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Abstract

In this report we present the main concepts of probability theory: sample spaces, events,

random variables, distributions, independence, central limit theorem. Most of the material

may be found in the notes of Bass1. The work is motivated by wide range of applications

of probability theory in quantitative finance.
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Chapter 1

Basic notions

Random experiments are experiments whose output cannot be surely predicted in advance.
We are interested in different outcomes of an experiment, which we call events. The set of
all possible states of an experiment is a sample space and is usually denoted by Ω.

As an example of a random experiment consider a roll of a fair six-sided die. There are
6 possible outcomes (states): after the throw, a die’s facet has 1, 2, 3, 4, 5 or 6. So for this
particular case the sample space is

Ω = {1, 2, 3, 4, 5, 6}

By putting together the sample space we have described all possible outcomes such as “we
get 5”. Surprisingly enough, element 5 ∈ Ω represents this case. On the other hand, we may
have a more complex statement like “we do not get 5” on the facet of the die. Please note
that there is no single element from the sample space that would describe this statement.
We need a subset of the sample space instead: {1, 2, 3, 4, 6} ⊆ Ω encodes the “we do not
get 5” statement. Also we may think of the following statement: “we get 3 or 4”, which
is a union of two elements of the sample space. Not only do the elements of the sample
space reflect the statements about possible outcomes of the process, but also the subsets of
the sample space may have a meaning. So we also want to encode the complements of the
outcomes (like in the case with element 5 above) as well as unions of all available subsets
of the sample space. In order to capture all possible statements we introduce the notion of
the σ-algebra.

Definition 1.1. A subset F of the power set of a set Ω is a σ-algebra if it has the following
properties:

1. F contains the set Ω as an element.

2. If E is in F then so is the complement (X \ E) of E.

3. The union of countably many sets in F is also in F .
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Examples of σ-algebras are given by full power set of Ω and the family consisting only of
an empty set and set Ω itself. Let’s take a look at a more interesting example of σ-algebra.
In the above example with a fair 6-sided die, set set X = {1, 2, 3, 4, 5, 6} and σ-algebra

F = {∅, {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}}

Another example of σ-algebra is the family of all Borel sets of R. This is the smallest
σ-algebra containing the open sets. In the finite/countable cases we usually take the full
power set of Ω as a σ-algebra, while in the uncountable case usually take a Borel σ-algebra.

While the outcome (state) is represented by only 1 element of the sample space, an event
is an element of the σ-algebra i.e. a subset of sample space. A state describes the result
of the experiment, while event contains interpretation of the desired outcome. For example
if one wins if the number on the die’s facet is even, one may want the die to show even
number after the throw, and this is a subset of a sample space rather than a single element:
outcomes 2,4,6 all are even numbers.

Definition 1.2. An event is an element of the σ-algebra.

For the purpose of illustrating the idea of an event consider the following example:
imagine that we have 3 fair coins, we flip each coin and observe the final combination of
heads and tails on the table. For each coin we may denote H as getting a head and T as
getting a tail. We may encode the final triples for this experiment that make the sample
space using the H/T convention:

Ω = {HHH,HHT,HTH, THH, TTH, THT,HTT, TTT}

Let’s say we are interested in the total number of heads after each of 3 coins landed on the
table. Keeping this goal in mind, we define events that are of interest for us in a following
manner: “we get 3 heads” corresponds to {HHH} ∈ F , “we get 2 heads” corresponds to
{HHT,HTH, THH} ∈ F , etc.

One may want to get a feeling of the process and/or have a way of predicting, measuring
the process. Thus we assign a numerical value that describes the likelihood of occurrence
to each event - its probability. In the above example with a fair die, intuitively the chance
of getting one of 6 facets should be the same.

However processes in the world are not limited to finite number of possible outcomes.
For example the lifetime of the light bulb measured in seconds may have practically infinite
amount of possibilities. Now defining an event as well as assigning a numerical value that
describes likelihood of the event becomes somewhat harder. We will need a notion of measure
in order to define probabilities of events in uncountable sample space. And we rely on the
definition of σ-algebra to define measure.

Definition 1.3. A measure µ is a function defined on a σ-algebra F over a set Ω and taking
values in the extended interval [0;∞] such that the following properties are satisfied:

• The empty set has measure zero: µ(∅) = 0.
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• If E1, E2, E3, . . . is a countable sequence of pairwise disjoint sets in Σ, the measure of
the union of all the Ei is equal to the sum of the measures of each Ei:

µ(
r⋃

k=1

Ei) =
n∑
k=1

µ(Ei)

The simplest example of a measure is the counting measure: µ(S) = number of elements
in a set S.

Definition 1.4. A probability measure P is a measure with total mass 1 i.e. P(Ω) = 1.

Probability measures give a way of assigning probabilities to events. For the example
with 3 coin tosses we may construct a probability measure in the following way:

P =
# of favourable states in the event

total # of states

Consider for instance the following event: one gets 3 heads. Then in the language of the
σ-algebras it is {HHH} ⊂ F . Please note that there is 1 state in the event, while the total
number of states is 8. According to the measure defined above the probability of the event
is:

P =
# of states in the event

total # of states
=

1

8

Definition 1.5. A probability space is a triple (Ω,F ,P), where Ω is a set called sample
space, F is a σ-algebra and P is a probability measure.

Definition 1.6. A measurable space (or σ-field) is a pair (Ω,F), where Ω is a sample space
and F is a σ-algebra on Ω.

Let’s say we have a dart board with 3 sections (Figure (1.1)): a circle with a relatively
small radius in the center (“Bull’s eye”, red), big concentric circle that touches the edges
of the square dart board (“outer bull”, green) and 4 remaining areas at the corners of the
board (“Milk”, white). We assume that the person who throws the darts will inevitably
hit the board and cannot miss the board. In other words the darts will end up either in
“Bull’s eye” or in circled area or corners of the board. Let’s say the radius of the “Bull’s
eye” is 1, the radius of the big circle is 5, thus the side of the square has size 10. Once we
have the dimensions of the figures, we may compute the probabilities of hitting certain area
on the board. One more assumption: the board is “fair” - hitting any point in any area of
the board has equal likelihood. We may also say that there are no cheating in the game:
the back of the board does not contain magnets to attract the dart that may contain metal
parts. With this assumptions in mind one may find the probabilities of hitting certain area
of the board by looking at the ratio of the region’s area to the area of the whole board:
“Bull’s eye” - π

100
; “outer bull” - 24π

100
; “Milk” - 100−25π

100
.

In the example with tossing a coin since each outcome uniquely determines the number
of heads in each trial, we may think of it as a function. Let C be the number of heads, then

C(HHH) = 2, C(TTH) = 1, C(THT ) = 1, . . . , C(TTT ) = 0

3



Figure 1.1: Dartboard

Definition 1.7. The inverse image of a set A under a function f is f−1(A) = {x ∈ X|f(x) ∈
A}.

Definition 1.8. Let Σ and T be σ-algebras over sets X and Y correspondingly. Then
f : X → Y is measurable if every A ∈ T , f−1(A) ⊂ Σ.

Definition 1.9. A measurable function X from Ω to R is called a random variable.

The head counting function C is an example of a random variable. We also may create a
random variable for the example with the darts game above. Assume that hitting a certain
area gives the player a number of points: 20 for the “Bull’s eye” (denoted by B), 5 for the
“outer bull” (denoted by O) and 0 for the “Milk” (denoted by M). For this example, the
sample space is the square [−5, 5]2. The σ-algebra of events is the algebra of Borel sets and
the measure is unit normalized area measure.

Let S be the number of points earned for hitting the board after 1 throw. Then for
example S = 20χB + 5χO. So S is a random variable.

Definition 1.10. If a sample space Ω is countable, then random variable defined on it is
called discrete.

The random variable C is discrete.

Definition 1.11. If a sample space Ω is not countable, then random variable defined on it
is called continuous.

The random variable S is continuous. The normal distribution is the most important
example of a continuous probability space, however we will delay the description of it.

In order to proceed we will need the following lemma:

Lemma 1.12. Let X, f be functions. Then (f ◦X)−1(A) = X−1(f−1(A)).
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Proof. Let X, f be as above. Choose y ∈ (f ◦X)−1(A). Then (f ◦X)(y) ∈ A by definition
of inverse image. Therefore f(X(y)) ∈ A by definition of the composition of functions.
So X(y) ∈ f−1(A) (definition of inverse image) and y ∈ X−1(f−1(A)) Now choose y ∈
X−1(f−1(A)). Then similarly y ∈ (f ◦ X)−1(A). So (f ◦ X)−1(A) = X−1(f−1(A)) as
sets.

