
A COMPUTATIONAL METHOD FOR REDUCING WORDS

TO THEIR GENERIC ROOTS UTILIZING

A SUFFIX- EDITING ROUTINE

ty

MARTIN LEON ZOLA

B. A. , University of Notre Dame, 196?

A MASTER'S THESIS

submitted In partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics and Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969

Approved "by

UJLJ>

Tf

^Z~L% TABLE. OF CONTENTS
L ' ^ Page

LIST OF TABLES

LIST OF FIGURES
Vi

Chapter

1. INTRODUCTION
1

DEFINITIONS
-1

PROBLEM

PURPOSE

2. APPLICATIONS OF SUFFIX EDITORS 5

COMPUTER CONTENT ANALYSIS 5

The General Inquirer .

Factor Analytic Methods 6

LANGUAGE RESEARCH
FINDSIT

Syntactical Analyses of Sentences

Scoring Projective Techniques

OTHER POTENTIAL APPLICATIONS 10

SUMMARY

3. HEURISTICS FOR SUFFIX EDITING 13

DEFINITIONS 13

PROCESSING 1^

k. THE SUFCUT PROGRAM • l8

PROCEDURAL STEPS l8

THE SOURCE LANGUAGE 21

KODIFICATIONS 22

11

Chapter

iii

Page

5. EMPIRICAL VALIDATION 2?

Method 29

Results 30

6. CONCLUSIONS AND DISCUSSION 38

ACKNOWLEDGEMENTS ^3

REFERENCES **

APPENDICES ^

ABSTRACT

LIST OF TABLES

Table

2. Classification of Words in Samples A and B

according to Rater Agreement and Type of

Processing

iv

Page

1. All Pollow-uo Commands Initiated by Exit Values

in the SUFTRS of the SUFCUT Program 26

31

3. Length of Suffix Strings Edited from Words
in Samples A and B 32

k. The Number of Words in Samples A and B which
SUFCUT Failed to Transform into the Same

Generic Root as Produced by Human Editors 33

LIST OF FIGURES

Figure page

1. The Standard Suffix- Editing Procedure Used by Stone
as a Pattern for the Suffix Editor in Kis General
Inquirer 7

2. A Conceptual Overview of the SUFCUT Program with
Operations Blocked into Procedural Steps 19

3. Steps in Building a Binary Tree Structure for
N-Snding Suffixes 23

Chapter 1

INTRODUCTION

In spite of the limitations of a finite vocabulary, man

is able to convey and to comprehend an infinite variety of mes-

sages. This unlimited capacity for verbal communication is due,

in part, to a number of syntactical and verbal transformations

which he employs to enlarge the range of meanings of each word

in his vocabulary (6). One transformation of particular interest

to this thesis is the utilization of suffixes as a linguistic

device for extending the meanings of words.

DEFINITIONS

.A suffix is any letter or string of letters which may be

appended to the end of a word to produce a new word. The original

word is referred to as the "parent" or "word root" and the new

word (root plus suffix) is called the "whole word". More than

one suffix may be afixed to a root at one time. Whole words

with multiple suffixes may be reduced to a number of root forms.

Suffix editing is the process of removing suffixes from words

and trimming them down to their appropriate root form. A success-

ful suffix edit is an edit which produces the smallest word root

that in general has the same meaning as the whole word. This

word form is referred to as the "generic root".

PROBLEM

Because of the overlap of semantics between generic roots

and full words, numerous text processing computer programs operate

with word roots rather than whole words (12, 19, 21). Consequent-

ly, computational procedures for suffix editing play an important

role in the efficient operation of this type of text processor.

Unfortunately, suffix editing may also introduce a significant

amount of error into the main process. Erroneous edits, such

as failures to edit, inappropriate edits, and others, can serious-

ly impede the performance of such systems— even if errors occur

at a low rate. The problem then is to develop a fully self-

contained routine which can make suffix edits that are comparable

in accuracy to human performance.

Unlike humans, however, computer programs as yet do not

"understand" the words on which they operate. A human, because

he may refer readily to an extensive semmantic memory, is aware

that HAT represents an apparel for the head and that HATING is

an intensely negative emotional state. When asked to derive the

root of HATING, a human, according to Associationistic Theory,

solves the problem by implicitly tracing a chain of associations^)

.

The stimulus configuration HATING evokes a complex mental response

to which other words are linked. By searching through these

associated word forms, the person is able to select the appro-

priate root form, HATE. A computer program, on the other hand,

can only respond to detailed instructions utilizing at best a

very limited dictionary of associated word forms. Therefore,

rules for a computational method of suffix editing must "be gen-

eral enough so that they can identify when a string of characters

is an editable suffix and, at the same time, have sufficient de-

tail so that they can determine when two very similar situations

call for different operations. A case in point is the pair HATS

and HATING. The rules of suffix editing should be able to iden-

tify that S and ING are potential suffix strings. Furthermore,

although both words appear to have the same base HAT, the rules

should be able to produce HAT as the root of HATS and HATE as

the root of HATING.

PURPOSE
(

The purpose of this report is to present a fully automated

procedure which can be applied to most types of suffix and prefix

editing problems. Since the procedure for editing suffixes can

be extended to handle prefix editing as well, this thesis will be

concerned solely with applications to suffix editing. The basis

for this procedure is a comprehensive set of general and task-

specific heuristics. The general heuristics represent a collec-

tion of guidelines for handling the global patterns appearing

in a wide variety of suffix removal problems. As described in

Chapter 2, there is a. rich supply of problems to which a suffix-

editing procedure can be applied. The general heuristics provide

a consistent and highly effective approach to most of these pro-

blems. The task-specific heuristics relate to one type of pro-

blem only and must be developed by the user. A set of task-

specific heuristics have been developed for editing English lan-

guage documents and will be described in detail in Chapter 3 of

this thesis. The proposed procedure does not require dictionary

look-up and can easily be modified to serve as an intermediate

processor or subroutine.

An attempt has been made to derive empirical validation

for the effectiveness of this computational procedure. A

FORTRAN IV program, SUFCUT, has been developed incorporating

the above heuristics. It is presented in Chapter 4. Several

English language texts were run on the SUFCUT program. Median

suffix length, percent savings, percent erroneous edits, percent

edit ignores, and other quantitative measures were collected.

The results of these experimental runs will be discussed in

Chapter 5.

Chapter 2

APPLICATIONS OF SUFFIX EDITORS

This chapter presents a brief review of the ways in which

suffix editing procedures are currently being utilized. Several

new areas are identified as potential benefactors of this work.

Finally, an attempt is made to bring some structure to the

research in this area by proposing some improvements in the

techniques of suffix editing.

COMPUTER CONTENT ANALYSIS

The General Inquirer

Perhaps, the most extensive application of suffix editors

to date has been in the area of computer content analysis of

verbal data. The forerunner of all editors was developed by

Philip Stone and associates at Harvard for use with their General

Inquirer Program System (22, 23). The General Inquirer is a

content analysis, program which tallies the frequency of occurence

of various constructs and themes appearing in the data. During

the processing of the experimental data, a suffix chopping scheme

is applied to each full word producing a tentative word root.

A dictionary of vford roots is searched for an entry that matches

the tentative root. Stone did not provide a detailed description

of his editor, but he did imply that his technique was patterned

after a standard suffix- editing procedure for English words (23:89).

The standard procedure (which will edit no more than nine suffix-

es) is presented in flow chart form in Figure 1. No data are

available describing the effectiveness of either technique.

Facto r Analytic Methods

The studies of Harold Borko (3, 4, 5) in information

retrieval have influenced psychologists Norman Haraway, Howard

Iker, and John Starkweather to adopt a factor analytic approach

to content analysis. In short, factor analysis is a complex

statistical technique by which the covariance between numerous

pairs of variables in the data are accounted for by means of a

geometrically imposed structure of independent common factors (11).

The factor analytic content analysis procedures use some type of

suffix editing scheme in order to reduce the total number of

different words in a document to a minimum number of root forms.

Haraway and Iker (13: 5-6), without specifying any details about

their procedure, have reported that their word editor STRIP gen-

erally reduces the number of different words in a document by

almost fifty percent. Some of their documents have been as

large as 25,000 words. Unfortunately, all edits made by STRIP

had to be reviewed in order to keep the number of erroneous edits

at a tolerable level.

In contrast with Haraway and Iker's STRIP program, Stark-

weather's approach has been non- computational in technique (19,20).

He imposed a six-character limitation on the size of all words.

Words greater than six characters in length were truncated begin-

ning at the end of the sixth character. Starkweather has not

Does the word
end with-

S? <remove S

"^remove Bjy

\
remove ING~

<remove E

\
remove ION-

y

remove

If none of these endings
is found, word is con-
sidered not to have a
suffix (unless memo exists
to the contrary)

-was S preceded by-

-tt remremove ION

-B[remove E
J

—

-*f remove ING

If none of these

Check for double
•^tlast letter. If
found remove last

letter

M

Look up word root
in dictionary

Figure 1

THE STANDARD SUFFIX- EDITING PROCEDURE USED BY STONE
AS A PATTERN FOR THE SUFFIX EDITOR

IN HIS GENERAL INQUIRER

8

reported the effectiveness of this approach. Apparently, he had

assumed that if two words have the same first six consecutive

characters, then they probably have the same word roots. One

obvious advantage of this method is speed since it requires

only one operation to be made upon each word. In addition, this

technique might perform well on words with lengthly suffixes.

