–

430 subroutine init adk
! initialize the ADK rate arrays and precompute the static variables
! IMPORTANT: it is assumed that the GERADE curve is POTENTIAL(2) and the
! UNGERADE curve is POTENTIAL(3)!!!

435 ! The molecular ADK rates are taken from eq. (5) of J. P. Brichta et al., J. Phys. B 39, 3769 (2006)

use progvars
use potentials
use debug

440
implicit none

integer :: iAllocStatus ! for I/O operation
real*8 :: e, pi , z ! some general variables

445 integer :: nR
real*8 :: rpos , adkg, adku ! position and ADK rates
real*8 :: maxfield ! the maximum electric field strenth of the laser

allocate(adk const g(nzstep) ,adk const u(nzstep) ,adk kappa g(nzstep) ,adk kappa u(nzstep) , stat=iAllocStatus)
450 if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate ADK arrays"
stop

endif
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455 ! now procompute the static part of the ADK rates
e = dexp(1.d0) ! the Euler constant
pi = dacos(−1.d0) ! well guess - what could this be...
z = 2.d0 ! effective charge of the two nucleii together - obviously this is 2 for H2 and D2.

460 adk kappa g = dsqrt(2.d0 * (pot curve4 − pot curve2)) ! sqrt(2*I p) with I p the ionization potential
adk kappa u = dsqrt(2.d0 * (pot curve4 − pot curve3)) ! same for the ungerade curve

adk const g = (3.d0*e/pi)**1.5d0 &
*(adk kappa g**4.5d0)/(z**2.5d0) &

465 *(4.d0*e*(adk kappa g**4)/z)**(2.d0*z/adk kappa g−1.5d0)

adk const u = (3.d0*e/pi)**1.5d0 &
*(adk kappa u**4.5d0)/(z**2.5d0) &
*(4.d0*e*(adk kappa u**4)/z)**(2.d0*z/adk kappa u−1.5d0)

470
maxfield = dsqrt( laserint ) ! the maximum electric field strength of the laser
open(unit=131,file="test_adk_max.dat",status="replace",access="sequential",recl=1024)
write(131,'(A6,2A12)') "R" ,"ADK_G" ,"ADK_UG"
do nR=1, nzstep

475 rpos = (nR−1)*deltaz + minz ! grid position of the nucleii
adkg = adk const g(nR) * (maxfield**(1.5d0 − 2.d0*z/adk kappa g(nR))) &

*dexp(−2.d0*adk kappa g(nR)**3/(3.d0*maxfield)) ! the maximum ADK rate from the gerade curve
adku = adk const u(nR) * (maxfield**(1.5d0 − 2.d0*z/adk kappa u(nR))) &

*dexp(−2.d0*adk kappa u(nR)**3/(3.d0*maxfield)) ! maximum ADK rate from the ungerade curve
480

write(131,'(F6.2,2E12.4)') rpos , adkg, adku
enddo
write(131,*)
close(131)

485
call debugmsg (5,1,"INIT_ADK: ADK arrays allocated, precomputed and plotted")

end subroutine init adk

490 !————————————————————————————————————————–

subroutine done adk
! destroy the ADK arrays
use progvars

495 use debug

implicit none

integer :: iDeallocStatus ! for I/O operation
500

deallocate(adk const g,adk const u ,adk kappa g,adk kappa u, stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

print *,"ERROR: can't deallocate ADK arrays"
stop

505 endif

call debugmsg (5,1,"DONE_ADK: ADK arrays destroyed")

end subroutine done adk
510

!————————————————————————————————————————–

subroutine readcoupling(filename)
! read in a coupling array between the given two potential curves POT1 and POT2

515
use debug
use potentials
use progvars

520 implicit none

character(len=*), intent(in) :: filename ! potential file to read
real*8, pointer :: tmpptr(:) ! a temporary pointer to save the content of the potential

525 tmpptr => potential ! save the current potential pointer (Note POTENTIAL is a pointer!)

! now find the right coupling array where we temporarily redirect POTENTIAL to
potential => coupling

530 ! after we assigned POTENTIAL with the coupling array, we can now use the READFROMFILE routine from POTENTIALS
! just like reading in a potential array.

call potentials readfromfile (filename)

535 potential => tmpptr ! now restore the previous potential we had

call debugmsg(5,1,"READCOUPLING: couplings read from file")

end subroutine readcoupling
540

!————————————————————————————————————————–
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subroutine coupleH2Plus(timestep, fieldstrength )
! this routine does the dipole coupling between the H2+ gerade and ungerade curves

545
use progvars

implicit none

550 real*8, intent(in) :: timestep
real*8, intent(in) :: fieldstrength
integer :: nR
complex*16 :: tmp
real*8 :: costmp, sintmp, tmpvalue

555
! The couplings are pointwise, i.e. PSIGERADE(R) is only coupled to PSIUNGERADE(R) with the same R.
! We go pointwise through the wave functions, therefore we can have this loop running in parallel using OpenMP
! Since the routine will be called quite often, it has been optimized for speed.

560 !$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, tmp, costmp, sintmp, tmpvalue)
do nR=1, nzstep

tmpvalue = coupling(nR)*timestep* fieldstrength ! this is the argument of the trigonometric functions
costmp = dcos(tmpvalue) ! essentially how much original wave function is left after coupling

565 sintmp = dsin(tmpvalue) ! the amount of the other wave function that mixes in

tmp = psigerade(nR) ! save the value since we overwrite it below
psigerade(nR) = psigerade(nR)*costmp − psiungerade(nR)*dcmplx(0,sintmp) ! the new gerade wave function
psiungerade(nR) = psiungerade(nR)*costmp − tmp*dcmplx(0,sintmp) ! we need TMP since GERADE was just

overwritten
570

enddo
!$OMP END PARALLEL DO

end subroutine coupleH2Plus
575

!————————————————————————————————————————–

subroutine adktransition(timestep, fieldstrength )
! this routine does the ADK rate depletion of both H2+ curves to the p+p Coulomb explosion curve.

580 ! The ADK rate acts like a optical potential damping the H2+ wave functions but cannot coherently
! build up the correct wave function on the 2H+ curve due to the lost phase information.
! Instead we poppulate the upper potential curve constructively and do not propagate this wave function,
! such that the 1/R mapping of the potential curve resembles the wave function on the detector.

585 use progvars

implicit none

real*8, intent(in) :: timestep
590 real*8, intent(in) :: fieldstrength

real*8 :: fieldabs
integer :: nR
complex*16 :: tmpg, tmpu
real*8 :: adkg, adku

595 real*8, parameter :: z = 2.d0

fieldabs = dabs( fieldstrength )
if ( fieldabs < 1.d−4) return ! certainly nothing to do here, if there is no field

600 ! The ADK rate transitions are pointwise for every R.
! We go pointwise through the wave functions, therefore we can have this loop running in parallel using OpenMP
! Since the routine will be called quite often, it has been optimized for speed.

!$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, tmpg, tmpu, adkg, adku)
605 do nR=1, nzstep

adkg = adk const g(nR) * ( fieldabs **(1.5d0 − 2.d0*z/adk kappa g(nR))) &
*dexp(−2.d0*adk kappa g(nR)**3/(3.d0*fieldabs)) ! the current ADK rate from the gerade curve

adku = adk const u(nR) * ( fieldabs **(1.5d0 − 2.d0*z/adk kappa u(nR))) &
*dexp(−2.d0*adk kappa u(nR)**3/(3.d0*fieldabs)) ! the current ADK rate from the ungerade curve

610
tmpg = dsqrt(dabs(adkg*timestep)) * psigerade(nR) ! the ADK transition amplitude
psigerade(nR) = psigerade(nR) − tmpg ! depletion of the gerade wave function

tmpu = dsqrt(dabs(adkg*timestep)) * psiungerade(nR) ! the ADK transition amplitude
615 psiungerade(nR) = psiungerade(nR) − tmpu ! the depletion of the ungerade wave function

! the ionization now is problematic, since we do not have any phase information from the ADK rates
! psiion(nR) = psiion(nR) + tmpg + tmpu ! the ionization curve
! psiion(nR) = psiion(nR) + sign(fieldstrength,1.d0)*(tmpg + tmpu) ! phase adjusted variation

620 psiion(nR) = psiion(nR) + cdabs(tmpg) + cdabs(tmpu) ! only add magnitudes
enddo

!$OMP END PARALLEL DO

end subroutine adktransition
625

!————————————————————————————————————————–

function analyticalfield ( lasertime ) result( fieldstrength )
! return the field strength of the laser pulse specified in the PROGVAR block at the given LASERTIME
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630 ! for an analytical form of the pulse, i.e. a Gaussian pulse.

use progvars

implicit none
635

real*8, intent(in) :: lasertime
real*8 :: fieldstrength
real*8, parameter :: pi = 3.141592653589793238462643d0
real*8 :: envelope , phase

640
envelope = dsqrt( laserint ) * dexp(− 2.d0 * dlog(2.d0) * (( lasertime − laserdelay)**2) / ( laserlength **2) )
phase = dmod(laseromega*(time−laserdelay)+laserphase,2*pi) ! the current laser phase with respect to the maximum of

the pulse
fieldstrength = envelope * dcos(phase)

645 if (( probepulse ) .and .(.not. fcprobe )) then ! add the probe pulse if given
envelope = dsqrt(probeint ) * dexp(− 2.d0 * dlog(2.d0) * (( lasertime − probedelay)**2) / ( probelength**2) )
phase = dmod(probeomega*(time−probedelay)+probephase,2*pi) ! the current probe laser phase
fieldstrength = fieldstrength + envelope * dcos(phase) ! add the probe field to the pulse

endif
650

return

end function analyticalfield

655 !————————————————————————————————————————–

function spiderfield ( lasertime ) result( fieldstrength )
! return the field strength of the laser pulse just as in LASERFIELD, but using an experimental
! pulse from the file SPIDER.DAT (refers to the Heidelberg group using SPIDER to analyze the pulses).

660 ! The file contains three columns: time, field amplitude and phase. The peak should be at time = 0 and
! the amplitude normalized to 1.

use progvars

665 implicit none

real*8, intent(in) :: lasertime
real*8 :: fieldstrength
real*8, parameter :: pi = 3.141592653589793238462643d0

670 logical, save :: initialized = . false . ! first time of the call - we need to read in the spider file
real*8, save :: mintime, maxtime, deltatime ! the time grid in the file
real*8, allocatable, save :: spideramplitude (:) ! the amplitude of the pulse envelope
real*8, allocatable, save :: spiderphase (:) ! the phase of the field
integer, save :: maxcount ! largest array value

675 integer :: counter , i
real*8 :: loctime , amplitude, phase
integer :: iostatus

if (.not. initialized ) then ! if this is the first time this routine is called...
680 open(unit=130,file="spider.dat",access="sequential",recl=1024,status="old") ! open file

! count the number of records in the file and assign min and max values
counter = 0
read(130,*,iostat=iostatus) loctime , amplitude, phase ! read the first record

685 mintime = loctime
do while (iostatus == 0)

maxtime = loctime
counter = counter + 1
read(130,*,iostat=iostatus) loctime , amplitude, phase ! read the next record

690 end do
deltatime = (maxtime − mintime) / (counter − 1) ! the equidistant time step from the file
maxcount = counter

! now allocate the arrays
695 allocate(spideramplitude(counter) , spiderphase(counter) , stat=iostatus)

if ( iostatus /= 0) then
print *,"ERROR: can't allocate Spider pulse array"
stop

endif
700 rewind(130) ! back to the start of the file

do i=1, counter ! now read the file to the arrays
read(130,*) loctime, amplitude, phase
spideramplitude( i) = amplitude

705 spiderphase( i) = phase
enddo

close(130)
initialized = .true .

710 end if ! *first time initialization*

! find the correct value from the memory array for the Spider pulse

loctime = lasertime − laserdelay ! the shift of the pulse
715 if ( loctime > maxtime) then

counter = maxcount
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else if ( loctime < mintime) then
counter = 1

else
720 counter = nint((loctime − mintime) / deltatime) + 1

endif

amplitude = dsqrt( laserint ) * spideramplitude(counter)
phase = spiderphase(counter)

725 fieldstrength = amplitude * dcos(phase)

if (( probepulse ) .and .(.not. fcprobe )) then ! add an ANALYTICAL probe pulse if given
amplitude = dsqrt(probeint ) * dexp(− 2.d0 * dlog(2.d0) * (( lasertime − probedelay)**2) / ( probelength**2) )
phase = dmod(probeomega*(time−probedelay)+probephase,2*pi) ! the current probe laser phase

730 fieldstrength = fieldstrength + amplitude * dcos(phase) ! add the probe field to the pulse
endif

return

735 end function spiderfield

!————————————————————————————————————————–

function laserfield ( lasertime ) result( fieldstrength )
740 ! return the field strength of the laser pulse specified in the PROGVAR block at the given LASERTIME

use progvars

implicit none
745

real*8, intent(in) :: lasertime
real*8 :: fieldstrength
real*8 :: analyticalfield , spiderfield

750 if ( analyticalpulse ) then
fieldstrength = analyticalfield ( lasertime ) ! use the analytical form for the pulse

else
fieldstrength = spiderfield ( lasertime ) ! use the experimental pulse shape

endif
755

end function laserfield

!————————————————————————————————————————–

760 subroutine run
! Run the program. Loop or not is specified in the variable LOOPRUN

use potentials
use propagator

765 use wfmath
use tools
use vdetect
use diag
use adk

770 use progvars
use graphics
use system
use debug

775 implicit none

integer :: nt ! that is our time counter
character(len=80) :: line ! for output on the screen
real*8 :: laserfield ! the function that gives us the electric field strenth of the laser

780 complex*16 :: autocorrelation ! the auto-correlation of the H2+ gerade wave function
real*8 :: boundnorm ! the norm of the H2+ gerade bound states
type(TStates) :: states ! object with wave functions and energies from diagonalization
integer :: nstate ! number of the H2+ eigenstate we currently consider
integer :: ndelay, nmax ! the delay counter

785 real*8 :: delay ! the current delay value

! Note: initialization of the grid parameters and variables has been done already during INIT.
! Here we only do the real work.

