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CHAPTER 1
INTRODUCTION

A large portion of the problems encountered in physical and engineering
science can be represented by mathematical models which are governed by a
series of differential equations with two-point or multipoint boundary con-
ditions [22]. Usually, these problems appear in nonlinear forms. Most non-
lenear differential equations cannot be solved analytically [32]. In addition,
the problem becomes very difficult when the governing equation contains some
unknown parameters which cannot be measured directly and the measurable varia-
bles are the dependent variables of the differential equation. One of the most
frequently used methods to obtain solutions for these problems is the trial-
and-error method which is very tedious and inefficient. The quasilinearization
technique which was first developed by Bellman and Kalaba [1] is a powerful
tool for solving nonlinear boundary value problems. It involvas decoupling
the system of differential equations by means of linearization into a series
of initial value problems that may be repetitively solved in such a way that
their solutions will converge to the solutions of the original problems BS].

The ‘problem to be solved is that of identifying aquifer diffusivity in
an unconfined aquifer and stream interaction system. The system is represented
by a second order non-linear differential equation with initial and boﬁndary
conditions.

Boussinesq (1904) obtained the analytical solution of this type of second
order differential equation by the use of simplifying assumptions. What he did
ig to derive an equation that applies to the flow of ground water into a ditch.

Hornberger etc. (1970) [3] obtianed numerical solutions using finite difference



approximation and the predictor-corrector. Yeh (1970) [37] solved it for a
semi-infinite system and presented dimensionless curves for a varijety of boun-
dary conditions. Yeh and Singh (1970) [6] solved the transient flow problem
of subsurface drainage between parallel drains. The assumption of an initial
profile is removed in this method. The governing nonlinear partial differen-
tial equation is reduced to ordinary differential equations which are easily
solvable on the computer. In addition to the above approaches, the identifi-
cation problem has been studied by Rowe (1960) [Sl]and Pinder (1969) [4]. In
Rowe's work, an equation was derived from which transmissibility and the coef-
ficient of storage of an aquifer can be estimated. A Tinear change with the
time of the depth of a nearby surface body of water was assumed in the deriva-
tion. The equation appears to be accurate when the boundary conditions are
satisfied. In Pinder's work, the diffusivity of a homogeneous isotropic aqui-
fer can be determined from the response in the aquifer to fluctuations in river
stage. Obéerved changes in the head in the aquifer are compared with theoretic
head values computes assuming a series of diffusivities. The values are gene-
rated by approximating the stage hydrograph as a series of discrete steps and
assuming the influence of each increment. The diffusivity of the aquifer is cal-
culated from the best fitting theoretic response curve. Both the work of Rowe
and Pinder are essentially based on linearization and trail and error graphi-_
cal manipulations. Yeh and Tauxe (1971) [7] presented a systematic technique
based on pumping tests for converting field observations into the desired para-
meters for an unconfined aquifer system. Most existing techniques have re-
quired graphical matching in which the governing equation is solved for all
possible boundary conditions and is plotted as type curves. A data curve from
pumping tests is then plotted. By superimposing the data curve on type curves,

it may be possible to find a match point. From this match point, common values



for different variables are found so that the aquifer parameters are computed.
In this present work, a fairly new technique, quasilinearization [1,15], is
presented. The following is a brief review in this area.

Lee {1967) [19] combined the use of the variational equations and the qua-
silinearization technique in order to obtain the optimum temperature profile in
a tubular reactor. He considers these parameters as additional state variables
instead of following previous procedure for designing a system which is to
choose several parameters and select the most promising combination. Lee (1968)
[20] used the invariant imbedding concept [35,15] to derive useful estimator
equations for nonlinear dynamic system. Lee and Hwang (1970) [17] and Lee (1968)
[36] estimated parameters or coefficients in differential equations arising in
stream quality modeling. The parameter estimation problem is treated as a multi-
point boundary-value problem by the quasilinearization technique [15;36]. Lee
(1971) used the invariant imbedding concept [15] to obtain useful estimation.
equations of dynamic stream pollution models instead of the mehtod which was
employed in Lee and Hwang's 1970 paper. In the present work, the governing non-
linear partial differential equation is replaced by a system of nonlinear ordi-
nary differential equations for which the technique of quasilinearization is
applied. In this system, we use a parameter as a new variable. This estimated
parameter will be improved in each iteration under the criterion that the deri-
vation is minimized between the actual value of dependent variable adn the ob-
servation data. The procedure is straightforward and converges gquadratically.
The technique of guasilinearization requires neither graphical matching nor trail

and error manipulations.



CHAPTER 2

QUASILINEARIZATION AND PARAMETER ESTIMATION

2-1 INTRODUCTION

The quasilinearization technique is a generalized Newton-Raphson method
for functional equations [1,15]. In addition to linearization of the nonlinear
equations, it provides a sequence of functions which converge to the solutions
of the original equations. In this chapter, a breif description of the initial-
value problem will be given in section 2. The technique of quasilinearization
is introduced in section 3. The charactersitics are discussed in section 4.
In the fifth section, the least square method is introduced to find the new

estimation of parameter.

2-2 INITIAL-VALUE PROBLEM

Initial-value problems are those in which all conditions are given at
one point. This particular point can be the 1nitia1 or final point of the
entire interval. Any initial value problem can be represented as a set of
one or more coupled first-order ordinary differential equations, each with an
initial condition. Because any initial value problem can be expressed as a
set of first-order ordinary differential equations, the primary concern will
be to develop numerical methods for the solution of first-order differential
equations.

There are various numerical integration methods available for obtaining
the solution of ordinary differential equations, such as the Euler Method,
Runge-Kutta method, Adams‘mu1tistep method; and Predictor-Corrector method,

etc. [12]. These methods have different advantages and disadvantages for each



one. The efficiency of these and other modern methods have been compared in

a receat paper [13] which gives an excellent picture of the current state of
the art. For a detailed description of these methods, readers are referred to
Ralston [25] and Tompkin [26]. The Rung-Kutta method will be used in this

work.,

2-3 QUASILINEARIZATION
The generalized Newton-Raphson method for differential equations will
be discussed first before explaining how the quasilinearization technique

words. Consider the nonlinear differential egquation
9X = f(x(t), t) and  x(t,) = ¢ (2-1)
dt ? 0

The function f can be expanded around the function xO(t) by the use of

the Taylor series [12].

fx(t), t) = flxp(t)s t) + (x(t) - xy(£))f, (x4(t), t) (2-2)

0
With the second and higher order terms omitted. The expression fxo represents
partial differentiation of the function f with respect to X0 which is a known

value. Combining equations (2-1) and (2-2), the following equation is obtained

after rearrangement.