But a significant portion of the words in the English language

are less than or equal to six characters in length. Using

Starkweather's technique, these short words will not be edited.

Also, there may be some words whose roots are longer than six

characters and these words will be lumped together although

their root forms may very well be different.

LANGUAGE RESEARCH

FINDSIT

Suffix identification has made significant contributions

in other areas of language research as well. Pylyshyn's FINDSIT

has been used -to determine the rate of occurrence of selected

prefixes and suffixes during the course of psycho theraputlc

sessions (18). FINDSIT is a general purpose program for identify-

ing parts of words, whole words, and groups of words in texts.

FINDSIT y.ay be used to reduce words to root form, although it

has not oeen designed specifically for this purpose.

Syntacti cal Analyses of Sentenc es

Klein and Simmons (15) and Earl (8, 9, 10) have chosen

certain suffixes for analyzing the syntactical structures of

English sentences. Suffixes, such as ION, ATION, OUS, LY, to

mention a few, can be used to identify parts of speech of words.

Klein and Simmons (15) have combined this type of suffix analysis

with a sentence framing technique in order to code the grammar

class of words in a sentence. The sentence framing technique

was employed whenever a word did not have a suffix which clearly

identified its part of speech. These authors reported that for

two samples of scientific writing their approach had successfully

identified the grammar class of over 30% of all words. Earl (10),

using strictly a prefix-suffix analysis approach, reported that

it is possible to determine with ninety-five percent accuracy

the inclusive part of speech of an afixed word from a consider-

ation of its prefixes, suffixes, end length. The inclusive part

of speech was defined as "that string which contains all the

parts of speech attributed to the word by the dictionary but

which may also contain one or two more parts of speech" (10:53).

The computational methods used in these studies have

been recently incorporated into several content analysis program

systems (12, 21).

Scoring Projective Techniques

Working in the area of psychological testing, Donald

Veldman and associates have developed a computerized version of

the standard sentence completion inquiry (25, 26, 2?). This

test is a projective technique that was designed to be administered

and scored entirely by computer. Their program has successfully

10

interacted with a large number of respondents via online type-

writer console. The computer initiated the interaction on each

item by typing out an incomplete sentence to which the respon-

dent then replied with the first word that came to his mind.

Each one-word response was chopped down by a suffix editor and

an attempt was made to match it with a corresponding root form

contained in a dictionary. Information necessary for scoring

the response was obtained from the dictionary. The procedure

was repeated until the entire battery of items was presented to

each subject. Veldman found that the cost in using the computer

for administering and scoring one respondent's protocol was "far

less expensive" than if the procedure had been carried out man-

ually by a qualified clinical ryschologist (27:9).

OTHER POTENTIAL APPLICATIONS

There are numerous additional applications for a suffix

editor—many of which have not been fully explored. Research in

the areas of language translation (8) and classification of

organic chemistry nomenclature (2*0 have utilized some string

identification procedures. But there are other areas such as

automatic word hyphenating and document indexing which have as

yet taken little or no advantage of the benefits of suffix

editing.

SUMMARY

The applications of suffix editors reviewed in this chap-

11

ter are significant not only as a means to an end for some other

supervisory procedure but are also valuable as ends in themselves.

Standing alone, suffix editing represents one of the more challeng-

ing problems in the area of artificial intelligence. In effect,

an attempt is being made to imitate a very specialized form of a

most complex behavior phenomenon (language manipulation). What

has been encountered here serves as a prelude to what might be

faced in the production of higher order language processors.

Although several authors of language processing programs

have attempted to develop computational methods of suffix editing,

there is little information available in the literature which

deals specifically with this problem. Most investigators have

been concerned primarily with the performance of their main

procedures, devoting little attention to the suffix editor which

they employed as an important intermediate step. Little or no

data has been published on the effectiveness of their techniques.

In spite of this limited information, it appears that the perfor-

mance of their routines can be characterized as being at a low

level of sophistication. For instance, most of the current

techniques have necessitated a reliance on a human monitor in

order to reduce the number of erroneous edits. Furthermore, all

of these techniques utilize a dictionary scanning procedure

which in effect restricts the possibilities for successful edits

to only those words whose roots can be found in the word root

dictionary.

All techniques reviewed here have relied on a psuedo-

memory or dictionary—no one has attempted to derive a set of

12

rules which are restricted solely to operations on the data

without resorting to external aids such as dictionaries or

human monitors. These procedures are highly specialized and

are not capable of being liberally applied to many different

types of problems.

The remainder of this thesis describes an attempt by

this author to develop a set of heuristics for a computational

procedure which will satisfy the above standards.

Chapter 3

HEURISTICS FOR SUFFIX EDITING

The heuristics to be presented in this chapter have been

dichotomized into two groups. The larger group consists of

general heuristics which are rules that, when taken together,

dictate a style for solving most types of suffix- editing pro-

blems. However, by themselves they are not sufficiently detailed

to edit any one type of data since it is unlikely that a single

set of heuristics can be developed to the point that it could

be applied to more than one heterogeneous type of natural lan-

guage data. In order to adopt these heuristics to a specific

problem, an interchangeable component must be included. This

component is the set of task-specific heuristics. For each

different problem, a new set of task-specific heuristics should

be implemented.

DEFINITIONS

Task-specific heuristics define a set of suffixes to be

edited and a corresponding set of follow-up operations which are

enacted after a suffix is removed. The follow-up operations in-

crease the flexibility and the power of the suffix editor. They

enable the system to make multiple edits on the same word and

also to add the vowels "E" or "Y" onto a root stem so that words

like HATING can be reduced to HATE. Follow-up operations do not

have to be performed after every suffix removal. The decision

13

Ik

as to when and where to apply them is at the discretion of the

user.

The general heuristics do not change from problem to

problem. Instead, they provide the context in which the task-

specific heuristics function. They also prepare the data into

a form which the task-specific heuristics can utilize. These

objectives are accomplished by employing the following operations.

PROCESSING

The document to be processed is broken up into a list of

variable length words. These words are sorted into alphabetical

order and each is assigned an initial frequency of one. Starting

with the first two elements at the top of the list, each pair of

adjacent words are compared to determine: l) if the words are

the same, 2) if they share equivalent root forms, 3) neither of

these. The problem of determining which words are identical is

trivial. This can be accomplished by a serial comparison of all

characters in .both words. The real difficulty is in determining

when two adjacent words have the same word root. By trimming

away suffixes, both words may be reduced to the same root. How-

ever, the problem is to avoid under and over trimming words.

Furthermore, a supplementary technique is necessary for editing

those pairs of adjacent words which do not share the same generic

root.

In order to solve these problems the following heuristics

are employed when processing two adjacent words. The first

15

operation is to calculate the number of leading characters which

both words have in common. If all characters are the same for

both words, then the words are equivalent. When three or more

(but not all) leading characters are shared in common by both

words, the suffix removal process is activated. The reason for

this cut-off criterion is that very few word roots, if any, are

less than three characters in length. Thus, if two adjacent

words fall short of this criterion, it is highly improbable that

they will have the same root. In this case a special routine

takes over. This routine is an abbreviated form of the regular

suffix editor, containing only a few suffix strings which ^an

be safely edited from one word. It edits only the first word

of the pair. This special suffix editor is also applied to

words which were unable to be reduced by the regular suffix

editor.

Given the number of leading characters in common between

two words, the suffix editor is capable of delimiting that part

of both words. which may be stripped off as suffixes. For instance,

the words ACTIONS and ACTS do not match beginning with the fourth

character. Consequently, potential suffix strings on both words

extend from the fourth to the last character. In this example,

IONS and S may be removed as suffixes. The next step is to search

the list of editible suffixes for a matching suffix string.

ACTIONS may be edited several times until the string of characters

IONS is either completely stripped ai\Tay or is reduced as much as

possible.

16

Each time a suffix is removed from a word a new word

form is produced. Two words are considered to have the same

word root when any of their reduced word forms are equivalent.

In the above example, the reduced word forms of ACTIONS were

ACTION and ACT. Since ACTS Is also reduced to ACT, then both

words are assumed to have the same root form ACT.

One means of improving the performance of this procedure

is to enact a follow-up operation after a suffix is deleted.

Each suffix is assigned a particular follow-up beforehand. They

may also be specified to conditions where no suffixes are edited.

One obvious follow-up operation is employed whenever the suffix

S is removed from a word. This operation designates making

another edit on the remaining stem. Thus, ACTIONS is at first

trimmed to ACTION and then, as a result of a follow-up command,

reduced to ACT. Another type of follow-up procedure is to add

a letter to a stem after removing a suffix. The follow-up after

removing ING might be designed to generate two root forms, one

with the stem -and another with the stem plus "E" (or "Y"). In

this manner, HATING can be reduced to two root forms HATE and

HAT. If HATING is immediately preceded by HATE, then both words

would be combined. •

When a pair of words if found to be identical or to have

equivalent root forms, then frequencies of occurrence of the

second is added to the first and the second word is dropped

from the list. The next pair to be compared should contain

the first word of the last pair and the word immediately follow-

17

ing the one that was previously dropped. The procedure is con-

tinued In this manner until all pairs of adjacent words in the

entire data base are processed.