Let’s prove a simple result about random variables.

Theorem 1.13. Let X be a random variable, f a Borel measurable function, then f(X) is a
random variable.

Proof. Let X, f be as above. Choose A ⊂ R Borel measurable. Now (f ◦ X)−1(A) =
X−1(f−1(A)). Since f−1(A) ⊂ F by definition of Borel measurable, and X is random
variable itself, X−1(f−1(A)) ⊂ F . So f(X) is a random variable by its definition.

Once we defined a sample space and have a random variable, we want to get a feeling of
where the outcomes will gravitate with time. For example, if I buy a lottery ticket, I should
not expect to win a million Canadian dollars right away.

Definition 1.14. The expectation of a random variable X is the integral of X with respect
to P: E[X] =

∫
X(ω)P(dω)

For the discrete random variables the expectation is just the probability-weighted sum
of the possible values. In the example with coin toss :

E[C] = 3 · 1

8
+ 2 · 3

8
+ 1 · 3

8
+ 0 · 1

8
= 1.5

The expectation tells us that with growing number of experiments the average number of
the heads after 3 coin tosses will be 1.5, which pretty much agrees with our intuition. Please
note that expected value should not necessary be the element of the sample space.

Definition 1.15. If X is a random variable and has expectation E(X) = µ, then the variance
Var(X) of X is given by V ar(X) = E[(X − µ)2].

For a discrete random variable X with E(X) = µ, the variance is V ar(X) =
∑n

i=1 P(ωi)(X(ωi)−
µ)2. Let’s exploit the example with 3 consecutive coin tosses once again:

V ar(C) =
1

8
· (3− 1.5)2 +

3

8
· (2− 1.5)2 +

3

8
· (1− 1.5)2 +

1

8
· (0− 1.5)2 = .75

One may think of a random variable as a way of partitioning the sample space: from all
the variety of possible subsets we choose only limited amount. In the coin example we end
up with 4 subsets:

{HHH}, {HHT,HTH, THH}, {HTT, THT, TTH}, {TTT}

Here the criterion for partitioning was the number of heads one observes at the end of the
experiment. We already have probabilities for the separate outcomes, however with random
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variable not only does one deal with just states {HHH}, {TTT}, we also have subsets of the
sample space {HHT,HTH, THH}, {HTT, THT, TTH}. So we want to use the knowledge
of the probabilities of states to assign/compute probabilities of events.

We start with sample space and probabilities of the separate states, then we introduce
events as a subsets of the sample space. At the same time from all the variety of available
subsets we are interested only in certain number of subsets, and we would like to know the
probabilities of events occurring.

Definition 1.16. The law or distribution of X is the probability measure PX on R, given by

PX(A) = P(X ∈ A) = P({ω ∈ Ω | X(ω) ∈ A}) = P(X−1(A))

Put differently while the probability measure assigns probabilities to the events (subsets
of the sample space), the distribution of the random variable assesses the probability that
the random variable takes values in set A.

In the example with 3 consecutive coin tosses let’s describe the distribution of C. We
will have following picture that corresponds to 4 possible outcomes:

P(C−1({0})) = P({ω ∈ Ω|C(ω) ∈ {0}}) = P({TTT}) =
1

8

P(C−1({1})) = P({ω ∈ Ω|C(ω) ∈ {1}}) = P({HTT, THT, TTH}) =
3

8

P(C−1({2})) = P({ω ∈ Ω|C(ω) ∈ {2}}) = P({HHT, THH,HTH}) =
3

8

P(C−1({3})) = P({ω ∈ Ω|C(ω) ∈ {3}}) = P({HHH}) =
1

8

We worked out cases when the value of the random variable C was feasible: after 3 coin
tosses one may get either 0, 1, 2 or 3 heads. But these are not the only values on R that
one may use. Let’s explore other possibilities. What’s the probability that one gets 5 heads
after 3 coin tosses?

P(C−1({5})) = P({ω ∈ Ω|C(ω) ∈ {5}}) = P(∅) = 0

since P(∅) = 0 by the axioms of probability. This result comes as no surprise: one cannot
get 5 heads after 3 coin tosses, even if heads appear after each coin toss. Similarly

P(C−1({−2})) = P({ω ∈ Ω|C(ω) ∈ {−2}}) = P(∅) = 0

P(C−1((−∞,−1])) = P({ω ∈ Ω|C(ω) ∈ (−∞,−1]}) = P(∅) = 0

We now consider the normal distribution and normally distributed random variables.

Definition 1.17. The Gaussian (also called normal) distribution is given by the probability
measure on R with the Borel σ-algebra

P(X ∈ A) =

∫
A

1√
2π
e−x

2/2dx,A Borel
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Figure 1.2: Gaussian distribution probability density function

The graph of the density is illustrated on the Figure (1.2).

Definition 1.18. The cumulative distribution function of a random variable X is the func-
tion FX(t) = PX((−∞, t]).

Consider the cumulative distribution function for the random variable C (number of
heads after 3 coin flips).

FC(0) = PC((−∞, 0]) = P({TTT}) =
1

8

Similarly

FC(1) = PC((−∞, 1]) = P({TTT,HTT, THT, TTH}) =
4

8
=

1

2

FC(2) = PC((−∞, 2]) = P({TTT,HTT, THT, TTH,HHT,HTH, THH}) =
7

8

FC(3) = PC((−∞, 3]) = P({TTT,HTT, THT, TTH,HHT,HTH, THH,HHH}) =
8

8
= 1

It’s easy to check that for x ∈ (−∞, 0), FC(x) = 0;x ∈ [0, 1), FC(x) = 1
8
;x ∈ [1, 2), FC(x) =

1
2
;x ∈ [2, 3), FC(x) = 7

8
;x ∈ [3,+∞), FC(x) = 1. One may find a graph of the cumulative

distribution function of C at the Figure (1.3).
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CDF of C

0

F(t)

7/8

1/8

4321 t

1

1/2

Figure 1.3: Cumulative distribution function of C

For Gaussian random variable the cumulative distribution function is given by

FG(x) =
1

2
(1 + erf(

x√
2

))

(see Figure (1.4)).
It is interesting to ask what functions can be cumulative distribution functions. The

first observation is that a cumulative distribution function is necessarily increasing:

Lemma 1.19. If s ≤ t, then FX(s) ≤ FX(t).

Proof. Choose s,t such that s ≤ t. Then FX(s) = PX((−∞, s]). FX(t) = P((−∞, t]) =
P((−∞, s] ∪ [s, t]) = P((−∞, s]) + P((s, t]). And since PX((s, t]) ≥ 0, FX(s) ≤ FX(t).

Now consider the following function:

F (t) =


0 if t < 0
1
2

if t = 0
1 if t > 0

For any ε > 0,P(X ∈ (−∞, ε]) = 1.
We see that

P((−∞, 1]) = F (1) = 1

P((−∞, 1

2
]) = F (

1

2
) = 1

Since P(A ∪ B) = P(A) + P(B), then P(B) = P(A ∪ B) − P(A). We see P((1
2
, 1]) =

P((−∞, 1
2
] ∪ (1

2
, 1]) − P((−∞, 1

2
]) = P((−∞, 1]) − P((−∞, 1

2
]) = 1 − 1 = 0. Similarly

P((1
4
, 1

2
]) = 0, etc. Thus P((0, 1]) = P((1

2
, 1])+P((1

4
, 1

2
])+ . . . = 0+0+ . . . = 0, implying that

1 = P((−∞, 1]) = P((−∞, 0]) + P((0, 1]) = F (0) + 0 = 1
2

+ 0 = 1
2
, and this cannot happen.

In fact we see that cumulative distribution function is right continuous:
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Figure 1.4: Gaussian distribution cumulative distribution function

Lemma 1.20. The cumulative distribution function is right continuous.

Proof. Let xn decrease to x. Then
⋂∞
n=1(−∞, xn] = (−∞, x] and the sequence of events

{(−∞, xn]} is a decreasing sequence. Consider P((−∞, x + xn]) − P((−∞, x]) = P((x, x +
xn]) =

∫
χ(x,x+xn](t)dP(t). Now limn→+∞

∫
χ(x,x+xn](t)dP(t) =

∫
limn→+∞ χ(x,x+xn](t)dP(t) =

0 by the Lebesgue dominated convergence theorem. Thus limn→+∞(P((−∞, x + xn]) −
P((−∞, x])) = 0, in other words limn→+∞ P((−∞, x+ xn]) = P((−∞, x]).

Lemma 1.21. P(AC) = 1− P(A)

Proof. 1 = P(Ω) = P(A∪AC) = P(A)+P(AC), since A,AC are disjoint. So P(AC) = 1−P(A)
by algebra.