%% = fxn(xo(t), t) x(t) + fx4(t), t) - fxn(xo(t), t) x,(t) (23]

xo(t), fko(xo(t), t), f(xo(t), t) are known functions of t. The only
unknown variable is x(t) which appears as the first degree term. Hence,
equation (2-3) is a linear differential equation with variable coefficients.
This is the algoirthm which quasilinearization employs to linearize non-

Tinear equations.

The above discussion concerns only the single differential equation.



Now let us consider a general nonlinear system [15].

<1

= F(X, t) (2-4)

n.l =¥
o+

where X and T are m-dimensional vectors with components X1s Xos =ees xn'and

fl’ fos vens f. respectively.
If we choose a set of initial approximations for X1 Xos nes X and
denote them as X1,0" *2,0° %m0 Equation (2-4) can be linearized by

the use of the following vector equation.

= }(X, t) = F(Tgs t) + J(RG(X - ) (2-5)

ol
c+|><l

X, i -di i rowit . X WIS
where XO s an m-dimensional vector with components xl,O’ 2,0° * Xm0

The Jacobi matrix J()'(U) is defined by

r b

af.I af1 afT

axq,o axz’o axm’o

af2 3f2 af2

aXT,O axz,o axm’o

W) = | : : (2-6)

afm afm | af

haxho sz’o axm,O J

The solution we get is an improved set of solutions. Let this improved
solution be il which can be used as a new initial approximation. A new
improved solution iz can now be obtained. [f this procedure is continued,

the following recurrence relation is obtained:



dX )
M+l _ oz . -
e = ?(xn, t) + J(Rn+1 ~ Rn)(xn) , (2-7)

where J(Xn) is the Jacobi matrix defined as

(af1 of af,
axT,n axa,n axm,n
afz afz af2
X-lsn XZ,H ijn
W) =) s z (2-8)
af afm of
\axrn sz,n axm,n J

2-4 LINEAR DIFFERENTIAL EQUATIONS
The general linear ordinary differential equation of first order which

we will consider is

Lly) = y' + a{t) y = h(t) (2-9)

Here a(t) and h(t) are given functions continuous on an open interval
J = (a,B).

A solution of the nonhomogeneous Eguation (2-9) Yy is usually called
a particular solution. In many problems the nonhomogeﬁeous term h{t) may
be very complicated; however, if h(t) can be expressed as the sum of a finite
number of functions, we can make use of the linearity of the differential
equation to replace the original precblem by several simpler ones [11,38].

Suppose it is possible to write h(t) as hl(t) + hz(t) + ...t hm(t); then



Equation (2-9) becomes

L(y) = y' + a(t)Y = h(t) = h1(t) * hz(t) s ¥ hm(t) (2-10)

If we can find particular solutions ypi of the differential equations
L{y} = h.(t), i=1,2, ..., m (2-11)
then it follows by direct substitution that

y (t) = yp](t) + ypz(t) ety (t) (2-12)

P m
is a particular solution of Equation (2-10).

In general it is easier to find solutions of Equation (2-11) and to
add the results than to try to solve Equation (2-9) as it stands. This
method of constructing the solution of a complicated problem by adding

salutions of a simpler problem is known as the method of superposition [38].

2-5  LEAST SQUARES

The method of least squares is the oldest and most widely used parameter
estimation procedure. Some of its popularity is due to the fact that it can
be applied directly to the deterministic model, without any cognizance being
taken of the probability distribution of the observations. Especially, in
case of pure curve fitting, where the coefficients have no physical sig-
nificance, the least squares method is usually adequate [29]. The least
squares procedure in its simplest form consists of finding the values of

U which minimize the function

(U) = E E2(U) (2-12)
’ k=1 K

E (U) =y - F(X., U) (2-13)



The objective function of Equation (2-12) is often unsatisfactory for
the reasons that the various quantities Yy may represent entities having dif-
ferent physical dimensions, or measured on different scales. Besides, some
ob;ervations may be known to be less reliable than others, and we want to
make sure that our parameter estimates will be less influenced by these
than by the more accurate ones [12,34,38]. The solution to both of these
problem is the same; assign a non-negative weight factor wk to each Ek(U),
and minimize

n
o(U) = [ W - ES(U) (2-14)
k=1
We choose small wk for Yy which are either measured on a large scale, or which
are highly unreliable, and conversely for large Nk.
We derive the normal equation easily

3, (U
3.7 rz] W, - E(U) - ';L(J) =0 . (2-15)

Substitute Equation (2-13) into Equation (2-15)

n af(x, U)
9 _ - " --——IS—’— = -
-3-% = -2 . kg‘l wk § (‘yk f(Xk,U)) 5U 0 (2-16)

Assume the function of f(xk,U) which is dependent on U to be continuous.
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CHAPTER 3
PROBLEM FORMULATION

3-1 PROBLEM DEFINITION

Figure 1 shows schematically the configuration of an unconfined aguifer
and stream interaction system [90]. For a homogeneous and isotropic medium,
if the curvature of the free surface is small, the Dupuit-Forchheimer assump-
tions [16] may be assumed to be valid. The frow & through a unit width at

a distance x and with a head h is [40]
6 = k h ah/ax (3-1)

in which k is the hydraulic conductivity of the aguifer.

The continuity equation may be expressed as

(98/3x) dxdt = S§' (ah/st) - dt - dx (3-2)

in which S' is the specific storage of the aquifer and t is the time.

Substituting Equation (3-1) into (3-2), one gets
k(a/ax) (h ah/ax) = S' sh/st (3-3)

subject to the following initial and boundary conditions.