Chapter ^

THE SUFCUT PROGRAM

SUFCUT is a FORTRAN IV program designed to edit suffixes

from words in English language documents. The method cf solution

is based on the heuristics presented in the last chapter. Al-

though at the present time it has been applied only to English

language data, the program incorporates an interchangeable com-

ponent which enables it to be extended to a broad range of suffix

problems.

Structurally, SUFCUT consists of a main routine and three

subroutines. On a conceptual level, however, it can be viewed

as consisting of four independent procedural steps. These

procedural steps are outlined in Figure 2.

PROCEDURAL STEPS

Step One prepares the data for subsequent suffix process-

ing. During this step, the data is read as a continuous stream

and is formed into individual words that are stored sequentially

into an array called WORD.

The data may be read from cards, tape, or disk device.

If punched cards are used, the data is transcribed into columns

one through seventy with an unrestricted format. Columns seventy-

The source listing for the SUFCUT program is presented
in Appendix 3.

18

G

G

G
G

Break-up input stream into
separate words, deleting
numerals, punctuations, &
other non literals. Stash
words sequentially into
an array.

Sort array
pointers.

and initialize

Combine adjacent elements
with identical character
strings.

Remove suffixes
Combine adjacent elements
with equivalent root forms

No

19

Figure 2

A CONCEPTUAL OVERVIEW OF THE SUFCUT PROGRAM
WITH OPERATIONS BLOCKED INTO PROCEDURAL STEPS

• 20

one through eighty are reserved for card sequence numbers and

other types of identification codes. The only exception to this

free form is that all words be separated from each other by at

least one blank. Whenever the last letter of a word is positioned

into column seventy, a blank must be inserted into the first

column of the suceeding card. A word that is interrupted on

column seventy without being completed must be continued start-

ing with column one of the next card. Numerals, punctuation

marks, and other non literal characters may be included in the

data as they will be ignored by the program. The maximum size

for each word is fifteen characters. The program automatically

truncates any words exceeding this limit.

Step Two is a sorting procedure which is applied to the

elements of the WORD array. The purpose of this procedure is to

sort these elements into alphabetical order. A pointer array

(PTR) is established so that given any element of the WORD array

the next succeeding element can be located. This is accomplished

by referring to that value of the PTR array whose index is the

same as the original word. In order to designate the end of the

WORD list, the PTR value of the last element in the WORD array

is assigned a value of zero.

Step Three initiates the actual processing of the data.

It is an iterative procedure that is performed on each pair of

adjacent elements. During the execution of Step Three, if the

words being compared are not equivalent, subroutine SUB1 is

called. It in turns calls SUB2 and SUB3, SUB2 is the inter-

21

changeable component of this program. It contains the binary

tree of editable suffixes and the corresponding set of follow-

up operations. Each word presented to SUB2 is systemmatically

stripped of suffixes. Each time a suffix is removed from a word

a tentative root form is created. One word can be edited several

times in succession.

SUB3 compares the tentative root forms of two words seek-

ing to determine if any one form occurs for both words. When two

words are found to have the same word root, the PTR array is

adjusted so that the second word is dropped from the list.

Step Four prints out in alphabetical order all word roots

and their corresponding frequencies of occurrence.

THE SOURCE LANGUAGE

Although FORTRAN is not a particularly suitable language

for string processing, it does possess certain valuable attributes

as the source language of SUFCUT. Perhaps, its greatest advantage

is its "universality". No other programming language is as wide-

ly implemented as FORTRAN. Whereas other string-processing

languages like COMIT, SNOBOL, and LISP (17:108) might simplify

the programming task, their processors are currently rather

limited in distribution. Another positive aspect of FORTRAN 1 s

"universality" is that it is well known throughout the scientific

community. The user who wishes to alter SUFCUT will be able to .

make the modifications himself; or, if he prefers, he will not

have much difficulty in finding someone else to do the job for

22

him.

MODIFICATIONS

In order to adapt SUFCUT to new types of problems, the

program structure is altered in the following manner. The user

begins by constructing an exhaustive list of prefixes, suffixes,

or other character strings which he is interested in stripping

from words in his data base. This collection of character strings

is referred to as the strip list. In developing a procedure for

suffix editing the following steps are taken. Since the procedure

edits a word starting with its last character and working toward

the first, it is necessary to reverse the order of characters of

each string in the strip list. Suffixes having the same character

for the first letter of the reversed string, are sorted together.

Each group of suffixes with the same letter in the first position

(formerly the last letter of the original suffix) is organized

into a tree structure with the common letter as the root node.

This process of building a tree structure for each suffix cluster

is demonstrated in Figure 3. for suffixes ending with the letter

N. The raultibranching tree (Figure 3, Step C) is converted into

a binary tree (Step D) . Each node of the binary tree contains a

value (SUFTST), a left pointer (LPTR) , and a right pointer (RPTR).

A node whose value is delta CA) represents a blank, indicating a

termination of a suffix string. The circular nodes found in Figure

3 (Step D) represent exit values. If while traversing a tree an

exit value is encountered rather than a pointer, the search process

23

•

2 <*<

39
>>
w
(8

C
-(

--*
3 © Q p

• • •

2 1 PI <1 <
c

•r-l
»

r

•- J~"0 '.-0
T

s
M
o
t4J It> (5) a
c . •

I
.

efl

M
u E-

V . \ .J 'j

<i

rJ
~>

• V

W 03

5>

60 3
C r-l

•t-l c8

JS > r
e

C -u • . •

cS -r-l

x o> t o h '1

4J rC
1—

i

1

r. ?

ro

4)

Vj

3

•r-l

P

u

V
o o

»-l

3
•U
u
3
u fe

S: (J

c
u
to

x;u
•r-l U

t-i

0)

0)

0)

t-l V
2 H-l H o w H

to <U i o 1 E0

C N O N a 60
«-l i-l i 5j 1 r-l C
•O M M H O ^ < cS •H

/\c
SB
i

i

O
i

i

H
i C i

H
I

o
o o

en "?5 as o H < M «: i

-> M M nj pj H
X o

1

Q
i

w
t i

H
i

N
1

O
i

w
i

d
1

o
1

o X XI
1 1•r-l U i i 1 i 1 r-l i i i r-J

M-l Jj ^ M « H <", H-1 5. z 53 SB
r-r-

S3 a v-i •U (d > <3
IM O
3 U5

>
5}

U-l

3
t-l

3 x!/W *w CO 1 r3
r-l CM en ^ .-- O r-l CM n -'- IT) vO

> N

o
M
a
r-IH

M
W
W
H

PQ o

2k

is discontinued and the follow-up operation indicated by the exit

value is enacted. Table 1 contains a complete listing of follow-

up operations which may be performed in conjunction with the

English language suffix editor of the SUFCUT program. After all

suffixes have been built into the appropriate subtrees, the roots

of all subtrees are linked together. The order in which the

root nodes appear from left to right is usually adjusted accord-

ing to how frequently subtrees will be searched. Subtrees con-

taining the most frequently appearing suffixes will be situated

to the left (before) subtrees with less frequent suffixes.

Suppose the string ION is to be trimmed from the word

ACTION. The last letter in the suffix string is N. Starting

with the list-head node of the entire SUFTRE, a comparison is

made between N and the value of the list-head node. If the two

values are identical, a branch is taken to the node indicated

by LPTR (provided, of course, that LPTR does not indicate an

exit value). If they fail to match, control branches to the

node indicated by RPTR. Before preceeding with each branch,

each pointer is checked to determine if it is an exit value.

Suppose that the list-head node contains an S, then a branch

would be taken to the node indicated by RPTR. The next node

would be compared with N and so on until the node containing N

is located. The node whose value is N is the root of the subtree

containing all suffixes which end with N. If there were no

suffixes in the strip list ending with N, the procedure would

test all root nodes of all subtrees until the RPTR of the last

25

node is encountered. In such an event the last RPTR would con-

tain the exit value five. Follow-up five indicates that the

tentative suffix is not deletable (See Table l). However, in

the above example, N Is a terminal letter in a suffix string;

therefore, the N node is eventually located. A left branch is

taken from the N node— after determining that it does not point

to an exit value. At this time, the next character (0) backward

in the suffix string (ION) is compared with the contents of the

node indicated by LPTR of N (See Figure 3., Step D) .
They match

so another left branch is taken. This time the value of the new

node is compared with character preceeding the last character

tested. This test is positive as I matches with I. The left

branch is again taken. Now all leters allowed to be stripped

as a suffix have been used up. When this situation occurs, one

last left branch is made. If a delta node can be found without

making another left branch, the exit value in LPTR of that delta

node is taken. Otherwise, consecutive right branches are taken

until either a delta or an exit value is encountered. In this

example, the value of the node indicated by the LPTR of node I

is a delta . Follow-up operation three is enacted (See Table 1)

and the process is completed.