Lemma 1.22. Define B := ∩{F|F is a σ-algebra and (a,b) ∈ F for all (a,b)}. Then B is
a σ-algebra.

Proof. Choose any A ∈ B. Then A ∈ F , so Ac ∈ F since F is a σ-algebra, and so Ac ∈ B
by definition of ∩. Choose a set {An} ∈ B. Then An ∈ F , so

⋃∞
n=1An ∈ F , since F is a

σ-algebra, and so
⋃∞
n=1An ∈ B by definition of ∩. Obviously R ∈ B. Thus B is a σ-algebra

by definition of σ-algebra.

We will use the following fact in the next lemma:
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Fact 1.23. A Borel set is a set that is obtained by repeatedly taking countable unions and
complements of open sets.

Let us denote the result of N complements and/or countable unions of open sets as a
“level N Borel set”.

Lemma 1.24. If FX(t) = FY (t), then PX = PY .

Proof. Proceed by induction. Base case (level 0 Borel set i.e. (a, b)): PX((a,∞)) =
PX((−∞, a]c) = 1−PX((−∞, a]) = 1−FX(a) = 1−FY (b) = PY ((−∞, a)) = PY ((−∞, a]c) =
PY ((a,∞)) and PX((a, b]) = PX((−∞, b]∩(a,∞)) = PX((−∞, b]cc∩(a,∞)cc) = PX(((−∞, b]c∪
(a,∞)c)c) = 1 − PX((−∞, b]c ∪ (a,∞)c) = 1 − PX((−∞, b]c) − PX((a,∞)c) = 1 − (1 −
PX((−∞, b]))−PX((−∞, a]) = FX((−∞, b]))−FX((−∞, a]) = FY ((−∞, b]))−FY ((−∞, a])
and repeat the argument backwards with Y. Now let bn ↗ b, b0 = a, bk ≥ a. So

PX((a, b)) = PX(
∞⋃
k=1

(bk, bk+1]) =

=
∞∏
k=1

PX(bk, bk+1]) =

=
∞∏
k=1

PY (bk, bk+1]) =

= PY (
∞⋃
k=1

(bk, bk+1]) =

= PY ((a, b))

Induction step: assume PX(B) = PY (B) for all level N Borel sets as our induction hypoth-
esis. Let A be a level N Borel set, then either A = Bc, or A =

⋃∞
k=1Bk.

• case 1: A = Bc. Then PX(A) = PX(Bc) = 1−PX(B) = 1−PY (B) = PY (Bc) = PY (A).

• case 2: A =
⋃∞
k=1Bk. Rewrite expression for A to make sure that sets are disjoint:

A =
⋃∞
j=1(Bj+1 −

⋃j
k=0Bk). Then

PX(A) =PX(
∞⋃
j=1

(Bj+1 −
j⋃

k=0

Bk)) =
∞∑
j=1

PX(Bj+1 −
j⋃

k=0

Bk) =

=
∞∑
j=1

PY (Bj+1 −
j⋃

k=0

Bk) = PY (
∞⋃
j=1

(Bj+1 −
j⋃

k=0

Bk)) = PY (A)

and that completes the proof.

Theorem 1.25. Given a measure P on R with total mass 1 (probability measure), it is
possible to construct a random variable X on [0, 1] such that PX = P.
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Proof. Let P be as above. Set the sample space Ω = [0, 1] with the σ-algebra of the Borel
sets and Lebesgue measure µ. Set FP(t) =

∫
χ(−∞,t](s)dP(s). FP is monotone and continuous

from the right by Lemma (1.20). Set X : [0, 1]→ R to be

X(s) =

{
sup{t|FP(t) ≤ s} if s 6= 1

0 if s = 1

If s < 1 and aN →∞, then limt→∞ FP(t) = limN→∞ FP(aN) = limN→∞(
∫
χ(−∞,aN ](s)dP(s)) =∫

limN→∞ χ(−∞,aN ](s)dP(s) =
∫

1dP(r) = 1. So there is a ts such that FP(ts) > s. But
FP(t) is monotone, thus for t > ts, FP(t) ≥ FP(ts) > s. In other words ts is upper bound,
therefore X is well-defined. We will show [0, FP(t)) ⊆ X−1((−∞, t]) ⊆ [0, FP(t)], so X is
measurable. To see the first set containment, let a < FP(t), so a ∈ [0, FP(t)). Note that
FP(t) ≤ 1, so a < 1, and therefore X(a) = sup{r|FP(r) ≤ a}. Assume X(a) > t, then
there exists r > t such that FP(r) ≤ a by definition of sup. Finally using the initial as-
sumption we have FP(r) < FP(t). On the other hand F is monotone increasing: for r > t,
FP(r) ≥ FP(t). So we have a contradiction. Now let us turn our attention to the proof
of the second containment, namely X−1((−∞, t]) ⊆ [0, FP(t)]: let a ∈ X−1((−∞, t]), so
X(a) ∈ (−∞, t] and X(a) ≤ t. Assume FP(t) < a. Take ε = a − FP(t). Since FP(t) is
right continuous, there exists δ > 0 such that for r ∈ (t, t + δ) ⇒ |FP(r) − FP(t)| < ε.
Now FP(r) < ε + FP(t) = a − FP(t) + FP(t) = a. At the same time X(a) ≥ r by def-
inition of X(a) and r > t by continuity, which gives is a contradiction (initially we let
X(a) ≤ t), so a ≤ FP(t) and consequently a ∈ [0, FP(t)] ⇒ X−1((−∞, t]) ⊆ [0, FP(t)]. Now
FPX (t) := µ(X−1((−∞, t])) = FP(t), therefore PX = P.
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Chapter 2

Independence

Intuitively events from unrelated experiments cannot influence the likelihood of occurrence
of each other. A flip of a coin does not affect the result of trowing a die. Getting heads will
not change the likelihood of getting 5 after a throw of a die. In a similar manner outcomes
of 2 consecutive throws of a die are not related: if we get 2 after the first roll, this fact
has no effect on seeing 4 after the second roll. On the other hand 2 experiments may be
explicitly interconnected: let’s say we expect the sum after two rolls of a die to be ten. Here
getting a four the first time means that we would need to get an six on the second roll.

Definition 2.1. Events A and B are independent if P(A∩B) = P(A)P(B). More generally
A1, . . . , An are independent if for any subset {i1, . . . , ij} of {1, . . . , n}

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aij) = P(Ai1)P(Ai2) · · ·P(Aij)

Example of independent events: let’s say we flip a coin and then roll a die.

Ω = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}

Let event A be the following: “coin shows tails” event B - “die shows an even number”. Then
A = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}, B = {(H, 2), (H, 4), (H, 6), (T, 2), (T, 4), (T, 6)},
A∩B = {(T, 2), (T, 4), (T, 6)} and P(A∩B) = 3

12
= 1

4
, while P(A) ·P(B) = 6

12
· 6

12
= 1

2
· 1

2
= 1

4
.

So A and B are independent since P(A ∩B) = P(A)P(B).
Example of dependent events: let’s say we roll a fair 6-sided die two times in a row.

Let “get a four on the first roll” is event A, “the sum after two rolls is ten” is event B.
Then Ω = {(a, b)|a, b ∈ {1, 2, 3, 4, 5, 6}}, A = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}, B =
{(4, 6), (6, 4), (5, 5)}, A∩B = {(4, 6)}, and P(A∩B) = 1

36
, while P(A) ·P(B) = 6

36
· 3

36
= 1

72
.

Thus A and B are dependent since P(A ∩B) 6= P(A)P(B).

Lemma 2.2. If A and B are independent events, so also are A and Bc.

Proof.

P(A ∩Bc) =P(A)− P(A ∩B) (since P(A ∩Bc) + P(A ∩B) = P(A))

=P(A)− P(A)P(B)

=P(A)(1− P(B)) = P(A)P(Bc)

12



The definition of the independence of random variables relies on the following definition:

Definition 2.3. A σ-field F is independent of a σ-field G if each A ∈ F is independent of
each B ∈ G.

Two random variables X and Y are said to be independent if and only if the value of X
has no influence on the value of Y and vice versa. In terms of σ-fields it looks like this:

Definition 2.4. Random variables X and Y are independent if the σ-fields generated by
them are independent.