790 print *," ----------------------------- "

print *,"Wave Packet Propagation in 1D"
print *," ----------------------------- "

print *,""

795 print *,"STEP 1: Reading in potential curves and couplings from file"

call potentials setactive (1) ! activate the H2 ground state curve
call potentials readfromfile ("H2_pot_ground") ! and read the curve

800 call potentials setactive (2) ! activate the H2+ gerade curve
call potentials readfromfile ("H2+pot_gerade") ! and read the curve too

call potentials setactive (3) ! activate the H2+ ungerade curve
call potentials readfromfile ("H2+pot_ungerade") ! and read the curve as well
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805
call potentials setactive (4) ! activate the H2++ CE curve
call potentials readfromfile ("H2++ce") ! and read this guy too

call readcoupling ("H2+dpcouplings") ! and get the couplings between H2+ states (gerade/ungerade)
810

! And now nicely plot all the curves on the screen

call potentials setactive (1) ! H2 ground state curve
call graphics lineplot ( potential ,1,minz,minz+widthz,−1.2d0,−1.d0,label="Potential H2 (ground state)")

815 call potentials setactive (2) ! H2+ gerade curve
call graphics lineplot ( potential ,2,minz,minz+widthz,−0.12d0,0.d0,label="Potential H2+ (gerade)")
call potentials setactive (3) ! H2+ ungerade curve
call graphics lineplot ( potential ,3,minz,minz+widthz,−0.0d0,1.d0,label="Potential H2+ (ungerade)")
call potentials setactive (4) ! H2+ ungerade curve

820 call graphics lineplot ( potential ,4,minz,minz+widthz,−0.0d0,1.d0,label="Potential p+p (CE)")

print *," -------------------------------------- "

print *,""
print *,"STEP 2: Diagonalizing the potential of H2+(gerade)"

825
call potentials setactive (2) ! switch to the H2+ gerade potential

nullify( states%energyarr) ! ensure proper disassociation of the new pointers
nullify( states%wavefunctions)

830
call diag diagonalize ( potential , states ) ! find the bound states of the potential - wave functions too
print *,"Number of bound states: " , states%numbound ! number of bound states of the potential
call diag plot ( states , "test") ! write the energies and wave functionsin a file

835 print *," -------------------------------------- "

print *,""
print *,"STEP 3: Obtaining the ground state wave function on the H2 curve"
call wfmath gaussian(psi ,2.0d0 ,1.d0 ,0.d0) ! some arbitrary trial wave function

! psi = sum(states%wavefunctions,1) ! flat superposition of all vibrational states
840 ! psi(:) = states%wavefunctions(states%numbound-1,:) ! or one particular vibrational wave function

call wfmath normalize(psigerade) ! and normalize this guy of course
call graphics lineplot (psi ,5,minz,minz+widthz,0.d0,1.d0, label ="H2 nuclear wf probability")

! now use Imaginary Time Propagation on curve 1 to find the ground state
845 call potentials setactive (1) ! H2 ground state curve

call tools groundstate (psi , deltat ) ! now we like to know the ground state of the potential using ITP
call graphics lineplot (psi ,5,minz,minz+widthz,0.d0,1.d0, label ="H2 nuclear wf probability")
print *,"Energy of groundstate: " , dreal (wfmath energy(psi))*27.2114d0," eV"
print *,"<R> expectation value: " , dreal (wfmath dipole(psi , psi)) ," a.u."

850
print *," -------------------------------------- "

print *,""
print *,"STEP 4: Obtaining initial wave function after first ionization"

855 ! One can in principle use Franck-Condon transition and just move the H2 wave function on the H2+ gerade curve.
! According to Urbain et al., Phys. Rev. Lett. 92, 163004 (2004) this is incorrect and overestimates the higher
! vibrational levels due to the R-dependence of the ionization step. A better method therefore account for
! this dependence by using ADK rates, but still assume an instantaneous (short pulse!!!) first ionization step.

860 if (adkpump) then
print *,"---> Method: ADK rate dependent instantaneous ionization"
psigerade = psi ! first we need a copy of the original ground state wave function
call adk deplete (psi , pot curve1 , pot curve2 , 1.d0, pumpint, pumplength, pumpomega, pumpphase) ! ADK deplete this state
psigerade = psigerade − psi ! subtract the final ground state from the original - the new excited

state
865 call wfmath normalize(psigerade) ! of course we want to start with normalized H2+

else
print *,"---> Method: simple Franck-Condon transition"
psigerade = psi ! just copy the wave function to the H2+ gerade potential curve

! call wfmathzero(psi) ! and the ground state wave function is gone
870 endif

psi = psigerade ! now backup the initial H2+ wave function for the loop run

call wfmath zero(psiungerade) ! and let us have no wave function in the H2+ ungerade state yet
call wfmath zero(psiion) ! same with the Coulomb explosion wave function. Nothing there yet.

875
call potentials setactive (2) ! switch to the H2+ gerade potential
print *,"Norm of H2+gerade state    : " ,wfmath norm(psigerade)
print *,"Energy of H2+gerade state  : " , dreal (wfmath energy(psigerade))*27.2114d0," eV"
print *,"<R> expectation value      : " , dreal (wfmath dipole(psigerade , psigerade)) ," a.u."

880
call potentials setactive (3) ! switch to the H2+ ungerade potential
print *,"Norm of H2+ungerade state  : " ,wfmath norm(psiungerade)
print *,"Energy of H2+ungerade state: " , dreal (wfmath energy(psiungerade))*27.2114d0," eV"
print *,"<R> expectation value      : " , dreal (wfmath dipole(psiungerade ,psiungerade)) ," a.u."

885
call graphics lineplot (psi ,5,minz,minz+widthz,0.d0,1.d0, label ="H2 nuclear wf probability")
call graphics lineplot (psigerade ,6,minz,minz+widthz,0.d0,1.d0, label ="H2+ nuclear wf probability")
call graphics lineplot (psiungerade ,7,minz,minz+widthz,0.d0,1.d0, label ="H2+ nuclear wf probability")
call graphics lineplot (psiion ,8,minz,minz+widthz,0.d0,1.d0, label ="H2++ nuclear wf probability")

890
open(unit=111,file="test_FC_factors.dat",status="replace",access="sequential",recl=1024)
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write(111,'(A6,2A12)') "State" ,"Energy" ,"FC-Factor"
do nstate=1, states%numbound ! output the overlap with the eigenfunctions of H2+gerade

write(111,'(I6,2E12.4)') nstate , states%energyarr(nstate), &
895 cdabs(wfmath overlap(psigerade (:) , states%wavefunctions(nstate ,:) ))**2

enddo
write(111,*)
close(111)

900 print *," -------------------------------------- "

print *,""
print *,"STEP 5: Propagating wave packet in laser field"
call show laserparameters ! Lets just see what we are calculating today.

905 call propagator startpropagation ! does absolutely nothing, but a good idea to call anyhow
if ( detector ) call init detectors ! create a couple virtual detectors
if (adkrate) call init adk ! initialize ADK rate arrays and precompute static variables

! open a file if we are interested in the wave function output
910

if (looprun) then ! if looping, we want final states and some matrix output
open(unit=120,file="test_stateoccupation.dat",status="replace",access="sequential",recl=1024)
open(unit=121,file="test_Rexpval.dat",status="replace",access="sequential",recl=1024)
open(unit=122,file="test_Rwidth.dat",status="replace",access="sequential",recl=1024)

915 open(unit=123,file="test_norm.dat",status="replace",access="sequential",recl=1024)

write(123,'(4A12)') "Delay" ,"Delay_fs" ,"Norm_G" ,"Norm_UG"
nmax = 3000 ! maximum loop counter

else ! only one run - we are interested in time evolution
920 open(unit=100,file="test_coupled.dat",status="replace",access="sequential",recl=1024)

write(100,'(8A12)') "TIME" ,"Time_fs" ,"Field" ,"NormG" ,"<R_G>" ,"NormU" ,"<R_U>" ,"Correlation"

open(unit=110,file="test_correlation.dat",status="replace",access="sequential",recl=1024)

925 if (wfoutput) then ! wave function makes only sense in single run mode
open(unit=101,file="coupled_wf_h2pgerade.dat",status="replace",access="sequential",recl=1024)
open(unit=102,file="coupled_wf_h2pungerade.dat",status="replace",access="sequential",recl=1024)
open(unit=105,file="coupled_wf_total.dat",status="replace",access="sequential",recl=1024)

endif
930

nmax = 0 ! only one run through the following loop
endif

if (looprun) then
935 print *,"*** Entering Delay Loop Mode ***"

else
print *,"*** Single Time Loop Run ***"

endif

940 do ndelay=0, nmax
if (looprun) then

delay = real(ndelay)/(2.41888d−2) !+ laserdelay
! laserdelay = delay ! override the value for the laser delay

probedelay = laserdelay + delay ! override the value for the probe laser delay
945 ! ntstep = nint((delay + 5.d0*laserlength + 3000.d0) / deltat) + 1 ! adjust maximum propagation time

! ntstep = nint((laserdelay + delay + 5.d0*laserlength + 3000.d0) / deltat) + 1 ! adjust maximum propagation time
ntstep = nint((delay + 100000.d0) / deltat) + 1

endif

950 psigerade = psi ! use the backup initial H2+ wave function
call wfmath zero(psiungerade) ! and let us have no wave function in the H2+ ungerade state yet

call propagator startpropagation ! does absolutely nothing, but a good idea to call anyhow

955 if (looprun) then ! if looping, write out the looping parameters
write(121,'(E12.4,$)') delay , delay*2.41888d−2
write(122,'(E12.4,$)') delay , delay*2.41888d−2

endif

960 if ( detector ) then ! reset the virtual detector if used
call vdetect reset (vdetgerade) ! this is important especially in loop mode to avoid
call vdetect reset (vdetungerade) ! and inherited counter from the previous loop run
call vdetect reset ( vdettotal )
call vdetect reset (vdetion)

965 endif

do nt=0, ntstep ! here comes the time loop
time = nt*deltat ! the current time

970 ! === PROBE PULSE ===

if (( probepulse ) .and.( fcprobe )) then ! enter this loop only if we have Franck-Condon probe pulse
! The Coulomb explosion step is assumed to be instantaneous for Franck-Condon. Thus we need to find the
! propagation time step in the time loop where we insert the CE routine.