=
[}

h(x) 0<xc=<L t =0

h = hU(t) x =0 t>0 (3-4)
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3-2 ANALYTICAL FORMULATION

Equation (3-3) can be rewritten in a more convenient form:
ah/at = (k/S'){(3/3x) (h 3h/ax) (3-5)

To make the head and distance dimensionless the following changes in variable

are used:
8 = h/H
y = x/L (3-6)
T = (H/Lz) t

where H is the maximum height of the water table above the impervious layer,
and is a known constant, and L also a known constant, is the distance from
the river to the water divide.

Substituting these variables into Equation (3-5) yields

30/3t = D (3/ay) - (8 oe6/dy) (3-7)
subject to
6 = h{x)/H 0<y«<] =0
(3-8)
g = ho(t)/H y =20 >0
3g/3y = 0 y =1 T > (

where diffusivity D = K/S'

The dependent variable e in Equation (3-7) is a function of two in-
dependent variable, y and =. The governing equation can, however, be in-
tegrated by using a finite difference approximation. I[f one of the in-
dependent variable is discretized while the other is kept continuous, the

derivative with respect to the discretized variable becomes readily available
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[12]. The space variable y is discretized to replace Equation (3-7) by a
system of nonlinear ordinary differential equations while the time variable
t is kept continuous. The distance y between 0 and 1 is divided into n equal
intervals, where i = 1, 2, ..., n. The value of i = 0 and i = n correspond
to the boundary conditions. To minimize the truncation error, the central
difference method is used [12, 28]. The finite difference approximation of

the Equation (3-7) is derived as follows:

For the subscripts of i + 1 and i, 8 %%—can be expressed as
[Eiil—j—fi-]- Eiil—:—gi ; for the subscripts of i and i - 1 ige can be
2 ' y P > “dy
b B IS P TG B
expressed as [ 5 1. - y After these treatments, the expression

of 8 - %% is derivative with respect to y again as shown in Equation (3-7).
., * 0. B4 = B 8, 1 + 8.
That is, the difference between [ 1+]2 1 - il L and [_l:lﬁ___lg .
Ay
. = B,
%17 i1 45 givided by 4y.
Ay
de. 8., + 8, 8;,4 -8 B; *+ 6, 8. - 8.
1. i+l i 1l i i i-1 i i-1 A
L R e R e e I e MY
2 2 o2
-0 - (L. [(a1+1 LR 81-1]}
Ay 20y 20y
2 2 2
=D {l_ . [61+1 291 61+11 }
-7 YAy 24y
P TN RIS I ()
2(ay)
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which is subject to the following initial and boundary conditions.

6 = h(x)/H 0<y<1 1=0
;] ho(t)/H y=20 T 5 [
en=8n_-| y=] >0

3-3 QUASILINEARIZATION

Because Equation (3-8) is nonlinear, it is hard to solve analytically
[31,321. We know that both initial-value and 1inear boundary-value problems
in ordinary differential equations can be solved numerically in a fairly
routine fashion on modern digital computers. Hence, if we can Tet the
Equation (3-8) be replaced by a system of linear ordinary differential
equations for which the technique of quasilinearization is applies, then the
problem will be more simple in comparison to the original problem. The
theoretical operations to decouple the nonlinear differential equation systems
by quasilinearization will be the same as that mentioned in Section (2-2).

Let us define X as a vector which has components 815 050 845 8. 15 D,
and F as the vector function which has the corresponding differential
equations as its components.

The n equations can be written as

a’= 'F()-(, T) (3'10)
f(Ro1) =0« —d— - [62, - 205+ 05,1, i=1,23, ..., 01
2(ay) (3-11)

f(X,z) =0, i =n
The linearized form of Equation (3-10) written in the recurrence re-

lation is
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X e o )
T ?n td (Xn) [xn+] B Xn]
or
dX _ £(x ¥ V(% - X 3-12
The Jacobi matrix J(KO) is defined by
af] af] af] af] i\l
0 0 o °* .0 0
88y 28, 384 3,7 8D
of, 3, af,  af, of,
0 0 0 0 0
) 38 28, 38 3 36 ¢ 8D
J(Xy)=
afn_] afn_] afn—T afn_1 afn_]
0 A0 0 0 0
361 365 363 38,1 3D
0 0 0 0 0o
nxn (3-13)
The components of f(io, t) are obtained by substituing the known value
of 69 and D0 into Equation (3-11). One gets

1

2 02 O2

0 1 0
D" « - [o5,y - 20 +06; 4]
Z(AY) i+1 1 1 1

0 when i = n

The components of X - RO are
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[ 1 0 )

e'I - 31

1 0

B2 " B

1 0

83 - 93

[X - %1 = 5 (3-14)

1 0
-2~ %2

1 .0

8n»1 6n--I

p! - pf

4 J

nxl

In which the superscript 1 represents the current approximations and 0
the previous approximations.

The components of the Jacobi matrix J()'(O) are listed in the following:

For the first row

af1 ) 0 DO
—0 " "4 5
38 2(ay)
E.f;l. = 290 . ‘-_Dg_
aeg Z 2(ay)
af] 0

—5 =

363

af



—_—=
0
30
af1 -0
0
30, _1
af1 o 02 02 02
e 7 - (8 - 287 +;)
1) 2(ay)
The second row:
0" 7 - (289)
36, 2{(Ay)
M. B 0
0° 7+ (-46;)
38, 2(ay)
af D
2 - 0 . (290)
aeg Z(AQE?_ 3
it g
5=
20,
2
it



=0
38 1
af 2 2 2
b -
aD 2(ay)
The third row
if.i = 0
0
30
af 0
5= 2y - (28))
30, 2(ay)
af 0
3=y (40y)
284 2(ay)
of D
3 - (29))
36, 2(ay)
afy iy
0
of 2 2 2
3 _ 1 0 0 0
0= - (8y - 283 +eoy)

17



The (n=3)'th row

1
[
]
(=)
——
'
£~
o

2 2 2
’ (an~2 - 28, 3t ®n-4

n-3 _ _1
300 Z(M)2




The (n-2)'th row

g _
-2 -

891

oz | o
n-2 -

38

of 0

oo D :
0

30, 1 2(ay)

-1 N

3D° 2(ay)*

The (n-1)'th row

¥y .
391
af

n-'[ - 0

0
n-3
(-48, )
(292_1)
: (eﬁ_1 - 20

2
n-2

+92

n-3)