Here is an example of independent continuous random variables. Imagine that we are
throwing darts into a square board with dimensions 1x1 and assume that every time we nec-
essarily hit the square. The outcomes are {(x, y)|x ∈ [0, 1], y ∈ [0, 1]}. Since the probability
of separate outcomes is zero, we assign probabilities for subsets of a unit interval. Let X
be the random variable that represents the x-coordinate of the dart after the throw, while
Y represents the y-coordinate. Then probability that X “hits” the interval [a, b] ⊂ [0, 1]
(denote this event as A) as well as the probability that Y “hits” the interval [c, d] (denote
this event as B) are areas of the corresponding “stripes”, namely (b − a) · 1 and (d − c) · 1
(Figure (2.1)). The probability that darts hits the board within the limits of both inter-
vals [a, b] and [c, d] is the area of the blue rectangle: (b − a) · (d − c). In other words is
P(A∩B) = (b−a) ·(d−c) = (b−a) ·1 ·(d−c) ·1 = P(A) ·P(B), so X and Y are independent.

1

10

d

c

ba

Figure 2.1: Square dartboard

Theorem 2.5. If X, Y are independent random variables, f,g are Borel measurable, then
f(X) and g(Y) are independent.

13



Proof. Let X, Y, f, g be as above. Choose A ⊂ R, B ⊂ R Borel measurable. Then

P((f ◦X)−1(A) ∪ (g ◦ Y )−1(B)) = P(X−1(f−1(A)) ∪ Y −1(g−1(B))) = (see Lemma 1.12)

= P(X−1(f−1(A))) · P(Y −1(g−1(B))) =

= P((f ◦X)−1(A)) · P((g ◦ Y )−1(B))

Theorem 2.6. If X,Y are independent random variables, then E(XY ) = (EX)(EY ).

Proof. Let X, Y be as above. We denote (Ω,F ,P) as a probability space. Without loss of
generality assume X, Y ≥ 0. Define Sk := {m2−k}2kk

m=1. Consider the following sequences of
random variables

Xk(ω) :=

2k(k−1)∑
m=1

m2−kχX−1([m2k,(m+1)2k))(ω) + 2kkχX−1[2kk,∞)(ω)

Yk(ω) :=

2k(k−1)∑
n=1

n2−kχY −1([n2k,(n+1)2k))(ω) + 2kkχY −1[2kk,∞)(ω)

so that Xk ↗ X, Yk ↗ Y , and consequently XkYk ↗ XY . Say:

Xk(ω) :=
N∑
m=1

am,kχX−1(Sm,k)(ω)

Yk(ω) :=
N∑
n=1

bn,kχY −1(Sn,k)(ω)

Now∫
X(ω) · Y (ω) dP(ω) =

∫
lim
k→∞

Xk(ω) · Yk(ω) dP(ω) = lim
k→∞

∫
Xk(ω) · Yk(ω) dP(ω) = (by MCT)

= lim
k→∞

∫ N∑
m=1

am,kχX−1(Sm,k) ·
N∑
n=1

bn,kχX−1(Sn,k) dµ =

= lim
k→∞

N∑
m=1

N∑
n=1

am,kbn,k

∫
χX−1(Sm,k) · χY −1(Sn,k) = I

14



Note that χA · χB ⇔ (ω ∈ A)&(ω ∈ B)⇔ χA∩B, so

I = lim
k→∞

N∑
m=1

N∑
n=1

am,kbn,k

∫
χ(X−1(Sm,k)∩Y −1(Sn,k)) =

= lim
k→∞

N∑
m=1

N∑
n=1

am,kbn,k P(X−1(Sm,k) ∩ Y −1(Sn,k)) =

= lim
k→∞

N∑
m=1

N∑
n=1

am,kbn,k P(X−1(Sm,k)) · P(Y −1(Sn,k)) =

= lim
k→∞

N∑
m=1

N∑
n=1

am,kbn,k

∫
χX−1(Sm,k) ·

∫
χY −1(Sn,k) =

= lim
k→∞

∫ N∑
m=1

am,kχX−1(Sm,k) ·
∫ N∑

n=1

bn,kχY −1(Sn,k) =

= lim
k→∞

∫
Xk(ω) dP(ω) ·

∫
Yk(ω) dP(ω) =

= lim
k→∞

∫
Xk(ω) dP(ω) · lim

k→∞

∫
Yk(ω) dP(ω) =

=

∫
X(ω) dP(ω) ·

∫
Y (ω) dP(ω)

Definition 2.7. The characteristic function of a random variable X is the Fourier transform
of its law:

∫
eiuxdPX = E(eiuX).

The Fourier transform is a fundamental notion in probability and analysis. We will see
that the Fourier transform of a measure determines that measure. We will define Fourier
transform as well as its basic properties in the next chapter.

Definition 2.8. The joint characteristic function of random variables X and Y is the fol-
lowing expectation: E(ei(uX+vY )).

Note that if X and Y are independent random variables, then eiuX and eivY are also
independent by Theorem 2.5. Therefore E(ei(uX+vY )) = E(eiuX)E(eivY ) by Theorem 2.6. In
fact the converse also holds. This is a major result and the proof will take up the remainder
of this chapter.

Definition 2.9. If T : (X,A) → (Y,D) is a measurable function and µ is a measure on
(X,A), then T∗µ : D → [0,∞), (T∗µ)(B) = µ(T−1(B)) is the push forward measure.

Lemma 2.10. χT−1(B) = χB ◦ T .

Proof. Let x ∈ X. Then either x ∈ T−1(B) or x /∈ T−1(B).

15



• case 1: x ∈ T−1(B)⇒ T (x) ∈ B. So (χB ◦ T )(x) = χB(T (x)) = 1 = χT−1(B)(x).

• case 2: x /∈ T−1(B)⇒ T (x) /∈ B. So (χB ◦ T )(x) = χB(T (x)) = 0 = χT−1(B)(x).

Lemma 2.11. For any f ∈ L1(T∗µ)∫
Y

fdT∗µ =

∫
X

f ◦ Tdµ

Proof. case 1 (f is simple): f =
∑
akχAk.∫

Y

∑
akχAkd(T∗µ) =

∑
akT∗µ(Ak)

=
∑

akµ(T−1(Ak)) (by definition of push forward measure)

=

∫
X

∑
akχT−1(Ak)d µ

=

∫
X

∑
akχAk ◦ Tdµ (by Lemma (2.10))

case 2 (f ≥ 0): there exists sequence of simple functions sn ↗ f∫
Y

fdT∗µ =

∫
Y

lim
n→∞

sndT∗µ = lim
n→∞

∫
Y

sndT∗µ (by MCT)

= lim
n→∞

∫
X

sn ◦ Tdµ =

∫
X

lim
n→∞

sn ◦ Tdµ (by MCT)

=

∫
X

f ◦ Tdµ

case 3 (f ∈ R-valued): first define f = f+ − f− where

f+(t) =

{
f(t) if f(t) > 0

0 otherwise
f−(t) =

{
f(t) if f(t) < 0

0 otherwise

With this notation in mind:∫
fd T∗µ =

∫
Y

f+d T∗µ−
∫
Y

f−d T∗µ

=

∫
X

f+ ◦ T dµ−
∫
X

f ◦ T dµ (by previous case)

=

∫
X

(f ◦ T )+ dµ−
∫
X

(f ◦ T )− dµ =

∫
X

f ◦ T dµ

case 4 (f ∈ C-valued): f = p+ iq, then∫
fd T∗µ =

∫
(p+ iq)d T∗µ =

∫
pd T∗µ+ i

∫
qd T∗µ
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Definition 2.12. Given random variables X, Y, P(X,Y ) = (X, Y )∗P where P(X,Y )(A×B) =
P(X−1(A) ∩ Y −1(B)).

Theorem 2.13. If random variables X, Y satisfy E(eiuX+ivY ) = E(eiuX)E(eivY ) for all u
and v, then X and Y are independent.

Proof. Denote PX , PY probability measures of X and Y correspondingly. Then by Theorem
(1.25) there exist random variables X ′′ and Y ′′ such that X ′′ : [0, 1] → R, Y ′′ : [0, 1] →
R with PX′′ = PX , PY ′′ = PY . Now consider probability space ([0, 1]2, Borel σ-algebra,
Lebesgue measure with total mass 1) and set X ′(s, t) = X ′′(s), Y ′(s, t) = Y ′′(t), so PX′ =
PX′′ = PX and PY ′ = PY ′′ = PY . So X ′, Y ′ are our prototypes of independent random
variables (X ′, Y ′) are independent by the example on page 13) and recall P(X,Y ) = (X, Y )∗P,
where (X, Y ) : Ω→ R2, ω 7→ (X(ω), Y (ω)). Also note that

E(X) =

∫
Ω

X(ω) dP(ω) =

∫
R
x dPX(x) =

∫
R
x dPX′(x) =

∫
[0,1]

X ′(t) dµ(t) = E(X ′).