975 if ((time >= probedelay) .and. (time−probedelay < deltat)) then ! only to be executed ONCE - at the probe time
print *,"*** Applying Instantaneous Franck-Condon Probe Laser Pulse ***"
psiion = psitotal ! Franck-Condon transition
call wfmath zero(psigerade) ! big closing sale!!!
call wfmath zero(psiungerade) ! everything has to go...
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980 call wfmath zero( psitotal ) ! and gone too
print *

endif ! (* Ensure only one run of the routine *)
endif ! (* Existenze of probe pulse? *)

985 ! === END PROBE PULSE

zfield = laserfield (time) ! calculate the electric field for the laser including any probe if given

! === PROPAGATION AND COUPLING ===
990

if (adkrate) call adktransition ( deltat /2.d0, zfield ) ! couple H2+ wave functions to the p+p curve
call coupleH2Plus(deltat/2.d0, zfield ) ! do one coupling between H2+ gerade/ungerade curves for half

timestep

call potentials setactive (2) ! propagate in the H2+ gerade potential
995 call propagator cnprop(psigerade , dcmplx(deltat ,0.d0), potential , absorber) ! and propagate a time step

call potentials setactive (3) ! propagate in the H2+ ungerade potential
call propagator cnprop(psiungerade , dcmplx(deltat ,0.d0), potential , absorber) ! and propagate a time step

1000 if (( probepulse ) .and.( fcprobe )) then ! propagate on H2++ curve if we use Franck-Condon for the probe pulse
call potentials setactive (4) ! propagate in the H2++ Coulomb explosion potential
call propagator cnprop(psiion , dcmplx(deltat ,0.d0), potential , absorber) ! and propagate a time step

endif

1005 call coupleH2Plus(deltat/2.d0, zfield ) ! do one coupling between H2+ gerade/ungerade curves for half
timestep

if (adkrate) call adktransition ( deltat /2.d0, zfield ) ! couple H2+ wave functions to the p+p curve

psitotal = psigerade + psiungerade ! calculate the total wave function (this time without the ground state)

1010 ! === END OF PROPAGATION AND COUPLING ===

if ( detector ) then ! apply the virtual detector to the wave functions
call vdetect detector (vdetgerade , psigerade , deltat )
call vdetect detector (vdetungerade,psiungerade , deltat )

1015 call vdetect detector ( vdettotal , psitotal , deltat )
call vdetect detector (vdetion , psitotal , deltat )

endif

if ((mod(nt,ntprint) .eq .0) .or .(nt .eq . ntstep−1)) then ! check if we plot this round
1020 write(line,'(I5,A,I5,A,I5,A,F8.2,A,F8.2)') ndelay," Iterations:" ,nt ,"/" , ntstep−1," Time:",time,"/" ,maxt

line (len( line ) :len( line )) = char(13) ! position the cursor back on the beginning of the line
print '(A$)', line ! overwrite the current line on the screen

if (looprun) then ! output data - different in loop and single run mode
1025 write(121,'(E12.4,$)') dreal (wfmath dipole(psigerade , psigerade))

write(122,'(E12.4,$)') wfmath width(psigerade)
else ! in single run mode we want time evolution, that means more work here

autocorrelation = wfmath overlap(psigerade,psi) ! calculate the auto-correlation

1030 write(100,'(F12.2,F12.4,6E12.4)') time, time*2.41888d−2, zfield , &
wfmath norm(psigerade), dreal(wfmath dipole(psigerade , psigerade)) , &
wfmath norm(psiungerade), dreal(wfmath dipole(psiungerade ,psiungerade)) , &
cdabs( autocorrelation )**2

1035 write(110,'(E12.4,$)') time, time*2.41888d−2
boundnorm = wfmath norm(psigerade) ! calculate the norm of the remaining bound H2+ states
do nstate=1, states%numbound ! output the overlap with the eigenfunctions of H2+gerade

if (normalizestates ) then ! we normalize to the remaining bound state
write(110,'(E12.4,$)') cdabs(wfmath overlap(psigerade (:) , states%wavefunctions(nstate ,:) ))**2/boundnorm

1040 else ! otherwise give the remaining TOTAL vibration state occupation
write(110,'(E12.4,$)') cdabs(wfmath overlap(psigerade (:) , states%wavefunctions(nstate ,:) ))**2

endif
enddo
write(110,*)

1045
if (wfoutput) then ! write wave function to disk - if feature is activated

write(101,'(E12.4,$)') cdabs(psigerade)**2
write(101,*)

1050 write(102,'(E12.4,$)') cdabs(psiungerade)**2
write(102,*)

write(105,'(E12.4,$)') cdabs(psigerade+psiungerade)**2
write(105,*)

1055 endif
endif ! (* looprun test *)

endif ! (* data output condition *)

1060 if ((mod(nt,ntplot) .eq .0) .or .(nt .eq . ntstep−1)) then ! check if we plot graphics this round
call graphics lineplot (psigerade ,6,minz,minz+widthz,0.d0,1.d0, label ="H2+ nuclear wf probability")
call graphics lineplot (psiungerade ,7,minz,minz+widthz,0.d0,1.d0, label ="H2+ nuclear wf probability")
call graphics lineplot (psiion ,8,minz,minz+widthz,0.d0,1.d0, label ="H2++ nuclear wf probability")

endif
1065
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enddo ! (* timeloop *)

if (( detector ) .and.(probepulse ) .and .(.not. fcprobe )) then ! special treatment, if no propagation occured on H2++ curve
! the virtual detector on the H2++ curve can only detect if we propagate the wave function. For the case of

1070 ! ADK depletion of the single ionized states, we loose the phase information and thus only collect wave function
! probability on the H2++ curve without further propagation. Therefore we need to map the R-dependence of the
! wave function probability to a detector count in energy space.
call vdetect reset (vdetion) ! first delete what we collected - it doesn’t count anyway
call vdetect reverseimage (vdetion , psiion ,pot curve4) ! get detector counts from reversing wave function on potential curve

1075 endif

if (looprun) then ! loop mode output is after the time evolution here
autocorrelation = wfmath overlap(psigerade,psi) ! calculate the auto-correlation
write(120,'(E12.4,$)') delay , delay*2.41888d−2

1080 boundnorm = wfmath norm(psigerade)
do nstate=1, states%numbound ! output the overlap with the eigenfunctions of H2+gerade

if (normalizestates ) then
write(120,'(E12.4,$)') cdabs(wfmath overlap(psigerade (:) , states%wavefunctions(nstate ,:) ))**2 / boundnorm

else
1085 write(120,'(E12.4,$)') cdabs(wfmath overlap(psigerade (:) , states%wavefunctions(nstate ,:) ))**2

endif
enddo
write(120,*)
write(121,*)

1090 write(122,*)
write(123,'(4E12.4)') delay , delay*2.41888d−2,wfmath norm(psigerade),wfmath norm(psiungerade)

! Plot the data from the virtual detectors
if ( detector ) then

1095 call vdetect plot variant (vdetgerade ,"H2+gerade")
call vdetect plot variant (vdetungerade,"H2+ungerade")
call vdetect plot variant ( vdettotal ,"H2_total")
call vdetect plot variant (vdetion ,"H2++CE")

endif
1100 endif ! (* looprun test *)

enddo ! (* delay loop *)

if (looprun) then
1105 close(120)

close(121)
close(122)
close(123)

else
1110 call potentials setactive (2) ! switch to the H2+ gerade potential

print *,"Energy of H2+gerade state  : " , dreal (wfmath energy(psigerade))*27.2114d0," eV"
print *,"<R> expectation value      : " , dreal (wfmath dipole(psigerade , psigerade)) ," a.u."

call potentials setactive (3) ! switch to the H2+ ungerade potential
1115 print *,"Energy of H2+ungerade state: " , dreal (wfmath energy(psiungerade))*27.2114d0," eV"

print *,"<R> expectation value      : " , dreal (wfmath dipole(psiungerade ,psiungerade)) ," a.u."

! Plot the data from the virtual detectors
if ( detector ) then

1120 call vdetect plot (vdetgerade ,"H2+gerade")
call vdetect plot (vdetungerade,"H2+ungerade")
call vdetect plot ( vdettotal ,"H2_total")
call vdetect plot (vdetion ,"H2++CE")

endif
1125

close(100)
close(110)
close(112)

1130 if (wfoutput) then
close(101) ! close the wave function file
close(102) ! close the wave function file
close(105) ! close the wave function file

endif
1135 endif ! (* looprun test *)

if ( detector ) call done detectors ! release all the virtual detectors
if (adkrate) call done adk ! release the ADK arrays

1140 call diag release ( states ) ! release the diagonalized wave function array

end subroutine run

C.3 Propagator Module (prop1D.f90)

!——————————————————————————–
! DEFINITION OF CRANK-NICHOLSON PROPAGATOR MODULE
!——————————————————————————–
! Author : Thomas Niederhausen
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5 ! Sources : Uwe Thumm and Bernold Feuerstein
! Date : 6 Jun 2006
! contains Crank-Nicholson propagator algorithm
!——————————————————————————–

10 ! usage:
!
! PROPAGATOR INIT(zdim)
! allocates the 1D storage arrays for the wavefunctions
!

15 ! PROPAGATOR DONE
! kills the 1D storage arrays for the wavefunctions
!
! PROPAGATOR SETSCALE(zmin,zmax)
! sets the left (zmin) and right (zmax) grid boundaries in atomic units and thus

20 ! defines the grid spacing in z-direction
!
! PROPAGATOR SETMASS(zmass)
! sets the mass of the particle for the propagation (heavier particles move
! slower).

25 !
! PROPAGATOR GETZMIN
! PROPAGATOR GETZMAX
! PROPAGATOR GETDELTAZ
! PROPAGATOR GETMASS

30 ! functions do return specific information about the numerical grid to the caller
!
! PROPAGATOR CNPROP(psiin, timestep, potential, absorber)
! propagates the given wavefunction with Crank-Nicholson Algorithm for on timestep
! If optional absorber is given, the wavefunction is masked with this array to reduce

35 ! boudary reflections. Note: timestep must be COMPLEX*16, to use the routine for
! imaginary time propagation as well
!
! PROPAGATOR CNITPROP(psiin, timestep, potential, absorber)
! same as PROPAGATOR CNPROP, but now timestep is REAL*8 and the propagation transforms

40 ! to imaginary time propagation to find ground states for the given potential.

module propagator
implicit none

45
complex*16, allocatable :: psi(:) ! the 1D wavefunction input

complex*16, allocatable, private :: psiout(:) ! local wavefunction for propagation
complex*16, allocatable, private :: gamma(:) ! used for CN-propagation algorithm

50 complex*16, allocatable, private :: diagarr(:) ! diagonal elements used for CN-propagation algorithm

integer, private :: nzstep ! the dimenstion of the 1D potential
real*8, private :: massz=1.0 ! the masses of particles in a.u.
real*8, private :: deltaz ! the grid spacing

55 real*8, private :: zmin ! defines the origin (in a.u.) of the grid

contains

!————————————————————————————————————————–
60 ! INITIALIZATION

!————————————————————————————————————————–

subroutine propagator init(zdim)
use debug

65 integer, intent(in) :: zdim ! the dimension of the arrays
integer :: iAllocStatus ! return value

! allocate 1D wavefunction
allocate(psi(zdim),stat=iAllocStatus)

70 if ( iAllocStatus /= 0) then
print *,"ERROR: can't allocate 1D wavefunction PSI"
stop

endif
call debugmsg (10,1,"PROPAGATOR_INIT: 1D wavefunction PSI allocated")

75
! allocate 1D local wavefunctions
allocate(psiout(zdim),stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate 1D local wavefunction array"
80 stop

endif
call debugmsg (10,1,"PROPAGATOR_INIT: 1D local wavefunction array allocated")

! allocate temporary CN-propagator array
85 allocate(gamma(zdim),stat=iAllocStatus)

if ( iAllocStatus /= 0) then
print *,"ERROR: can't allocate temporary propagator array GAMMA"
stop

endif
90 call debugmsg (10,1,"PROPAGATOR_INIT: temporary propagator array GAMMA allocated")

! allocate CN diagonal elements array
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allocate(diagarr(zdim),stat=iAllocStatus)
if ( iAllocStatus /= 0) then

95 print *,"ERROR: can't allocate DIAGARR array"
stop

endif
call debugmsg (10,1,"PROPAGATOR_INIT: DIAGARR allocated")

100 ! set the dimensions of the wavefunction
nzstep = zdim

call debugmsg(5,1,"PROPAGATOR_INIT: propagation arrays allocated")
end subroutine propagator init

105
!————————————————————————————————————————–

subroutine propagator done
use debug

110 integer :: iDeallocStatus ! return value

! deallocate 1D wavefunction
deallocate(psi,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

115 print *,"ERROR: can't deallocate wavefunction arrays"
stop

endif
call debugmsg (10,1,"PROPAGATOR_DONE: wavefunction arrays destroyed")

120 ! deallocate 1D sub-wavefunctions
deallocate(psiout,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

print *,"ERROR: can't deallocate 1D local wavefunction array"
stop

125 endif
call debugmsg (10,1,"PROPAGATOR_DONE: 1D local wavefunction array destroyed")

deallocate(gamma,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

130 print *,"ERROR: can't deallocate temporary propagator array GAMMA"
stop

endif
call debugmsg (10,1,"PROPAGATOR_DONE: temporary propagator array GAMMA destroyed")

135 deallocate(diagarr,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

print *,"ERROR: can't deallocate DIAGARR"
stop

endif
140 call debugmsg (10,1,"PROPAGATOR_DONE: DIAGARR destroyed")

call debugmsg(5,1,"PROPAGATOR_DONE: propagation arrays destroyed")
end subroutine propagator done

145 !————————————————————————————————————————–

subroutine propagator startpropagation
! For compatibility with variable time step routine

end subroutine propagator startpropagation
150

!————————————————————————————————————————–

subroutine propagator setscale(min, max)
! sets the grid boundaries in atomic units in z-direction

155 real*8, intent(in) :: min, max

zmin = min
deltaz = (max − min) / ( nzstep − 1)

end subroutine propagator setscale
160

!————————————————————————————————————————–

subroutine propagator setmass(zmass)
! sets the masses of the particles

165 real*8, intent(in) :: zmass

massz = zmass ! sets the first mass parameter

end subroutine propagator setmass
170

!————————————————————————————————————————–
! GRID INQUIRY FUNCTIONS
!————————————————————————————————————————–

175 function propagator getzmin() result(min)
real*8 :: min
min = zmin

end function propagator getzmin

180 !————————————————————————————————————————–
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function propagator getzmax() result(max)
real*8 :: max
max = zmin + nzstep*deltaz

185 end function propagator getzmax

!————————————————————————————————————————–

function propagator getdeltaz () result(delta)
190 real*8 :: delta

delta = deltaz
end function propagator getdeltaz

!————————————————————————————————————————–
195

function propagator getmass() result(mass)
real*8 :: mass
mass = massz

end function propagator getmass
200

!————————————————————————————————————————–
! PROPAGATION
!————————————————————————————————————————–

205 subroutine propagator cnprop(psiin, timestep, potential , absorber)
! uses Crank-Nicholson propagation scheme to propagate wavefunction for small timestep
complex*16, intent(inout), dimension(:) :: psiin
real*8, intent(in), dimension(:) :: potential
real*8, intent(in), dimension(:), optional :: absorber