19



=
t
ot
n
o

=3

]
—
1}

The

n'th row

=0

20



Equation (3-12). One gets,
g;i-= o0 . Ezi;;§ ; (egf] NP A (o
[2—(2—2)7 (269,7)] + (614 - o3_y) [-(%:Tg
(@03 1)) + &+ 07 - o) {z(ly)z B -

and

21

The Tinearized forms of Equation (3-11) are represented as shown in

1= 152:3: ) (n-2),
§ =0 for i = 1
§ =1 for 1 # 1
do,q D ( 0?2 | o? Ve (o] 0 )
— = - (-8, + 8 + (e, -0 .
dt 2(Ay)2 n-1 n=-2 n-1 n=-1
D D
-2 . (~27 )] + (e, - 80 ) - [————2-0 :

(3-15)
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“902 + 902
(262 )] + (0! - 0% - [ ”;](Ay)zn'z} (3-16)

The Equation (3-15) and (3-16) are subject to:

eT = ﬁ%&l 0<y=<1 =20
ha(t)
BI = —%——— y=0 T >0
1 . 4l = -
8y = 051 y =1 t >0 (3-17)

In which the superscript 1 represents the current approximations and
0 the previous approximations. The method of complementary function is
used to obtain the general solution and requires only the previous estimates

0 0

of D and the solutions of ei.

3-4 THE SOLUTION OF THE PROBLEM

The quasilinearization technique Tinearizes the nonlinear equation and
solved it as an initial value problem. Thus, Equations (3-15) and (3-16) are
both nonhomogeneous linear differential equations. As mentioned in sectian
(2-4), when the problems of nonhomogeneous terms are present, we can let these
nonhomogeneous terms be expressed as sums of a finite number of functions,
which are represented by p and q in this problem. There are many combinations
of p and g; they must fulfill the only requirment that each sum should be
equal to each original term. But only on them satisfies thé situation that
parameter D appears in the solution in an explicit manner. In other words,
the general solution is represented by the linear combination of p and g, in

which p is multiplies by constant D to give



8 =D (p+aq)

If one rearranges the right-hand side of Equations (3-15) and (3-16),

in sequence, one gets,

1
de, 2 2 2
a.._".=[)0. 1 2-(6?”-26? +e?_1)+
g 2(ay)
D
(6] - o) [ i (”491)] *
2(ay)
D
1 0 0 0
(8541 = 84y [Z(Ay)z - (28 + T)] i
D
1 0 /0
(81_-‘ -8 -l) [m (291“1 § +
2

In this way, we consider D as a new variable which can be improved as

iterations continue.
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0 1 02 02 . 0o? .
The iterm of D~ . g (61'+1 - 291- + 91._1) is eleminated.
2(ay)

do) ; D, " 0,
el [ ] - [

2(ay) 2(ay)
(-48%)| + o] %0 . (269, )] - &9
R L v R U B

: [ b . (ZB?H)] ol - [_DO_,Z.. (23?_1)]

2(Ay)2 '

0 0 0 !
(8 - 28, *+ oy ])] (3-19)

D D
0 0 1 0 0
——— - (205,4) PRI [———2- (20 _ )] §
D D
1T . _ .0 [ 0- . o] 0 [ 0.
8 -9 (-463) 6
U Lep? T T e



2b

D
0 0 0 0 1 1
(28 )] - PUR [ - {28 )] - 8+ D' . [ .
1+1 1'1 Z(Ay)Z -1 Z(Ay)z
2 2 2
0 0 0
%41 7 205 * 85) (3-20)

.i ] ],2,3, «arey I’!-2

Quasilinearization involves decoupling the system of differential

equations by linearization into a series of initial value problems. De-

pending on the arguments which are mentioned in the beginning of this

section, we can arrange the right hand side in such a manner that parameter
D can appear in the general solution. Let 9 represent the first part of
the right hand side and g, represent the second part of the right hand sice.

That 1is
L{x) = gy(t) + g,(t) (3-21)

Each part is corresponding the particular solution of p and g.

From Equation (3-20)

2 2 2
1 1 0 0° . 0
g, =D . [ (83,4 = 208: + 8. )J 408
1 2ay)? | i T 2t (3-22)
0
0. [0 0 0
9 = -9 [2(Ay)2 ( 491’] 8141
0 0
D 0 0 D
(28:,,) 8 .
2(ay)° it =10 2(ay)?

(26 Do (3-23)
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Under the assumption of linearity, the Equation (3-21) can be decoupled

into

L{x) = gq(t) (3-24)

L(x)

gz(t)

Therefore, Equation (3-20) can be written

1
de. D
L gk =L (~409) - o -
2(ay)

0
0 1 D 0 . 1T .
285490 . ® [ (29 )] § -6, =

L Py i-1
2 2 2
1 1 0 0 0
= gy = n' - [ . (B. - 28; + B:_ )] (3"25)
1 E(Ay)z j+] 1 i-1

Let Equation (3-25) be divided by D} for both sides.

1
de. 0

1 i1 D 0 1 3
L R - (-aed) -6l - 1o

2] ol - [
2(ay)? 1+ 1l Qay)®

2 2

0 1 1,05 .0

(2054) -8 - 05, [gf;;;E (0547 - 285 *

2
o0 1)] (3-26)



;]
d(—) 1
DT i [ DU (_469)] (E}) ) [ DO
& (ay)? ! D 2(ay)?
0 G}H D 0
(231“)} (51 ) - [Z(M)z (264 1)] 8
o)1 1 02 ¢, 0?
Fiak [2( A A i1
AY
o
Let a new variable SITA% be introduced which is equal to :l
D
i=1,2, , n-2
o}
Substitute SITA%_=-—% into Equation (3-27).
D

d(SITA)) [ 0
2(

- x (-492)] - (s1TA])

ay)

0 0
D 0 1 D
o =g - (209,7)] - (SITAy,) - :
[z(a.y) ( 8“‘)] (ithin) {z(mz
0 5. (1Tl ) = =l (o0 -
(291-1)] o =107 o) i+

27

(3-27)