Now consider

(F PX,Y )(u, v) =

∫
R2

ei(ux+vy) dP(X,Y )(x, y) =

=

∫
R2

ei(uX+vY ) d(X, Y )∗P = (by Lemma (2.11))

=

∫
Ω

ei(uX(ω)+vY (ω)) dP(ω) =

= E(ei(uX+vY )) = E(eiX)E(eiY ) =

= E(eiX
′
)E(eiY

′
) = E(ei(uX

′+vY ′)) = (since X ′, Y ′are independent)

= E(ei(uX
′+vY ′)) =

∫
[0,1]2

ei(uX
′(s,t)+vY ′(s,t)) dµ(s, t) =

=

∫
R2

ei(ux+vy) dP(X′,Y ′)(x, y) = (by Lemma 2.11)

= (F PX′,Y ′)(u, v)

therefore P(X,Y ) = P(X′,Y ′) by Lemma (3.15). We will prove Lemma (3.15) in the next
chapter. Now use the definition of P(X,Y ):

P(X−1(A) ∩ Y −1(B)) = P(X,Y )(A×B) = (definition of P(X,Y ))

= P(X′,Y ′)(A×B) = (by the result above)

= P((X ′)−1(A) ∩ (Y ′)−1(B)) = (definition of P(X′,Y ′)))

= P((X ′)−1(A)) · P((Y ′)−1(B)) = (X ′, Y ′ are independent)

= PX′(A) · PY ′(B) =

= PX(A) · PY (B) =

= P(X−1(A)) · P(Y −1(B))

so X, Y are independent by the definition of independence of random variables.
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Chapter 3

Fourier Transform

The Fourier transform will be used to prove the law of large numbers and the central
limit theorem in the next chapter. In this chapter we define the Fourier transform for
functions and for measures, prove properties for functions and then extend those properties
to measures.

Definition 3.1. If f ∈ L1(R), then the Fourier transform is F(f)(ω) = f̂(ω) =
∫

R e
iωxf(x) dx.

Remark: Recall that the Fourier transform of a measure µ is (Fµ)(ω) =
∫

R e
iωx dµ(x). For

positive f ∈ L1(R) if one sets

µf (A) =

∫
A

f(x) dx then f̂(ω) = (Fµf )(ω)

Example 3.1

If f(x) = 1
2π
e−

1
2
x2

σ2 , then F(f)(u) = 1√
2π
σe−

1
2
σ2u2

.

F(
1

2π
e−

1
2
x2

σ2 ) (u) =
1

2π

∫
R
eiux−

1
2
x2

σ2 dx

=
1

2π

∫
R
e−

1
2σ2 (x2−2σ2iux+σ4u2−σ4u2) dx

=
1

2π
e−

1
2
σ2u2

∫
R
e−

1
2σ2 (x−σ2iu)2 dx

=
1

2π
σ
√

2πe−
1
2
σ2u2

=
1√
2π
σe−

1
2
σ2u2

One may set k = 1
σ

to obtain 1
2π
e−

1
2
x2

σ2 = 1
2π
e−

1
2
k2x2

= f(x) and F(f)(u) = 1
k
√

2π
e−

1
2
u2

k2 .

Our first goal is to establish the Fourier inversion formula for functions. The following
lemma is a key element in the proof of the Fourier inversion formula for functions. It is
sometimes called the Fourier multiplication theorem.

Lemma 3.2. If f, g ∈ L1, then
∫

R f̂(y)g(y)dy =
∫

R ĝ(x)f(x)dx

18



Proof.∫
R
f̂(y)g(y)dy =

=

∫
R
(

∫
R
eiyxf(x)dx)g(y)dy

=

∫
R

∫
R
eiyxf(x)g(y)dydx

(Note: by Tonelli; |eiyxf(x)g(y)| ≤ |f(x)||g(y)| ∈ L1 as f, g ∈ L1)

=

∫
R
(

∫
R
eiyxg(y)dy)f(x)dx (by Fubini)

=

∫
R
ĝ(x)f(x)dx

We now prove the inversion formula for the function at zero.

Lemma 3.3. If g ∈ C0, ĝ is defined and ĝ ∈ L1, then g(0) = 1
2π

∫
R ĝ(u)du.

Proof.

g(0) = lim
k→0

g(kz)

= lim
k→0

g(kz)

∫
R

1√
2π
e−

1
2
z2 dz

= lim
k→0

∫
R

1√
2π
e−

1
2
z2g(kz) dz

= lim
k→0

∫
R

1

k
√

2π
e−

x2

2k2 g(x) dx (x = kz, z =
x

k
, dz =

dx

k
)

= lim
k→0

1

2π

∫
R
e−

k2u2

2 ĝ(u) du (g ∈ L1, Lemma (3.2) and example on page 18)

=
1

2π

∫
R

lim
k→0

e−
k2u2

2 ĝ(u) du (DCT: |e−
k2u2

2 ĝ(u)| ≤ |ĝ(u)|, ĝ ∈ L1)

=
1

2π

∫
R
ĝ(u) du

We can now prove the inversion formula for functions.

Theorem 3.4. If h ∈ C0, L1, ĥ is defined and is in L1, then h(y) = 1
2π

∫
R e
−iuyĥ(u)du.
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Proof. Set g(x) = h(x+ y). Clearly g ∈ C0 as h is. Now

ĝ(u) =

∫
R
eiuxg(x) dx

=

∫
R
eiuxh(x+ y) dx

=

∫
R
eiu(z−y)h(z) dz (z = x+ y, x = z − y, dx = dz)

= e−iuy
∫

R
eiuzh(z) dz

= e−iuyĥ(u)

That is |ĝ(u)| = |e−iuyĥ(u)| = |ĥ(u)|, so ĝ ∈ L1 as ĥ ∈ L1. Thus

h(y) = g(0) =
1

2π

∫
R
ĝ(u) du (by Lemma (3.3) as g ∈ C1, ĝ ∈ L1)

=
1

2π

∫
R
e−iuyĥ(u) du

There is a multiplication that is closely associated with the Fourier transform. It is
called convolution.

Definition 3.5. If two real-valued function f, g are sufficiently summable, then convolution
is given by

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy

Convolution is also defined between a function and a measure.

Definition 3.6. The convolution of a function and a measure is given by

(f ∗ µ)(x) =

∫
R
f(x− y)dµ(y)

We use convolution to approximate measures by smooth measures and to translate results
about function to results about measures.

Definition 3.7. We say the sequence of measures µn converges to measure µ narrowly
(weakly) if and only if

∫
f(x)dµn(x)→

∫
f(x)dµ(x) for every f ∈ L∞ ∩ C0.

Let ρ1 be a smooth positive bump function with mass 1 (
∫
ρ1(x)dx = 1) such that ρ1 = 0

for |x| > 1. Set ρn(x) := nρ1(nx), note that ρn(x) = 0 for |x| > 1
n
, and ρn still has mass 1

(Figure (3.1)).
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Figure 3.1: Smooth positive bump functions

Lemma 3.8. If µ is a finite measure, then µn = ρn ∗ µdx→ µ narrowly.

Proof. We need to show that limn→∞
∫
f(x)∗µn(x)dx =

∫
f(y)dµ(y) for bounded continuous

functions. We first prove it for non-negative bounded continuous functions, say 0 ≤ f(x) ≤
M . Notice that

∫
f(x)ρn(x− y)dx ≤

∫
Mρn(x− y)dx ≤M

∫
ρn(x− y)dx ≤M , since ρn(x)

has mass 1. So M ∈ L1(µ) as µ is a finite measure. For such functions we have

lim
n→∞

∫
f(x)dµn(x)dx = lim

n→∞

∫
f(x)

∫
ρn(x− y)dµ(y)dx (def of µn)

= lim
n→∞

∫ ∫
f(x)ρn(x− y)dx dµ(y) (by Tonelli’s theorem)

=

∫
lim
n→∞

∫
f(x)ρn(x− y)dx dµ(y) (by DCT as M ∈ L1(µ))

=

∫
f(y) dµ(y)

We write a general bounded continuous function f(x) = f+(x)− f−(x), where

f+(x) =

{
f(x) if f(x) ≥ 0

0 else
f−(x) =

{
−f(x) if f(x) ≤ 0

0 else

and use linearity.
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Lemma 3.9. If µ, (µn)k≥1 are probability measures with cumulative distribution functions
F, (Fn)k≥1 such that Fn → F on a dense subset of R say 4 then µn → µ narrowly.