210 complex*16, intent(in) :: timestep ! complex for imaginary time propagation
complex*16, parameter :: iu = (0.d0,1.d0) ! imaginary unit
complex*16 :: diagz ! the diagonal elements without potential term
complex*16 :: subdiagz ! the constant off-diagonal elements
integer :: nz

215
! 1.) Calculate constant tridiagonal elements of propagation matrix (Hamiltonean)

diagz = 0.5 + iu * timestep / (massz * 4.0 * deltaz**2) ! Note: potential is added in propagation loop

220 subdiagz = −iu * timestep / (massz * 8.0 * deltaz**2)

! 2.) Propagate a full potential and kinetic energy step at once

225 diagarr = potential * iu * timestep / 4.d0 + diagz ! the diagonal elements including potential
call cntridag nonconst(psiin , psiout ,diagarr , subdiagz) ! propagate in z-direction

! 3.) Propagate half a potential step
230

! psiin = psiin * (1.d0 - iu * potential * timestep / 4.d0) / (1.d0 + iu * potential * timestep / 4.d0)

! 3.) Propagate a full timestep T z in z direction
235

! call cntridag const(psiin,psiout,diagz,subdiagz) ! propagate in z-direction
! psiin = psiout ! write back the result into the wavefunction

240 ! 4.) Propagate another half a potential step

! psiin = psiin * (1.d0 - iu * potential * timestep / 4.d0) / (1.d0 + iu * potential * timestep / 4.d0)

245 ! 5.) Apply the absorber to reduce grid boundary reflections (if absorber array is given)
if (present(absorber)) then

psiin = psiout*absorber
else

psiin = psiout
250 endif

end subroutine propagator cnprop

!————————————————————————————————————————–
255

subroutine propagator cnitprop(psiin, timestep , potential , absorber)
! uses Crank-Nicholson propagation scheme for small timestep imaginary time propagation (finding ground state)
complex*16, intent(inout), dimension(:) :: psiin
real*8, intent(in), dimension(:) :: potential

260 real*8, intent(in), dimension(:), optional :: absorber
real*8, intent(in) :: timestep
complex*16, parameter :: iu = (0.d0,1.d0) ! imaginary unit

if (present(absorber)) then
265 call propagator cnprop(psiin , −iu*timestep, potential , absorber)

else
call propagator cnprop(psiin , −iu*timestep, potential )

endif
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end subroutine propagator cnitprop
270

!————————————————————————————————————————–

subroutine cntridag const(psiin,psiout ,diag , subdiag)
! modified NUMERICAL RECIPES TRIDAG routine for constant diagonal and super/subdiagonal elements

275 ! Ref.: Num. Recipes, p.24, sec. 2.4, U. Thumm ITAMP, 6/15/99
complex*16, intent(in) :: psiin (:)
complex*16, intent(out) :: psiout(:)
complex*16, intent(in) :: diag , subdiag
complex*16 :: beta

280 integer :: j

beta = diag
psiout(1) = psiin(1) / beta

285 do j=2, size(psiin)
gamma(j) = subdiag / beta
beta = diag − subdiag * gamma(j)
if (beta .eq .0) then

pause "ERROR: CNTRIDAG_NONCONST failed (beta=0)"

290 stop
endif
psiout( j) = (psiin( j) − subdiag * psiout( j−1)) / beta

enddo

295 do j=size(psiin)−1,1,−1
psiout( j) = psiout(j) − gamma(j+1) * psiout(j+1) ! this loop clearly cries for optimization!!!

enddo

psiout = psiout − psiin ! subtract initial vector
300 end subroutine cntridag const

!————————————————————————————————————————–

subroutine cntridag nonconst(psiin,psiout ,diag , subdiag)
305 ! modified NUMERICAL RECIPES TRIDAG routine for constant diagonal and super/subdiagonal elements

! Ref.: Num. Recipes, p.24, sec. 2.4, U. Thumm ITAMP, 6/15/99
complex*16, intent(in) :: psiin (:) , diag (:)
complex*16, intent(out) :: psiout(:)
complex*16, intent(in) :: subdiag

310 complex*16 :: beta
integer :: j

beta = diag(1)
psiout(1) = psiin(1) / beta

315
do j=2, size(psiin)

gamma(j) = subdiag / beta
beta = diag(j) − subdiag * gamma(j)
if (beta .eq .0) then

320 pause "ERROR: CNTRIDAG_CONST failed (beta=0)"

stop
endif
psiout( j) = (psiin( j) − subdiag * psiout( j−1)) / beta

enddo
325

do j=size(psiin)−1,1,−1
psiout( j) = psiout(j) − gamma(j+1) * psiout(j+1) ! this loop clearly cries for optimization!!!

enddo

330 psiout = psiout − psiin ! subtract initial vector
end subroutine cntridag nonconst

!————————————————————————————————————————–

335 end module propagator

C.4 Potential Module (pot1D.f90)

!——————————————————————————–
! DEFINITION OF POTENTIAL MODULE
!——————————————————————————–
! Author : Thomas Niederhausen

5 ! Date : 24 Aug 2006
! provides 1D potential routines for 3 coupled hydrogenic potential curves
!——————————————————————————–

! usage:
10 !

! POTENTIALS INIT(zdim)
! allocates the 1D storage arrays for potential and absorber, but does NOT fill
! them with useful values
!
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15 ! POTENTIALS DONE
! kills the 1D storage arrays for potential and absorber
!
! POTENTIALS BACKUP
! creates an array to store a backup of the current potential

20 ! useful to store the time independent part of the potential
!
! POTENTIALS RESTORE
! loads the backup potential into the current potential array
! useful to add the time dependent part afterwards

25 !
! POTENTIALS REALZERO
! sets the real potential to be a flat, zero potential
!
! POTENTIALS OPTICALZERO

30 ! since the optical potential is implemented as a masking function, this sets the
! masking array to 1 everywhere in space, equivalent to a zero optical potential
!
! POTENTIALS ZERO
! calls the two functions above and thus sets the effective complex potential

35 ! to a flat homeogenious space
!
! POTENTIALS SETSCALE(zmin,zmax)
! sets the left (zmin) and right (zmax) grid boundaries in atomic units and thus
! defines the grid spacing in z-direction

40 !
! POTENTIALS SETABSORBER(width,strength)
! defines the strength and width of the aborbing boundaries on both sides
!
! POTENTIALS PLOT

45 ! plots the current potential (real and imaginary part) in separate files
! in ASCII format
!
! POTENTIALS SOFTHYDROGEN(zpos, softpar [optional], charge [optional])
! adds a soft-core hydrogen ion at the given position to the potential

50 ! the softening parameter is optional - otherwise a default value 0.641 is assumed
! the charge gives the nuclear charge in case it is not hydrogen atom.
!
! POTENTIALS SOFTHELIUM(zpos, softpar [optional], effcharge [optional])
! adds a soft-core helium-atom at the given position to the potential. The

55 ! potential is an active 1-electron potential for the outermost electron,
! which includes the screening from the inner electron.
! The softening parameter and the effective charge are optional and are adjusted
! to reproduce the ionization potential of the second electron for the ground state
! 1s2s and the first excited state 1s2s. They NEED TO GET ADJUSTED!!!!

60 !
! POTENTIALS EFIELD(zint, xint)
! adds a electric field gradient of the given intensity in x and z direction
!
! POTENTIALS READFROMFILE(filename)

65 ! read the potential data from the given filename in the current POTENTIAL
! array.

module potentials
implicit none

70
real*8, allocatable :: absorber (:) ! bumper potential
real*8, pointer :: potential (:) ! the current potetial
real*8, allocatable :: potentialbackup (:) ! a copy of the potential to store the static part

75 real*8, allocatable, target :: pot curve1 (:) , pot curve2 (:) , pot curve3 (:) , pot curve4 (:) ! these are our 4 potential curves

integer, private :: nzstep ! the dimenstion of the 1D potentials
real*8, private :: deltaz ! the grid spacing
real*8, private :: zmin ! defines the origin (in a.u.) of the grid

80
contains

!————————————————————————————————————————–
! I N I T I A L I Z A T I O N

85 !————————————————————————————————————————–

subroutine potentials init (zdim)
use debug
integer, intent(in) :: zdim ! the dimension of the arrays

90 integer :: iAllocStatus ! return value

! allocate potential arrays
allocate(pot curve1(zdim),pot curve2(zdim),pot curve3(zdim),pot curve4(zdim),stat=iAllocStatus)
if ( iAllocStatus /= 0) then

95 print *,"ERROR: can't allocate POTENTIAL arrays"
stop

endif
call debugmsg(10,1,"POTENTIALS_INIT: POTENTIAL arrays allocated")

100 ! allocate bumper potential
allocate(absorber(zdim),stat=iAllocStatus)
if ( iAllocStatus /= 0) then
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print *,"ERROR: can't allocate ABSORBER array"
stop

105 endif
call debugmsg (10,1,"POTENTIALS_INIT: ABSORBER allocated")

! set the dimensions of the potential
nzstep = zdim

110
! and make sure we have an active potential assigned - initialized with the lowest curve.
call potentials setactive (1)

call debugmsg(5,1,"POTENTIALS_INIT: 1D potentials allocated")
115

end subroutine potentials init

!————————————————————————————————————————–

120 subroutine potentials done
use debug
integer :: iDeallocStatus ! return value

! check and deallocate the potential backup copy if allocated
125 if ( allocated ( potentialbackup )) then

deallocate(potentialbackup,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then

print *,"ERROR: can't deallocate POTENTIALBACKUP array"
stop

130 endif
call debugmsg(10,1,"POTENTIALS_DONE: POTENTIALBACKUP destroyed")

endif

! deallocate potential arrays
135 deallocate(pot curve1, pot curve2 , pot curve3 , pot curve4 ,stat=iDeallocStatus)

if (iDeAllocStatus /= 0) then
print *,"ERROR: can't deallocate POTENTIAL arrays"
stop

endif
140 call debugmsg(10,1,"POTENTIALS_DONE: POTENTIAL arrays destroyed")

! deallocate bumper potential
deallocate(absorber,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

145 print *,"ERROR: can't deallocate ABSORBER array"
stop

endif
call debugmsg (10,1,"POTENTIALS_DONE: ABSORBER destroyed")

150 call debugmsg(5,1,"POTENTIALS_DONE: 1D potentials destroyed")

end subroutine potentials done

!————————————————————————————————————————–
155

subroutine potentials setscale (min, max)
! sets the grid boundaries in atomic units in z-direction
real*8, intent(in) :: min, max

160 zmin = min
deltaz = (max − min) / ( nzstep − 1)

end subroutine potentials setscale

!————————————————————————————————————————–
165

subroutine potentials setactive (potnr)
! chooses which potential curve is the currently active potential curve
integer, intent(in) :: potnr

170 select case(potnr)
case(1)

potential => pot curve1
case(2)

potential => pot curve2
175 case(3)

potential => pot curve3
case(4)

potential => pot curve4
case default

180 print *," POTENTIALS_SETACTIVE : ERROR - potential number " ,potnr ,"is not within [1,2,3] range"
stop

end select
end subroutine potentials setactive

185 !————————————————————————————————————————–

subroutine potentials backup
! creates a backup copy of the current potential
use debug

190 integer :: iAllocStatus
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! check if the potential backup copy already exists and create the array if needed
if (.not. allocated ( potentialbackup )) then

allocate(potentialbackup(nzstep) ,stat=iAllocStatus)
195 if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate POTENTIAL array"
stop

endif
call debugmsg(5,1,"POTENTIALS_BACKUP: POTENTIALBACKUP allocated")

200 endif

potentialbackup = potential ! copy the current potential to the backup copy

call debugmsg(8,1,"POTENTIALS_BACKUP: current potential stored")
205 end subroutine potentials backup

!————————————————————————————————————————–

subroutine potentials restore
210 ! copies the backup copy of the potential in the current potential array

potential = potentialbackup

end subroutine potentials restore
215

!————————————————————————————————————————–
! P O T E N T I A L S
!————————————————————————————————————————–

220 subroutine potentials realzero
! sets real part of potential to 0 everywhere in space

potential = 0.d0

225 end subroutine potentials realzero

!————————————————————————————————————————–

subroutine potentials opticalzero
230 ! sets masking array to 1 everywhere in space

absorber = 1.d0
end subroutine potentials opticalzero

235 !————————————————————————————————————————–

subroutine potentials zero
! sets optical and real potential to 0 everywhere in space

240 call potentials realzero
call potentials opticalzero

end subroutine potentials zero

!————————————————————————————————————————–
245

subroutine potentials softhydrogen(zpos , softpar , charge)
! adds a soft-core hydrogen ion at the given position to the potential
! the softening parameter is optional - otherwise a default value is assumed
! the charge is also optional - if note given we assume Z=1

250 real*8, intent(in) :: zpos
real*8, intent(in), optional :: softpar
real*8, intent(in), optional :: charge
integer :: nz
real*8 :: z , rsq

255 real*8 :: softparameter
real*8 :: corecharge

! check for softenting parameter. default is 0.641 which makes I p=0.5 a.u. in 2D

260 ! *** ADJUST the softening parameter!!!

if (present( softpar )) then
softparameter = softpar

else
265 softparameter = 0.641d0

endif

! check for nuclear charge parameter. default is Z=1 for hydrogen
if (present(charge)) then

270 corecharge = charge
else

corecharge = 1.d0
endif

275 z = zmin
do nz=1, nzstep

rsq = (z − zpos)**2
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potential (nz) = potential (nz) − corecharge / dsqrt(rsq + softparameter)
280

z = z + deltaz ! next grid position in z-direction
enddo

end subroutine potentials softhydrogen
285

!————————————————————————————————————————–

subroutine potentials softmolecule ( rdist , apar, charge)
! Improved molecular soft-core 1D potential, based on B. Feuerstein

290 ! (see Phys. Rev. A 67 - 043405 (2003)) using a softening function
! a(R) in order to reproduce the 1 sigma g potential curve in 1D
! correctly. The potential of one nucleus is given by

! V(z) = - Q / ( sqrt(z2̂ + (a/b)2̂) + 1/a - a/b ) with a=a(R), and b=5
!