(3-28)
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The superscript 1 represents the current approximations and

gt

0 the previous approximations. In addition, SITA —% .
D

Suppose there exists one particular solution p which satisfies
Equation (3-28). Hence, the iterative equation for p can be written in a

similar form as Equation (3-28). That is

0 0
-—-py - { . (_49.)} - p. .
dt 1 Z(Ay)Z 1 i+]

CH (3-29)

& 2(ay)? 1 2(ay)?
(207 )} +p [ . (269 )] g sl
+1 i=1 Z(Ay)Z i-1 2(Ay)2
2 2 2
0 0 0
(054 - 20 + 05 4) (3-30)



.i = 1,2,3’ ey (n"2)
‘5= Q, for i =1
§s=1, fori# ]

For the second part L = 9,

Lege [2(23)2 o] o - [zcoy)

0
1. D 0y) _ 40
JRRECE [;(A_y)‘i ' ('491)] %41
0 0
D0 . 250 ] - o0 D’ .
[2(Ay)z ( B1+])] 94~ [Z(Ay)z
2691)) - s

5 -

29

(3-31)

Suppose there exists one particular solution of g which satisfies

Equation (3-31).

That is the term of o in Equation (3-31) can be replaced

by q. The equations are:
Egi-- . [ ° . (-499)] - Qg - 0°
dt 1 z(Ay)z 1 i+ Z(Ay)z

0
- (285,4) - q;_ ¢ ° ( "
i+l i=1 2(Ay)2 i

0
. 28D 1)] . 8
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- e
2(ay)? !
or
dq. 0
— - D _aa0
= 7 (8o 0) [2(Ay)2 cae) +
0 n? 260
(Qy o = 85 1) ~ [ ° . (29‘? )J -6 (3-32)
i=1 i=1 Z(Ay)z i-1

1. = ],2,3: “ ey (n-Z)

for i =1

2]
"
o

1 for 1 # 1

[o2]
[}

The above discussion only consider that i lies between 1 and n-2.

The (n-1)"'th term will be considered in the following statements. From

Equation (3-16).
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_a,0 _ A0 D . 0
( 29n_-[)] e -2 ["2—(;5-2' (29 -2 J +
2 2
0 0
] 01 F -2
D" - (3-33)
[ Z(M)2 ]

The arguments for decoupling right hand side into two parts of 9 and

95 will be the same as before.

0% , 0

o L

—
]
(o)

[{e]

—

n

For the first part.

L = 9

or
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1
®n1 1 A BN
dr n-1 Z(Ay)z n-1 n-2
2 2
0 0
0 -8 + 8 A
D 0 1 n-1 n-2
. (20 )] =D' . [ J (3-34)
[z(m? n-2 2(ay)°
Equation (3-34) can be divided by D'.
de 8 0
1 “n-1_ “n-1 [ D™ . (-240 )] -
BT dr D] Z(Ay)f n-1
0
1 1 ( D 0
8 ) " . (29 )] =
ol M2 y? N2
02 . ¢f
-1 ¥ Oz
[ . ] (3-35)
2(ay)
1 1,1
Let SITA ; =6, _;/D
dSITA; : ] o0 (260
= - SITA_ . - [ < (-20 )]
aT n-1 Z(Ay)Z n ]
| 0 » -9021 . B022
- SITAn-Z . [ 5 (Zen_z)] = [ B= > = ]
2{ay) 2(ay)

Suppose there exists one particular solution of P which satisfies

the above equation.



L pyy - [ el y) -

2 0 @l ) - [egi *;?fz]
(ay) 2(ay)

132_1_ n-1" [ZZ%'?- (-292_1)] +P o

%z- (20 _5)] + ( Bgiﬁ;);g:)

For the second part

33

(3-36)

(3-37)
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Suppose there exists one particular solution of q which satisfies the

Equatiop (3-36). Let e% in Equation (3-36) be replaced by q; - Hence,

ddp.y (0 (<269 ) -
dT qn'-[ Z(L\Y)z n-]

0 0
D 0 D 0
. =2 . - (2
{2-(Ay)2 ’ '1)J n-2 [Z(Ay) e 'Z)J
dq__ ) o0 0
skl W [2_(Ay)2 (‘Zen-1)] ¥
0
D 0 0
n-2 [2‘(&&,)2 ’ (z'en-Z)] - Bn-'I
0 0
D 0 0 D
(-20_ 4)| - .
[Eiay)z n-1 ] ®n-2 (2 (a2
0
(Zen_z)] (3-38)

The boundary conditions for the particular solution of P and q will be

the same as the original differential equation. Otherwise, it will be a

different problem if the boundary conditions are changed. That is, the

boundary conditions for P and q are the same as Equation (3-9).
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For the particular solution of P, it is subject to

P= ho(t)/H y=0 >0
(3-39)
Pn= Pn~1 y=1 >0
and
For the particular solution of q, it is subject to
q= ho(t)/ H y=20 > 0 (3-40)
9" 91 y=1 > 0

The initial conditions can be set to any value at our convenience.
However, one factor that we should consider before setting an initial
value to the particular solution of P and q is that the particular solution of
P has already been divided by D' as shown in equation (3-26) and (3-35).
Hence, the sum of D times the initial value of p and the initial value of
q should be equal to ﬁﬁﬁl . If we set the initial value of P to be zero,

then the initial value of q will always be ﬂéﬁl . In that way, it will

not be necessary.to calculate each time. The initial conditions for P

and q are
P=0 0<y=<1 =0 (3-41)

and

h(x)/H 0<y=<]1 =0 (3-42)

O
]

From the above statements, we can make a summary as:



For the particular solution of P

dP 0 0
d"t_1= i [ D 7 - (-49?)] +P'I+'| [ D >
2(ay) 2(ay)
0
0 D
(28 )) + [ - (28 )] .
i =1 2(ay) -
2 2 2
*2—(1'7 (g - 285+ 84p)
Ay
1= 132,3g ’ (n'z)
g=0 for i =1
g=1 for i # 1
and when i = n-1
dP 0
n-1 _ [ D 0
=P - (-29. )) + P
dt n=1 2'(A_Y)2 1 n-2
2 2
0
[ 0 3! )1 . fha t o2
2.(ar)2 "2 2. (ay)
subject to
P=0 0cyzl L
P = hy(t)/H y=0 T
p =P y=1 T ?