Proof. There exist r, s ∈ 4 such that 1 − µ((r, s]) = 1 − F (s) + F (r) ≤ ε. Also since
Fn → F on 4 by hypothesis, there exists an N1 such that for n ≥ N1 1 − µn((r, s]) =
1 − Fn(s) + Fn(r) ≤ ε. Since [r, s] is a closed (compact) interval and f is continuous,
we know f is uniformly continuous on [r, s]; thus there exists a finite number of points
r = r0 < r1, . . . , rk = s such that

|f(x)− f(rj)| ≤ ε if rj−1 ≤ x ≤ rj (3.1)

and each of the rj are in 4, 1 ≤ j ≤ k. Next we set

g(x) =
k∑
j=1

f(rj)χ(rj−1,rj ](x) (3.2)

and by (3.1) we have |f(x)− g(x)| ≤ ε on (r, s]. If α = supx |f(x)|, we obtain∣∣∣∣∫
R
f(x)dµn(x)−

∫
R
g(x)dµn(x)

∣∣∣∣ =

∣∣∣∣∫
R
(f(x)− g(x))dµn(x)

∣∣∣∣
=

∣∣∣∣∫
(r,s]c

(f(x)− g(x))dµn(x) +

∫
(r,s]

(f(x)− g(x))dµn(x)

∣∣∣∣
≤
∣∣∣∣∫

(r,s]c
(f(x)− g(x))dµn(x)

∣∣∣∣+

∣∣∣∣∫
(r,s]

(f(x)− g(x))dµn(x)

∣∣∣∣
≤
∫

(r,s]c
|f(x)− g(x)|dµn(x) +

∫
(r,s]

|f(x)− g(x)|dµn(x)

(3.3)

≤
∫

(r,s]c
|f(x)|+ |g(x)|dµn(x) +

∫
(r,s]

εdµn(x)

≤ 2αµn((r, s]c) + εµn((r, s])

≤ 2α2ε+ ε1 = (4α + 1)ε

Similarly ∣∣∣∣∫
R
f(x)dµ(x)−

∫
R
g(x)dµ(x)

∣∣∣∣ ≤(4α + 1)ε (3.4)
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Using definition of g (3.2)∫
R
g(x)dµ(x) =

∫
R

k∑
j=1

f(rj)χ(rj−1,rj ](x)dµ(x)

=
k∑
j=1

f(rj)µ((rj−1, rj])(x)

=
k∑
j=1

f(rj)(F (rj−1)− F (rj))

and analogously ∫
R
g(x)dµn(x) =

k∑
j=1

f(rj)(Fn(rj−1)− Fn(rj))

Since all the rj’s are in 4, we have limn→∞ Fn(rj) = F (rj) for each j. And since there are
only finite number of rj’s, we know there exists an N2 such that for n ≥ N2, |

∫
R g(x)dµn(x)−∫

R g(x)dµn(x)| < ε. Using this result as well as (3.3) and (3.4) we get∣∣∣∣∫ f(x)dµn(x)−
∫
f(x)dµ(x)

∣∣∣∣ =

=

∣∣∣∣∫ f(x)dµn(x)−
∫
g(x)dµn(x) +

∫
g(x)dµn(x)−

∫
g(x)dµ(x) +

∫
g(x)dµ(x)−

∫
f(x)dµ(x)

∣∣∣∣
=

∣∣∣∣∫ f(x)dµn(x)−
∫
g(x)dµn(x)

∣∣∣∣+

∣∣∣∣∫ g(x)dµn(x)−
∫
g(x)dµ(x)

∣∣∣∣+

∣∣∣∣∫ g(x)dµ(x)−
∫
f(x)dµ(x)

∣∣∣∣
≤(4α + 1)ε+ ε+ (4α + 1)ε = 8αε+ 3ε

Since ε as arbitrary,
∫
f(x)dµn(x)→

∫
f(x)dµ(x) for all bounded, continuous f .

Lemma 3.10. Let (µn)n≥1 be a sequence of probability measures on R and suppose

lim
m→∞

sup
n
µn([−m,m]c) = 0

Then there exists a probability measure µ such that (µn)n≥1 converges narrowly to µ.

Proof. Let Fn(x) = µn((−∞, x]). Note that (Fn(x))n≥1 is a bounded sequence of real
numbers since for each x ∈ R, 0 ≤ Fn(x) ≤ 1 for all n. Then by the Bolzano-Weierstrass
theorem there always exists a subsequence nk such that (Fn(x))n≥1 converges where nk
depends on x.

Let r1, r2, . . . , rj, . . . be a sequence of rational numbers. For r1, there exists a subsequence
n1,k of n such that the limit exists and we set X(r1) = limk→∞ Fn1,k

(r1). For r2, there exists
a sub-subsequence n2,k of n1,k such that the limit exists and we set X(r2) = limk→∞ Fn2,k

(r2).
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We continue this way: for rj, let nj,k be a sequence of nj−1,k such that the limit exists and
we set X(rj) = limk→∞ Fnj,k(rj). We then form just one subsequence by taking nk := nk,k.
Thus for fj, we have X(rj) = limk→∞ Fnk(rj) since nk is a subsequence of nj,k once k ≥ j.

Next, we set F (x) = infy>xX(y). Function F is right-continuous by construction as well
as non-decreasing (since X defined on Q is non-decreasing).

Let ε > 0. By hypothesis there exists an m such that µn([−m,m]c) ≤ ε for all n
simultaneously. Therefore Fn(x) ≤ ε if x < −m and Fn(x) ≥ 1 − ε if x > m, therefore we
have same for X and finally

F (x) ≤ ε if x < −m
F (x) ≥ 1− ε if x ≥ m

}
Since 0 ≤ F (x) ≤ 1, F is right continuous and non-decreasing, F is a distribution function
corresponding to a probability measure µ.

Finally, suppose x is such that F (x−) = limy→x− F (y) = F (x). For ε > 0 there exists
y, z ∈ Q with y < x < z and F (x)− ε ≤ X(y) ≤ F (x) ≤ X(x) ≤ F (x) + ε. Thus for large
enough k,

F (x)− 2ε ≤ Fnk(y) ≤ Fnk(x) ≤ Fnk(z) ≤ F (x) + 2ε

By the inequalities above

F (x)− 2ε ≤ F (y) ≤ lim inf
k→∞

Fnk(x) ≤ lim sup
k→∞

Fnk(x) ≤ F (z) ≤ F (x) + 2ε

and by the squeeze theorem the lim inf and lim sup above must be equal and equal to
limk→∞ Fnk(x) = F (x). Thus µnk converges narrowly to µ by Lemma (3.9).

The relationship between Fourier transforms and convolution is given in the the next
lemma.

Lemma 3.11. For sufficiently smooth functions f, g we have F((f ∗ g)(x))(u) = F(f)(u) ·
F(g)(u)

Proof.

F((f ∗ g)(x))(u) =F(

∫
R
f(x− y)g(y)dy)(u) =

=

∫
R
eiux(

∫
R
f(x− y)g(y)dy)dx

=

∫
R

∫
R
eiuxf(x− y)g(y)dydx =: J

Denote z = x− y, so x = z + y and so

J =

∫
R

∫
R
eiuzf(z)dzeiuyg(y)dy

= F(f)(u) · F(g)(u)
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We will use this for the convolution of a bump function and a finite measure in the proof
of the main theorem of this chapter.

Lemma 3.12. F(ρ ∗ µ)(u) = ρ̂(u)F(µ)(u)

Proof.

F(µ)(u) = F(ρ ∗ µ)(u) =

∫
eiux

∫
ρ(x− y)dµ(y)dx

=

∫ ∫
eiuxρ(x− y)dxdµ(y) (by Tonelli’s theorem)

=

∫
eiuy

∫
eiuzρ(z)dzdµ(y) (z = x− y;x = z + y)

= ρ̂(u)Fµ

We need to know how smooth and summable ρn ∗ µ is for our main theorem.

Lemma 3.13. If µ is a finite measure and ρn is a family of bump functions, then ρn ∗ µ
is bounded and smooth i.e. infinitely differentiable. Furthermore all derivatives tend to zero
at infinity.

Proof. Indeed,

|ρn ∗ µ(x)| ≤
∫
ρn(x− y)dµ(y) ≤

∫
sup
x∈R
|ρn(x− y)|dµ(y) ≤ sup

z∈R
|ρn(z)|

since ρn(x− y) is continuous with compact support.

|ρn ∗ µ(x)− ρn ∗ µ(z)| =
∣∣∣∣∫ (ρn(x− y)− ρn(z − y)) dµ(y)

∣∣∣∣
≤
∫
|ρn(x− y)− ρn(z − y)| dµ(y)

Since ρn is infinitely differentiable with compact support, it is uniformly continuous. So
for any ε > 0 there exists δ > 0 such that |x − z| < δ and ρn ∗ µ is continuous implies
|ρn(x− y)− ρn(z − y)| < ε∫

dµ(y)
. Thus |ρn ∗ µ(x)− ρn ∗ µ(z)| < ε.