295 ! This version uses a natural cubic spline interpolation

use mathtools

real*8, intent(in) :: rdist
300 real*8, intent(in), optional :: apar

real*8, intent(in), optional :: charge
integer :: nz, nR
real*8 :: z , q, a, rsqa , rsqb
! Table of precomputed fitting values for interpolation

305 real*8, parameter :: rtab(50) = (/ 0.d0, 0.2d0, 0.4d0, 0.6d0, 0.8d0, 1.d0, 1.2d0, 1.4d0, 1.6d0, 1.8d0, 2.d0, &
2.2d0, 2.4d0, 2.6d0, 2.8d0, 3.d0, 3.2d0, 3.4d0, 3.6d0, 3.8d0, 4.d0, 4.2d0, &
4.4d0, 4.6d0, 4.8d0, 5.d0, 5.5d0, 6.d0, 6.5d0, 7.d0, 7.5d0, 8.d0, 8.5d0, &
9.d0, 10.d0, 11.d0, 12.d0, 13.d0, 14.d0, 15.d0, 16.d0, 17.d0, 18.d0, 19.d0, &
20.d0, 21.d0, 22.d0, 23.d0, 24.d0, 25.d0 /)

310 real*8, parameter :: atab(50) = (/ 1.565108776d0, 1.520073891d0, 1.443648815d0, 1.370487690d0, 1.306910992d0, &
1.252897263d0, 1.206868172d0, 1.167484999d0, 1.133425713d0, 1.103911877d0, &
1.078041077d0, 1.055446148d0, 1.035488129d0, 1.018023968d0, 1.002538681d0, &
0.9890131950d0, 0.9770517349d0, 0.9666829109d0, 0.9575562477d0, 0.9497456551d0,

&
0.9428887367d0, 0.9371356964d0, 0.9321336746d0, 0.9280090332d0, 0.9244518280d0,

&
315 0.9216003418d0, 0.9163241386d0, 0.9130887985d0, 0.9111528397d0, 0.9098558426d0,

&
0.9087901115d0, 0.9078197479d0, 0.9069590569d0, 0.9061222076d0, 0.9048431900d0,

&
0.9031679200d0, 0.9015463800d0, 0.9002052300d0, 0.8991304400d0, 0.8982425700d0,

&
0.8975135800d0, 0.8969014200d0, 0.8963780400d0, 0.8959341000d0, 0.8955509200d0,

&
0.8952191400d0, 0.8949247400d0, 0.8946677200d0, 0.8944317300d0, 0.8942307900d0

/)
320

real*8, save :: dtab(50)
logical :: dtabinit = . false .

! for the spline interpolation we need the table of second derivatives to be initialized first.
325 if ( dtabinit == .false .) then

call math spline(rtab , atab , dtab) ! compute the second derivatives of the interpolating function
dtabinit = .true . ! okay - next time we do not have to compute this table again

endif

330 ! If no charge is given, we assume hydrogen. Softening is only adjusted to 1D H2+ molecule!!!
if (present(charge)) then

q = charge
else

q = 1.d0
335 endif

! Use the interpolated fitting value a if not specified otherwise
if (present(apar)) then

a = apar
340 else

! ! now we have to do some linear interpolation
! do nR=lbound(rtab,1), ubound(rtab,1) ! loop through the distance table
! if (rtab(nR) ¿= rdist) exit ! and find the next bigger distance from the given value
! enddo ! rdist is now in the interval specified by [nR-1]...[nR]

345 if ( rdist >= rtab(ubound(rtab,1))) then ! check if we are out of bound, i.e. distance larger than table allows
a = atab(ubound(rtab,1)) ! to big value for RDIST - return the largest tabulated value for a

else ! everything clear - we can interpolate
a = math spline interpolation (rtab , atab , dtab , rdist ) ! do the cubic spline interpolation

! a = atab(nR-1) + (atab(nR) - atab(nR-1)) * (rdist - rtab(nR-1)) / (rtab(nR) - rtab(nR-1)) ! linear interpolation
350 endif

endif

z = zmin
do nz=1, nzstep

355
rsqa = (z − rdist/2.d0)**2 + a**2 / 25.d0
rsqb = (z + rdist/2.d0)**2 + a**2 / 25.d0
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potential (nz) = potential (nz) − q / ( dsqrt(rsqa) + 1.d0 / a − a / 5.d0) &
360 − q / ( dsqrt(rsqb) + 1.d0 / a − a / 5.d0)

z = z + deltaz ! next grid position in z-direction
enddo

365 end subroutine potentials softmolecule

!————————————————————————————————————————–

subroutine potentials softmolecule fitfunction ( rdist , apar, charge)
370 ! Improved molecular soft-core 1D potential, based on B. Feuerstein

! (see Phys. Rev. A 67 - 043405 (2003)) using a softening function
! a(R) in order to reproduce the 1 sigma g potential curve in 1D
! correctly. The potential of one nucleus is given by

! V(z) = - Q / ( sqrt(z2̂ + (a/b)2̂) + 1/a - a/b ) with a=a(R), and b=5
375 !

! This version uses a fitting function

real*8, intent(in) :: rdist
real*8, intent(in), optional :: apar

380 real*8, intent(in), optional :: charge
integer :: nz
real*8 :: z , q, a, rsqa , rsqb

! If no charge is given, we assume hydrogen. Softening is only adjusted to 1D H2+ molecule!!!
385 if (present(charge)) then

q = charge
else

q = 1.d0
endif

390
! Use the analytical fitting function to obtain the softening parameter, unless specified directly
if (present(apar)) then

a = apar
else

395 ! a = 0.69293d0 * dexp(-rdist/1.47909d0) + 0.89989d0 ! our a(R) fitting function - original reproducing better for R=0..9
a = 0.69356d0 * dexp(−rdist/1.48948d0) + 0.8984d0 ! our a(R) fitting function - better interpolation for larger distances

endif

z = zmin
400 do nz=1, nzstep

rsqa = (z − rdist/2.d0)**2 + a**2 / 25.d0
rsqb = (z + rdist/2.d0)**2 + a**2 / 25.d0

405 potential (nz) = potential (nz) − q / ( dsqrt(rsqa) + 1.d0 / a − a / 5.d0) &
− q / ( dsqrt(rsqb) + 1.d0 / a − a / 5.d0)

z = z + deltaz ! next grid position in z-direction
enddo

410
end subroutine potentials softmolecule fitfunction

!————————————————————————————————————————–

415 subroutine potentials soft diatomic molecule ( rdist , apar, bpar, charge)
! Improved molecular soft-core 1D potential, based on B. Feuerstein
! (see Phys. Rev. A 67 - 043405 (2003)) using the softening functions
! a(R) in order to reproduce the 1 sigma g and b(R) for the 1 sigma u
! potential curves in 1D correctly. The potential of one nucleus is given by

420 ! V(z) = - Q / ( sqrt(z2̂ + (a/b)2̂) + 1/a - a/b ) with a=a(R), and b=b(R)
real*8, intent(in) :: rdist
real*8, intent(in) :: apar, bpar
real*8, intent(in) :: charge
integer :: nz

425 real*8 :: z , rsqa , rsqb

z = zmin
do nz=1, nzstep

430 rsqa = (z − rdist/2.d0)**2 + apar**2 / bpar**2
rsqb = (z + rdist/2.d0)**2 + apar**2 / bpar**2
potential (nz) = potential (nz) − charge / ( dsqrt(rsqa) + 1.d0 / apar − apar / bpar) &

− charge / ( dsqrt(rsqb) + 1.d0 / apar − apar / bpar)

435 z = z + deltaz ! next grid position in z-direction
enddo

end subroutine potentials soft diatomic molecule

440 !————————————————————————————————————————–

subroutine potentials softhelium(zpos , softpar , effcharge )
! adds a soft-core helium-atom at the given position to the potential. The
! potential is an active 1-electron potential for the outermost electron,

445 ! which includes the screening from the inner electron.
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! The softening parameter and the effective charge are optional and are adjusted
! to reproduce the ionization potential of the second electron for the ground state
! 1s2 and the first excited state 1s2s. They NEED TO GET ADJUSTED!!!!
!!! the softening parameter is optional - the default value is 0.1635 for the ground state (E0 =2 a.u.)

450 !!! use softpar = 0.2195 to adjust for the first excited state (E1 = 0.5 a.u.)
real*8, intent(in) :: zpos
real*8, intent(in), optional :: softpar
real*8, intent(in), optional :: effcharge
integer :: nz

455 real*8 :: z , rsq
real*8 :: softparameter
real*8 :: charge

! softening parameter - in this 2D model ti reproduces first 2 states of excited electron correctly
460 if (present( softpar )) then

softparameter = softpar
else

softparameter = 0.0913640992d0
endif

465
! effective charge - in this 2D model ti reproduces first 2 states of excited electron correctly
if (present( effcharge )) then

charge = effcharge
else

470 charge = 1.04365323d0
endif

z = zmin
do nz=1, nzstep

475
rsq = (z − zpos)**2
potential (nz) = potential (nz) − charge / dsqrt(rsq + softparameter) ! using effective charge for helium
z = z + deltaz ! next grid position in z-direction

480 enddo

end subroutine potentials softhelium

!————————————————————————————————————————–
485

subroutine potentials efield ( zint )
! adds a electric field gradient of the given intensity in x and z direction
! and might be used for example to model the effect of a laser field
real*8, intent(in) :: zint

490 integer :: nz
real*8 :: z

! add the electric field in z-direction
if ( zint .ne .0.d0) then

495 z = zmin
do nz=1, nzstep

potential (nz) = potential (nz) + z*zint
z = z + deltaz ! next grid position in z

enddo
500 endif

end subroutine potentials efield

!————————————————————————————————————————–
505 ! A B S O R B E R

!————————————————————————————————————————–

! 2005/11/21 - changed the absorber corners from the MIN function to multiplicative behaviour, since the old absorber
! type had a discontinuity in the derivative. Therefore the absorber is now stronger in the grid

510 ! corners, and thus reflecting more, but therefore smooth.

subroutine potentials setabsorber left (width, strength )
! sets the absorber (optical potential) on the left side of the grid (min z-coordinate)
real*8, intent(in) :: width, strength

515 integer :: n
real*8 :: maskvalue

do n=1, nint(width / deltaz )
maskvalue = ((width − (n−1)*deltaz) / width)**2 * strength

520 maskvalue = exp(−maskvalue)
absorber(n) = absorber(n) * maskvalue

enddo
end subroutine potentials setabsorber left

525 !————————————————————————————————————————–

subroutine potentials setabsorber right (width, strength )
! sets the absorber (optical potential) on the right side of the grid (max z-coordinate)
real*8, intent(in) :: width, strength

530 integer :: n
real*8 :: maskvalue

do n=1, nint(width / deltaz )
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maskvalue = ((width − (n−1)*deltaz) / width)**2 * strength
535 maskvalue = exp(−maskvalue)

absorber(nzstep+1 − n) = absorber(nzstep+1 − n) * maskvalue
enddo

end subroutine potentials setabsorber right

540 !————————————————————————————————————————–

subroutine potentials setabsorber (width, strength )
! sets the absorber (optical potential) on both sides of the potential
real*8, intent(in) :: width, strength

545
call potentials setabsorber left (width, strength )
call potentials setabsorber right (width, strength )

end subroutine potentials setabsorber
550

!————————————————————————————————————————–
! P L O T T I N G
!————————————————————————————————————————–

555 subroutine potentials plot
use debug

open(unit=500,file="potential.dat",status="replace",access="sequential",recl=1024)

560 write(500,'(3e12.4,$)') potential (:) , −log(absorber (:) ) , absorber (:)

write(500,*)

close(500)
565

call debugmsg(5,2,"POTENTIALS_PLOT: current potential plotted to file")
end subroutine potentials plot

!————————————————————————————————————————–
570

subroutine potentials readfromfile (filename)
! read the potential from a file. In the first column is the position while the second column gives
! the potential value.