36

(3-43)

(3-44)

(3-45)
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. For the particular.solution of g

dq. :
i_ _ a0y D o toas0
& - g -8 [2.(Ay)z ( 491)]
0
0 D 0
o - ) g ) ¢
i+l i+1 2-(Ay)2 i+l
(q1_] - 61_1) . ———2-'30 . (29?_1) - 3§ (3-46)
2-(ay)
1 = 19293! . 3 (n-2)
§ =0 for i =1
§ =1 for i # 1
and when i = n - 1
0

, (2e2_2)} (3-47)

Subject to
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q = h(x)/H 0<y=<1 =0
q = ho(t)/H y=0 >0 (3-48)
9 = 9n-1 y=1 >0

The general solution is represented by the linear combination of these

particular equations to give

I o

ol =0 - Py +q (3-49)

i=1,2,3, ...s (n-1)

Let us assume that observations on the change of the head in the aquifer
in response to a flood wave are available at the m'th discretized point.

The dimensionless head at this point is defined as a; (rj) for various time

J= 1a2s v T

The objective is to find the unknows parameter D so that the solution

of 6 will be 1n the closest agreement with the observation
6;‘ (’L'j).
The general solution of the m'th discretized point, where observations
are made, 1is

]
6q = D

Pop +q (3-50)

When the least squares criterion is used, the objective function is
the minimization of the weighted sum of the squares of the deviation

between Equation (3-49) and ;(ej). That qs



.
-1 [entey) - & ()7 - 0, (3-51)

Where W; is the weight of the observation point, and (Wy/T) =1

Ty S

a=1

The new estimate of DT is found by equating the derivative of S1

with respect to D1 to zero.

BST ) T 1
—_=2. P +q -8* (1.)].
aD] jzl {[D m ™ 9m am (TJ)]
NJ Pm} =0
T
: 151 Lox(rs) = P~ gy = Pl - W,
jZ] P wi

3-5 COMPUTATIONAL PROCEDURE

1.

Assume a set of reasonable initial values for 8?(T), p,
Also, the observation value of e;(rj) is given.

i=1.2, ..., n-1

JF#1,2 eus T

Integrate Equation (3-43) and (3-45) numerically by Fourth order
Runge-Kutta method.

Substitute the value Pm and Grn s obtained from Step 2, into
Equation (3-49).

39
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Substitute the new value of parameter D1 into Equation (3-51)
and check whether it satisfies the accuracy we need. If the
answer is yes, then the procedure is ended. Otherwise go to

Step 5.

Let 9?(1) = G}(T]

Then go back to Step 2.

Current value of e}(r) and D] are obtained from Step 2.
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CHAPTER 4
NUMERICAL RESULTS

4-1 INTRODUCTION

In this chapter, the problem formulated in chapter 3 with an unknown

parameter is solved.

4-2 NUMERICAL ASSUMPTIONS

Stiff differential equations frequently arise in physical equations
due to the existence of greatly differing time constants [8,14]. The
problem we are working is also a stiff differential equation system.

The step size will influence the stability of our problems [14]. If we can
set the step size to be less than the absolute value of the time constant,
the instability problem can be avoided. Time constant is the term used by
engineers and physicists to refer to the rate of decay. For example, the
equation y' = X.y has the solution c-eAt. If A is negative, then y decays
by a factor of el in time - %n This is the time constant. Here, the

step size is assumed to be 0.1.

The initial approximation of parameter and & can affect the
convergence, depending on the sensitivity of the solutions to the initial
estimation. Occasiona11y, solutions may diverge. The best remedy is to
try another estimate of the parameter. The initial estimation for 6 and
parameter D should be considered simultaneously. Otherwise if any one of
them should fail to give a suitable initial approximation, this would cause
solutions to be divergent. The reasons can be explained from Equation (3-27)

and (3-18). Here, the initial value of parameter D is 0.1, the initial value
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of 8 is shown in Table 1. Also, the following values are assumed: H/L2 =1,
h(x)/H = 1.0, ho(t)ll.l = 0.5, AY = 1.0. The observation data for the 5th

grid point are given in Table 2.

4-3 RESULTS

The problem converged in four iterations. The results are shown in
Table 3 through Table 6. Figure 5 shows the water head corresponding to
the time period under different iteration, in which only the 5th grid point
is considered. Figure 6 shows the water head corresponding to the distance
under different iterations, in which only the 6th time period is considered.
Figure 4 and Table 8 tell us the convergence of parameter D. Figure 2 shows
the final relationship between the water head and the distance during dif-
ferent time‘periods. Figure 3 shows the final relationship between the
water heads and the time periods under different distances. Table 7 shows
the comparison between the numerical solutions of the fifth grid point and
the experimental results published by Ibrahim and Brutsacrt (1965). Table 9

shows the comparison between the present work and Yeh's result [40].

4-4 THE PROCEDURE FOR FINDING THE INITIAL ESTIMATION OF D and 6.
1. Set the initial estimation of parameter D0 as 1 which is already
known as an actual value.

2. Assume initial estimation of eo

as reasonable as possible.

3. Let these data run through computer programming.

4. Check whether the numerical results of parameter D are around
1 and the value of 81 is convergent stably or not.

5. If the answer is no, the procedure is to go back to step 1 and
assume a new estimation of BO. The parameter D1 is still the

value of 1. If the answer is yes, the procedure is to go on to
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the following steps.

Use the data which was obtained from the final interation of step 3
as initial estimation for s.

And, parameter D0 is any value which Ties between 0 and 1.

Let these data go through computer program for one iteration.
Whether D1 lies between 0 and 1 or not.

If yes, a good initial estimation of eo is found.

0 is the smallest vaule we know in

The initial estimation of D
the range of 0 and 1 which makes the problem of convergence.
Here, the value of 0.1 is assumed.

If no, go back to step 1.
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Fig. 1. The configuration of an unconfined aquifer and stream inter-
action system.
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J rs og(t,)
1 0 1.00000
2 0.1 0.90518
3 0.2 0.82802
4 0.3 0.77215

0.4 0.72803
6 0.5 0.69229
7 0.6 0.66296
8 0.7 0.63867
9 0.8 0.61842
10 0.9 0.60142
M 1.0 0.58707

Table 2.