In the FORTRAN language, a binary tree structures like

SUFTRE can be represented by three related arrays— ie. SUFTST,

LPTR, and RPTR (16:360). Thus, one index which identifies a

node on a tree serves as a subscript for all three arrays. As

a result, the same index can retrieve information from any one

26
•

TABLE 1

ALL FOLLOW-UP COMMANDS INITIATED BY EXIT VALUES

IN THE SUFTRE OF THE SUFCUT PROGRAM

""exit VALUE OPERATIONS
1* Remove suffix string

Put stem in STACK
Terminate SUB2

2 Remove suffix string
Put stem in STACK
Make another pass through SUFTRE

3 Remove suffix string
Put word stem+E into STACK
Put word stem into STACK

i

k Remove suffix string
Put word stem+Y into STACK
Put word stem into STACK
Terminate SUB2

5 This is not a deletahle suffix
Terminate SUB

2

6 Remove suffix string
If last two letters of stem are equal,

drop second letter and put new stem
into STACK

Otherwise, put first stem into STACK
Terminate SUB2

7 Drop last letter of whole word
Put remaining stem into STACK
Make another pass through SUFTRE

8 Remove suffix string
If last two letters of stem are equal,

drop second letter and put new stem
into STACK

Otherwise, perform follow-up 3-

•Exit values are stored in the SUFTRE as negative
integers in order to distinguish them from pointers
(se e page 22)

.

27

of these related arrays.

In preparing the SUFTRE for insertion into SUB2, literal

characters are converted into the integer values which correspond

to their alphabetical order. These integer values— and not literal

characters— are stored in the SUFTST array. In addition, exit

values are transformed into negative integers in order to render

them distinguishable from other pointers. The entire SUFTRE

structure (ie. the SUFTST, LPTR, & RPTR arrays) is inserted into

SUB2 by means of a DATA definition statement.

The instructions carrying out follow-up operations should

be contained solely in SUB2. Each time a branch is anticipated

from one node to another; the pointer is tested beforehand for

a negative value. A negative result indicates that the pointer

is an exit value. The search of the SUFTRE is discontinued and

the negative exit value is converted to a positive integer. This

integer becomes an index for a Computed GO TO statement and the

control branches to that part of the subroutine enacting the

appropriate follow-up operation.

As mentioned earlier in this chapter, SUFCUT has been

designed so that it can be extended to perform other types of

natural language manipulations. In order to achieve this

functional flexibility, a variety of programming techniques may

be employed as needed.

More than one tree structure may be integrated into SUB2.

For instance, along with the SUFTRE, a tree of prefix strings

could also be included. This compound structure would then be

28

scanned in such a manner so that suffix and prefix editing could

operate concurrently on the same data.

Another possible type of program modification would be

to introduce a dictionary into the SUFCUT editing process. A

dictionary might be used in any number of different ways. One

possible method could be to store all word roots of interest in

a dictionary. Each word in the text could then be tagged with

the largest word root that can be found in the dictionary. The

SUFCUT suffix editor could then be applied to each word in order

to match it with its tentative root.

Chapter 5

EMPIRICAL VALIDATION

A series of brief investigations was conducted in order

to obtain some data on the effectiveness of the SUPCUT program.

In an preliminary study, SUPCUT was applied to a block of 300

words taken from an article on text processing by Berns (1:145).

The results were compared with a set of word roots produced by

hand editing the same data. Ten erroneous edits were identified,

yielding a 3. Ji margin of error. Host of the errors consisted

of under edits (failing to strip away enough characters) and

edit ignores (failing to edit when appropriate). None of these

words was mistakenly combined with another word root. Further-

more, SUPCUT was successful in accurately reducing the original

document to 220 word roots— a 26% savings.

Method

In order to cross validate some of these preliminary

findings, two "new samples of data were run on the SUFCUT pro-

gram. This time, instead of the author editing the data, a

committee of three independent graduate students was established

for this purpose. Before doing any hand editing each person

was presented a standard set of directions. The directions were

augmented by several examples. Appendix k displays a copy of

these directions.

The samples i^ere drawn from two sources. The data for

Sample A had been provided by Dr. David Danskin and Dr. Carroll

29

30

Kennedy of the Counseling Center, Kansas State University.

Danskin and Kennedy have compiled a data bank consisting of

5,209 words transcribed from recordings of small group dis-

cussions. These words were stored in alphabetical order on

a disk at the KSU Computing Center. The first 200 consecutive

words from these records were selected for Sample A.

Sample B was obtained from the Davis Howe Word Count

of Spoken English (1^). In a recent publication, Howe (1*0

presented a glossary of 9,699 different words which were spoken

during 250,000 words of recorded interviews. As in Sample A,

only the first 200 words in this glossary were included in

Sample B.

Results

Samples A and B were rated by human editors with the

following results (refer to Tables 2, 3, and 4). The original

corpus of Sample A had such a high incident of misspellings

that 73 words had to be disqualified from further data analysis.

Each of the remaining words appearing in this sample were

assigned to a rater agreement (HA) category depending on how

well the raters agreed in editing that word. With three raters,

there can be three possible types of agreement: 1) No rater

agreement— each rater disagrees with the other two, 2) a majority

rater agreement— two out of three raters (2/3) make the same

rating, and 3) unanimous agreement— all raters (3/3) make the

same rating on the same word. The words from both samples are

31

Table 2

CLASSIFICATION OF WORDS IN SAMPLES A AND B
ACCORDING TO RATER AGREEMENT AND

TYPE OF PROCESSING

SAMPLE A SAMPLE B*

RATER AGREEMENT: Majority Unanim. Majority Unp.nim.

Type of Processing

1) No processing.
Words already
in root form.

2) Editing re-
quired. Words
not in root
form.

10

48

62

10

27

98

62

TOTALS: 17 110 37 160

*Three words in Sample B had no rater agreement.

.

32

Table 3

LENGTH OF SUFFIX STRINGS EDITED FROM WORDS IN SAMPLES A AND B

Suffix

String

Length

S A M P L E A S A H P L E B

Majority
Rated
Words

Unanlm.
Rated
Words

Majority
Rated
VJords

Unanlm,
Rated
Words

1 1 12 3 26

2 1 13 3 15

3 1 17 5 10

k 2 13 1 k

5 2 3 3 1

5 1

TOTALS: 7 59 15 56

Table k

THE NUMBER OF WORDS IN SAMPLES A AND B
WHICH SUFCUT FAILED TO TRANSFORM

INTO THE SAME GENERIC ROOT AS
PRODUCED BY HUMAN EDITORS

33

S A M P L E A S A M P L E B

RATER AGREEMENT: Majority Unanim. Majority Unanim.

Types of errors (

Over edits 2 h

under edits 2 8 2

ignores 3 1 2

TOTALS: 3 3 12 6

3^

classified in Table 2 according to sample, rater agreement, and

type of processing undertaken by the raters.

The raters' edits were taken as standards for evaluating

the output of the SUFCUT program. If an analysis of SUFCUT's

performance ;*ere based solely on those words which the raters

processed in a unanimous fashion (RA=3/3) , then the precentage

of error occurring in both samples was approximately 2-k%. This

figure seems to be in keeping with the % margin of error found

in the preliminary study. Those words in both samples which the

raters failed to achieve unanimous agreement were examined

separately. If two of the raters agreed on a root for a word,

then this word was put on a special list of majority (2/3) rated

words. SUFCUT's percentage of error for editing words in the

majority rated classification was between 17 and 2,2%.

One possible explaination for this increase in the error

of SUFCUT's performance is that it might have been partly due to

a statistical artifact. The raters themselves were at times un-

certain about how to edit words. In the first sample they dis-

agreed on \Z% of all words. This figure jumped to 2\% in Sample

B. In effect, xiord roots generated by SUFCUT were being compared

with a criterion that in itself was partly in error. The combi-

nation of these two types of error may have produced an attenua-

tion of SUFCUT's true accuracy.

Words classified in the majority category appear to be

longer and as a result may have been more difficult to edit. In

Samples A and B, the words in the majority category had a median

35

character length of eight characters. YJords in the unanimously-

rated category were shorter, having a median length of seven

characters. A Chi-square test for differences between medians

was significant at the .025 level. In addition, other data

(Table 3) demonstrate that longer suffixes were being trimmed

from words in the majority category. The median length of

edited suffixes was three characters for majority rated words

as opposed to two characters for unanimously rated words. The

results of the Chi-square median test indicated that these

differences were significant at the .10 level. These findings

seem to indicate that the larger the word and the longer the

suffix string the more chance there is for program error. These

same variables may have also imposed a burden on the human rater

as well. The task becomes more difficult as the x^ord length and

the suffix strings become larger because larger words can be

reduced to a greater number of potential roots. Thus, the pre-

sence of additional potential roots requires that an editor

possess some kind of method of determining which characters form

the proper root. Unfortunately, it has not been possible to

distinguish when the program, not the rater, failed to identify

the proper root.