575 use debug

character(len=*), intent(in) :: filename ! potential file to read
integer :: ios ! the error for the I/O operation
real*8 :: pos , pot ! position and potential information from the file

580 integer :: nzpos ! the grid point where we store the potential value
logical :: warning ! the general warning flag
real*8 :: gridspacing ! the grid spacing in the file
real*8 :: lastpos ! the previous grid position to find grid spacing
real*8 :: minpos, maxpos ! the minimum and maximum positions of the potential in the file

585 real*8 :: minpv, maxpv ! minimum/maximum position potential value

call potentials realzero ! lets start out with a clean sheet of potential array
open(unit=501,file=trim(filename),access="sequential",recl=1024,status="old") ! open file in binary form to read

wavefunction

590 warning = . false . ! no warning consition
gridspacing = 0.d0 ! and initialize this debugging value
lastpos = 0.d0 ! same here
minpos = 1.e20 ! something ridiculously big
maxpos = −1.e20 ! and the same on the other side of the grid

595
do

read(501,*,IOSTAT=ios) pos, pot ! read one line
if ( ios .ne.0) exit ! exit the do loop if an error occured, i.e. end of file

600 ! now we have the values from the file and can start assigning them to our internal array

if (pos > maxpos) then ! check for the largest potential position
maxpv = pot ! we got a new maximum position potential value
maxpos = pos ! remember the largest potential position

605 endif

if (pos < minpos) then ! check for the smallest potential position
minpv = pot ! we got a new minimum position potential value
minpos = pos ! remember the minimum potential position

610 endif

if (pos < zmin) cycle ! next do cycle if out of lower bound
if (pos > zmin + nzstep*deltaz) cycle ! same if out of upper array bound

615 nzpos = nint((pos − zmin) / deltaz + 1.d0) ! find the right grid point
if (abs(zmin + (nzpos−1)*deltaz − pos) < 1.d−6) potential(nzpos) = pot ! assign value, if we are close enough to a grid point

if ( lastpos .ne .0.d0) then ! do some simple checks
if ( gridspacing .eq .0.d0) gridspacing = pos − lastpos ! calculate the used grid spacing

620 if (abs(pos − lastpos − gridspacing) > 1.d−6) warning = .true.
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if (abs( gridspacing − deltaz) > 1.d−6) warning = .true.
endif

lastpos = pos
625 enddo

close(501)

do nzpos=1, nzstep ! final loop through potential to adjust the outer values
630 pos = zmin + (nzpos−1)*deltaz ! current position

if (pos < minpos) potential(nzpos) = minpv ! adjust if position is out if file boundaries
if (pos > maxpos) potential(nzpos) = maxpv ! adjust if position is out if file boundaries

635 enddo

if ( ios < 0) then
if (warning) then

call debugmsg(5,2,"POTENTIALS_READ: WARNING - potential read, but file does not match grid")
640 pause

else
call debugmsg(5,2,"POTENTIALS_READ: data successfully read from file")

endif
else

645 call debugmsg(5,2,"POTENTIALS_READ: ERROR while reading file")
print *,"Error number: " , ios
pause

endif

650 end subroutine potentials readfromfile

!————————————————————————————————————————–

end module potentials

C.5 Wave Function Module (wfmath1D.f90)

!——————————————————————————–
! DEFINITION OF 2D WAVEFUNCTION ANALYSIS AND MATHEMATICS
!——————————————————————————–
! Author : Thomas Niederhausen

5 ! Date : 6 Jun 2006
!——————————————————————————–

! usage:
!

10 ! WFMATH INIT(zdim,minz,maxz)
! This provides the module witht the information about the used grid.
!
! WFMATH DONE
! This routine does nothing but should be called for compatibility

15 !
! WFMATH SETMASS(zmass)
! sets the masses of the particles for the energy (heavier particles have more
! energy).
!

20 ! WFMATH OVERLAP(wf1,wf2)
! calculates the quantum mechanical overlap of the given two wavefunctions.
! The result of the FUNCTION is a complex number.
!
! WFMATH DIPOLE(wf1,wf2)

25 ! calculates the dipole matrix element ¡wf1—z—wf2¿
!
! WFMATH ENERGY(wf)
! calculates the energ corresponding to the given wavefunction: E=¡Psi—H—Psi¿
!

30 ! WFMATH DIPOLEACC(wf)
! calculates the dipole acceleration of the given wavefunction
!
! WFMATH NORMALIZE(wf)
! Calculates the norm of the given wavefunction and renormalizes it to 1.

35 !
! WFMATH ZERO(psiin)
! Sets the whole wavefunction to constant 0.
!
! WFMATH GAUSSIAN(psiin,centerz,widthz,pz,norm)

40 ! Adds a gaussian wavepacket to the given wavefunction psiin at the specified
! center with the given width and initial momentum. The parameter norm is
! optinal and if not given a value of 1 is assumed.
!
! WFMATH SAVETOFILE(psi,filename)

45 ! saves the specified wavefunction in binary form to disk
!
! WFMATH READFROMFILE(psi,filename)
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! reads wavefunction from the given binary file in the wavefunction array.
!

50 ! WFMATH PLOT(psiin)
! plots for the given 1D wavefucntion psi the probability density in a ASCII file
!

55 module wfmath
implicit none

integer, private :: nzstep ! the dimenstion of the 1D potentials/wavefunctions
real*8, private :: deltaz ! the grid spacing

60 real*8, private :: zmin ! defines the origin (in a.u.) of the grid
real*8, private :: massz=1.0 ! the masses of particles in a.u.

contains

65 !————————————————————————————————————————–
! INITIALIZATION
!————————————————————————————————————————–

subroutine wfmath init(zdim,minz,maxz)
70 integer, intent(in) :: zdim ! the dimension of the arrays

real*8, intent(in) :: minz, maxz ! the size of the ”playground”

nzstep = zdim

75 zmin = minz
deltaz = (maxz − minz) / (nzstep −1)

end subroutine wfmath init

!————————————————————————————————————————–
80

subroutine wfmath done
! a do-nothing-subroutine for later compatibility

end subroutine wfmath done

85 !————————————————————————————————————————–

subroutine wfmath allocate(psi)
! allocates the given wavefunction array
use debug

90
complex*16, dimension(:), pointer :: psi
integer :: iAllocStatus

allocate(psi(nzstep) ,stat=iAllocStatus)
95 if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate wavefunction"
stop

endif

100 call wfmath zero(psi)
call debugmsg(5,1,"WFMATH_ALLOCATE: wavefunction array allocated")

end subroutine wfmath allocate

!————————————————————————————————————————–
105

subroutine wfmath deallocate(psi)
! allocates the given wavefunction array
use debug

110 complex*16, dimension(:), pointer :: psi
integer :: iDeallocStatus

deallocate(psi,stat=iDeallocStatus)
if ( iDeallocStatus /= 0) then

115 print *,"ERROR: can't deallocate wavefunction"
stop

endif

call debugmsg(5,1,"WFMATH_DEALLOCATE: wavefunction array destroyed")
120 end subroutine wfmath deallocate

!————————————————————————————————————————–

subroutine wfmath setmass(zmass)
125 ! sets the masses of the particles

real*8, intent(in) :: zmass

massz = zmass ! sets the first mass parameter

130 end subroutine wfmath setmass

!————————————————————————————————————————–
! WAVEFUNCTION ANALYSIS
!————————————————————————————————————————–

135
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function wfmath overlap(wf1,wf2,centerz,widthz) result(overlap)
! calculating the overlap of the two given wf’s inside the optional given integration areas
! algorithm can be improved by a better integration method!
complex*16, intent(in), dimension(:) :: wf1, wf2

140 real*8, intent(in), optional :: centerz ! the center of the integration window
real*8, intent(in), optional :: widthz ! the full length of the integration window
complex*16 :: overlap
integer :: nzstart , nzend ! the integration grid boundary

145 overlap = cmplx(0.d0,0.d0) ! initial function result in case of out-of-integration-area

if (present(centerz ) .and.present(widthz)) then
nzstart = int(( centerz − zmin − widthz/2) / deltaz) + 1 ! the integration boundary in z-grid space
nzend = int(( centerz − zmin + widthz/2) / deltaz) + 1

150 if (nzstart . gt .nzstep) return ! get out - we run out on the right side
if (nzend. lt .1) return ! get out - we run out on the left side
if (nzstart . lt .1) nzstart = 1 ! correct for left side out of integration area
if (nzend.gt .nzstep) nzend = nzstep ! correct for right side

else
155 nzstart = 1

nzend = nzstep
endif

! calculate the quantum mechanical overlap of the two wavefunctions
160 overlap = sum(conjg(wf1(nzstart:nzend))*wf2(nzstart :nzend))*deltaz

return
end function wfmath overlap

!————————————————————————————————————————–
165

function wfmath dipole(wf1,wf2) result(dipole)
! calculate the dipole element ¡wf1—z—wf2¿
complex*16, intent(in), dimension(:) :: wf1, wf2
complex*16 :: dipole

170 integer :: nz
real*8 :: zpos

dipole = cmplx(0.d0, 0.d0)
do nz=1, nzstep

175
zpos = zmin + (nz−1)*deltaz
dipole = dipole + conjg(wf1(nz))*zpos*wf2(nz)*deltaz

end do
180

return
end function wfmath dipole

!————————————————————————————————————————–
185

function wfmath squarepole(wf1,wf2) result(squaredipole)

! calculate the squared dipole element ¡wf1—z2̂—wf2¿
complex*16, intent(in), dimension(:) :: wf1, wf2
complex*16 :: squaredipole

190 integer :: nz
real*8 :: zpos

squaredipole = cmplx(0.d0, 0.d0)
do nz=1, nzstep

195
zpos = zmin + (nz−1)*deltaz
squaredipole = squaredipole + conjg(wf1(nz))*(zpos**2)*wf2(nz)*deltaz

end do
200

return
end function wfmath squarepole

!————————————————————————————————————————–
205

function wfmath width(wf) result(width)

! calculate the width of a wave packet, i.e. Delta R = sqrt(¡R¿2̂ - ¡R2̂¿)
complex*16, intent(in), dimension(:) :: wf
real*8 :: width

210
width = dsqrt( dreal (wfmath squarepole(wf,wf)) − dreal(wfmath dipole(wf,wf))**2 )
return

end function wfmath width

215 !————————————————————————————————————————–

function wfmath energy(wf) result(energy)
! calculates the energy corresponding to the given wavefunction: E=¡Psi—H—Psi¿

! using 5-point formula for H=-1/(2*mass) * (d2̂/dx2̂ + d2̂/dz2̂) + V

220 ! 5-point formula: f” = 1/(12 Delta2̂) * (- f -2 + 16f -1 - 30f 0 + 16f 1 - f 2)
use potentials
complex*16, intent(in), dimension(:) :: wf ! the input wavefunction we calculate the energy from
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complex*16 :: energy ! the functional result for the energy
complex*16 :: epot , ekinz ! contributions to the total energy

225

! splitting operator into sum: E=-1/2m ¡Psi—pz2̂—Psi¿ + ¡Psi—V—Psi¿
! First step: Potential energy Epot = ¡Psi—V—Psi¿

epot = sum(conjg(wf)*wf*potential)*deltaz
230

! Second: kinetic energy

ekinz = − 1 / (24*massz) / deltaz * &
sum(conjg(wf(3:nzstep−2)) * &

235 ( −wf(1:nzstep−4)+16*wf(2:nzstep−3)−30*wf(3:nzstep−2)+16*wf(4:nzstep−1)−wf(5:nzstep) ) )

! Third: return the total (sum) energy
energy = epot + ekinz

240
return

end function wfmath energy

!————————————————————————————————————————–
245

function wfmath momentum(wf) result(momentum)
! calculates the momentum corresponding to the given wavefunction ¡p¿
! using 5-point formula for the p operator
! 5-point formula: f’ = 1/(12 Delta) * (f -2 - 8f -1 + 8 1 - f 2)

250 use potentials
complex*16, intent(in), dimension(:) :: wf ! the input wavefunction we calculate the energy from
complex*16 :: momentum ! the functional result for the energy
complex*16, parameter :: iu = (0.d0,1.d0) ! imaginary unit

255 momentum = 1.d0 / (12.d0*iu*deltaz) &
*sum(conjg(wf(3:nzstep−2)) * &
( wf(1:nzstep−4)−8*wf(2:nzstep−3)+8*wf(4:nzstep−1)−wf(5:nzstep) ) )

return
260 end function wfmath momentum

!————————————————————————————————————————–

function wfmath dipoleacc(wf) result( dipoleacceleration )
265 ! calculates the dipole acceleration of the given wavefunction in z direction

! using Ehrenfest’s theorem: a = d2̂/dt2̂ ¡r¿ = - ¡psi—grad V—psi¿
! and 5-pont formula: f’ = 1/(12*Delta) * (f -2 - 8f -1 + 8f 1 - f 2) *** this is correct - no f 0!!!
use potentials
complex*16, intent(in), dimension(:) :: wf ! the input wavefunction

270 complex*16 :: dipoleacceleration ! the calculated dipole moment

dipoleacceleration = − 1 / (12*massz) * &
sum(conjg(wf(3:nzstep−2)) * &
( potential (1:nzstep−4)−8*potential(2:nzstep−3)+8*potential(4:nzstep−1)−potential(5:nzstep) ) * &