Note that
∣∣∣ρn(x+h−y)−ρn(x−y)

h

∣∣∣ is dominated by a function in L1 because∣∣∣∣ρn(x+ h− y)− ρn(x− y)

h

∣∣∣∣ = |ρ′n(c)| (by MVT as ρn ∈ C∞0 )

≤ sup
c∈R
|ρ′n(c)| ∈ L1 (since µ is finite)
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So using the above observation

d

dx
(ρn ∗ µ(x)) = lim

h→0

1

h
(ρn ∗ µ(x+ h)− ρn ∗ µ(x))

= lim
h→0

∫
1

h
(ρn(x+ h− y)− ρn(x− y))dµ(y)

=

∫
lim
h→0

1

h
(ρn(x+ h− y)− ρn(x− y))dµ(y) (by DCT)

=

∫
ρ′n(x) dµ(y) = ρ′n ∗ µ

Similarly dk

dxk
(ρn ∗ µ(x)) = ρ

(k)
n ∗ µ(x).

This is what we mean when we say ρn ∗ µ is smooth.

Lemma 3.14. limx→∞ ρn ∗ µ(b) = 0

Proof. Note that

µ(R) = µ

(
+∞⋃

k=−∞

[2k, 2k + 2)

)
=

+∞∑
k=−∞

µ([2k, 2k + 2))

µ(R) = µ

(
+∞⋃

k=−∞

[2k − 1, 2k + 1)

)
=

+∞∑
k=−∞

µ([2k − 1, 2k + 1))

Set ρ∗ = supx∈R ρ1(x). We now show for every ε > 0 there exists N such that for k > N
we have µ([k, k+ 2)) < ε

nρ∗
. If b > N , then [b− 1

n
, b+ 1

n
) ⊂ [k′, k′+ 2) for some k′ > N . Set

k = k′ + 1, then µ([b− 1
n
, b+ 1

n
)) ≤ µ([k′, k′ + 2)) < ε

nρ∗
.

Note that since ρ∗ = supx∈R ρ1(x), then nρ1(nx) ≤ nρ∗, and so

ρn ∗ µ(b) :=

∫
R
ρn(b− y)dµ(y)

=

∫ b+ 1
n

b− 1
n

ρn(b− y)dµ(y)

≤nρ∗µ([b− 1

n
, b+

1

n
]) ≤ nρ∗

ε

nρ∗
< ε

We can now prove the main theorem of this chapter.

Lemma 3.15. If µ, ν are finite measures with F(µ) = F(ν), then µ = ν.
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Proof. Let µ, ν be as above. We first approximate µ, ν be smooth functions ρn ∗ µ, ρn ∗ ν.
We have:

Fµn(u) = ρ̂n(u)Fµ(u) = ρn(u)Fν(u) = Fν(u) (by Lemma (3.12))

We know that ρn ∗µ (ρn ∗ν) is continuous by Lemma (3.13). The Fourier transform of these
exists by the above computation. We need to know that the Fourier transform is in L1.

|F(ρn ∗ µ)(u)| = |ρ̂n(u)| · |Fµ(u)|

= |
∫
eixuρn(x)dx| · |

∫
eiuxdµ(x)|

≤
∫
ρn(x)|eixu|dx

∫
|eiux|dµ(x) = 1 ·

∫
dµ(x) ∈ L∞

Furthermore

|F(ρn ∗ µ)(u)| =
∣∣∣∣ lim
a,b→∞

∫ b

−a
eiuxρn ∗ µ(x)dx

∣∣∣∣
=

∣∣∣∣ lim
a,b→∞

(
1

iu
eiub(ρn ∗ µ)(b)− 1

iu
e−iua(ρn ∗ µ)(−a)−

∫ b

−a

1

iu
eiux

d

dx
(ρn ∗ µ)(x)dx

)∣∣∣∣
(by parts)

≤ 1

u

∣∣∣∣∫
R
eiux

d

dx
(ρn ∗ µ)(x)dx

∣∣∣∣ (by Lemma (3.13))

=
1

u2

∣∣∣∣∫
R
eiux

d2

dx2
(ρn ∗ µ)(x)dx

∣∣∣∣ (by parts and Lemma (3.13))

≤ 1

u2

∫
R

∣∣∣∣ d2

dx2
(ρn ∗ µ)(x)

∣∣∣∣ dx
≤ 1

u2

∫
R

∫
R
ρ′′n(x− y)dµ(y)dx

≤ 1

u2

∫
R

∫
R
ρ′′n(x− y)dxdµ(y) (by Tonelli)

≤ 1

u2

Thus (Figure (3.2))

|F(ρn ∗ µ)(u)| ≤
{

c1, |u| ≤ 1
c2u
−2, |u| ≥ 1

but the right hand side is in L1. Thus F(ρn ∗µ)(u) ∈ L1. Similarly F(ρn ∗ ν)(u) ∈ L1. Now
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Figure 3.2: Bound for |F(ρn ∗ µ)(u)|

by Fourier inversion theorem for functions (Theorem (3.4)):

ρn ∗ µ(x) =
1

2π

∫
e−iuxF(ρn ∗ µ)(u)du

=
1

2π

∫
e−iuxF(ρn ∗ ν)(u)du (by assertion F(µ) = F(ν))

=Fρn ∗ ν

Now given a < b ∈ R take an ↘ a, bn ↗ b. Define f(x) in a following manner:

fn(x) =


0, x < a

1
an−a(x− a), a ≤ x < an

1, an ≤ x < bn
1

bn−b(x− b), bn ≤ x < b

0, x ≤ b

Note that fn(x) is continuous and bounded (Figure (3.3)). Now
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n
f (x)

(a,b)

x

1

χ
χ

(a,b)

a b

Figure 3.3: fn(x)

µ((a, b)) =

∫
χ(a,b)(x)dµ(x)

=

∫
lim
n→∞

fn(x)dµ(x)

= lim
n→∞

∫
fn(x)dµ(x) (by MCT)

= lim
n→∞

lim
m→∞

∫
fn(x)ρm ∗ µ(x)dx (as ρm ∗ µ→ µ narrowly)

= lim
n→∞

lim
m→∞

∫
fn(x)ρm ∗ ν(x)dx

= lim
n→∞

∫
fn(x)dν(x)

=

∫
lim
n→∞

fn(x)dν(x) (by MCT)

=

∫
χ(a,b)(x)dν(x) = ν((a, b))

Lemma 3.16. Let (µn)n≥1 be a sequence of probability measures, and let (µ̂n)n≥1 denote their
Fourier transforms. If µ̂n(u) converges to a function f(u) for all u and f(u) is continuous
at 0, then there exists a probability measure µ such that µn converges narrowly to µ and
f(u) = µ̂(u).2 3
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Proof. Suppose that limn→∞ µ̂(u) = f(u).∫ α

−α
dµ̂n(u) =

∫ α

−α

(∫ ∞
−∞

eiuxdµn(x)

)
du

=

∫ ∞
−∞

(∫ α

−α
eiuxdu

)
dµn(x) (by Fubini)

=

∫ ∞
−∞

(∫ α

−α
cos(ux) + i sin(ux)du

)
dµn(x) (eiux = cos(ux) + i sin(ux))

=

∫ ∞
−∞

2

x
sin(αx)dµn(x) (sin is odd, so integral is zero over symmetric interval)

Now we rely on the previous computation to estimate the following integral:

1

α

∫ α

−α
(1− µ̂(u))du = 2−

∫ ∞
−∞

2

αx
sin(αx)dµn(x) (

∫ α

−α
1du = 2α)

= 2

∫ ∞
−∞

(
1− sin(αx)

αx

)
dµn(x) (

∫ ∞
−∞

1dµn(x) = 1)

Note that 2(2− sin v
v

) ≥ 1 for |v| ≥ 2 and 2(2− sin v
v

) ≥ 0 for any v. Using this inequalities,
we can estimate the previous interval:

2

∫ ∞
−∞

(
1− sin(αx)

αx

)
dµn(x) ≥

∫ ∞
−∞

1[−2,2]c(αx)dµn(x)

=

∫
1[− 2

α
, 2
α

]c(x)dµn(x)

=µn

([
− 2

α
,

2

α

]c)
Let β = 2

α
, so the estimate reads as

µn([−β, β]c) ≤ β

2

∫ 2
β

− 2
β

(1− µ̂n(u))du (3.5)