Observed VYalues of the Dimensionless Head at the Fifth

Discretized Point.
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Final

i rj gumerica1 Observation
esults Data
1 0 1.000000 1.000000
2 0.1 0.904072 0.90518
3 0.2 0.824850 0.82802
4 0.3 0.771896 0.77215
5 0.4 0.727842 0.72803
0.5 0.692145 0.69229
7 0.6 0.662824 0.66296
8 0.7 0.638502 0.63867
9 0.8 0.618267 0.61842
10 0.9 0.601274 0.60142
11 1.0 0.586844 0.58707

Table 7. Comparison between the numerical results and experimental

observation data.



ITER 0 1 2 3 4
D 0.100000 0.485724 0.781152 0.896472 0.999527
Table 8. Convergence Rates of Parameter D.

57



Present Yeh's

j ry g:ggglgal Work

1 0 1.000000 1.000000
2 0.1 0.904072 0.905060
3 0.2 0.824850 0.82789
4 0.3 0.771896 0.77200
5 0.4 0.727842 0.72787
6 Q.5 0.692145 0.69213
7 0.6 0.662824 0.66280
8 0.7 0.638502 0.63852
9 6.8 0.618267 0.61827
10 0.9 0.601274 0.60127
11 1.0 0.586844 0.58694

Table 9. Comparison between the present result and Yeh's work.
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APPENDIX 1

THE COMPUTER PROGRAM USED IN CHAPTER 3
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THIS PROGRAM SOLVES A SET OF

NONLINEAR DIFFERENTIAL EQU. AND
UNKNOWN PARAMETERS ARE TO BE IDENTIFIED
USING THE SUPERPOSITION

PRINCIPLE AND RUNGE-KUTTA TECHNIQUE

DIMENSION Y (11), 00 (11,11), PP (11,11),
SITA (11,11), SITAK (11), C (11,11), F(80)
COMMON/VAR 4/MN, MN 3

COMMON/VAR 3/SITA

COMMON/VAR 2/MN 1, MN 2

COMMON/VAR 1/IK, DO, DATAY

COMMON/VAR/NUM

OBSERVATION DATA

SITAK(1) = 1.00000
SITAK(2) = 0.90518
SITAK(3) = 0.72802
SITAK(4) = 0.77215
SITAK(5) = 0.72803
SITAK(6) = 0.69229
SITAK(7) = 0.66296
SITAK(8)

0.63867

SITAK(9) = 0.61842

A5



418

417

SITAK(10) = 0.60142
SITAK(11) = 0.58707

EPSLO = 0.000001

MN = 11

MNT = MN-1
MN2 = MN-2
MN3 = MN-3
IT=0
DATAY = 0.1
DATAT = 0.1
N=29

THE INITIAL VALUE OF SITA AND D

DO 418 J =2, MN
SITA(J,1) = 0.5
CONTINUE

DO 417 J =1, MN

SITA (1,J) = 0
CONTINUE
SITA(11,2) = 0.51
SITA(11,3) = 0.53
SITA(11,4) = 0.56

SITA(11,5) = 0.58
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419

1

67

SITA(11,6) = 0.61

SITA(11,7) = 0.64

SITA(11,8) = 0.67

SITA(11,9) = 0.68

SITA(11,10) = 0.69 .
SITA(11,11) = 0.70

DO 419 3=1, ml
SITA(11-d,2) = SITA(12-J, 2) + 0.013
SITA(11-d,3) = SITA(12-d,3) + 0.017
SITA(11-d,4) = S(TA(12-3,4) + 0.024
SITA(11-,5) = SITA(12-d,5) + 0.024
SITA(11-J,6)

u

SITA(12-J,6) + 0.025
SITA(11-4,7)
SITA(11-4,8) = SITA(12-J,8) + 0.024
SITA(11-0,9) = SITA(12-J,9) + 0.023
SITA(11-J,10) = SITA(12-J,10) + 0.023

1

SITA(12-J,7) + 0.026 -

SITA(11-J,11) = SITA(12-J,11) + 0.023
CONTINUE

PARTICULAR SOLUTION OF P

IT=1IT+ 1

NUM = 1]
IK=20



11

15

19

333

INT =1

DO 11 J = 2, MNT

Y(J-1) = 0

PP(1,J) = 0

CONTINUE

PP(1, MN) = 0

PP(1,1) = 0

IK=1K+1

CALL RKG4 (INT, DATAY, N, Y, F, L,
MM, JJ)

DO 19 J =2, MN 1
PP (IK,J) = Y(J-1)
CONTINUE

INT = INT + 1

IF (IK. LE. 10) GO TO 15
DO 333 I =2, MN

PP(I, 1) = 0.5
PP(I, MN) = PP(I,MN 1)
CONTINUE

PARTICULAR SOLUTION OF Q

INT = 1
IK=0
NUM = 2

DO 31 J =2, MNT
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31

35

39

334

61

69

QQ(1, J) = 1.0
Y(J-1) = 1.0
CONTINUE

QQ(1, MN) =1
(1, 1) =1
IK=IK+1

CALL RKG4 (INT, DATAY, N, Y, F, L,
MM, JJ)

DO 39 J =2, MN 1

QQ (IK, J) =Y (J-1)

CONTINUE

INT = INT + 1

IF (IK, LE. 10) GO TO 35

DO 334 I =2, MN

Qq(I, 1) = 0.5
QQ(I, MN) = QQ(1, MN 1)
CONTINUE

FIND D1 FROM KNOWN SITA
ASUM

0

I

BSUM = 0
DO 61 J =1, MN

ASUM = ASUM + ((SITAK(J) * PP(J,6)
- QQ(J,6) ** PP(J,6)) / 1)

BSUM = BSUM + ((PP(J,6) ** 2) / 1)

CONTINUE



606

607

608

295

DT = ASUM/BSUM

SUBSTITUTE D1 INTQ SITA =D-* P + Q

DO 606 I

2, MN

DO 606 J =2, MN 1

C (I,J) =D1 * PP(I,Jd) + QQ(I,Jd)
SITA (I,J) = ((I,J)
CONTINUE

DO 607 I =1, MN
c(1,1I)=1.0

SITA (1, I) = ((1,I)
CONTINUE

DO 608 J =2, MN

C (J, 1) = 0.5

C (J, MN) =C (J, MN 1)
SITA (J, MN) = C (J, MN)
CONTINUE

PRINT 9, IT, DI

FORMAT ('0',' ITERATION = ', I2,
'D="', F14,7)