Savings scores, based on the reduction in the total num-

ber of different words due to suffix editing, were calculated

for both samples. The percent savings for majority and unanimously

rated words in Sample A were 33 and hj>% respectively. In Sample

B the percent savings were 32 and 28$.

36

An analysis of the individual errors committed by SUFCUT

(Table 4) indicates that all types of errors were distributed

evenly throughout both rating categories. Some trends are

apparent, however. For instance, it does appear that there

were more omission errors than inclusive errors. The two types

of omission errors, under edits and edit ignores, occurred three

times as often as the inclusive-type error over edits. Two of

the errors in the over-edits category were incurred when SUFCUT

combined two words that didn't belong together— according to the

raters. In one case, SUFCUT combined ACADEMIC and ACADEMY into

the same root form, ACADEM.

Several other over edit errors occurred when SUFCUT in-

appropriately stripped S from such words as ALPS and ALWAYS.

Although S appears frequently as a suffix for many nouns and

verbs, there are a few instances in the English language when

word roots end with S. Unfortunately, at this time SUFCUT has

no way of determining when S is a legitimate suffix and when it

is a part of the word root. Consequently, it removes indis-

criminantly any S that appears at the end of a word. An excep-

tion to this operation is the editing of words ending with SS.

The latter S in the SS string is not removed unless the SS com-

bination is a substring of the NESS or LESS suffixes, in which

case the entire string is removed.

Another type of under edit error committed by SUFCUT was .

the failure to strip away unusual suffix strings. Such strings

as CE, SE, and WARD were npt in SUFCUT' s repetoire. As a result,

37

words like ABSENCE, ABSENTEE, and AFTERWARD were ignored by the

program but edited by the raters. Errors specifically of this

type could be prevented in the future by updating the program

SUPTRE.

Chapter 6

CONCLUSIONS AND DISCUSSION

In summary, the purpose of this thesis was to present a

computational method for trimming words down to their root form.

A heuristic solution was proposed consisting of two types of

heuristics— general and task-specific heuristics. The inter-

changeable structure of the bask-specific heuristics promises

numerous advantages. One suffix editor can be modified to apply

to numerous heterogeneous types of problems. Suffixes stored on

a binary tree data structure conserve 1) space by overlapping

identical strings and 2) search time by varying the order of

suffixes so that the most frequently occurring strings are

searched first. The suffix tree also enables the interplay of

powerful follow-up operations. These operations are initiated

by exit values on the SUFTHE and enable such sophisticated

manipulations as multiple edits and the creation of new roots

by adding vowels.

In contrast with other suffix editing schemes, this

procedure does not resort to a word-root dictionary. Conse-

quently, no part of the execution time is consumed by costly

dictionary look-up assignments. This procedure does require,

however, that all words in the data base be sorted into alpha-

betical order. In most cases, this requirement does not pre-empt

additional object time since many text processors which might

be supervising SUFCUT will have already sorted the words as a

39

matter of standard practice.

When applied to English language data, SUPCUT had been

found to function with a low to moderate rate of errors. Since

the raters were inconsistent in editing 12-21$ of the data base,

it has not been possible to determine exactly how much of the

total error was attributable exclusively to SUPCUT. Most of the

program errors were omission errors. They occurred when the

program failed to remove all the characters from the suffix por-

tion of a word. Inclusion errors, such as inappropriately com-

bining viords with different word roots and trimming a word down

to less than its proper word root, have been found to occur at

a low frequency. Thus, the program has adopted a conservative

mode of procedure. The fact that omission errors constituted a

greater portion of the errors is an advantage to SUFCUT. Inclusion

errors have a greater detrimental influence on the editing pro-

cess, since different words are combined into the same category.

In comparing SUFCUT* s performance with that of other

editors, it is- apparent that SUFCUT' s percent of savings is below

those figures which Haraway and Iker reported for their STRIP

program. The percentages of savings for SUFCUT edited passages

ranged from 28 to 43^, whereas Haraway and Iker (13: 5-6) have

reported that their program STRIP had reduced certain documents

by almost $0%. The greater percentage of savings associated with

the STRIP program might be due to two factors. First, STRIP

implements both prefix and suffix- editing routines, thereby

addressing itself to a broader range of conditions in the data.

i40

Secondly, the types of samples on which both programs operated

were different. STRIP was applied to the transcripts of psycho-

theraputic sessions of an itinerant salesman (12:1^2). SUFCUT,

on the other hand, was run on data gathered principally from

interviews with college students (l^:5?2). The SUFCUT data

probably demonstrated a broader distribution of word usage. For

instance, the verbal output of several people usually exhibits

a greater variety of word usage than that of a single person.

Also the breadth of a salesman's vocabulary is probably less

than that of the average college student. These factors may

have interacted so that the data which the STRIP program pro-

cessed were easier to edit since on the whole they consisted

of fewer different words. Thus, variations in the data may

have contributed heavily to the reported program differences.

The problem of the increased rate of erroneous edits of

words in the majority category (rater agreement = 2/3) needs

further research. If it were possible to attain unanimous

rater agreement (3/3) on all words in a document, then a more

accurate estimate of program error could be made. In the future

the discrepancies among raters might be lessened by taking the

following steps. Provide the rater with more information about

each word. For instance, the sentence in which the word appeared

might be presented along with the word. Furthermore, the rater

might be allowed to read the entire document first and then make

edits directly from the document. In this manner each word would

be edited according to its meaning in its specific context. This

41

approach would prevent raters from supplying their own idiosyn-

cratic meanings to words. This happens when raters are given

simply a list of words. Some of the words on a list can have

numerous meanings depending on their context. Thus, it is

entirely possible that each rater could assume a different

meaning for the same word.

Another means of lessening discrepancies is to reduce

the heterogeneity among the raters. Future research should

include raters who are experts in the area with which the docu-

ment is concerned. Hopefully, these experts would rely on

equivalent frames of reference while interpreting the meaning

of words in the document.

As mentioned earlier, often the same word can have

different meanings in separate contexts. For instance, the

word LIKE, when used as a noun or a verb, usually expresses

a feeling of positive attraction and affection; however, as

a preposition and adjective, it generally expresses the state

of having the -sane or nearly the same appearance, qualities,

or characteristics. How much this type of variation in meaning

affects the accuracy of a suffix editor has not been determined.

If an editor generates the same root regardless of the whole

word's context, then the processor is creating a certain amount

of error. Is this error small enough so that it can be tolerated?

Or should some type of corrective measures be taken?

One means of handling words whose meanings change with

context is to label all words according to their parts of speech.

Thus, words from the same generic root but appearing as different

parts of speech would be treated as separate word roots. However,

this approach requires that a grammatical coder be inserted into

the SUFGUT program. Whether this step is necessary depends upon

the results of further research.

^3

ACKNOWLEDGEMENTS

I am profoundly grateful to all those people who have

helped me in any way during the preparation of this thesis. In

particular, I would like to acknowledge the assistance provided

by the members of my committee—Dr. Holly C. Fryer, Dr. Leon

Rappoport, and Dr. William J. Conover. Their suggestions and

recommendations have rendered major contributions to this effort.

In addition, I am very grateful for the invaluable assistance of

Dr. Paul Fisher. Dr. Fisher has unhesitatingly spent many hours

helping me through numerous problems. His ideas have contributed

generously to almost every aspect of this thesis.

I also wish to acknowledge the following people: Dr.

David Danskin and Dr. Carroll Kennedy for granting me permission

to sample from their data bank; Ann Scott, David Scott, and

George Cvetkovich for serving as raters in the validation

study; and Mary Hughes for typing this manuscript.

I would like to express my gratitude to the National

Institute of Health for providing me with financial support

during my program of study at Kansas State.

Above all, I am deeply indebted to my wife Carol. Her

patience and encouragement have supported me throughout.

44

REFERENCES

1. Eerns, Gerald M. "Description of FORMAT, a Text-Processing
Program," Communications of the Association For Computing
Machinery . 1969, 12:3, 14T-T55

.

'

2. Brooks, Frederich P. and Iverson, Kenneth E. Automatic
Data Processing , New York: John Wiley, 19&3.

3. Borko, Harold A. "Automatic Document Classification,"
Journal o_f the Association For Computing Machinery .

1963, 70, 151-l"52l

4. . "A Factor-Analytically Derived Classification System
for Psychological Reports," Perceptual and Motor Skills .

1965, 20, 393-^06.

5. ,
and Bemick, Myrna. "Automatic Document Classification.

"Part II. Additional Experiments," Journal of the Associa-
tion For Computing; Machinery , 1964, 11, 138-151.

6. Brown, Roger. Social Psychology . New York: The Free Press,
1967.

7. Dixon, Theodore R. and Horton, Daniel L. Verbal Behavior and
General Behavior Theory . Englewood Cliffs: Prentice-Hall,
rrrrs——1968.

8. Earl, Lois L. "Structural Definitions of Affixes from
Multisyllable Words," Mechanical Translation and Computa-
tional Linguistics , 1966, 9:2, 34-37.

9. . "Part-of-Speech Implications of Affixes," Mechanical
Translat ion and Computational Linguistics . 1966, 9:2,

10. . "Automatic Determination of Parts of Speech of English
Words," Mechanical Translation and Computational Linguis-
tics, 1967, 10:3-4, 53-67.