275 wf(3:nzstep−2) )

return
end function wfmath dipoleacc

280 !————————————————————————————————————————–

function wfmath dipoleacc test(wf) result( dipoleacceleration )
! calculates the dipole acceleration of the given wavefunction in z direction

! using Ehrenfest’s theorem: a = d2̂/dt2̂ ¡r¿ = - ¡psi—grad V—psi¿
285 ! and 5-pont formula: f’ = 1/(12*Delta) * (f -2 - 8f -1 + 8f 1 - f 2) *** this is correct - no f 0!!!

use potentials
complex*16, intent(in), dimension(:) :: wf ! the input wavefunction
complex*16 :: dipoleacceleration ! the calculated dipole moment
real*8 :: temp

290 integer :: nz

dipoleacceleration = 0

do nz=3, nzstep−2
295 temp = potential(nz−2) − 8*potential(nz−1) + 8*potential(nz+1) − potential(nz+2)

dipoleacceleration = dipoleacceleration − temp * (cdabs(wf(nz))**2) / 12.d0
enddo

return
300 end function wfmath dipoleacc test

!————————————————————————————————————————–

subroutine wfmath normalize(wf)
305 ! nomalizing the given wavefunction

complex*16, intent(inout), dimension(:) :: wf
complex*16 :: wfnorm

wfnorm = wfmath overlap(wf,wf) ! calculate the norm of the whole wavefunction
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310 wf = wf / sqrt(wfnorm) ! and divide everything by the square root of the norm -¿ normalize...
end subroutine wfmath normalize

!————————————————————————————————————————–

315 function wfmath norm(wf,centerz,widthz) result(norm)
! calculates the norm of the given wavefunction. The given optional parameters for center and width of
! the integration window allow to look only for the norm at a specified position, i.e. to find the norm
! at the target for example
complex*16, intent(in), dimension(:) :: wf

320 real*8, intent(in), optional :: centerz ! the center of the integration window
real*8, intent(in), optional :: widthz ! the full length of the integration window
real*8 :: norm ! thats our function result

norm = abs(wfmath overlap(wf,wf,centerz,widthz)) ! calculate the norm
325 return

end function wfmath norm

!————————————————————————————————————————–
! INITIAL WAVEFUNCTIONS

330 !————————————————————————————————————————–

subroutine wfmath zero(psiin)
! clears a wavefunction and sets it zero everywhere in space
complex*16, intent(out), dimension(:) :: psiin

335
psiin = cmplx(0.d0,0.d0)

end subroutine wfmath zero

!————————————————————————————————————————–
340

subroutine wfmath gaussian(psiin,centerz,widthz,pz,norm)
! places a gaussian wavepacket to the given array
complex*16, intent(inout), dimension(:) :: psiin
real*8, intent(in) :: centerz ! the center of the wavepacket

345 real*8, intent(in) :: widthz ! the width of the wavepacket
real*8, intent(in) :: pz ! momentum
real*8, intent(in), optional :: norm ! the norm of the wavefunction, otherwise 1
real*8 :: z
integer :: nz

350 real*8 :: rvalue
complex*16 :: cvalue
real*8, parameter :: pi = 3.141592653589793238462643d0

z=zmin
355 do nz=1, nzstep

rvalue = exp( −((z−centerz)/widthz)**2 /2 ) / (2*pi*widthz)
cvalue = rvalue * cdexp( cmplx(0.0,1.0)*(pz*z) )
psiin (nz) = psiin(nz) + cvalue

360
z = z + deltaz ! next grid position in z-direction

enddo

! call wfmath normalize(psiin) ! normalize first
365

if (present(norm)) then
call wfmath normalize(psiin) ! normalize first
psiin = psiin * sqrt (norm) ! in case somebody wants a different normalization

endif
370

end subroutine wfmath gaussian

!————————————————————————————————————————–
! FILE OPERATIONS

375 !————————————————————————————————————————–

subroutine wfmath savetofile(psi,filename)
use debug
complex*16, intent(in), dimension(:) :: psi

380 character(len=*), intent(in) :: filename

open(unit=601,file=filename,form="unformatted",status="replace",access="sequential") ! open file in binary form to write
output

write(601) psi ! write the wavefunction to disk
close(601) ! good bye, file

385
call debugmsg(5,4,"WFMATH_SAVETOFILE: Wavefunction saved to disk")

end subroutine wfmath savetofile

390
!————————————————————————————————————————–

subroutine wfmath readfromfile(psi,filename, zshift )
use debug

395 complex*16, intent(out), dimension(:) :: psi
character(len=*), intent(in) :: filename
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real*8, intent(in), optional :: zshift
integer :: shift

400 open(unit=602,file=filename,form='unformatted',access='direct',recl=16,status="old") ! open file in binary form to read
wavefunction

read(602) psi ! read the wavefunction from the disk
close(602) ! good bye, file

if (present( zshift )) then ! shift the matrix in z-direction
405 shift = nint( zshift / deltaz ) ! shift in gridpoints for the wavefunction

if (( deltaz* shift ) .ne. zshift ) print *,"WARNING: WFMATH_READFROMFILE  performed a mis-quantized wavefunction shift!"
psi=eoshift(psi,− shift ) ! shift the wavefunction

endif

410 call debugmsg(5,4,"WFMATH_READFROMFILE: Wavefunction successfully read from file")

end subroutine wfmath readfromfile

!————————————————————————————————————————–
415

subroutine wfmath loadfromfile(psi,filename ,szmin, lzstep , shiftz )
! this routine reads a wavefunction from the given file and truncates or extends this wavefunction to the given
! wavefucntion storage array.
use debug

420 complex*16, intent(out), dimension(:) :: psi
character(len=*), intent(in) :: filename
real*8, intent(in) :: szmin ! the starting point in the file
integer, intent(in) :: lzstep ! number of gridpoints in the file
real*8, intent(in), optional :: shiftz ! shift of the wavefunction in a.u.

425
complex*16, dimension(:), allocatable :: locpsi ! stores the wavefuntion read from file
integer :: iAllocStatus ! status of file operations
integer :: lszmin ! the source starting point for copying
integer :: ltzmin ! the target starting point for copying

430 integer :: lznum ! the number of points to copy
real*8 :: temp ! guess what...
integer :: itemp ! guess again...

! 1.) calculate the grid area that we have to copy
435 temp = szmin − zmin

if (present( shiftz )) temp = temp + shiftz
itemp = nint(temp / deltaz) ! then target grid coordinate in z where the origin of source is
if (itemp. lt .0) then

ltzmin = 1
440 lszmin = − itemp + 1

lznum = min(nzstep,( lzstep + itemp)) ! the number of points to copy
else

lszmin = 1
ltzmin = itemp + 1

445 lznum = min(lzstep ,(nzstep − itemp)) ! the number of points to copy
endif

! 2.) clear the output wavefunction and check if parameters in 1.) let us do some work...
call wfmath zero(psi) ! clear the wavefunction

450
if (lznum.le .0) return ! done - we have nothing to do today...

! 3.) allocate array for storing the file wavefunction
allocate( locpsi ( lzstep ) ,stat=iAllocStatus)

455 if ( iAllocStatus /= 0) then
print *,"ERROR: can't allocate local wavefunction array LOCPSI"
stop

endif
call debugmsg(10,4,"WFMATH_LOADFROMFILE: LOCPSI allocated")

460
! 4.) read wavefucntion from disk
open(unit=603,file=filename,form="binary",recl=16,status="old") ! open file in binary form to read wavefunction
read(603) locpsi ! read the wavefunction from the disk
close(603) ! good bye, file

465
! 5.) copy the given area into the target (output) wavefunction
psi( ltzmin : ltzmin+lznum−1) = locpsi(lszmin:lszmin+lznum−1)

! 6.) deallocate array for storing the file wavefunction
470 deallocate(locpsi,stat=iAllocStatus)

if ( iAllocStatus /= 0) then
print *,"ERROR: can't deallocate local wavefunction array LOCPSI"
stop

endif
475 call debugmsg(10,4,"WFMATH_LOADFROMFILE: LOCPSI destroyed")

end subroutine wfmath loadfromfile

!————————————————————————————————————————–
480

subroutine wfmath loadfromfile2(psi,filename ,szmin, lzstep , shiftz )
! this routine reads a wavefunction from the given file and truncates or extends this wavefunction to the given
! wavefucntion storage array.
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! Note: Slightly modified routine due to compiler upgrade incompatibility of the binary file
485 use debug

complex*16, intent(out), dimension(:) :: psi
character(len=*), intent(in) :: filename
real*8, intent(in) :: szmin ! the starting point in the file
integer, intent(in) :: lzstep ! number of gridpoints in the file

490 real*8, intent(in), optional :: shiftz ! shift of the wavefunction in a.u.

complex*16, dimension(:), allocatable :: locpsi ! stores the wavefuntion read from file
integer :: iAllocStatus ! status of file operations
integer :: lszmin ! the source starting point for copying

495 integer :: ltzmin ! the target starting point for copying
integer :: lznum ! the number of points to copy
real*8 :: temp ! guess what...
integer :: itemp ! guess again...

500 ! 1.) calculate the grid area that we have to copy
temp = szmin − zmin
if (present( shiftz )) temp = temp + shiftz
itemp = nint(temp / deltaz) ! then target grid coordinate in z where the origin of source is
if (itemp. lt .0) then

505 ltzmin = 1
lszmin = − itemp + 1
lznum = min(nzstep,( lzstep + itemp)) ! the number of points to copy

else
lszmin = 1

510 ltzmin = itemp + 1
lznum = min(lzstep ,(nzstep − itemp)) ! the number of points to copy

endif

! 2.) clear the output wavefunction and check if parameters in 1.) let us do some work...
515 call wfmath zero(psi) ! clear the wavefunction

if (lznum.le .0) return ! done - we have nothing to do today...

! 3.) allocate array for storing the file wavefunction
520 allocate( locpsi ( lzstep ) ,stat=iAllocStatus)

if ( iAllocStatus /= 0) then
print *,"ERROR: can't allocate local wavefunction array LOCPSI"
stop

endif
525 call debugmsg(10,4,"WFMATH_LOADFROMFILE: LOCPSI allocated")

! 4.) read wavefucntion from disk
open(unit=603,file=filename,form="unformatted",status="old",access="sequential") ! open file in binary form to write input
read(603) locpsi ! read the wavefunction from the disk

530 close(603) ! good bye, file

! 5.) copy the given area into the target (output) wavefunction
psi( ltzmin : ltzmin+lznum−1) = locpsi(lszmin:lszmin+lznum−1)

535
! 6.) deallocate array for storing the file wavefunction
deallocate(locpsi,stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't deallocate local wavefunction array LOCPSI"
540 stop

endif
call debugmsg(10,4,"WFMATH_LOADFROMFILE: LOCPSI destroyed")

end subroutine wfmath loadfromfile2
545

!————————————————————————————————————————–
! PLOTTING
!————————————————————————————————————————–

550 subroutine wfmath plot(psi)
use debug
complex*16, intent(in), dimension(:) :: psi

open(unit=600,file="wavefunction.dat",status="replace",access="sequential",recl=1024)
555

write(600,'(e12.4,$)') abs(psi (:) )**2
write(600,*)

close(600)
560

call debugmsg(5,2,"WFMATH_PLOT: given wavefunction plotted to file")
end subroutine wfmath plot

!————————————————————————————————————————–
565

end module wfmath



C.6 Diagonalization Module (diag.f90) 145

C.6 Diagonalization Module (diag.f90)

!——————————————————————————–
! DEFINITION OF 1D DIAGONALIZATION ROUTINE
!——————————————————————————–
! Author : Thomas Niederhausen

5 ! Sources : Numerical Recipies (DTQLI) for tridiagonal matrix solver
! Date : 06 Oct 2006
!——————————————————————————–

! usage:
10 !

! DIAG INIT(zdim,dz,particlemass)
! This provides the module with the information about the used grid.
!
! DIAG DONE

15 ! Does nothing but is here for compatibility and should be called anyhow.
!
! DIAG RELEASE(TObj)
! Releases either a TEnergies or TStates object if allocated
!

20 ! DIAG DIAGONALIZE(potential, TObject(TStates or TEnergies))
! diagonalizes the given potential and provides the energies of the bound states
! in TEnergies, or TStates for the corresponding normalized eigenstates of the potential,
! whichever type of variable is given.