DO 295 i=1, MN

PRINT 1, I, (C (I,J), d =1, MN)

CONTINUE

TEST WHEATHER IT IS LESS THE ACCURACY WE NEED

-
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OO

27

125

TSUM = 0

DO 27 J=1, MN

TSUM = TSUM + cCCC(J, 6) - SITAK(J)
) **2) /1)

CONTINUE

IF (TSUM. LE. EPSLO) GO TO 125

FIND THE CURRENT SITA FROM
THE PREVIOUS SITA

Do
IT

D1

H

IT + 1

GO TO 111

STOP

END

DIFFERENTIAL EQUATION DEFINED

DIFFERENTIAL EQA. OF P

SUBROUTINE DFY L (X, DX)

DIMENSION DX (11), X (11), SITA (11, 11)

COMMON/VAR 1/ IK, DO, DATAY
COMMON/VAR 2/ MN1, MN2
COMMOM/VAR 3/SITA
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37

72

COMMON/VAR 4/MN, MN 3

DX(1) = X(1) * (DO/(2 * (DATAY) ** 2)

* (-4 * SITA (IK, 2)) + X(2)* (DO/C 2 * (DATAY)

1 #% 2) * (2 * SITA(IK,3))) + 1/(2*(DATAY) ** 2) * (SITA (IK,3)
* 2 - 2 % SITA (IK, 2) 2 ** 2 + SITA (IK, 1) ** 2)

DX(MN%) = X(MNZ) * (DO/(2 * DATAY ** 2) * (- 2 * SITA (IK, MN1)))
+ X(MN3) * (DO/

1 (2 * DATAY ** 2) * 2 * SITA(IK, MN%)) + 1/(2 * DATAY ** 2) *
(-SITA(IK, MN1) **2 +

2 SITA (IK, MN2) ** 2/
DO 37 J =3, MN2

DX (J-1) = X(J-1) * (DP(2 * (DATAY) ** 2) * (-4 * SITA (IK, J)))
+ X(d) * (D07 (2 *

1 (DATAY) ** 2) * (2 * SITA (IK, J+1))) + X(J-2) * (DO/(2 *
(DATAY) ** 2) * (2 *

2 SITA (IK, J-1))) + 1/(2 * (DATAY) ** 2) * (SITA (IK, J+1) ** 2
- 2 * SITA (IK, J) ** 2 +

3 SITA (IK, J-1) ** 2)

CONTINUE

RETURN

END

DIFFERENTIAL EQUATION OF Q

SUBROUTINE  DFYZ(X, DX)
DIENSION DX(11), X(11), SITA(11,11)



O OO

[or D o B X

43

= B

73

COMMON/VAR1/1IK, DO, DATAY

COMMON/VARZ/MN1, MN2

COMMON/VAR3/SITA

COMMON/VAR4/MN, MN3

DX(1) = (X(1) - SITA(IK, 2)) * (DO/(2 * (DATAY ** 2)) * (- 4 *
SITA (IK, 2))) + (X(2)

1 - SITA (IK, 3)) * (DO/(2 * (DATAY) ** 2) * (2 * SITA (IK,
J+1))) + (X(J-2)

2 - SITA(IK, J-1)) * (DO/(2 * (DATAY ** 2)) * (2 * SITA (IK,
J-1)))

CONTINUE

RETURN

END

SUBROUTINE RKG4 (INT, DT, N, Y, F

L, M, J)

DT  TIME INTERVAL

INT INTEGRAATION TIME INDEX, TIME = (INT-1) * DT

NUMBERS OF 0. D. EQNS

INTEGRATION VALUE

DUMMY STORAGE

DUMMY INDEX

DUMMY INDEX

DUMMY INDEX

DIMENSION DY (11), Y(11), F(80)
COMMON/VAR/NUM



410

450

100
101

106

110

111

T=(INT - 1) *DT

IF (INT. (TT.1) GO TO 450
L=3

M=0

CONTINUE

G0 TO (160, 110, 300), L
G0 TO (101, 110), IG

J =1

L=2

DO 106 K=1, N

K1=K+3*N

Kl + N

K2

K3
F (K1)
F (K3)
F (K2)
GO TO 406

N+ K
Y (K)
F(K1)

H

DY (K)

DO 140 K =1, N

K1 = K
K2=K+5%*N
K3 = K2 + N

K& = K+ N

G0 TO (111, 112, 113, 114), J
F(K1) = DY(K) * DT

Y(K) = F(K4) + 0.5 * F(K1)

GO TO 140
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112

13

124

134

140

170
180

299

300

404

405

406

475

500

75

F(K2) = DY(K) * DT

GO TO 124

Y(K) = F(K4) + (I (K1) + 2.0 * (F (KZ) + F(K3)) + DY (K) * DT)/6.0
GO TO 140

Y(K) = 0.5 * F(K2)

Y(K) = Y(K) + F(K4)

GO TO 140

Y(K) = F(K4) + F(K3)
CONTINUE

G0 TO (170, 180, 170, 180), J
T=T+0.5*0DT

J = J+]

IF (J-4) 404, 404, 299
M=1

GO TO 406

I6 =1

GO TO 405

IG = 2

L=1

CONTINUE

IF (M-1) 475, 410, 475
GO TO (500, 600, 600) L.

TRANSFORM LOT

CONTINUE
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ABSTRACT

A computational procedure based on observation wells is presented for
solving the problem of identifying aquifer parameters. This procedure, quasi-
linearization, was developed by Bellman and Kalaba. In the problem solved,
the governing equation is-a second order nonlinear partial differential equa-
tion subject to time varying boundary conditions for which no closed form
solution exists. The equation is first transformed into a set of nonlinear
ordinary differential equations by discretizing the time variable. The re-
sulting equations form a two-point boundary value problem which can be linearized
by quasilinearization. The eguations can then be solved and, at the same
time, the aquifer parameter is identified. The results showed that the com-

putational procedure is fairly efficient.