Note that µ̂n(0) = 1 for all n, whence limn→∞ µ̂n(0) = f(0) = 1 by initial assumption. Now
let ε > 0, then there exists α > 0 such that |f(0) − f(u)| = |1 − f(u)| < ε

4
if |u| < 2

α
by

continuity of f at 0. Thus,∣∣∣∣∣α2
∫ 2

α

− 2
α

(1− f(u))du

∣∣∣∣∣ ≤ α

2

∫ 2
α

− 2
α

ε

4
du =

ε

2
(3.6)

Since |µ̂n(u)| = |
∫
eiuxdµn(x)| ≤

∫
|eiux|dµn(x) ≤

∫
1dµn(x) = 1, so by Lebesgue’s domi-

nated convergence theorem

lim
n→∞

α

2

∫ 2
α

− 2
α

(1− µ̂n(u))du =
α

2

∫ 2
α

− 2
α

(1− lim
n→∞

µ̂n(u))du =
α

2

∫ 2
α

− 2
α

(1− f(u))du
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So there exists N such that for all n ≥ N∣∣∣∣∣
∫ 2

α

− 2
α

(1− µ̂n(u))du−
∫ 2

α

− 2
α

(1− f(u))du

∣∣∣∣∣ ≤ ε

α

Once one multiplies the inequality above by α
2
, applies triangle inequality as well as (3.6)

one gets α
2

∫ 2
α

− 2
α

(1− µ̂n(u))du ≤ ε. We next use estimate (3.5) to conclude µn([−α, α]c) ≤ ε

for all n > N .
So for each n ≤ N , there exists αn such that µn([−αn, αn]c) ≤ ε. Let a = max(α1, . . . , αn;α)

(N is finite). Then we have µn([−a, a]c) ≤ ε for all n. In other words for the sequence
(µn)n≥1, for any ε > 0 there exists a ∈ R such that supn µn([−a, a]c) ≤ ε. Therefore we have
shown

lim sup
m→∞

sup
n
µn([−m,m]c) = 0.

We can next apply theorem (3.10) to obtain a subsequence (nk)k≥1 such that µnk con-
verges narrowly to µ as k →∞. By the same theorem limk→∞ µ̂nk(u) = µ̂(u) for all u, thus
f(u) = µ̂(u).

We now show that the sequence (µn)n≥1 converges narrowly to µ by the method of
contradiction. Let Fn, F be distribution functions of µn and µ, D = {x : F (−x) = F (x)}.
Suppose that µn does not converge narrowly to µ, then by Lemma (3.9) there must be at least
one point x ∈ D and a subsequence (nk)k≥1 such that limk→∞ Fnk(x) exists and moreover
limk→∞ Fnk(x) = β 6= F (x). Next by theorem (3.10) there also exists a subsequence of the
sequence (nk) (denote it as (nkj)j≥1), such that (µnkj )j≥1 converges weakly to a limit ν as

j →∞. Thus we get

lim
j→∞

µ̂nkj (u) = ν̂(u)

and since lim µ̂n(u) = f(u), we conclude ν̂(u) = f(u). But we have seen that f(u) = µ̂(u),
therefore by Lemma (3.15) we must have µ = ν. Since µnkj (u) converges to µ = ν by Lemma

(3.9) and x ∈ D, we obtain limj→∞ Fnkj (x) = F (x). But limj→∞ Fnkj (x) = β 6= F (x), and

we have a contradiction.
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Chapter 4

Central Limit Theorem

Definition 4.1. Let (Xn)n≥1, X be random variables. We say Xn converges in distribution
(law) to X if the distribution measures PXn converge narrowly to PX .

Lemma 4.2.∣∣∣∣n [eiu x−µσ
√
n − (1 + iu

x− µ
σ
√
n
− 1

2
u2 (x− µ)2

σ2n
)

]∣∣∣∣ ≤ (x− µ)2

σ2
u2 ∈ L1(PXj)

Proof. Consider the Taylor expansion of the following function: f(u) = e
iu x−µ
σ
√
n .

f ′(u) = i
x− µ
σ
√
n
e
iu x−µ
σ
√
n

f ′′(u) = −(x− µ)2

σ2n
e
iu x−µ
σ
√
n

f(u) = e
iu x−µ
σ
√
n = f(0) + f ′(0)u+

1

2!
f ′′(c)u2 = (−|u| < c < |u|)

=1 + iu
x− µ
σ
√
n
− 1

2

(x− µ)2

σ2n
e
ic x−µ
σ
√
n

So ∣∣∣∣n [eiu x−µσ
√
n − (1 + iu

x− µ
σ
√
n
− 1

2
u2 (x− µ)2

σ2n
)

]∣∣∣∣ =

=

∣∣∣∣n [eiu x−µσ
√
n − (1 + iu

x− µ
σ
√
n

)

]
− 1

2
u2 (x− µ)2

σ2
)

∣∣∣∣ ≤
≤
∣∣∣∣n [eiu x−µσ

√
n − (1 + iu

x− µ
σ
√
n

)

]∣∣∣∣+
1

2
u2 (x− µ)2

σ2
≤

≤(x− µ)2

2σ2
u2
∣∣∣eic x−µσ

√
n

∣∣∣+
1

2
u2 (x− µ)2

σ2
≤

≤(x− µ)2

σ2
u2 ∈ L1(PXj)
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Theorem 4.3. Let {Xj}j≥1 be a sequence of independent and identically distributed random
variables with E(Xj) = µ and Var(Xj) = σ2 with 0 < σ < ∞. Let Sn =

∑n
j=1Xj,

Yn = Sn−nµ
σ
√
n

. Then Yn converges in distribution to the normal distribution with mean 0 and
variance 1.

Proof. Let {Xj}j≥1, Sn, Yn be as above. Consider

E(eiuYn) = E(e
iu

∑n
j=1(Xj−µ)

σ
√
n )

= E(
n∏
j=1

e
iu
Xj−µ
σ
√
n )

=
n∏
j=1

E(e
iu
Xj−µ
σ
√
n )

=
n∏
j=1

E(1 + iu
Xj − µ
σ
√
n
− 1

2
u2 (Xj − µ)2

σ2n
+ o(

u2

n
)) (Taylor)

=
n∏
j=1

(E(1) + E(iu
Xj − µ
σ
√
n

)− E(
1

2
u2 (Xj − µ)2

σ2n
) + ε(n)))

where ε(n) =

∫
R

[
e
iu x−µ
σ
√
n − (1 + iu

x− µ
σ
√
n
− 1

2
u2 (x− µ)2

σ2n
)

]
dPXj(x)

=
n∏
j=1

(1 + iu
E(Xj − µ)

σ
√
n

− 1

2
u2 E((Xj − µ)2)

σ2n
+ ε(n)) (E is linear)

=
n∏
j=1

(1− 1

2
u2 E((Xj − µ)2)

σ2n
+ ε(n)) (E(Xj − µ) = 0)

=
n∏
j=1

(1− u2

2n
+ ε(n)) (E((Xj − µ)2) = σ2)

Now we will show that limn→∞ nε(n) = 0. Note that Lemma (4.2) will allow us to use
Lebesgue’s dominated convergence theorem.

lim
n→∞

nε(n) = lim
n→∞

∫
R
n

[
e
iu x−µ
σ
√
n − (1 + iu

x− µ
σ
√
n
− 1

2
u2 (x− µ)2

σ2n
)

]
dPXj(x)

=

∫
R

lim
n→∞

n

[
e
iu x−µ
σ
√
n − (1 + iu

x− µ
σ
√
n
− 1

2
u2 (x− µ)2

σ2n
)

]
dPXj(x) (DCT)

=

∫
R

0 dPXj(x) = 0 (Taylor)
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Now let us take a look at the limit:

lim
n→∞

n∏
j=1

(1− u2

2n
+ ε(n)) =

= lim
n→∞

(1− u2

2n
+ ε(n))n =

= lim
n→∞

en ln(1−u
2

2n
+ε(n)) =

= lim
n→∞

e−
1
2
u2+nε(n)+no(u

2

2n
+ε(n)) = (Taylor of ln(1− x))

=e
limn→∞

(
− 1

2
u2+nε(n)+no(u

2

2n
+ε(n))

)
= (ex is continuous)

=e−
u2

2

As e−
u2

2 is continuous, Lemma (3.16) proves that there is a measure µ with PYn → µ

such that F(PYn) → F(µ) and F(PYn) → e−
u2

2 = F(N), so F(µ) = F(N), thus µ = N by
Lemma (3.15).
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