25 module diag
implicit none

type :: TEnergies ! declare a type array for bound state energies
integer :: numbound ! number of bound states

30 real*8, pointer :: energyarr (:) ! the array with the bound energies
end type

type :: TStates ! declare a type array for bound wave functions
integer :: numbound ! number of bound states, identical to TEnergies

35 real*8, pointer :: energyarr (:) ! the array with the bound energies
complex*16, pointer :: wavefunctions (:,:) ! the array with the wave functions

end type

integer, private :: nzstep ! the dimenstion of the 1D potentials/wavefunctions
40 real*8, private :: deltaz ! the grid spacing

real*8, private :: mass ! the mass of particles in a.u.

interface diag release ! release the objects TEnergies or TStates if allocated
module procedure diag release TEnergies, diag release TStates ! define different procedures for the types

45 end interface

interface diag diagonalize ! the working horse. diagonalize the potential array.
module procedure diag diagonalize TEnergies, diag diagonalize TStates ! define different procedures for the types

end interface
50

interface diag plot ! Plot the results to file
module procedure diag plot TEnergies, diag plot TStates ! define different procedures for the types

end interface

55 contains

!————————————————————————————————————————–
! I N I T I A L I Z A T I O N
!————————————————————————————————————————–

60
subroutine diag init(zdim,dz,particlemass )

use debug

integer, intent(in) :: zdim
65 real*8, intent(in) :: dz, particlemass

nzstep = zdim
deltaz = dz
mass = particlemass

70
call debugmsg(5,1,"DIAG_INIT: diagonalization routine initialized.")

end subroutine diag init

75 !————————————————————————————————————————–

subroutine diag done
use debug

80 call debugmsg(5,1,"DIAG_DONE: diagonalization routine closed.")

end subroutine diag done

!————————————————————————————————————————–
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85
subroutine diag release TEnergies(energies)

use debug
type(TEnergies), intent(inout) :: energies ! we want to release this object
integer :: iDeallocStatus ! return value

90
energies%numbound = 0 ! we have zero bound states from now on
if ( associated ( energies%energyarr)) then

deallocate(energies%energyarr,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then

95 print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
stop

endif
call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed")

endif
100 call debugmsg(5,1,"DIAG_RELEASE: object destroyed")

end subroutine diag release TEnergies

!————————————————————————————————————————–
105

subroutine diag release TStates( states )
use debug
type(TStates), intent(inout) :: states ! we want to release this object
integer :: iDeallocStatus ! return value

110
states%numbound = 0 ! we have zero bound states from now on
if ( associated ( states%energyarr)) then

deallocate(states%energyarr,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then

115 print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
stop

endif
call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed")

endif
120

if ( associated ( states%wavefunctions)) then
deallocate(states%wavefunctions,stat=iDeallocStatus)
if (iDeAllocStatus /= 0) then

print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array"
125 stop

endif
call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION WAVE FUNCTION array destroyed")

endif
call debugmsg(5,1,"DIAG_RELEASE: object destroyed")

130
end subroutine diag release TStates

!————————————————————————————————————————–
! D I A G O N A L I Z A T I O N

135 !————————————————————————————————————————–

subroutine diag diagonalize TEnergies(potential , energies )
! this routine diagonaalizes the 1d hamiltonean given only by it’s potential

use debug
140 real*8, pointer :: potential (:) ! the potential array

type(TEnergies), intent(inout) :: energies ! type for the returned energies
integer :: iAllocStatus ! return value
real*8, allocatable :: subsuper (:) , diagarr (:) ! the diagonal, sub- and super-diagonals of the Hamiltonian
real*8 :: mine ! minimum bound energy

145
if ( associated ( energies%energyarr)) then

deallocate(energies%energyarr,stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array"
150 stop

endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed")

endif
energies%numbound = 0 ! first we start with 0 bound states

155
allocate(subsuper(nzstep) ,diagarr(nzstep) ,stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate tridiagonal Hamiltonian array"
stop

160 endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated")

diagarr = potential + 1.d0/(mass*deltaz**2) ! the diagonal array of the Hamiltonian
subsuper = −1.d0/(2.d0 * mass * deltaz**2) ! the sub- and super-diagonals of H

165
call debugmsg(5,1,"DIAG_DIAGONALIZE: diagonalizing potential - only energies...")
call dtqli (diagarr ,subsuper) ! call the routine from Numerical Recipes

mine = min(potential(1), potential (nzstep)) ! find the minimum bound state energy
170 energies%numbound = count(diagarr < mine) ! count the number of bound states

allocate(energies%energyarr(energies%numbound),stat=iAllocStatus)
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if ( iAllocStatus /= 0) then
print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array"

175 stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated")

energies%energyarr = pack(diagarr, diagarr<mine) ! copy only the corresponding energies into the output
180

deallocate(subsuper,diagarr,stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't deallocate tridiagonal Hamiltonian array"
stop

185 endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array released")

end subroutine diag diagonalize TEnergies

190 !————————————————————————————————————————–

subroutine diag diagonalize TStates(potential , states )
! this routine diagonaalizes the 1d hamiltonean given only by it’s potential. This time WITH wave functions

use debug
195 use wfmath

real*8, pointer :: potential (:) ! the potential array
type(TStates), intent(inout) :: states ! type for the returned wave functions
integer :: iAllocStatus ! return value
real*8, allocatable :: subsuper (:) , diagarr (:) ! the diagonal, sub- and super-diagonals of the Hamiltonian

200 real*8, allocatable :: wavefunctions (:,:) ! temporary wave function array
real*8 :: mine ! minimum bound energy
integer :: n

if ( associated ( states%energyarr)) then
205 deallocate(states%energyarr,stat=iAllocStatus)

if ( iAllocStatus /= 0) then
print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array" , iAllocStatus
stop

endif
210 call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed")

endif

if ( associated ( states%wavefunctions)) then
deallocate(states%wavefunctions,stat=iAllocStatus)

215 if ( iAllocStatus /= 0) then
print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array" , iAllocStatus
stop

endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array destroyed")

220 endif

states%numbound = 0 ! first we start with 0 bound states

allocate(subsuper(nzstep) ,diagarr(nzstep) ,stat=iAllocStatus)
225 if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate tridiagonal Hamiltonian array"
stop

endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated")

230
allocate(wavefunctions(nzstep,nzstep) ,stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate temporary wave function array"
stop

235 endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: temporary wave function array allocated")

diagarr = potential + 1.d0/(mass*deltaz**2) ! the diagonal array of the Hamiltonian
subsuper = −1.d0/(2.d0 * mass * deltaz**2) ! the sub- and super-diagonals of H

240 wavefunctions = 0.d0
do n=1, nzstep

wavefunctions(n,n) = 1.d0 ! fill with identity matrix
enddo

245 call debugmsg(5,1,"DIAG_DIAGONALIZE: diagonalizing potential - energies and wave functions...")
call dtqli (diagarr ,subsuper ,wavefunctions) ! call the routine from Numerical Recipes

mine = min(potential(1), potential (nzstep)) ! find the minimum bound state energy
states%numbound = count(diagarr < mine) ! count the number of bound states

250
allocate(states%energyarr(states%numbound),stat=iAllocStatus)
if ( iAllocStatus /= 0) then

print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array"
stop

255 endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated")

allocate(states%wavefunctions(states%numbound,nzstep),stat=iAllocStatus)
if ( iAllocStatus /= 0) then

260 print *,"ERROR: can't allocate DIAGONALIZATION WAVE FUNCTION array"
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stop
endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array allocated")

265 states%energyarr = pack(diagarr, diagarr<mine) ! copy only the corresponding energies into the output
do n=1, nzstep

states%wavefunctions(:,n) = pack(wavefunctions(n,:) , diagarr<mine) ! and copy the wave functions
enddo

270 do n=1, states%numbound
call wfmath normalize(states%wavefunctions(n,:)) ! we like normalized wave functions

enddo

deallocate(subsuper,diagarr,wavefunctions,stat=iAllocStatus)
275 if ( iAllocStatus /= 0) then

print *,"ERROR: can't deallocate diagonalization arrays"
stop

endif
call debugmsg(10,1,"DIAG_DIAGONALIZE: diagonalization arrays released")

280
end subroutine diag diagonalize TStates

!————————————————————————————————————————–

285 subroutine diag plot TEnergies(energies,filename)
use debug
use strings
type(TEnergies), intent(in) :: energies ! this is what we plot
character(len=*), intent(in) :: filename

290 integer :: n

open(unit=900,file=trim(concat(filename,"_energies.dat")),status="replace",access="sequential")
write(900,'(3A12)') "State" ,"Energy_au" ,"Energy_eV"

295 do n=1,energies%numbound
write(900,'(I12,2E12.4)') n, energies%energyarr(n),energies%energyarr(n)*27.2114d0

enddo

close(900)
300 call debugmsg(5,2,"DIAG_PLOT: energies plotted to file")

end subroutine diag plot TEnergies

!————————————————————————————————————————–

305 subroutine diag plot TStates(states ,filename)
use debug
use strings
type(TStates), intent(in) :: states ! this is what we plot
character(len=*), intent(in) :: filename

310 integer :: n

open(unit=901,file=trim(concat(filename,"_wavefunctions.dat")),status="replace",access="sequential")

write(901,'(e12.4,$)') states%energyarr(:)
315 do n=1,nzstep

write(901,'(e12.4,$)') cdabs( states%wavefunctions(:,n))**2
write(901,*)

enddo

320 close(901)
call debugmsg(5,2,"DIAG_PLOT: wave functions plotted to file")

end subroutine diag plot TStates

!————————————————————————————————————————–
325

function dpythag(a, b) result(c)

! using Phytagoras a2̂ + b2̂ = c2̂ for a triangle, calculate c in a numerically stable way.
real*8, intent(in) :: a, b
real*8 :: absa, absb

330 real*8 :: c

absa=dabs(a)
absb=dabs(b)
if (absa.gt .absb)then

335 c=absa*dsqrt(1.d0+(absb/absa)**2)
else

if (absb .eq .0.d0)then
c=0.d0

else
340 c=absb*dsqrt(1.d0+(absa/absb)**2)

endif
endif
return

end function dpythag
345

!————————————————————————————————————————–
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subroutine dtqli(d,e,z)
! solver routine from Numerical Recipes for a tridiagonal linear equation

350 real*8, dimension(:), intent(inout) :: d, e ! the diagonal and sub- super-diagonals
real*8, dimension(:,:), intent(inout), optional :: z ! returns the wave functions. Must identity matrix at call
integer :: n, np, i , iter , k, l , m
real*8 :: b, c, dd, f , g, p, r , s

355 np = size(d)
n = np
if (present(z)) then

write (*,*) 'DTQLI: diagonalization with eigenvectors'

else
360 write (*,*) 'DTQLI: diagonalization, only eigenvalues'

endif
write (*,*) '       matrix is' ,np,'x' ,np

do i=2,n
365 e( i−1)=e(i)

enddo
e(n)=0.d0

do 15 l=1,n
370 iter=0

1 do m=l,n−1
dd=dabs(d(m))+dabs(d(m+1))
if (dabs(e(m))+dd.eq.dd) goto 2

enddo
375 m=n

2 if (m.ne.l) then
if ( iter .eq .30) pause 'too many iterations in tqli'

iter=iter+1
g=(d(l+1)−d(l))/(2.d0*e(l))

380 r=dpythag(g,1.d0)
g=d(m)−d(l)+e(l)/(g+sign(r,g))
s=1.d0
c=1.d0
p=0.d0

385 do 14 i=m−1,l,−1
f=s*e(i)
b=c*e(i)
r=dpythag(f,g)
e( i+1)=r

390 if (r .eq .0.d0)then
d(i+1)=d(i+1)−p
e(m)=0.d0
goto 1

endif
395 s=f/r

c=g/r
g=d(i+1)−p
r=(d(i)−g)*s+2.d0*c*b
p=s*r

400 d(i+1)=g+p
g=c*r−b
! omit lines from here ...
if (present(z)) then

do k=1,n
405 f=z(k,i+1)

z(k, i+1)=s*z(k,i)+c*f
z(k, i)=c*z(k,i)−s*f

enddo
endif

410
! to here when finding only eigenvalues.

14 continue
d( l )=d(l)−p
e( l )=g

415 e(m)=0.d0
goto 1

endif
15 continue

return
420 end subroutine dtqli

end module diag
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J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sand-

ner. Correlated two-electron dynamics in strong-field double ionization.

Phys. Rev. A, vol. 65, page 035401, (2002).

[Muga 04] J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza. Complex

absorbing potentials. Phys. Rep., vol. 395, pages 357–426, (2004).

http://dx.doi.org/10.1088/1742-6596/58/1/085
http://dx.doi.org/10.1088/0953-4075/39/12/020
http://dx.doi.org/10.1088/0953-4075/39/12/020
http://www.opticsexpress.org/abstract.cfm?id=116375
http://www.opticsexpress.org/abstract.cfm?id=116375
http://dx.doi.org/10.1103/PhysRevA.65.035401
http://dx.doi.org/10.1016/j.physrep.2004.03.002


BIBLIOGRAPHY 166

[Niederhausen 04a] Thomas Niederhausen. Zirkularer Dichroismus in Laser-assistierten

Proton – Wasserstoff Stoßprozessen. Master’s thesis, Universität Kas-

sel, Germany, (2004).

[Niederhausen 04b] Thomas Niederhausen, Bernold Feuerstein, and Uwe Thumm. Circular

dichroism in laser-assisted proton – hydrogen collisions. Phys. Rev. A,

vol. 70, page 023408, (2004).

[Niederhausen 06] Thomas Niederhausen, and Uwe Thumm. Capture and ionization in

laser-assisted proton – hydrogen collisions. Phys. Rev. A, vol. 73, page

041404, (2006).

[Niederhausen 07] Thomas Niederhausen, and Uwe Thumm. Controlled vibrational

quenching of nuclear wave packets in D+
2 . submitted to Phys. Rev. A,

(2007).
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