11. Harman, Harry H. Modern Factor Analysis, Chicago: University
of Chicago Press, 19 67.

12. Haraway, Norman I and Iker, Howard P. "Objective Content
Analysis of Psychotherapy by Computer." Paper presented
at 1964 Rochester Conference on Data Acquisition and
Processing in Biology and Medicine, July, 1964, Rochester,
N.Y.

45

13. . "Content Analysis and Psychotherapy," University
of Pittsburgh. (Mimeographed).

14. Howes, Davis. "A Word Count of Spoken English," Journal
of Verbal Learning and Verbal Behavior. 1966, 5*

• 372~6m::
'—

15. KLein, Sheldon and Sivamons, Robert F. "A Computational
Approach to Grammatical Coding of English Words,"
Journal of the As sociation For Computing Machinery .

19'6"3."T0:3. 33 i£Wr~
16. Knuth, Donald. Fundamental Algorethms ; The Art of Computer

Programming Volume I. Reading, Massachusetts: Addism-
Wesley: 19 68.

~

17. Maurer, Ward D. Programming : An Introduction to Computer
Languages and Techniques . San Francisco: Kolden-Day,
196«.

18. Pylyshyn, Zenon W. "FIKDSIT: A Computer Program for
Language Research," Behavioral Science . 1969, 14, 248-251.

19. Starkweather, John A. "Computer Methods for the Study
of Psychiatric Interviews," Com-prehens ive Psychiatry,
196?, 11:6, 509-520.

20. and Dicker, J. Barry. "Computer Analysis of Inter-
view Content," Psychological Reports , 1964, 15, 875-880.

21. Stone, Philip J. "An Interactive Inquirer," Proceedings
of the 1966 Invitational Conference on Testing Pro bl ems

.

196T; 6>o7. '

—
22. and Cambridge Computer Associates, Inc. User's

Manual For the General Inquirer . Cambridge, Massachussetts:
The M. I. T. Press: 196*8.

23. and others. The General Inquirer: A Computer Armroach
to Content Analysis . Cambridge, Mass.: The M.I.T. Press,
1966~

24. Storux, G. G. , Naznitsky, I., and Rush, J. E. "Procedures
for Converting Systematic Names of Organic Compounds
into Atom-Bond Connection Tables," Journal of Chemical
Documentation . I967, 7:3, 165.

25. Veldman, Donald J. FORTRAN Programming for the Behavioral
Sciences . New York: Holt, RinehartT and Winston, 1957.

^6

26. , "Computer-Based Sentence-Completion Interviews,"
Journ al of Couns el in,rs- Psychology . 19^7 » 1^:2, 153-157.

27. . "Computer Scoring of Sentence Completion Data,"
Behavioral Science. In Press.

APPENDIX 1

A COMPLETE LISTING OF ALL SUFFIXES WHICH
HAVE BEEN INCLUDED IN THE SUFTRE

OF THE SUFCUT PROGRAM

I c I N G S

1ST I C
I S H

E

I

S

E S

D
A L L ESS

E D
N ESS

I E D F r :•

S

E

T

S T

E N
I EST

I V E I N
M E N T

I Z E REN
N C E TION Y

A B L E A T I N

I T I N

L Y

E N C E - I Z A T I N I T Y

L I K

VAT
I V A

E

E

T E

E R

R

A

A

I

A

L L Y

B L Y

V I T Y

B I L I T Y

kS

o

O

W
Q)

4h
O

2

g

0)

H

•H
<U
LH

CO

0)

u
•H
P
C
W
0)

H

CM

•H
X)
C
cu

A
<

HW

k9

-d

s
c
•H
4->

§

CM

C
Q)

P«

<

50

XI
<U

a
•H
+->

c
o
o

CM

X
•H
•d
C
0)

a*

<

&

30

a
> Li"

<!

-GO

ld

d)

O
c

o

o
d

-V

©
cc

rq V.
in

9|

Q
H

ar> B
Q

u
W

o
3

;-; u

B

en
51

XI
<D

3
C
•H
4->

C
O
a

x
•Hd
C

2

52

ao
o
«
PM

Eh

3
h
p
CO

en w
w

X EH
H
P pe,

§
O

ft, o
PM 3
<; H

EH
CO
H
P
Po
go
to

w
M
EH

PM

P

CO

H
o
o
o
H

no

o
o
o
H
Pi
EH
PM

o
o
o
H

H
Pi
Ex.

X

EH-^
D M
PM Pm
3 Ph <;

X

- JHM-

PI -

o-

- >
rx,-

H?

- Eh

Eh w • •

- CO

- pi
pq-

- <y

- pm

3oM Pi
CO P

S Eh
H 3PM

WO
• CM- X
<;p -3
Eh <- <
<; 'ghlQM* PQ
a "

W <; - IISJPH
n tq - °
P "C^H
<; <<- ehH9^D II

e-i <; - PhMP MM
3 HM

P • SB

•

Wpci «o <c a EH

EH fq tn w Pm

CO
111 E

PR

XT

C
INCH

a
. pej WW EH

PM EhS a 3
P Pm H
PI O W EH

O
Pm

.^^ ^
•-3 a : S

c^- ,"c5 X o
Eh

1
PS 3 H

D p H <; EH

Pm • PQ O CO P M
3P <; o co m CO

MPl
E Eh O <;

O
Pm

Eh o
P p co O

<; <: pi eh Pi
PEH PCM o pq

<: W a En

w
En

PI
Eh

ws
W H CO S

•' • Eh O H P
P P--4 3 M
Pi O H P P P H
<; 3 _^P« PI

° § @ , 3 O
Eh

Pp Eh K <s O
CO

S Po o g
£5 EHC5

o 1-1 P O OH P
tx, ffi 3 O P VO Pi
O PCS <; «n < w H^

Eh rH <; pj o P
CO 1-3 c^eh p^—rq OS
H HM O CO X Pi Eh <;
CO W EH H S 3 PM

pq <;JH PI O CO o-^
P Eh EHIH O P'P PP O Q
<; O PI En PP1 Pi
3 3 O <; -eh o
< H CJ *—

^

O -Q5 -~»^2

Eh • ^-s. X PTx, WH
p 3Q .-*« X < a «o 3—
PM 2 3 X S «-^ <; o * ^^

• 3 p p a <; PI a pcoa H Prt
PfxlEh H P o <;p Pm OfflBS

X O Ex. p « P PP O -Eh
H-^ O a <; 13 <qpM P Eh G^
Eh F- PI • <; • S HO pqp
H M 1x1 .G" cy p o .o o -o

O Ex. II FQ Eh X WEh w P CO P Ci^--U
O OOP O 3 «o • O P 3EH H^
O^i 3

M 3 PI
o <s^-^;md ^-^ o <; <; co > QH H || QW !>-P h) CVJ •-5 • < ^1-3 Pi

O - - PI «< P < - pq^ CO • *—' c-i CO H P H—'O
H h*— <;^ao J J H EHM H ^ r.

CO H . •H^
II II II go » X' o o II < P II p P VO PI Gr W Or P
3 3 - H --'O h> PM P4 X Pm p HM p pw W PM Eh

00 SW<w Eh W P1«W M!^ 3 Ph PI -EH •33
Q O 0^--3 <s<;£h^>oh[hn M M O < Hj h> HP
Pi h h o o p g5 H PH^'CJ H II — EH Eh M O— En >—'•—' S
O pi < Pi 3 >^ <i 3 tLl t-H wISOOOPPOM O E< Ph m o « h O O M (5 fc Ex. Ex, Pi

g p P a <r, pi En t.5 P P CO H <q P «M O O a H EH M M O
p PK w US Ex, M p 3

O Pi M^P Eh Eh O CM M O^fq M
H H H H

o o (J o o o o o o o o

52

en

XH
P

PM

o
o
Pi

W
P
CQ

W
B

o
o
aH
Eh
COM

W
O

O
CQ

w
w

Ph

W

to

H
at

OO
o

p
cti

o
3

o
o
o

EH
Ph

o
o
o
H

W
cri

CX4

<;

EH—

'

P M
Ph pmso

om ft;

cow

pm

- N

- MM -

- >

W?
- Eh
P-

Eh t* -

- CO

- Ph
PQ-

- a?
<;-

- p-.

• p4
<S P
EH <
<; -

P W
3

O
- X
- <;SO

M P

-o-
- Eh

^?
Ph

o
II

co

o

o
o c
o ^\
HrH II

EH

1
EhM
X
Eh !>-

HW •

> O P

co
w
«
Ph
w

EH
p
Ph

M P

o
EH
<
EH

P W
pd o
<

w
o
En
O
CO

3
b
ooo

>"3

P W
s -

II ii s o *

S W<
o o
rH H go

co H
>h M
OEh
<
<qn

3P
P PJO
o Wo
M W
CQ EnO

rH «^ P-J

<q p <;
o J
CO O
En

o

^OOOflHOHWm m a p n
OPd H
H H

Eh"-D
H

•-3

OWO
tx!

En

u
PQ
<;

pm
o
<;

w
K
Eh

H

O
<

CA EHHM
O CO
EHM

O
o

s<;
<;ooo
m

• cy
W WEH
s *° ~

ffl'-'CO -

EHM H
<5P II

Pm P4 X
O M Eh CM

>n

O
En

O
CD

"w
Pi
O
<;

w

W pc!

o <:
w a
Pd o
Pi

w £!ww
Eh 3
feW
o w

§
U5

Ot-
O CO
O CO
w

Eh O
CO o
< PC!

OPM
WS
W M
EHO

Eh

w
w
Pdo

EH

o
PQ

EH
o

CQ
M

P PQ

<

P

o
vo pc4

p h<:
<;o

EH

o o

o

PQ a O P
<: W
pq U
PQ^-W

t^pci

W <q
ffi P W
En PK

•Eh
-C3-
« W W
3 «o
< o
Pco

COM
P

o P5

PO
P CO
O Po <;

ft!

En
Pw

Eh

M
o
p-t

oH
En
M
CO
O
Ph

prj

W
Eh

W
EH

EH
W
CO
W

vO pej

H POS
eh<;

o—
o p

pc:

o
«M

O -Eh
EH &&Wp
o -o

h) pel

w

Eh W
CO M
W
En

^ W
>4 M

En CO HP H—'O
CO M . • Eh :s

WVDK Or W Or P
^,-ihPWwWPiEh
s Pm pc; . eh • a sMO < '"J h) M W
2 si H W
ooehow cnwpt;OO SMEHMMO

w m p a
c\j h enpq M
H M

o o o o o o o oo o

53

o

i

-P

Oo

H

id
<D

P<
ft
<;

CO
p
p:
o

n

iiH
H
+
00
p

vo O
CO

O

In
H

<:

M

«

ffl

O
CO

S3s
a
poo
S3

o

-tO^
ch non W

Ds o o
a m c ^

*n

n
r i

u
a

&h W O
+ CJ D

• S3 MH m m bej

•«>£h. En
I! 3
M M U >

<:
V3 CO
H

CM
52

II H
HO

£h g4

Ph oMO

CM

Ph

W

EH

CO

CO

en

Pm

W

CO

H-

|Of«
M ft? pej

PI Eh Eh
r^ ph fm

en

en

ao
36

«
B
•Of

CO

P
3o

o
Si

M
S3

H -

^r « 9« « m
Eh O

HPm CM 3:
tnv»»

II II

o rn

o O O O CJ o o o O

§
-p

fl

oo

M
•H

ft
ft
<;

so

w

p
<:

CO
wM
O

9

rn "-3

w g?
s wH ft!

pqfo
so +
o
»M

1-3 G^— M
PftJ
«O

II

!l M I",

M
SM
HMO' ||

ODUJbO PJJx, f-3

o
CM 3

o

cn

o
Em

o

H
I

h»

«?
C-i h>
P-I "-3— II

&h "-3

M t-3

K
Eh
Ph

II M
I

f^.H II

O »"3 >~i

O Eh Eh
O F^i Ph

-3-

ON

o
EH

O
o

<y
w

H-—«—
o«"3

h> Eh Eh
h> PM ft*

11 T "

h> M h>

en

o-
C^V

O
Eh

O-O
cno

o
Eh—
O O

— .«O— Eh
• H Ph

H G^w
en pq cr! «

• Eh Eh
O M Ph PhEh—-

II

O fci CT-i

O M H t-3

NO
en

c^
en

o
Eh

O-
cno
oO

EH

O o
o •

W
^ o *-»
H . H
tt: w « c^p
eh .eh a
ft H Ph O H
^^EhEh

ii r r a
u-t fr o oHHHOO

ON
en

o-

5^
•

CO
• M

W
Eh

•

sM
•

P
S

• £>
o—

• \
co\
Eh\

• o -
o—
m

• p~-
«cn

• O H

• P-
P
<;

ii

-3- 1*4

O CO
p

O Pi
P< soM^

EH
CO fe

Kl MO
• pp

Eh CO <5PQ
Eh oa
P MD

CO CO u*
W pqp
n

• w Ph M-3-
w PO
EH <MO

• «EH
ff! SO
o <v^

• E a. °
OP

• so -s~ «M 3: X WO S
p s *o g • ^

•

a •uwhB
w ^-v — O • *

o <C H P—H 11

<; M II

ii
m^ CO— s *-*

• EH ^ HP! S
EH £> En W Eh —

'

H S O W -< E- Ph CM Eh
• B Eh S «^-3- P

II O En H « 2 Ph
o a P4 o h rn o s

• MUM ^ &h M P M
K H
Ph NO H CM

• ^ -3"

O o

55

§
•rH

•P

Oo

x

•d

§
P.
ft
<;

o

H
O
O
o
H
P
pc!

o

CM
H

<; CM

SB w

H 1 Eh
CO

^_^ EH 1^>1
»

G? * "-»

W . 1-3 -CM

g
<; * H
g » «k

Ph Q^A
o pc!—

^~* 3
gw=^T\

H"-^ -O
«VP» •M «<;
H H Q EH EH 3VPl II M Ph CO

VO
3"

B <y^Z O
-d" O

EH
wo
PSO CM

Eh

o ^_^ wo O
EH O Ehh o .:H o

EH
c!j

o d<; o w--^
o Ph v> -ft!

o
+~N. pa

h)En
-PmH -

O O
•

W,-^ s H X PQ «—**—» **
o -On o O o

• "a . + EH pc! O w
•

O" v_-C?
eh5<^

Ph o *~*

W WW Hr-i o o S 1• DO g<* 11 " ti„.
,_) -CM

O H -
O *tH

COW
PC! CM

W H
-* M

-H - II M M^ ^-~ CO - WW >AH3K H
PhT?« T?~o ^«A—

'

W H r-l

— - a—.* —

a a o cm va^!
h> Ph g h) W r) d (^ Pi -3- —

'

En ft! N II II
—'«-- O Pi H II O

o v_^0 3 2B^P Eh EH D W M a s r-l<M <H H O OWW II 3 II

O SS 2£

^;2 CAPH 3 HH^H<;(l(OM< o O
m w ^ ^nrx

*•
-3-^-3-D*— Eh Eh P EH K Eh Ch S Ph ^— <q H H O O || II II

-^ CM II
rT

a. SSOHK II m pq o p pq £ri VMH <q <; cm CM O w
O W O £5 W ooopio O Pi O Eh »=—

1

l—* »<H H£h O O E-

Q H C OOH>fcH O 3 fe CO ft CO M M QQCOCOM hbH HS
H S

c^w-O o- ^t CO H H CM
-j-.^^- 3-

o

CM

CM

O

56

^ h nO CM ^ *>
-3- «CM - -

H C- -O • ^0
H -CM -On «H
«-^ OW00H
Eh * -H * H

^-^ CO OO -On I

EH -CMO
Z, if © • - •

- CO »AH
en

\r\ - -3-

CM - • -H^ -j-VTV* - -CM
CM voc^i

^ »n O r-l «rlS.H
ON -CM

^ £ — O H -CM O I -

C °i ".EH cm "h.cmc^c^
j ' _, Q CO HONONHHH -p n a • -os
£ ^ ^ 8 O'— ^<^ - "ONriW
o ^ r^ < £^ -h^^o i -

— <* ^ g «3 -CM -^HH CM

S « B C-hEh -o^co^Ah ,

* 2 O S Wft On » -H H -

<d - -SC? J - O -HfACMOCM

I | ill" ^ ^^l^J

*>*r* rh -*-^. • • • rH *^ ^-^ *

«C?CM. H HP, CM
?

- -H
H CM « ON^d- CM

wo" C? CM • - H H -CM ONH° M £ CM ,-H 9 > ^ - - -HO
MM . -^M " fMH wh^oiw
LIS ^. l-s • - < CQM^ - - -CM - -—*» C 3crjH> ^ PX^O o^ACTn -cnicn

* T o- to coWh-- -on\hO 5 .H CM -^,XPlOON J'^
"H ^ Ha • - W OEH -ON -HEH-^

cv3+ - 3 CMC* en «H— 3 Ofc^ -CO «Ph I

!^a81e:SJ|sBi«l o
;;Mga ggg-545* 5

P"\ -3- VTt so O- CO ONO HCMCA
H H H H

SI

-CO - - -CMH O- - VNj^- UN.Q
rH -rH 1^ IH
-O- | •• « - m
H IN. «\ ,_. un. un. vcn

I -CNrH Hill
«H C\r-i « « - -

VArH - - VP^VO ONCO
UN. «vO CM CAUNCv- ON
-UNQN

I
»•«•••

rH O- - -V0 W^^VO
H --3- H h I I I I
--3" || - « « « «
H o- - unun.unh o-H »-=r - i i i h I

«-3" ON CM - - - « «.HH «H-=J" VT|f^VM>«\
-"T Iri^riri l>AW |(^
'u « « ON • •> » * • » Cv
^ H^-HCOC-N<\lC\}VrN.
g H I H H H fV^ | ON UN
C --HH-----H^ ^H - -VNOCMOJON •£ ^HHOICMio-OnUN
C • »Onh •»•>•

i

O 0-N.H ...JUNC-NUNUN.UN. . CMO UN{>_o -
J
r\

| | | UN.w « -ONH ---««, oHO I OC0»A>Ain . fh
0-n. u^cv. «riN I I |U1 j- - -CO •>»»•.•» I Q C?
X HONriO^OiAri^ S Fh
XJ I^HHI^IH-3-^ m
C O CNCO ON^iCM VNCO ^A - Q C"

Q, ^V
°. C0

' ' ' ' ^ '
*° "" H J

ft O f°i £NVO CM H ONVO »0 - v— „ O ^
<q v^c^co o ihcomov Eh — c2 w- - -H - - - - «o CO O o SdOnun^o -CN-3" un.un.un,., pn vn ^ m^VOOOH | CM-* , , 1 £ ^ g W

* - - I • - » « -UN p fTN
co in- cn. - un.no 4voin

i ,-hcg j* , X*H^* -CM-^-vO | - o • Z, *! § "

--,-OMD-.«.i>- CM G^ UN (x; OCA
-^HCO^C^. t^H I^H O. OB - CO

rH CACAo CM VA cm"U^lA j" ^ O 2 " «?

^V^°^ ,1 H L
-* '. '. '. ° " OO 'I ^ ^

HCM*HCO*\^i>!H^^ °S °-. 2 _iW ^^ '. '.tf —^ - - ~2~ -.
H ' MHCO

0\h hhEh cmun.un.cm *A" "cAmpT aT o"« ^^rH "i
+
J'+f>!C^.NO CO O P-: CM CO I CO O .~C C- .. '

vfl
H Wm ^ +0

^

H 5 I i-3&hBh O fc fo O X O MOHFHMoSjrNM
rH CM CA-3" VA O NO O- CO On O*° H

i

58

T3
CD

i
•H
-P

6

m

3
c
P-
P-

CM
II

II

M M MMUM
» «H
QrH «

« + m'
OCM +
:-: M CM

cot?
« <; o
OC-h <
201[H

CO
II

M • .

m cy <y

« + H J J
II M + > > +
Hi H rH rH H CM NO

-— X XH
H II rf M W O
rH Ow *_»

|| Eh

P H CO H M M O

H

H

o
wo
H
Q
Wo
:-

M
M

II + -rH
rHH M H> +HHN

O HHNwM S
u no h ^ a

rH O IIDM M <; PhhohehnwHflHWHK
CM

rH

CO

O
En

o

n
K
o
Ph

o

W
ON •

2^
Eh I

O -
CJ Q
K
o

«H H
,w +w q

S3 ttCM
• O H 2:^3 SWW || £>

rH
[x, Ph CM tx)

HHHff!
C*N

VTA

o
En

o

EhM
X

0\
r-i

ON

ON
H
00 vn.

fm - IIw O-«H
Eh •..-.

Ph 0\,-f CM

I

EhM
X

+
ON +
rH CM CM

Ph—
^Ph—.Eh^O
CO
eh m eh-^-

CD Pn .

CO « Ph o^ »—Eh
II

|x, fx, o
rH Ph M O W O CO

O X II

EH O
<;cm

O Eh M

in
CM

r-i r-i

+ + +
CMH CM CM

CM
CM

o
Eh

o

p.

Eh

Eh

:-

w

o

CM

c
Eh

o

h

H rH

B Eh CM CMWtOHH
00 On

M Fm O
0« Eh
K t-i ^S (-h CM O Ph .

« ON3 ffj PhOH w ^
P4P

II II

ft,

Ph M Ph
Ph
rH

O H
CM O

CM
CM

*

cv

O 00

CO VA

59

V

g

-p

o
o

en

X
H
-d
C
QJ

P.

IT*

CM

O
EH

O
o

CV
CM

O Ph
Ch D
O W
O Ph

o
en

o
en

GO
CM

o
en

o

cv

Cm o encv

r-iPnEH

CM • IO^Ph »_q

Eh —
II IIO &h

cv cn.3-
cv cv cv

O'O'Hmmn

fa fa oHHt5

Ph CV >q -

I - «Q
ii cv no

> o .J) o-—
Eh Eh cv QH II P4« O O OW O J Q -^

cv

o
OPl
cv o
oS
Eh—
Q

OffJ
O O

cv^
.J*

G' .

• W

Eh>

O
II

l-H

«
O5 3 H [-) hX M Jz Mh >< aw ^—WD Q— Eh K II

fa fa W O

CV C^.CV CV
•OCX

cv

o
Th

o

cv
I

h5

Q
Ph
o
H
Q
W
p

• I-H

• II

I

Q On
P4 •

o <y

M .

O Q >MD
CV K Encv
O M

O SB X O
Eh— M Eh— QO fa fa O SO M H O W
O
en

d3
o o
< <;
Eh Eh
co co

C-HCV
Ph H

CV

o
Eh

O

w— o

«o
cv <;
»^>EH
-co

-o
cv oM O
i-H—m «
-Eh

h>Pn

— O
O

eno
m rHD
CO C
w
Pd cv

Wfr. H
H H
En « IID W SO O
Ph M CV ||

PQ Eh
D S OS
CO M Q 3

O
-;
k

HH

5o
<;
:~i

co
i

o

S5

h
cv

o
< w
Eh VV.D
CO S— O H— Eh Eh

fc, O oMOO
CV)

o
CJ

r-'

«*:

o
p
«o

W
SiH
S
bo—

^

•-3

Eh W
P3 «
lA
<; +
>
M^->
D M
w o>
ww«

Ph fc
<;

ii

co
;:-,

O
a
K

o
En

o
O

H f-3

O*
w

iH

O" II

Pffib
Ph Tx< ^o

en

o

60

o

B
•H

OO

o
En

O

Eh

d

ft
ft

3

HM

<;
EH
CO

En
W

«
Eh
Ph

II H
I

rt II I

O •-> hi <-3

ftj CtJ ||

O Eh Eh
O Ph Ph '"a

a
H
hi CM

ha

» •

O +CJ
<; W
Eh rH «H
CO 'T rH
»-* h o— I --'Eh

+
CMM

H> C?
M

H •

H HH O
EH
P

HhHOHHOW
VT»

61

APPENDIX *f

DIRECTIONS FOR THE WORD ROOT IDENTIFICATION TASK

Directions: I am interested in finding out what you
"believe are the word roots of the words listed on the attached
answer forms. A word root is the smallest portion of a word
that contains the same general meaning as the whole word. In
many cases, the root of a word is the entire word. For example,
the words HAT, CAR, PUNISH, and PROPERTY are word roots. They
cannot be reduced any further without losing their original
meaning. In other cases, a whole word can be reduced to a
smaller root word by removing one or more suffixes. The words
ACTS, ACTING, ACTION, and ACTIVATED all can be reduced to the
same word root ACT. Furthermore, there are a few special words
which are reduced by first removing a suffix and then adding
an "E" or "Y". In this manner, CONCENTRATION and TRIES can be
trimmed down to CONCENTRATE and TRY.

I am going to give you a list of 200 x-rords. What I

would like you to do is to circle that part of each word which
you think is the root of that word. Remember the root is the
smallest possible word within the whole word with the same
general meaning as the whole word. Feel free to add letters to
a stem to form a new root, if you believe it is necessary.
There is no time limit and you may use a dictionary.

A COMPUTATIONAL METHOD FOR REDUCING WORDS

TO THEIR GENERIC ROOTS UTILIZING

A SUFFIX- EDITING ROUTINE

by

MARTIN LEON ZOLA

B. A., University of Notre Dame, 196?

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics and Computer Science

KANSAS STATE UNIVERSITY
Manhattan , Kans as

1969

Computational methods of suffix editing play a major role

in a large number of language processing programs. The authors

of these programs— concerning themselves primarily with their

main procedures—have provided little information on the perform-

ance of their editors. Practically all current editors consist

of two parts: a set of suffixes to be edited and a dictionary of

word roots. A strip-match technique is employed whereby each

word is stripped of its suffixes and a dictionary is searched

for a matching root.

A new approach to the problem of suffix editing has been

presented here. It consists entirely of operations on words

without recourse to a word-root dictionary. This approach is

based on two types of heuristics. A set of general heuristics

provide a style for approaching numerous language manipulation

tasks. The second set, task-specific heuristics, are detailed

rules which are designed to be applied to only one problem. One

type of task-specific heuristic of particular importance is the

follow-up command. A follow-up command is designated for each

suffix string. When a suffix is removed, its corresponding

follow-up command is enacted.

A FORTRAN program based upon these heuristics was

developed to perform suffix editing of words in English language

documents. It contains an interchangeable component which may

be modified in order to adapt it to other language processing

probl ems

.

This program has been run on three samples of text taken

from large English language documents. The program's performance

was evaluated by comparing its output with the protocols of three

human editors who processed the same data manually. The per-

centage of erroneous edits varied from 2-32$ per sample depending

upon the criterion used. As the rater agreement of the words in

the criterion dropped, the percentage of program errors increased.

The words with multiple suffixes caused the most difficulty for

both the program and the raters. Suggestions for further research

were discussed.

